WO2023007821A1 - 空間位相変調器、加工装置および情報処理装置 - Google Patents

空間位相変調器、加工装置および情報処理装置 Download PDF

Info

Publication number
WO2023007821A1
WO2023007821A1 PCT/JP2022/011841 JP2022011841W WO2023007821A1 WO 2023007821 A1 WO2023007821 A1 WO 2023007821A1 JP 2022011841 W JP2022011841 W JP 2022011841W WO 2023007821 A1 WO2023007821 A1 WO 2023007821A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
spatial phase
phase modulator
light
crystal molecules
Prior art date
Application number
PCT/JP2022/011841
Other languages
English (en)
French (fr)
Inventor
慶友 磯前
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023538252A priority Critical patent/JPWO2023007821A1/ja
Priority to US18/578,023 priority patent/US20240329462A1/en
Publication of WO2023007821A1 publication Critical patent/WO2023007821A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133746Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for high pretilt angles, i.e. higher than 15 degrees
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13712Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having negative dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present disclosure relates to spatial phase modulators, processing devices, and information processing devices.
  • a spatial phase modulator that modulates the phase of light to generate a desired image can control the interference of light. Therefore, spatial phase modulators are expected to find wide-ranging applications such as stereoscopic displays and laser processing.
  • the spatial phase modulator has a panel structure in which a liquid crystal layer is sandwiched between electrodes, and by controlling the voltage applied to the liquid crystal layer, it is possible to control the phase of incident light in an analog manner.
  • the liquid crystal molecules tilt only in the polar angle direction with respect to the pixel electrode when voltage is applied.
  • the polarization state of the light (incident light) entering the spatial phase modulator changes, and the light (output light) emitted from the spatial phase modulator changes.
  • the polarization state is different from the polarization state of the incident light.
  • light that does not contribute to interference is generated as emitted light, and light utilization efficiency is reduced. Therefore, it is desirable to provide a spatial phase modulator capable of improving light utilization efficiency, and a processing apparatus and information processing apparatus having the same.
  • a spatial phase modulator in one embodiment of the present disclosure is a modulator that modulates the phase of light to generate a desired image.
  • This spatial phase modulator has a laminate formed by laminating a plurality of pixel electrodes, a first alignment film, a liquid crystal layer, a second alignment film and a common electrode in this order.
  • the liquid crystal layer contains liquid crystal molecules with negative dielectric anisotropy.
  • the first alignment film and the second alignment film are configured so that the pretilt angle ⁇ t0 of the liquid crystal molecules satisfies 0° ⁇ t0 ⁇ 80°.
  • a processing apparatus is an apparatus using a spatial phase modulator that modulates the phase of light to generate a desired image.
  • the spatial phase modulator has the same configuration as the spatial phase modulator described above.
  • An information processing device is a device using one or more spatial phase modulators that modulate the phase of light to generate a desired image.
  • the spatial phase modulator has the same configuration as the spatial phase modulator described above.
  • the first alignment film and the second alignment film are arranged such that the pretilt angle ⁇ t0 of the liquid crystal molecules satisfies 0° ⁇ t0 ⁇ 80°. is configured to This suppresses the rotation of the liquid crystal molecules in the azimuth direction.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration example of a spatial phase modulator according to an embodiment of the present disclosure
  • FIG. 3 is a diagram showing a planar configuration example of the spatial phase modulator of FIG. 2
  • FIG. 4A is an enlarged view of the liquid crystal molecules of FIGS. 2 and 3
  • FIG. (B) is an enlarged view of liquid crystal molecules rotating in the azimuth direction. It is a figure showing the example of a changed completely type of cross-sectional structure of the spatial phase modulator of FIG.
  • FIG. 4 is an enlarged view of liquid crystal molecules when an electric field is applied;
  • FIG. 4 is a diagram showing an example of the relationship between the voltage difference between two pixels and rotation in the azimuth angle direction;
  • FIG. 4 is a diagram showing an example of the relationship between liquid crystal materials and angles required to suppress reverse tilt.
  • FIG. 4 is a diagram showing an example of the relationship between the thickness of the liquid crystal layer and the angle required to suppress reverse tilt;
  • 2 is a diagram showing an example of the action of the spatial phase modulator of FIG. 1;
  • FIG. 4 is an enlarged view of liquid crystal molecules when an electric field is applied;
  • FIG. 4 is a diagram showing an example of the relationship between the voltage difference between two pixels and rotation in the azimuth angle direction;
  • FIG. 4 is a diagram showing an example of the relationship between liquid crystal materials and angles required to suppress reverse tilt.
  • FIG. 4 is a diagram showing an example of the relationship between the thickness of the liquid crystal layer and the angle required to suppress reverse tilt;
  • 2 is a diagram showing
  • FIG. 2 is a diagram showing an example of the action of the spatial phase modulator of FIG. 1;
  • FIG. 2 is a diagram showing an example in which the spatial phase modulator of FIG. 1 is applied to a laser processing machine;
  • FIG. 2 is a diagram showing an example in which the spatial phase modulator of FIG. 1 is applied to optical computing;
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. FIG. 4 is an explanatory diagram showing an example of installation positions of an outside information detection unit and an imaging unit;
  • a spatial phase modulator that modulates the phase of light to produce a desired image can control the interference of light. Therefore, spatial phase modulators are expected to find wide-ranging applications such as stereoscopic displays and laser processing.
  • the spatial phase modulator has a panel structure in which a liquid crystal layer is sandwiched between electrodes, and by controlling the voltage applied to the liquid crystal layer, it is possible to control the phase of incident light in an analog manner. In order to modulate only the phase of light, it is important that the liquid crystal molecules tilt only in the polar angle direction with respect to the pixel electrode when voltage is applied.
  • the polarization state of the light (incident light) entering the spatial phase modulator changes, and the light (output light) emitted from the spatial phase modulator changes.
  • the polarization state is different from the polarization state of the incident light. As a result, light that does not contribute to interference is generated as emitted light, and light utilization efficiency is reduced.
  • the principle is that when liquid crystal molecules with positive dielectric anisotropy are used in a spatial phase modulator, a fringe electric field perpendicular to the alignment direction of the liquid crystal molecules causes the liquid crystal molecules to rotate in the azimuthal direction. essentially unavoidable.
  • the orientation of liquid crystal molecules with negative dielectric anisotropy has not been elucidated. Therefore, the inventor of the present application used a prototype device to analyze the alignment of liquid crystal molecules having negative dielectric anisotropy. I was able to confirm the rotation.
  • the inventor of the present application considered the principle of rotation in the azimuthal direction in liquid crystal molecules with negative dielectric anisotropy, and found the following two principles.
  • FIG. 1(A) is a diagram for explaining the first principle.
  • FIG. 1B is a diagram for explaining the second principle.
  • LC is the liquid crystal molecule
  • E1 is the pixel electrode
  • E2 is the common electrode
  • solid lines are equipotential lines
  • arrows are fringe electric fields.
  • the portion surrounded by the dashed line indicates that when a relatively small voltage difference is applied between the pixel electrode E1 and the common electrode E2, the liquid crystal molecules LC move in the azimuthal direction according to “principle 1”. shows the location where the rotation of In FIG.
  • the area surrounded by the dashed line indicates that when a relatively large voltage difference is applied between the pixel electrode E1 and the common electrode E2, the liquid crystal molecules LC move in the azimuthal direction according to “principle 2”. shows the location where the rotation of
  • This force turns the liquid crystal molecules LC 180° in the azimuth direction, and the surrounding liquid crystal molecules LC are also affected by the liquid crystal molecules LC reverse tilted by the elastic force of the liquid crystal layer. direction (the area surrounded by the dashed line in FIG. 1(A)).
  • the liquid crystal molecules LC are in a bend-aligned state and have high elastic energy (a portion surrounded by a broken line in FIG. 1B).
  • the elastic energy is lowest when the liquid crystal molecules are rotated by 90° in the azimuth direction. Therefore, the curved electric field acts as a force to rotate the liquid crystal molecules by 90° in the azimuth direction, and the curved electric field rotates the liquid crystal molecules by 90° in the azimuth direction (the area surrounded by the broken line in FIG. 1B). ).
  • the inventors of the present application have investigated a method of suppressing the rotation of liquid crystal molecules in the azimuth direction by increasing the free energy when the liquid crystal molecules rotate in the azimuth direction. bottom.
  • there is a limit to the control of the anchoring strength of the alignment film and improvement by strengthening the anchoring force alone is not realistic.
  • the inventor of the present application discovered from simulations and experiments that the rotation in the azimuth direction caused by the curvature of the electric field may be triggered by the reverse tilt. From this, the inventors of the present application have realized that in order to solve part of the azimuth rotation problem, it is important not to cause at least reverse tilt. Accordingly, the inventor of the present application proposes the following invention focusing on suppression of reverse tilt.
  • FIG. 2 illustrates a cross-sectional configuration example of the spatial phase modulator 1 according to an embodiment of the present disclosure.
  • the spatial phase modulator 1 is an optical device that modulates the phase of light to generate a desired image.
  • the spatial phase modulator 1 includes, for example, as shown in FIG. 2, a laminate 10 formed by laminating a plurality of pixel electrodes 11, an alignment film 12, a liquid crystal layer 13, an alignment film 14, and a common electrode 15 in this order. ing.
  • the spatial phase modulator 1 further comprises a pair of glass substrates 20, 30 sandwiching the laminate 10, for example, as shown in FIG.
  • a plurality of pixel electrodes 11 and an alignment film 12 are laminated on the surface of the glass substrate 20 , and a common electrode 15 and an alignment film 14 are laminated on the surface of the glass substrate 30 .
  • a glass substrate 20 and a glass substrate 30 are arranged to face each other with a plurality of pixel electrodes 11, alignment films 12 and 14 and a common electrode 15 interposed therebetween.
  • a plurality of pixel electrodes 11 are two-dimensionally arranged on the surface of the glass substrate 20 with predetermined gaps therebetween.
  • the pixel electrode 11 has a size of several tens of ⁇ m ⁇ several tens of ⁇ m, for example.
  • a liquid crystal layer 13 in contact with the alignment films 12 and 14 is formed between the alignment films 12 and 14 .
  • the liquid crystal layer 13 contains liquid crystal molecules 13a having negative dielectric anisotropy.
  • negative dielectric anisotropy means that the short axis of the liquid crystal molecules becomes parallel to the electric field direction when an electric field is applied.
  • positive dielectric anisotropy means that the long axis of the liquid crystal molecules becomes parallel to the direction of the electric field when an electric field is applied.
  • FIG. 3 shows a planar configuration example of the spatial phase modulator 1.
  • the liquid crystal molecules 13a are projected onto the glass substrate 30.
  • FIG. FIG. 4A is an enlarged view of the liquid crystal molecules 13a to which no electric field is applied.
  • the alignment films 12 and 14 regulate the alignment direction Da and the pretilt angle ⁇ t0 of the liquid crystal molecules 13a, and are, for example, inorganic alignment films formed by oblique vapor deposition.
  • the orientation direction Da indicates the major axis direction of the projected image when the liquid crystal molecules 13a are projected onto the XY plane (pixel electrode 11).
  • the orientation direction Da is, for example, a direction parallel to the X-axis.
  • the pretilt angle ⁇ t0 refers to the angle (polar angle) formed between the long axis of the liquid crystal molecules 13a and the XY plane (pixel electrode 11) when no voltage is applied between the pixel electrode 11 and the common electrode 15. there is
  • FIG. 4B shows how the liquid crystal molecules 13a rotate in the azimuth direction when a voltage difference ⁇ V is generated between two pixel electrodes 11 adjacent to each other.
  • the rotation angle ⁇ a is the liquid crystal molecules contained in the central region in the thickness direction of the liquid crystal layer 13 when the voltage difference between the two pixel electrodes 11 adjacent to each other changes from 0 volts to ⁇ V volts.
  • 13a shows the maximum rotation angle in the azimuth direction. When the rotation angle ⁇ a is zero, it means that the alignment direction Da does not change.
  • the liquid crystal layer 13 when linearly polarized light having a plane of polarization parallel to the alignment direction Da is transmitted through the liquid crystal layer 13, the liquid crystal layer 13 does not change the polarization state of the transmitted linearly polarized light. It has the effect of modulating only the phase.
  • the alignment direction Da of the liquid crystal molecules 13a (strictly speaking, the alignment direction Da when the voltage difference between the two pixel electrodes 11 adjacent to each other is 0 volts) is incident on the spatial phase modulator 1. It is parallel to the plane of polarization of the linearly polarized light (incident light L1).
  • the alignment films 12 and 14 are configured so that the pretilt angle ⁇ t0 of the liquid crystal molecules 13a is less than or equal to a predetermined angle ⁇ th. The angle ⁇ th will be detailed later.
  • the spatial phase modulator 1 may further include a linear polarizing plate 40 on the glass substrate 30, as shown in FIG. 5, for example.
  • the polarization axis (transmission axis) of the linear polarizer 40 is parallel to the alignment direction Da of the liquid crystal molecules 13a.
  • the spatial phase modulator 1 is a transmissive modulator
  • the spatial phase modulator 1 further includes, for example, as shown in FIG.
  • a linear polarizer 50 having a polarizing axis (transmission axis) parallel to the polarizing axis) may be provided.
  • the spatial phase modulator 1 is a reflective modulator
  • the spatial phase modulator 1 further includes, for example, a reflective mirror layer that reflects the incident light L1 on the back surface of the glass substrate 20, as shown in FIG. 60 may be provided.
  • an AR (Anti-Reflection) layer that prevents unnecessary reflection of the incident light L1 may be provided on the surface of the glass substrate 30 side.
  • FIG. 8 is an enlarged view of the liquid crystal molecules 13a.
  • FIG. 8 illustrates liquid crystal molecules 13a when a fixed voltage (eg, 0 V) is applied to the common electrode 15 and an on-voltage (eg, 4 V) is applied to the pixel electrode 11 .
  • the tilt angle ⁇ t indicates the angle (polar angle) formed between the long axis of the liquid crystal molecules 13a and the XY plane (pixel electrode 11).
  • the tilt angle ⁇ t changes according to the difference between the voltage applied to the pixel electrode 11 and the voltage applied to the common electrode 15 .
  • a tilt angle ⁇ t when no voltage is applied to the pixel electrode 11 and the common electrode 15 is referred to as a pretilt angle ⁇ t0.
  • FIG. 9 shows an example of the relationship between the voltage difference ⁇ V between two pixel electrodes 11 adjacent to each other and the rotation angle ⁇ a of the liquid crystal molecules 13a in the azimuth direction.
  • FIG. 9 shows experimental results when the liquid crystal molecules 13a are the liquid crystal material A shown in FIG. 10, and the thickness of the liquid crystal layer 13 is 3 ⁇ m.
  • the pretilt angle ⁇ t0 is set to 81° and the voltage difference ⁇ V is changed from 0 V to 5 V, as shown in FIG. Azimuthal rotation occurred in the high voltage region (2 V to 5 V) without tilt.
  • the liquid crystal molecules 13a undergo reverse tilt in the low voltage region as shown in FIG. After that, azimuthal rotation occurred in the high voltage region. From this, it can be seen that reverse tilt does not occur in the liquid crystal molecules 13a when the pretilt angle ⁇ t0 is set to 81° or less.
  • the angle .theta.th is obtained when the voltage difference .DELTA.V between two adjacent pixel electrodes 11 is changed from 0 volt to 5 volts (when the voltage difference .DELTA.V is changed within the range of normal use). It indicates the upper limit value (81°) of the pretilt angle ⁇ t0 at which reverse tilt does not occur even if there is.
  • FIG. 10 shows the angle ⁇ th when four types of generally available liquid crystal materials are used as liquid crystal molecules 13a having negative dielectric anisotropy.
  • FIG. 10 shows experimental results when the thickness of the liquid crystal layer 13 is 3 ⁇ m.
  • FIG. 11 shows an example of the relationship between the thickness of the liquid crystal layer 13 and the angle ⁇ th at which reverse tilt does not occur.
  • FIG. 11 shows experimental results when the liquid crystal material A of FIG. 10 is used. 10 and 11 that the upper limit of the pretilt angle ⁇ t0 (angle ⁇ th) at which reverse tilt does not occur is 80° regardless of the liquid crystal material and the thickness of the liquid crystal layer 13 .
  • the alignment films 12 and 14 are configured so that the pretilt angle ⁇ t0 of the liquid crystal molecules 13a satisfies the following equation. 0° ⁇ t0 ⁇ 80°
  • the lower limit value of the pretilt angle ⁇ t0 corresponds to the lower limit value at which the pretilt direction of the liquid crystal molecules 13a can be controlled uniformly. Note that phase modulation does not require a contrast ratio like a light valve, and it is sufficient if the phase difference can be identified. no problem.
  • FIG. 12 shows an example of operation when the spatial phase modulator 1 is a transmissive modulator.
  • a voltage set for each pixel electrode 11 is applied to each pixel electrode 11 .
  • the tilt angle .theta.t of the liquid crystal molecules 13a changes.
  • FIG. 13 shows an example of operation when the spatial phase modulator 1 is a reflective modulator.
  • a voltage set for each pixel electrode 11 is applied to each pixel electrode 11 .
  • the tilt angle .theta.t of the liquid crystal molecules 13a changes.
  • Linearly polarized light (incident light L1) having a polarization plane parallel to the alignment direction of the liquid crystal molecules 13a is incident on the surface (light incident surface S1) of the spatial phase modulator 1 on the glass substrate 30 side.
  • the incident light L1 may enter the light incident surface S1 obliquely or may enter the light incident surface S1 perpendicularly.
  • the incident light L1 enters the light incident surface S1
  • the incident light L1 passes through the liquid crystal layer 13, is reflected by the reflective mirror layer 60, passes through the liquid crystal layer 13 again, and reaches the surface of the glass substrate 30 (light The light is emitted to the outside from the emission surface S2).
  • the incident light L1 is phase-modulated without rotating the plane of polarization, and the phase-modulated light is output to the outside as the output light L2.
  • the alignment films 12 and 14 are configured so that the pretilt angle ⁇ t of the liquid crystal molecules 13a satisfies 0° ⁇ t0 ⁇ 80°.
  • the rotation of the liquid crystal molecules in the azimuth angle direction is suppressed in the low voltage region, so that the light utilization efficiency can be improved.
  • the rotation of the liquid crystal molecules in the azimuth angle direction triggered by the reverse tilt is suppressed, so that the light utilization efficiency can be improved.
  • FIG. 14 shows a schematic configuration example of a laser processing machine 100 including the spatial phase modulator 1.
  • the laser processing machine 100 is a device that forms a modified region on an object 200 by irradiating the object 200 with a laser beam La.
  • the laser processing machine 100 includes a support section 110 that supports an object 200, a light source section 120, a spatial phase modulator 1, mirrors 130 and 140, an imaging optical system 150, and a light condensing section 160.
  • the spatial phase modulator 1 is a reflective modulator.
  • the support part 110 supports the object 200 so that the surface of the object 200 is parallel to the XY plane by sucking the object 200, for example.
  • the support portion 110 is movable in each of the X and Y directions, and is rotatable within the XY plane.
  • the light source unit 120 emits laser light La by, for example, a pulse oscillation method.
  • Laser light La is linearly polarized light.
  • the light source unit 120 directs the laser beam La such that when the laser beam La is incident on the spatial phase modulator 1 via the mirror 130 or the like, the plane of polarization of the laser beam La is parallel to the alignment direction D1 of the liquid crystal molecules 13a. emit.
  • the mirror 130 reflects the laser beam La to enter the light incident surface S1 of the spatial phase modulator 1 .
  • the laser beam La reflected by the mirror 130 is incident on the light incident surface S1 of the spatial phase modulator 1 .
  • the laser light La is reflected by the reflective mirror layer 60 after passing through the liquid crystal layer 13, and the reflected light (laser light Lb) is transmitted through the liquid crystal layer 13 and emitted to the outside.
  • the laser light La is phase-modulated without rotating the plane of polarization, and the phase-modulated light (laser light Lb) is emitted to the outside from the light incident surface S1 that also serves as the light emitting surface S2.
  • the mirror 140 reflects the laser light Lb and causes it to enter the condensing section 160 via the imaging optical system 150 .
  • the imaging optical system 150 is a double-telecentric optical system in which the reflecting surface of the spatial phase modulator 1 and the entrance pupil plane of the condensing section 150 are in an imaging relationship.
  • the laser light Lb modulated by the spatial phase modulator 1 is transferred (imaged) on the entrance pupil plane of the condensing section 150 .
  • the condensing unit 150 condenses the laser light Lb and irradiates the surface of the object 200 to project the image formed on the entrance pupil plane onto the surface of the object 200 at a predetermined magnification.
  • the surface of the object 200 is formed with modified regions of the pattern of the projected image.
  • the spatial phase modulator 1 forms an image that is the basis of the pattern to be formed in the modified region. Thereby, the laser processing machine 100 with low power consumption can be realized.
  • FIG. 15 shows a schematic configuration example of optical computing 300 including the spatial phase modulator 1 .
  • the optical computing 300 is a device for decoding an image (for example, a number) input to a light valve 320, and includes, for example, a light source section 310, a light valve 320, a plurality of spatial phase modulators 1, and a detection section 330. there is In optical computing 300, a plurality of spatial phase modulators 1 are superimposed with a predetermined gap therebetween.
  • the light source unit 310 irradiates the light valve 320 with laser light.
  • the light valve 320 is, for example, a light transmission type optical modulator, and modulates the light intensity of the laser light incident from the light source unit 310 based on a control signal (image data) input from the outside. An image light having a pattern corresponding to the input control signal is generated.
  • the light valve 320 irradiates the first spatial phase modulator 1 with the generated image light, for example.
  • the image light is phase-modulated by the first spatial phase modulator 1 , and the light obtained thereby is applied to the second spatial phase modulator 1 .
  • the light irradiated to the second spatial phase modulator 1 is phase-modulated by the second spatial phase modulator 1, and the light obtained thereby is irradiated to the third spatial phase modulator 1. .
  • the image light is phase-modulated by each spatial phase modulator 1 and the light output from the final spatial phase modulator 1 is detected by the detector 330 .
  • the detector 330 estimates the image data input to the light valve 320 based on the input light.
  • the light source unit 310 and the light valve 320 may be omitted, and the image light input from the outside may be applied to the first spatial phase modulator 1 .
  • the light source unit 310 and the light valve 320 are omitted, and a light-transmissive paper surface on which characters, pictures, etc. are drawn is placed on the light incident surface of the first spatial phase modulator 1.
  • the first spatial phase modulator 1 may be arranged to detect external light transmitted through the paper surface.
  • the spatial phase modulator 1 forms a phase distribution that determines the processing content in the optical computing 300 .
  • the optical computing 300 with low power consumption and changeable calculation contents can be realized.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
  • FIG. 16 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010 .
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600.
  • the communication network 7010 that connects these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various calculations, and a drive circuit that drives various devices to be controlled. Prepare.
  • Each control unit has a network I/F for communicating with other control units via a communication network 7010, and communicates with devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I/F for communication is provided. In FIG.
  • the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle equipment I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are shown.
  • Other control units are similarly provided with microcomputers, communication I/Fs, storage units, and the like.
  • the drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 7100 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection section 7110 is connected to the drive system control unit 7100 .
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the axial rotational motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, and a steering wheel steering. At least one of sensors for detecting angle, engine speed or wheel rotation speed is included.
  • Drive system control unit 7100 performs arithmetic processing using signals input from vehicle state detection unit 7110, and controls the internal combustion engine, drive motor, electric power steering device, brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 7200 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • Body system control unit 7200 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source for the driving motor, according to various programs. For example, the battery control unit 7300 receives information such as battery temperature, battery output voltage, or remaining battery capacity from a battery device including a secondary battery 7310 . The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device provided in the battery device.
  • the vehicle exterior information detection unit 7400 detects information outside the vehicle in which the vehicle control system 7000 is installed.
  • the imaging section 7410 and the vehicle exterior information detection section 7420 is connected to the vehicle exterior information detection unit 7400 .
