WO2023006313A1 - Verfahren zum ansteuern eines elektrischen antriebssystems eines elektrisch angetriebenen fahrzeugs während eines rekuperationsvorgangs und elektrisch angetriebenes fahrzeug - Google Patents

Verfahren zum ansteuern eines elektrischen antriebssystems eines elektrisch angetriebenen fahrzeugs während eines rekuperationsvorgangs und elektrisch angetriebenes fahrzeug Download PDF

Info

Publication number
WO2023006313A1
WO2023006313A1 PCT/EP2022/067497 EP2022067497W WO2023006313A1 WO 2023006313 A1 WO2023006313 A1 WO 2023006313A1 EP 2022067497 W EP2022067497 W EP 2022067497W WO 2023006313 A1 WO2023006313 A1 WO 2023006313A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive motor
power
electric drive
current
power loss
Prior art date
Application number
PCT/EP2022/067497
Other languages
English (en)
French (fr)
Inventor
Kenneth BENATH CAMARA
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2023006313A1 publication Critical patent/WO2023006313A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/22Dynamic electric resistor braking, combined with dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/16Acceleration longitudinal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current

Definitions

  • the invention relates to a method for controlling an electric drive system of a vehicle and an electrically driven vehicle, in particular a motorcycle.
  • the electric drive motor can be operated as a generator to decelerate the vehicle, part of the vehicle's kinetic energy being recovered as electrical energy and fed into the drive energy store. This process is called recuperation.
  • the drive system in particular the electric drive motor and the drive energy store, are designed to be powerful enough, it is possible in many situations to brake the vehicle solely by means of a deceleration effect on the driven axle by the electric drive motor.
  • the current charging power which depends, among other things, on the free charging capacity of the drive energy store, limits the braking power, because this specifies the maximum amount of electrical power generated during the recuperation process that is fed to the drive energy store.
  • the electrical power generated by the drive motor is in turn proportional to the braking torque that can be applied.
  • the object of the invention is to provide an improved braking method for an electrically driven vehicle that is based on a recuperation process.
  • This object is achieved with a method for controlling an electric drive system of an electrically driven vehicle during a recuperation process, the electric drive system comprising a drive energy store, at least one electric drive motor and an electronic system, and the electric drive motor acting as a generator is operated.
  • a current maximum charging power of the drive energy store and a current recuperation power of the drive motor are determined.
  • the electric drive system is controlled in such a way that the current recuperation power does not exceed the current maximum charging power, with the efficiency of the drive motor being reduced by power loss being generated in the drive motor.
  • the electric drive motor is operated in such a way that as much mechanical braking power as possible in the drive motor is converted into electrical power loss. In this way, both the braking effect of the drive motor is maintained and the limitation of the charging power of the drive energy store is taken into account.
  • the electric drive motor is controlled in such a way that it generates the desired braking torque and converts as much mechanical braking power as possible into electrical charging power, i.e. it is operated as efficiently as possible and as little power loss as possible is lost in the drive motor as heat.
  • the control of the drive motor is changed in such a way that it does not convert the power as efficiently as possible, but instead the efficiency is reduced until only the currently maximum permissible electrical Charging power is recuperated and in return the excess portion of the mechanical braking power is converted into heat as electrical power loss in the drive motor.
  • the electric drive motor and the entire electric drive system and the electronic system are preferably controlled by a control unit connected to the electric drive system, which also controls the current flows in the drive motor controls.
  • the power loss should be set in such a way that a currently required power loss is generated, which results from a difference between a current maximum recuperation power and the current maximum charging power.
  • the power loss currently required is of course set to zero if the current maximum recuperation power is less than or equal to the current maximum charging power, since charging the drive energy storage device always has priority when the vehicle is in operation.
  • the efficiency of the electronic system can also be reduced, thus generating additional power loss that is used to generate the currently required power loss.
  • the heat loss generated is preferably dissipated in a cooling system of the vehicle.
  • the method described above can be used to brake an electrically powered motorcycle, but it is also suitable for any other electrically powered vehicle.
  • an electrically driven vehicle with an electric drive system
  • the vehicle comprising a drive energy store, at least one electric drive motor which can be operated as a generator, an electronic system and a control unit, the control unit being designed in such a way that it can carry out a procedure described above.
  • an additional braking device that applies an additional braking torque that is from a difference between a currently required braking torque and one from the current maximum charging power and one current maximum applicable power loss resulting braking torque results.
  • a friction brake for example, can be used as an additional braking device.
  • the additional braking device is generally independent of the electric drive motor and can be used independently of it.
  • a hydraulic brake of an ABS device usually on the front wheel of the motorcycle, can be used as an additional braking device.
  • the additional braking device is preferably arranged on the non-driven wheel of the motorcycle.
  • motorcycle is understood to mean both a classic, two-wheeled, single-track motorcycle, which can also be a scooter, and also, for example, a three-wheeled single-track vehicle.
  • the control unit is generally connected to various sensors which, for example, enable the currently requested braking torque, the current maximum charging power and the current state of charge of the drive energy store to be detected. Temperature sensors on the individual components or in a cooling system can also be connected to the control unit in order to supply data that is used to determine the individual parameters. It is also possible to also record the vehicle speed and possibly a roadway inclination, which have an influence on the maximum total kinetic energy to be dissipated and thus the maximum total current generated by the electric drive motor.
  • the control unit can include, for example, an engine controller and an ABS controller.
  • priority is always given to charging the drive energy store.
  • the current maximum charging power of the drive energy store is sufficient to absorb the recuperation current generated by the electric drive motor at maximum efficiency, it is not necessary to measure the efficiency of the electric drive motor or others To reduce components or to generate further power loss in any other way.
  • the use of the additional braking device is dispensed with. The most effective recuperation possible when braking is therefore always ensured. In such a case, the currently required power loss and the current additional braking torque are equal to zero.
  • All parameters are considered at a current point in time, with, for example, the current braking request being queried at regular, predetermined, short time intervals. Accordingly, the remaining data and parameters are preferably recorded, determined and/or calculated at these time intervals.
  • the current generated by the electric drive motor is considered here to be approximately proportional to the braking torque of the electric drive motor.
  • FIG. 1 shows a schematic representation of an electrically driven vehicle according to the invention, with which the method according to the invention for controlling an electric drive system of an electrically driven vehicle can be carried out during a recuperation process;
  • FIG. 2 shows a schematic representation of the method according to the invention.
  • FIG. 1 System components of an electrically driven vehicle, here a motorcycle, are shown schematically in FIG. 1, which, among other things, belong to a drive system and an electronic system.
  • the drive energy comes entirely from a drive energy store 10, also referred to as a traction battery, which moves a driven wheel 14 via one or more electric drive motors 12.
  • the driven wheel 14 is the rear wheel of the motorcycle.
  • the wheel 16, here the front wheel, is not driven in this example and therefore does not have its own electric drive motor. If the motorcycle is to be braked, the driver actuates one or both brake levers 18, which are assigned to the front wheel 16 and the rear wheel 14, respectively.
  • the main braking power is provided by the electric drive motor 12, which in this case is used as a generator and, due to the generation of electricity, offers mechanical resistance that brakes the driven wheel 14 and thus the vehicle.
  • the drive energy store 10 is designed so powerful here that its capacity and its charging power density, i.e. the charging power per vehicle mass, are designed so large that, with sufficient free charging capacity, the current generated by braking by the electric drive motor 12 can in principle be absorbed in the drive energy store 10.
  • the brake levers 18 are electronically connected to a control unit 20; there is no direct mechanical connection to a braking device here.
  • a sensor 22 connected to the control unit 20 is arranged on each brake lever 18 .
  • predetermined time intervals At it is queried whether there is a braking request with a currently requested braking torque that is different from zero.
  • the data for actuating the right and left brake levers 18 are both offset in the control unit 20 to form a single currently requested braking torque, which is applied in the subsequent braking process without distinguishing its origin.
  • An additional braking device 24 is arranged on the non-driven wheel 16 here, which in this example consists of a hydraulic brake of an ABS device.
  • the drive energy store 10 is connected via power electronics 26 to the electric drive motor 12, with a rule Current flows between the drive energy store 10 and the electric drive motor 12 through the power electronics 26 .
  • the drive motor 12 and/or the drive energy store 10 are connected to a cooling system 28 (for example an air cooling system) of the vehicle.
  • a cooling system 28 for example an air cooling system
  • control unit 20 determines a currently requested braking torque.
  • control unit 20 In addition, if necessary, further data from further sensors (not shown), e.g. for vehicle speed, system temperature or a roadway inclination, are recorded by the control unit 20 .
  • the control unit 20 also determines a current maximum charging power of the drive energy store 10 and a current recuperation power.
  • the current recuperation power is proportional to the product of braking torque, efficiency and speed of the electric motor, which in turn is proportional to the current driving speed.
  • control unit 20 determines a power loss that can be generated in electric drive motor 12, by which the current maximum recuperation power of electric drive motor 12 (at maximum efficiency of drive motor 12) can be reduced at most for the currently requested braking torque.
  • a power loss is generated in the drive motor 12 by activating the electric drive motor 12 with an efficiency that is worse than the optimum, as a result of which a higher proportion of the mechanical braking power is converted into heat in the electric drive motor 12 itself.
  • the driven wheel 14 supplies kinetic energy, with which the electric drive motor 12 is moved and which makes mechanical power PM available to the drive motor 12 .
  • the drive motor 12 generates electrical power PEL, which is consumed by the power electronics 26 connected to the drive motor 12 and is fed into the drive energy store 10 as charging power PBAT.
  • PEL electrical power
  • the highest possible charging power PBAT is supplied to the drive energy store 10 with the lowest possible power loss PL,M, PL,I.
  • the largest possible proportion of the braking torque is therefore converted into electrical power. This is indicated in FIG. 2 with the black arrows.
  • the control unit 20 increases the power loss PL,M, which occurs in the drive motor 12 itself, and possibly also the power loss PL,I in the power electronics 26, which reduces the charging power PBAT.
  • the power electronics 26 are controlled in such a way that the electric currents flowing are impressed by the power electronics 26 in the drive motor 12 in such a way that the drive motor 12 applies the desired braking torque, but the current charging power PBAT is nevertheless limited to the required limit. This results in a higher power loss PL,M in the drive motor 12. This is indicated by the dashed arrows.
  • the changed control leads to a change in the magnetic flux in the drive motor 12 with a deteriorated electromechanical conversion efficiency. With the same braking power, there is then more power loss in the drive motor 12 and the electrical power generated decreases.
  • the power electronics 26 can be controlled with poorer efficiency, so that an increased electrical resistance also occurs here, which also leads to heat loss. This heat loss is largely dissipated here via the cooling system 28 (also indicated by the arrows in FIG. 1).
  • control unit 20 here determines a current additional braking torque that is to be applied by the additional braking device 24 .
  • This current additional braking torque results from a difference between the currently required braking torque and a braking torque resulting from the current maximum charging power and the current maximum power loss. If the currently requested braking torque can be applied exclusively using the electric drive motor 12 in generator operation with optimum efficiency without exceeding the current maximum charging power of the drive energy store 10, then the braking process is carried out exclusively in this way.
  • control unit 20 determines that the currently required braking torque cannot be applied with the current maximum charging power of drive energy store 10, it determines a currently required power loss, which is the result of the difference between the current maximum charging power and a maximum recuperation power of electric drive motor 12 for the currently requested braking torque.
  • the control unit 20 increases the overall power loss in the system by, as described above, reducing the efficiency of the electric drive motor 12 in generator operation and, if necessary, of the power electronics 26 and thus more mechanical braking power is converted into heat.
  • control unit 20 selects suitable measures of a suitable strength in order to set the currently required power loss.
  • control unit 20 determines that the currently required power loss cannot be fully applied by the drive system, the additional braking device 24 is actuated to reduce the remaining braking torque until the braking request is fulfilled.
  • the parameters are always recorded and the individual variables are calculated and determined in the control unit 20 at a current time t a , each beginning after the end of the interval ⁇ t at which the magnitude of the currently requested braking torque is queried again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In einem elektrisch angetriebenen Fahrzeug, dessen elektrisches Antriebssystem einen Antriebsenergiespeicher (10), wenigstens einen elektrischen Antriebsmotor (12) und ein Elektroniksystem umfasst, wird bei einem Verfahren zum Ansteuern des elektrischen Antriebssystems während eines Rekuperationsvorgangs, bei dem der elektrische Antriebsmotor (12) als Generator betrieben wird, eine aktuelle maximale Ladeleistung des Antriebsenergiespeichers (10) und eine aktuelle Rekuperationsleistung des Antriebsmotors (12) bestimmt, und das elektrische Antriebssystem wird so angesteuert, dass die aktuelle Rekuperationsleistung die aktuelle maximale Ladeleistung nicht überschreitet. Dabei wird der Wirkungsgrad des Antriebsmotors (12) reduziert, indem im Antriebsmotor (12) eine Verlustleistung erzeugt wird.

Description

Verfahren zum Ansteuern eines elektrischen Antriebssystems eines elektrisch angetriebenen Fahrzeugs während eines Rekuperationsvorgangs und elektrisch angetriebenes Fahrzeug
Die Erfindung betrifft ein Verfahren zum Ansteuern eines elektrischen Antriebssystems eines Fahrzeugs sowie ein elektrisch angetriebenes Fahrzeug, insbesondere ein Motorrad.
Bei elektrisch angetriebenen Fahrzeugen kann der elektrische Antriebsmotor zur Verzögerung des Fahrzeugs als Generator betrieben werden, wobei ein Teil der Bewegungsenergie des Fahrzeugs als elektrische Energie zurückgewonnen und in den Antriebsenergiespeicher eingespeist wird. Dieser Vorgang wird als Rekuperation bezeichnet.
Wenn das Antriebssystem, insbesondere der elektrische Antriebsmotor und der Antriebsenergiespeicher, leistungsstark genug ausgelegt sind, ist es möglich, in vielen Situationen das Fahrzeug ausschließlich über eine Verzögerungswirkung an der angetriebenen Achse durch den elektrischen Antriebsmotor abzubremsen.
Jedoch begrenzt die aktuelle Ladeleistung, die unter anderem von der freien Ladekapazität des Antriebsenergiespeichers abhängt, die Bremsleistung, denn diese gibt vor, wie groß die während des Rekuperationsvorgangs erzeugte elektrische Leistung, die dem Antriebsenergiespeicher zugeführt wird, maximal sein darf. Die vom Antriebsmotor erzeugte elektrische Leistung wiederum ist proportional zum aufbringbaren Bremsmoment.
Aufgabe der Erfindung ist es, ein verbessertes Bremsverfahren für ein elektrisch angetriebenes Fahrzeug bereitzustellen, das auf einem Rekuperationsvorgang beruht.
Diese Aufgabe wird mit einem Verfahren zum Ansteuern eines elektrischen Antriebssystems eines elektrisch angetriebenen Fahrzeugs während eines Rekuperationsvorgangs gelöst, wobei das elektrische Antriebssystem einen Antriebsenergiespeicher, wenigstens einen elektrischen Antriebsmotor und ein Elektroniksystem umfasst und wobei der elektrische Antriebsmotor als Generator betrieben wird. Es wird eine aktuelle maximale Ladeleistung des Antriebsenergiespeichers und eine aktuelle Rekuperationsleistung des Antriebsmotors bestimmt. Das elektrische Antriebssystem wird so angesteuert, dass die aktuelle Rekuperationsleistung die aktuelle maximale Ladeleistung nicht überschreitet, wobei der Wirkungsgrad des Antriebsmotors reduziert wird, indem im Antriebsmotor eine Verlustleistung erzeugt wird.
Anstatt die gesamte vom Antriebsmotor erzeugte elektrische Leistung dem Antriebsenergiespeicher zuzuführen, wird bei nicht ausreichender Ladeleistung der elektrische Antriebsmotor so betrieben, dass möglichst viel mechanische Bremsleistung im Antriebsmotor in elektrische Verlustleistung gewandelt wird. Auf diese Weise wird sowohl die Bremswirkung des Antriebsmotors beibehalten als auch der Begrenzung der Ladeleistung des Antriebsenergiespeichers Rechnung getragen.
Grundsätzlich erfolgt die Ansteuerung des elektrischen Antriebsmotors so, dass dieser das gewünschte Bremsmoment erzeugt, und möglichst viel mechanische Bremsleistung in elektrische Ladeleistung umwandelt, also möglichst effizient betrieben wird, und dabei möglichst wenig Verlustleistung im Antriebsmotor als Wärme verloren geht.
Für den Fall, dass die elektrische Ladeleistung begrenzt ist und weiterhin das gewünschte Bremsmoment erzeugt werden soll, wird die Ansteuerung des Antriebsmotors derart verändert, dass dieser nicht möglich effizient die Leistung wandelt, sondern die Effizienz soweit reduziert wird, bis nur die aktuell maximal zulässige elektrische Ladeleistung rekuperiert wird und im Gegenzug der überschüssige Anteil der mechanischen Bremsleistung als elektrische Verlustleistung im Antriebsmotor in Wärme gewandelt wirdDie Ansteuerung des elektrischen Antriebsmotors sowie des gesamten elektrischen Antriebssystems und des Elektroniksystems erfolgt vorzugsweise durch eine mit dem elektrischen Antriebssystem verbundene Steuereinheit, die auch die Stromflüsse im Antriebmotor steuert.
Die Verlustleistung sollte so eingestellt werden, dass eine aktuell geforderte Verlustleistung erzeugt wird, die sich aus einer Differenz einer aktuellen maximalen Rekuperationsleistung und der aktuellen maximalen Ladeleistung ergibt. Die aktuell geforderte Verlustleistung wird selbstverständlich auf Null eingestellt, wenn die aktuelle maximale Rekuperationsleistung kleiner oder gleich der aktuellen maximalen Ladeleistung ist, da ein Aufladen des Antriebsenergiespeichers im Betrieb des Fahrzeugs stets Vorrang hat.
Optional wird zusätzlich der Wirkungsgrad des Elektroniksystems reduziert und so eine zusätzliche Verlustleistung erzeugt, die in die Erzeugung der aktuell geforderten Verlustleistung eingeht.
Die erzeugte Verlustwärme wird vorzugsweise in einem Kühlsystem des Fahrzeugs abgebaut.
Insbesondere kann das oben beschriebene Verfahren zum Abbremsen eines elektrisch angetriebenen Motorrads eingesetzt werden, es ist aber auch für beliebige andere elektrisch angetriebene Fahrzeuge geeignet.
Bei elektrisch angetriebenen Motorrädern ist es denkbar, zumindest ein angetriebenes Rad des Motorrads stets ausschließlich ohne Verwendung einer Reibungsbremse, also nur durch die Bremswirkung des elektrischen Antriebsmotors im Rekuperationsbetrieb abzubremsen. Dies erlaubt es gegebenenfalls, beispielsweise das Hinterrad des Motorrads komplett ohne Reibungsbremse zu konstruieren, wobei normalerweise das Hinterrad das einzige angetriebene Rad des Motorrads ist.
Generell wird die oben genannte Aufgabe auch mit einem elektrisch angetriebenen Fahrzeug mit einem elektrischen Antriebssystem gelöst, wobei das Fahrzeug einen Antriebsenergiespeicher, wenigstens einen elektrischen Antriebsmotor, der als Generator betrieben werden kann, ein Elektroniksystem und eine Steuereinheit umfasst, wobei die Steuereinheit so ausgelegt ist, dass sie ein oben beschriebenes Verfahren durchführen kann.
Für den Fall, dass die aktuell geforderte Verlustleistung nicht ausreicht, um die Bewegungsenergie des Fahrzeugs bei der aktuellen maximalen Ladeleistung so weit abzubauen, um dem aktuellen Bremswunsch des Fahrers zu entsprechen, ist vorzugsweise eine zusätzliche Bremsvorrichtung vorhanden, die ein zusätzliches Bremsmoment aufbringt, das sich aus einer Differenz eines aktuell geforderten Bremsmoments und einem aus der aktuellen maximalen Ladeleistung und einer aktuellen maximal aufbringbaren Verlustleistung resultierenden Bremsmoments ergibt.
Als zusätzliche Bremsvorrichtung kann beispielsweise eine Reibungsbremse verwendet werden.
Die zusätzliche Bremsvorrichtung ist generell unabhängig vom elektrischen Antriebsmotor und kann unabhängig von diesem eingesetzt werden.
Insbesondere kann als zusätzliche Bremsvorrichtung eine hydraulische Bremse einer ABS-Vorrichtung, meist am Vorderrad des Motorrads, eingesetzt werden.
Die zusätzliche Bremsvorrichtung ist bevorzugt am nicht angetriebenen Rad des Motorrads angeordnet.
Unter dem Begriff „Motorrad“ wird im Rahmen dieser Anmeldung sowohl ein klassisches, zweirädriges, einspuriges Kraftrad, das auch ein Motorroller sein kann, als z.B. auch ein dreirädriges Einspurfahrzeug verstanden.
Die Steuereinheit ist im Allgemeinen mit diversen Sensoren verbunden, die beispielsweise das Erfassen des aktuell angeforderten Bremsmoments, der aktuellen maximalen Ladeleistung und des aktuellen Ladezustands des Antriebsenergiespeichers ermöglichen. Auch Temperatursensoren an den einzelnen Komponenten oder in einem Kühlsystem können mit der Steuereinheit verbunden sein, um Daten zu liefern, die in die Bestimmung der einzelnen Parameter eingehen. Es ist auch möglich, außerdem die Fahrzeuggeschwindigkeit und gegebenenfalls eine Fahrbahnneigung zu erfassen, die einen Einfluss auf die maximal insgesamt abzubauende kinetische Energie und damit den maximalen insgesamt vom elektrischen Antriebsmotor erzeugten Strom haben.
Die Steuereinheit kann beispielsweise eine Motorsteuerung und eine ABS- Steuerung umfassen.
Vorrang hat gemäß der Erfindung stets das Laden des Antriebsenergiespeichers. Solange die aktuelle maximale Ladeleistung des Antriebsenergiespeichers ausreicht, um den vom elektrischen Antriebsmotor bei maximalem Wirkungsgrad erzeugten Rekuperationsstrom aufzunehmen, ist es nicht notwendig, den Wirkungsgrad des elektrischen Antriebsmotors oder anderer Komponenten zu reduzieren oder auf sonstige Art weitere Verlustleistung zu erzeugen. Genauso wird auch auf den Einsatz der zusätzlichen Bremsvorrichtung verzichtet. Eine möglichst effektive Rekuperation bei Bremsvorgängen ist daher stets sichergestellt. In einem derartigen Fall sind die aktuell geforderte Verlustleistung und das aktuelle zusätzliche Bremsmoment gleich Null.
Sämtliche Parameter werden jeweils zu einem aktuellen Zeitpunkt betrachtet, wobei beispielsweise die Abfrage des aktuellen Bremswunsches in regelmäßigen, vorgegebenen, kurzen Zeitabständen erfolgt. Dementsprechend werden auch die restlichen Daten und Parameter vorzugsweise in diesen Zeitabständen erfasst, bestimmt und/oder berechnet.
Der vom elektrischen Antriebsmotor erzeugte Strom wird hier näherungsweise als proportional zum Bremsmoment des elektrischen Antriebsmotors betrachtet.
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels mit Bezug auf die beigefügten Figuren näher beschrieben. In den Zeichnungen zeigen:
Figur 1 eine schematische Darstellung eines erfindungsgemäßen elektrisch angetriebenen Fahrzeugs, mit dem das erfindungsgemäße Verfahren zum Ansteuern eines elektrischen Antriebssystems eines elektrisch angetriebenen Fahrzeugs während eines Rekuperationsvorgangs durchgeführt werden kann; und
Figur 2 eine schematische Darstellung des erfindungsgemäßen Verfahrens.
In Figur 1 sind schematisch Systemkomponenten eines elektrisch angetriebenen Fahrzeugs, hier eines Motorrads, gezeigt, die unter anderem zu einem Antriebssystem und einem Elektroniksystem gehören.
Die Antriebsenergie stammt vollständig aus einem Antriebsenergiespeicher 10, auch als Traktionsbatterie bezeichnet, der über einen oder mehrere elektrische Antriebsmotoren 12 ein angetriebenes Rad 14 bewegt. In diesem Beispiel ist das angetriebene Rad 14 das Hinterrad des Motorrads. Das Rad 16, hier das Vorderrad, ist in diesem Beispiel hingegen nicht angetrieben und hat daher keinen eigenen elektrischen Antriebsmotor. Soll das Motorrad abgebremst werden, betätigt der Fahrer einen oder beide Bremshebel 18, die jeweils dem Vorderrad 16 und dem Hinterrad 14 zugeordnet sind.
Bei jedem Bremsvorgang wird die Hauptbremsleistung vom elektrischen Antriebsmotor 12 erbracht, der in diesem Fall als Generator eingesetzt wird und aufgrund der Stromerzeugung einen mechanischen Widerstand bietet, der das angetriebene Rad 14 und damit das Fahrzeug abbremst.
Der Antriebsenergiespeicher 10 ist hier so leistungsstark ausgelegt, dass seine Kapazität und seine Ladeleistungsdichte, also die Ladeleistung pro Fahrzeugmasse, so groß ausgelegt sind, dass bei ausreichender freier Ladekapazität prinzipiell der durch Abbremsen durch den elektrischen Antriebsmotor 12 erzeugte Strom im Antriebsenergiespeicher 10 aufgenommen werden kann.
Am angetriebenen Rad 14 ist daher in diesem Beispiel keine Reibungsbremse angeordnet.
Die Bremshebel 18 sind elektronisch mit einer Steuereinheit 20 verbunden, eine direkte mechanische Verbindung zu einer Bremsvorrichtung besteht hier nicht. Um den Bremswunsch zu erfassen, ist an jedem Bremshebel 18 ein mit der Steuereinheit 20 verbundener Sensor 22 angeordnet.
In kurzen, vorgegebenen Zeitintervallen At wird abgefragt, ob ein Bremswunsch mit einem von Null verschiedenen aktuell angeforderten Bremsmoment vorliegt.
In diesem Beispiel werden die Daten zur Betätigung des rechten und des linken Bremshebels 18 beide in der Steuereinheit 20 zu einem einzigen aktuell angeforderten Bremsmoment verrechnet, das ohne Unterscheidung der Herkunft im nachfolgenden Bremsvorgang aufgebracht wird.
Am nicht angetriebenen Rad 16 ist hier eine zusätzliche Bremsvorrichtung 24 angeordnet, die in diesem Beispiel aus einer hydraulischen Bremse einer ABS- Vorrichtung besteht.
Der Antriebsenergiespeicher 10 steht über eine Leistungselektronik 26 in Verbindung mit dem elektrischen Antriebsmotor 12, wobei in der Regel ein Stromfluss zwischen dem Antriebsenergiespeicher 10 und dem elektrischen Antriebsmotor 12 durch die Leistungselektronik 26 erfolgt.
Der Antriebsmotor 12 und/oder der Antriebsenergiespeicher 10 sind mit einem Kühlsystem 28 (beispielsweise einer Luftkühlung) des Fahrzeugs verbunden.
Wird ein Bremswunsch eines Fahrers erfasst, indem die Sensoren 22 an den Bremshebel 18 ein entsprechendes Signal an die Steuereinheit 20 melden, so wird von der Steuereinheit 20 ein aktuell angefordertes Bremsmoment bestimmt.
Außerdem werden von der Steuereinheit 20 gegebenenfalls weitere Daten von weiteren (nicht dargestellten) Sensoren z.B. zur Fahrzeuggeschwindigkeit, Systemtemperatur oder einer Fahrbahnneigung erfasst.
Die Steuereinheit 20 bestimmt außerdem eine aktuelle maximale Ladeleistung des Antriebsenergiespeichers 10 und eine aktuelle Rekuperationsleistung. Die aktuelle Rekuperationsleistung ist proportional zum Produkt aus Bremsmoment, Wirkungsgrad und Drehzahl des Elektromotors, die wiederum zu einer aktuellen Fahrgeschwindigkeit proportional ist.
Weiterhin bestimmt die Steuereinheit 20 eine im elektrischen Antriebsmotor 12 erzeugbare Verlustleistung, um die die aktuelle maximale Rekuperationsleistung des elektrischen Antriebsmotors 12 (bei maximalem Wirkungsgrad des Antriebsmotors 12) für das aktuell angeforderte Bremsmoment höchstens reduziert werden kann.
Im Antriebsmotor 12 wird eine Verlustleistung durch eine Ansteuerung des elektrischen Antriebsmotors 12 mit einem schlechteren als dem optimalen Wirkungsgrad erzeugt, wodurch ein höherer Anteil der mechanischen Bremsleistung im elektrischen Antriebsmotors 12 selbst in Wärme umgesetzt wird.
Dies ist auch in Figur 2 verdeutlicht. Das angetriebene Rad 14 liefert kinetische Energie, mit der der elektrische Antriebsmotor 12 bewegt wird und die dem Antriebsmotor 12 eine mechanische Leistung PM zur Verfügung stellt. Der Antriebsmotor 12 generiert in Folge dessen eine elektrische Leistung PEL, die von der mit dem Antriebsmotor 12 verbundenen Leistungselektronik 26 aufgenommen wird und von dieser als Ladeleistung PBAT in den Antriebsenergiespeicher 10 eingespeist wird. Ist eine maximale Ausnutzung der Rekuperationsleistung möglich wird dem Antriebsenergiespeicher 10 bei möglichst geringer Verlustleistung PL,M, PL,I eine möglichst hohe Ladeleistung PBAT zugeführt. Es wird also der größtmögliche Anteil des Bremsmoments in elektrische Leistung ungesetzt. Dies ist in Figur 2 mit den schwarzen Pfeilen angedeutet.
Liegt jedoch die aktuelle maximale Rekuperationsleistung über der aktuellen maximalen Ladeleistung, sodass sich eine von Null verschiedene aktuell geforderte Verlustleistung ergibt, so erhöht die Steuereinheit 20 die Verlustleistung PL,M, die im Antriebsmotor 12 selbst anfällt, und gegebenenfalls auch die Verlustleistung PL,I in der Leistungselektronik 26, wodurch sich die Ladeleistung PBAT reduziert. Dabei wird die Leistungselektronik 26 so angesteuert, dass die fließenden elektrischen Ströme so von der Leistungselektronik 26 in den Antriebsmotor 12 eingeprägt werden, dass der Antriebsmotor 12 das gewünschte Bremsmoment aufbringt, aber dennoch die aktuelle Ladeleistung PBAT auf das erforderliche Limit begrenzt wird. Dabei entsteht eine höhere Verlustleistung PL,M im Antriebsmotor 12. Dies ist mit den gestrichelten Pfeilen angedeutet.
Die veränderte Ansteuerung führt zu einer Änderung des magnetischen Flusses im Antriebsmotor 12 mit einer verschlechterten elektromechanischen Umwandlungseffizienz. Bei gleicher Bremsleistung entsteht dann mehr Verlustleistung im Antriebsmotor 12 und die generierte elektrische Leistung sinkt.
Zusätzlich kann die Leistungselektronik 26 mit einem schlechteren Wirkungsgrad angesteuert werden, sodass auch hier ein erhöhter elektrischer Widerstand auftritt, der ebenfalls zu Verlustwärme führt. Diese Verlustwärme wird hier Großteils über das Kühlsystem 28 abgeleitet (auch angedeutet durch die Pfeile in Figur 1).
Außerdem bestimmt die Steuereinheit 20 hier ein aktuelles zusätzliches Bremsmoment, das von der zusätzliche Bremsvorrichtung 24 aufzubringen ist. Dieses aktuelle zusätzliche Bremsmoment ergibt sich aus einer Differenz des aktuell geforderten Bremsmoments und einem aus der aktuellen maximalen Ladeleistung und der aktuellen maximal aufbringen Verlustleistung resultierenden Bremsmoments. Kann das aktuell angeforderte Bremsmoment ausschließlich unter Verwendung des elektrischen Antriebsmotors 12 in einem Generatorbetrieb bei optimalem Wirkungsgrad aufgebracht werden, ohne die aktuelle maximale Ladeleistung des Antriebsenergiespeichers 10 zu überschreiten, so wird der Bremsvorgang ausschließlich auf diese Art durchgeführt.
Die aktuell angeforderte Verlustleistung sowie das aktuelle zusätzliche Bremsmoment sind in diesem Fall beide gleich Null. Folglich wird weder der Wirkungsgrad des elektrischen Antriebsmotors 12 reduziert noch ein Bremsmoment mit der zusätzlichen Bremsvorrichtung 24 aufgebracht, sondern die maximal mögliche Energie wird durch den Bremsvorgang rekuperiert.
Stellt die Steuereinheit 20 hingegen fest, dass das aktuell angeforderte Bremsmoment mit der aktuellen maximalen Ladeleistung des Antriebsenergiespeichers 10 nicht aufgebracht werden kann, so bestimmt es eine aktuell geforderte Verlustleistung, die sich aus der Differenz der aktuellen maximalen Ladeleistung und einer maximalen Rekuperationsleistung des elektrischen Antriebsmotors 12 für das aktuell angeforderte Bremsmoment ergibt.
Die Steuereinheit 20 erhöht die insgesamte Verlustleistung im System, indem sie wie oben beschrieben den Wirkungsgrad des elektrischen Antriebsmotors 12 im Generatorbetrieb sowie gegebenenfalls der Leistungselektronik 26 reduziert und so mehr mechanische Bremsleistung in Wärme umgewandelt wird.
Die Steuereinheit 20 wählt hier geeignete Maßnahmen in geeigneter Stärke aus, um die aktuell geforderte Verlustleistung einzustellen.
Stellt die Steuereinheit 20 fest, dass die aktuell geforderte Verlustleistung nicht komplett durch das Antriebssystem aufgebracht werden kann, so wird zum Abbau des restlichen Bremsmoments die zusätzliche Bremsvorrichtung 24 betätigt, bis der Bremswunsch erfüllt ist.
Die Erfassung der Parameter sowie die Berechnung und Bestimmung der einzelnen Größen in der Steuereinheit 20 erfolgt hier stets zu einem aktuellen Zeitpunkt ta, jeweils beginnend nach Ablauf des Intervalls At, zu dem erneut die Größe des aktuell angeforderten Bremsmoments abgefragt wird. Mit dem erfindungsgemäßen Verfahren ist es möglich, bei einem Rekuperationsvorgang eine ausreichende Bremswirkung an einem angetriebenen Rad 14 des Fahrzeugs zu erzielen, indem in dem Fall, dass eine aktuelle Ladeleistung des Antriebsenergiespeichers 10 nicht ausreicht, um die mit optimalem Wirkungsgrad durch den Antriebsmotor 12 erzeugte elektrische Leistung aufzunehmen, der Wirkungsgrad des Antriebsmotors 12 reduziert und ein höherer Anteil der mechanischen Bremsleistung noch im Antriebsmotor 12 in Verlustwärme umgesetzt wird.

Claims

Patentansprüche
1. Verfahren zum Ansteuern eines elektrischen Antriebssystems eines elektrisch angetriebenen Fahrzeugs während eines Rekuperationsvorgangs, wobei das elektrische Antriebssystem einen Antriebsenergiespeicher (10), wenigstens einen elektrischen Antriebsmotor (12) und ein Elektroniksystem umfasst und wobei der elektrische Antriebsmotor (12) als Generator betrieben wird, mit den Schritten:
Bestimmen einer aktuellen maximalen Ladeleistung des Antriebsenergiespeichers (10) und einer aktuellen Rekuperationsleistung des Antriebsmotors (12), und
- Ansteuern des elektrischen Antriebssystems so, dass die aktuelle Rekuperationsleistung die aktuelle maximale Ladeleistung nicht überschreitet, wobei der Wirkungsgrad des Antriebsmotors (12) reduziert wird, indem im Antriebsmotor (12) eine Verlustleistung erzeugt wird.
2. Verfahren nach Anspruch 1, wobei der elektrische Antriebsmotor (12) so angesteuert wird, dass er ein möglichst hohes Bremsmoment erzeugt.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Verlustleistung so eingestellt wird, dass eine aktuell geforderte Verlustleistung erzeugt wird, die sich aus einer Differenz einer aktuellen maximalen Rekuperationsleistung und der aktuellen maximalen Ladeleistung ergibt.
4. Verfahren nach Anspruch 3, wobei zusätzlich der Wirkungsgrad des Elektroniksystems reduziert und so eine zusätzliche Verlustleistung erzeugt wird, die in die aktuell geforderte Verlustleistung eingeht.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein Anteil der durch die Verlustleistung erzeugten Wärme in einem Kühlsystem (28) des Fahrzeugs abgebaut wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren zum Abbremsen eines elektrisch angetriebenen Motorrads eingesetzt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zumindest ein angetriebenes Rad (14) des Motorrads stets ausschließlich ohne Verwendung einer Reibungsbremse abgebremst wird.
8. Elektrisch angetriebenes Fahrzeug mit einem elektrischen Antriebssystem, das einen Antriebsenergiespeicher (10), wenigstens einen elektrischen Antriebsmotor (12), der als Generator betrieben werden kann, ein Elektroniksystem und eine Steuereinheit (20) umfasst, wobei die Steuereinheit (20) so ausgelegt ist, dass sie ein Verfahren nach einem der vorhergehenden Ansprüche durchführen kann.
9. Fahrzeug nach Anspruch 8, das ein Motorrad ist.
10. Fahrzeug nach einem der Ansprüche 8 und 9, wobei eine zusätzliche Bremsvorrichtung (24) vorhanden ist, die ein zusätzliches Bremsmoment aufbringt, das sich aus einer Differenz eines aktuell geforderten Bremsmoments und eines aus der aktuellen maximalen Ladeleistung und einer aktuellen maximal aufbringbaren Verlustleistung resultierenden Bremsmoments ergibt.
PCT/EP2022/067497 2021-07-28 2022-06-27 Verfahren zum ansteuern eines elektrischen antriebssystems eines elektrisch angetriebenen fahrzeugs während eines rekuperationsvorgangs und elektrisch angetriebenes fahrzeug WO2023006313A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021119537.3A DE102021119537A1 (de) 2021-07-28 2021-07-28 Verfahren zum Ansteuern eines elektrischen Antriebssystems eines elektrisch angetriebenen Fahrzeugs während eines Rekuperationsvorgangs und elektrisch angetriebenes Fahrzeug
DE102021119537.3 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023006313A1 true WO2023006313A1 (de) 2023-02-02

Family

ID=82403717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/067497 WO2023006313A1 (de) 2021-07-28 2022-06-27 Verfahren zum ansteuern eines elektrischen antriebssystems eines elektrisch angetriebenen fahrzeugs während eines rekuperationsvorgangs und elektrisch angetriebenes fahrzeug

Country Status (2)

Country Link
DE (1) DE102021119537A1 (de)
WO (1) WO2023006313A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160075226A1 (en) * 2014-04-04 2016-03-17 Superpedestrian, Inc. Method and assembly for battery maintenance
CN105857089A (zh) * 2016-05-25 2016-08-17 清华大学 兼顾回馈制动和耗功制动的车辆控制方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003076A1 (de) 2009-08-05 2011-08-18 Continental Automotive GmbH, 30165 Verfahren zur Regelung eines Radbremsschlupfes und Radbremsschlupfregelsystem für ein Fahrzeug mit einem Elektroantrieb

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160075226A1 (en) * 2014-04-04 2016-03-17 Superpedestrian, Inc. Method and assembly for battery maintenance
CN105857089A (zh) * 2016-05-25 2016-08-17 清华大学 兼顾回馈制动和耗功制动的车辆控制方法及装置

Also Published As

Publication number Publication date
DE102021119537A1 (de) 2023-02-02

Similar Documents

Publication Publication Date Title
EP1919753B1 (de) Rekuperation von energie bei einem hybrid-fahrzeug mit einer hydraulischen oder pneumatischen bremsanlage
EP2144795B1 (de) Verfahren zum betrieb einer fahrzeugbremsanlage und fahrzeugbremsanlage
DE102006055799B4 (de) Verfahren zum regenerativen Bremsen eines Fahrzeugs mit mehreren Bremssystemen
EP2709872B1 (de) Verfahren und vorrichtung zur steuerung einer bremsleistung eines elektro- oder hybridfahrzeugs
DE4446485A1 (de) Verfahren zum Abbremsen eines Kraftfahrzeuges mit Hybridantrieb und dieses benutzendes Kraftfahrzeug
DE112007002000T5 (de) Bremskraftsteuervorrichtung und -verfahren
WO2010133344A2 (de) Vorrichtung und verfahren zur regelung einer fahrdynamik
EP2067694A1 (de) Fahrrad mit elektrischem Hilfsantrieb sowie Verfahren zum Betreiben eines derartigen Fahrrads
EP0859714B1 (de) Vorrichtung und verfahren zur steuerung des antriebsstrangs eines kraftfahrzeugs
DE102018121439A1 (de) Anhängerbremssteuergerät sowie Verfahren und Software dafür und Anhängerfahrzeug damit
DE102019100017A1 (de) Anhängerfahrzeug und Anhängerbremssteuergerät sowie Verfahren und Software dafür
DE102005054614A1 (de) Rekuperation von Energie bei Hybridfahrzeugen mit einer herkömmlichen hydraulischen oder pneumatischen Bremsanlage
DE102010008020A1 (de) Verfahren zum Betreiben eines Bremssystems eines hybriden Fahrzeugs, Bremssystem und Fahrzeug
DE102011122205A1 (de) Verfahren und Vorrichtung zur Rekuperation bei Hybrid- oder Elektrofahrzeugen
EP0537874B1 (de) Bremseinrichtung für ein nicht-spurgebundenes Fahrzeug
WO2004106102A1 (de) Kraftfahrzeug-antriebsvorrichtung
WO2009115358A2 (de) Verfahren zum regenerativen bremsen eines fahrzeugs
EP0985586B1 (de) Antiblockiersystem auf der Basis eines Fuzzy-Reglers für ein elektromechanisches Fahrzeug-Bremssystem
WO2023006287A1 (de) Verfahren zum abbremsen eines motorrads und elektrisch angetriebenes motorrad
WO2004080774A1 (de) Verfahren zur steuerung eines bremssystems eines kraftfahrzeugs
WO2023006313A1 (de) Verfahren zum ansteuern eines elektrischen antriebssystems eines elektrisch angetriebenen fahrzeugs während eines rekuperationsvorgangs und elektrisch angetriebenes fahrzeug
DE102018111682A1 (de) System für ein elektrisch angetriebenes Fahrzeug sowie Fahrzeug damit und Verfahren dafür
DE102023202899B3 (de) Steuervorrichtung für ein Fahrrad mit Rekuperation, Fahrrad und Steuerverfahren
DE69825830T2 (de) Verfahren und Vorrichtung zur Nutz- und Reibungsbremsung
DE102022123507A1 (de) Verfahren zum Regeln für ein Fahrzeug, Computerprogramm und/oder computerlesbares Medium, Steuergerät und Fahrzeug, insbesondere Nutzfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22737863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE