WO2023005978A1 - 上行传输方法、配置方法、装置、终端及网络侧设备 - Google Patents

上行传输方法、配置方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2023005978A1
WO2023005978A1 PCT/CN2022/108265 CN2022108265W WO2023005978A1 WO 2023005978 A1 WO2023005978 A1 WO 2023005978A1 CN 2022108265 W CN2022108265 W CN 2022108265W WO 2023005978 A1 WO2023005978 A1 WO 2023005978A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
cell
terminal
time
target cell
Prior art date
Application number
PCT/CN2022/108265
Other languages
English (en)
French (fr)
Inventor
鲁智
曾超君
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023005978A1 publication Critical patent/WO2023005978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application belongs to the technical field of communication, and specifically relates to an uplink transmission method, configuration method, device, terminal and network side equipment.
  • a cell group In a cell group (cell group), currently only supports the physical uplink control channel (Physical Uplink Control Channel) on some fixed cells such as primary cell (Primary cell, Pcell) or primary secondary cell (Primary Secondary cell, PScell). , PUCCH) transmission. In this case, the PUCCH transmission may not be timely, resulting in excessive PUCCH transmission delay.
  • Pcell Primary cell
  • PScell Primary Secondary cell
  • Embodiments of the present application provide an uplink transmission method, a configuration method, a device, a terminal, and a network side device, which can solve the current problem of excessive PUCCH transmission delay.
  • an uplink transmission method including:
  • the terminal acquires a time domain pattern, where the time domain pattern indicates the positions of uplink time slots of at least two cells;
  • the terminal determines a target cell in the at least two cells according to the time domain pattern
  • the terminal performs PUCCH transmission on the target cell.
  • the network side device sends configuration information to the terminal
  • the configuration information is used to indicate the time domain pattern configured for the terminal; the time domain pattern indicates the positions of the uplink time slots of at least two cells, and the time domain pattern is used for the terminal in the at least Target cells are determined in the two cells, and PUCCH transmission is performed on the target cells.
  • an uplink transmission device including:
  • An acquisition module configured to acquire a time domain pattern, where the time domain pattern indicates the positions of uplink time slots of at least two cells;
  • a determining module configured to determine a target cell in the at least two cells according to the time domain pattern
  • a transmission module configured to perform PUCCH transmission on the target cell.
  • a configuration device including:
  • a sending module configured to send configuration information to the terminal
  • the configuration information is used to indicate the time domain pattern configured for the terminal; the time domain pattern indicates the positions of the uplink time slots of at least two cells, and the time domain pattern is used for the terminal in the at least Target cells are determined in the two cells, and PUCCH transmission is performed on the target cells.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor The steps of the method described in the first aspect are realized.
  • a terminal including a processor and a communication interface, wherein the processor is configured to obtain a time domain pattern, the time domain pattern indicates the positions of uplink time slots of at least two cells, and according to the A time domain pattern, determining a target cell in the at least two cells; the communication interface is used to perform PUCCH transmission on the target cell.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the The processor implements the steps of the method described in the second aspect when executed.
  • a network side device including a processor and a communication interface, where the communication interface is used to send configuration information to a terminal; where the configuration information is used to indicate the time domain configured for the terminal pattern; the time domain pattern indicates the positions of the uplink time slots of at least two cells, and the time domain pattern is used by the terminal to determine a target cell in the at least two cells and perform PUCCH on the target cell transmission.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect steps, or realize the steps of the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the program/program product is executed by at least one processor to implement the The steps of the method, or the steps of implementing the method as described in the second aspect.
  • the terminal may determine a target cell according to the time domain pattern, and perform PUCCH transmission on the target cell. Therefore, with the help of the time domain pattern, the network side device can flexibly configure the target cell for PUCCH transmission, thereby reducing the PUCCH transmission delay and improving the reliability of PUCCH transmission.
  • FIG. 1 is a block diagram of a wireless communication system in an embodiment of the present application
  • FIG. 2 is a flow chart of an uplink transmission method provided by an embodiment of the present application.
  • Fig. 3 is one of the schematic diagrams of time slots in the example of the present application.
  • Fig. 4 is the second schematic diagram of the time slot in the example of the present application.
  • Fig. 5 is the third schematic diagram of the time slot in the example of the present application.
  • Fig. 6 is the fourth schematic diagram of time slots in the example of the present application.
  • Fig. 7 is the fifth schematic diagram of the time slot in the example of the present application.
  • Fig. 8 is the sixth schematic diagram of time slots in the example of this application.
  • Fig. 9 is the seventh schematic diagram of time slots in the example of the present application.
  • Fig. 10 is the eighth schematic diagram of time slots in the example of the present application.
  • Figure 11 is the ninth schematic diagram of time slots in the example of the present application.
  • Figure 12 is the tenth schematic diagram of time slots in the example of the present application.
  • Fig. 13 is a flow chart of a configuration method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an uplink transmission device provided by an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a configuration device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE) and other terminal-side equipment, wearable devices include: smart watches, bracelets, earphones, glasses, etc.
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) ) access point, wireless fidelity (Wireless Fidelity, WiFi) node, transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to Specific technical terms, it should be noted that in the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the
  • FIG. 2 is a flowchart of an uplink transmission method provided by an embodiment of the present application. The method is executed by a terminal. As shown in FIG. 2, the method includes the following steps:
  • Step 21 the terminal obtains the time domain pattern.
  • the time-domain pattern indicates positions of uplink time slots of at least two cells.
  • the time domain pattern can be configured by the network side device for the terminal, or can be preset based on actual needs, which is not limited.
  • Step 22 The terminal determines the target cell in at least two cells according to the time domain pattern.
  • the target cell may include, but not limited to, the primary cell Pcell, the primary secondary cell PScell, and/or the secondary cell Scell used for the PUCCH.
  • the network side device can configure the target cell for the terminal through the time domain pattern based on the actual situation.
  • Step 23 The terminal performs PUCCH transmission on the target cell.
  • the terminal after the terminal obtains the time domain pattern, it can determine the target cell according to the time domain pattern, and perform PUCCH transmission on the target cell. Therefore, with the help of the time domain pattern, the network side device can flexibly configure the target cell for PUCCH transmission, thereby reducing the PUCCH transmission delay and improving the reliability of PUCCH transmission.
  • the PUCCH transmission of the terminal is used to carry Hybrid Automatic Repeat reQuest-Acknowledge (HARQ-ACK) information for HARQ-ACK feedback. Therefore, with the help of the solution in this application, the time delay of HARQ-ACK feedback can be reduced, thereby facilitating the transmission of low-delay services.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledge
  • the network side device may configure one or more target cells for the UE, and the target cells are not limited to Pcell, PScell, or PUCCH Scell.
  • the network side device may configure a time domain pattern for the UE, which is used to indicate a target cell for the UE to perform PUCCH transmission.
  • the network side device can configure PUCCH resources on the target cell.
  • the PUCCH resource can be configured independently for each cell, or the target cell and other cells in the same cell group can use the same PUCCH configuration, such as Pcell, PScell and/or PUCCH SCell.
  • the PUCCH resource is independently configured for each cell, such as shown in Table 1 below, the PUCCH configuration on the Pcell, PScell and/or PUCCH Scell and the PUCCH configuration on the target cell are independently configured. Note that the table The target cell of 1 represents other cells except Pcell, PScell and PUCCH Scell.
  • the PUCCH resource is the same configuration for all cells, such as shown in Table 2 below, the PUCCH configuration on the Pcell, PScell and/or PUCCH Scell is the same configuration as the PUCCH configuration on the target cell, note that the table The target cell of 2 represents other cells except Pcell, PScell and PUCCH Scell.
  • the configuration parameters of the above time domain pattern may include at least one of the following target cell:
  • the cell pattern indicates the position of the uplink time slot of the corresponding cell
  • the starting position for example, the starting position of the target cell may include but not limited to the starting radio frame, the starting subframe, the starting time slot (slot) or the starting symbol, etc.;
  • Subcarrier spacing for example, the subcarrier spacing is 15kHz or 30kHz, etc.;
  • Time-domain granularity for example, the time-domain granularity is slot granularity or sub-slot (sub-slot) granularity.
  • the time-domain pattern may include the following parameters of the target cell: ⁇ cell index, cell pattern, starting position, cell configuration cycle, subcarrier spacing, and time-domain granularity ⁇ .
  • the time domain pattern may include the following parameters of the target cell: ⁇ cell index, cell configuration cycle, cell pattern (cell1, cell 2,..., cell n), duration, sub Carrier spacing, starting position, time domain granularity ⁇ .
  • cell pattern(cell1, cell 2,..., cell n) indicates the cell sequence of n cells in the time domain pattern.
  • the duration is the duration of each cell on the cell pattern.
  • the terminal can directly determine the corresponding target cell according to the index.
  • the network side device when the network side device configures the target cell for the terminal, it can ensure that the uplink UL resource on the time domain pattern at a certain moment corresponds to only one target cell.
  • the terminal may determine a target cell according to predefined rules or high-level parameters. For example, the predefined rule is to select the target cell with the smallest or largest cell index.
  • the terminal may also determine the target cell according to high-layer parameters, for example, determine the target cell according to the time domain granularity.
  • the terminal may determine one target cell from the multiple target cells according to a predefined rule.
  • the predefined rule is to select the target cell with the smallest or largest cell index.
  • the terminal may also determine the target cell according to high-layer parameters, for example, determine the target cell according to the time domain granularity.
  • the configuration manner of the cell pattern of the target cell includes any one of the following: a first cell pattern manner, a second cell pattern manner, and a third cell pattern manner.
  • the first cell pattern is: composed of at least one sub-pattern;
  • the second cell pattern is: obtained from the time slot configuration set indication;
  • the third cell pattern is: composed of cell sets.
  • each sub-pattern can include at least one of the following:
  • the sub-pattern period P for example, the sub-pattern period P represents the number of slots
  • the number of downlink (Downlink, DL) time slots, and the symbols included in the DL time slots are all DL symbols;
  • the number of uplink symbols in the flexible time slot is the number of uplink symbols in the flexible time slot.