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle exterior information detection unit 7420 includes, for example, an environment sensor for detecting the current weather or weather, or a sensor for detecting other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. ambient information detection sensor.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • These imaging unit 7410 and vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 17 shows an example of the installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420.
  • the imaging units 7910 , 7912 , 7914 , 7916 , and 7918 are provided, for example, at least one of the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 7900 .
  • An image pickup unit 7910 provided in the front nose and an image pickup unit 7918 provided above the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900 .
  • Imaging units 7912 and 7914 provided in the side mirrors mainly acquire side images of the vehicle 7900 .
  • An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900 .
  • An imaging unit 7918 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 17 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively
  • the imaging range d is The imaging range of an imaging unit 7916 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
  • the vehicle exterior information detectors 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners, and above the windshield of the vehicle interior of the vehicle 7900 may be, for example, ultrasonic sensors or radar devices.
  • the exterior information detectors 7920, 7926, and 7930 provided above the front nose, rear bumper, back door, and windshield of the vehicle 7900 may be LIDAR devices, for example.
  • These vehicle exterior information detection units 7920 to 7930 are mainly used to detect preceding vehicles, pedestrians, obstacles, and the like.
  • the vehicle exterior information detection unit 7400 causes the imaging section 7410 to capture an image of the exterior of the vehicle, and receives the captured image data.
  • the vehicle exterior information detection unit 7400 also receives detection information from the vehicle exterior information detection unit 7420 connected thereto.
  • the vehicle exterior information detection unit 7420 is an ultrasonic sensor, radar device, or LIDAR device
  • the vehicle exterior information detection unit 7400 emits ultrasonic waves, electromagnetic waves, or the like, and receives reflected wave information.
  • the vehicle exterior information detection unit 7400 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, etc., based on the received information.
  • the vehicle exterior information detection unit 7400 may calculate the distance to the vehicle exterior object based on the received information.
  • the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing people, vehicles, obstacles, signs, characters on the road surface, etc., based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. good too.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410 .
  • the in-vehicle information detection unit 7500 detects in-vehicle information.
  • the in-vehicle information detection unit 7500 is connected to, for example, a driver state detection section 7510 that detects the state of the driver.
  • the driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects the biometric information of the driver, a microphone that collects sounds in the vehicle interior, or the like.
  • a biosensor is provided, for example, on a seat surface, a steering wheel, or the like, and detects biometric information of a passenger sitting on a seat or a driver holding a steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determine whether the driver is dozing off. You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected sound signal.
  • the integrated control unit 7600 controls overall operations within the vehicle control system 7000 according to various programs.
  • An input section 7800 is connected to the integrated control unit 7600 .
  • the input unit 7800 is realized by a device that can be input-operated by the passenger, such as a touch panel, button, microphone, switch or lever.
  • the integrated control unit 7600 may be input with data obtained by recognizing voice input by a microphone.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an externally connected device such as a mobile phone or PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000.
  • PDA Personal Digital Assistant
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information through gestures.
  • the input section 7800 may include an input control circuit that generates an input signal based on information input by the passenger or the like using the input section 7800 and outputs the signal to the integrated control unit 7600, for example.
  • a passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. Also, the storage unit 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the storage unit 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication between various devices existing in the external environment 7750.
  • General-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced) , or other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi®), Bluetooth®, and the like.
  • General-purpose communication I / F 7620 for example, via a base station or access point, external network (e.g., Internet, cloud network or operator-specific network) equipment (e.g., application server or control server) connected to You may
  • external network e.g., Internet, cloud network or operator-specific network
  • equipment e.g., application server or control server
  • the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology to connect terminals (for example, terminals of drivers, pedestrians, stores, or MTC (Machine Type Communication) terminals) near the vehicle. may be connected with P2P (Peer To Peer) technology to connect terminals (for example, terminals of drivers, pedestrians, stores, or MTC (Machine Type Communication) terminals) near the vehicle.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I/F 7630 is a communication I/F that supports a communication protocol designed for use in vehicles.
  • the dedicated communication I/F 7630 uses standard protocols such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of lower layer IEEE 802.11p and higher layer IEEE 1609, or cellular communication protocol. May be implemented.
  • the dedicated communication I/F 7630 is typically used for vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) perform V2X communication, which is a concept involving one or more of the communications.
  • the positioning unit 7640 receives GNSS signals from GNSS (Global Navigation Satellite System) satellites (for example, GPS signals from GPS (Global Positioning System) satellites), performs positioning, and obtains the latitude, longitude, and altitude of the vehicle. Generate location information containing Note that the positioning unit 7640 may specify the current position by exchanging signals with a wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smart phone having a positioning function.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from wireless stations installed on the road, and acquires information such as the current position, traffic jams, road closures, or required time. Note that the function of the beacon reception unit 7650 may be included in the dedicated communication I/F 7630 described above.
  • the in-vehicle device I/F 7660 is a communication interface that mediates connections between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle.
  • the in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • the in-vehicle device I/F 7660 is connected via a connection terminal (and cable if necessary) not shown, USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High -definition Link), etc.
  • In-vehicle equipment 7760 includes, for example, at least one of mobile equipment or wearable equipment possessed by passengers, or information equipment carried in or attached to the vehicle. In-vehicle equipment 7760 may also include a navigation device that searches for a route to an arbitrary destination. or exchange data signals.
  • the in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. In-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by communication network 7010 .
  • the microcomputer 7610 of the integrated control unit 7600 uses at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680.
  • the vehicle control system 7000 is controlled according to various programs on the basis of the information acquired by. For example, the microcomputer 7610 calculates control target values for the driving force generator, steering mechanism, or braking device based on acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. good too.
  • the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control may be performed for the purpose of In addition, the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, etc. based on the acquired information about the surroundings of the vehicle, thereby autonomously traveling without depending on the operation of the driver. Cooperative control may be performed for the purpose of driving or the like.
  • ADAS Advanced Driver Assistance System
  • Microcomputer 7610 receives information obtained through at least one of general-purpose communication I/F 7620, dedicated communication I/F 7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I/F 7660, and in-vehicle network I/F 7680. Based on this, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including the surrounding information of the current position of the vehicle may be created. Further, based on the acquired information, the microcomputer 7610 may predict dangers such as vehicle collisions, pedestrians approaching or entering closed roads, and generate warning signals.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio/image output unit 7670 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 7710, a display section 7720, and an instrument panel 7730 are illustrated as output devices.
  • Display 7720 may include, for example, at least one of an on-board display and a head-up display.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be headphones, a wearable device such as an eyeglass-type display worn by a passenger, or other devices such as a projector or a lamp.
  • the display device displays the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually.
  • the voice output device converts an audio signal including reproduced voice data or acoustic data into an analog signal and outputs the analog signal audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • an individual control unit may be composed of multiple control units.
  • vehicle control system 7000 may comprise other control units not shown.
  • some or all of the functions that any control unit has may be provided to another control unit. In other words, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units.
  • sensors or devices connected to any control unit may be connected to other control units, and multiple control units may send and receive detection information to and from each other via communication network 7010. .
  • a computer program for realizing each function of the spatial phase modulator 1 described using FIGS. It is also possible to provide a computer-readable recording medium storing such a computer program.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed, for example, via a network without using a recording medium.
  • the spatial phase modulator 1 described with reference to FIGS. 1 to 13 and the like can be used, for example, as a light source steering unit for LIDAR as an environment sensor. Further, image recognition in the imaging section can also be performed by an optical computing unit using the spatial phase modulator 1 described with reference to FIGS. 1 to 13 and the like.
  • the spatial phase modulator 1 described with reference to FIGS. 1 to 13 and the like is used as a highly efficient and bright projection device, lines and characters can be projected onto the ground. Specifically, when the car is backing up, it is possible to display a line so that people outside the car can see where the car will pass, and when giving way to pedestrians, the pedestrian crossing can be displayed with light.
  • spatial phase modulator 1 described with reference to FIGS. integrated circuit module may be implemented by a plurality of control units of vehicle control system 7000 shown in FIG.
  • the present disclosure can have the following configurations.
  • a spatial phase modulator that modulates the phase of light to produce a desired image A laminate formed by laminating a plurality of pixel electrodes, a first alignment film, a liquid crystal layer, a second alignment film and a common electrode in this order, the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy;
  • the spatial phase modulator, wherein the first alignment film and the second alignment film are configured such that a pretilt angle ⁇ t0 of the liquid crystal molecules satisfies 0° ⁇ t0 ⁇ 80°.
  • the spatial phase modulator is a laminate formed by laminating a plurality of pixel electrodes, a first alignment film, a liquid crystal layer, a second alignment film and a common electrode in this order; the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy; The first alignment film and the second alignment film are configured such that a pretilt angle ⁇ t0 of the liquid crystal molecules satisfies 0° ⁇ t0 ⁇ 80°.
  • the spatial phase modulator is a laminate formed by laminating a plurality of pixel electrodes, a first alignment film, a liquid crystal layer, a second alignment film and a common electrode in this order; the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy;
  • the information processing device wherein the first alignment film and the second alignment film are configured such that a pretilt angle ⁇ t0 of the liquid crystal molecules satisfies 0° ⁇ t0 ⁇ 80°.
  • the first alignment film and the second alignment film are arranged such that the pretilt angle ⁇ t0 of the liquid crystal molecules satisfies 0° ⁇ t0 ⁇ 80°. is configured to As a result, the rotation of the liquid crystal molecules in the azimuth direction is suppressed, so that the light utilization efficiency can be improved.
  • the effects of the present disclosure are not necessarily limited to the effects described herein, and may be any of the effects described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本開示の一実施の形態に係る空間位相変調器は、光の位相を変調して所望の像を生成する変調器である。この空間位相変調器は、複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を備えている。液晶層は、負の誘電異方性を有する液晶分子を含む。第1配向膜および第2配向膜は、液晶分子のプレチルト角θtが0°<θt0≦80°を満たすように構成されている。

