WO2023011587A1 - Harq-ack传输资源确定方法、终端及存储介质 - Google Patents

Harq-ack传输资源确定方法、终端及存储介质 Download PDF

Info

Publication number
WO2023011587A1
WO2023011587A1 PCT/CN2022/110263 CN2022110263W WO2023011587A1 WO 2023011587 A1 WO2023011587 A1 WO 2023011587A1 CN 2022110263 W CN2022110263 W CN 2022110263W WO 2023011587 A1 WO2023011587 A1 WO 2023011587A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
feedback time
carrier
ack feedback
ack
Prior art date
Application number
PCT/CN2022/110263
Other languages
English (en)
French (fr)
Inventor
陈晓航
曾超君
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22852298.3A priority Critical patent/EP4383629A1/en
Publication of WO2023011587A1 publication Critical patent/WO2023011587A1/zh
Priority to US18/432,720 priority patent/US20240214129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a hybrid automatic repeat request-acknowledgment (Hybrid Automatic Repeat Request-Acknowledgment, HARQ-ACK) transmission resource determination method, terminal and storage medium.
  • Hybrid Automatic Repeat Request-Acknowledgment Hybrid Automatic Repeat Request-Acknowledgment, HARQ-ACK
  • the HARQ-ACK feedback time configured by each SPS is activated by the SPS configuration.
  • Control information Downlink Control Information, DCI indicates, so the HARQ-ACK corresponding to the SPS physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) of different SPS configurations may be fed back at different times.
  • DCI Downlink Control Information
  • the HARQ-ACK feedback time corresponding to an SPS PDSCH conflicts with the downlink (Downlink, DL) in a Time Division Duplex (TDD) scenario
  • the HARQ-ACK of the SPS PDSCH will be discarded.
  • the performance of the SPS PDSCH will be degraded.
  • Embodiments of the present application provide a method for determining HARQ-ACK transmission resources, a terminal and a storage medium, which can solve the problem in the prior art that HARQ-ACK cannot be transmitted normally due to resource conflicts.
  • a method for determining HARQ-ACK transmission resources which is applied to a terminal, and the method includes:
  • the terminal determines the first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier;
  • the terminal determines the second HARQ transmission resource after the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier.
  • - ACK transmission resources or based on the second subcarrier spacing SCS and the second carrier, determine a third HARQ-ACK transmission resource after the first HARQ-ACK feedback time;
  • the first HARQ-ACK feedback time is determined based on the first subcarrier spacing SCS or based on the first subcarrier spacing SCS and the first carrier.
  • a device for determining HARQ-ACK transmission resources which is applied to a terminal, and the device includes:
  • a first processing module configured to determine a first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier;
  • the second processing module is configured to determine that after the first HARQ-ACK feedback time The second HARQ-ACK transmission resource, or based on the second subcarrier spacing SCS and the second carrier, determine the third HARQ-ACK transmission resource after the first HARQ-ACK feedback time;
  • the first HARQ-ACK feedback time is determined based on the first subcarrier spacing SCS or based on the first subcarrier spacing SCS and the first carrier.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor , implementing the steps of the method described in the first aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine a first HARQ-ACK transmission resource based on a first subcarrier spacing SCS and a first carrier; and, when determining the In the case where the first HARQ-ACK transmission resource is unavailable, based on the first subcarrier spacing SCS and the first carrier, determine a second HARQ-ACK transmission resource after the first HARQ-ACK feedback time, or Determine a third HARQ-ACK transmission resource after the first HARQ-ACK feedback time based on the second subcarrier spacing SCS and the second carrier;
  • the first HARQ-ACK feedback time is determined based on the first subcarrier spacing SCS or based on the first subcarrier spacing SCS and the first carrier.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the first Steps in the method for determining HARQ-ACK transmission resources described in the aspect.
  • the HARQ-ACK transmission resource is determined according to the subcarrier spacing SCS of the carrier and the carrier, and when the determined HARQ-ACK transmission resource is not available, the HARQ-ACK is postponed to the subsequent available uplink resource for transmission , which can effectively ensure the reliable transmission of HARQ-ACK and improve the performance of SPS PDSCH transmission.
  • FIG. 1 is a structural diagram of a wireless communication system applicable to an embodiment of the present application
  • Fig. 2 is a schematic flow chart of the HARQ-ACK transmission resource determination method provided by the embodiment of the present application
  • FIG. 3 is a schematic diagram of a carrier structure in a method for determining a HARQ-ACK transmission resource according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an apparatus for determining HARQ-ACK transmission resources provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 101 and a network side device 102 .
  • the terminal 101 can also be called a terminal device or a user terminal or a user equipment (User Equipment, UE), and the terminal 101 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer , personal digital assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) /Virtual reality (virtual reality, VR) equipment, robots, wearable devices (Wearable Device), vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machine or furniture, etc.), wearable devices include: smart watches, smart bracelets, smart headphones
  • the network side device 102 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • the terminal may be configured to activate at least one carrier, such as carriers 1 to M, where the SCS corresponding to carrier CC m is SCS m .
  • PUCCH Physical Uplink Control CHannel
  • the network can configure one or more PUCCH cell timing patterns (cell timing patterns), each pattern pattern indicates the PUCCH carriers available within a period of time, and the PUCCH carriers indicated by different PUCCH cell timing patterns May be the same or different.
  • PUCCH cell timing patterns specific implementation methods may include: the time domain pattern may be uniformly configured for the N Cells, or may be configured separately for each PUCCH cell.
  • the terminal is configured with at least one DL SPS configuration resource on carrier i, including SPS config 1-L. Assume that at slot n, the terminal receives the PDSCH of SPS config j. According to k (ie K1) indicated by the activated DCI of SPS config j, the HARQ-ACK corresponding to the PDSCH will be fed back at slot n+k.
  • the terminal uses the HARQ- Feedback of the ACK is postponed until a subsequent time, and the PUCCH resource carrying the HARQ-ACK may be located on any carrier among the N carriers configured with the PUCCH resource.
  • FIG. 2 is a schematic flowchart of a method for determining a HARQ-ACK transmission resource provided by an embodiment of the present application.
  • the method may be executed by a terminal, and the terminal may specifically be the terminal 101 shown in FIG. 1 .
  • the method includes:
  • Step 201 the terminal determines a first HARQ-ACK transmission resource based on a first subcarrier spacing SCS and a first carrier.
  • the terminal when the terminal is configured to activate at least one carrier, and each carrier or part of the carriers in the carrier is configured with a physical uplink control channel (Physical Uplink Control CHannel, PUCCH), the terminal can At least one DL SPS configuration resource is configured on the carrier, for example, it can be expressed as SPS config 1 ⁇ L.
  • PUCCH Physical Uplink Control CHannel
  • the terminal When the terminal receives PDSCH signaling for DL SPS configuration resource SPS config j at a certain time domain position, such as slot n, the terminal can determine any carrier and the subcarrier spacing SCS of the carrier among the carriers configured with PUCCH.
  • the carrier may be called a first carrier, and its corresponding SCS may be called a first subcarrier spacing SCS.
  • the terminal acquires the HARQ-ACK transmission resource corresponding to the HARQ-ACK feedback time by determining the HARQ-ACK feedback time according to the first subcarrier spacing SCS and/or the first carrier.
  • the HARQ-ACK feedback time may be called a first HARQ-ACK feedback time
  • the HARQ-ACK transmission resource may be called a first HARQ-ACK transmission resource.
  • HARQ-ACK can refer to the HARQ-ACK corresponding to a specific PDSCH, or can generally refer to the HARQ-ACK corresponding to the PDSCH that needs to feed back HARQ-ACK. It can refer to HARQ-ACK information or HARQ-ACK codebook. Such as Type 1/2/3 codebook, etc.
  • the PDSCH may be a dynamically scheduled PDSCH, or an SPS PDSCH, which is not specifically limited in this embodiment of the present application.
  • Step 202 In the case of determining that the first HARQ-ACK transmission resource is unavailable, the terminal determines the second subcarrier interval after the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier.
  • the HARQ-ACK transmission resource or based on the second subcarrier spacing SCS and the second carrier, determine a third HARQ-ACK transmission resource after the first HARQ-ACK feedback time.
  • the first HARQ-ACK feedback time is determined based on the first subcarrier spacing SCS or based on the first subcarrier spacing SCS and the first carrier.
  • the first HARQ-ACK transmission resource on the basis of determining the first HARQ-ACK transmission resource according to the first subcarrier spacing SCS and the first carrier, it may further determine whether the first HARQ-ACK transmission resource is available. For example, it may be detected that the first HARQ-ACK transmission resource, that is, the PUCCH resource used to bear the HARQ-ACK corresponding to the SPS PDSCH within the first HARQ-ACK feedback time, whether part or all of the symbols occupied are consistent with the DL of TDD (for example, including DL symbol, SSB, CORESET#0, etc.) symbols conflict. If there is a conflict, it is considered that the first HARQ-ACK transmission resource is unavailable, otherwise it is considered available.
  • TDD for example, including DL symbol, SSB, CORESET#0, etc.
  • the terminal can switch on the above-mentioned carrier configured with PUCCH resources, that is, the HARQ-ACK to be transmitted can be - The ACK is deferred until a subsequent moment for feedback, where the PUCCH resource carrying the HARQ-ACK may be located on any carrier among the above-mentioned carriers configured with the PUCCH resource.
  • another carrier other than the first carrier may be selected among the above-mentioned carriers configured with PUCCH resources, and the SCS corresponding to the carrier is determined, and then according to the SCS corresponding to the carrier and the carrier The SCS determines another HARQ-ACK transmission resource.
  • the other carrier may be called a second carrier
  • the SCS corresponding to the other carrier may be called a second subcarrier spacing SCS
  • the HARQ-ACK transmission resource determined based on the other carrier and its corresponding SCS may be called The third HARQ-ACK transmission resource. It should be understood that, in order to make the third HARQ-ACK transmission resource available, the resource is determined after the first HARQ-ACK feedback time.
  • the terminal may determine available HARQ-ACK transmission resources at other time domain positions corresponding to the first carrier based on the first subcarrier spacing SCS and the first carrier, the HARQ - The ACK transmission resource may be referred to as a second HARQ-ACK transmission resource. It should also be understood that, in order to make the second HARQ-ACK transmission resource available, the resource is determined after the first HARQ-ACK feedback time.
  • the first carrier and/or the second carrier are determined based on one of the following:
  • the carrier corresponding to the current position in the physical uplink control channel PUCCH cell timing mode
  • the carriers are sequentially determined according to the numbers of the multiple carriers;
  • the carrier of the uplink transmission indicated by the downlink control information DCI is the carrier of the uplink transmission indicated by the downlink control information DCI;
  • PCell Primary cell
  • PScell Primary cell/Secondary cell
  • SCell Secondary serving cell
  • the first carrier and/or the second carrier may be determined according to any one of the various carriers listed above.
  • the carrier corresponding to the current position in the PUCCH cell timing mode is the carrier corresponding to the current slot in the PUCCH cell timing pattern. If the PUCCH cell timing pattern has multiple corresponding carriers, they can be numbered from small to large (or from large to small ) order selection.
  • the carrier for uplink transmission indicated by the DCI includes, for example: a carrier for transmitting the PUCCH and/or a carrier for transmitting the PUSCH.
  • the first subcarrier spacing SCS and/or the second subcarrier spacing SCS are determined based on one of the following:
  • the reference subcarrier spacing SCS configured by the network side device
  • the subcarrier spacing SCS uniformly configured by the network side device for the cell group
  • the subcarrier spacing SCS of the carrier corresponding to the current position in the physical uplink control channel PUCCH cell timing mode
  • the subcarrier spacing SCS of the carriers determined in order (such as ascending or descending) according to the number of the multiple carriers, or According to the size of the sub-carrier spacing SCS of the plurality of carriers, the sub-carrier spacing SCS determined in sequence;
  • the subcarrier spacing SCS of the secondary serving cell SCell is the subcarrier spacing SCS of the secondary serving cell SCell.
  • the first sub-carrier spacing SCS and/or the second sub-carrier spacing SCS may correspond to them one by one, including the above-listed optional range.
  • step 201 and step 202 may be repeatedly executed until finally the available HARQ-ACK transmission resource is determined in the carrier configured with the PUCCH resource or the maximum deferrable time position is reached.
  • the maximum deferrable time position may be determined according to the first subcarrier spacing SCS or the second subcarrier spacing SCS.
  • the method for determining the HARQ-ACK transmission resource determines the HARQ-ACK transmission resource according to the subcarrier spacing SCS of the carrier and the carrier, and when the determined HARQ-ACK transmission resource is not available, postpones the HARQ-ACK until it becomes available later It can effectively guarantee the reliable transmission of HARQ-ACK and improve the performance of SPS PDSCH transmission.
  • the determining the third HARQ-ACK transmission resource after the first HARQ-ACK feedback time based on the second subcarrier spacing SCS and the second carrier includes at least one of the following:
  • the second HARQ-ACK feedback time can be determined first based on the second subcarrier spacing SCS, wherein the second HARQ-ACK The feedback time is after the first HARQ-ACK feedback time.