  • the cycle of the cell pattern is determined by the cycle of at least one sub-pattern.
  • the period of the cell pattern is determined by the periods of the 2 sub-patterns, for example, the period of the cell pattern is the sum of the periods of the 2 sub-patterns.
  • the above-mentioned time slot configuration set used to indicate the pattern of the second cell may include at least one of the following:
  • the configuration of the symbol set of each time slot can satisfy any of the following items:
  • the symbols in the symbol set are all descending symbols
  • the symbols in the symbol set are all ascending symbols
  • Some symbols in the symbol set are downlink symbols, and some symbols in the symbol set are uplink symbols.
  • the period of the cell pattern may be determined by the number of time slots in the time slot set of the time slot configuration set. For example, if the number of time slots in the time slot set is 5, the period of the cell pattern is 5 slots.
  • the third cell pattern is composed of a cell set, which indicates the order of the target cells in the time domain pattern.
  • ⁇ cell2, cell3, cell1 ⁇ indicates that the order of the target cells in the time domain pattern is cell2, cell3, cell1.
  • the period of the time domain pattern needs to be configured separately.
  • the duration of each target cell needs to be configured separately.
  • the time domain pattern may be configured by the network side device for the terminal.
  • the above acquired time domain pattern may include:
  • the terminal receives configuration information from the network side device, where the configuration information is used to indicate a time domain pattern configured for the terminal. In this way, after receiving the configuration information, the terminal can determine the time domain pattern configured for it according to the configuration information.
  • the above configuration information may be used to indicate: at least one target cell configured for the terminal, and the cell pattern of each target cell; and/or, the above configuration information may be used to indicate: at least one target cell configured for the terminal , and at least one cell pattern of the target cell.
  • the terminal may also receive indication information from the network side device, where the indication information is used to indicate the PUCCH resource allocated to the terminal and the slot where the PUCCH resource is located. Afterwards, the terminal can determine the target cell according to the slot and the time domain pattern indicated by the configuration information, and perform feedback on the PUCCH resource of the target cell.
  • the terminal when the PUCCH transmission of the terminal is at the time slot granularity, the terminal can select the target cell configured as the time slot granularity according to the time domain pattern; and/or, when the PUCCH transmission of the terminal is at the time slot granularity When the slot granularity is specified, the terminal can select a target cell configured as a sub-slot granularity according to the time domain pattern.
  • the network-side device configures a target cell for the UE.
  • the target cell is not limited to Pcell, PScell, or PUCCH Scell, etc., and configures the subcarrier spacing and cell pattern of the target cell.
  • the cell pattern consists of multiple sub-patterns .
  • the cell pattern is composed of 1 sub-pattern, and the 1 sub-pattern is pattern1; or, the cell pattern is composed of 2 sub-patterns, and the 2 sub-patterns are sub-pattern1 and sub-pattern2.
  • sub-pattern 1 includes:
  • Sub-pattern period P1 (characterized as the number of slots);
  • the included symbols are all the slot numbers of DL symbols, that is, the number of DL slots;
  • the included symbols are all the slot numbers of UL symbols, that is, the number of UL slots;
  • the number of UL symbols in the flexible slot is the number of UL symbols in the flexible slot.
  • the number of flexible time slots is: the number of slots corresponding to the period P1 is reduced by the number of DL slots, and then subtracted from the number of UL slots.
  • whether the flexible time slot/symbol is allowed to transmit the PUCCH may be determined by network configuration or according to a predefined rule.
  • sub-pattern 2 includes:
  • Sub-pattern period P2 (characterized as the number of slots);
  • the included symbols are all the slot numbers of DL symbols
  • the included symbols are all the slot numbers of UL symbols
  • the number of UL symbols in the flexible slot is the number of UL symbols in the flexible slot.
  • the period of the cell pattern is the period of sub-pattern1, that is, P1.
  • the period of the cell pattern is after the periods of sub-pattern1 and sub-pattern2, that is, the sum of P1 and P2.
  • the target cell indexes are CC1 and CC2
  • the cell pattern of CC1 is DDDDD DDDUU
  • D represents the downlink time slot
  • U represents the uplink time slot
  • the cell pattern of CC2 is DDDUU DDDDD.
  • the time domain pattern is the union of the UL resources of the cell pattern.
  • Other slot resources are DL configurations, which cannot be used for UL PUCCH resources.
  • the time domain pattern is DDDUUDDDUU
  • the subcarrier spacing is 15kHz
  • slot 8 and slot 9 on CC1 (such as Pcell) can be used for PUCCH transmission
  • slot 3 and slot 4 on CC2 can be used for PUCCH transmission
  • the network side device instructs the UE If the PUCCH is transmitted in slot 3 or slot 4, the UE will use CC2; or, if the network side device instructs the UE to transmit PUCCH in slot 8 or slot 9, then the UE will use CC1.
  • CC1 and CC2 are different component carriers (Component Carrier, CC)
  • the carrier switching of PUCCH can be achieved through the configuration of this time domain pattern.
  • the time slots available for PUCCH transmission are slot 8 and slot 9 on CC1 and slot 3 and slot 4 on CC2.
  • the network can configure a subcarrier spacing of 15kHz, configure CC2 as a target cell that can be used to transmit PUCCH, and the cell pattern of CC2 consists of 2 sub-patterns, as shown in Table 3 below:
  • the available time slots or symbols available for PUCCH transmission on the target cell can be determined, that is, slot 3 and slot 4 on CC2 can be used to transmit PUCCH.
  • the network can configure the resources of the Pcell (PScell or PUCCH Scell) to always be used to transmit the PUCCH, then the cell pattern may not include an indication of the Pcell (PScell or PUCCH SCell).
  • the cell pattern is composed of pattern1 and pattern2.
  • the starting position of the cell pattern shown in FIG. 5 also needs to be configured, such as starting radio frame position, starting subframe position, starting time slot position or/or starting symbol position, etc.
  • a simple configuration is aligned with the UL-DL configuration of Pcell's Time Division Duplexing (TDD).
  • TDD Time Division Duplexing
  • the starting position of the cell pattern is aligned with slot 0 of subframe 0 of radio frame 0 of the Pcell.
  • the network side device configures a target cell for the UE.
  • the target cell is not limited to Pcell, PScell, or PUCCH Scell, etc., and configures the subcarrier spacing and cell pattern of the target cell.
  • the cell pattern is set by the time slot configuration instruct.
  • the time slot configuration set includes:
  • the symbol set of each time slot can be configured as: all downlink symbols, all uplink symbols, or explicitly indicate the transmission direction of symbols, that is, some symbols in the symbol set are downlink symbols and some symbols are uplink symbols.
  • the period of the cell pattern is determined by the number of slots contained in the slot set. For example, if there are m slots in the time slot set, then the period of the cell pattern is m slots.
  • the number of flexible symbols is: a value obtained by subtracting the number of DL symbols from the number of symbols of a slot and then subtracting the number of UL symbols. Whether flexible symbols are allowed to transmit PUCCH can be determined by network configuration or according to predefined rules.
  • the network can simultaneously configure multiple target CCs and the cell pattern of each target CC.
  • configuring carrier aggregation due to different UL-DL configurations, configuring only one cell pattern cannot completely reduce the PUCCH transmission delay. Therefore, you can further reduce the PUCCH transmission delay by configuring multiple cell patterns.
  • the network can configure three target CCs, where the UL-DL ratio of CC1 is 7D1S2U, the cell pattern of this CC is DDDDD DDDUU, the cell pattern1 of CC2 is DSUDDDSUDD, and the cell pattern of CC3 is DDDDD DDDUU.
  • Cell pattern 2 is DDSUU DDDSD, and the time domain patterns of CC1, CC2, and CC3 are DDUUU DDUUU, that is, the UL resources of different target cells are combined, and other time slots are regarded as DL.
  • the network can configure a set of combinations of ⁇ target cell index, cell pattern ⁇ to indicate candidate PUCCH transmission resources on multiple target cells.
  • the network can configure ⁇ target cell index, cell pattern mode A, slot granularity, subcarrier spacing ⁇ for the UE.
  • the network can configure ⁇ target cell index, cell pattern mode B, slot granularity, subcarrier spacing ⁇ for the UE.
  • the network can configure ⁇ target cell index, cell pattern mode A or B, slot granularity, subcarrier spacing ⁇ for the UE.
  • Table 7 can be used for configuration.
  • Table 7 is a reference configuration for candidate PUCCH transmission, not an actual UL-DL configuration.
  • the network can be configured with multiple target cells and a cell pattern, which is applied to all target cells.
  • a cell pattern DDUUU DDUUU can be configured for CC1, CC2, and CC3.
  • the cell pattern of CC1, CC2, and CC3 is the time domain pattern.
  • slot 8 and slot 9 on CC1 can be used for PUCCH transmission
  • slot 2 and slot 7 on CC2 can be used for PUCCH transmission
  • slot 3 slot 4 and slot 9 on CC3 can be used for PUCCH transmission.
  • the network can guarantee that the UL resource of the cell pattern corresponds to only one target cell at a certain moment. If a certain moment corresponds to multiple target cells, then the UE may determine a target Cell according to predefined rules or high-level parameters, and the predefined rules may be the target Cell with the largest cell index.
  • the network may dynamically indicate a time slot of the PUCCH resource for the UE, and the UE determines a target cell according to the time slot of the PUCCH resource and the cell pattern.
  • the time slot of the PUCCH resource indicated by the network for the UE is slot 4, then in combination with the cell pattern shown in Figure 6, since the slot 4 of CC3 is a UL resource, CC3 is selected.
  • the effective UL symbol applied to the cell pattern of the target cell may be a subset of the available UL resources configured by the configuration parameters of the target cell such as tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated set.
  • the effective UL symbols applied to the cell pattern of CC2 and CC3 can be the available UL resources configured by the tdd-UL-DL-ConfigurationCommon and tdd-UL-DL-ConfigurationDedicated of CC2 and CC3 subset of .
