WO2023007876A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2023007876A1
WO2023007876A1 PCT/JP2022/017623 JP2022017623W WO2023007876A1 WO 2023007876 A1 WO2023007876 A1 WO 2023007876A1 JP 2022017623 W JP2022017623 W JP 2022017623W WO 2023007876 A1 WO2023007876 A1 WO 2023007876A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
less
rolled steel
steel sheet
ferrite
Prior art date
Application number
PCT/JP2022/017623
Other languages
English (en)
French (fr)
Inventor
武 豊田
洋志 首藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202280028949.5A priority Critical patent/CN117178070A/zh
Priority to JP2023538282A priority patent/JPWO2023007876A1/ja
Priority to KR1020237035260A priority patent/KR20230158061A/ko
Priority to EP22848959.7A priority patent/EP4379073A1/en
Publication of WO2023007876A1 publication Critical patent/WO2023007876A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to hot-rolled steel sheets. Specifically, it relates to a hot-rolled steel sheet having high strength and excellent fatigue properties and shear workability.
  • This application claims priority based on Japanese Patent Application No. 2021-122173 filed in Japan on July 27, 2021, the content of which is incorporated herein.
  • the shape of the part is punched out from the steel plate to create a blank material. At this time, if cracking occurs at the sheared surface of the punch, the fatigue durability of the part may not always be improved even if a high-strength steel plate is used.
  • Patent Document 1 proposes a hot-rolled steel sheet with excellent fatigue properties at sheared edges by increasing the volume fraction of martensite and decreasing the volume fraction of pearlite.
  • Patent Document 2 proposes a steel sheet that is mainly composed of ferrite and bainite structures and has excellent fatigue properties in the punched shear part by reducing the maximum height of the surface of the steel sheet.
  • Patent Document 3 proposes a steel sheet in which ⁇ 011> and ⁇ 111> of ferrite and martensite are ensured and ⁇ 001> is suppressed to extend fatigue crack initiation life.
  • Patent Document 4 proposes a method of controlling the crystal orientation of the ferrite or bainite main phase structure by controlling the shape ratio up to the final pass in finish rolling.
  • Patent Documents 3 and 4 have room for improvement from the viewpoint of further improving shear workability in addition to fatigue properties.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent fatigue properties and shear workability.
  • hard fresh martensite is also a structure that inhibits plastic deformation, so during strong working such as punching, voids are formed around fresh martensite and cracks are likely to occur on the punched shear surface. Therefore, a hot-rolled steel sheet having a multiphase structure utilizing ferrite and fresh martensite generally deteriorates in shear workability.
  • the present inventors analyzed each deformation mechanism in detail. As a result, the present inventors have found that by strictly controlling the crystal orientation of ferrite and bainite in desired regions, it is possible to improve the shear workability while ensuring the fatigue properties of the hot-rolled steel sheet. In other words, by controlling the area ratio of the hard fresh martensite and the tempered martensite that is the main phase, the crystal orientation of ferrite and bainite that undergoes large crystal rotation by punching in the desired region while ensuring the fatigue characteristics It was found that the fatigue properties and shear workability of the hot-rolled steel sheet can be achieved at a high level by properly incorporating the
  • the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition, in mass%, C: 0.02 to 0.30%, Si: 0.10 to 2.00%, Mn: 0.5-3.0%, P: 0.100% or less, S: 0.010% or less, Al: 0.10 to 1.00%, N: 0.0100% or less, Ti: 0.06-0.20%, Nb: 0 to 0.10%, Ca: 0 to 0.0060%, Mo: 0 to 1.00%, Cr: 0 to 1.00%, V: 0 to 0.40%, Ni: 0 to 0.40%, B: 0 to 0.0020%, Cu: 0 to 1.00%, Sn: 0-0.50% and Zr: 0-0.050% with the balance being Fe and impurities,
  • the metal structure is the area ratio, sum of ferrite and bainite: 30-47%, Tempered martensite: 50-70%, Fresh marten
  • the chemical composition is, in mass%, Nb: 0.01 to 0.10%, Ca: 0.0005 to 0.0060%, Mo: 0.02-1.00%, Cr: 0.02 to 1.00%, V: 0.01 to 0.40%, Ni: 0.01 to 0.40%, B: 0.0001 to 0.0020%, Cu: 0.02-1.00%, Sn: 0.01-0.50% and Zr: 0.001-0.050% You may contain 1 type(s) or 2 or more types out of the group which consists of.
  • the hot-rolled steel sheet having high strength and excellent fatigue properties and shear workability. According to the hot-rolled steel sheet according to the present invention, it is possible to integrally form a light-weight part of a vehicle body of an automobile or the like, shorten the processing process, improve fuel efficiency, and reduce the manufacturing cost.
  • a hot-rolled steel sheet according to one embodiment of the present invention (sometimes referred to as a hot-rolled steel sheet according to this embodiment) will be described.
  • the present invention is not limited to the configuration disclosed in this embodiment, and various modifications can be made without departing from the gist of the present invention.
  • the hot-rolled steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.02 to 0.30%, Si: 0.10 to 2.00%, Mn: 0.5 to 3.0%. , P: 0.100% or less, S: 0.010% or less, Al: 0.10 to 1.00%, N: 0.0100% or less, Ti: 0.06 to 0.20%, and the balance : Contains Fe and impurities.
  • C is an important element for improving the strength of hot-rolled steel sheets. If the C content is less than 0.02%, the desired strength cannot be obtained. Therefore, the C content is made 0.02% or more. It is preferably 0.04% or more, 0.06% or more, or 0.10% or more. On the other hand, when the C content exceeds 0.30%, the shear workability of the hot-rolled steel sheet deteriorates. Therefore, the C content is made 0.30% or less. Preferably, it is 0.25% or less or 0.20% or less.
  • Si is an element that has the effect of suppressing the formation of carbides during ferrite transformation and improving the fatigue properties of hot-rolled steel sheets. This effect cannot be obtained if the Si content is less than 0.10%. Therefore, the Si content is set to 0.10% or more. It is preferably 0.20% or more, 0.30% or more, or 0.50% or more. On the other hand, when the Si content exceeds 2.00%, the shear workability of the hot-rolled steel sheet deteriorates. Therefore, the Si content is set to 2.00% or less. It is preferably 1.80% or less, 1.60% or less, or 1.50% or less.
  • Mn is an element effective in improving the strength of hot-rolled steel sheets by improving hardenability and solid-solution strengthening. This effect cannot be obtained if the Mn content is less than 0.5%. Therefore, the Mn content is set to 0.5% or more. It is preferably 0.7% or more or 1.0% or more. On the other hand, if the Mn content exceeds 3.0%, the fatigue properties of the hot-rolled steel sheet deteriorate due to the formation of MnS. Therefore, the Mn content is set to 3.0% or less. It is preferably 2.8% or less, 2.5% or less, 2.3% or less, or 2.0% or less.
  • P is an impurity, and the lower the P content is, the more desirable it is, preferably 0%. If the P content exceeds 0.100%, the workability and weldability of the hot-rolled steel sheet are significantly degraded, and the fatigue properties are also degraded. Therefore, the P content is set to 0.100% or less. It is preferably 0.070% or less, 0.050% or less, or 0.030% or less. From the viewpoint of refining cost, the P content may be 0.001% or more.
  • S is an impurity, and the lower the S content, the more desirable it is, preferably 0%. If the S content exceeds 0.010%, a large amount of inclusions such as MnS are formed, and the shear workability of the hot-rolled steel sheet deteriorates. Therefore, the S content should be 0.010% or less. It is preferably 0.008% or less and 0.007% or less. If better shear workability is required, the S content is preferably 0.006% or less. From the viewpoint of refining cost, the S content may be 0.001% or more.
  • Al is an important element for controlling ferrite transformation. If the Al content is less than 0.10%, the area ratio of ferrite cannot be controlled favorably. Therefore, the Al content is set to 0.10% or more. It is preferably 0.20% or more, 0.30% or more, or 0.40% or more. On the other hand, when the Al content exceeds 1.00%, cluster-like precipitated alumina is generated, and the shear workability of the hot-rolled steel sheet deteriorates. Therefore, the Al content is set to 1.00% or less. It is preferably 0.90% or less, 0.80% or less, 0.70% or less, or 0.60% or less.
  • N is an impurity, and the lower the N content is, the more desirable it is, preferably 0%. If the N content exceeds 0.0100%, coarse Ti nitrides are formed at high temperatures, degrading the shear workability of the hot-rolled steel sheet. Therefore, the N content is set to 0.0100% or less. It is preferably 0.0080% or less, 0.0060% or less, or 0.0050% or less. From the viewpoint of refining cost, the N content may be 0.0001% or more.
  • Ti is an element that strengthens ferrite by precipitation and is an important element for controlling ferrite transformation to obtain a desired amount of ferrite. If the Ti content is less than 0.06%, the effects of precipitation strengthening and ferrite transformation control cannot be obtained. Therefore, the Ti content is set to 0.06% or more. It is preferably 0.08% or more and 0.10% or more. On the other hand, when the Ti content exceeds 0.20%, inclusions caused by TiN are formed, and the shear workability of the hot-rolled steel sheet deteriorates. Therefore, the Ti content is set to 0.20% or less. It is preferably 0.18% or less or 0.16% or less.
  • the hot-rolled steel sheet according to the present embodiment may have the chemical composition described above, with the balance being Fe and impurities.
  • impurities refers to those mixed in by raw materials such as ores, scraps, and other factors when industrially producing steel materials, and/or in a range that does not adversely affect the hot-rolled steel sheet according to the present embodiment. permissible in
  • the chemical composition of the hot-rolled steel sheet according to the present embodiment is not essential for satisfying the required properties, but in order to reduce manufacturing variations and further improve strength, the following optional elements are included. good too. However, since none of the following optional elements are essential for satisfying the required properties, the lower limit of their content is 0%.
  • Nb is an element that has the effect of increasing the strength of the hot-rolled steel sheet by refining the grain size and strengthening the precipitation of NbC.
  • the Nb content is preferably 0.01% or more.
  • the Nb content exceeds 0.10%, the above effect is saturated. Therefore, even when Nb is contained, the Nb content is set to 0.10% or less. Preferably, it is 0.06% or less.
  • Ca is an element that fixes S in steel as spherical CaS, suppresses the formation of elongated inclusions such as MnS, and improves the hole expandability of hot-rolled steel sheets.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content is made 0.0060% or less. Preferably, it is 0.0040% or less.
  • Mo is an element effective in improving the strength of hot-rolled steel sheets by precipitation strengthening of ferrite.
  • the Mo content is preferably 0.02% or more. More preferably, it is 0.10% or more.
  • the Mo content is set to 1.00% or less. It is preferably 0.60% or less, 0.50% or less, or 0.30% or less.
  • Cr 0.02 to 1.00%> Cr is an effective element for improving the strength of the hot-rolled steel sheet.
  • the Cr content is preferably 0.02% or more. More preferably, it is 0.10% or more.
  • the Cr content is set to 1.00% or less. Preferably, it is 0.80% or less.
  • V is an element that improves the strength of a hot-rolled steel sheet by precipitation strengthening and dislocation strengthening by suppressing recrystallization.
  • the V content is preferably 0.01% or more.
  • the V content is set to 0.40% or less. Preferably, it is 0.20% or less.
  • Ni is an element that suppresses phase transformation at high temperatures and improves the strength of the hot-rolled steel sheet.
  • the Ni content is preferably 0.01% or more.
  • the Ni content is set to 0.40% or less. Preferably, it is 0.20% or less.
  • B is an element that suppresses phase transformation at high temperatures and improves the strength of the hot-rolled steel sheet.
  • the B content is preferably 0.0001% or more.
  • the B content is set to 0.0020% or less. Preferably, it is 0.0005% or less.
  • Cu is an element that exists in steel in the form of fine particles and improves the strength of hot-rolled steel sheets.
  • the Cu content is preferably 0.02% or more.
  • the Cu content is set to 1.00% or less. Preferably, it is 0.80% or less.
  • Sn is an element that suppresses the coarsening of crystal grains and improves the strength of the hot-rolled steel sheet.
  • the Sn content is preferably 0.01% or more.
  • the Sn content is set to 0.50% or less. Preferably, it is 0.30% or less.
  • Zr is an element that contributes to improving the formability of hot-rolled steel sheets.
  • the Zr content is preferably 0.001% or more.
  • the Zr content should be 0.050% or less. Preferably, it is 0.030% or less.
  • the chemical composition of the hot-rolled steel sheet mentioned above can be measured by a general analytical method.
  • it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured using a combustion-infrared absorption method
  • N may be measured using an inert gas fusion-thermal conductivity method.
  • the hot-rolled steel sheet according to the present embodiment has a metal structure in terms of area ratio, the total of ferrite and bainite: 30 to 47%, tempered martensite: 50 to 70%, and fresh martensite: 3 to 10%.
  • the pole density of the ⁇ 001 ⁇ plane in the ferrite and bainite in the central region is P i
  • the ⁇ 001 ⁇ plane in the ferrite and bainite in the surface layer region is 1.2 to 2.0, where P s is the pole density of .
  • the hot-rolled steel sheet according to the present embodiment preferably has a metal structure consisting only of ferrite, bainite, tempered martensite, and fresh martensite. That is, the hot-rolled steel sheet according to the present embodiment has a metal structure in which the area ratios are the total of ferrite and bainite: 30 to 47%, tempered martensite: 50 to 70%, and fresh martensite: 3 to 10%. % only.
  • the area ratios of ferrite and bainite, tempered martensite, and fresh martensite in the region from 1/8 depth to 3/8 depth from the surface are defined. The reason is that the metallographic structure in this region exhibits a typical metallographic structure of hot-rolled steel sheets.
  • Total of ferrite and bainite 30-47% Ferrite and bainite improve the shear workability of hot-rolled steel sheets. If the total area ratio of ferrite and bainite is less than 30%, the hot-rolled steel sheet may have poor shear workability or may have poor fatigue strength. Therefore, the total area ratio of ferrite and bainite is set to 30% or more. It is preferably 33% or more, 35% or more, or 37% or more. On the other hand, if the total area ratio of ferrite and bainite exceeds 47%, the strength and fatigue properties of the hot-rolled steel sheet may deteriorate, or the shear workability of the hot-rolled steel sheet may deteriorate. Therefore, the total area ratio of ferrite and bainite is set to 47% or less.
  • Tempered martensite 50-70% Incorporating fresh martensite is an effective way to improve the fatigue properties of hot-rolled steel sheets. It is effective to include the tempered martensite generated by being annealed.
  • the area ratio of tempered martensite is set to 50% or more. Preferably, it is 53% or more or 55% or more.
  • the area ratio of tempered martensite exceeds 70%, the hot-rolled steel sheet may have poor shear workability or may have poor strength. Therefore, the area ratio of tempered martensite is set to 70% or less. Preferably, it is 65% or less or 60% or less.
  • Fresh martensite improves the fatigue strength of hot-rolled steel sheets. If the area ratio of fresh martensite is less than 3%, the fatigue strength of the hot-rolled steel sheet may deteriorate and/or the strength of the hot-rolled steel sheet may deteriorate. Therefore, the area ratio of fresh martensite is set to 3% or more. It is preferably 4% or more or 5% or more. On the other hand, when the area ratio of fresh martensite exceeds 10%, the shear workability of the hot-rolled steel sheet deteriorates. Therefore, the area ratio of fresh martensite is set to 10% or less. Preferably, it is 9% or less or 8% or less.
  • the area ratio of each tissue is obtained by the following method. First, from the hot-rolled steel sheet, in the thickness cross section parallel to the rolling direction, 1/4 depth of the plate thickness from the surface (area from 1/8 depth to 3/8 depth from the surface) and in the width direction The specimen is taken so that the metallographic structure at the central position can be observed.
  • an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analysis apparatus is 9.6 ⁇ 10 ⁇ 5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the electron beam irradiation level is 62.
  • the maximum value of the "Grain Average IQ" of the ferrite region was taken as I ⁇ under the condition that the 5° grain boundary in the remaining region (the region where the "Grain Orientation Spread" exceeds 1°) is regarded as the grain boundary.
  • a region exceeding I ⁇ /2 is extracted as bainite, and a region below I ⁇ /2 is extracted as “fresh martensite and tempered martensite”.
  • the area ratio of the extracted bainite is obtained.
  • fresh martensite and tempered martensite are distinguished by the following method.
  • a Vickers indentation is stamped near the observation position. After that, leaving the structure of the observation surface, contamination on the surface layer is removed by polishing, and nital etching is performed. Next, the same field of view as the EBSD observation surface is observed with a SEM at a magnification of 3000 times.
  • the region having a substructure in the grain and having cementite precipitated with multiple variants is called tempered martensite. determine the site. A region with high brightness and in which the substructure is not revealed by etching is judged to be fresh martensite. By calculating each area ratio, the area ratio of tempered martensite and the area ratio of fresh martensite are obtained.
  • a method such as buffing using alumina particles with a particle size of 0.1 ⁇ m or less, or Ar ion sputtering may be used.
  • the shear workability of the hot-rolled steel sheet is improved. deteriorates.
  • the present inventors have found that cracks during shearing are likely to occur in the central region of the regions obtained by dividing the plate thickness cross-section parallel to the rolling direction into three regions in the plate thickness direction.
  • the shear workability of the hot-rolled steel sheet is improved by preferably controlling the pole density of ⁇ 001 ⁇ planes in ferrite and bainite in the central region and the surface layer region.
  • the pole density of the ⁇ 001 ⁇ plane in the ferrite and bainite in the central region is P i
  • the ⁇ 001 ⁇ plane in the ferrite and bainite in the surface layer region is P i
  • P i /P s is less than 1.2
  • the ⁇ 001 ⁇ planes are uniformly distributed from the surface of the hot-rolled steel sheet.
  • crystal rotation occurs from the sheared surface during punching, sag during shearing increases, and cracks are likely to occur in the sheared punched surface, resulting in deterioration in the shear workability of the hot-rolled steel sheet.
  • P i /P s is set to 1.2 or more. It is preferably 1.3 or more, 1.4 or more, or 1.5 or more.
  • P i /P s greater than 2.0 indicates excessive concentration of ⁇ 001 ⁇ planes in the central region. In this case, the ⁇ 001 ⁇ plane, which is a brittle fracture surface, increases in the fracture surface, and cracks are likely to occur in the punched shear surface. As a result, the shear workability of the hot-rolled steel sheet deteriorates. Therefore, P i /P s is set to 2.0 or less. It is preferably 1.9 or less, 1.8 or less, or 1.7 or less.
  • the central region is the region from the depth of 1/3 of the plate thickness to the depth of 2/3 of the plate thickness from the surface, among the regions obtained by dividing the plate thickness cross section parallel to the rolling direction into three in the plate thickness direction. It's about.
  • the surface layer region is the region from the surface to the depth of 1/3 of the plate thickness from the surface, or 2 of the plate thickness from the surface, among the regions obtained by dividing the plate thickness cross section parallel to the rolling direction into three in the plate thickness direction. It is a region from a depth of /3 to the back surface (another surface different from the above surface), and in the present embodiment, any region is not particularly limited.
  • ⁇ hkl ⁇ represents a crystal plane parallel to the rolled plane. That is, ⁇ hkl ⁇ indicates that the rolling direction and the ⁇ hkl ⁇ plane are parallel.
  • a device combining a scanning electron microscope and an EBSD analysis device and OIM Analysis (registered trademark) manufactured by TSL are used.
  • the crystal orientation distribution function (ODF: Orientation Distribution Function) that displays the three-dimensional texture calculated using the orientation data measured by the EBSD (Electron Back Scattering Diffraction) method and the spherical harmonic function can be used to obtain the extreme density. can. Note that the measurement pitch is 5 ⁇ m/step.
  • the measurement range is the central area (the area obtained by dividing the thickness cross section parallel to the rolling direction into three areas in the thickness direction, from the depth of 1/3 of the thickness from the surface to the depth of 2/3 of the thickness from the surface). ), and the surface layer region (out of the regions obtained by dividing the plate thickness cross section parallel to the rolling direction into three in the plate thickness direction, the region from the surface to the depth of 1/3 of the plate thickness from the surface, or 2 of the plate thickness from the surface /3 depth to the back surface (another surface different from the above surface)). Also, the pole density is measured for the regions regarded as ferrite and bainite by the same method as the EBSD measurement described above.
  • the hot-rolled steel sheet according to the present embodiment has a tensile strength of 950 MPa or more. It is preferably 1000 MPa or more. If the tensile strength is less than 950 MPa, the applicable parts are limited and the contribution to vehicle weight reduction is small. Although the upper limit is not particularly limited, it may be 1500 MPa or less or 1300 MPa or less from the viewpoint of mold wear suppression. Moreover, the hot-rolled steel sheet according to the present embodiment may have a fatigue limit ratio (fatigue strength/tensile strength) of 0.35 or more.
  • the tensile strength is evaluated by conducting a tensile test in accordance with JIS Z 2241:2011.
  • the test piece shall be JIS Z 2241:2011 No. 5 test piece.
  • the tensile test piece is taken from the 1/4 part from the edge in the width direction, and the direction perpendicular to the rolling direction is taken as the longitudinal direction.
  • Fatigue strength conforms to JIS Z 2275:1978, takes a No. 1 test piece from a hot-rolled steel sheet, and measures it using a Schenk plane bending fatigue tester. The stress load during measurement is set at a test speed of 30 Hz in both swings, and the fatigue strength is measured at 10 7 cycles. Then, the fatigue limit ratio (fatigue strength/tensile strength) is calculated by dividing the fatigue strength at 10 7 cycles by the tensile strength measured by the tensile test described above.
  • the thickness of the hot-rolled steel sheet according to this embodiment is not particularly limited, but may be 1.2 to 8.0 mm. If the thickness of the hot-rolled steel sheet is less than 1.2 mm, it may become difficult to ensure the rolling completion temperature and the rolling load may become excessive, making hot rolling difficult. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to obtain the metal structure described above after hot rolling.
  • the hot-rolled steel sheet according to the present embodiment having the above-described chemical composition and metallographic structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance, etc., and may be used as a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot dipping layer.
  • the electroplating layer include electrogalvanizing and electroplating of Zn—Ni alloy.
  • hot-dip coating layers include hot-dip galvanizing, hot-dip galvannealing, hot-dip aluminum plating, hot-dip Zn--Al alloy plating, hot-dip Zn--Al--Mg alloy plating, and hot-dip Zn--Al--Mg--Si alloy plating. be.
  • the amount of plating deposited is not particularly limited, and may be the same as the conventional one. Further, it is possible to further improve the corrosion resistance by applying an appropriate chemical conversion treatment (for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying) after plating.
  • an appropriate chemical conversion treatment for example, applying a silicate-based chromium-free chemical conversion treatment solution and drying
  • the hot-rolled steel sheet according to the present embodiment has the above-described chemical composition and metallographic structure, regardless of the manufacturing method. However, according to the manufacturing method described below, the hot-rolled steel sheet according to the present embodiment can be stably obtained, which is preferable.
  • the hot rolling conditions and subsequent cooling conditions are strictly controlled. A detailed description will be given below.
  • the heating temperature of the slab has a great effect on solutionization and elimination of elemental segregation. If the heating temperature of the slab is less than 1100° C., solutionization and elimination of elemental segregation are insufficient, and precipitation strengthening of the final product cannot be obtained sufficiently, resulting in deterioration of tensile strength. Further, when the slab heating temperature exceeds 1350°C, not only the effect of solutionization and elimination of elemental segregation is saturated, but also the average grain size of austenite becomes coarse, resulting in uneven crystal rotation during rolling. , it becomes difficult to obtain the desired texture. Therefore, it is preferable to set the heating temperature of the slab to 1100 to 1350.degree. More preferably, it is 1150 to 1300°C.
  • the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
  • the slab is continuously passed through a rolling stand for finish rolling multiple times.
  • the rolling conditions at the final 3 stands (the final rolling stand, the rolling stand one before the final, and the rolling stand two before the final) are expressed by the following formula (1).
  • formula (2) are preferably satisfied.
  • the average value of the final three stands satisfy the following formulas (1) and (2).
  • symbol in said Formula (1) is as follows.
  • R Roll radius (mm)
  • H1 Thickness of steel plate on entry side (mm)
  • H2 Thickness of steel plate on delivery side (mm)
  • ⁇ T in the above formula (2) is the difference between the steel plate entry-side temperature and the steel plate delivery-side temperature at each rolling stand.
  • the middle side of the above formula (1) is a formula for obtaining the rolling shape ratio.
  • By controlling the rolling shape ratio it is possible to control the crystal rotation by rolling and obtain the desired crystal orientation in the desired region.
  • the average value of the rolling shape ratio of the final three stands is less than 2.0, the compressive strain inside the steel sheet increases due to rolling, and the formation of a rolling recrystallized texture causes the extreme density of the ⁇ 001 ⁇ plane in the central region to increase. descend. As a result, P i /P s becomes less than 1.2. Further, when the average value of the rolling shape ratios of the final three stands exceeds 10.0, strong shear deformation is applied to the surface of the steel sheet, and the pole density of the ⁇ 001 ⁇ plane in the surface layer region is extremely increased.
  • the average value of the rolling shape ratios of the final three stands is preferably 2.0 to 10.0. That is, the average value of the rolling shape ratio at the final rolling stand, the rolling shape ratio at the rolling stand one before the final, and the rolling shape ratio at the rolling stand two before the final is 2.0 to 10.0. is preferred.
  • controlling ⁇ T which is the difference between the steel plate entry-side temperature and the steel plate delivery-side temperature of each rolling stand, is effective for controlling the temperature inside the steel plate.
  • ⁇ T which is the difference between the steel plate entry-side temperature and the steel plate delivery-side temperature of each rolling stand.
  • heat removal due to contact with the rolling rolls and heat generation from inside the steel sheet due to working energy and frictional heat with the rolls are generated at the same time.
  • the plate thickness becomes thinner and the rolling speed becomes faster, so that the heat removal becomes smaller and the influence of working heat generation becomes larger. Therefore, it is important to manufacture the strip at an appropriate threading speed according to the diameter and surface condition of the rolling rolls and the thickness of the strip to be manufactured.
  • the average value of ⁇ T in the final three stands is preferably 5-35. That is, the average value of ⁇ T at the last rolling stand, ⁇ T at the rolling stand one before the last, and ⁇ T at the rolling stand two before the last is preferably 5-35.
  • the time until the start of cooling exceeds 1.6 seconds the strain due to rolling is recovered, and the extreme density of the ⁇ 001 ⁇ planes in the surface layer region may not be preferably controlled.
  • P i /P s may be less than 1.2.
  • the time until the start of cooling is more preferably within 0.6 seconds.
  • the finish rolling it is preferable to cool to a temperature range of 600 to 750°C at an average cooling rate of 50°C/sec or more. After that, it is preferable to apply air cooling for 2.0 to 6.0 seconds in the temperature range. If the air-cooling temperature range is less than 600° C. or more than 750° C., ferrite transformation does not proceed sufficiently, and a desired amount of ferrite may not be obtained. As a result, the sum of the area ratios of ferrite and bainite may not be the desired amount.
  • the average cooling rate of the primary cooling may be 250° C./s or less from the viewpoint of suppressing the expansion of cooling equipment. Further, when the air cooling time in the temperature range of 600 to 750° C.
  • the air-cooling time in the temperature range is less than 2.0 seconds, the area ratio of tempered martensite increases, and the area ratio of fresh martensite may not reach the desired level.
  • the air cooling After the air cooling, it is preferable to cool to a temperature range of 200°C or less at an average cooling rate of 40°C/second or more as secondary cooling. If the average cooling rate of the secondary cooling is less than 40° C./sec, the critical cooling rate required for martensite transformation may not be obtained, and the desired amount of fresh martensite and/or tempered martensite may not be obtained. .
  • the average cooling rate of the secondary cooling may be 250° C./s or less from the viewpoint of suppressing the expansion of cooling equipment.
  • the average cooling rate is a value obtained by dividing the temperature drop range of the steel sheet from the start of cooling to the end of cooling by the time required from the start of cooling to the end of cooling.
  • the start of cooling is defined as the start of injection of a cooling medium to the steel plate by the cooling equipment, and the end of cooling is defined as the time of drawing out the steel plate from the cooling equipment.
  • cooling facilities have no air-cooling section on the way, and some have one or more air-cooling sections on the way.
  • any cooling equipment may be used.
  • the steel sheet After cooling to a temperature range of 200°C or less by secondary cooling, the steel sheet is coiled. Since the steel sheet is coiled immediately after the secondary cooling, the coiling temperature is almost equal to the cooling stop temperature of the secondary cooling. If the coiling temperature exceeds 200°C, a large amount of ferrite or bainite may be generated, making it impossible to obtain a desired metal structure. Therefore, the winding temperature, which is the cooling stop temperature, is preferably 200° C. or lower.
  • the hot-rolled steel sheet may be temper-rolled according to a conventional method, or may be pickled to remove scales formed on the surface.
  • a plating treatment such as hot dip plating or electroplating, or a chemical conversion treatment may be applied.
  • the hot-rolled steel sheet according to the present embodiment can be stably manufactured.
  • a steel having the chemical composition shown in Tables 1A and 1B was melted, and a slab with a thickness of 240 to 300 mm was produced by continuous casting.
  • hot-rolled steel sheets shown in Table 3 were obtained under the manufacturing conditions shown in Tables 2A and 2B.
  • finish rolling was performed using a finishing mill having seven rolling stands, F5 (rolling stand two before the last), F6 (rolling stand one before the last) and F7 ( The rolling shape ratio and ⁇ T in the final rolling stand) are described.
  • the metal structure area ratio, P i /P s , tensile strength and fatigue limit ratio of the obtained hot-rolled steel sheets were obtained by the methods described above. Table 3 shows the measurement results obtained.
  • the hot-rolled steel sheet had high strength and was determined to be acceptable.
  • the hot-rolled steel sheet did not have high strength and was determined to be unacceptable.
  • the fatigue limit ratio was 0.35 or more, the hot-rolled steel sheet had excellent fatigue strength and was determined to be acceptable. On the other hand, when the fatigue limit ratio was less than 0.35, the hot-rolled steel sheet did not have excellent fatigue strength and was determined to be unacceptable.
  • the shear workability of the hot-rolled steel sheets was evaluated by the following method. Based on JIS Z 2256:2020, three punched holes were produced by punching at a clearance of 15% and a punching speed of 3 m/s using a ⁇ 10 mm punch. For three punched holes, the maximum length of cracks on the punched shear plane (the cross section perpendicular to the plate surface) was measured. When the maximum crack length was 300 ⁇ m or more, the hot-rolled steel sheet did not have excellent shear workability and was judged to be unacceptable. On the other hand, when the maximum crack length was less than 300 ⁇ m, the hot-rolled steel sheet was judged to have excellent shear workability and was judged to be acceptable.
  • the hot-rolled steel sheets according to the examples of the present invention have high strength and excellent fatigue properties and shear workability.
  • the hot-rolled steel sheets according to the comparative examples are inferior in at least one of the above properties.
  • the present invention it is possible to provide a hot-rolled steel sheet having high strength and excellent fatigue properties and shear workability. According to the hot-rolled steel sheet of the present invention, it is possible to reduce the weight of automobile bodies, integrally mold parts, and shorten processing steps, thereby improving fuel efficiency and reducing manufacturing costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成および金属組織を有し、圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、中央領域のフェライトおよびベイナイトの{001}面の極密度をPiとし、表層領域のフェライトおよびベイナイトにおける{001}面の極密度をPsとしたとき、Pi/Psが1.2~2.0であり、引張強さが950MPa以上である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、高い強度を有し、且つ優れた疲労特性およびせん断加工性を有する熱延鋼板に関する。
 本願は、2021年7月27日に、日本に出願された特願2021-122173号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車の耐久性向上および衝突安全性の向上を目的として、自動車部材への高強度の鋼板の適用が盛んに検討されている。特に、自動車部材へ適用される高強度の鋼板においては、部品の疲労耐久性を確保することが重要となる。
 鋼板から部品に加工される際には、鋼板から部品形状を打ち抜いてブランク材を作製する。このとき、打ち抜きせん断面で割れが発生すると、高強度の鋼板を用いたとしても部品の疲労耐久性が必ずしも向上しない場合がある。
 例えば、特許文献1では、マルテンサイトの体積率を上げ、パーライトの体積率を下げることで、せん断端面の疲労特性に優れた熱延鋼板が提案されている。
 特許文献2には、フェライトとベイナイト組織を主体とし、鋼板表面の最大高さを小さくすることで、打ち抜きせん断部の疲労特性に優れた鋼板が提案されている。
 しかしながら、特許文献1および2に記載の技術では、打ち抜きせん断面の割れを十分に抑制することはできないため、加工を加えて部品形状になった際の疲労特性が十分ではなかった。
 特許文献3には、フェライトとマルテンサイトの<011>と<111>を確保し、<001>を抑制することで疲労の亀裂発生寿命を長くした鋼板が提案されている。
 特許文献4には、仕上げ圧延において、最終パスまでの形状比を制御することでフェライトまたはベイナイト主相組織の結晶方位を制御する方法が提案されている。
日本国特開2001-40450号公報 日本国特開2001-172745号公報 国際公開第2016/010005号 日本国特開2009-19265号公報
 しかしながら、疲労特性に加えて、せん断加工性もより向上させる観点では、特許文献3および4に記載の技術には改善の余地が有る。
 近年における自動車のさらなる軽量化への要求の高まり、および部品形状の複雑化等を背景に、更に優れた疲労特性およびせん断加工性を有する高強度の熱延鋼板が求められている。
 本発明は上記の課題に鑑みてなされたものであり、本発明は、高い強度を有し、且つ優れた疲労特性およびせん断加工性を有する熱延鋼板を提供することを目的とする。
 疲労特性に優れた組織として、転位運動を阻害するフェライトに、硬質なフレッシュマルテンサイトを分散した複相組織が効果的であることが知られている。この複相組織を有する鋼板は、例えば、自動車のホイールディスク部品に多く利用されている。
 一方で、硬質なフレッシュマルテンサイトは塑性変形を阻害する組織でもあるため、打ち抜き加工のような強加工時には、フレッシュマルテンサイト周辺にボイドが形成されることで、打ち抜きせん断面に割れが生じやすい。したがって、フェライトとフレッシュマルテンサイトとを活用した複相組織を有する熱延鋼板では、一般的にせん断加工性が劣化する。
 これらの相互関係を打破するため、本発明者らはそれぞれの変形機構を詳細に解析した。その結果、本発明者らは、所望の領域のフェライトおよびベイナイトの結晶方位を厳密に制御することで、熱延鋼板の疲労特性を確保しつつせん断加工性を向上できることを見出した。つまり、硬質なフレッシュマルテンサイトと主相である焼き戻しマルテンサイトとの面積率を制御することで疲労特性を確保しつつ、所望の領域において、打ち抜き加工によって大きく結晶回転するフェライトおよびベイナイトの結晶方位を適切に作りこむことで、熱延鋼板の疲労特性およびせん断加工性を高い次元で両立できることを見出した。
 本発明は上記知見に基づいてなされたものであり、本発明の要旨とするところは以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C :0.02~0.30%、
Si:0.10~2.00%、
Mn:0.5~3.0%、
P :0.100%以下、
S :0.010%以下、
Al:0.10~1.00%、
N :0.0100%以下、
Ti:0.06~0.20%、
Nb:0~0.10%、
Ca:0~0.0060%、
Mo:0~1.00%、
Cr:0~1.00%、
V :0~0.40%、
Ni:0~0.40%、
B :0~0.0020%、
Cu:0~1.00%、
Sn:0~0.50%、および
Zr:0~0.050%
を含有し、残部がFeおよび不純物であり、
 金属組織が、面積率で、
  フェライトおよびベイナイトの合計:30~47%、
  焼き戻しマルテンサイト:50~70%、
  フレッシュマルテンサイト:3~10%であり、
 圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、中央領域のフェライトおよびベイナイトにおける{001}面の極密度をPとし、表層領域のフェライトおよびベイナイトにおける{001}面の極密度をPとしたとき、P/Pが1.2~2.0であり、
 引張強さが950MPa以上である。
(2)上記(1)に記載の熱延鋼板は、前記化学組成が、質量%で、
Nb:0.01~0.10%、
Ca:0.0005~0.0060%、
Mo:0.02~1.00%、
Cr:0.02~1.00%、
V :0.01~0.40%、
Ni:0.01~0.40%、
B :0.0001~0.0020%、
Cu:0.02~1.00%、
Sn:0.01~0.50%、および
Zr:0.001~0.050%
からなる群のうち1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、高い強度を有し、且つ優れた疲労特性およびせん断加工性を有する熱延鋼板を提供することができる。本発明に係る熱延鋼板によれば、自動車などの車体の軽量化部品の一体成形、加工工程の短縮が可能であり、燃費の向上、製造コストの低減を図ることができる。
 本発明の一実施形態に係る熱延鋼板(本実施形態に係る熱延鋼板と言う場合がある。)について、説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に本発明の個々の構成要件について詳細に説明する。まず、本実施形態に係る熱延鋼板の化学組成の限定理由について述べる。
 以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。化学組成に関する%は特に指定しない限り質量%を意味する。
 本実施形態に係る熱延鋼板は、化学組成が、質量%で、C:0.02~0.30%、Si:0.10~2.00%、Mn:0.5~3.0%、P:0.100%以下、S:0.010%以下、Al:0.10~1.00%、N:0.0100%以下、Ti:0.06~0.20%、並びに、残部:Feおよび不純物を含有する。
<C:0.02~0.30%>
 Cは熱延鋼板の強度を向上させるために重要な元素である。C含有量が0.02%未満であると、所望の強度を得ることができない。そのため、C含有量は0.02%以上とする。好ましくは0.04%以上、0.06%以上または0.10%以上である。
 一方、C含有量が0.30%超であると熱延鋼板のせん断加工性が劣化する。そのため、C含有量は0.30%以下とする。好ましくは0.25%以下または0.20%以下である。
<Si:0.10~2.00%>
 Siはフェライト変態中の炭化物の生成を抑制し、熱延鋼板の疲労特性を向上させる効果を有する元素である。Si含有量が0.10%未満であると、この効果を得ることができない。そのため、Si含有量は0.10%以上とする。好ましくは0.20%以上、0.30%以上または0.50%以上である。
 一方、Si含有量が2.00%超であると、熱延鋼板のせん断加工性が劣化する。そのため、Si含有量は2.00%以下とする。好ましくは1.80%以下、1.60%以下または1.50%以下である。
<Mn:0.5~3.0%>
 Mnは焼入れ性の向上及び固溶強化によって熱延鋼板の強度を向上させるのに有効な元素である。Mn含有量が0.5%未満であると、この効果を得ることができない。そのため、Mn含有量は0.5%以上とする。好ましくは0.7%以上または1.0%以上である。
 一方、Mn含有量が3.0%超であると、MnSが生成することで、熱延鋼板の疲労特性が劣化する。そのため、Mn含有量は3.0%以下とする。好ましくは2.8%以下、2.5%以下、2.3%以下または2.0%以下である。
<P:0.100%以下>
 Pは不純物であり、P含有量は低いほど望ましく、0%であることが望ましい。P含有量が0.100%超であると、熱延鋼板の加工性および溶接性が著しく劣化する上、疲労特性も劣化する。そのため、P含有量は0.100%以下とする。好ましくは0.070%以下、0.050%以下または0.030%以下である。
 P含有量は、精錬コストの観点から、0.001%以上としてもよい。
<S:0.010%以下>
 Sは不純物であり、S含有量は低いほど望ましく、0%であることが望ましい。S含有量が0.010%超であると、MnS等の介在物が多量に生成され、熱延鋼板のせん断加工性が劣化する。そのため、S含有量は0.010%以下とする。好ましくは0.008%以下、0.007%以下である。より優れたせん断加工性が要求される場合には、S含有量は0.006%以下とすることが好ましい。
 S含有量は、精錬コストの観点から、0.001%以上としてもよい。
<Al:0.10~1.00%>
 Alはフェライト変態を制御するために重要な元素である。Al含有量が0.10%未満であると、フェライトの面積率を好ましく制御することができない。そのため、Al含有量は0.10%以上とする。好ましくは0.20%以上、0.30%以上または0.40%以上である。
 一方、Al含有量が1.00%超であると、クラスタ状に析出したアルミナが生成し、熱延鋼板のせん断加工性が劣化する。そのため、Al含有量は1.00%以下とする。好ましくは0.90%以下、0.80%以下、0.70%以下または0.60%以下である。
<N:0.0100%以下>
 Nは不純物であり、N含有量は低い程望ましく、0%であることが望ましい。N含有量が0.0100%超であると、高温にて粗大なTi窒化物が形成され、熱延鋼板のせん断加工性が劣化する。そのため、N含有量は0.0100%以下とする。好ましくは0.0080%以下、0.0060%以下または0.0050%以下である。
 N含有量は、精錬コストの観点から、0.0001%以上としてもよい。
<Ti:0.06~0.20%>
 Tiはフェライトを析出強化させる元素であるとともに、フェライト変態を制御して所望量のフェライトを得るために重要な元素である。Ti含有量が0.06%未満であると、析出強化及びフェライト変態制御の効果を得ることができない。そのため、Ti含有量は0.06%以上とする。好ましくは0.08%以上、0.10%以上である。
 一方、Ti含有量が0.20%超であると、TiNを起因とした介在物が生成し、熱延鋼板のせん断加工性が劣化する。そのため、Ti含有量は0.20%以下とする。好ましくは0.18%以下または0.16%以下である。
 本実施形態に係る熱延鋼板は、上記の化学組成を有し、残部がFe及び不純物からなっていてもよい。ここで、不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料、その他の要因により混入されるもの、および/または本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板の化学組成は、要求される特性を満たすために必須ではないが、製造ばらつきを低減させたり、強度をより向上させたりするために、下記任意元素を含有させてもよい。ただし、下記任意元素はいずれも要求特性を満たすために必須ではないので、その含有量の下限は0%である。
<Nb:0.01~0.10%>
 Nbは結晶粒径の微細化及びNbCの析出強化により、熱延鋼板の強度を高める効果を有する元素である。この効果を得る場合、Nb含有量は0.01%以上とすることが好ましい。
 一方、Nb含有量が0.10%超では上記効果は飽和する。そのため、Nbを含有させる場合でも、Nb含有量は0.10%以下とする。好ましくは0.06%以下である。
<Ca:0.0005~0.0060%>
 Caは鋼中のSを球形のCaSとして固定し、MnSなどの延伸介在物の生成を抑制して熱延鋼板の穴拡げ性を向上させる元素である。これらの効果を得る場合、Ca含有量は0.0005%以上とすることが好ましい。
 一方、Ca含有量が0.0060%超では上記効果は飽和する。そのため、Caを含有させる場合でも、Ca含有量は0.0060%以下とする。好ましくは0.0040%以下である。
<Mo:0.02~1.00%>
 Moはフェライトの析出強化により、熱延鋼板の強度向上に有効な元素である。この効果を得る場合、Mo含有量は0.02%以上とすることが好ましい。より好ましくは0.10%以上である。
 一方、Mo含有量が1.00%超では、スラブの割れ感受性が高まりスラブの取り扱いが困難になる。そのため、Moを含有させる場合でも、Mo含有量は1.00%以下とする。好ましくは0.60%以下、0.50%以下または0.30%以下である。
<Cr:0.02~1.00%>
 Crは熱延鋼板の強度を向上させるのに有効な元素である。この効果を得る場合、Cr含有量は0.02%以上とすることが好ましい。より好ましくは0.10%以上である。
 一方、Cr含有量が1.00%超では熱延鋼板の延性が劣化する。そのため、Crを含有させる場合でも、Cr含有量は1.00%以下とする。好ましくは0.80%以下である。
<V:0.01~0.40%>
 Vは、析出強化および再結晶の抑制による転位強化によって、熱延鋼板の強度を向上させる元素である。これらの効果を得る場合、V含有量は0.01%以上とすることが好ましい。
 一方、V含有量が0.40%超では、炭窒化物が多量に析出して熱延鋼板の成形性が低下する。そのため、V含有量は0.40%以下とする。好ましくは0.20%以下である。
<Ni:0.01~0.40%>
 Niは、高温での相変態を抑制し、熱延鋼板の強度を向上させる元素である。この効果を得る場合、Ni含有量は0.01%以上とすることが好ましい。
 一方、Ni含有量が0.40%超では、熱延鋼板の溶接性が低下する。そのため、Ni含有量は0.40%以下とする。好ましくは0.20%以下である。
<B:0.0001~0.0020%>
 Bは、高温での相変態を抑制し、熱延鋼板の強度を向上させる元素である。この効果を得る場合、B含有量は0.0001%以上とすることが好ましい。
 一方、B含有量が0.0020%超では、B析出物が生成して熱延鋼板の強度が低下する。そのため、B含有量は0.0020%以下とする。好ましくは0.0005%以下である。
<Cu:0.02~1.00%>
 Cuは、微細な粒子の形態で鋼中に存在し、熱延鋼板の強度を向上させる元素である。この効果を得る場合、Cu含有量は0.02%以上とすることが好ましい。
 一方、Cu含有量が1.00%超では、熱延鋼板の溶接性が劣化する。そのため、Cu含有量は1.00%以下とする。好ましくは0.80%以下である。
<Sn:0.01~0.50%>
 Snは、結晶粒の粗大化を抑制し、熱延鋼板の強度を向上させる元素である。この効果を得る場合、Sn含有量は0.01%以上とすることが好ましい。
 一方、Sn含有量が0.50%超では、鋼が脆化して圧延時に破断し易くなる。そのため、Sn含有量は0.50%以下とする。好ましくは0.30%以下である。
<Zr:0.001~0.050%>
 Zrは、熱延鋼板の成形性の向上に寄与する元素である。この効果を得る場合、Zr含有量は0.001%以上とすることが好ましい。
 一方、Zr含有量が0.050%超では、熱延鋼板の延性が劣化する。そのため、Zr含有量は0.050%以下とする。好ましくは0.030%以下である。
 上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板は、金属組織が、面積率で、フェライトおよびベイナイトの合計:30~47%、焼き戻しマルテンサイト:50~70%、フレッシュマルテンサイト:3~10%であり、圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、中央領域のフェライトおよびベイナイトにおける{001}面の極密度をPとし、表層領域のフェライトおよびベイナイトにおける{001}面の極密度をPとしたとき、P/Pが1.2~2.0である。
 本実施形態に係る熱延鋼板は、金属組織が、フェライト、ベイナイト、焼き戻しマルテンサイトおよびフレッシュマルテンサイトのみからなることが好ましい。すなわち、本実施形態に係る熱延鋼板は、金属組織が、面積率で、フェライトおよびベイナイトの合計:30~47%、焼き戻しマルテンサイト:50~70%、並びに、フレッシュマルテンサイト:3~10%のみからなることが好ましい。
 なお、本実施形態では、表面から1/8深さ~表面から3/8深さの領域における、フェライトおよびベイナイト、焼き戻しマルテンサイト、並びに、フレッシュマルテンサイトの面積率を規定する。その理由は、この領域における金属組織が熱延鋼板の代表的な金属組織を示すからである。
 フェライトおよびベイナイトの合計:30~47%
 フェライトおよびベイナイトは、熱延鋼板のせん断加工性を向上させる。フェライトおよびベイナイトの面積率の合計が30%未満であると、熱延鋼板のせん断加工性が劣化する場合または熱延鋼板の疲労強度が劣化する場合がある。そのため、フェライトおよびベイナイトの面積率の合計は30%以上とする。好ましくは33%以上、35%以上または37%以上である。
 一方、フェライトおよびベイナイトの面積率の合計が47%超であると、熱延鋼板の強度および疲労特性が劣化するまたは熱延鋼板のせん断加工性が劣化する場合がある。そのため、フェライトおよびベイナイトの面積率の合計は47%以下とする。好ましくは45%以下または43%以下である。
 なお、本実施形態では、必ずしもフェライトおよびベイナイトの両方を含有する必要はなく、フェライトおよびベイナイトのいずれか一方のみを含有し、その面積率が上述の範囲であってもよい。
 焼き戻しマルテンサイト:50~70%
 熱延鋼板の疲労特性を向上させるためにはフレッシュマルテンサイトを含ませることが効果的であるが、せん断加工性および疲労特性の両立のためには、マルテンサイト生成温度が高く、冷却中に焼戻しされることで生成される焼き戻しマルテンサイトを含ませることが効果的である。
 焼き戻しマルテンサイトの面積率が50%未満であると、熱延鋼板の強度および疲労特性が劣化する。そのため、焼き戻しマルテンサイトの面積率は50%以上とする。好ましくは、53%以上または55%以上である。
 一方、焼き戻しマルテンサイトの面積率が70%超であると、熱延鋼板のせん断加工性が劣化する場合または熱延鋼板の強度が劣化する場合がある。そのため、焼き戻しマルテンサイトの面積率は70%以下とする。好ましくは、65%以下または60%以下である。
 フレッシュマルテンサイト:3~10%
 フレッシュマルテンサイトは、熱延鋼板の疲労強度を向上させる。フレッシュマルテンサイトの面積率が3%未満であると、熱延鋼板の疲労強度が劣化する場合および/または熱延鋼板の強度が劣化する場合がある。そのため、フレッシュマルテンサイトの面積率は3%以上とする。好ましくは4%以上または5%以上である。
 一方、フレッシュマルテンサイトの面積率が10%超であると、熱延鋼板のせん断加工性が劣化する。そのため、フレッシュマルテンサイトの面積率は10%以下とする。好ましくは、9%以下または8%以下である。
 各組織の面積率は以下の方法により得る。
 まず、熱延鋼板から、圧延方向に平行な板厚断面で、表面から板厚の1/4深さ(表面から1/8深さ~表面から3/8深さの領域)且つ板幅方向中央位置における金属組織が観察できるように試験片を採取する。
 上記試験片の断面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、表面から板厚の1/4深さ位置を観察できるように、長さ50μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を、0.1μmの測定間隔で電子線後方散乱回折法により測定して結晶方位情報を得る。
 測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。得られた結晶方位情報から、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Orientation Spread」機能を用いて、15°粒界を結晶粒界とみなす条件下で、「Grain Orientation Spread」が1°以下の領域をフェライトとして抽出する。抽出したフェライトの面積率を算出することで、フェライトの面積率を得る。
 続いて、残部領域(「Grain Orientation Spread」が1°超の領域)のうち、5°粒界を結晶粒界とみなす条件下で、フェライト領域の「Grain Average IQ」の最大値をIαとしたとき、Iα/2超となる領域をベイナイト、Iα/2以下となる領域を「フレッシュマルテンサイトおよび焼き戻しマルテンサイト」として抽出する。抽出したベイナイトの面積率を算出することで、ベイナイトの面積率を得る。
 抽出した「フレッシュマルテンサイトおよび焼き戻しマルテンサイト」について、下記方法によってフレッシュマルテンサイトと焼き戻しマルテンサイトとを区別する。
 EBSD測定領域と同領域をSEMで観察するために、観察位置近傍にビッカース圧痕を打刻する。その後、観察面の組織を残して、表層のコンタミを研磨除去し、ナイタールエッチングする。次に、EBSD観察面と同一視野をSEMにより倍率3000倍で観察する。
 EBSD測定において、「フレッシュマルテンサイトおよび焼き戻しマルテンサイト」と判別された領域のうち、粒内に下部組織を有し、かつ、セメンタイトが複数のバリアントを持って析出している領域を焼き戻しマルテンサイトと判断する。輝度が大きく、かつ下部組織がエッチングにより現出されていない領域をフレッシュマルテンサイトと判断する。それぞれの面積率を算出することで、焼き戻しマルテンサイトの面積率およびフレッシュマルテンサイトの面積率を得る。
 なお、観察面表層のコンタミ除去については、粒子径0.1μm以下のアルミナ粒子を用いたバフ研磨、あるいはArイオンスパッタリング等の手法を用いればよい。
 P/P:1.2~2.0
 圧延面と{001}面とが平行であると、転位のすべり系が少なく、せん断加工中に結晶回転が起きずに、打ち抜きせん断面に割れが生じやすくなるため、熱延鋼板のせん断加工性が劣化する。本発明者らは、せん断加工中の割れは、圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、中央領域で発生しやすいことを見出した。本実施形態では、中央領域および表層領域のフェライトおよびベイナイトにおける{001}面の極密度を好ましく制御することで、熱延鋼板のせん断加工性を向上させる。
 圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、中央領域のフェライトおよびベイナイトにおける{001}面の極密度をPとし、表層領域のフェライトおよびベイナイトにおける{001}面の極密度をPとしたとき、P/Pが1.2未満であることは、熱延鋼板の表面から均一に{001}面が分布していることを示す。この場合、打ち抜き加工時にせん断面から結晶回転がおき、せん断時のダレが大きくなり、打ち抜きせん断面に割れを引き起こしやすくなる結果、熱延鋼板のせん断加工性が劣化する。そのため、P/Pは1.2以上とする。好ましくは1.3以上、1.4以上または1.5以上である。
 一方、P/Pが2.0超であることは、中央領域に{001}面が過剰に集中していることを示す。この場合、脆性破面である{001}面が破断面に多くなり、打ち抜きせん断面に割れを引き起こしやすくなる結果、熱延鋼板のせん断加工性が劣化する。そのため、P/Pは2.0以下とする。好ましくは1.9以下、1.8以下または1.7以下である。
 なお、中央領域とは、圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、表面から板厚の1/3深さ~表面から板厚の2/3深さの領域のことである。また、表層領域とは、圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、表面~表面から板厚の1/3深さの領域、あるいは、表面から板厚の2/3深さ~裏面(前記表面とは異なるもう一方の表面)の領域のことであり、本実施形態ではいずれの領域であるかは特に限定されない。
 また、{hkl}は圧延面に平行な結晶面を表す。すなわち、{hkl}とは、圧延方向と{hkl}面とが平行であることを示す。
 フェライトおよびベイナイトの{001}面の極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置およびTSL社製のOIM Analysis(登録商標)を用いる。EBSD(Electron Back Scattering Diffraction)法で測定した方位データと、球面調和関数とを用いて算出した3次元集合組織を表示する結晶方位分布関数(ODF:Orientation Distribution Function)から、極密度を求めることができる。なお、測定ピッチは5μm/stepとする。
 測定範囲は、中央領域(圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、表面から板厚の1/3深さ~表面から板厚の2/3深さの領域)、並びに、表層領域(圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、表面~表面から板厚の1/3深さの領域、あるいは、表面から板厚の2/3深さ~裏面(前記表面とは異なるもう一方の表面)の領域)とする。また、上述のEBSD測定と同様の方法によりフェライトおよびベイナイトとみなされた領域について、極密度の測定を行う。
 引張強さ:950MPa以上
 本実施形態に係る熱延鋼板は、引張強さが950MPa以上である。好ましくは1000MPa以上である。引張強さが950MPa未満であると、適用部品が限定され、車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1500MPa以下または1300MPa以下としてもよい。
 また、本実施形態に係る熱延鋼板は、疲労限度比(疲労強度/引張強さ)が0.35以上であってもよい。
 引張強さは、JIS Z 2241:2011に準拠して引張試験を行うことで評価する。試験片はJIS Z 2241:2011の5号試験片とする。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向を長手方向とすればよい。
 疲労強度は、JIS Z 2275:1978に準拠し、熱延鋼板から1号試験片を採取して、シェンク式平面曲げ疲労試験機を用いて測定する。測定時の応力負荷は、両振りで試験の速度を30Hzとして設定し、10サイクルでの疲労強度を測定する。そして、10サイクルでの疲労強度を、前述した引張試験により測定された引張強さで除することで、疲労限度比(疲労強度/引張強さ)を算出する。
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、1.2~8.0mmとしてもよい。熱延鋼板の板厚が1.2mm未満では、圧延完了温度の確保が困難になるとともに圧延荷重が過大となって、熱間圧延が困難となる場合がある。一方、板厚が8.0mm超では、熱間圧延後において上述した金属組織を得ることが困難となる場合がある。
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
 本実施形態に係る熱延鋼板は、製造方法によらず、上記の化学組成、金属組織を有することでその効果が得られる。しかしながら、以下に示す製造方法によれば、本実施形態に係る熱延鋼板を安定的に得られるため好ましい。
 本実施形態に係る熱延鋼板の好ましい製造方法では、熱間圧延条件およびその後の冷却条件を厳格に制御する。以下、詳細に説明する。
 スラブの加熱温度は、溶体化および元素偏析の解消に大きな影響を与える。スラブの加熱温度が1100℃未満では溶体化および元素偏析の解消が不十分であり、最終的に得られる製品の析出強化が十分に得られず、引張強さが劣化する。また、スラブの加熱温度が1350℃を超えると、溶体化および元素偏析の解消の効果が飽和するばかりか、オーステナイトの平均粒径が粗大化するため、圧延時の結晶回転に不均一性が生じ、所望の集合組織を得ることが困難となる。したがって、スラブの加熱温度は1100~1350℃とすることが好ましい。より好ましくは1150~1300℃である。
 なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。
 仕上げ圧延では、仕上げ圧延用の圧延スタンドにスラブを複数回に渡って連続して通過させる圧延を行う。このとき、連続する複数の圧延スタンドにおいて、最終3スタンド(最終の圧延スタンド、最終から1つ前の圧延スタンド、最終から2つ前の圧延スタンド)の圧延スタンドにおける圧延条件が下記式(1)および式(2)を満たすことが好ましい。本実施形態では、最終3スタンドの平均値が、下記式(1)および式(2)を満たすことが好ましい。
 2.0≦2×{R(H1-H2)}0.5/(H1+H2)≦10.0 …式(1)
 ただし、上記式(1)中の各符号は以下の通りである。
 R :ロール半径(mm)
 H1:入側の鋼板厚さ(mm)
 H2:出側の鋼板厚さ(mm)
 5≦ΔT≦35 …式(2)
 ただし、上記式(2)中のΔTは、各圧延スタンドでの鋼板入側温度と鋼板出側温度との差である。
 上記式(1)の中辺は、圧延形状比を求める式である。圧延形状比を制御することで、圧延による結晶回転を制御することができ、所望の領域において所望の結晶方位を得ることができる。最終3スタンドの圧延形状比の平均値が2.0未満であると、圧延により鋼板内部に圧縮ひずみが多くなり、圧延再結晶集合組織の形成により、中央領域の{001}面の極密度が低下する。その結果、P/Pが1.2未満となってしまう。
 また、最終3スタンドの圧延形状比の平均値が10.0超であると、鋼板表面に強いせん断変形が加わり、表層領域の{001}面の極密度が極端に増加する。その結果、P/Pが1.2未満となってしまう。
 そのため、最終3スタンドの圧延形状比の平均値は2.0~10.0とすることが好ましい。すなわち、最終の圧延スタンドにおける圧延形状比、最終から1つ前の圧延スタンドにおける圧延形状比および最終から2つ前の圧延スタンドにおける圧延形状比の平均値は2.0~10.0とすることが好ましい。
 上記式(2)について、各圧延スタンドの鋼板入側温度と鋼板出側温度との差であるΔTを制御することは、鋼板内部の温度を制御するために効果的である。熱間圧延の際には、圧延ロールとの接触による抜熱と、加工エネルギーやロールとの摩擦熱による鋼板内部からの発熱が同時に発生する。仕上げ圧延の後段では特に板厚が薄くなり、圧延速度が速くなるため、抜熱が小さくなり、加工発熱の影響が大きくなる。したがって、圧延ロールの直径や表面状態と製造する板厚とに応じて適切な通板速度で製造することが重要となる。
 最終3スタンドのΔTの平均値が5未満であると、鋼板内部との板厚方向温度差が小さくなる。その結果、表層領域と中央領域との{001}面の極密度の差が小さくなり、P/Pが1.2未満となってしまう。
 また、最終3スタンドのΔTの平均値が35超であると、鋼板表面からの抜熱が大きくなるため、鋼板表面のせん断変形が大きくなる。その結果、表層領域の{001}面の極密度が極端に低下し、P/Pが2.0超となってしまう。
 そのため、最終3スタンドのΔTの平均値は5~35とすることが好ましい。すなわち、最終の圧延スタンドにおけるΔT、最終から1つ前の圧延スタンドにおけるΔTおよび最終から2つ前の圧延スタンドにおけるΔTの平均値は5~35とすることが好ましい。
 仕上げ圧延終了後は、1.6秒以内に冷却を開始することが好ましい。冷却開始までの時間が1.6秒を超えると、圧延によるひずみが回復するため、表層領域の{001}面の極密度を好ましく制御することができない場合がある。その結果、P/Pが1.2未満となる場合がある。冷却開始までの時間は、より好ましくは0.6秒以内である。
 仕上げ圧延後は、一次冷却として、平均冷却速度50℃/秒以上で、600~750℃の温度域まで冷却することが好ましい。その後、当該温度域にて、2.0~6.0秒間の空冷を施すことが好ましい。空冷を行う温度域が600℃未満、750℃超では、フェライト変態が十分に進まないため、所望量のフェライトを得ることができない場合がある。その結果、フェライトおよびベイナイトの面積率の合計が所望量とならない場合がある。一次冷却の平均冷却速度は、冷却設備の増設を抑制する観点から、250℃/s以下としてもよい。
 また、600~750℃の温度域での空冷時間が6.0秒超であると、フェライトが多量に生成され、フェライトおよびベイナイトの面積率の合計が所望量とならない場合がある。当該温度域での空冷時間が2.0秒未満であると、焼き戻しマルテンサイトの面積率が高くなり、フレッシュマルテンサイトの面積率が所望量とならない場合がある。
 上記空冷後は、二次冷却として、平均冷却速度40℃/秒以上で、200℃以下の温度域まで冷却することが好ましい。二次冷却の平均冷却速度が40℃/秒未満では、マルテンサイト変態に必要な臨界冷却速度未満となるため、所望量のフレッシュマルテンサイトおよび/または焼き戻しマルテンサイトを得ることができない場合がある。二次冷却の平均冷却速度は、冷却設備の増設を抑制する観点から、250℃/s以下としてもよい。
 ここで、本実施形態において平均冷却速度は、冷却開始時から冷却終了時までの鋼板の温度降下幅を、冷却開始時から冷却終了時までの所要時間で除した値とする。冷却開始時とは、冷却設備による鋼板への冷却媒体の噴射開始時とし、冷却終了時とは冷却設備からの鋼板の導出時とする。
 また、冷却設備には、途中に空冷区間がない設備や、途中に1以上の空冷区間を有する設備がある。本実施形態では、いずれの冷却設備を用いてもよい。
 二次冷却によって200℃以下の温度域まで冷却した後、鋼板をコイル状に巻取る。二次冷却後に直ちに鋼板の巻取りが行われるため、巻取温度は二次冷却の冷却停止温度にほぼ等しい。巻取温度が200℃を超えると、フェライト又はベイナイトが多量に生成し、所望の金属組織を得ることができなくなる場合がある。従って、冷却停止温度となる巻取温度は200℃以下とすることが好ましい。
 なお、巻取り後、熱延鋼板には常法に従って調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。或いは更に、溶融めっき、電気めっき等のめっき処理や、化成処理を施してもよい。
 上記の製造方法によれば、本実施形態に係る熱延鋼板を安定的に製造することができる。
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1Aおよび表1Bに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表2Aおよび表2Bに示す製造条件により、表3に示す熱延鋼板を得た。なお、7つ圧延スタンドを有する仕上げ圧延機を用いて仕上げ圧延を行ったため、表中にはF5(最終から2つ前の圧延スタンド)、F6(最終から1つ前の圧延スタンド)およびF7(最終の圧延スタンド)における圧延形状比およびΔTを記載した。
 得られた熱延鋼板に対し、上述の方法により、金属組織の面積率、P/P、引張強さおよび疲労限度比を求めた。得られた測定結果を表3に示す。
 引張強さTSが950MPa以上であった場合、高い強度を有する熱延鋼板であるとして合格と判定した。一方、引張強さTSが950MPa未満であった場合、高い強度を有さない熱延鋼板であるとして不合格と判定した。
 疲労限度比が0.35以上であった場合、優れた疲労強度を有する熱延鋼板であるとして合格と判定した。一方、疲労限度比が0.35未満であった場合、優れた疲労強度を有さない熱延鋼板であるとして不合格と判定した。
 また、以下の方法により、熱延鋼板のせん断加工性を評価した。
 JIS Z 2256:2020に準拠して、φ10mmのポンチを用いて、クリアランス15%、打ち抜き速度3m/sで打ち抜くことで、3個の打ち抜き穴を作製した。3個の打ち抜き穴について、打ち抜きせん断面(板面に垂直な断面)における割れの最大長さを測定した。割れの最大長さが300μm以上であった場合、優れたせん断加工性を有さない熱延鋼板であるとして不合格と判定した。一方、割れの最大長さが300μm未満であった場合、優れたせん断加工性を有する熱延鋼板であるとして合格と判定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3を見ると、本発明例に係る熱延鋼板は、高い強度を有し、且つ優れた疲労特性およびせん断加工性を有することが分かる。一方、比較例に係る熱延鋼板は、上記特性のいずれか1つ以上が劣っていることが分かる。
 本発明によれば、高い強度を有し、且つ優れた疲労特性およびせん断加工性を有する熱延鋼板を提供することができる。本発明に係る熱延鋼板によれば、自動車などの車体の軽量化、部品の一体成形、加工工程の短縮が可能であり、燃費の向上、製造コストの低減を図ることができる。

Claims (2)

  1.  化学組成が、質量%で、
    C :0.02~0.30%、
    Si:0.10~2.00%、
    Mn:0.5~3.0%、
    P :0.100%以下、
    S :0.010%以下、
    Al:0.10~1.00%、
    N :0.0100%以下、
    Ti:0.06~0.20%、
    Nb:0~0.10%、
    Ca:0~0.0060%、
    Mo:0~1.00%、
    Cr:0~1.00%、
    V :0~0.40%、
    Ni:0~0.40%、
    B :0~0.0020%、
    Cu:0~1.00%、
    Sn:0~0.50%、および
    Zr:0~0.050%
    を含有し、残部がFeおよび不純物であり、
     金属組織が、面積率で、
      フェライトおよびベイナイトの合計:30~47%、
      焼き戻しマルテンサイト:50~70%、
      フレッシュマルテンサイト:3~10%であり、
     圧延方向に平行な板厚断面を板厚方向に3分割した領域のうち、中央領域のフェライトおよびベイナイトにおける{001}面の極密度をPとし、表層領域のフェライトおよびベイナイトにおける{001}面の極密度をPとしたとき、P/Pが1.2~2.0であり、
     引張強さが950MPa以上であることを特徴とする熱延鋼板。
  2.  前記化学組成が、質量%で、
    Nb:0.01~0.10%、
    Ca:0.0005~0.0060%、
    Mo:0.02~1.00%、
    Cr:0.02~1.00%、
    V :0.01~0.40%、
    Ni:0.01~0.40%、
    B :0.0001~0.0020%、
    Cu:0.02~1.00%、
    Sn:0.01~0.50%、および
    Zr:0.001~0.050%
    からなる群のうち1種または2種以上を含有することを特徴とする、請求項1に記載の熱延鋼板。
PCT/JP2022/017623 2021-07-27 2022-04-12 熱延鋼板 WO2023007876A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280028949.5A CN117178070A (zh) 2021-07-27 2022-04-12 热轧钢板
JP2023538282A JPWO2023007876A1 (ja) 2021-07-27 2022-04-12
KR1020237035260A KR20230158061A (ko) 2021-07-27 2022-04-12 열연 강판
EP22848959.7A EP4379073A1 (en) 2021-07-27 2022-04-12 Hot-rolled steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-122173 2021-07-27
JP2021122173 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023007876A1 true WO2023007876A1 (ja) 2023-02-02

Family

ID=85087858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017623 WO2023007876A1 (ja) 2021-07-27 2022-04-12 熱延鋼板

Country Status (5)

Country Link
EP (1) EP4379073A1 (ja)
JP (1) JPWO2023007876A1 (ja)
KR (1) KR20230158061A (ja)
CN (1) CN117178070A (ja)
WO (1) WO2023007876A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770173A (zh) * 2023-06-08 2023-09-19 邯郸钢铁集团有限责任公司 一种低成本高强度热成型车轮及其生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040450A (ja) 1999-07-28 2001-02-13 Nkk Corp せん断端面の疲労特性に優れた高張力熱延鋼板およびその製造方法
JP2001172745A (ja) 1999-12-15 2001-06-26 Nkk Corp 加工性と疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2009019265A (ja) 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
WO2015162932A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 テーラードロールドブランク用熱延鋼板、テーラードロールドブランク、及びそれらの製造方法
WO2016010005A1 (ja) 2014-07-14 2016-01-21 新日鐵住金株式会社 熱延鋼板
WO2020058747A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
WO2020195605A1 (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
JP2021122173A (ja) 2020-01-23 2021-08-26 パナソニックIpマネジメント株式会社 配線器具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040450A (ja) 1999-07-28 2001-02-13 Nkk Corp せん断端面の疲労特性に優れた高張力熱延鋼板およびその製造方法
JP2001172745A (ja) 1999-12-15 2001-06-26 Nkk Corp 加工性と疲労特性に優れた高強度熱延鋼板およびその製造方法
JP2009019265A (ja) 2007-06-12 2009-01-29 Nippon Steel Corp 穴広げ性に優れた高ヤング率鋼板及びその製造方法
WO2015162932A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 テーラードロールドブランク用熱延鋼板、テーラードロールドブランク、及びそれらの製造方法
WO2016010005A1 (ja) 2014-07-14 2016-01-21 新日鐵住金株式会社 熱延鋼板
WO2020058747A1 (en) * 2018-09-20 2020-03-26 Arcelormittal Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
WO2020195605A1 (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
JP2021122173A (ja) 2020-01-23 2021-08-26 パナソニックIpマネジメント株式会社 配線器具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770173A (zh) * 2023-06-08 2023-09-19 邯郸钢铁集团有限责任公司 一种低成本高强度热成型车轮及其生产方法

Also Published As

Publication number Publication date
EP4379073A1 (en) 2024-06-05
JPWO2023007876A1 (ja) 2023-02-02
KR20230158061A (ko) 2023-11-17
CN117178070A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
JP6358406B2 (ja) 鋼板及びめっき鋼板
JP6354916B2 (ja) 鋼板及びめっき鋼板
EP3272892B1 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
CN109154044B (zh) 热浸镀锌钢板
WO2018026014A1 (ja) 鋼板及びめっき鋼板
CN114502759B (zh) 热轧钢板
EP3875615B1 (en) Steel sheet, member, and methods for producing them
WO2016021198A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
CN113840934B (zh) 高强度构件、高强度构件的制造方法和高强度构件用钢板的制造方法
JP7196997B2 (ja) 鋼板
EP3875616B1 (en) Steel sheet, member, and methods for producing them
KR102514898B1 (ko) 강판 및 그 제조 방법
CN114286870A (zh) 钢板
WO2023063010A1 (ja) 熱間圧延鋼板
WO2021200579A1 (ja) 鋼板、部材及びそれらの製造方法
WO2023007876A1 (ja) 熱延鋼板
WO2023149374A1 (ja) 熱延鋼板
JP7216933B2 (ja) 鋼板およびその製造方法
WO2022270053A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法、ならびに、部材
CN115003835A (zh) 热轧钢板
WO2024095809A1 (ja) 熱延鋼板
WO2024080327A1 (ja) 熱延鋼板
WO2024053701A1 (ja) 熱延鋼板
JP7311068B1 (ja) 亜鉛めっき鋼板および部材、ならびに、それらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538282

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237035260

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035260

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/012341

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301006895

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022848959

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022848959

Country of ref document: EP

Effective date: 20240227