  • the second carrier is determined according to the second HARQ-ACK feedback time.
  • the third HARQ-ACK transmission resource is determined according to the second HARQ-ACK feedback time and the second carrier.
  • the HARQ-ACK feedback time indication set corresponding to the second carrier can be determined first, and then the set can be analyzed according to the second subcarrier spacing SCS , so as to determine the third HARQ-ACK feedback time.
  • the third HARQ-ACK feedback time is after the first HARQ-ACK feedback time.
  • the fourth HARQ-ACK feedback time may also be firstly determined based on the first subcarrier spacing SCS and the second subcarrier spacing SCS, and the fourth HARQ-ACK feedback time is set after the first HARQ-ACK feedback time.
  • the third HARQ-ACK transmission resource is determined according to the fourth HARQ-ACK feedback time and the second carrier. For example, if it is assumed that the first subcarrier spacing SCS is u 1 , the second subcarrier spacing SCS is u 2 and the first HARQ-ACK feedback time is slot x, then the fourth HARQ-ACK feedback time can be determined as:
  • the HARQ-ACK feedback resource determined by at least one of the second HARQ-ACK feedback time, the third HARQ-ACK feedback time, and the fourth HARQ-ACK feedback time is the same as the time division duplex TDD
  • the time interval between the downlink DL resources is not less than a preset threshold, and the preset threshold is a set number of time units configured by the network side device or predefined by the terminal.
  • the second HARQ-ACK feedback time, the third HARQ-ACK feedback time, and the fourth HARQ-ACK feedback time determined after the first HARQ-ACK feedback time in the embodiments of the present application are determined according to the above-mentioned embodiments.
  • the time interval between the third HARQ-ACK transmission resource and the downlink DL resource under time division duplex TDD may not be less than a preset threshold. That is to say, there may be at least a time interval of L time units between the determined third HARQ-ACK transmission resource and the DL resource, where L is a positive integer predefined by the terminal or configured by the network.
  • the available third HARQ-ACK transmission resource can be acquired more quickly.
  • the second HARQ-ACK feedback time, the third HARQ-ACK feedback time and the fourth HARQ-ACK feedback time are different from the first HARQ feedback time or the semi-persistent scheduling SPS physical downlink
  • the interval of the shared channel PDSCH is not greater than the first maximum delay length; wherein, the first maximum delay length is determined based on the first subcarrier spacing SCS or the second subcarrier spacing SCS.
  • a maximum delay length may be determined based on the first subcarrier spacing SCS or the second subcarrier spacing SCS, and the second HARQ-ACK feedback time, the third HARQ-ACK feedback time, and the fourth HARQ-ACK feedback time may be limited.
  • the interval between the ACK feedback time and the first HARQ feedback time or the semi-persistent scheduling physical downlink shared channel (SPS PDSCH) is not greater than the maximum delay length, so that the determined HARQ-ACK transmission resources are within the available carrier range.
  • the maximum delay length may be referred to as the first maximum delay length.
  • the process of determining the available UL resources it is possible to delay in the time dimension first, that is, to determine the second HARQ-ACK feedback time, the third HARQ-ACK feedback time or the fourth HARQ-ACK feedback time Time, and then determine the corresponding carrier until the available UL resources are found or the maximum deferrable time position is reached.
  • the maximum deferrable time position is related to the first maximum delay length, and both can be determined according to the first subcarrier spacing SCS or the second subcarrier spacing SCS.
  • the maximum delay position can be determined as:
  • the maximum delay position can be determined as:
  • u 1 and u 2 represent the first subcarrier spacing SCS and the second subcarrier spacing SCS respectively
  • K def or k+K def refers to the maximum delay time of HARQ-ACK, that is, the delay time, and K def can be based on the first
  • the two-subcarrier spacing is determined by the SCS
  • k refers to the HARQ-ACK feedback time interval configured by the network.
  • the determined HARQ-ACK transmission Resources are within available carrier range.
  • the determining a second HARQ-ACK feedback time after the first HARQ-ACK feedback time based on the second subcarrier spacing SCS includes: determining that the first carrier is at the first Whether there are available uplink resources at the HARQ-ACK feedback time; if the first carrier does not have available uplink resources at the first HARQ-ACK feedback time, based on the second subcarrier spacing
  • the SCS is to determine a delay time; and determine the second HARQ-ACK feedback time based on the first HARQ-ACK feedback time and the delay time.
  • the second HARQ-ACK feedback time is determined based on the second subcarrier spacing SCS. Therefore, before switching to the second carrier, the terminal is based on the first After a carrier calculates the first HARQ-ACK feedback time, it detects whether there are available resources on the first carrier. If not, it jumps to the second HARQ-ACK feedback time by determining the second HARQ-ACK feedback time after the first HARQ-ACK feedback time. The carrier continues to look for available resources.
  • the terminal can determine the second carrier according to the second HARQ-ACK feedback time, and finally determine the available UL resources on the second carrier or the maximum deferrable time according to the second HARQ-ACK feedback time and the second carrier Location.
  • the set delay time is determined based on the second subcarrier spacing SCS, and the second HARQ-ACK feedback time is determined according to the delay time, so that the terminal can search for available HARQ-ACK transmission resources on the same carrier without performing Carrier jumping is more efficient.
  • the embodiments of the present application are illustrated, but the scope of protection claimed by the embodiments of the present application is not limited.
  • the method for determining HARQ-ACK transmission resources in the embodiment of the present application may include the following processing steps:
  • the first HARQ-ACK feedback time determines the first carrier according to the first HARQ-ACK feedback time; determine the HARQ-ACK transmission according to the first HARQ-ACK feedback time and the first carrier resource.
  • the first HARQ-ACK feedback time is determined based on the HARQ-ACK feedback time indication set (K1 set) corresponding to the first SCS.
  • the first HARQ-ACK feedback time is determined based on the K1 set configured by the cell group.
  • the first HARQ-ACK feedback time is determined based on the first SCS and the first carrier; and the HARQ-ACK transmission resource is determined according to the first HARQ-ACK feedback time and the first carrier.
  • the first carrier is determined based on a network indication or a predefined rule.
  • the first HARQ-ACK feedback time is determined based on the HARQ-ACK feedback time indication set (K1 set) corresponding to the first carrier.
  • the UE determines the initial position of the HARQ-ACK feedback (such as slot n+k) according to the first SCS, and determines the first carrier corresponding to the HARQ-ACK feedback.
  • k is defined according to the first SCS.
  • the second HARQ-ACK feedback time is determined, and the second HARQ-ACK feedback time is located after the first HARQ-ACK feedback time; according to the second HARQ-ACK feedback time, the second carrier is determined; according to The second HARQ-ACK feedback time and the second carrier determine HARQ-ACK transmission resources.
  • the second HARQ-ACK feedback time is determined based on the second SCS and the second carrier; and the HARQ-ACK transmission resource is determined according to the second HARQ-ACK feedback time and the second carrier.
  • the second HARQ-ACK feedback time is determined based on the second SCS and the second carrier, and the second HARQ-ACK feedback time is located after the first HARQ-ACK feedback time.
  • postpone in the time dimension first, that is, determine the second HARQ-ACK feedback time, and then determine the corresponding carrier until an available UL resource is found or the maximum deferrable time position is reached.
  • the initial position of the HARQ-ACK feedback is slot y
  • the SCS corresponding to slot y is the first SCS u 1
  • the maximum deferrable time position determined according to the second SCS u 2 is Kdef is determined based on the second SCS.
  • Kdef or (k+K def ) refers to the maximum delayable time of the HARQ-ACK.
  • the receiving position of the PDSCH is slot z
  • the SCS corresponding to the slot z is the first SCS u1
  • the maximum deferrable time position determined according to the second SCS is Kdef is determined based on the second SCS.
  • Kdef or (k+K def ) refers to the maximum delayable time of the HARQ-ACK.
  • FIG. 3 it is a schematic diagram of the carrier structure in the HARQ-ACK transmission resource determination method provided according to the embodiment of the present application, assuming that the network is configured with PUCCH cell timing pattern 1 and PUCCH cell timing pattern 2, wherein PUCCH cell timing pattern 1
  • the available PUCCH carrier in PUCCH cell timing pattern 2 is CC2 (15kHz), corresponding to slot n 2 ⁇ slot n 2 +2; the available PUCCH carrier in PUCCH cell timing pattern 2 is CC3 (30kHz), corresponding to slot n+6 ⁇ slot n+11.
  • the first carrier is the carrier corresponding to PUCCH cell timing pattern 1, that is, CC2.
  • the first SCS is the SCS corresponding to the carrier corresponding to the PUCCH cell timing pattern 1.
  • the second SCS is the SCS corresponding to the carrier corresponding to the PUCCH cell timing pattern 2.
  • K1 Def 4
  • slot n 2 +1 the UE searches for available UL resources in CC2. Since the slot n 2 +1 of CC2 collides with the DL, the UE postpones the HARQ-ACK feedback to a subsequent time domain position. Since PUCCH cell timing pattern 1 is still applicable, the UE searches for available UL resources in slot n 2 +2 of CC2. Similarly, slot n 2 +2 conflicts with DL, so the UE needs to postpone the HARQ-ACK feedback to the subsequent time domain position.
  • Steps 1) and 2) are repeated until the available UL resource is determined or the maximum deferrable time position is reached.
  • the maximum deferrable time position is determined according to the first SCS or the second SCS.
  • the terminal determines the second HARQ-ACK transmission resource after the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier, including at least one of the following:
  • the above listed At least one of the ways to achieve.
  • another HARQ-ACK feedback time may be determined first based on the first subcarrier spacing SCS and the first carrier as the fifth The HARQ-ACK feedback time, and then determine the second HARQ-ACK transmission resource according to the fifth HARQ-ACK feedback time and the first carrier.
  • the HARQ-ACK feedback time indication set corresponding to the first carrier can be determined first, and then the set can be analyzed according to the first subcarrier spacing SCS , to determine the fifth HARQ-ACK feedback time.
  • another HARQ-ACK feedback time may be determined as the sixth HARQ-ACK feedback time based on the first sub-carrier spacing SCS and the second sub-carrier spacing SCS, and the sixth HARQ-ACK feedback time is within the first HARQ-ACK feedback time.
  • the second HARQ-ACK transmission resource is determined according to the sixth HARQ-ACK feedback time and the first carrier. For example, if it is assumed that the first subcarrier spacing SCS is u 1 , the second subcarrier spacing SCS is u 2 , and the first HARQ-ACK feedback time is slot x, then the sixth HARQ-ACK feedback time can be determined as:
  • the time interval between the fifth HARQ-ACK feedback time and the downlink DL resource under time division duplex TDD is not less than a preset threshold, and the preset threshold is configured by the network side device or by the A set number of time units predefined by the terminal.
  • the time interval between the second HARQ-ACK transmission resources and the downlink DL resources under the time division duplex TDD may not be less than a preset threshold. That is to say, there may be at least a time interval of L time units between the determined second HARQ-ACK transmission resource and the DL resource, where L is a positive integer predefined by the terminal or configured by the network.
  • the available second HARQ-ACK transmission resource can be acquired more quickly.
  • the interval between the fifth HARQ-ACK feedback time and the sixth HARQ-ACK feedback time and the first HARQ feedback time or the semi-persistent scheduling SPS physical downlink shared channel PDSCH is not greater than the second maximum Delay length; wherein, the second maximum delay length is determined based on the first subcarrier spacing SCS or the second subcarrier spacing SCS.
  • a maximum delay length can be determined based on the first subcarrier spacing SCS or the second subcarrier spacing SCS, and the fifth HARQ-ACK feedback time and the sixth HARQ-ACK feedback time and the first HARQ feedback time can be limited.
  • the time or the interval of the SPS PDSCH is not greater than the maximum delay length, so that the determined second HARQ-ACK transmission resource is within the available carrier range.
  • the maximum delay length may be referred to as the second maximum delay length.
  • the determined HARQ-ACK transmission resources can be within the available carrier range.
  • the terminal determines the first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier, including one of the following:
  • the terminal determines the first HARQ-ACK feedback time based on the first subcarrier spacing SCS; the terminal determines the first carrier based on the first HARQ-ACK feedback time; the terminal determines the first carrier based on the The first HARQ-ACK feedback time and the first carrier, determine the first HARQ-ACK transmission resource;
  • the terminal determines the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier; the terminal determines the first HARQ-ACK feedback time and the first carrier based on the first HARQ-ACK feedback time, Determine the first HARQ-ACK transmission resource.
  • a HARQ-ACK feedback time may be firstly determined as the first HARQ-ACK feedback time based on the first subcarrier spacing SCS. Afterwards, the first carrier is determined according to the first HARQ-ACK feedback time. On this basis, according to the first HARQ-ACK feedback time and the determined first carrier, determine the corresponding HARQ-ACK transmission resource as the first HARQ-ACK transmission resource.