  • slot 2 and slot 7 on CC2 can be used for PUCCH transmission
  • slot 3 slot 4 and slot 9 on CC3 can be used for PUCCH transmission.
  • the network can configure the cell pattern on the target cell to be slot granularity or sub-slot granularity.
  • the cell pattern of one cell can be slot granularity and the other cell pattern can be sub-slot granularity.
  • the cell patterns of CC1 and CC2 can be configured with slot granularity
  • the cell pattern of CC3 can be configured with sub-slot granularity. If the granularity of the HARQ-ACK codebook that needs to be fed back at time 1 is slot, then the UE can select CC1 or CC2 for HARQ-ACK feedback based on the configured cell pattern. Or, if the granularity of the HARQ-ACK codebook that needs to be fed back at time 2 is sub-slot, then the UE can select CC3 for HARQ-ACK feedback based on the configured cell pattern.
  • the cell pattern configuration mode configured by the network for the UE is the third cell pattern mode.
  • the network can configure three target cells for the UE, CC1, CC2 and CC3, and the corresponding UL-DL configuration is shown in FIG. 10 .
  • the period of the time domain pattern configured by the network for the UE is 40ms
  • the subcarrier spacing is 15kHz
  • the cell pattern is ⁇ cell2, cell3, cell1 ⁇
  • the target cell at time t1 is cell2, and the duration is 10ms.
  • the target cell at time t2 is cell3, and the duration is 10ms.
  • the target cell at time t3 is cell1, and the duration is 20ms.
  • the time domain pattern is the UL-DL configuration of cell2, and the UE will use the UL resources of cell2 for PUCCH feedback; at time t2-t3, the time domain pattern is the UL-DL configuration of cell3. DL configuration, the UE will use the UL resources of cell3 for PUCCH feedback; at time t3-t4, the time domain pattern is the UL-DL configuration of cell1, and the UE will use the UL resources of cell 1 for PUCCH feedback.
  • the period of the time domain pattern configured by the network may be greater than the period of the configured cell pattern, as shown in FIG. 12 , where the configured cell pattern is ⁇ cell2, cell3 ⁇ , and the duration is ⁇ 10ms, 10ms ⁇ .
  • a predefined or configured cell can be used as the target cell, such as Pcell.
  • the network can configure a time domain pattern, which is applied to the entire cell group.
  • the network can also configure a time domain pattern for each target cell.
  • the network can configure whether each target cell is based on slot granularity or sub-slot granularity.
  • the configuration period of the time domain pattern may be radio frame alignment.
  • the duration of the target cell should be consistent with the period of the corresponding UL-DL configuration.
  • the transmission directions of the 10 slots configured in the UL-DL of cell2 are DSUDD DSUDD
  • S indicates a special time slot
  • the subcarrier interval is 15kHz
  • the configured duration is 9ms, then the transmission direction of the corresponding slot of cell2 They are DSUDD DSUD respectively; or, if the configured duration is 14ms, then the transmission direction of the corresponding slot of cell2 is DSUDD DSUDD DSUD.
  • the configured subcarrier interval is 30KHz and the duration is 10ms, then it needs to be converted according to the subcarrier interval, which is equivalent to 2 subframes, and the transmission direction of the corresponding slot is: DSUDD DSUDD DSUDD DSUDD.
  • FIG. 13 is a flowchart of a configuration method provided by the embodiment of the present application. The method is executed by the network side device. As shown in FIG. 13, the method includes the following steps:
  • Step 131 The network side device sends configuration information to the terminal.
  • the configuration information is used to indicate a time domain pattern configured for the terminal, the time domain pattern indicates the positions of uplink time slots of at least two cells, and the time domain pattern is used for the terminal to determine a target cell in at least two cells, And perform PUCCH transmission on the target cell.
  • the configuration information is used to indicate the time domain pattern configured for the terminal, so that the terminal can determine the target cell according to the time domain pattern, and perform PUCCH transmission on the target cell, thereby
  • the target cell for PUCCH transmission is flexibly configured, thereby reducing the PUCCH transmission delay and improving the reliability of PUCCH transmission.
  • the configuration parameters of the time domain pattern include at least one of the following of the target cell:
  • the cell pattern indicates the position of the uplink time slot of the corresponding cell
  • the composition of the cell pattern includes any of the following: a first cell pattern, a second cell pattern, and a third cell pattern; wherein, the first cell pattern is: composed of at least one sub-region A pattern is formed; the pattern of the second cell is: obtained by indicating a time slot configuration set; the pattern of the third cell is: formed by a set of cells.
  • each sub-pattern includes at least one of the following:
  • the number of uplink symbols in the flexible time slot is the number of uplink symbols in the flexible time slot.
  • the cycle of the cell pattern is determined by the cycle of at least one sub-pattern.
  • the time slot configuration set includes at least one of the following:
  • the configuration of the symbol set satisfies any of the following:
  • the symbols in the symbol set are all downlink symbols
  • the symbols in the symbol set are all uplink symbols
  • Some symbols in the symbol set are downlink symbols, and some symbols in the symbol set are uplink symbols.
  • the period of the cell pattern is determined by the number of time slots in the time slot set.
  • the configuration information is used to indicate: at least one target cell configured for the terminal, and a cell pattern of each target cell; and/or, the configuration information is used to indicate: for the terminal The configured at least one target cell, and the cell pattern of the at least one target cell.
  • the method also includes:
  • the network side device sends indication information to the terminal
  • the indication information is used to indicate the PUCCH resource allocated for the terminal and the time slot where the PUCCH resource is located, and the terminal determines the target cell according to the time slot and the time domain pattern indicated by the configuration information, and Transmission is performed on the PUCCH resource of the target cell.
  • the uplink transmission method provided in the embodiment of the present application may be executed by an uplink transmission device, or a control module in the uplink transmission device for executing the uplink transmission method.
  • an uplink transmission device performing an uplink transmission method is taken as an example to illustrate the uplink transmission device provided in the embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an uplink transmission device provided by an embodiment of the present application. The device is applied to a terminal. As shown in FIG. 14, the uplink transmission device 140 includes:
  • An acquisition module 141 configured to acquire a time domain pattern, where the time domain pattern indicates the positions of uplink time slots of at least two cells;
  • a determining module 142 configured to determine a target cell in the at least two cells according to the time domain pattern
  • the transmission module 143 is configured to perform PUCCH transmission on the target cell.
  • the configuration parameters of the time domain pattern include at least one of the following of the target cell:
  • the cell pattern indicates the position of the uplink time slot of the corresponding cell
  • the composition of the cell pattern includes any of the following: a first cell pattern, a second cell pattern, and a third cell pattern; wherein, the first cell pattern is: composed of at least one sub-region A pattern is formed; the pattern of the second cell is: obtained by indicating a time slot configuration set; the pattern of the third cell is: formed by a set of cells.
  • each sub-pattern includes at least one of the following:
  • the number of uplink symbols in the flexible time slot is the number of uplink symbols in the flexible time slot.
  • the cycle of the cell pattern is determined by the cycle of at least one sub-pattern.
  • the time slot configuration set includes at least one of the following:
  • the configuration of the symbol set satisfies any of the following:
  • the symbols in the symbol set are all downlink symbols
  • the symbols in the symbol set are all uplink symbols
  • Some symbols in the symbol set are downlink symbols, and some symbols in the symbol set are uplink symbols.
  • the period of the cell pattern is determined by the number of time slots in the time slot set.
  • the determining module 142 is further configured to: determine a target cell from the multiple target cells according to a predefined rule.
  • the acquiring module 141 is configured to: receive configuration information from a network side device, where the configuration information is used to indicate the time domain pattern configured for the terminal.
  • the configuration information is used to indicate: at least one target cell configured for the terminal, and a cell pattern of each target cell; and/or, the configuration information is used to indicate: for the terminal The configured at least one target cell, and the cell pattern of the at least one target cell.
  • the uplink transmission device 140 also includes:
  • a receiving module configured to receive indication information from the network side device; wherein, the indication information is used to indicate the PUCCH resource allocated for the terminal and the time slot where the PUCCH resource is located;
  • the determining module 142 is specifically configured to: determine the target cell according to the time slot and the time domain pattern;
  • the transmission module 143 is specifically configured to: perform transmission on the PUCCH resource of the target cell.
  • the time domain granularity of the target cell is at least one of the following: time slot granularity and sub-slot granularity.
  • the determination module 142 is specifically configured to: select a target cell configured as time slot granularity according to the time domain pattern;
  • the determining module 142 is specifically configured to: select a target cell configured at sub-slot granularity according to the time domain pattern.
  • the uplink transmission device 140 in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the uplink transmission device 140 provided in the embodiment of the present application can implement various processes implemented in the method embodiment shown in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the execution subject may be a configuration device, or a control module in the configuration device for executing the configuration method.
  • the configuration device provided in the embodiment of the present application is described by taking the configuration device executing the configuration method as an example.
  • FIG. 15 is a schematic structural diagram of a configuration device provided in an embodiment of the present application. The device is applied to a terminal. As shown in FIG. 15, the configuration device 150 includes:
  • a sending module 151 configured to send configuration information to the terminal
  • the configuration information is used to indicate a time domain pattern configured for the terminal; the time domain pattern indicates the positions of uplink time slots of at least two cells, and the time domain pattern is used for the terminal to operate in the at least two A target cell is determined in the cell, and PUCCH transmission is performed on the target cell.
  • the configuration parameters of the time domain pattern include at least one of the following of the target cell:
  • the cell pattern indicates the position of the uplink time slot of the corresponding cell
  • the composition of the cell pattern includes any of the following: a first cell pattern, a second cell pattern, and a third cell pattern; wherein, the first cell pattern is: composed of at least one sub-region A pattern is formed; the pattern of the second cell is: obtained by indicating a time slot configuration set; the pattern of the third cell is: formed by a set of cells.
  • each sub-pattern includes at least one of the following:
  • the number of uplink symbols in the flexible time slot is the number of uplink symbols in the flexible time slot.
  • the cycle of the cell pattern is determined by the cycle of at least one sub-pattern.
  • the time slot configuration set includes at least one of the following:
  • the configuration of the symbol set satisfies any of the following:
  • the symbols in the symbol set are all downlink symbols
  • the symbols in the symbol set are all uplink symbols
  • Some symbols in the symbol set are downlink symbols, and some symbols in the symbol set are uplink symbols.
  • the period of the cell pattern is determined by the number of time slots in the time slot set.
  • the configuration information is used to indicate: at least one target cell configured for the terminal, and a cell pattern of each target cell; and/or, the configuration information is used to indicate: for the terminal The configured at least one target cell, and the cell pattern of the at least one target cell.
  • the sending module 151 is further configured to: send indication information to the terminal, the indication information is used to indicate the PUCCH resource allocated for the terminal and the time slot where the PUCCH resource is located, and the terminal Determine the target cell according to the time slot and the time domain pattern, and perform transmission on the PUCCH resource of the target cell.
  • the configuration device 150 provided in the embodiment of the present application can implement various processes implemented in the method embodiment shown in FIG. 13 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device 160, including a processor 161, a memory 162, and programs or instructions stored in the memory 162 and operable on the processor 161,
  • a communication device 160 including a processor 161, a memory 162, and programs or instructions stored in the memory 162 and operable on the processor 161
  • the communication device 160 is a terminal
  • the program or instruction is executed by the processor 161
  • each process of the above-mentioned uplink transmission method embodiment can be realized, and the same technical effect can be achieved.
  • the communication device 160 is a network-side device
  • the program or instruction is executed by the processor 161
  • the various processes of the configuration method embodiments above can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to obtain a time domain pattern, the time domain pattern indicates the positions of uplink time slots of at least two cells, and according to the time domain pattern, Determine a target cell in the at least two cells; the communication interface is used to perform PUCCH transmission on the target cell.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 17 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1700 includes, but is not limited to: a radio frequency unit 1701, a network module 1702, an audio output unit 1703, an input unit 1704, a sensor 1705, a display unit 1706, a user input unit 1707, an interface unit 1708, a memory 1709, and a processor 1710, etc. at least some of the components.
  • the terminal 1700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 17 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1704 may include a graphics processor (Graphics Processing Unit, GPU) 17041 and a microphone 17042, and the graphics processor 17041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1706 may include a display panel 17061, and the display panel 17061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1707 includes a touch panel 17071 and other input devices 17072 . Touch panel 17071, also called touch screen.
  • the touch panel 17071 can include two parts: a touch detection device and a touch controller.
  • Other input devices 17072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1701 receives the downlink data from the network side device, and then sends it to the processor 1710 for processing; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1701 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1709 can be used to store software programs or instructions as well as various data.
  • the memory 1709 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1709 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1710 may include one or more processing units; optionally, the processor 1710 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1710 .
  • the processor 1710 is configured to obtain a time domain pattern, the time domain pattern indicates the positions of the uplink time slots of at least two cells, and determine the target cell in the at least two cells according to the time domain pattern ;
  • the radio frequency unit 1701 is configured to perform PUCCH transmission on the target cell.
  • the terminal 1700 provided in the embodiment of the present application can implement various processes implemented in the method embodiment shown in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the communication interface is used to send configuration information to the terminal, and the configuration information is used to indicate the time domain pattern configured for the terminal; the time domain pattern is used for The terminal determines the target cell, and performs PUCCH transmission on the target cell.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 180 includes: an antenna 181 , a radio frequency device 182 , and a baseband device 183 .
  • the antenna 181 is connected to the radio frequency device 182 .
  • the radio frequency device 182 receives information through the antenna 181, and sends the received information to the baseband device 183 for processing.
  • the baseband device 183 processes the information to be sent and sends it to the radio frequency device 182
  • the radio frequency device 182 processes the received information and sends it out through the antenna 181 .
  • the foregoing frequency band processing device may be located in the baseband device 183 , and the method performed by the network side device in the above embodiment may be implemented in the baseband device 183 , and the baseband device 183 includes a processor 184 and a memory 185 .
  • the baseband device 183 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG. The operation of the network side device shown in the above method embodiments.
  • the baseband device 183 may also include a network interface 186 for exchanging information with the radio frequency device 182, such as a common public radio interface (common public radio interface, CPRI for short).
  • a network interface 186 for exchanging information with the radio frequency device 182, such as a common public radio interface (common public radio interface, CPRI for short).
  • the network-side device in the embodiment of the present application further includes: instructions or programs stored in the memory 185 and operable on the processor 184, and the processor 184 calls the instructions or programs in the memory 185 to execute the modules shown in FIG. 15 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above-mentioned uplink transmission method embodiment is realized, or the above-mentioned configuration is realized Each process of the method embodiment can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned uplink transmission method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned uplink transmission method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to enable a terminal (which may be a mobile phone, computer, server, air conditioner, or network-side device, etc.) to execute the methods described in various embodiments of the present application.

Abstract

本申请公开了一种上行传输方法、配置方法、装置、终端及网络侧设备,属于通信技术领域。本申请实施例的上行传输方法包括:终端获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置;按照所述时域pattern,在所述至少两个小区中确定目标cell;在所述目标cell上进行PUCCH传输。

Description

上行传输方法、配置方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2021年07月30日在中国提交的中国专利申请No.202110875459.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种上行传输方法、配置方法、装置、终端及网络侧设备。
背景技术
在一个小区组(cell group)中,目前仅支持在一些固定的小区比如主小区(Primary cell,Pcell)或者主辅小区(Primary Secondary cell,PScell)上,进行物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输。这种情况下,可能导致PUCCH传输不及时,从而造成PUCCH传输时延过大。
发明内容
本申请实施例提供一种上行传输方法、配置方法、装置、终端及网络侧设备,能够解决目前的PUCCH传输时延过大的问题。
第一方面,提供了一种上行传输方法,包括:
终端获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置;
所述终端按照所述时域pattern,在所述至少两个小区中确定目标cell;
所述终端在所述目标cell上进行PUCCH传输。
第二方面,提供了一种配置方法,该方法:
网络侧设备向终端发送配置信息;
其中,所述配置信息用于指示为所述终端配置的时域pattern;所述时域pattern指示至少两个小区的上行时隙的位置,所述时域pattern用于所述终端 在所述至少两个小区中确定目标cell,并在所述目标cell上进行PUCCH传输。
第三方面,提供了一种上行传输装置,包括:
获取模块,用于获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置;
确定模块,用于按照所述时域pattern,在所述至少两个小区中确定目标cell;
传输模块,用于在所述目标cell上进行PUCCH传输。
第四方面,提供了一种配置装置,包括:
发送模块,用于向终端发送配置信息;
其中,所述配置信息用于指示为所述终端配置的时域pattern;所述时域pattern指示至少两个小区的上行时隙的位置,所述时域pattern用于所述终端在所述至少两个小区中确定目标cell,并在所述目标cell上进行PUCCH传输。
第五方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置,并按照所述时域pattern,在所述至少两个小区中确定目标cell;所述通信接口用于在所述目标cell上进行PUCCH传输。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向终端发送配置信息;其中,所述配置信息用于指示为所述终端配置的时域pattern;所述时域pattern指示至少两个小区的上行时隙的位置,所述时域pattern用于所述终端在所述至少两个小区中确定目标cell,并在所述目标cell上进行PUCCH传输。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
本申请实施例中,终端获取时域pattern之后,可以按照该时域pattern,确定目标cell,并在目标cell上进行PUCCH传输。由此,借助时域pattern,可以使得网络侧设备灵活地配置用于PUCCH传输的目标cell,从而减少PUCCH传输时延,进而提升PUCCH传输的可靠性。
附图说明
图1是本申请实施例中的一种无线通信系统的框图;
图2是本申请实施例提供的一种上行传输方法的流程图;
图3是本申请实例中的时隙示意图之一;
图4是本申请实例中的时隙示意图之二;
图5是本申请实例中的时隙示意图之三;
图6是本申请实例中的时隙示意图之四;
图7是本申请实例中的时隙示意图之五;
图8是本申请实例中的时隙示意图之六;
图9是本申请实例中的时隙示意图之七;
图10是本申请实例中的时隙示意图之八;
图11是本申请实例中的时隙示意图之九;
图12是本申请实例中的时隙示意图之十;
图13是本申请实施例提供的一种配置方法的流程图;
图14是本申请实施例提供的一种上行传输装置的结构示意图;
图15是本申请实施例提供的一种配置装置的结构示意图;
图16是本申请实施例提供的一种通信设备的结构示意图;
图17是本申请实施例提供的一种终端的结构示意图;
图18是本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以 上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的上行传输方法、配置方法、装置、终端及网络侧设备进行详细地说明。
请参见图2,图2是本申请实施例提供的一种上行传输方法的流程图,该方法由终端执行,如图2所示,该方法包括如下步骤:
步骤21:终端获取时域图样。
可选地,时域图样(pattern)指示至少两个小区的上行时隙的位置。时域pattern可以由网络侧设备为终端配置,也可以基于实际需求预先设置,对此不作限定。
步骤22:终端按照时域图样,在至少两个小区中确定目标小区。
可选地,目标小区(cell)可以包括但不限于主小区Pcell、主辅小区PScell和/或用于PUCCH的辅小区Scell等。网络侧设备可以基于实际情况,通过时域pattern为终端配置目标cell。
步骤23:终端在目标cell上进行PUCCH传输。
需指出的,本实施例优选在一个时刻只有一个PUCCH传输。本实施例适应的场景包括但不限于单载波、双连接、载波聚合等场景。
本申请实施例的上行传输方法,终端获取时域pattern之后,可以按照该时域pattern,确定目标cell,并在目标cell上进行PUCCH传输。由此,借助时域pattern,可以使得网络侧设备灵活地配置用于PUCCH传输的目标cell,从而减少PUCCH传输时延,进而提升PUCCH传输的可靠性。
一些实施例中,终端的PUCCH传输是用于承载混合自动重传请求确认(Hybrid Automatic Repeat reQuest-Acknowledge,HARQ-ACK)信息,以进行HARQ-ACK反馈。由此,借助本申请中的方案,可以减少HARQ-ACK反馈的时延,从而有利于低延时业务的传输。
一些实施例中,网络侧设备可以为UE配置一个或多个目标cell,此目标cell不限于是Pcell、PScell或PUCCH Scell等。网络侧设备可以为UE配置时域pattern,用于指示UE进行PUCCH传输的目标cell。
值得注意的是,网络侧设备可以在目标cell上都配置PUCCH资源。该PUCCH资源可以是每个cell独立配置的,也可以是目标cell与同一小区组内的其他cell采用相同的PUCCH配置,此其他cell比如为Pcell、PScell和/或PUCCH SCell等。
一种实施方式中,PUCCH资源是每个cell独立配置的,比如下表1所示, Pcell、PScell和/或PUCCH Scell上的PUCCH配置与目标cell上的PUCCH配置是独立配置的,注意,表1的目标cell表示除Pcell、PScell和PUCCH Scell之外的其他cell。
表1
Figure PCTCN2022108265-appb-000001
另一种实施方式中,PUCCH资源是所有cell相同配置的,比如下表2所示,Pcell、PScell和/或PUCCH Scell上的PUCCH配置与目标cell上的PUCCH配置是相同配置的,注意,表2的目标cell表示除Pcell、PScell和PUCCH Scell之外的其他cell。
表2
Figure PCTCN2022108265-appb-000002
可选地,上述时域pattern的配置参数可以包括目标cell的以下至少一项:
cell索引(index);
小区pattern,所述小区pattern指示对应小区的上行时隙的位置;
起始位置;比如,目标cell的起始位置可以包括但不限于起始无线帧、起始子帧、起始时隙(slot)或者起始符号等;
持续时间;
小区配置周期;
子载波间隔;比如,该子载波间隔为15kHz或30kHz等;
时域粒度;比如,该时域粒度为slot粒度或者子时隙(sub-slot)粒度等。
一种目标cell的时域pattern配置方式中,时域pattern可以包括目标cell的如下参数:{cell index,cell pattern,起始位置,小区配置周期,子载波间隔,时域粒度}。
另一种目标cell的时域pattern配置方式中,时域pattern可以包括目标cell的如下参数:{cell index,小区配置周期,cell pattern(cell1,cell 2,…,cell n),持续时间,子载波间隔,起始位置,时域粒度}。其中,cell pattern(cell1,cell 2,…,cell n)表示时域pattern中n个cell的cell顺序。持续时间为每个cell在cell pattern上的持续时间长度。
一些实施例中,如果网络侧设备为终端配置的时域pattern包括目标cell的index,则终端可以根据该index直接确定对应的目标cell。
一些实施例中,网络侧设备在为终端配置目标cell时,可以保证某一时刻在时域pattern上的上行UL资源只对应一个目标cell。
一些实施例中,如果网络侧设备在一个时刻配置了多个目标cell,则终端可以按照预定义的规则或高层参数确定一个目标cell。比如,该预定义的规则为选择具有最小或最大的cell index的目标cell。此外,终端也可以按照高层参数确定目标cell,比如按照时域粒度确定目标cell。
可选地,当按照时域pattern确定的终端在一个时刻比如当前时刻的目标cell具有多个时,终端可根据预定义的规则,从多个目标cell确定一个目标cell。比如,该预定义的规则为选择具有最小或最大的cell index的目标cell。此外,终端也可以按照高层参数确定目标cell,比如按照时域粒度确定目标cell。
可选地,目标cell的小区pattern的构成方式包括以下任意一种:第一小区pattern方式、第二小区pattern方式、第三小区pattern方式。其中,第一小区pattern方式为:由至少一个子pattern构成;第二小区pattern方式为:由时隙配置集合指示得到;第三小区pattern方式为:由cell集合构成。
可选地,每个子pattern可以包括以下至少一项:
子pattern周期P;比如,该子pattern周期P表征的是slot数;
下行(Downlink,DL)时隙的个数,该DL时隙包括的符号全是DL符号;
灵活时隙中的下行符号的个数;
上行(Uplink,UL)时隙的个数,该UL时隙包括的符号全是UL符号;
灵活时隙中的上行符号的个数。
可选地,在第一小区pattern方式下,小区pattern的周期由至少一个子pattern的周期确定。例如,如果小区pattern由2个子pattern构成,则小区pattern的周期由该2个子pattern的周期确定,比如,小区pattern的周期为该2个子pattern的周期之和。
可选地,上述用于指示第二小区pattern的时隙配置集合可以包括以下至少一项:
时隙集合;
时隙集合中的每个时隙的索引;
时隙集合中的每个时隙的符号集。
进一步的,每个时隙的符号集的配置可以满足以下任意一项:
符号集中的符号全是下行符号;
符号集中的符号全是上行符号;
符号集中的部分符号为下行符号,和符号集中的部分符号为上行符号。
可选地,在第二小区pattern方式下,小区pattern的周期可以由时隙配置集合的时隙集合中的时隙的个数确定。比如,如果时隙集合中的时隙的个数为5,则小区pattern的周期为5slot。