Description

空間位相変調器、加工装置および情報処理装置
 本開示は、空間位相変調器、加工装置および情報処理装置に関する。
 光の位相を変調して所望の像を生成する空間位相変調器は、光の干渉を制御することができる。そのため、空間位相変調器は、立体ディスプレイやレーザ加工など、幅広い応用が期待される。空間位相変調器は、電極間に液晶層を挟んだパネル構造となっており、液晶層に印加する電圧を制御することにより、入射光の位相をアナログ的に制御することが可能である。
特開2000-171824号 特開2020-109490号
 光の位相のみを変調するためには、電圧を印可した際に液晶分子が画素電極に対して極角方向にのみ傾くことが重要である。液晶分子が画素電極に対して方位角方向に回転した場合、空間位相変調器に入射した光(入射光)の偏光状態が変化し、空間位相変調器から出射された光(出射光)は、入射光の偏光状態とは異なる偏光状態となる。その結果、出射光として干渉に寄与しない光が生じるため、光の利用効率が低下する。従って、光の利用効率を向上することが可能な空間位相変調器、ならびにそれを備えた加工装置および情報処理装置を提供することが望ましい。
 本開示の一実施の形態に空間位相変調器は、光の位相を変調して所望の像を生成する変調器である。この空間位相変調器は、複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を備えている。液晶層は、負の誘電異方性を有する液晶分子を含む。第1配向膜および第2配向膜は、液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている。
 本開示の一実施の形態に係る加工装置は、光の位相を変調して所望の像を生成する空間位相変調器を用いた装置である。この加工装置において、空間位相変調器は、上述の空間位相変調器と同様の構成を備えている。
 本開示の一実施の形態に係る情報処理装置は、光の位相を変調して所望の像を生成する1または複数の空間位相変調器を用いた装置である。この情報処理装置において、空間位相変調器は、上述の空間位相変調器と同様の構成を備えている。
 本開示の一実施の形態に係る空間位相変調器、加工装置および情報処理装置では、第1配向膜および第2配向膜は、液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている。これにより、液晶分子の方位角方向への回転が抑えられる。
(A)リバースチルトについて説明する図である。(B)等電位線の湾曲と液晶層の弾性力との相互作用について説明する図である。 本開示の一実施の形態に係る空間位相変調器の断面構成例を表す図である。 図2の空間位相変調器の平面構成例を表す図である。 (A)図2、図3の液晶分子を拡大して表す図である。(B)方位角方向の回転が生じている液晶分子を拡大して表す図である。 図1の空間位相変調器の断面構成の一変形例を表す図である。 図1の空間位相変調器の断面構成の一変形例を表す図である。 図1の空間位相変調器の断面構成の一変形例を表す図である。 電界が印可されたときの液晶分子を拡大して表す図である。 2画素間の電圧差と方位角方向の回転との関係の一例を表す図である。 液晶材料と、リバースチルトを抑制するのに必要な角との関係の一例を表す図である。 液晶層の厚みと、リバースチルトを抑制するのに必要な角との関係の一例を表す図である。 図1の空間位相変調器の作用の一例を表す図である。 図1の空間位相変調器の作用の一例を表す図である。 図1の空間位相変調器をレーザ加工機に応用した例を表す図である。 図1の空間位相変調器を光コンピューティングに応用した例を表す図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下、本開示を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 
1.背景(図1(A),図1(B))
2.実施の形態(図2~図13)
3.応用例(図14~図17)
 
<1.背景>
 光の位相を変調して所望の像を生成する空間位相変調器は、光の干渉を制御することができる。そのため、空間位相変調器は、立体ディスプレイやレーザ加工など、幅広い応用が期待される。空間位相変調器は、電極間に液晶層を挟んだパネル構造となっており、液晶層に印加する電圧を制御することにより、入射光の位相をアナログ的に制御することが可能である。光の位相のみを変調するためには、電圧を印可した際に液晶分子が画素電極に対して極角方向にのみ傾くことが重要である。液晶分子が画素電極に対して方位角方向に回転した場合、空間位相変調器に入射した光(入射光)の偏光状態が変化し、空間位相変調器から出射された光(出射光)は、入射光の偏光状態とは異なる偏光状態となる。その結果、出射光として干渉に寄与しない光が生じるため、光の利用効率が低下する。
 空間位相変調器において、正の誘電異方性を有する液晶分子を用いた場合、液晶分子の配向方向に対して直交する方向のフリンジ電界により、液晶分子に方位角方向の回転が生じることが原理的に避けられない。一方、負の誘電異方性を有する液晶分子の配向については未解明であった。そこで、本願発明者は、試作したデバイスを用いて、負の誘電異方性を有する液晶分子の配向について解析を行った結果、負の誘電異方性を有する液晶分子においても、方位角方向の回転が生じることを確認することができた。
 本願発明者は、負の誘電異方性を有する液晶分子において方位角方向の回転が生じる原理について考察を行った結果、以下の2つの原理をみいだした。
 図1(A)は、原理その1について説明するための図である。図1(B)は、原理その2について説明するための図である。図1(A),図1(B)において、LCは液晶分子であり、E1は画素電極であり、E2は共通電極であり、実線は等電位線であり、矢印はフリンジ電界である。図1(A)において、破線で囲んだ箇所は、画素電極E1および共通電極E2の間に相対的に小さい電圧差が印可されているとき、“原理その1”によって液晶分子LCに方位角方向の回転が生じている箇所を示している。図1(B)において、破線で囲んだ箇所は、画素電極E1および共通電極E2の間に相対的に大きい電圧差が印可されているとき、“原理その2”によって液晶分子LCに方位角方向の回転が生じている箇所を示している。
(原理その1)
~フリンジ電界に起因するリバースチルト~
 液晶層には、画素電極E1から共通電極E2に向かって垂直に電気力線が発生することが望ましい。しかし、印加電圧が大きく異なる2つの画素電極E1の間には、一方の画素電極E1から他方の画素電極E2に向かう電気力線(図1(A)の矢印)が生じる。この電気力線に対応する電界によって、プレチルトを反転させるような力が液晶分子LCに与えられると、液晶分子LCはプレチルトとは逆方向に回転し、リバースチルトが発生する。この力は、液晶分子LCを方位角方向に180°回転させる力となり、さらに周囲の液晶分子LCも、液晶層の弾性力によって、リバースチルトが発生した液晶分子LCの影響を受けて、方位角方向に回転する(図1(A)の破線で囲んだ箇所)。
(原理その2)
~等電位線の湾曲と液晶層の弾性力との相互作用~
 互いに隣接する2つの画素電極E1,E2に対して互いに異なる電圧が印可されると、液晶層内の等電位線は湾曲する。このとき、仮に液晶分子LCの方位角方向の回転が0であると仮定すると、負の誘電異方性を有する液晶分子LCは、電界の力を受けて等電位線に対して液晶分子LCの長軸が平行となるように回転するはずである(図1(B)の黒塗りの液晶分子)。しかし、等電位線が湾曲しているため、液晶分子LCはベンド配向状態となり、弾性エネルギーが高い状態となる(図1(B)の破線で囲まれた箇所)。このとき、弾性エネルギーが最も低くなるのは、液晶分子が方位角方向に90°回転したときである。従って、湾曲した電界は、液晶分子を方位角方向に90°回転させる力となり、液晶分子が湾曲した電界によって、方位角方向に90°回転する(図1(B)の破線で囲まれた箇所)。
 本願発明者は、上述の2つの原理を鑑みて、液晶分子が方位角方向に回転した時に自由エネルギーが高くなるようにすることで、液晶分子の方位角方向への回転を抑制する手法を検討した。その手法の1つとして、配向膜のアンカリング強度を強めることが考えられる。しかし、配向膜のアンカリング強度の制御には限界があり、アンカリング力の強化のみによる改善は現実的ではない。
 本願発明者は、シミュレーションや実験から、電界の湾曲によって生じる方位角方向の回転はリバースチルトをきっかけとして発生することがあることを発見した。このことから、本願発明者は、方位角方向の回転の問題の一部を解決するためには少なくともリバースチルトを発生させないことが重要であることに気が付いた。そこで、本願発明者は、リバースチルトの抑制に着目した下記の発明を提案する。
<2.実施の形態>
[構成]
 図2は、本開示の一実施の形態に係る空間位相変調器1の断面構成例を表したものである。空間位相変調器1は、光の位相を変調して所望の像を生成する光学デバイスである。空間位相変調器1は、例えば、図2に示したように、複数の画素電極11、配向膜12、液晶層13、配向膜14および共通電極15をこの順に積層してなる積層体10を備えている。空間位相変調器1は、さらに、例えば、図2に示したように、積層体10を挟み込む一対のガラス基板20,30を備えている。
 複数の画素電極11および配向膜12がガラス基板20の表面に積層されており、共通電極15および配向膜14がガラス基板30の表面に積層されている。ガラス基板20とガラス基板30とが、複数の画素電極11、配向膜12,14および共通電極15を間にして互いに対向配置されている。複数の画素電極11は、ガラス基板20の表面上に、所定の間隙を介して2次元配置されている。画素電極11は、例えば、数10μm×数10μmのサイズとなっている。
 配向膜12と配向膜14との間には、配向膜12,14に接する液晶層13が形成されている。液晶層13には、負の誘電異方性を有する液晶分子13aが含まれている。ここで、「負の誘電異方性」とは、電界を印可したときに液晶分子の短軸が電界方向に平行になる性質を有することを意味する。なお、「正の誘電異方性」とは、電界を印可したときに液晶分子の長軸が電界方向に平行になる性質を有することを意味する。
 図3は、空間位相変調器1の平面構成例を表したものである。図3では、液晶分子13aがガラス基板30に投影されている。図4(A)は、電界が印可されていない液晶分子13aを拡大して表したものである。配向膜12,14は、液晶分子13aの配向方向Daおよびプレチルト角θt0を規制するものであり、例えば、斜方蒸着によって形成された無機配向膜である。配向方向Daは、液晶分子13aをXY平面(画素電極11)に投影したときの投影像の長軸方向を指している。配向方向Daは、例えば、X軸と平行な方向となっている。プレチルト角θt0は、画素電極11および共通電極15の間に電圧が印可されていないときの、液晶分子13aの長軸と、XY平面(画素電極11)とのなす角(極角)を指している。
 なお、参考までに、互いに隣接する2つの画素電極11の間に電圧差ΔVが生じたときに、液晶分子13aが方位角方向へ回転したときの様子を図4(B)に示した。図4(B)において、回転角θaは、互いに隣接する2つの画素電極11の電圧差が0ボルトからΔVボルトになったときの、液晶層13内の厚み方向の中央領域に含まれる液晶分子13aの方位角方向の最大回転角を示している。回転角θaがゼロの場合には、配向方向Daが変化しないことを意味する。従って、この場合は、配向方向Daに平行な偏光面を有する直線偏光光が液晶層13を透過したとき、液晶層13は、透過する直線偏光光に対して、偏光状態を変化させることなく、位相だけ変調させる作用を有する。
 空間位相変調器1において、液晶分子13aの配向方向Da(厳密には互いに隣接する2つの画素電極11の間の電圧差が0ボルトのときの配向方向Da)は、空間位相変調器1に入射する直線偏光光(入射光L1)の偏光面と平行となっている。配向膜12,14は、液晶分子13aのプレチルト角θt0が所定の角θth以下となるように構成されている。角θthについては、後に詳述する。
 空間位相変調器1は、さらに、例えば、図5に示したように、ガラス基板30上に直線偏光板40を備えていてもよい。直線偏光板40の偏光軸(透過軸)は、液晶分子13aの配向方向Daと平行となっている。空間位相変調器1が透過型の変調器である場合、空間位相変調器1は、さらに、例えば、図6に示したように、ガラス基板20の裏面に、直線偏光板40の偏光軸(透過軸)と平行な偏光軸(透過軸)を有する直線偏光板50を備えていてもよい。空間位相変調器1が反射型の変調器である場合、空間位相変調器1は、さらに、例えば、図7に示したように、ガラス基板20の裏面に、入射光L1を反射する反射ミラー層60を備えていてもよい。空間位相変調器1において、ガラス基板30側の表面に、入射光L1の不要な反射を防止するAR(Anti-Reflection)層が設けられていてもよい。
 次に、液晶分子13aのチルト角θtおよび角θthについて説明する。
 図8は、液晶分子13aを拡大して表したものである。図8には、共通電極15に対して固定電圧(例えば0V)が印可されるとともに、画素電極11にオン電圧(例えば4V)が印可されているときの液晶分子13aが例示されている。チルト角θtは、液晶分子13aの長軸と、XY平面(画素電極11)とのなす角(極角)を指している。チルト角θtは、画素電極11に印加された電圧と、共通電極15に印加された電圧との差に応じて変化する。画素電極11および共通電極15に対して電圧が印可されていないときのチルト角θtは、プレチルト角θt0と称される。
 図9は、互いに隣接する2つの画素電極11の電圧差ΔVと、液晶分子13aの方位角方向への回転角θaとの関係の一例を表したものである。なお、図9には、液晶分子13aを後述の図10の液晶材料Aとし、かつ液晶層13の厚みを3μmとしたときの実験結果が示されている。プレチルト角θt0を81°としたうえで、電圧差ΔVを0Vから5Vまで変化させた場合には、図9に示したように、液晶分子13aには、低電圧領域(0V~2V)においてリバースチルトが生じることなく、高電圧領域(2V~5V)において方位角方向への回転が生じた。一方、プレチルト角θt0を82°としたうえで、電圧差ΔVを0Vから5Vまで変化させた場合には、図9に示したように、液晶分子13aには、低電圧領域においてリバースチルトが生じた後、高電圧領域において方位角方向への回転が生じた。このことから、プレチルト角θt0を81°以下とした場合には、液晶分子13aには、リバースチルトが生じないことがわかる。
 ところで、隣接する画素でリバースチルトが生じた場合、通常であれば方位角方向の回転が生じない印加電圧であっても、液晶の弾性力の伝播によって高電圧領域と同様の方位角回転が生じる。このため,リバースチルトの発生を抑制することで、その周囲で生じていた方位角方向の回転を抑制することが可能である。また、液晶分子13aのプレチルト角θt0を小さくした場合(つまり、液晶分子13aを倒した場合)、液晶分子13aのプレチルト角θt0が小さくなる分、実効的なアンカリング力が強くなり、リバースチルトを抑制することが可能となる。従って、液晶分子13aのプレチルト角θt0を所定の角θth以下にすることにより、液晶分子13aの方位角方向への回転を完全に抑えることが可能となる。つまり、図9において、角θthは、互いに隣接する2つの画素電極11の電圧差ΔVを0ボルトから5ボルトに変化させたとき(通常使用の範囲内で電圧差ΔVを変化させたとき)であってもリバースチルトが生じないプレチルト角θt0の上限値(81°)を指している。
 図10は、負の誘電異方性を有する液晶分子13aとして一般に入手可能な4種類の液晶材料を用いたときの角θthを表したものである。図10には、液晶層13の厚みを3μmとしたときの実験結果が示されている。図11は、液晶層13の厚みと、リバースチルトが生じない角θthとの関係の一例を表したものである。図11には、図10の液晶材料Aを用いたときの実験結果が示されている。図10,図11から、液晶材料や液晶層13の厚みによらずリバースチルトが生じないプレチルト角θt0の上限値(角θth)が80°であることがわかる。
 以上のことから、配向膜12,14は、液晶分子13aのプレチルト角θt0が以下の式を満たすように構成されている。
 0°<θt0≦80°
 プレチルト角θt0の下限値は、液晶分子13aのプレチルトの方向を一定に制御可能な下限値に相当する。なお、位相変調においてはライトバルブのようなコントラスト比が必要でなく、位相差を識別することができれば十分であることから、プレチルト角θt0の上限値が90°近くの値となっていなくても問題ない。
[動作]
 次に、空間位相変調器1の動作について説明する。
(透過型)
 図12は、空間位相変調器1が透過型の変調器のときの動作の一例を表したものである。各画素電極11に対して、画素電極11ごとに設定された電圧が印可される。すると、画素電極11に印加された電圧と、共通電極15に印加された電圧との差に応じて、液晶分子13aのチルト角θtが変化する。空間位相変調器1の、ガラス基板30側の表面(光入射面S1)に対して、液晶分子13aの配向方向と平行な偏光面を有する直線偏光光(入射光L1)が入射すると、入射光L1は、液晶層13を透過する際に、偏光面を回転させることなく位相変調され、位相変調された光が出射光L2としてガラス基板20側の表面(光出射面S2)から外部に出射される。
(反射型)
 図13は、空間位相変調器1が反射型の変調器のときの動作の一例を表したものである。各画素電極11に対して、画素電極11ごとに設定された電圧が印可される。すると、画素電極11に印加された電圧と、共通電極15に印加された電圧との差に応じて、液晶分子13aのチルト角θtが変化する。空間位相変調器1の、ガラス基板30側の表面(光入射面S1)に対して、液晶分子13aの配向方向と平行な偏光面を有する直線偏光光(入射光L1)が入射する。入射光L1は、例えば、図13に示したように、光入射面S1に対して斜めに入射してもよいし、光入射面S1に対して垂直に入射してもよい。入射光L1が光入射面S1に入射すると、入射光L1は、液晶層13を透過した後、反射ミラー層60で反射され、再び、液晶層13を透過してガラス基板30側の表面(光出射面S2)から外部に出射される。このとき、入射光L1は、偏光面を回転させることなく位相変調され、位相変調された光が出射光L2として外部に出射される。
[効果]
 次に、空間位相変調器1の効果について説明する。
 本実施の形態では、配向膜12,14は、液晶分子13aのプレチルト角θtが0°<θt0≦80°を満たすように構成されている。これにより、低電圧領域においては、液晶分子の方位角方向への回転が抑えられるので、光の利用効率を向上させることができる。また、高電圧領域においては、リバースチルトをきっかけとする液晶分子の方位角方向への回転が抑えられるので、光の利用効率を向上させることができる。
<2.応用例>
 次に、上記実施の形態に係る空間位相変調器1の応用例について説明する。
[応用例A]
 図14は、空間位相変調器1を備えたレーザ加工機100の概略構成例を表したものである。レーザ加工機100は、対象物200にレーザ光Laを照射することで対象物200に改質領域を形成する装置である。レーザ加工機100は、対象物200を支持する支持部110と、光源部120と、空間位相変調器1と、ミラー130,140と、結像光学系150と、集光部160とを備えている。本応用例において、空間位相変調器1は、反射型の変調器となっている。
 支持部110は、例えば、対象物200を吸着することで、対象物200の表面がXY平面に平行となるように対象物200を支持する。支持部110は、X方向およびY方向のそれぞれの方向に移動可能となっており、XY面内において回転可能となっている。
 光源部120は、例えばパルス発振方式によって、レーザ光Laを出射する。レーザ光Laは、直線偏光光である。光源部120は、レーザ光Laがミラー130等を介して空間位相変調器1に入射したときに、レーザ光Laの偏光面が液晶分子13aの配向方向D1と平行となるようにレーザ光Laを出射する。
 ミラー130は、レーザ光Laを反射して空間位相変調器1の光入射面S1に入射させる。ミラー130によって反射されたレーザ光Laは、空間位相変調器1の光入射面S1に入射する。空間位相変調器1では、レーザ光Laは、液晶層13を透過した後、反射ミラー層60で反射され、反射光(レーザ光Lb)が、液晶層13を透過して外部に出射される。このとき、レーザ光Laは、偏光面を回転させることなく位相変調され、位相変調された光(レーザ光Lb)が、光出射面S2を兼ねた光入射面S1から外部に出射される。
 ミラー140は、レーザ光Lbを反射して、結像光学系150を介して集光部160に入射させる。結像光学系150は、空間位相変調器1の反射面と集光部150の入射瞳面とが結像関係にある両側テレセントリック光学系となっている。これにより、空間位相変調器1によって変調されたレーザ光Lbが集光部150の入射瞳面に転像(結像)される。集光部150は、レーザ光Lbを集光して対象物200の表面に照射することにより、入射瞳面に結像された像を所定の倍率で対象物200の表面に投影する。その結果、対象物200の表面には、投影された像のパターンの改質領域が形成される。
 本応用例では、改質領域に形成するパターンの元になる像が空間位相変調器1によって形成される。これにより、低消費電力のレーザ加工機100を実現することができる。
[応用例B]
 図15は、空間位相変調器1を備えた光コンピューティング300の概略構成例を表したものである。光コンピューティング300は、ライトバルブ320に入力された像(例えば、数字)を解読する装置であり、例えば、光源部310、ライトバルブ320、複数の空間位相変調器1および検出部330を備えている。光コンピューティング300において、複数の空間位相変調器1は所定の間隙を介して重ね合わされている。
 光源部310は、ライトバルブ320に対してレーザ光を照射する。ライトバルブ320は、例えば、光透過型の光変調器であり、外部から入力された制御信号(画像データ)に基づいて、光源部310から入射したレーザ光を光強度変調することにより、外部から入力された制御信号に応じたパターンの画像光を生成する。ライトバルブ320は、例えば、生成した画像光を、1枚目の空間位相変調器1に照射する。画像光は、1枚目の空間位相変調器1によって位相変調され、それにより得られた光が2枚目の空間位相変調器1に照射される。2枚目の空間位相変調器1に照射された光は、2枚目の空間位相変調器1よって位相変調され、それにより得られた光が3枚目の空間位相変調器1に照射される。このようにして、画像光は、各空間位相変調器1によって位相変調され、最後の空間位相変調器1から出力された光が検出部330で検出される。検出部330は、入力された光に基づいて、ライトバルブ320に入力された画像データを推定する。
 なお、本応用例において、光源部310およびライトバルブ320が省略され、外部から入力された画像光が1枚目の空間位相変調器1に照射されるようになっていてもよい。また、本応用例において、光源部310およびライトバルブ320が省略され、文字や絵などが描かれた、光透過性を有する紙面を、1枚目の空間位相変調器1の光入射面上に配置し、紙面を透過した外光を1枚目の空間位相変調器1で検出させるようになっていてもよい。
 本応用例では、光コンピューティング300における処理内容を決定づける位相分布が空間位相変調器1によって形成される。これにより,低消費電力かつ計算内容を変更可能な光コンピューティング300を実現することができる。
[応用例C]
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図16は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図16に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図16では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。
 ここで、図17は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図17には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。
 図16に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図16の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。
 なお、図16に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。
 なお、図1~図13等を用いて説明した空間位相変調器1の各機能を実現するためのコンピュータプログラムを、いずれかの制御ユニット等に実装することができる。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体を提供することもできる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。
 以上説明した車両制御システム7000において、図1~図13等を用いて説明した空間位相変調器1は、例えば,環境センサとしてのLIDARの光源ステアリング部として用いることができる。また,撮像部における画像認識を、図1~図13等を用いて説明した空間位相変調器1を用いた光コンピューティングユニットで行うこともできる。図1~図13等を用いて説明した空間位相変調器1を、高効率・高輝度なプロジェクションデバイスとして用いた場合は,地面に線や文字を投影することができる。具体的には、車が後退する際に車外の人が車の通る位置が分かるように線を表示したり、歩行者に道を譲る場合に横断歩道を光で表示したりすることができる。
 また、図1~図13等を用いて説明した空間位相変調器1の少なくとも一部の構成要素は、図16に示した統合制御ユニット7600のためのモジュール(例えば、一つのダイで構成される集積回路モジュール)において実現されてもよい。あるいは、図1~図13等を用いて説明した空間位相変調器1が、図16に示した車両制御システム7000の複数の制御ユニットによって実現されてもよい。
 以上、実施の形態およびその応用例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、例えば、本開示は以下のような構成を取ることができる。
(1)
 光の位相を変調して所望の像を生成する空間位相変調器であって、
 複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を備え、
 前記液晶層は、負の誘電異方性を有する液晶分子を含み、
 前記第1配向膜および前記第2配向膜は、前記液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている
 空間位相変調器。
(2)
 光の位相を変調して所望の像を生成する空間位相変調器を用いた加工装置であって、
 前記空間位相変調器は、
 複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を有し、
 前記液晶層は、負の誘電異方性を有する液晶分子を含み、
 前記第1配向膜および前記第2配向膜は、前記液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている
 加工装置。
(3)
 光の位相を変調して所望の像を生成する1または複数の空間位相変調器を用いた情報処理装置であって、
 前記空間位相変調器は、
 複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を有し、
 前記液晶層は、負の誘電異方性を有する液晶分子を含み、
 前記第1配向膜および前記第2配向膜は、前記液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている
 情報処理装置。
 本開示の一実施の形態に係る空間位相変調器、加工装置および情報処理装置では、第1配向膜および第2配向膜は、液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている。これにより、液晶分子の方位角方向への回転が抑えられるので、光の利用効率を向上することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
 本出願は、日本国特許庁において2021年7月28日に出願された日本国特許出願番号第2021-123676号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (3)

  1.  光の位相を変調して所望の像を生成する空間位相変調器であって、
     複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を備え、
     前記液晶層は、負の誘電異方性を有する液晶分子を含み、
     前記第1配向膜および前記第2配向膜は、前記液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている
     空間位相変調器。
  2.  光の位相を変調して所望の像を生成する空間位相変調器を用いた加工装置であって、
     前記空間位相変調器は、
     複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を有し、
     前記液晶層は、負の誘電異方性を有する液晶分子を含み、
     前記第1配向膜および前記第2配向膜は、前記液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている
     加工装置。
  3.  光の位相を変調して所望の像を生成する1または複数の空間位相変調器を用いた情報処理装置であって、
     前記空間位相変調器は、
     複数の画素電極、第1配向膜、液晶層、第2配向膜および共通電極をこの順に積層してなる積層体を有し、
     前記液晶層は、負の誘電異方性を有する液晶分子を含み、
     前記第1配向膜および前記第2配向膜は、前記液晶分子のプレチルト角θt0が0°<θt0≦80°を満たすように構成されている
     情報処理装置。
PCT/JP2022/011841 2021-07-28 2022-03-16 空間位相変調器、加工装置および情報処理装置 WO2023007821A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023538252A JPWO2023007821A1 (ja) 2021-07-28 2022-03-16
US18/578,023 US20240329462A1 (en) 2021-07-28 2022-03-16 Space phase modulator, processing apparatus, and information processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021123676 2021-07-28
JP2021-123676 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023007821A1 true WO2023007821A1 (ja) 2023-02-02

Family

ID=85087789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011841 WO2023007821A1 (ja) 2021-07-28 2022-03-16 空間位相変調器、加工装置および情報処理装置

Country Status (3)

Country Link
US (1) US20240329462A1 (ja)
JP (1) JPWO2023007821A1 (ja)
WO (1) WO2023007821A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196574A (ja) * 1997-09-25 1999-04-09 Pioneer Electron Corp 光ピックアップ
JP2005254281A (ja) * 2004-03-11 2005-09-22 Mitsubishi Electric Corp レーザ加工装置
JP2006084562A (ja) * 2004-09-14 2006-03-30 Stanley Electric Co Ltd 液晶光学装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173544A (ja) * 2003-11-19 2005-06-30 Seiko Epson Corp 液晶装置及び電子機器
JP6927876B2 (ja) * 2014-10-21 2021-09-01 ロリク アーゲーRolic Ag ポリマー含有散乱型液晶素子の製造方法及びポリマー含有散乱型液晶素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196574A (ja) * 1997-09-25 1999-04-09 Pioneer Electron Corp 光ピックアップ
JP2005254281A (ja) * 2004-03-11 2005-09-22 Mitsubishi Electric Corp レーザ加工装置
JP2006084562A (ja) * 2004-09-14 2006-03-30 Stanley Electric Co Ltd 液晶光学装置

Also Published As

Publication number Publication date
JPWO2023007821A1 (ja) 2023-02-02
US20240329462A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
US11076141B2 (en) Image processing device, image processing method, and vehicle
US10864855B2 (en) Imaging control apparatus, method for controlling imaging control apparatus, and mobile body
KR20180063688A (ko) 차량용 헤드 업 디스플레이
CN107851656B (zh) 摄像装置和测距系统
JP7379425B2 (ja) 固体撮像装置、および電子装置
WO2018179650A1 (ja) 測距装置及び車両
WO2019225349A1 (ja) 情報処理装置、情報処理方法、撮影装置、照明装置、及び、移動体
US10877288B2 (en) Imaging device and imaging method
US11676929B2 (en) Electronic substrate and electronic apparatus
WO2023007821A1 (ja) 空間位相変調器、加工装置および情報処理装置
CN111630452B (zh) 成像装置和电子设备
WO2022249734A1 (ja) 撮像装置および電子機器
WO2022044830A1 (ja) 情報処理装置、および情報処理方法
US20230073217A1 (en) Optical compensation element, method for manufacturing optical compensation element, liquid crystal display device, and electronic apparatus
WO2024024129A1 (ja) 光演算装置および光演算処理システム
WO2020255589A1 (ja) 情報処理装置、情報処理方法及びプログラム
JP7571136B2 (ja) 光学素子、液晶表示装置および電子機器
WO2021246113A1 (ja) 光学素子、液晶表示装置および電子機器
WO2023162734A1 (ja) 測距装置
WO2022209377A1 (ja) 半導体装置、電子機器及び半導体装置の制御方法
US20230238708A1 (en) Antenna device
WO2022176731A1 (ja) 半導体装置
WO2021065157A1 (ja) 光学補償素子、液晶表示装置および電子機器
WO2022097470A1 (ja) 信号処理装置、撮像装置及び信号処理方法
WO2018051616A1 (ja) 通信装置、および通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848905

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18578023

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023538252

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848905

Country of ref document: EP

Kind code of ref document: A1