  • the HARQ-ACK feedback time indication set corresponding to the first carrier can be determined first, and then the set can be analyzed according to the first subcarrier spacing SCS , so as to determine the first HARQ-ACK feedback time.
  • the terminal determines the first HARQ-ACK feedback time based on the first subcarrier spacing SCS, including at least one of the following:
  • the first HARQ-ACK feedback time is determined based on a set of HARQ-ACK feedback time indications configured by a cell group (cell group).
  • the HARQ-ACK feedback time indication set configured in advance according to the first subcarrier spacing SCS or the HARQ feedback time configured in advance for the cell group - A set of ACK feedback time indications, from which any time k is indicated as the first HARQ-ACK feedback time.
  • the first subcarrier spacing SCS and the HARQ-ACK feedback time indication set can be configured based on the cell group, so the first subcarrier spacing SCS corresponds to the cell group.
  • the available resources can be determined in combination with the subcarrier spacing of different carriers to ensure reliability. transmission.
  • the terminal determining the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier includes: the terminal based on the HARQ-ACK corresponding to the first carrier
  • the set of feedback time indications determines the first HARQ-ACK feedback time.
  • the terminal can indicate any HARQ-ACK feedback time based on the HARQ-ACK feedback time indication set (K1 set) corresponding to the first carrier, and determine it as the first HARQ-ACK feedback time.
  • the first carrier may be configured with a HARQ-ACK feedback time indication set correspondingly, and the first HARQ-ACK feedback time may be determined by understanding the set through the first subcarrier interval SCS.
  • the method for determining the HARQ-ACK transmission resource further includes: the terminal determines the first carrier based on a network side instruction or a predefined rule. It can be understood that when the terminal determines the first carrier according to the first HARQ-ACK feedback time, it may specifically determine the first carrier based on a network instruction or a predefined rule.
  • the method for determining HARQ-ACK transmission resources in the embodiment of the present application may include the following processing steps:
  • the first HARQ-ACK feedback time determines the first carrier according to the first HARQ-ACK feedback time; determine the HARQ-ACK transmission according to the first HARQ-ACK feedback time and the first carrier resource.
  • the first HARQ-ACK feedback time is determined based on the HARQ-ACK feedback time indication set (K1 set) corresponding to the first SCS.
  • the first HARQ-ACK feedback time is determined based on the K1 set configured by the cell group.
  • the first HARQ-ACK feedback time is determined based on the first SCS and the first carrier; and the HARQ-ACK transmission resource is determined according to the first HARQ-ACK feedback time and the first carrier.
  • the first carrier is determined based on a network indication or a predefined rule.
  • the first HARQ-ACK feedback time is determined based on the HARQ-ACK feedback time indication set (K1 set) corresponding to the first carrier.
  • the UE determines the initial position of the HARQ-ACK feedback (such as slot n+k) according to the first SCS, and determines the first carrier corresponding to the HARQ-ACK feedback.
  • k is defined according to the first SCS.
  • the second HARQ-ACK feedback time is determined based on the first SCS and the first carrier, and the second HARQ-ACK feedback time is located after the first HARQ-ACK feedback time.
  • Step 2) is repeated until the available UL resources are determined or the maximum deferrable time position is reached.
  • the maximum deferrable time position is determined according to the first SCS or the second SCS.
  • postpone in the time dimension first that is, determine the second HARQ-ACK feedback time until an available UL resource is found or the maximum deferrable time position is reached.
  • the initial position of the HARQ-ACK feedback is slot y
  • the SCS corresponding to slot y is the first SCS u 1
  • the maximum deferrable time position determined according to the second SCS u 2 is Kdef is determined based on the second SCS.
  • Kdef or k+K def refers to the maximum delayable time of the HARQ-ACK.
  • the receiving position of the PDSCH is slot z
  • the SCS corresponding to the slot z is the first SCS u 1
  • the maximum deferrable time position determined according to the second SCS is Kdef is determined based on the second SCS.
  • Kdef or k+K def refers to the maximum delayable time of the HARQ-ACK.
  • the maximum deferrable time position is determined according to the first SCS or the second SCS.
  • the TDD configuration or slot format of each carrier is configured by the network.
  • switchable carriers are configured by the network, or are predefined as all carriers configured with PUCCH resources.
  • the network can configure one or more PUCCH cell timing patterns, each pattern indicates the available PUCCH carriers for a period of time, and the PUCCH carriers indicated by different PUCCH cell timing patterns may be the same or different.
  • the available UL resource refers to the carrier or the time domain unit, which has enough uplink resources to transmit PUCCH.
  • the PUCCH contains the HARQ-ACK corresponding to the SPS PDSCH, and may also contain other UCI; or refers to the carrier or
  • the time domain unit has enough uplink resources to transmit PUSCH, which is dynamically scheduled or semi-statically configured PUSCH, and UCI (including HARQ-ACK of SPS PDSCH) will be multiplexed on PUSCH for transmission.
  • Another implementation manner of the embodiment of the present application is that the UE does not expect the HARQ-ACK delay mechanism and the PUCCH carrier switching function in different SCSs to be enabled at the same time.
  • the execution subject may be the device for determining the HARQ-ACK transmission resource, or the device for performing HARQ-ACK transmission in the device for determining the HARQ-ACK transmission resource A control module for resource determination methods.
  • the method for determining the HARQ-ACK transmission resource performed by the device for determining the HARQ-ACK transmission resource is taken as an example to describe the device for determining the HARQ-ACK transmission resource provided in the embodiment of the present application.
  • FIG. 4 it is a schematic structural diagram of an apparatus for determining HARQ-ACK transmission resources provided in the embodiment of the present application.
  • the apparatus 400 can be used to implement the determination of HARQ-ACK transmission resources in the above-mentioned embodiments of methods for determining HARQ-ACK transmission resources.
  • the device includes: a first processing module 401 and a second processing module 402 .
  • the first processing module 401 is used to determine the first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier; the second processing module 402 is used to determine that the first HARQ-ACK transmission resource is unavailable In the case of , based on the first subcarrier spacing SCS and the first carrier, determine the second HARQ-ACK transmission resource after the first HARQ-ACK feedback time, or based on the second subcarrier spacing SCS and the second The carrier determines the third HARQ-ACK transmission resource after the first HARQ-ACK feedback time.
  • the first HARQ-ACK feedback time is determined based on the first subcarrier spacing SCS or based on the first subcarrier spacing SCS and the first carrier.
  • the device for determining the HARQ-ACK transmission resource determines the HARQ-ACK transmission resource according to the subcarrier spacing SCS of the carrier and the carrier, and when the determined HARQ-ACK transmission resource is not available, postpones the HARQ-ACK until it becomes available later It can effectively guarantee the reliable transmission of HARQ-ACK and improve the performance of SPS PDSCH transmission.
  • the second processing module when used for determining the third HARQ-ACK transmission resource after the first HARQ-ACK feedback time based on the second subcarrier spacing SCS and the second carrier, for at least one of the following:
  • the second processing module when used for determining a second HARQ-ACK feedback time after the first HARQ-ACK feedback time based on the second subcarrier spacing SCS, :
  • the first carrier does not have available uplink resources at the first HARQ-ACK feedback time, determine a delay time based on the second subcarrier spacing SCS;
  • the set delay time is determined based on the second subcarrier spacing SCS, and the second HARQ-ACK feedback time is determined according to the delay time, so that the terminal can search for available HARQ-ACK transmission resources on the same carrier without performing Carrier jumping is more efficient.
  • the third HARQ-ACK feedback time is after the first HARQ-ACK feedback time.
  • the HARQ-ACK feedback resource determined by at least one of the second HARQ-ACK feedback time, the third HARQ-ACK feedback time, and the fourth HARQ-ACK feedback time is the same as the time division duplex TDD
  • the time interval between the downlink DL resources is not less than a preset threshold, and the preset threshold is a set number of time units configured by the network side device or predefined by the terminal.
  • the available third HARQ-ACK transmission resource can be acquired more quickly.
  • the second HARQ-ACK feedback time, the third HARQ-ACK feedback time and the fourth HARQ-ACK feedback time are different from the first HARQ feedback time or the semi-persistent scheduling SPS physical downlink
  • the interval of the shared channel PDSCH is not greater than the first maximum delay length
  • the first maximum delay length is determined based on the first subcarrier spacing SCS or the second subcarrier spacing SCS.
  • the determined HARQ-ACK transmission Resources are within available carrier range.
  • the second processing module is used for determining the second HARQ-ACK transmission resource after the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier , for at least one of the following:
  • the time interval between the fifth HARQ-ACK feedback time and the downlink DL resource under time division duplex TDD is not less than a preset threshold, and the preset threshold is configured by the network side device or by the A set number of time units predefined by the terminal.
  • the available second HARQ-ACK transmission resource can be acquired more quickly.
  • the interval between the fifth HARQ-ACK feedback time and the sixth HARQ-ACK feedback time and the first HARQ feedback time or the semi-persistent scheduling SPS physical downlink shared channel PDSCH is not greater than the second maximum delay length
  • the second maximum delay length is determined based on the first subcarrier spacing SCS or the second subcarrier spacing SCS.
  • the determined HARQ-ACK transmission resources can be within the available carrier range.
  • the first processing module when used for determining the first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier, it is used for one of the following:
  • the available resources can be determined in combination with the subcarrier spacing of different carriers to ensure reliability. transmission.
  • the first processing module when used for determining the first HARQ-ACK feedback time based on the first subcarrier spacing SCS, it is used for at least one of the following:
  • the first processing module when used for determining the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier, it is used to:
  • the apparatus further includes: a third processing module, configured to determine the first carrier based on a network side instruction or a predefined rule.
  • the first carrier and/or the second carrier are determined based on one of the following:
  • the carrier corresponding to the current position in the physical uplink control channel PUCCH cell timing mode
  • the carriers are sequentially determined according to the numbers of the multiple carriers;
  • the carrier of the uplink transmission indicated by the downlink control information DCI is the carrier of the uplink transmission indicated by the downlink control information DCI;
  • Primary carrier primary serving cell PCell or primary and secondary serving cell PScell;
  • the first subcarrier spacing SCS and/or the second subcarrier spacing SCS are determined based on one of the following:
  • the reference subcarrier spacing SCS configured by the network side device
  • the subcarrier spacing SCS uniformly configured by the network side device for the cell group
  • the subcarrier spacing SCS of the carrier corresponding to the current position in the physical uplink control channel PUCCH cell timing mode
  • the subcarrier spacing SCS of the carriers determined in sequence according to the numbers of the multiple carriers, or according to the number of the multiple carriers The size of the subcarrier spacing SCS, the subcarrier spacing SCS determined in order;
  • the subcarrier spacing SCS of the secondary serving cell SCell is the subcarrier spacing SCS of the secondary serving cell SCell.
  • the device for determining the HARQ-ACK transmission resource in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminal 101 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the apparatus for determining HARQ-ACK transmission resources provided by the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 to FIG. 3 , and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • the embodiment of the present application further provides a communication device m00 , including a processor 501 , a memory 502 , and programs or instructions stored in the memory 502 and executable on the processor 501 .
  • a communication device including a processor 501 , a memory 502 , and programs or instructions stored in the memory 502 and executable on the processor 501 .
  • the communication device is a terminal
  • the program or instruction is executed by the processor 501
  • the various processes in the above-mentioned embodiment of the method for determining the HARQ-ACK transmission resource can be implemented, and the same technical effect can be achieved. In order to avoid repetition, I won't go into details here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to determine the first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier; and, when determining the first HARQ - When the ACK transmission resource is unavailable, based on the first subcarrier spacing SCS and the first carrier, determine the second HARQ-ACK transmission resource after the first HARQ-ACK feedback time, or determine the second HARQ-ACK transmission resource based on the second subcarrier spacing SCS
  • the carrier spacing SCS and the second carrier determine the third HARQ-ACK transmission resource after the first HARQ-ACK feedback time; wherein the first HARQ-ACK feedback time is based on the first subcarrier spacing SCS Or determined based on the first subcarrier spacing SCS and the first carrier.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can
  • FIG. 6 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 600 includes, but is not limited to: a radio frequency unit 601, a network module 602, an audio output unit 603, an input unit 604, a sensor 605, a display unit 606, a user input unit 607, an interface unit 608, a memory 609, and a processor 610, etc. At least some parts.
  • the terminal 600 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 610 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 6 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 604 may include a graphics processor (Graphics Processing Unit, GPU) 6041 and a microphone 6042, and the graphics processor 6041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 606 may include a display panel 6061, and the display panel 6061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 607 includes a touch panel 6071 and other input devices 6072 .
  • the touch panel 6071 is also called a touch screen.
  • the touch panel 6071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 6072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 601 receives the downlink data from the network side device, and processes it to the processor 610; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 601 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 609 can be used to store software programs or instructions as well as various data.
  • the memory 609 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 609 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 610 may include one or more processing units; optionally, the processor 610 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 610 .
  • the processor 610 is configured to determine a first HARQ-ACK transmission resource based on the first subcarrier spacing SCS and the first carrier; and, when it is determined that the first HARQ-ACK transmission resource is unavailable, the The terminal determines the second HARQ-ACK transmission resource after the first HARQ-ACK feedback time based on the first subcarrier spacing SCS and the first carrier, or determines based on the second subcarrier spacing SCS and the second carrier A third HARQ-ACK transmission resource after the first HARQ-ACK feedback time;
  • the first HARQ-ACK feedback time is determined based on the first subcarrier spacing SCS or based on the first subcarrier spacing SCS and the first carrier.
  • the terminal provided in the embodiment of the present application determines the HARQ-ACK transmission resource according to the subcarrier spacing SCS of the carrier and the carrier, and when the determined HARQ-ACK transmission resource is not available, postpones the HARQ-ACK to the subsequent available uplink resource. Transmission can effectively ensure the reliable transmission of HARQ-ACK and improve the performance of SPS PDSCH transmission.
  • processor 610 is also used for at least one of the following:
  • processor 610 is also used for:
  • the first carrier does not have available uplink resources at the first HARQ-ACK feedback time, determine a delay time based on the second subcarrier spacing SCS;
  • the set delay time is determined based on the second subcarrier spacing SCS, and the second HARQ-ACK feedback time is determined according to the delay time, so that the terminal can search for available HARQ-ACK transmission resources on the same carrier without performing Carrier jumping is more efficient.
  • processor 610 is also used for at least one of the following:
  • processor 610 is also used for one of the following:
  • the available resources can be determined in combination with the subcarrier spacing of different carriers to ensure reliability. transmission.
  • processor 610 is also used for at least one of the following:
  • the processor 610 is further configured to determine the first HARQ-ACK feedback time based on the HARQ-ACK feedback time indication set corresponding to the first carrier.
  • the processor 610 is further configured to determine the first carrier based on a network side instruction or a predefined rule.
  • the embodiment of the present application also provides a readable storage medium, where a program or instruction is stored on the readable storage medium, and when the program or instruction is executed by the processor, each process of the above-mentioned embodiment of the method for determining the HARQ-ACK transmission resource is realized , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the above-mentioned HARQ-ACK transmission resource determination
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to realize the above-mentioned HARQ-ACK transmission resource determination
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the embodiment of the present application also provides a computer program/program product, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the above HARQ -
  • Each process of the embodiment of the method for determining the ACK transmission resource can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种HARQ-ACK传输资源确定方法、终端及存储介质,属于通信技术领域,其中方法包括:终端基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;在确定所述第一HARQ-ACK传输资源不可用的情况下,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。

Description

HARQ-ACK传输资源确定方法、终端及存储介质
相关申请的交叉引用
本申请要求于2021年08月06日提交的申请号为202110903510.X,名称为“HARQ-ACK传输资源确定方法、终端及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种混合自动重复请求-确认(Hybrid Automatic Repeat Request-Acknowledgement,HARQ-ACK)传输资源确定方法、终端及存储介质。
背景技术
在现有HARQ-ACK传输中,当用户(User Equipment,UE)配置了半持续调度(Semi-Persistent Scheduling,SPS)时,每个SPS配置的HARQ-ACK反馈时间是由该SPS配置的激活下行控制信息(Downlink Control Information,DCI)指示的,因此不同SPS配置的SPS物理下行链路共享信道(Physical Downlink Shared Channel,PDSCH)对应的HARQ-ACK可能会在不同的时间上反馈。
但是,当一个SPS PDSCH对应的HARQ-ACK反馈时间与时分双工(Time Division Duplex,TDD)场景下的下行链路(Downlink,DL)冲突时,该SPS PDSCH的HARQ-ACK将会被丢弃,从而会造成SPS PDSCH的性能下降。
发明内容
本申请实施例提供一种HARQ-ACK传输资源确定方法、终端及存储 介质,能够解决现有技术中由于资源冲突HARQ-ACK不能正常传输的问题。
第一方面,提供了一种HARQ-ACK传输资源确定方法,应用于终端,该方法包括:
终端基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;
在确定所述第一HARQ-ACK传输资源不可用的情况下,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;
其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
第二方面,提供了一种HARQ-ACK传输资源确定装置,应用于终端,该装置包括:
第一处理模块,用于基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;
第二处理模块,用于在确定所述第一HARQ-ACK传输资源不可用的情况下,基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;
其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时,实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;以及,在确定所述第一HARQ-ACK传输资源不可用的情况下,基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;
其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时,实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行,以实现如第一方面所述的HARQ-ACK传输资源确定方法的步骤。
在本申请实施例中,根据载波的子载波间隔SCS和载波确定HARQ-ACK传输资源,并在确定的HARQ-ACK传输资源不可用时,将HARQ-ACK推迟至后续可用的上行链路资源进行传输,能够有效保证HARQ-ACK的可靠传输,提高SPS PDSCH传输的性能。
附图说明
图1为本申请实施例可应用的一种无线通信系统的结构图;
图2为本申请实施例提供的HARQ-ACK传输资源确定方法的流程示 意图;
图3为根据本申请实施例提供的HARQ-ACK传输资源确定方法中载波结构示意图;
图4为本申请实施例提供的HARQ-ACK传输资源确定装置的结构示意图;
图5为本申请实施例提供的通信设备的结构示意图;
图6为实现本申请实施例的一种终端的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple  Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端101和网络侧设备102。其中,终端101也可以称作终端设备或者用户终端或用户设备(User Equipment,UE),终端101可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端101的具体类型。网络侧设备102可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词 汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
本申请实施例中,终端可以配置激活至少一个载波,如载波1~M,其中载波CC m对应的SCS为SCS m。假设在给终端配置的M个载波中,有N个载波被配置了物理上行链路控制信道(Physical Uplink Control CHannel,PUCCH)资源,N<=M,且网络配置开启PUCCH载波转换(carrier switching),则终端可在N个配置了PUCCH资源的载波上进行切换。
进一步的,对于上述N个载波,网络可以配置一个或多个PUCCH小区定时模式(cell timing pattern),每个模式pattern指示了一段时间内可用的PUCCH载波,不同的PUCCH cell timing pattern指示的PUCCH载波可能相同或不同。对于PUCCH cell pattern,具体的实现方式可以包括:time domain pattern可以针对这N个Cell统一配置,也可以针对各个PUCCH cell分别配置。
终端在载波i配置有至少一个DL SPS配置资源,包括SPS config 1~L。假设在slot n,终端接收了SPS config j的PDSCH。根据SPS config j的激活DCI指示的k(即K1),该PDSCH对应的HARQ-ACK将在slot n+k反馈。
由于slot n+k内确定用于承载SPS PDSCH对应的HARQ-ACK的PUCCH资源占用的部分或全部符号与DL(例如包括DL symbol,SSB,CORESET#0等)符号冲突,因此终端将该HARQ-ACK推迟至后续时刻进行反馈,该承载HARQ-ACK的PUCCH资源可能位于上述配置了PUCCH资源的N个载波中的任意载波上。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的HARQ-ACK传输资源确定方法、终端及存储介质进行详细地说明。
图2为本申请实施例提供的HARQ-ACK传输资源确定方法的流程示意图,该方法可由终端执行,该终端具体可以是图1中示出的终端101。 如图2所示,该方法包括:
步骤201,终端基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源。
可以理解为,在终端被配置激活了至少一个载波,且该载波中每个载波或部分载波被配置了物理上行链路控制信道(Physical Uplink Control CHannel,PUCCH)的情况下,终端可以在每个载波上配置至少一个DL SPS配置资源,如可表示为SPS config 1~L。
当在某一时域位置,如slot n,终端接收到针对DL SPS配置资源SPS config j的PDSCH信令时,终端可以在配置了PUCCH的载波中确定任一载波和该载波的子载波间隔SCS。其中,该载波可称为第一载波,其对应的SCS可称为第一子载波间隔SCS。
之后,终端根据该第一子载波间隔SCS和/或第一载波,通过确定HARQ-ACK反馈时间,来获取该HARQ-ACK反馈时间对应的HARQ-ACK传输资源。其中的HARQ-ACK反馈时间可称为第一HARQ-ACK反馈时间,HARQ-ACK传输资源可称为第一HARQ-ACK传输资源。
其中,HARQ-ACK可以指特定的PDSCH对应的HARQ-ACK,也可以泛指需要反馈HARQ-ACK的PDSCH对应的HARQ-ACK,既可以指HARQ-ACK信息,也可以指HARQ-ACK码本,如Type 1/2/3码本等。其中,PDSCH可以是动态调度的PDSCH,也可以是SPS PDSCH,本申请实施例对此并不作具体限定。
步骤202,在确定所述第一HARQ-ACK传输资源不可用的情况下,终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源。
其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
可以理解为,本申请实施例在根据第一子载波间隔SCS和第一载波确定第一HARQ-ACK传输资源的基础上,可以进一步判断该第一HARQ-ACK传输资源是否可用。例如,可以检测第一HARQ-ACK传输资源,即第一HARQ-ACK反馈时间内用于承载SPS PDSCH对应的HARQ-ACK的PUCCH资源,所占用的部分或全部符号是否与TDD的DL(例如包括DL symbol,SSB,CORESET#0等)符号存在冲突。如果存在冲突,即认为第一HARQ-ACK传输资源不可用,否则认为可用。
在确定第一HARQ-ACK传输资源不可用的情况下,如果网络侧配置开启PUCCH载波转换(carrier switching),终端可在上述配置了PUCCH资源的载波上进行切换,也就是可以将待传输的HARQ-ACK推迟至后续时刻进行反馈,其中承载该HARQ-ACK的PUCCH资源可能位于上述配置了PUCCH资源的载波中的任意载波上。
具体在确定将要切换到的载波或PUCCH资源时,可以在上述配置了PUCCH资源的载波中选取第一载波外的另一载波,并确定该载波对应的SCS,之后根据该载波和该载波对应的SCS确定另一HARQ-ACK传输资源。其中,该另一载波可称为第二载波,该另一载波对应的SCS可称为第二子载波间隔SCS,基于该另一载波和其对应的SCS确定的HARQ-ACK传输资源可称为第三HARQ-ACK传输资源。应理解的是,为使第三HARQ-ACK传输资源可用,该资源确定在第一HARQ-ACK反馈时间之后。
或者,终端可以在第一HARQ-ACK传输资源不可用的情况下,基于第一子载波间隔SCS和第一载波,确定第一载波对应的其它时域位置的可用HARQ-ACK传输资源,该HARQ-ACK传输资源可称为第二HARQ-ACK传输资源。同样应理解的是,为使第二HARQ-ACK传输资源可用,该资源确定在第一HARQ-ACK反馈时间之后。
可选地,所述第一载波和/或所述第二载波基于如下之一确定:
配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载 波;
配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波;
物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波;
在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波;
所述终端接收的半持续调度SPS物理下行共享信道PDSCH的载波;
下行控制信息DCI指示的上行传输的载波;
主载波、主服务小区(Primary cell,PCell)或主辅服务小区(Primary cell/Secondary cell,PScell);
辅服务小区(Secondary cell,SCell)。
可以理解为,根据网络端的实际配置情况,第一载波和/或第二载波可以根据上述列举的各种载波中的任一个确定。其中,PUCCH小区定时模式中当前位置对应的载波即是PUCCH cell timing pattern中当前slot对应的载波,如果PUCCH cell timing pattern有多个对应的载波,则可以按照编号从小到大(或从大到小)的顺序选择。DCI指示的上行传输的载波例如包括:传输PUCCH的载波和/或传输PUSCH的载波。
可选地,所述第一子载波间隔SCS和/或所述第二子载波间隔SCS基于如下之一确定:
网络侧设备配置的参考子载波间隔SCS;
网络侧设备为小区组cell group统一配置的子载波间隔SCS;
配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波对应的子载波间隔SCS;
配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波对应的子载波间隔SCS;
物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波 的子载波间隔SCS;
在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序(如升序或者降序)确定的载波的子载波间隔SCS,或者按照所述多个载波的子载波间隔SCS的大小,顺序确定的子载波间隔SCS;
所述终端接收的半持续调度SPS物理下行共享信道PDSCH的载波的子载波间隔SCS;
下行控制信息DCI指示的上行传输的载波的子载波间隔SCS;
主载波、主服务小区PCell或主辅服务小区PScell的子载波间隔SCS;
辅服务小区SCell的子载波间隔SCS。
可以理解为,对于上述实施例列举的第一载波和/或第二载波的可选范围,第一子载波间隔SCS和/或第二子载波间隔SCS可以一一与之对应,包括上述所列举的可选范围。
应理解的是,可以重复执行上述步骤201和步骤202,直至最终在上述配置了PUCCH资源的载波中确定到可用的HARQ-ACK传输资源或者达到最大可推迟的时间位置。其中,最大可推迟的时间位置可根据第一子载波间隔SCS或第二子载波间隔SCS来确定。
本申请实施例提供的HARQ-ACK传输资源确定方法,根据载波的子载波间隔SCS和载波确定HARQ-ACK传输资源,并在确定的HARQ-ACK传输资源不可用时,将HARQ-ACK推迟至后续可用的上行链路资源进行传输,能够有效保证HARQ-ACK的可靠传输,提高SPS PDSCH传输的性能。
可选地,所述基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源,包括如下至少之一:
基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时 间后的第二HARQ-ACK反馈时间;基于所述第二HARQ-ACK反馈时间,确定所述第二载波;基于所述第二HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
基于所述第二子载波间隔SCS和所述第二载波,确定第三HARQ-ACK反馈时间;基于所述第三HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第四HARQ-ACK反馈时间,基于所述第四HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源。
可以理解为,对于切换到第二载波确定第三HARQ-ACK传输资源的情况,在基于第二子载波间隔SCS和第二载波确定第三HARQ-ACK传输资源时,可以采用上述所列举方式中的至少一种来实现。
具体的,与基于第一子载波间隔SCS和第一载波确定第一HARQ-ACK传输资源类似,可以首先基于第二子载波间隔SCS,确定第二HARQ-ACK反馈时间,其中第二HARQ-ACK反馈时间位于第一HARQ-ACK反馈时间之后。之后,根据第二HARQ-ACK反馈时间,确定第二载波。最后根据第二HARQ-ACK反馈时间和第二载波,确定第三HARQ-ACK传输资源。
或者,也可以基于第二子载波间隔SCS和第二载波,首先确定第三HARQ-ACK反馈时间,再根据第三HARQ-ACK反馈时间和第二载波,确定第三HARQ-ACK传输资源。其中,基于第二子载波间隔SCS和第二载波确定第三HARQ-ACK反馈时间时,可以先确定第二载波对应的HARQ-ACK反馈时间指示集合,再根据第二子载波间隔SCS解析该集合,从而确定第三HARQ-ACK反馈时间。可选地,所述第三HARQ-ACK反馈时间在所述第一HARQ-ACK反馈时间之后。
或者,也可以先基于第一子载波间隔SCS和第二子载波间隔SCS, 确定第四HARQ-ACK反馈时间,且使第四HARQ-ACK反馈时间在第一HARQ-ACK反馈时间之后。之后,根据第四HARQ-ACK反馈时间和第二载波,确定第三HARQ-ACK传输资源。例如,若假设第一子载波间隔SCS为u 1、第二子载波间隔SCS为u 2且第一HARQ-ACK反馈时间为slot x,则可以确定第四HARQ-ACK反馈时间为:
Figure PCTCN2022110263-appb-000001
本申请实施例通过先确定第一HARQ-ACK反馈时间后的HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第二载波确定第三HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间中至少之一确定的HARQ-ACK反馈资源与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由所述终端预定义的设定数量个时间单元。
可以理解为,本申请实施例根据上述各实施例确定的第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间、第三HARQ-ACK反馈时间和第四HARQ-ACK反馈时间,在根据其确定第三HARQ-ACK传输资源时,可以使第三HARQ-ACK传输资源与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值。也就是说,可以使确定的第三HARQ-ACK传输资源与DL资源间至少存在L个时间单元的时间间隔,其中L为终端预定义或网络配置的正整数。
本申请实施例通过限制第三HARQ-ACK传输资源与DL资源间的时间间隔,可以更快速地获取到可用的第三HARQ-ACK传输资源。
可选地,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第一最大延迟长度;其中,所述第一最大延迟长度基于所述第一子载波间隔SCS或所 述第二子载波间隔SCS确定。
可以理解为,由于网络端在有限的载波上配置了PUCCH资源,因此HARQ-ACK的传输无法实现无限延迟。具体的,本申请实施例可以基于第一子载波间隔SCS或第二子载波间隔SCS确定一最大延迟长度,并限定第二HARQ-ACK反馈时间、第三HARQ-ACK反馈时间和第四HARQ-ACK反馈时间与第一HARQ反馈时间或半持续调度物理下行链路共享信道(SPS PDSCH)的间隔不大于该最大延迟长度,以使确定的HARQ-ACK传输资源在可用的载波范围内。为便于区分,其中的最大延迟长度可称为第一最大延迟长度。
应理解的是,本申请实施例在确定可用UL资源的过程中,可以先在时间维度进行推迟,即确定第二HARQ-ACK反馈时间、第三HARQ-ACK反馈时间或第四HARQ-ACK反馈时间,再确定相应的载波,直至找到可用的UL资源或者到达最大可推迟的时间位置。其中,最大可推迟的时间位置与第一最大延迟长度相关,均可根据第一子载波间隔SCS或第二子载波间隔SCS来确定。
举例说明,在HARQ-ACK反馈的初始位置为slot y且slot y对应第一子载波间隔SCS的情况下,基于第二子载波间隔SCS,可以确定最大延迟位置为:
Figure PCTCN2022110263-appb-000002
在物理下行链路控制信道PDSCH的接收位置为slot z且slot z对应第一子载波间隔SCS的情况下,基于第二子载波间隔SCS,可以确定最大延迟位置为:
Figure PCTCN2022110263-appb-000003
其中,u 1、u 2分别表示第一子载波间隔SCS和第二子载波间隔SCS,K def或k+K def指HARQ-ACK最大可推迟的时间,也即延迟时间,K def可基于第二子载波间隔SCS确定,k指网络配置的HARQ-ACK反馈时间间隔。
本申请实施例通过限定第二HARQ-ACK反馈时间、第三HARQ-ACK反馈时间和第四HARQ-ACK反馈时间与第一HARQ反馈时间或 SPS PDSCH的时间间隔,能够使确定的HARQ-ACK传输资源在可用的载波范围内。
可选地,所述基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间,包括:确定所述第一载波在所述第一HARQ-ACK反馈时间是否存在可用的上行链路资源;在所述第一载波在所述第一HARQ-ACK反馈时间不存在可用的上行链路资源的情况下,基于所述第二子载波间隔SCS,确定延迟时间;基于所述第一HARQ-ACK反馈时间和所述延迟时间,确定所述第二HARQ-ACK反馈时间。
可以理解为,本申请实施例在确定第一载波不存在可用资源的情况下,基于第二子载波间隔SCS确定第二HARQ-ACK反馈时间,因此在切换到第二载波之前,终端在根据第一载波计算第一HARQ-ACK反馈时间后,检测第一载波上是否有可用资源,若没有,则通过确定第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间,跳转到第二载波继续寻找可用资源。
例如,假设第一HARQ-ACK反馈时间为slot j,终端在slot j,在第一载波确定可用的UL资源。如果在slot j没有可用的UL资源,则终端基于第二子载波间隔SCS,确定第二HARQ-ACK反馈时间,如令j=j+d,其中d即为终端预定义或者网络配置的延迟时间,且d根据第二子载波间隔SCS确定。
然后,终端可以根据第二HARQ-ACK反馈时间,确定第二载波,并根据第二HARQ-ACK反馈时间和第二载波,最终在第二载波上确定可用的UL资源或者达到最大可推迟的时间位置。
本申请实施例基于第二子载波间隔SCS确定设定的延迟时间,并根据该延迟时间确定第二HARQ-ACK反馈时间,可以使终端在同一载波上寻找可用的HARQ-ACK传输资源,无需进行载波的跳转,效率更高。
对上述各实施例,本申请实施例进行举例说明,但不对本申请实施例 要求保护的范围进行限定。示例性的,本申请实施例的HARQ-ACK传输资源确定方法可以包括以下处理步骤:
1)基于第一SCS和第一载波,确定HARQ-ACK传输资源。
可选地,基于第一SCS,确定第一HARQ-ACK反馈时间;根据第一HARQ-ACK反馈时间,确定第一载波;根据第一HARQ-ACK反馈时间和第一载波,确定HARQ-ACK传输资源。
可选地,基于第一SCS对应的HARQ-ACK反馈时间指示集合(K1 set),确定第一HARQ-ACK反馈时间。
可选地,基于cell group配置的K1 set确定第一HARQ-ACK反馈时间。
可选地,基于第一SCS和第一载波,确定第一HARQ-ACK反馈时间;根据第一HARQ-ACK反馈时间和第一载波,确定HARQ-ACK传输资源。
可选地,基于网络指示或者预定义规则确定第一载波。
可选地,基于第一载波对应的HARQ-ACK反馈时间指示集合(K1 set),确定第一HARQ-ACK反馈时间。
可选地,UE按照第一SCS,确定HARQ-ACK反馈的初始位置(如slot n+k),并确定HARQ-ACK反馈对应的第一载波。具体的,k是根据第一SCS定义的。
2)如果根据第一HARQ-ACK反馈时间和第一载波,没有可用的HARQ-ACK传输资源,则基于第二SCS和第二载波,在第一HARQ-ACK反馈时间之后确定HARQ-ACK传输资源。
可选地,基于第二SCS,确定第二HARQ-ACK反馈时间,第二HARQ-ACK反馈时间位于第一HARQ-ACK反馈时间之后;根据第二HARQ-ACK反馈时间,确定第二载波;根据第二HARQ-ACK反馈时间和第二载波,确定HARQ-ACK传输资源。
具体的,UE在slot j(第一HARQ-ACK反馈时间),在第一载波确 定可用的UL资源;如果在slot j,没有可用的UL资源,则基于第二SCS,确定第二HARQ-ACK反馈时间,如j=j+d(d与第二SCS有关);根据第二HARQ-ACK反馈时间,确定第二载波;根据第二HARQ-ACK反馈时间和第二载波,确定可用的UL资源。
可选地,基于第二SCS和第二载波,确定第二HARQ-ACK反馈时间;根据第二HARQ-ACK反馈时间和第二载波,确定HARQ-ACK传输资源。
具体的,基于第二SCS和第二载波,确定第二HARQ-ACK反馈时间,第二HARQ-ACK反馈时间位于第一HARQ-ACK反馈时间之后。
可选地,第二HARQ-ACK反馈时间与DL资源至少存在L个时间单元的时间间隔,L是预定义或网络配置的。
可选地,基于第一SCS和第二SCS,确定第二HARQ-ACK反馈时间,第二HARQ-ACK反馈时间为第一HARQ-ACK反馈时间之后。具体的,如果第一SCS为u 1,第二SCS=u 2,第一HARQ-ACK反馈时间为slot x,则第二HARQ-ACK反馈时间为
Figure PCTCN2022110263-appb-000004
可选地,第二HARQ-ACK反馈时间与DL资源至少存在L个时间单元的时间间隔,L是预定义或网络配置的。
3)重复执行步骤1)和2),直到确定可用的UL资源或者到达最大可推迟的时间位置。最大可推迟的时间位置根据第一SCS或第二SCS来确定。
可选地,先在时间维度进行推迟,即确定第二HARQ-ACK反馈时间,再确定相应的载波,直至找到可用的UL资源或者到达最大可推迟的时间位置。
具体的,HARQ-ACK反馈的初始位置为slot y,slot y对应的SCS为第一SCS u 1,按照第二SCS u 2确定最大可推迟的时间位置为
Figure PCTCN2022110263-appb-000005
Kdef基于第二SCS确定。其中,Kdef或(k+K def)指HARQ-ACK最大可推迟的时间。
具体的,PDSCH的接收位置为slot z,slot z对应的SCS为第一SCS u1,按照第二SCS确定最大可推迟的时间位置为
Figure PCTCN2022110263-appb-000006
Kdef基于第二SCS确定。其中,Kdef或(k+K def)指HARQ-ACK最大可推迟的时间。
例如,如图3所示,为根据本申请实施例提供的HARQ-ACK传输资源确定方法中载波结构示意图,假设网络配置了PUCCH cell timing pattern 1和PUCCH cell timing pattern 2,其中PUCCH cell timing pattern 1中可用的PUCCH载波为CC2(15kHz),对应slot n 2~slot n 2+2;PUCCH cell timing pattern 2中可用的PUCCH载波为CC3(30kHz),对应slot n+6~slot n+11。
UE在CC1(SCS=30kHz)上,在时域位置slot n 1,UE接收了SPS PDSCH。
根据上述各实施例,第一载波为PUCCH cell timing pattern1对应的载波,即CC2。第一SCS为PUCCH cell timing pattern1对应的载波对应的SCS。第二SCS为PUCCH cell timing pattern2对应的载波对应的SCS。
根据第一载波和第一SCS,得到该PDSCH对应的HARQ-ACK将在slot n 2+k 1,此时k 1=1,k 1是以SCS=15kHz定义的。因此,HARQ-ACK反馈的初始位置为SCS=15kHz的slot n 2+1。
假设K1 Def=4,K1 Def是以SCS=15kHz定义的,即该SPS PDSCH的HARQ-ACK的推迟时间最大为4个15kHz SCS的slot长度,意味着最多能够推迟到slot n 2+5进行反馈。
在slot n 2+1,UE在CC2搜索可用的UL资源。由于CC2的slot n 2+1与DL冲突,因此UE将HARQ-ACK反馈推迟至后续时域位置。由于PUCCH cell timing pattern 1仍然适用,因此UE在CC2的slot n 2+2搜索可用的UL资源。同样的,slot n 2+2与DL冲突,因此UE需要将HARQ-ACK反馈继续推迟至后续时域位置。
此时,根据PUCCH cell timing pattern 2,可用的对应载波为CC3, 根据第二SCS=30kHz,从slot n 3+6开始,以30kHz slot的步长搜索可用的UL资源。具体的,当UE在CC3的slot n 3+9,确定为可用的UL资源时,利用其进行HARQ-ACK传输。
上述处理过程可以简化为以下处理流程:
1)基于第一SCS和第一载波,确定HARQ-ACK传输资源;
2)如果根据第一HARQ-ACK反馈时间和第一载波,没有可用的HARQ-ACK传输资源,则基于第二SCS和第二载波,在第一HARQ-ACK反馈时间之后确定HARQ-ACK传输资源;
3)重复步骤1)和2),直到确定可用的UL资源或者到达最大可推迟的时间位置。最大可推迟的时间位置根据第一SCS或第二SCS来确定。
可选地,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,包括如下至少之一:
基于所述第一子载波间隔SCS和所述第一载波,确定在所述第一HARQ-ACK反馈时间后的第五HARQ-ACK反馈时间;基于所述第五HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第六HARQ-ACK反馈时间,基于所述第六HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源。
可以理解为,对于第一载波对应多个时域位置的情况,在根据上述各实施例基于第一子载波间隔SCS和第一载波,确定第二HARQ-ACK传输资源时,可以采用上述所列举方式中的至少一种来实现。
具体的,与基于第一子载波间隔SCS和第一载波确定第一HARQ-ACK传输资源类似,可以首先基于第一子载波间隔SCS和第一载波,确 定另一HARQ-ACK反馈时间作为第五HARQ-ACK反馈时间,再根据第五HARQ-ACK反馈时间和第一载波,确定第二HARQ-ACK传输资源。其中,基于第一子载波间隔SCS和第一载波确定第二HARQ-ACK反馈时间时,可以先确定第一载波对应的HARQ-ACK反馈时间指示集合,再根据第一子载波间隔SCS解析该集合,确定第五HARQ-ACK反馈时间。
或者,也可以先基于第一子载波间隔SCS和第二子载波间隔SCS,确定另一HARQ-ACK反馈时间作为第六HARQ-ACK反馈时间,且使第六HARQ-ACK反馈时间在第一HARQ-ACK反馈时间之后。之后,根据第六HARQ-ACK反馈时间和第一载波,确定第二HARQ-ACK传输资源。例如,若假设第一子载波间隔SCS为u 1、第二子载波间隔SCS为u 2,且第一HARQ-ACK反馈时间为slot x,则可以确定第六HARQ-ACK反馈时间为:
Figure PCTCN2022110263-appb-000007
本申请实施例通过先确定第一HARQ-ACK反馈时间后的HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第一载波确定第二HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,所述第五HARQ-ACK反馈时间与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由所述终端预定义的设定数量的时间单元。
可以理解为,为增加所确定的HARQ-ACK传输资源的可用性,在确定第一HARQ-ACK反馈时间后的第五HARQ-ACK反馈时间的基础上,在根据该第五HARQ-ACK反馈时间确定第二HARQ-ACK传输资源时,可以使第二HARQ-ACK传输资源与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值。也就是说,可以使确定的第二HARQ-ACK传输资源与DL资源间至少存在L个时间单元的时间间隔,其中L为终端预定义或网络配置的正整数。
本申请实施例通过限制第二HARQ-ACK传输资源与DL资源间的时 间间隔,可以更快速地获取到可用的第二HARQ-ACK传输资源。
可选地,所述第五HARQ-ACK反馈时间和所述第六HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第二最大延迟长度;其中,所述第二最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
可以理解为,与上述根据第二子载波间隔SCS和第二载波确定第三HARQ-ACK传输资源类似,由于网络端在有限的载波上配置了PUCCH资源,因此HARQ-ACK的传输无法实现无限延迟。具体的,本申请实施例可以基于第一子载波间隔SCS或第二子载波间隔SCS确定一最大延迟长度,并限定第五HARQ-ACK反馈时间和第六HARQ-ACK反馈时间与第一HARQ反馈时间或SPS PDSCH的间隔不大于该最大延迟长度,以使确定的第二HARQ-ACK传输资源在可用的载波范围内。为便于区分,其中的最大延迟长度可称为第二最大延迟长度。
本申请实施例通过限定第五HARQ-ACK反馈时间和第六HARQ-ACK反馈时间与第一HARQ反馈时间或SPS PDSCH的时间间隔,能够使确定的HARQ-ACK传输资源在可用的载波范围内。
可选地,所述终端基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源,包括如下之一:
所述终端基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间;所述终端基于所述第一HARQ-ACK反馈时间,确定所述第一载波;所述终端基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源;
所述终端基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间;所述终端基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源。
可以理解为,与上述实施例基于第二子载波间隔SCS和第二载波确定第三HARQ-ACK传输资源类似,在基于第一子载波间隔SCS和第一载 波确定第一HARQ-ACK传输资源时,可以采用上述所列举方式中的至少一种来实现。
具体的,可以首先基于第一子载波间隔SCS,确定一HARQ-ACK反馈时间作为第一HARQ-ACK反馈时间。之后,根据该第一HARQ-ACK反馈时间,确定第一载波。再在此基础上,根据第一HARQ-ACK反馈时间和确定的第一载波,确定对应的HARQ-ACK传输资源,作为第一HARQ-ACK传输资源。
或者,也可以基于第一子载波间隔SCS和第一载波,首先确定第一HARQ-ACK反馈时间,再根据第一HARQ-ACK反馈时间和第一载波,确定第一HARQ-ACK传输资源。其中,基于第一子载波间隔SCS和第一载波确定第一HARQ-ACK反馈时间时,可以先确定第一载波对应的HARQ-ACK反馈时间指示集合,再根据第一子载波间隔SCS解析该集合,从而确定第一HARQ-ACK反馈时间。
可选地,所述终端基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间,包括如下至少之一:
基于所述第一子载波间隔SCS对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间;
基于小区组(cell group)配置的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
可以理解为,在基于第一子载波间隔SCS确定第一HARQ-ACK反馈时间时,可以根据第一子载波间隔SCS事先配置的HARQ-ACK反馈时间指示集合或者对小区组cell group事先配置的HARQ-ACK反馈时间指示集合,从中指示任一时间k作为第一HARQ-ACK反馈时间。
其中,基于cell group可以配置第一子载波间隔SCS和HARQ-ACK反馈时间指示集合,因此第一子载波间隔SCS即对应该cell group。
本申请实施例通过先确定第一HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第一载波确定第一HARQ-ACK传输资源,能 够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间,包括:所述终端基于所述第一载波对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
可以理解为,终端可以基于第一载波对应的HARQ-ACK反馈时间指示集合(K1 set),从中指示任一HARQ-ACK反馈时间,确定为第一HARQ-ACK反馈时间。其中,第一载波可以对应配置一个HARQ-ACK反馈时间指示集合,通过第一子载波间隔SCS去理解该集合,可以确定第一HARQ-ACK反馈时间。
可选地,所述HARQ-ACK传输资源确定方法还包括:所述终端基于网络侧指示或者预定义规则,确定所述第一载波。可以理解为,终端在根据第一HARQ-ACK反馈时间确定第一载波时,具体可以基于网络指示或者预定义规则,确定第一载波。
为更清楚的说明本申请实施例的技术方案,以下进行举例说明,但不对本申请实施例要求保护的范围进行限定。示例性的,本申请实施例的HARQ-ACK传输资源确定方法可以包括以下处理步骤:
1)基于第一SCS和第一载波,确定HARQ-ACK传输资源。
可选地,基于第一SCS,确定第一HARQ-ACK反馈时间;根据第一HARQ-ACK反馈时间,确定第一载波;根据第一HARQ-ACK反馈时间和第一载波,确定HARQ-ACK传输资源。
可选的,基于第一SCS对应的HARQ-ACK反馈时间指示集合(K1 set),确定第一HARQ-ACK反馈时间。
可选的,基于cell group配置的K1 set确定第一HARQ-ACK反馈时间。
可选地,基于第一SCS和第一载波,确定第一HARQ-ACK反馈时间;根据第一HARQ-ACK反馈时间和第一载波,确定HARQ-ACK传输 资源。
可选的,基于网络指示或者预定义规则确定第一载波。
可选的,基于第一载波对应的HARQ-ACK反馈时间指示集合(K1 set),确定第一HARQ-ACK反馈时间。
可选的,UE按照第一SCS确定HARQ-ACK反馈的初始位置(如slot n+k),并确定HARQ-ACK反馈对应的第一载波。具体的,k是根据第一SCS定义的。
2)如果根据第一HARQ-ACK反馈时间和第一载波,没有可用的HARQ-ACK传输资源,则基于第一SCS和第一载波,在第一HARQ-ACK反馈时间之后确定HARQ-ACK传输资源。
具体的,基于第一SCS和第一载波,确定第二HARQ-ACK反馈时间,第二HARQ-ACK反馈时间位于第一HARQ-ACK反馈时间之后。
可选的,第二HARQ-ACK反馈时间与DL资源至少存在L个时间单元的时间间隔,L是预定义或网络配置的。
可选的,基于第一SCS和第二SCS,确定第二HARQ-ACK反馈时间,第二HARQ-ACK反馈时间为第一HARQ-ACK反馈时间之后。具体的,如果第一SCS为u 1,第二SCS=u 2,第一HARQ-ACK反馈时间为slot x,则第二HARQ-ACK反馈时间为
Figure PCTCN2022110263-appb-000008
3)重复步骤2),直到确定可用的UL资源或者到达最大可推迟的时间位置。最大可推迟的时间位置根据第一SCS或第二SCS来确定。
具体的,先在时间维度进行推迟,即确定第二HARQ-ACK反馈时间,直至找到可用的UL资源或者到达最大可推迟的时间位置。
具体的,HARQ-ACK反馈的初始位置为slot y,slot y对应的SCS为第一SCS u 1,按照第二SCS u 2确定最大可推迟的时间位置为
Figure PCTCN2022110263-appb-000009
Kdef是基于第二SCS确定。其中,Kdef或k+K def指HARQ-ACK最大可推迟的时间。
具体的,PDSCH的接收位置为slot z,slot z对应的SCS为第一SCS  u 1,按照第二SCS确定最大可推迟的时间位置为
Figure PCTCN2022110263-appb-000010
Kdef是基于第二SCS确定。其中,Kdef或k+K def指HARQ-ACK最大可推迟的时间。
4)如果在第一载波上没有可用的UL资源,即从HARQ-ACK反馈的初始位置至最大可推迟的时间位置均没有可用的UL资源,则切换载波,在剩余的载波中按照预定义的规则(如载波升序或降序),重新选择第一载波进行步骤1)和2)。
上述处理过程可以简化为以下处理流程:
1)基于第一SCS和第一载波,确定HARQ-ACK传输资源。
2)如果根据第一HARQ-ACK反馈时间和第一载波,没有可用的HARQ-ACK传输资源,则基于第一SCS和第一载波,在第一HARQ-ACK反馈时间之后确定HARQ-ACK传输资源。
3)重复2),直到确定可用的UL资源或者到达最大可推迟的时间位置。最大可推迟的时间位置根据第一SCS或第二SCS来确定。
4)如果在第一载波上没有可用的UL资源,即从HARQ-ACK反馈的初始位置至最大可推迟的时间位置均没有可用的UL资源,则切换载波,在剩余的载波中按照预定义规则,重新选择第一载波进行1)和2)。
需要说明的是,对于本申请上述各实施例,可以作如下说明:
各个载波的TDD配置或时隙格式,由网络配置。
对于PUCCH,可切换的载波(集合)由网络配置,或预定义为所有配置了PUCCH资源的载波。比如,对于上述N个载波,网络可以配置一个或多个PUCCH cell timing pattern,每个pattern指示了一段时间内可用的PUCCH载波,不同的PUCCH cell timing pattern指示的PUCCH载波可能相同或不同。
可用的UL资源指该载波或该时域单元,有足够的上行资源,用于传输PUCCH,该PUCCH包含所述的SPS PDSCH对应的HARQ-ACK,也 可包含其他的UCI;或者指该载波或该时域单元,有足够的上行资源,用于传输PUSCH,该PUSCH为动态调度或半静态配置的PUSCH,UCI(包括SPS PDSCH的HARQ-ACK)将复用在PUSCH上传输。
本申请实施例的另一种实现方式是,UE不期望HARQ-ACK推迟机制和在不同SCS的PUCCH载波切换功能同时开启。
本申请实施例的技术方案扩展至非授权频段同样适用。
需要说明的是,本申请实施例提供的HARQ-ACK传输资源确定方法,执行主体可以为HARQ-ACK传输资源确定装置,或者,该HARQ-ACK传输资源确定装置中的用于执行HARQ-ACK传输资源确定方法的控制模块。本申请实施例中以HARQ-ACK传输资源确定装置执行HARQ-ACK传输资源确定方法为例,说明本申请实施例提供的HARQ-ACK传输资源确定装置。
如图4所示,为本申请实施例提供的HARQ-ACK传输资源确定装置的结构示意图,该装置400可以用于实现上述各HARQ-ACK传输资源确定方法实施例中HARQ-ACK传输资源的确定,该装置包括:第一处理模块401和第二处理模块402。
其中,第一处理模块401用于基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;第二处理模块402用于在确定所述第一HARQ-ACK传输资源不可用的情况下,基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源。
其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
本申请实施例提供的HARQ-ACK传输资源确定装置,根据载波的子载波间隔SCS和载波确定HARQ-ACK传输资源,并在确定的HARQ-ACK传输资源不可用时,将HARQ-ACK推迟至后续可用的上行链路资 源进行传输,能够有效保证HARQ-ACK的可靠传输,提高SPS PDSCH传输的性能。
可选地,所述第二处理模块,在用于所述基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源时,用于如下至少之一:
基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间;基于所述第二HARQ-ACK反馈时间,确定所述第二载波;基于所述第二HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
基于所述第二子载波间隔SCS和所述第二载波,确定第三HARQ-ACK反馈时间;基于所述第三HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第四HARQ-ACK反馈时间,基于所述第四HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源。
本申请实施例通过先确定第一HARQ-ACK反馈时间后的HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第二载波确定第三HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,所述第二处理模块,在用于所述基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间时,用于:
确定所述第一载波在所述第一HARQ-ACK反馈时间是否存在可用的上行链路资源;
在所述第一载波在所述第一HARQ-ACK反馈时间不存在可用的上行链路资源的情况下,基于所述第二子载波间隔SCS,确定延迟时间;
基于所述第一HARQ-ACK反馈时间和所述延迟时间,确定所述第二HARQ-ACK反馈时间。
本申请实施例基于第二子载波间隔SCS确定设定的延迟时间,并根据该延迟时间确定第二HARQ-ACK反馈时间,可以使终端在同一载波上寻找可用的HARQ-ACK传输资源,无需进行载波的跳转,效率更高。
可选地,所述第三HARQ-ACK反馈时间在所述第一HARQ-ACK反馈时间之后。
可选地,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间中至少之一确定的HARQ-ACK反馈资源与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由所述终端预定义的设定数量个时间单元。
本申请实施例通过限制第三HARQ-ACK传输资源与DL资源间的时间间隔,可以更快速地获取到可用的第三HARQ-ACK传输资源。
可选地,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第一最大延迟长度;
其中,所述第一最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
本申请实施例通过限定第二HARQ-ACK反馈时间、第三HARQ-ACK反馈时间和第四HARQ-ACK反馈时间与第一HARQ反馈时间或SPS PDSCH的时间间隔,能够使确定的HARQ-ACK传输资源在可用的载波范围内。
可选地,所述第二处理模块,在用于所述基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源时,用于如下至少之一:
基于所述第一子载波间隔SCS和所述第一载波,确定在所述第一HARQ-ACK反馈时间后的第五HARQ-ACK反馈时间;基于所述第五HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第六HARQ-ACK反馈时间,基于所述第六HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源。
本申请实施例通过先确定第一HARQ-ACK反馈时间后的HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第一载波确定第二HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,所述第五HARQ-ACK反馈时间与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由所述终端预定义的设定数量的时间单元。
本申请实施例通过限制第二HARQ-ACK传输资源与DL资源间的时间间隔,可以更快速地获取到可用的第二HARQ-ACK传输资源。
可选地,所述第五HARQ-ACK反馈时间和所述第六HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第二最大延迟长度;
其中,所述第二最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
本申请实施例通过限定第五HARQ-ACK反馈时间和第六HARQ-ACK反馈时间与第一HARQ反馈时间或SPS PDSCH的时间间隔,能够使确定的HARQ-ACK传输资源在可用的载波范围内。
可选地,所述第一处理模块,在用于所述基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源时,用于如下之一:
基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间;基于所述第一HARQ-ACK反馈时间,确定所述第一载波;基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间;基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源。
本申请实施例通过先确定第一HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第一载波确定第一HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,所述第一处理模块,在用于所述基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间时,用于如下至少之一:
基于所述第一子载波间隔SCS对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间;
基于小区组cell group配置的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
可选地,所述第一处理模块,在用于所述基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间时,用于:
基于所述第一载波对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
可选地,所述装置还包括:第三处理模块,用于基于网络侧指示或者预定义规则,确定所述第一载波。
可选地,所述第一载波和/或所述第二载波基于如下之一确定:
配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波;
配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波;
物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波;
在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波;
所述终端接收的半持续调度SPS物理下行共享信道PDSCH的载波;
下行控制信息DCI指示的上行传输的载波;
主载波、主服务小区PCell或主辅服务小区PScell;
辅服务小区SCell。
可选地,所述第一子载波间隔SCS和/或所述第二子载波间隔SCS基于如下之一确定:
网络侧设备配置的参考子载波间隔SCS;
网络侧设备为小区组cell group统一配置的子载波间隔SCS;
配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波对应的子载波间隔SCS;
配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波对应的子载波间隔SCS;
物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波的子载波间隔SCS;
在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波的子载波间隔SCS,或者按照所述多个载波的子载波间隔SCS的大小,顺序确定的子载波间隔SCS;
所述终端接收的半持续调度SPS物理下行共享信道PDSCH的载波的子载波间隔SCS;
下行控制信息DCI指示的上行传输的载波的子载波间隔SCS;
主载波、主服务小区PCell或主辅服务小区PScell的子载波间隔SCS;
辅服务小区SCell的子载波间隔SCS。
本申请实施例中的HARQ-ACK传输资源确定装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端101的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的HARQ-ACK传输资源确定装置能够实现图2至图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图5所示,本申请实施例还提供一种通信设备m00,包括处理器501、存储器502及存储在存储器502上并可在处理器501上运行的程序或指令。例如,当该通信设备为终端时,该程序或指令被处理器501执行时,能够实现如上述HARQ-ACK传输资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;以及,在确定所述第一HARQ-ACK传输资源不可用的情况下,基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图6为实现本申请实施例的一种终端的硬件结构示意图。该终端600包括但不限于:射频单元601、网络模块602、音频输出单元 603、输入单元604、传感器605、显示单元606、用户输入单元607、接口单元608、存储器609以及处理器610等中的至少部分部件。
本领域技术人员可以理解,终端600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图6中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元604可以包括图形处理器(Graphics Processing Unit,GPU)6041和麦克风6042,图形处理器6041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元606可包括显示面板6061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板6061。用户输入单元607包括触控面板6071以及其他输入设备6072。触控面板6071,也称为触摸屏。触控面板6071可包括触摸检测装置和触摸控制器两个部分。其他输入设备6072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元601将来自网络侧设备的下行数据接收后,给处理器610处理;另外,将上行的数据发送给网络侧设备。通常,射频单元601包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器609可用于存储软件程序或指令以及各种数据。存储器609可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器609可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM, PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器610可包括一个或多个处理单元;可选地,处理器610可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器610中。
其中,处理器610,用于基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;以及,在确定所述第一HARQ-ACK传输资源不可用的情况下,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;
其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
本申请实施例提供的终端,根据载波的子载波间隔SCS和载波确定HARQ-ACK传输资源,并在确定的HARQ-ACK传输资源不可用时,将HARQ-ACK推迟至后续可用的上行链路资源进行传输,能够有效保证HARQ-ACK的可靠传输,提高SPS PDSCH传输的性能。
可选地,处理器610,还用于如下至少之一:
基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间;基于所述第二HARQ-ACK反馈时间,确定所述第二载波;基于所述第二HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
基于所述第二子载波间隔SCS和所述第二载波,确定第三HARQ-ACK反馈时间;基于所述第三HARQ-ACK反馈时间和所述第二载波, 确定所述第三HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第四HARQ-ACK反馈时间,基于所述第四HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源。
本申请实施例通过先确定第一HARQ-ACK反馈时间后的HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第二载波确定第三HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,处理器610,还用于:
确定所述第一载波在所述第一HARQ-ACK反馈时间是否存在可用的上行链路资源;
在所述第一载波在所述第一HARQ-ACK反馈时间不存在可用的上行链路资源的情况下,基于所述第二子载波间隔SCS,确定延迟时间;
基于所述第一HARQ-ACK反馈时间和所述延迟时间,确定所述第二HARQ-ACK反馈时间。
本申请实施例基于第二子载波间隔SCS确定设定的延迟时间,并根据该延迟时间确定第二HARQ-ACK反馈时间,可以使终端在同一载波上寻找可用的HARQ-ACK传输资源,无需进行载波的跳转,效率更高。
可选地,处理器610,还用于如下至少之一:
基于所述第一子载波间隔SCS和所述第一载波,确定在所述第一HARQ-ACK反馈时间后的第五HARQ-ACK反馈时间;基于所述第五HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第六HARQ-ACK反馈时间,基于所述第六HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ- ACK传输资源。
本申请实施例通过先确定第一HARQ-ACK反馈时间后的HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第一载波确定第二HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,处理器610,还用于如下之一:
基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间;基于所述第一HARQ-ACK反馈时间,确定所述第一载波;基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源;
基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间;基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源。
本申请实施例通过先确定第一HARQ-ACK反馈时间,再根据该HARQ-ACK反馈时间结合第一载波确定第一HARQ-ACK传输资源,能够结合不同载波的子载波间隔确定可用资源,保证可靠传输。
可选地,处理器610,还用于如下至少之一:
基于所述第一子载波间隔SCS对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间;
基于小区组cell group配置的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
可选地,处理器610,还用于基于所述第一载波对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
可选地,处理器610,还用于基于网络侧指示或者预定义规则,确定所述第一载波。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时,实现上述HARQ-ACK传输 资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述HARQ-ACK传输资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行,以实现上述HARQ-ACK传输资源确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (33)

  1. 一种HARQ-ACK传输资源确定方法,包括:
    终端基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;
    在确定所述第一HARQ-ACK传输资源不可用的情况下,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;
    其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
  2. 根据权利要求1所述的HARQ-ACK传输资源确定方法,其中,所述基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源,包括如下至少之一:
    基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间;基于所述第二HARQ-ACK反馈时间,确定所述第二载波;基于所述第二HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
    基于所述第二子载波间隔SCS和所述第二载波,确定第三HARQ-ACK反馈时间;基于所述第三HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
    基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第四HARQ-ACK反馈时间,基于所述第四HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源。
  3. 根据权利要求2所述的HARQ-ACK传输资源确定方法,其中,所 述基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间,包括:
    确定所述第一载波在所述第一HARQ-ACK反馈时间是否存在可用的上行链路资源;
    在所述第一载波在所述第一HARQ-ACK反馈时间不存在可用的上行链路资源的情况下,基于所述第二子载波间隔SCS,确定延迟时间;
    基于所述第一HARQ-ACK反馈时间和所述延迟时间,确定所述第二HARQ-ACK反馈时间。
  4. 根据权利要求2所述的HARQ-ACK传输资源确定方法,其中,所述第三HARQ-ACK反馈时间在所述第一HARQ-ACK反馈时间之后。
  5. 根据权利要求2-4中任一所述的HARQ-ACK传输资源确定方法,其中,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间中至少之一确定的HARQ-ACK反馈资源与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由所述终端预定义的设定数量个时间单元。
  6. 根据权利要求2所述的HARQ-ACK传输资源确定方法,其中,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第一最大延迟长度;
    其中,所述第一最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
  7. 根据权利要求1所述的HARQ-ACK传输资源确定方法,其中,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,包括如下至少之一:
    基于所述第一子载波间隔SCS和所述第一载波,确定在所述第一 HARQ-ACK反馈时间后的第五HARQ-ACK反馈时间;基于所述第五HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源;
    基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第六HARQ-ACK反馈时间,基于所述第六HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源。
  8. 根据权利要求7所述的HARQ-ACK传输资源确定方法,其中,所述第五HARQ-ACK反馈时间与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由所述终端预定义的设定数量的时间单元。
  9. 根据权利要求7所述的HARQ-ACK传输资源确定方法,其中,所述第五HARQ-ACK反馈时间和所述第六HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第二最大延迟长度;
    其中,所述第二最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
  10. 根据权利要求1所述的HARQ-ACK传输资源确定方法,其中,所述终端基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源,包括如下之一:
    所述终端基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间;所述终端基于所述第一HARQ-ACK反馈时间,确定所述第一载波;所述终端基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源;
    所述终端基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间;所述终端基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源。
  11. 根据权利要求10所述的HARQ-ACK传输资源确定方法,其中,所述终端基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间,包括如下至少之一:
    基于所述第一子载波间隔SCS对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间;
    基于小区组cell group配置的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
  12. 根据权利要求10所述的HARQ-ACK传输资源确定方法,其中,所述终端基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间,包括:
    所述终端基于所述第一载波对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
  13. 根据权利要求12所述的HARQ-ACK传输资源确定方法,其中,所述方法还包括:
    所述终端基于网络侧指示或者预定义规则,确定所述第一载波。
  14. 根据权利要求1-4、6-13中任一所述的HARQ-ACK传输资源确定方法,其中,所述第一载波和/或所述第二载波基于如下之一确定:
    配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波;
    配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波;
    物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波;
    在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波;
    所述终端接收的半持续调度SPS物理下行共享信道PDSCH的载波;
    下行控制信息DCI指示的上行传输的载波;
    主载波、主服务小区PCell或主辅服务小区PScell;
    辅服务小区SCell。
  15. 根据权利要求1-4、6-13中任一所述的HARQ-ACK传输资源确定方法,其中,所述第一子载波间隔SCS和/或所述第二子载波间隔SCS基于如下之一确定:
    网络侧设备配置的参考子载波间隔SCS;
    网络侧设备为小区组cell group统一配置的子载波间隔SCS;
    配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波对应的子载波间隔SCS;
    配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波对应的子载波间隔SCS;
    物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波的子载波间隔SCS;
    在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波的子载波间隔SCS,或者按照所述多个载波的子载波间隔SCS的大小,顺序确定的子载波间隔SCS;
    所述终端接收的半持续调度SPS物理下行共享信道PDSCH的载波的子载波间隔SCS;
    下行控制信息DCI指示的上行传输的载波的子载波间隔SCS;
    主载波、主服务小区PCell或主辅服务小区PScell的子载波间隔SCS;
    辅服务小区SCell的子载波间隔SCS。
  16. 一种HARQ-ACK传输资源确定装置,包括:
    第一处理模块,用于基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源;
    第二处理模块,用于在确定所述第一HARQ-ACK传输资源不可用的情况下,基于所述第一子载波间隔SCS和所述第一载波,确定在第一 HARQ-ACK反馈时间后的第二HARQ-ACK传输资源,或者基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源;
    其中,所述第一HARQ-ACK反馈时间是基于所述第一子载波间隔SCS或者基于所述第一子载波间隔SCS与所述第一载波确定的。
  17. 根据权利要求16所述的HARQ-ACK传输资源确定装置,其中,所述第二处理模块,在用于所述基于第二子载波间隔SCS和第二载波,确定在所述第一HARQ-ACK反馈时间后的第三HARQ-ACK传输资源时,用于如下至少之一:
    基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间;基于所述第二HARQ-ACK反馈时间,确定所述第二载波;基于所述第二HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
    基于所述第二子载波间隔SCS和所述第二载波,确定第三HARQ-ACK反馈时间;基于所述第三HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源;
    基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第四HARQ-ACK反馈时间,基于所述第四HARQ-ACK反馈时间和所述第二载波,确定所述第三HARQ-ACK传输资源。
  18. 根据权利要求17所述的HARQ-ACK传输资源确定装置,其中,所述第二处理模块,在用于所述基于所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第二HARQ-ACK反馈时间时,用于:
    确定所述第一载波在所述第一HARQ-ACK反馈时间是否存在可用的上行链路资源;
    在所述第一载波在所述第一HARQ-ACK反馈时间不存在可用的上行链路资源的情况下,基于所述第二子载波间隔SCS,确定延迟时间;
    基于所述第一HARQ-ACK反馈时间和所述延迟时间,确定所述第二HARQ-ACK反馈时间。
  19. 根据权利要求17所述的HARQ-ACK传输资源确定装置,其中,所述第三HARQ-ACK反馈时间在所述第一HARQ-ACK反馈时间之后。
  20. 根据权利要求17-19中任一所述的HARQ-ACK传输资源确定装置,其中,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间中至少之一确定的HARQ-ACK反馈资源与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由终端预定义的设定数量个时间单元。
  21. 根据权利要求17所述的HARQ-ACK传输资源确定装置,其中,所述第二HARQ-ACK反馈时间、所述第三HARQ-ACK反馈时间和所述第四HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第一最大延迟长度;
    其中,所述第一最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
  22. 根据权利要求16所述的HARQ-ACK传输资源确定装置,其中,所述第二处理模块,在用于所述基于所述第一子载波间隔SCS和所述第一载波,确定在第一HARQ-ACK反馈时间后的第二HARQ-ACK传输资源时,用于如下至少之一:
    基于所述第一子载波间隔SCS和所述第一载波,确定在所述第一HARQ-ACK反馈时间后的第五HARQ-ACK反馈时间;基于所述第五HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ-ACK传输资源;
    基于所述第一子载波间隔SCS和所述第二子载波间隔SCS,确定在所述第一HARQ-ACK反馈时间后的第六HARQ-ACK反馈时间,基于所述第六HARQ-ACK反馈时间和所述第一载波,确定所述第二HARQ- ACK传输资源。
  23. 根据权利要求22所述的HARQ-ACK传输资源确定装置,其中,所述第五HARQ-ACK反馈时间与时分双工TDD下的下行链路DL资源间的时间间隔不小于预设阈值,所述预设阈值为由网络侧设备配置或由终端预定义的设定数量的时间单元。
  24. 根据权利要求22所述的HARQ-ACK传输资源确定装置,其中,所述第五HARQ-ACK反馈时间和所述第六HARQ-ACK反馈时间与所述第一HARQ反馈时间或半持续调度SPS物理下行链路共享信道PDSCH的间隔不大于第二最大延迟长度;
    其中,所述第二最大延迟长度基于所述第一子载波间隔SCS或所述第二子载波间隔SCS确定。
  25. 根据权利要求16所述的HARQ-ACK传输资源确定装置,其中,所述第一处理模块,在用于所述基于第一子载波间隔SCS和第一载波,确定第一HARQ-ACK传输资源时,用于如下之一:
    基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间;基于所述第一HARQ-ACK反馈时间,确定所述第一载波;基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源;
    基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间;基于所述第一HARQ-ACK反馈时间和所述第一载波,确定所述第一HARQ-ACK传输资源。
  26. 根据权利要求25所述的HARQ-ACK传输资源确定装置,其中,所述第一处理模块,在用于所述基于所述第一子载波间隔SCS,确定所述第一HARQ-ACK反馈时间时,用于如下至少之一:
    基于所述第一子载波间隔SCS对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间;
    基于小区组cell group配置的HARQ-ACK反馈时间指示集合,确定 所述第一HARQ-ACK反馈时间。
  27. 根据权利要求25所述的HARQ-ACK传输资源确定装置,其中,所述第一处理模块,在用于所述基于所述第一子载波间隔SCS和所述第一载波,确定所述第一HARQ-ACK反馈时间时,用于:
    基于所述第一载波对应的HARQ-ACK反馈时间指示集合,确定所述第一HARQ-ACK反馈时间。
  28. 根据权利要求27所述的HARQ-ACK传输资源确定装置,其中,所述装置还包括:
    第三处理模块,用于基于网络侧指示或者预定义规则,确定所述第一载波。
  29. 根据权利要求16-19、21-28中任一所述的HARQ-ACK传输资源确定装置,其中,所述第一载波和/或所述第二载波基于如下之一确定:
    配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波;
    配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波;
    物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波;
    在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波;
    终端接收的半持续调度SPS物理下行共享信道PDSCH的载波;
    下行控制信息DCI指示的上行传输的载波;
    主载波、主服务小区PCell或主辅服务小区PScell;
    辅服务小区SCell。
  30. 根据权利要求16-19、21-28中任一所述的HARQ-ACK传输资源确定装置,其中,所述第一子载波间隔SCS和/或所述第二子载波间隔SCS基于如下之一确定:
    网络侧设备配置的参考子载波间隔SCS;
    网络侧设备为小区组cell group统一配置的子载波间隔SCS;
    配置了物理上行链路控制信道PUCCH资源的载波中编号最小的载波对应的子载波间隔SCS;
    配置了物理上行链路控制信道PUCCH资源的载波中编号最大的载波对应的子载波间隔SCS;
    物理上行链路控制信道PUCCH小区定时模式中当前位置对应的载波的子载波间隔SCS;
    在所述第一载波和/或所述第二载波对应多个载波的情况下,按照所述多个载波的编号的大小,顺序确定的载波的子载波间隔SCS,或者按照所述多个载波的子载波间隔SCS的大小,顺序确定的子载波间隔SCS;
    终端接收的半持续调度SPS物理下行共享信道PDSCH的载波的子载波间隔SCS;
    下行控制信息DCI指示的上行传输的载波的子载波间隔SCS;
    主载波、主服务小区PCell或主辅服务小区PScell的子载波间隔SCS;
    辅服务小区SCell的子载波间隔SCS。
  31. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15任一项所述的HARQ-ACK传输资源确定方法的步骤。
  32. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-15任一项所述的HARQ-ACK传输资源确定方法的步骤。
  33. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-15任一项所述的HARQ-ACK传输资源确定方法的步骤。
PCT/CN2022/110263 2021-08-06 2022-08-04 Harq-ack传输资源确定方法、终端及存储介质 WO2023011587A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22852298.3A EP4383629A1 (en) 2021-08-06 2022-08-04 Harq-ack transmission resource determination method, and terminal and storage medium
US18/432,720 US20240214129A1 (en) 2021-08-06 2024-02-05 Method for Determining HARQ-ACK Transmission Resource, Terminal, and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110903510.XA CN115706641A (zh) 2021-08-06 2021-08-06 Harq-ack传输资源确定方法、终端及存储介质
CN202110903510.X 2021-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/432,720 Continuation US20240214129A1 (en) 2021-08-06 2024-02-05 Method for Determining HARQ-ACK Transmission Resource, Terminal, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2023011587A1 true WO2023011587A1 (zh) 2023-02-09

Family

ID=85154830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110263 WO2023011587A1 (zh) 2021-08-06 2022-08-04 Harq-ack传输资源确定方法、终端及存储介质

Country Status (4)

Country Link
US (1) US20240214129A1 (zh)
EP (1) EP4383629A1 (zh)
CN (1) CN115706641A (zh)
WO (1) WO2023011587A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116248244B (zh) * 2023-05-12 2023-08-22 广东省新一代通信与网络创新研究院 一种uci信息资源配置方法及系统、装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210006356A1 (en) * 2019-07-04 2021-01-07 Qualcomm Incorporated Group-based acknowledgment feedback techniques for wireless communications
WO2021072662A1 (zh) * 2019-10-15 2021-04-22 华为技术有限公司 一种混合自动重传请求反馈方法及装置
WO2021088800A1 (zh) * 2019-11-08 2021-05-14 大唐移动通信设备有限公司 一种harq反馈方法、终端、基站和存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210006356A1 (en) * 2019-07-04 2021-01-07 Qualcomm Incorporated Group-based acknowledgment feedback techniques for wireless communications
WO2021072662A1 (zh) * 2019-10-15 2021-04-22 华为技术有限公司 一种混合自动重传请求反馈方法及装置
WO2021088800A1 (zh) * 2019-11-08 2021-05-14 大唐移动通信设备有限公司 一种harq反馈方法、终端、基站和存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, CHINA SOUTHERN POWER GRID, BUPT, HISILICON: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2102351, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177071 *
HUAWEI, HISILICON: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2005243, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917291 *
HUAWEI, HISILICON: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2007565, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946417 *
HUAWEI, HISILICON: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2104262, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010716 *

Also Published As

Publication number Publication date
US20240214129A1 (en) 2024-06-27
EP4383629A1 (en) 2024-06-12
CN115706641A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US20240214129A1 (en) Method for Determining HARQ-ACK Transmission Resource, Terminal, and Storage Medium
WO2022206554A1 (zh) 传输方向的确定方法、装置、终端及网络侧设备
WO2022063072A1 (zh) 上行信道传输方法、装置及终端
JP2024510233A (ja) 伝送処理方法、装置及び端末
EP4376342A1 (en) Method, apparatus, and terminal for feeding back harq-ack information
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2023109678A1 (zh) 资源冲突处理方法、装置及终端
WO2023006026A1 (zh) 上行传输方法、装置及终端
US20240179702A1 (en) Feedback method, related device, and readable storage medium
WO2022152273A1 (zh) Srs传输方法、装置、设备及存储介质
WO2023116903A1 (zh) Sl信号处理方法、设备及可读存储介质
WO2023083173A1 (zh) 资源处理方法、装置、通信设备及存储介质
CN115085870B (zh) 半静态harq-ack码本的生成方法及终端
WO2023198106A1 (zh) 终端能力指示、调度方法、装置、终端及通信设备
WO2023131227A1 (zh) 传输确定方法、装置、设备及介质
WO2023186140A1 (zh) 载波确定方法、装置、终端及可读存储介质
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2024140634A1 (zh) 传输方法、设备及可读存储介质
EP4274145A1 (en) Control channel configuration method and apparatus, and communication device
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2022237743A1 (zh) Pusch重复传输方法和设备
WO2023125912A1 (zh) 上行传输的跳频、指示方法、装置、终端及网络侧设备
WO2023088480A1 (zh) 侧链路资源确定方法及终端
WO2023246774A1 (zh) Sl数据传输方法、第一终端及第二终端
EP4301068A1 (en) Method and device for indicating scs of initial downlink bwp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022852298

Country of ref document: EP

Effective date: 20240306