可选地,第三小区pattern方式为由cell集合构成,表示时域pattern中目标cell的顺序。例如{cell2,cell3,cell1}表示时域pattern中目标cell的顺序为cell2,cell3,cell1。此时,时域pattern的周期需要单独配置。同时每个目标cell的持续时间需要单独配置。
本申请实施例中,时域pattern可以由网络侧设备为终端配置。上述获取时域pattern可以包括:
终端从网络侧设备接收配置信息,其中,该配置信息用于指示为终端配置的时域pattern。这样,终端在接收到配置信息之后,即可根据配置信息确定为其配置的时域pattern。
可选地,上述配置信息可以用于指示:为终端配置的至少一个目标cell,以及每个目标cell的小区pattern;和/或,上述配置信息可以用于指示:为终端配置的至少一个目标cell,以及至少一个目标cell的小区pattern。
可选地,在本申请实施例中,终端还可以从网络侧设备接收指示信息,该指示信息用于指示为终端分配的PUCCH资源以及所述PUCCH资源所在的slot。之后,终端可以根据该slot以及配置信息指示的时域pattern,确定目标cell,并在目标cell的该PUCCH资源进行反馈。
可选地,在本申请实施例中,当终端的PUCCH传输为时隙粒度时,终端可以按照时域pattern选择配置为时隙粒度的目标cell;和/或,当终端的PUCCH传输为子时隙粒度时,终端可以按照时域pattern,选择配置为子时隙粒度的目标cell。
下面结合图3至图12对本申请具体实例进行说明。
实例1
本实例1中,网络侧设备为UE配置一个目标cell,该目标cell不限于是Pcell、PScell或PUCCH Scell等,并配置该目标cell的子载波间隔及cell pattern,该cell pattern由多个子pattern构成。例如,该cell pattern由1个子pattern构成,该1个子pattern为pattern1;或者,该cell pattern由2个子pattern构成,该2个子pattern为子pattern1和子pattern2。
其中,如图3所示,子pattern 1包含:
子pattern周期P1(表征为slot数);
包括的符号全是DL符号的slot数,即DL slot数;
灵活时隙中的DL符号的个数;
包括的符号全是UL符号的slot数,即UL slot数;
灵活时隙中的UL符号的个数。
其中,灵活时隙的个数为:周期P1对应的slot数减少DL slot数,再减去UL slot数所得到的值。
可选地,灵活时隙/符号是否允许传输PUCCH可以由网络配置或按预定义规则确定。
其中,如图3所示,子pattern 2包含:
子pattern周期P2(表征为slot数);
包括的符号全是DL符号的slot数;
灵活时隙中的DL符号的个数;
包括的符号全是UL符号的slot数;
灵活时隙中的UL符号的个数。
可选地,如果只配置了1个子pattern比如子pattern 1,则cell pattern的周期为子pattern1的周期,即P1。或者,如果只配置了2个子pattern比如子pattern 1和子pattern2,则cell pattern的周期为子pattern1和和子pattern2的周期之后,即P1与P2之和。
例如,参见图4所示,目标小区索引为CC1和CC2,CC1的cell pattern为DDDDD DDDUU,D表示下行时隙,U表示上行时隙,CC2的cell pattern为DDDUU DDDDD。时域pattern为cell pattern的UL资源取并集。其他时隙资源为DL构成,其不可用于UL PUCCH资源。因此,时域pattern为DDDUUDDDUU,子载波间隔是15kHz,CC1(如Pcell)上slot 8和slot 9可用于传输PUCCH,CC2上slot 3和slot 4可用于PUCCH传输,则:如果网络侧设备指示UE在slot 3或slot 4传输PUCCH,那么UE将使用CC2;或者,如果网络侧设备指示UE在slot 8或slot 9传输PUCCH,那么UE将使用CC1。这样,由于CC1和CC2是不同的分量载波(Component Carrier,CC),通过这种时域pattern的配置可以达到PUCCH的载波切换。
进一步的,图4所示的时隙图中,可用于PUCCH传输的时隙为CC1上的slot 8和slot 9以及CC2的slot 3和slot 4。
进一步的,网络可以配置15kHz的子载波间隔,配置CC2为可用于传输 PUCCH的目标cell,CC2的cell pattern由2个子pattern构成,如下表3所示:
表3
Figure PCTCN2022108265-appb-000003
这样,通过两个子pattern即pattern1和pattern2的配置,可以确定目标cell(CC2)上可用的PUCCH传输的可用时隙或符号,即CC2上slot 3和slot 4可用于传输PUCCH。
另一种配置方式中,网络可以配置Pcell(PScell或PUCCH Scell)的资源总是可用于传输PUCCH,那么,cell pattern可以不包含Pcell(PSCell或PUCCH SCell)的指示。如图5所示,CC1为Pcell(PScell或PUCCH Scell),则只配置CC2的cell pattern,该cell pattern由pattern1和pattern2构成。
当然,图5所示的cell pattern的起始位置也需要配置,例如起始无线帧位置、起始子帧位置、起始时隙位置或/或起始符号位置等。一个简单的配置为与Pcell的时分双工(Time Division Duplexing,TDD)的UL-DL配置对齐。一种可选方式中,cell pattern的起始位置与Pcell的无线帧0的子帧0的slot 0对齐。
实例2
本实例2中,网络侧设备为UE配置一个目标cell,该目标cell不限于是Pcell、PScell或PUCCH Scell等,并配置该目标cell的子载波间隔及cell pattern,该cell pattern由时隙配置集合指示。
其中,时隙配置集合包括:
1)时隙集合;
2)时隙集合中的每个时隙的索引;
3)时隙集合中的每个时隙的符号集。
进一步的,每个时隙的符号集可以配置为:全下行符号数,全上行符号数,或者,显式指示符号的传输方向即符号集中的部分符号为下行符号和部分符号为上行符号。
其中,cell pattern的周期由时隙集合中包含的时隙数确定。例如,时隙集合中有m个slot,那么cell pattern的周期m个slot。
其中,对于显式指示符号的传输方向,其中灵活符号数为:一个slot的符号数减去DL符号数后再减去UL符号数所得到的值。灵活符号是否允许传输PUCCH可由网络配置或按预定义规则确定。
实例3
本实例3中,网络可以同时配置多个目标CC及每个目标CC的cell pattern。当配置载波聚合时,由于UL-DL配置的不同,如果只配置一个cell pattern并不能完全降低PUCCH传输时延,因此,可以通过配置多个cell pattern进一步降低PUCCH传输时延。
例如,如图6所示,网络可以配置3个目标CC,其中,CC1的UL-DL配比为7D1S2U,该CC的小区图样(cell pattern)为DDDDD DDDUU,CC2的cell pattern1为DSUDDDSUDD,CC3的cell pattern2为DDSUU DDDSD,CC1、CC2和CC3的时域pattern为DDUUU DDUUU,即由不同目标cell的UL资源取并集,其他时隙视为DL。
此情况下,网络可以配置{目标cell index,cell pattern}组合的集合,用于指示多个目标cell上的候选PUCCH传输资源。
例如,参见下表4所示,网络可以为UE配置{目标cell index,cell pattern方式A,slot粒度,子载波间隔}。
表4
Figure PCTCN2022108265-appb-000004
Figure PCTCN2022108265-appb-000005
又例如,参见下表5所示,网络可以为UE配置{目标cell index,cell pattern方式B,slot粒度,子载波间隔}。
表5
Figure PCTCN2022108265-appb-000006
又例如,参见下表6所示,网络可以为UE配置{目标cell index,cell pattern方式A或B,slot粒度,子载波间隔}。
表6
Figure PCTCN2022108265-appb-000007
例如,针对图5所示的时隙图,可以利用下表7进行配置。
表7
Figure PCTCN2022108265-appb-000008
需指出的,表7所示的配置是用于候选PUCCH传输的参考配置,不是实际的UL-DL配置。
实例4
本实例4中,网络可以配置多个目标cell及一个cell pattern,该cell pattern应用于所有目标cell。比如,参见图7所示,可以为CC1、CC2和CC3配置一个cell pattern即DDUUU DDUUU,值得指出的是,这种情况下,CC1、CC2和CC3的cell pattern即为时域pattern。其中,CC1上slot 8和slot 9可用于传输PUCCH,CC2上slot 2和slot 7可用于PUCCH传输,CC3上slot 3、slot 4和slot 9可用于PUCCH传输。
可选地,网络可以保证某一时刻该cell pattern的UL资源只对应一个目标cell。如果某一个时刻对应多个目标cell,那么,UE可以按照预定义的规则或高层参数确定一个目标Cell,预定义的规则可以是具有最大的cell index的目标Cell。
可选地,网络可以为UE动态指示一个PUCCH资源的时隙,由UE根据该PUCCH资源的时隙以及cell pattern确定一个目标cell。比如,网络为UE指示的PUCCH资源的时隙是slot 4,则结合图6所示的cell pattern,由于CC3的slot 4是UL资源,则选择CC3。
实例5
本实例5中,应用于目标cell的cell pattern上的有效UL符号,可以是该目标cell的配置参数比如tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated配置的可用的UL资源的子集。
例如,参见图8所示,应用于CC2和CC3的cell pattern上的有效UL符 号,可以是该CC2和CC3的tdd-UL-DL-ConfigurationCommon和tdd-UL-DL-ConfigurationDedicated配置的可用的UL资源的子集。其中,CC2上slot 2和slot 7可用于PUCCH传输,CC3上slot 3、slot 4和slot 9可用于PUCCH传输。
实例6
本实例6中,网络可以配置目标cell上的cell pattern是slot粒度或者sub-slot粒度。例如,当配置2个目标cell时,其中一个cell的cell pattern可以是slot粒度,另一个cell pattern是sub-slot粒度。
例如,参见图9所示,可以配置CC1和CC2的cell pattern是slot粒度,配置CC3的cell pattern是sub-slot粒度。如果在时刻1需要反馈的的HARQ-ACK码本codebook的粒度是slot,那么UE基于配置的cell pattern,可以选择CC1或CC2进行HARQ-ACK反馈。或者,如果在时刻2需要反馈的HARQ-ACK codebook的粒度是sub-slot,那么UE基于配置的cell pattern,可以选择CC3进行HARQ-ACK反馈。
实例7
本实例7中,网络为UE配置的cell pattern构成方式为第三小区pattern方式。网络可以为UE配置3个目标cell即CC1、CC2和CC3,相应UL-DL配置如图10所示。假设网络为UE配置的时域pattern的周期为40ms,子载波间隔为15kHz,cell pattern为{cell2,cell3,cell1};t1时刻的目标cell为cell2,持续时间为10ms。t2时刻的目标cell为cell3,持续时间为10ms。t3时刻的目标cell为cell1,持续时间为20ms。这样,如图11所示,在t1-t2时间,时域pattern为cell2的UL-DL配置,UE将使用cell2的UL资源进行PUCCH反馈;在t2-t3时间,时域pattern为cell3的UL-DL配置,UE将使用cell3的UL资源进行PUCCH反馈;在t3-t4时间,时域pattern为cell1的UL-DL配置,UE将使用cell 1的UL资源进行PUCCH反馈。
可选地,网络配置的时域pattern的周期可以大于配置的cell pattern的周期,如图12所示,其中,配置的cell pattern为{cell2,cell3},持续时间{10ms, 10ms}。对于一个时域pattern的周期内未进行cell pattern配置的时间,可以按预定义或配置的cell作为目标cell,例如Pcell。
可选地,在一个cell group内,网络可以配置一个时域pattern,该时域pattern应用于整个cell group。
可选地,网络也可以为每个目标cell配置时域pattern。
可选地,网络可以配置每个目标cell是基于slot粒度还是sub-slot粒度。
一种可选实施方式中,时域pattern的配置周期可以是无线帧对齐。
可选地,目标cell的持续时间应该与相应UL-DL配置的周期一致。例如,cell2的UL-DL配置的10个slot的传输方向分别为DSUDD DSUDD,S表示特殊时隙,子载波间隔为15kHz,则:如果配置的持续时间为9ms,那么cell2的相应slot的传输方向分别为是DSUDD DSUD;或者,如果配置的持续时间为14ms,那么cell2的相应slot的传输方向是DSUDD DSUDD DSUD。
又例如,对于cell2,如果配置的子载波间隔为30KHz,持续时间为10ms,那么需要根据子载波间隔进行折算,即相当于2个子帧,相应slot的传输方向为:DSUDD DSUDD DSUDD DSUDD。
请参见图13,图13是本申请实施例提供的一种配置方法的流程图,该方法由网络侧设备执行,如图13所示,该方法包括如下步骤:
步骤131:网络侧设备向终端发送配置信息。
其中,所述配置信息用于指示为终端配置的时域pattern,该时域pattern指示至少两个小区的上行时隙的位置,该时域pattern用于终端在至少两个小区中确定目标cell,并在目标cell上进行PUCCH传输。
本申请实施例的配置方法,通过向终端发送配置信息,该配置信息用于指示为终端配置的时域pattern,可以使得终端按照时域pattern确定目标cell,并在目标cell上进行PUCCH传输,从而灵活地配置用于PUCCH传输的目标cell,从而减少PUCCH传输时延,进而提升PUCCH传输的可靠性。
可选的,所述时域pattern的配置参数包括目标cell的以下至少一项:
cell index;
小区pattern,所述小区pattern指示对应小区的上行时隙的位置;
起始位置;
持续时间;
小区配置周期;
子载波间隔;
时域粒度。
可选的,所述小区pattern的构成方式包括以下任意一种:第一小区pattern方式、第二小区pattern方式、第三小区pattern方式;其中,所述第一小区pattern方式为:由至少一个子pattern构成;所述第二小区pattern方式为:由时隙配置集合指示得到;所述第三小区pattern方式为:由cell集合构成。
可选的,每个子pattern包括以下至少一项:
子pattern周期;
下行时隙的个数;
灵活时隙中的下行符号的个数;
上行时隙的个数;
灵活时隙中的上行符号的个数。
可选的,在第一小区pattern方式下,小区pattern的周期由至少一个子pattern的周期确定。
可选的,所述时隙配置集合包括以下至少一项:
时隙集合;
时隙集合中的每个时隙的索引;
时隙集合中的每个时隙的符号集。
可选的,所述符号集的配置满足以下任意一项:
所述符号集中的符号全是下行符号;
所述符号集中的符号全是上行符号;
所述符号集中的部分符号为下行符号,和所述符号集中的部分符号为上行符号。
可选的,在第二小区pattern方式下,小区pattern的周期由时隙集合中的时隙的个数确定。
可选的,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及每个所述目标cell的小区pattern;和/或,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及所述至少一个目标cell的小区pattern。
可选的,所述方法还包括:
所述网络侧设备向所述终端发送指示信息;
其中,所述指示信息用于指示为所述终端分配的PUCCH资源以及该PUCCH资源所在的时隙,由所述终端根据所述时隙以及所述配置信息指示的时域pattern确定目标cell,并在目标cell的该PUCCH资源进行传输。
需要说明的是,本申请实施例提供的上行传输方法,执行主体可以为上行传输装置,或者,该上行传输装置中的用于执行上行传输方法的控制模块。本申请实施例中以上行传输装置执行上行传输方法为例,说明本申请实施例提供的上行传输装置。
请参见图14,图14是本申请实施例提供的一种上行传输装置的结构示意图,该装置应用于终端,如图14所示,上行传输装置140包括:
获取模块141,用于获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置;
确定模块142,用于按照所述时域pattern,在所述至少两个小区中确定目标cell;
传输模块143,用于在所述目标cell上进行PUCCH传输。
可选的,所述时域pattern的配置参数包括目标cell的以下至少一项:
cell index;
小区pattern,所述小区pattern指示对应小区的上行时隙的位置;
起始位置;
持续时间;
小区配置周期;
子载波间隔;
时域粒度。
可选的,所述小区pattern的构成方式包括以下任意一种:第一小区pattern方式、第二小区pattern方式、第三小区pattern方式;其中,所述第一小区pattern方式为:由至少一个子pattern构成;所述第二小区pattern方式为:由时隙配置集合指示得到;所述第三小区pattern方式为:由cell集合构成。
可选的,每个子pattern包括以下至少一项:
子pattern周期;
下行时隙的个数;
灵活时隙中的下行符号的个数;
上行时隙的个数;
灵活时隙中的上行符号的个数。
可选的,在第一小区pattern方式下,小区pattern的周期由至少一个子pattern的周期确定。
可选的,所述时隙配置集合包括以下至少一项:
时隙集合;
所述时隙集合中的每个时隙的索引;
所述时隙集合中的每个时隙的符号集。
可选的,所述符号集的配置满足以下任意一项:
所述符号集中的符号全是下行符号;
所述符号集中的符号全是上行符号;
所述符号集中的部分符号为下行符号,和所述符号集中的部分符号为上行符号。
可选的,在第二小区pattern方式下,小区pattern的周期由时隙集合中的时隙的个数确定。
可选的,当按照时域pattern确定的终端在一个时刻的目标cell具有多个时,所述确定模块142还用于:根据预定义的规则,从所述多个目标cell确 定一个目标cell。
可选的,获取模块141具有用于:从网络侧设备接收配置信息,其中,所述配置信息用于指示为终端配置的所述时域pattern。
可选的,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及每个所述目标cell的小区pattern;和/或,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及所述至少一个目标cell的小区pattern。
可选的,上行传输装置140还包括:
接收模块,用于从所述网络侧设备接收指示信息;其中,所述指示信息用于指示为所述终端分配的PUCCH资源以及所述PUCCH资源所在的时隙;
其中,所述确定模块142具体用于:根据所述时隙以及所述时域pattern确定所述目标cell;
其中,所述传输模块143具体用于:在所述目标cell的所述PUCCH资源上进行传输。
可选的,目标cell的时域粒度为以下至少一项:时隙粒度、子时隙粒度。
可选的,当所述终端的PUCCH传输为时隙粒度时,所述确定模块142具体用于:按照所述时域pattern,选择配置为时隙粒度的目标cell;
和/或,当所述终端的PUCCH传输为子时隙粒度时,所述确定模块142具体用于:按照所述时域pattern,选择配置为子时隙粒度的目标cell。
本申请实施例中的上行传输装置140可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的上行传输装置140能够实现图2所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例提供的配置方法,执行主体可以为配置装置,或者,该配置装置中的用于执行配置方法的控制模块。本申请实施例中以配置装置执行配置方法为例,说明本申请实施例提供的配置装置。
请参见图15,图15是本申请实施例提供的一种配置装置的结构示意图,该装置应用于终端,如图15所示,配置装置150包括:
发送模块151,用于向终端发送配置信息;
其中,所述配置信息用于指示为终端配置的时域pattern;所述时域pattern指示至少两个小区的上行时隙的位置,所述时域pattern用于所述终端在所述至少两个小区中确定目标cell,并在目标cell上进行PUCCH传输。
可选的,所述时域pattern的配置参数包括目标cell的以下至少一项:
cell index;
小区pattern,所述小区pattern指示对应小区的上行时隙的位置;
起始位置;
持续时间;
小区配置周期;
子载波间隔;
时域粒度。
可选的,所述小区pattern的构成方式包括以下任意一种:第一小区pattern方式、第二小区pattern方式、第三小区pattern方式;其中,所述第一小区pattern方式为:由至少一个子pattern构成;所述第二小区pattern方式为:由时隙配置集合指示得到;所述第三小区pattern方式为:由cell集合构成。
可选的,每个子pattern包括以下至少一项:
子pattern周期;
下行时隙的个数;
灵活时隙中的下行符号的个数;
上行时隙的个数;
灵活时隙中的上行符号的个数。
可选的,在第一小区pattern方式下,小区pattern的周期由至少一个子pattern的周期确定。
可选的,所述时隙配置集合包括以下至少一项:
时隙集合;
时隙集合中的每个时隙的索引;
时隙集合中的每个时隙的符号集。
可选的,所述符号集的配置满足以下任意一项:
所述符号集中的符号全是下行符号;
所述符号集中的符号全是上行符号;
所述符号集中的部分符号为下行符号,和所述符号集中的部分符号为上行符号。
可选的,在第二小区pattern方式下,小区pattern的周期由时隙集合中的时隙的个数确定。
可选的,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及每个所述目标cell的小区pattern;和/或,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及所述至少一个目标cell的小区pattern。
可选的,所述发送模块151还用于:向所述终端发送指示信息,所述指示信息用于指示为所述终端分配的PUCCH资源以及所述PUCCH资源所在的时隙,由所述终端根据所述时隙以及所述时域pattern确定所述目标cell,并在所述目标cell的所述PUCCH资源进行传输。
本申请实施例提供的配置装置150能够实现图13所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图16所示,本申请实施例还提供一种通信设备160,包括处理器161,存储器162,存储在存储器162上并可在所述处理器161上运行的程序或指令,例如,该通信设备160为终端时,该程序或指令被处理器161执行时可以实现上述上行传输方法实施例的各个过程,且能达到相同的技术效果。该通信设备160为网络侧设备时,该程序或指令被处理器161执行时 可以实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置,并按照所述时域pattern,确定在所述至少两个小区中目标小区cell;所述通信接口用于在所述目标cell上进行PUCCH传输。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图17为实现本申请实施例的一种终端的硬件结构示意图。
该终端1700包括但不限于:射频单元1701、网络模块1702、音频输出单元1703、输入单元1704、传感器1705、显示单元1706、用户输入单元1707、接口单元1708、存储器1709、以及处理器1710等中的至少部分部件。
本领域技术人员可以理解,终端1700还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图17中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1704可以包括图形处理器(Graphics Processing Unit,GPU)17041和麦克风17042,图形处理器17041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1706可包括显示面板17061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板17061。用户输入单元1707包括触控面板17071以及其他输入设备17072。触控面板17071,也称为触摸屏。触控面板17071可包括触摸检测装置和触摸控制器两个部分。其他输入设备17072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1701将来自网络侧设备的下行数据接收后, 给处理器1710处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1709可用于存储软件程序或指令以及各种数据。存储器1709可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1709可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1710可包括一个或多个处理单元;可选地,处理器1710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1710中。
其中,处理器1710,用于获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置,并按照所述时域pattern,在所述至少两个小区中确定目标小区cell;
射频单元1701,用于在所述目标cell上进行PUCCH传输。
本申请实施例提供的终端1700能够实现图2所示方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向终端发送配置信息,所述配置信息用于指示为终端配置的时域pattern;该时域pattern用于终端确定目标cell,并在目标cell上进行PUCCH传输。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且 能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图18所示,该网络侧设备180包括:天线181、射频装置182、基带装置183。天线181与射频装置182连接。在上行方向上,射频装置182通过天线181接收信息,将接收的信息发送给基带装置183进行处理。在下行方向上,基带装置183对要发送的信息进行处理,并发送给射频装置182,射频装置182对收到的信息进行处理后经过天线181发送出去。
上述频带处理装置可以位于基带装置183中,以上实施例中网络侧设备执行的方法可以在基带装置183中实现,该基带装置183包括处理器184和存储器185。
基带装置183例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图18所示,其中一个芯片例如为处理器184,与存储器185连接,以调用存储器185中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置183还可以包括网络接口186,用于与射频装置182交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器185上并可在处理器184上运行的指令或程序,处理器184调用存储器185中的指令或程序执行图15所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述上行传输方法实施例的各个过程,或者实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述上行传输方法实施例的各个过程,或者实现上述配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求 所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种上行传输方法,包括:
    终端获取时域图样pattern,所述时域pattern指示至少两个小区的上行时隙的位置;
    所述终端按照所述时域pattern,在所述至少两个小区中确定目标小区cell;
    所述终端在所述目标cell上进行物理上行控制信道PUCCH传输。
  2. 根据权利要求1所述的方法,其中,所述时域pattern的配置参数包括目标cell的以下至少一项:
    小区索引cell index;
    小区pattern,所述小区pattern指示对应小区的上行时隙的位置;
    起始位置;
    持续时间;
    小区配置周期;
    子载波间隔;
    时域粒度。
  3. 根据权利要求1或2所述的方法,其中,所述小区pattern的构成方式包括以下任意一种:第一小区pattern方式、第二小区pattern方式、第三小区pattern方式;
    其中,所述第一小区pattern方式为:由至少一个子pattern构成;
    所述第二小区pattern方式为:由时隙配置集合指示得到;
    所述第三小区pattern方式为:由cell集合构成。
  4. 根据权利要求3所述的方法,其中,每个所述子pattern包括以下至少一项:
    子pattern周期;
    下行时隙的个数;
    灵活时隙中的下行符号的个数;
    上行时隙的个数;
    灵活时隙中的上行符号的个数。
  5. 根据权利要求4所述的方法,其中,所述小区pattern的周期由所述至少一个子pattern的周期确定。
  6. 根据权利要求3所述的方法,其中,所述时隙配置集合包括以下至少一项:
    时隙集合;
    所述时隙集合中的每个时隙的索引;
    所述时隙集合中的每个时隙的符号集。
  7. 根据权利要求6所述的方法,其中,所述符号集的配置满足以下任意一项:
    所述符号集中的符号全是下行符号;
    所述符号集中的符号全是上行符号;
    所述符号集中的部分符号为下行符号,和所述符号集中的部分符号为上行符号。
  8. 根据权利要求6所述的方法,其中,所述小区pattern的周期由所述时隙集合中的时隙的个数确定。
  9. 根据权利要求1所述的方法,其中,当按照所述时域pattern确定的所述终端在一个时刻的目标cell具有多个时,
    所述确定目标小区cell,包括:
    所述终端根据预定义的规则,从所述多个目标cell确定一个目标cell。
  10. 根据权利要求1所述的方法,其中,所述获取时域图样pattern,包括:
    所述终端从网络侧设备接收配置信息;其中,所述配置信息用于指示为所述终端配置的所述时域pattern。
  11. 根据权利要求10所述的方法,其中,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及每个所述目标cell的小区pattern;
    和/或,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及所述至少一个目标cell的小区pattern。
  12. 根据权利要求11所述的方法,所述方法还包括:
    所述终端从所述网络侧设备接收指示信息;其中,所述指示信息用于指示为所述终端分配的PUCCH资源以及所述PUCCH资源所在的时隙;
    其中,所述按照所述时域pattern,确定目标小区cell,包括:
    所述终端根据所述时域pattern以及所述PUCCH资源所在的时隙,确定所述目标cell;
    其中,所述在所述目标cell上进行物理上行控制信道PUCCH传输,包括:
    所述终端在所述目标cell的所述PUCCH资源上进行传输。
  13. 根据权利要求2所述的方法,其中,所述目标cell的时域粒度为以下至少一项:时隙粒度、子时隙粒度。
  14. 根据权利要求13所述的方法,其中,当所述终端的PUCCH传输为时隙粒度时,所述按照所述时域pattern,确定目标小区cell,包括:
    所述终端按照所述时域pattern,选择配置为时隙粒度的目标cell;
    和/或,
    当所述终端的PUCCH传输为子时隙粒度时,所述按照所述时域pattern,确定目标小区cell,包括:
    所述终端按照所述时域pattern,选择配置为子时隙粒度的目标cell。
  15. 一种配置方法,包括:
    网络侧设备向终端发送配置信息;
    其中,所述配置信息用于指示为所述终端配置的时域pattern;所述时域pattern指示至少两个小区的上行时隙的位置,所述时域pattern用于所述终端在所述至少两个小区中确定目标cell,并在所述目标cell上进行PUCCH传输。
  16. 根据权利要求15所述的方法,其中,所述时域pattern的配置参数包括目标cell的以下至少一项:
    cell index;
    小区pattern,所述小区pattern指示对应小区的上行时隙的位置;
    起始位置;
    持续时间;
    小区配置周期;
    子载波间隔;
    时域粒度。
  17. 根据权利要求15或16所述的方法,其中,所述小区pattern的构成方式包括以下任意一种:第一小区pattern方式、第二小区pattern方式、第三小区pattern方式;
    其中,所述第一小区pattern方式为:由至少一个子pattern构成;
    所述第二小区pattern方式为:由时隙配置集合指示得到;
    所述第三小区pattern方式为:由cell集合构成。
  18. 根据权利要求17所述的方法,其中,每个所述子pattern包括以下至少一项:
    子pattern周期;
    下行时隙的个数;
    灵活时隙中的下行符号的个数;
    上行时隙的个数;
    灵活时隙中的上行符号的个数。
  19. 根据权利要求18所述的方法,其中,所述小区pattern的周期由所述至少一个子pattern的周期确定。
  20. 根据权利要求17所述的方法,其中,所述时隙配置集合包括以下至少一项:
    时隙集合;
    所述时隙集合中的每个时隙的索引;
    所述时隙集合中的每个时隙的符号集。
  21. 根据权利要求20所述的方法,其中,所述符号集的配置满足以下任意一项:
    所述符号集中的符号全是下行符号;
    所述符号集中的符号全是上行符号;
    所述符号集中的部分符号为下行符号,和所述符号集中的部分符号为上行符号。
  22. 根据权利要求20所述的方法,其中,所述小区pattern的周期由所述时隙集合中的时隙的个数确定。
  23. 根据权利要求15所述的方法,其中,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及每个所述目标cell的小区pattern;
    和/或,所述配置信息用于指示:为所述终端配置的至少一个目标cell,以及所述至少一个目标cell的小区pattern。
  24. 根据权利要求15所述的方法,所述方法还包括:
    所述网络侧设备向所述终端发送指示信息;
    其中,所述指示信息用于指示为所述终端分配的PUCCH资源以及所述PUCCH资源所在的时隙,由所述终端根据所述时隙以及所述时域pattern确定所述目标cell,并在所述目标cell的所述PUCCH资源进行传输。
  25. 一种上行传输装置,包括:
    获取模块,用于获取时域pattern,所述时域pattern指示至少两个小区的上行时隙的位置;
    确定模块,用于按照所述时域pattern,在所述至少两个小区中确定目标cell;
    传输模块,用于在所述目标cell上进行PUCCH传输。
  26. 一种配置装置,包括:
    发送模块,用于向终端发送配置信息;
    其中,所述配置信息用于指示为所述终端配置的时域pattern;所述时域pattern指示至少两个小区的上行时隙的位置,所述时域pattern用于所述终端 在所述至少两个小区中确定目标cell,并在所述目标cell上进行PUCCH传输。
  27. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至14任一项所述的上行传输方法的步骤。
  28. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求15至24任一项所述的配置方法的步骤。
  29. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至14任一项所述的上行传输方法的步骤,或者实现如权利要求15至24任一项所述的配置方法的步骤。
PCT/CN2022/108265 2021-07-30 2022-07-27 上行传输方法、配置方法、装置、终端及网络侧设备 WO2023005978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110875459.6A CN115701194A (zh) 2021-07-30 2021-07-30 上行传输方法、配置方法、装置、终端及网络侧设备
CN202110875459.6 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023005978A1 true WO2023005978A1 (zh) 2023-02-02

Family

ID=85087520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108265 WO2023005978A1 (zh) 2021-07-30 2022-07-27 上行传输方法、配置方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN115701194A (zh)
WO (1) WO2023005978A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283170A (zh) * 2010-11-02 2013-09-04 Lg电子株式会社 在无线通信系统中发射/接收上行链路控制信息的方法和装置
CN103368709A (zh) * 2012-04-09 2013-10-23 中兴通讯股份有限公司 一种混合自动重传请求确认应答信息发送方法及装置
CN103476120A (zh) * 2012-06-07 2013-12-25 中兴通讯股份有限公司 物理上行控制信道的发送、处理方法及装置
US20140334419A1 (en) * 2012-01-26 2014-11-13 Lg Electronics Inc. Method for transceiving control information and apparatus for same
CN110474750A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 信号传输方法、相关设备及系统
CN111130708A (zh) * 2018-11-07 2020-05-08 维沃移动通信有限公司 一种反馈信息传输方法和终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103283170A (zh) * 2010-11-02 2013-09-04 Lg电子株式会社 在无线通信系统中发射/接收上行链路控制信息的方法和装置
US20140334419A1 (en) * 2012-01-26 2014-11-13 Lg Electronics Inc. Method for transceiving control information and apparatus for same
CN103368709A (zh) * 2012-04-09 2013-10-23 中兴通讯股份有限公司 一种混合自动重传请求确认应答信息发送方法及装置
CN103476120A (zh) * 2012-06-07 2013-12-25 中兴通讯股份有限公司 物理上行控制信道的发送、处理方法及装置
CN110474750A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 信号传输方法、相关设备及系统
CN111130708A (zh) * 2018-11-07 2020-05-08 维沃移动通信有限公司 一种反馈信息传输方法和终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "HARQ-ACK Enhancements for IIoT/URLLC", 3GPP DRAFT; R1-2108829, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057894 *

Also Published As

Publication number Publication date
CN115701194A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
CN106231637B (zh) 辅小区变换方法、装置以及基站
WO2022007930A1 (zh) 一种载波切换处理方法、装置及终端
WO2022083634A1 (zh) 资源配置方法、装置、设备及可读存储介质
US20230412347A1 (en) Method for generating semi-static harq-ack codebook, and terminal
WO2023116591A1 (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
WO2023011587A1 (zh) Harq-ack传输资源确定方法、终端及存储介质
WO2023284796A1 (zh) Tci状态的指示方法、装置、终端和网络侧设备
WO2023005978A1 (zh) 上行传输方法、配置方法、装置、终端及网络侧设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
US10680776B2 (en) Pilot signal transmission method, base station, and user equipment
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2023001297A1 (zh) 反馈harq-ack信息的方法、装置及终端
WO2022237743A1 (zh) Pusch重复传输方法和设备
WO2024001952A1 (zh) 参数确定方法、终端及网络侧设备
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备
WO2022213899A1 (zh) 上行信道传输方法、装置、终端及网络侧设备
WO2023051525A1 (zh) 行为确定方法、装置及相关设备
WO2024027749A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023083173A1 (zh) 资源处理方法、装置、通信设备及存储介质
WO2023198044A1 (zh) 信息接收方法、信息发送方法、装置及设备
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2023005863A1 (zh) Pssch的传输方法和设备
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE