WO2023005961A1 - 车辆定位方法及相关装置 - Google Patents

车辆定位方法及相关装置 Download PDF

Info

Publication number
WO2023005961A1
WO2023005961A1 PCT/CN2022/108186 CN2022108186W WO2023005961A1 WO 2023005961 A1 WO2023005961 A1 WO 2023005961A1 CN 2022108186 W CN2022108186 W CN 2022108186W WO 2023005961 A1 WO2023005961 A1 WO 2023005961A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
uwb
positioning
message
positioning accuracy
Prior art date
Application number
PCT/CN2022/108186
Other languages
English (en)
French (fr)
Inventor
李凯凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005961A1 publication Critical patent/WO2023005961A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/12Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are telecommunication base stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]

Definitions

  • the present application relates to the technical field of smart cars, in particular to a vehicle positioning method and related devices.
  • the positioning accuracy of the vehicle is affected by many factors such as weather and tall buildings. How to improve the positioning accuracy of the vehicle is a technical problem that we need to solve urgently.
  • the present application provides a vehicle positioning method and a related device.
  • the method can determine the position of the vehicle by means of devices with high positioning accuracy among peripheral devices, and improve the positioning accuracy of the vehicle.
  • the present application provides a vehicle positioning method.
  • the method is applicable to a first vehicle.
  • the first vehicle may: acquire the positioning information of the first object, and the first object may include one or more of the following: the second vehicle and equipment carried by pedestrians.
  • the above positioning information may include the position of the first object.
  • a distance of the first vehicle to the first object is determined.
  • the position of the first vehicle is determined according to the position of the first object and the distance between the first vehicle and the first object.
  • the above-mentioned position of the first object may include the latitude and longitude of the first object.
  • the position of the first object may further include a relative position of the first object.
  • the location of the first object may include information about the lane where the first object is located, the distance between the first object and the lane line of the lane where the first object is located, and so on.
  • the above-mentioned position of the first vehicle may include the latitude and longitude of the first vehicle.
  • the first object may be a movable object around the first vehicle.
  • vehicles around the first vehicle that is, the second vehicle
  • devices carried by pedestrians around the first vehicle such as mobile phones, smart watches, tablet computers, etc.
  • the devices carried by the above-mentioned second vehicles and pedestrians usually have the ability to communicate with the first vehicle, and can inform the first vehicle of its own positioning information.
  • the first vehicle can determine its position by means of the first object.
  • the above method can determine the position of the first vehicle without separately installing a fixed-position device (such as a base station, etc.). This can make better use of existing equipment in the surrounding area for vehicle positioning.
  • the above-mentioned first object may further include infrastructure.
  • infrastructure For example: roadside units, traffic lights, etc.
  • the above-mentioned infrastructure may also have the ability to communicate with the first vehicle, and inform the first vehicle of its own positioning information.
  • m there are m first objects.
  • m may be an integer greater than or equal to 3. That is, the first vehicle can determine its position with the help of three or more first objects.
  • the first vehicle may use a three-point positioning method to determine its own position.
  • the positioning information of the first object may further include positioning accuracy.
  • the positioning accuracy can be represented by a comprehensive positional accuracy (position dilution of precision, PDOP). The smaller the value of PDOP, the higher the positioning accuracy.
  • the positioning accuracy of the first object is higher than the positioning accuracy of the first vehicle.
  • the first vehicle may acquire location information of multiple peripheral devices. According to the positioning accuracy contained in the positioning information, the first vehicle may select the above-mentioned first object from the plurality of peripheral devices. The first vehicle can determine its own positioning accuracy. The first vehicle may arbitrarily select m peripheral devices with higher positioning accuracy than itself. The above selected m peripheral devices are the m first objects. The positioning accuracy of the m first objects is higher than that of the first vehicle.
  • the first vehicle can determine its own position with the help of peripheral devices with higher positioning accuracy than itself. Since the positioning accuracy of the first object is higher than that of the first vehicle, the position of the first object determined by the positioning module (such as the GPS module) is more accurate than the position determined by the first vehicle through the positioning module (such as the GPS module). The first vehicle can more accurately determine its position according to the distance between itself and the first object and the position of the first object.
  • the positioning module such as the GPS module
  • the positioning accuracy of the first object is higher than a first threshold. That is, the PDOP value of the first subject is lower than the preset threshold.
  • the foregoing first threshold may be used to screen peripheral devices with high positioning accuracy.
  • the first vehicle may acquire location information of multiple peripheral devices. According to the positioning accuracy contained in the positioning information, the first vehicle may select the above-mentioned first object from the plurality of peripheral devices. Wherein, the first vehicle may arbitrarily select m peripheral devices whose positioning accuracy is higher than the first threshold. The above selected m peripheral devices are the m first objects. The positioning accuracies of the m first objects are all higher than the first threshold.
  • the foregoing first object may have the highest positioning accuracy among peripheral devices of the first vehicle.
  • the first vehicle may acquire location information of k second objects.
  • the aforementioned k second objects may be peripheral devices capable of communicating with the first vehicle.
  • the first vehicle can select m first objects from the k second objects.
  • the m first objects may be the m ones with the highest positioning accuracy among the k second objects.
  • the first vehicle can determine its own position with the help of peripheral devices with high positioning accuracy.
  • the above method can effectively improve the positioning accuracy of the vehicle.
  • the above-mentioned first object may have the highest positioning accuracy among peripheral devices whose positioning accuracy is higher than that of the first vehicle.
  • the first vehicle may acquire location information of k second objects.
  • the aforementioned k second objects may be peripheral devices capable of communicating with the first vehicle.
  • the first vehicle can select m first objects from the k second objects.
  • the positioning accuracy of the m first objects is higher than that of the first vehicle, and the m first objects are m with the highest positioning accuracy among the k second objects.
  • the positioning accuracy of the first object is higher than the positioning accuracy of the first vehicle and higher than a first threshold.
  • both the above-mentioned first vehicle and the above-mentioned first object have the capability of V2X communication and the capability of sending and receiving UWB messages.
  • the first vehicle can acquire the location information of the first object.
  • the positioning information may include the position of the first object and the positioning accuracy of the first object.
  • the first vehicle may broadcast V2X service data.
  • the first V2X service data may be used to request positioning accuracy.
  • the first vehicle may receive the second V2X service data of the first object.
  • the second V2X service data of the first object may include the identification and positioning accuracy of the first object.
  • the first vehicle may also broadcast a first UWB message, where the first UWB message includes an identifier of the first vehicle, and request information for acquiring positions and speeds of other objects.
  • the first vehicle may receive the second UWB message of the first object.
  • the second UWB message of the first object includes the identifier of the first object, the time when the first object receives the first UWB message and sends the second UWB message, and the first object receives the first UWB message and sends the second UWB message.
  • the speed of the message, and the position of the first object when the first UWB message is sent.
  • the time when the first object receives the first UWB message and sends the second UWB message, and the speed when the first object receives the first UWB message and sends the second UWB message can be used to determine the distance between the first vehicle and the first object .
  • the first vehicle may use a time of flight (TOF) method to determine the distance between the first vehicle and the first object.
  • TOF time of flight
  • the first vehicle can determine the transmission time of the first UWB message.
  • the first vehicle can determine the transmission time of the second UWB message.
  • the first UWB message and the second UWB message are transmitted in the air in the form of electromagnetic waves, and the transmission speed is close to 3*10 ⁇ 8m/s.
  • the transmission path of the first UWB message and the second UWB message can be twice the distance between the first vehicle and the first object when the first vehicle sends the first UWB message, the first UWB message and the second UWB message
  • the amount of change in the distance between the first vehicle and the first object during the transmission of the first UWB message and the second UWB message can be based on the speed when the first object receives the first UWB message and sends the second UWB message and the speed of the first object.
  • the speed determination of a vehicle when sending the first UWB message and receiving the second UWB message It can be known from this that the first vehicle can determine the distance between itself and the first object when it sends the first UWB message.
  • the first vehicle can use the V2X communication capability to obtain the positioning accuracy of the first object, and use the UWB technology to obtain the location of the first object and the time of receiving and replying the UWB message. Since UWB technology has the advantages of low power spectral density of transmitted signals, insensitivity to channel fading, strong anti-interference ability, and strong penetration, the accuracy of distance measurement achieved by the first vehicle through this UWB technology is higher, so that it can more accurately Determine where you are.
  • the above-mentioned first vehicle and the above-mentioned first object may be capable of sending and receiving UWB messages.
  • the first vehicle can acquire the location information of the first object.
  • the positioning information may include the position of the first object and the positioning accuracy of the first object.
  • the first vehicle may broadcast the third UWB message.
  • the third UWB message includes request information for obtaining the positioning accuracy, position and velocity of other objects.
  • the first vehicle may receive the fourth UWB message of the first object.
  • the fourth UWB message of the first object includes the identification of the first object, the positioning accuracy, the time when the first object receives the third UWB message and sends the fourth UWB response message, and the time when the first object receives the third UWB message and sends the fourth UWB message. The speed when the fourth UWB message is sent, and the position of the first object when the third UWB message is sent.
  • the time when the first object receives the third UWB message and sends the fourth UWB message, and the speed when the first object receives the third UWB message and sends the fourth UWB message are used to determine the distance between the first vehicle and the first object .
  • the first vehicle and the first object may not have a V2X transceiver unit, or may not use a V2X transceiver unit to implement the vehicle positioning method provided in this application.
  • the first vehicle may directly use UWB technology to obtain relevant data required for distance measurement and positioning (such as PDOP of peripheral devices, speed of peripheral devices, positions of peripheral devices, etc.).
  • relevant data required for distance measurement and positioning such as PDOP of peripheral devices, speed of peripheral devices, positions of peripheral devices, etc.
  • the above-mentioned method of only using UWB technology to realize positioning can better improve the efficiency of positioning and improve the positioning accuracy .
  • the first vehicle can determine its own position by using three or more first objects.
  • the first vehicle may calculate the position of the first intersection point, and determine the position of the first intersection point as the position of the first vehicle.
  • the first intersection point may be a common intersection point of m circles, one of the m circles is a circle with the position of one of the m first objects as the center, and the distance between the first vehicle and one of the first objects as the radius round.
  • the first vehicle can determine its own position by means of three first objects. That is, the above-mentioned value of m is 3.
  • the first vehicle can calculate its position according to the following equations:
  • (x, y) may be the position (ie, latitude and longitude) of the first vehicle.
  • (x1, y1) may be the position of the first first object.
  • (x2, y2) may be the position of the second first object.
  • (x3, y3) may be the position of the third first object.
  • L1, L2, and L3 may be the distances between the first vehicle and the first first object, the second first object, and the third first object, respectively.
  • the number m of the above-mentioned first objects may be a positive integer less than 3.
  • the first vehicle and the first object may have multiple modules (such as UWB electronic tags) for sending and receiving UWB messages.
  • the first vehicle can determine the direction information between itself and the first object and the distance between itself and the first object during the process of sending and receiving UWB messages through multiple UWB electronic device tags. According to the above direction information, distance and the position of the first object, the first vehicle can determine its own position.
  • the first vehicle may also determine its own positioning accuracy, and determine whether its own positioning accuracy is lower than the second threshold.
  • the first vehicle may determine its own position by means of peripheral devices through the aforementioned method.
  • the first vehicle can perform positioning through its own positioning module (such as a GPS module). That is, when it is determined that its own positioning accuracy is higher than the second threshold, the first vehicle can use its own positioning module to achieve independent positioning without using peripheral devices.
  • the position of the first vehicle may further include information about the lane where the first vehicle is located, the distance between the first vehicle and the lane line of the lane where the first vehicle is located, and the like. Since the first vehicle can improve its positioning accuracy with the help of peripheral equipment, the above-mentioned information on the lane where the first vehicle is located and the distance between the first vehicle and the lane line of the lane where the first vehicle is located are relatively accurate, which can reduce the need for lane-level navigation. False positive warnings during the process.
  • the present application provides a vehicle.
  • the vehicle is the first vehicle.
  • the first vehicle may include a positioning information acquiring unit, a distance determining unit and a position determining unit.
  • the positioning information acquiring unit may be used to acquire the positioning information of the first object.
  • the first object may include one or more of the following: a second vehicle, equipment carried by pedestrians.
  • the positioning information may include the location of the first object.
  • the distance determination unit is operable to determine the distance of the first vehicle to the first object.
  • the position determination unit may be used to determine the position of the first vehicle according to the position of the first object and the distance between the first vehicle and the first object.
  • the first object may be a movable object around the first vehicle.
  • vehicles around the first vehicle that is, the second vehicle
  • devices carried by pedestrians around the first vehicle such as mobile phones, smart watches, tablet computers, etc.
  • the devices carried by the above-mentioned second vehicles and pedestrians usually have the ability to communicate with the first vehicle, and can inform the first vehicle of its own positioning information.
  • the first vehicle can determine its position by means of the first object.
  • the above method can determine the position of the first vehicle without separately installing a fixed-position device (such as a base station, etc.). This can make better use of existing equipment in the surrounding area for vehicle positioning.
  • the above-mentioned first object may further include infrastructure.
  • infrastructure For example: roadside units, traffic lights, etc.
  • the above-mentioned infrastructure may also have the ability to communicate with the first vehicle, and inform the first vehicle of its own positioning information.
  • m there are m first objects.
  • m may be an integer greater than or equal to 3. That is, the first vehicle can determine its position with the help of three or more first objects.
  • the first vehicle may use a three-point positioning method to determine its own position.
  • the positioning information of the first object may further include positioning accuracy.
  • This positioning accuracy can be represented by PDOP. The smaller the value of PDOP, the higher the positioning accuracy.
  • the positioning accuracy of the first object is higher than the positioning accuracy of the first vehicle.
  • the first vehicle may acquire location information of multiple peripheral devices. According to the positioning accuracy contained in the positioning information, the first vehicle may select the above-mentioned first object from the plurality of peripheral devices. The first vehicle can determine its own positioning accuracy. The first vehicle may arbitrarily select m peripheral devices with higher positioning accuracy than itself. The above selected m peripheral devices are the m first objects. The positioning accuracy of the m first objects is higher than that of the first vehicle.
  • the first vehicle can determine its own position with the help of peripheral devices with higher positioning accuracy than itself. Since the positioning accuracy of the first object is higher than that of the first vehicle, the position of the first object determined by the positioning module (such as the GPS module) is more accurate than the position determined by the first vehicle through the positioning module (such as the GPS module). The first vehicle can more accurately determine its position according to the distance between itself and the first object and the position of the first object.
  • the positioning module such as the GPS module
  • the positioning accuracy of the first object is higher than a first threshold. That is, the PDOP value of the first subject is lower than the preset threshold.
  • the foregoing first threshold may be used to screen peripheral devices with high positioning accuracy.
  • the first vehicle may acquire location information of multiple peripheral devices. According to the positioning accuracy contained in the positioning information, the first vehicle may select the above-mentioned first object from the plurality of peripheral devices. Wherein, the first vehicle may arbitrarily select m peripheral devices whose positioning accuracy is higher than the first threshold. The above selected m peripheral devices are the m first objects. The positioning accuracies of the m first objects are all higher than the first threshold.
  • the foregoing first object may have the highest positioning accuracy among peripheral devices of the first vehicle.
  • the first vehicle may acquire location information of k second objects.
  • the aforementioned k second objects may be peripheral devices capable of communicating with the first vehicle.
  • the first vehicle can select m first objects from the k second objects.
  • the m first objects may be the m ones with the highest positioning accuracy among the k second objects.
  • the first vehicle can determine its own position with the help of peripheral devices with high positioning accuracy.
  • the above method can effectively improve the positioning accuracy of the vehicle.
  • the above-mentioned first object may have the highest positioning accuracy among peripheral devices whose positioning accuracy is higher than that of the first vehicle.
  • the first vehicle may acquire location information of k second objects.
  • the aforementioned k second objects may be peripheral devices capable of communicating with the first vehicle.
  • the first vehicle can select m first objects from the k second objects.
  • the positioning accuracy of the m first objects is higher than that of the first vehicle, and the m first objects are m with the highest positioning accuracy among the k second objects.
  • the positioning accuracy of the first object is higher than the positioning accuracy of the first vehicle and higher than a first threshold.
  • the positioning information acquiring unit may include a V2X transceiving unit and a UWB transceiving unit.
  • the V2X transceiver unit may be used to broadcast the first V2X service data, and the first V2X service data is used to request positioning accuracy.
  • the V2X transceiving unit is further configured to receive second V2X service data of the first object, and the second V2X service data of the first object includes the identification and positioning accuracy of the first object.
  • the UWB transceiver unit may be used to broadcast a first UWB message, and the first UWB message includes the identification of the first vehicle and request information for obtaining the position and speed of other objects.
  • the UWB transceiver unit can also be used to receive the second UWB message of the first object, the second UWB message of the first object contains the identification of the first object, the first object receives the first UWB message and sends the second UWB message Time, the speed of the first object when receiving the first UWB message and sending the second UWB message, and the position of the first object when the first UWB message is sent.
  • the time when the first object receives the first UWB message and sends the second UWB message, and the speed when the first object receives the first UWB message and sends the second UWB message are used to determine the distance between the first vehicle and the first object .
  • the first vehicle can use the V2X communication capability to obtain the positioning accuracy of the first object, and use the UWB technology to obtain the location of the first object and the time of receiving and replying the UWB message. Since UWB technology has the advantages of low power spectral density of transmitted signals, insensitivity to channel fading, strong anti-interference ability, and strong penetration, the accuracy of distance measurement achieved by the first vehicle through this UWB technology is higher, so that it can more accurately Determine where you are.
  • the positioning information acquiring unit may include a UWB transceiving unit.
  • the UWB transceiver unit may be specifically configured to: broadcast a third UWB message, and the third UWB message includes request information for obtaining positioning accuracy, position and speed of other objects.
  • Receive the fourth UWB message of the first object, the fourth UWB message of the first object includes the identification of the first object, the positioning accuracy, the time when the first object receives the third UWB message and sends the fourth UWB response message, The speed of the first object when receiving the third UWB message and sending the fourth UWB message, and the position of the first object when the third UWB message is sent.
  • the time when the first object receives the third UWB message and sends the fourth UWB message, and the speed when the first object receives the third UWB message and sends the fourth UWB message are used to determine the distance between the first vehicle and the first object .
  • the first vehicle and the first object may not have a V2X transceiver unit, or may not use a V2X transceiver unit to implement the vehicle positioning method provided in this application.
  • the first vehicle may directly use UWB technology to obtain relevant data required for distance measurement and positioning (such as PDOP of peripheral devices, speed of peripheral devices, positions of peripheral devices, etc.).
  • relevant data required for distance measurement and positioning such as PDOP of peripheral devices, speed of peripheral devices, positions of peripheral devices, etc.
  • the above-mentioned method of only using UWB technology to realize positioning can better improve the efficiency of positioning and improve the positioning accuracy .
  • the first vehicle can determine its own position by using three or more first objects.
  • the position determining unit may calculate the position of the first intersection point, and determine the position of the first intersection point as the position of the first vehicle.
  • the first intersection point may be a common intersection point of m circles, one of the m circles is a circle with the position of one of the m first objects as the center, and the distance between the first vehicle and one of the first objects as the radius round.
  • the present application provides a vehicle, which may include a communication module, a memory, and a processor.
  • the communication module can be used to send and receive V2X service data, and can also be used to send and receive UWB messages.
  • the memory can be used to store the positioning accuracy of the vehicle and can also be used to store computer programs.
  • the processor can be used to call a computer program, so that the vehicle executes any possible implementation method in the first aspect.
  • the present application provides a chip, the chip is applied to a vehicle, and the chip includes one or more processors, the processors are used to invoke computer instructions so that the vehicle executes any possible implementation method in the first aspect .
  • the present application provides a computer program product containing instructions, which is characterized in that, when the computer program product is run on a vehicle, the vehicle is made to execute any possible implementation method in the first aspect.
  • the present application provides a computer-readable storage medium, including instructions, characterized in that, when the above-mentioned instructions are run on a vehicle, the vehicle is made to execute any possible implementation method in the first aspect.
  • the vehicle provided in the third aspect above, the chip provided in the fourth aspect, the computer program product provided in the fifth aspect, and the computer-readable storage medium provided in the sixth aspect are all used to execute the method provided by the embodiment of the present application . Therefore, the beneficial effects that it can achieve can refer to the beneficial effects in the corresponding method, and will not be repeated here.
  • FIG. 1A and FIG. 1B are schematic diagrams of a vehicle positioning scene provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device 100 provided in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another vehicle positioning scenario provided by the embodiment of the present application.
  • Fig. 4 is a flow chart of a vehicle positioning method provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a vehicle ranging provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a vehicle positioning provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a vehicle to be positioned according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a positioning assistance device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • the scene of lane-level navigation is taken as an example to introduce the vehicle positioning method provided in the embodiment of the present application.
  • the vehicle positioning method provided by this application can also be applied to scenarios related to smart cars such as autonomous driving scenarios, Internet of Vehicles scenarios, and so on.
  • Lane-level navigation can restore real road scenes with high precision during navigation. For example, the division of lanes on the current road, which lane the vehicle is located in, the driving conditions of vehicles around the vehicle, and so on. Lane-level navigation can specify which lane the user should drive in when planning a driving route for the user. When it is necessary to change lanes, the lane-level navigation can remind the user to change lanes.
  • the embodiment of the present application does not limit the navigation function provided by the lane-level navigation.
  • Fig. 1A exemplarily shows a scenario of lane-level navigation.
  • the electronic device may display a user interface as shown in FIG. 1A .
  • the electronic device may be a mobile phone, a tablet computer, a vehicle-mounted computer, and the like.
  • the embodiment of the present application does not limit the type of the electronic device.
  • the user can know the division of the current lane (for example, there are 4 lanes in the driving direction of the car), which lane he is in (for example, the car is in the second lane on the left), and the surrounding area of the car.
  • the driving situation of the vehicle for example, there are vehicles traveling in the same direction at the left front and right rear of the vehicle).
  • the lane-level navigation reminds the user to change lanes to the right in advance in order to enter the right branch road. It can be seen that compared with traditional navigation (such as navigation that cannot be accurate to the lane conditions), lane-level navigation can provide users with lane-level driving action guidance, reduce the difficulty of users' understanding of navigation, and improve driving safety.
  • Lane-level navigation to provide users with accurate navigation guidance depends on the high-precision positioning of the vehicle. It can be understood that the higher the positioning accuracy of the vehicle, the more accurately the lane-level navigation can obtain the current driving state of the vehicle (such as the vehicle speed, the lane it is in), so as to provide the user with more accurate driving action guidance. If the positioning accuracy of the vehicle is low, the probability of false alarms during lane-level navigation tends to be higher.
  • FIG. 1B exemplarily shows a scenario where the positioning accuracy of a vehicle is low, and false alarms occur during the navigation process of the vehicle.
  • location 201 is the actual location of the vehicle.
  • Location 202 is the location of the vehicle.
  • the location 202 may be obtained by an on-board computer of the vehicle through a global positioning system (global positioning system, GPS).
  • GPS global positioning system
  • the on-board computer will determine the location 202 as the location of the vehicle to provide navigation functions for the vehicle. It can be seen that when the vehicle is at position 202, it is very close to the vehicle in front of the vehicle, and the two vehicles may collide. When the vehicle is at position 202, it is very close to the left lane line of the current lane, and the vehicle intends to change lanes. Then, the on-board computer may prompt forward collision warning and lane change warning.
  • the vehicle is actually in the position 202 shown in FIG. 1B .
  • the vehicle will not collide with the vehicle in front and has no intention of changing lanes.
  • the above-mentioned forward collision warning and lane change warning are warning false alarms, which will cause interference to the user's driving vehicle.
  • an electronic device may include a dual-frequency GPS module.
  • the electronic device can simultaneously receive satellite signals of the GPS L1 frequency band and the GPS L5 frequency band.
  • electronic equipment can eliminate the impact of the ionosphere on the delay of electromagnetic wave signals.
  • the electronic device uses a dual-frequency GPS module to observe satellite signals in two frequency bands, which can speed up the calculation of the position and make the positioning faster. But this method requires a dual-frequency GPS module. Compared with the single-frequency GPS module, the cost of the dual-frequency GPS module is higher, but the positioning accuracy has not been significantly improved, and it is still difficult to achieve the positioning accuracy (within centimeter level) required for lane-level navigation.
  • the electronic device (such as a vehicle computer) can locate the vehicle through a GPS module (such as a single-frequency GPS module) and a base station.
  • the above-mentioned base station may be a device providing cellular mobile communication. The location of each base station is fixed and definite.
  • the electronic device can use the communication time difference between itself and the base station to calculate the position of the vehicle (the vehicle where the electronic device is located).
  • the signal transmitted by the electronic device and the base station during the communication process may reach the opposite end after being reflected by multiple objects. Then the distance between the base station and the vehicle determined according to the communication time difference may not be a straight-line distance between the two, and the positioning accuracy of the vehicle is also low.
  • An embodiment of the present application provides a vehicle positioning method, which can improve the positioning accuracy of the vehicle by using peripheral devices with high positioning accuracy.
  • the vehicle to be positioned can obtain the comprehensive position accuracy (position dilution of precision, PDOP) of peripheral equipment.
  • the vehicle to be positioned can select k devices with the smallest PDOP from the peripheral devices as positioning auxiliary devices.
  • the above k is an integer greater than or equal to 3.
  • the vehicle to be positioned can determine the distance between A itself and the k positioning assistance devices at the moment A.
  • the vehicle to be positioned can also obtain the positions of the k positioning auxiliary devices at time A. According to the distance between A itself and the k positioning aids and the positions of the k positioning aids at time A, the vehicle to be positioned can determine its own position at time A.
  • Both the above-mentioned vehicle to be positioned and the above-mentioned peripheral equipment may be things capable of communicating with the Internet of Vehicles.
  • the foregoing peripheral devices may be, for example, vehicles, pedestrians (specifically, devices carried by pedestrians), infrastructure, and the like. That is to say, the above-mentioned vehicle to be positioned can perform information interaction with the above-mentioned peripheral equipment during driving.
  • the peripheral device may actually be the on-board computer of the vehicle, or an electronic device (such as a mobile phone) carried by a user in the vehicle. , tablet computer, smart bracelet, smart watch, etc.) and the like can be used to reflect the electronic equipment of the driving state of the vehicle.
  • the peripheral device may actually be an electronic device carried by the pedestrian, such as a mobile phone, a tablet computer, a smart bracelet, a smart watch, and the like.
  • the peripheral device may actually be an electronic device configured on the infrastructure.
  • the electronic device can send information such as identification and location of the infrastructure to surrounding traffic participants (such as vehicles and pedestrians). In subsequent embodiments, the above content will not be repeatedly explained.
  • V2X Vehicle to everything
  • Things with V2X communication capabilities can exchange information with peripheral devices.
  • the V2X technology may be a technology for realizing perception through radio wave propagation.
  • V2X is variable.
  • the X can be replaced by V, I, P, etc.
  • each vehicle specifically, it may be an on-board computer on the vehicle
  • vehicles can directly communicate wirelessly with the infrastructure (specifically, devices that provide V2X communication capabilities configured on the infrastructure) and exchange information.
  • the aforementioned infrastructure may include, but is not limited to: traffic lights, bus stops, roadside units (roadside units, RSUs), utility poles, overpasses, and buildings.
  • vehicles can communicate directly with pedestrians (specifically, devices carried by pedestrians) wirelessly to exchange information.
  • the devices carried by the aforementioned pedestrians may be, for example, mobile phones, tablet computers, smart watches, smart bracelets, and other devices with V2X communication capabilities.
  • the V2X technology may specifically be any one of the following: dedicated short range communications technology (dedicated short range communications, DSRC), V2X communication technology based on long term evolution (long term evolution, LTE) mobile cellular network (referred to as LTE- V2X), V2X communication technology based on 5G communication (5G-V2X for short).
  • DSRC dedicated short range communications technology
  • LTE long term evolution
  • LTE- V2X long term evolution
  • 5G-V2X 5G communication
  • V2X technology can also be realized through technologies in other communication technology directions.
  • a thing capable of V2X communication may be a thing with a V2X transceiver unit.
  • the vehicle having the V2X communication capability may mean that the vehicle has a V2X transceiver unit.
  • the fact that the infrastructure has the V2X communication capability may mean that devices with V2X transceiver units are configured on the infrastructure.
  • Pedestrians having V2X communication capabilities may mean that pedestrians carry devices with V2X transceiver units.
  • the above-mentioned V2X transceiver unit can realize data transmission and reception through wireless communication technologies such as the above-mentioned DSRC, LTE-V2X, 5G-V2X and the like.
  • the above-mentioned V2X transceiver unit can be used to send its own identification information, PDOP and other information, and receive identification information, PDOP and so on sent by the V2X transceiver unit of other things.
  • the above-mentioned V2X transceiver unit may be integrated on a single chip, such as a V2X chip.
  • the above-mentioned V2X transceiver unit may also be integrated with other functional units of the device on one processor. This embodiment of the present application does not limit it.
  • the accuracy of the positioning results is related to the geometry of the satellite used for the measurement and the satellite signal receiving equipment.
  • PDOP can represent the deviation caused by positioning according to the above-mentioned geometry of the artificial satellite used for measurement and the satellite signal receiving device. That is, the PDOP of a thing can represent the positioning accuracy of the thing.
  • PDOP can be obtained by GPS module.
  • the PDOP may specifically be the square root value of the sum of squares of errors such as longitude, latitude, and elevation. It can be understood that when positioning an object, the better the distribution of artificial satellites used for measurement in the sky, the higher the positioning accuracy. Wherein, the smaller the value of PDOP is, the higher the positioning accuracy is.
  • UWB technology is a wireless carrier communication technology.
  • UWB technology uses nanosecond-level non-sinusoidal narrow pulses to transmit data, which can occupy a wide spectrum range.
  • the working frequency band of UWB may be 3.1 GHz ⁇ 10.6 GHz.
  • UWB technology has the advantages of low power spectral density of transmitted signals, insensitivity to channel fading, strong anti-interference ability, no interference to other devices in a unified environment, strong penetration, and high positioning accuracy.
  • the electronic device can utilize UWB technology to achieve positioning.
  • the principle of using UWB technology to realize positioning may be the principle of time difference of arrival (time difference of arrival, TDOA).
  • the electronic device may send UWB packets to at least three positioning base stations.
  • the above-mentioned positioning base station can be used to reply its own position in response to the received UWB message.
  • the above UWB message may include the identifier of the electronic device.
  • the electronic device can determine the distance between itself and each positioning base station according to the time difference between sending the UWB message and receiving the reply. Further, according to the distance between itself and each positioning base station and the positions of each positioning base station, the electronic device can determine its own position.
  • the electronic device can use UWB technology to carry data such as the time when it receives a UWB message sent by other devices, the time when it sends a UWB message, its own speed and position, and so on.
  • UWB technology to carry data such as the time when it receives a UWB message sent by other devices, the time when it sends a UWB message, its own speed and position, and so on.
  • the embodiment of the present application does not limit the type of data carried in the UWB message.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, and a battery 142 , antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193 , a display screen 194, and a subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • the controller may be the nerve center and command center of the electronic device 100 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the electronic device 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through the CSI interface to realize the shooting function of the electronic device 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the electronic device 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100 , and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present application is only a schematic illustration, and does not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is configured to receive a charging input from a charger. While the charging management module 140 is charging the battery 142 , it can also provide power for electronic devices through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the electronic device 100 can be realized by the antenna 1 , the antenna 2 , the mobile communication module 150 , the wireless communication module 160 , a modem processor, a baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wireless Fidelity, Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite, etc. applied on the electronic device 100.
  • System global navigation satellite system, GNSS
  • frequency modulation frequency modulation, FM
  • near field communication technology near field communication, NFC
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • the GNSS may include GPS, a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou satellite navigation system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi-zenith satellite system, QZSS) and/or Satellite based augmentation systems (SBAS).
  • GLONASS global navigation satellite system
  • BDS Beidou satellite navigation system
  • QZSS quasi-zenith satellite system
  • SBAS Satellite based augmentation systems
  • the electronic device 100 realizes the display function through the GPU, the display screen 194 , and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the electronic device 100 may include 1 or N display screens 194 , where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the electronic device 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs.
  • the electronic device 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4 and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the electronic device 100 can be realized through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, so as to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the internal memory 121 .
  • the internal memory 121 may include an area for storing programs and an area for storing data.
  • the stored program area can store an operating system, at least one application program required by a function (such as a sound playing function, an image playing function, etc.) and the like.
  • the storage data area can store data created during the use of the electronic device 100 (such as audio data, phonebook, etc.) and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the electronic device 100 can implement audio functions through the audio module 170 , the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the microphone 170C also called “microphone” or “microphone”, is used to convert sound signals into electrical signals.
  • the earphone interface 170D is used for connecting wired earphones.
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100 .
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may use the magnetic sensor 180D to detect the opening and closing of the flip leather case.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • the electronic device 100 may measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may use the distance sensor 180F for distance measurement to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the electronic device 100 emits infrared light through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the electronic device 100 . When insufficient reflected light is detected, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to implement a temperature treatment strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the electronic device 100 may reduce the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 , which is different from the position of the display screen 194 .
  • the bone conduction sensor 180M can acquire vibration signals.
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 can receive key input and generate key signal input related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate a vibrating reminder.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1. Multiple cards can be inserted into the same SIM card interface 195 at the same time.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the electronic device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • the electronic device 100 may be a mobile phone, a tablet computer, a notebook computer, a wearable device (such as a smart watch, a smart bracelet, smart glasses), a smart car, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a netbook, a personal digital Assistant (personaldigital assistant, PDA) and so on.
  • a wearable device such as a smart watch, a smart bracelet, smart glasses
  • UMPC ultra-mobile personal computer
  • netbook a personal digital Assistant (personaldigital assistant, PDA) and so on.
  • PDA personal digital Assistant
  • both the vehicle to be positioned and the positioning assistance device can have the V2X transceiver unit and the UWB transceiver unit mentioned in the foregoing embodiments.
  • a vehicle positioning scenario provided by the embodiment of the present application is introduced below.
  • a vehicle 301 is a vehicle to be positioned.
  • peripheral devices of the vehicle 301 to be positioned may include roadside units 302 , traffic lights 303 , vehicles 304 , vehicles 305 , vehicles 306 , vehicles 307 , and pedestrians 308 .
  • both the above-mentioned vehicle to be positioned 301 and the above-mentioned peripheral devices have V2X communication capabilities.
  • the vehicle to be positioned 301 may obtain the PDOP of the peripheral device.
  • the vehicle 301 to be positioned may send a PDOP request message to a peripheral device through the V2X transceiver unit to acquire the PDOP of the peripheral device.
  • the peripheral device may receive the above PDOP request message through its own V2X transceiver unit, and send a reply message to the vehicle 301 to be positioned.
  • the reply message may include the identification information of the peripheral device and the PDOP.
  • the reply messages sent by vehicles 304 to 307 may be vehicle basic safety messages (basic safety message, BSM). Fields in the BSM may include vehicle identification (identification, ID), latitude and longitude, altitude, PDOP, and so on.
  • the reply message sent by the roadside unit 302 may be a traffic event message and traffic sign information (road side information, RSI).
  • the fields in the RSI may include roadside unit ID, latitude and longitude, altitude, type of road test warning information (a value of 0 indicates text description information, and a value greater than 0 indicates traffic sign information) and so on.
  • the reply message sent by the traffic light 303 may be a signal phase and timing message (SPAT).
  • Fields in SPAT can include traffic light ID, light color, latitude and longitude, altitude, etc.
  • the reply message sent by the pedestrian 308 may be a road side message (RSM).
  • Fields in RSM can contain pedestrian ID, latitude and longitude, altitude, PDOP, trajectory, and more.
  • the embodiment of the present application does not limit the fields included in BSM, RSI, SPAT, and RSM. More or fewer fields can be included in BSM, RSI, SPAT, RSM.
  • the above reply messages sent by vehicles, roadside units, traffic lights and pedestrians can also be called by other names.
  • the vehicle to be positioned 301 may receive the above reply message through its own V2X transceiver unit. Wherein, the vehicle 301 to be positioned may determine the type of peripheral device sending the reply message according to the type of the reply message received. For example, when receiving the RSI, the vehicle to be positioned 301 may determine that the sender of the message is a roadside unit. When receiving the SPAT, the vehicle to be positioned 301 may determine that the sender of the message is a traffic light. It can be seen from the fields contained in the above different types of reply messages that the fields in the BSM and RSM both contain the PDOP of the corresponding device. PDOP is not included in the fields of RSI and SPAT. Understandably, the positions of vehicles and pedestrians are moving.
  • PDOP in BSM and RSM can reflect the localization accuracy of current vehicles and pedestrians respectively.
  • the vehicle to be positioned 301 can obtain the PDOP of the vehicle and the PDOP of the pedestrian from the BSM and the RSM respectively.
  • the positions of roadside units and traffic lights are fixed.
  • the vehicle to be positioned 301 may determine the PDOP of the roadside unit and the PDOP of the traffic light as 0.
  • the vehicle to be positioned 301 can obtain the PDOP of the peripheral device.
  • the PDOP of the roadside unit 302 is 0.
  • the PDOP of the traffic light 303 is 0.
  • the PDOP of vehicle 304 is 3.6.
  • the PDOP of vehicle 305 is 0.8.
  • the PDOP of vehicle 306 is 2.3.
  • the PDOP of vehicle 307 is 1.5.
  • the PDOP of pedestrian 308 is 0.5.
  • the vehicle 301 to be positioned may select at least three devices with the smallest PDOP from the peripheral devices according to the PDOP of each peripheral device as the positioning auxiliary device.
  • the vehicle 301 to be positioned may select a roadside unit 302 , a traffic light 303 , a vehicle 305 , a vehicle 307 and a pedestrian 308 as positioning aids.
  • the vehicle 301 to be positioned determines the distance between itself and the positioning auxiliary device and the position of the positioning auxiliary device to calculate its own position.
  • the vehicle 301 to be positioned can also determine the distance between itself and the selected positioning assistance setting at time A.
  • the vehicle to be positioned 301 may broadcast a UWB message at time A through the UWB transceiver unit.
  • the positioning assistance device can receive the UWB message broadcast by the vehicle 301 to be positioned through the UWB transceiver unit, and reply a UWB response message to the vehicle 301 to be positioned.
  • the vehicle 301 to be positioned can calculate the distance between itself and the positioning assistance device at time A according to the time difference between the UWB message it broadcasts and the UWB response message received from the positioning assistance device.
  • the specific calculation method of the distance between the vehicle to be positioned 301 and the positioning auxiliary device will be introduced in subsequent embodiments. Let’s not start the explanation here.
  • the UWB response message returned by the positioning assistance device may carry its own position at the above time A.
  • the above location may specifically be latitude and longitude.
  • the positioning assistance device may determine its own position every preset time period.
  • the position carried in the UWB response message returned by the positioning assistance device may be the position determined most recently to time A.
  • the vehicle 301 to be positioned can calculate its own position. It can be understood that the vehicle to be positioned 301 is located on a circle whose center is the position of each positioning auxiliary device and the distance between the vehicle to be positioned 301 and the positioning auxiliary device is the radius. Then, at least three circles intersect to determine an intersection point. The location of the intersection point is the location of the vehicle 301 to be positioned.
  • the specific method for the vehicle 301 to be positioned to calculate its own position according to the distance between itself and the positioning auxiliary device and the position of the positioning auxiliary device will be introduced in subsequent embodiments. Let’s not start the explanation here.
  • the vehicle to be positioned 301 may obtain its own PDOP first. If the own PDOP is less than or equal to the positioning accuracy threshold (for example, 3), the vehicle 301 to be positioned may determine the positioning obtained through GNSS as its own position. It can be understood that the smaller the PDOP is, the higher the positioning accuracy of the positioning of the vehicle 301 to be positioned through GNSS is. In the case that its own PDOP is less than or equal to the positioning accuracy threshold, the vehicle 301 to be positioned may consider that the positioning obtained through GNSS is reliable. If the own PDOP is greater than the above positioning accuracy threshold, the vehicle 301 to be positioned can be positioned by the method in the vehicle positioning scenario shown in FIG. 3 above. That is to say, when the positioning accuracy of the vehicle 301 is low, the vehicle 301 to be positioned can use peripheral devices with high positioning accuracy (ie, small PDOP) to determine its own position.
  • the positioning accuracy threshold for example, 3
  • the vehicle to be positioned 301 may obtain its own PDOP and the PDOP of peripheral devices.
  • the vehicle to be positioned 301 can compare its own PDOP with the PDOP of peripheral devices. If there are at least three peripheral devices with lower PDOP than the PDOP of the vehicle to be positioned 301, the vehicle to be positioned 301 can select at least three devices from the devices whose PDOP is lower than its own PDOP as positioning auxiliary devices, and use the The method in the vehicle positioning scene shown in 3 is used for positioning. That is to say, the vehicle to be positioned can use peripheral devices with higher positioning accuracy than itself to determine its own position and improve its positioning accuracy.
  • the vehicle 301 to be positioned can still be positioned by GNSS. It can be understood that if the positioning accuracy of the peripheral devices is lower than that of the vehicle to be positioned, the positioning error of the vehicle to be positioned by means of these peripheral devices may be relatively large, so it is difficult to improve the positioning accuracy of the vehicle to be positioned.
  • the vehicle to be positioned can determine its own position with the help of peripheral devices with high positioning accuracy.
  • peripheral devices with high positioning accuracy can relatively accurately determine the location of the peripheral devices during positioning.
  • the position determined by the vehicle to be positioned according to the distance between itself and the surrounding equipment and the position of the surrounding equipment is relatively accurate. That is to say, the above embodiments can improve the positioning accuracy of the vehicle, and reduce false alarms during the lane-level navigation process.
  • the positioning method of the above-mentioned embodiment only requires the vehicle to be positioned to have V2X transceiver capability and UWB transceiver capability, and does not need to add other modules (such as dual-frequency GPS module, etc.) While improving the accuracy, the cost of vehicle positioning is reduced.
  • Fig. 4 exemplarily shows a flow chart of a vehicle positioning method. As shown in FIG. 4, the method may include steps S401-S406. in:
  • the vehicle to be positioned obtains the PDOP of nearby peripheral devices capable of Internet of Vehicles communication, and selects a positioning auxiliary device 1 to a positioning auxiliary device k from the peripheral devices according to the PDOP.
  • the positioning auxiliary device 1 to the positioning auxiliary device k are the k devices with the smallest PDOP among the peripheral devices, and k is an integer greater than or equal to 3.
  • both the vehicle to be positioned and the aforementioned peripheral devices have a V2X transceiver unit.
  • the vehicle to be positioned may send a PDOP request message to the peripheral device through the V2X transceiver unit to request to obtain the PDOP of the peripheral device.
  • the peripheral device can send a reply message through the V2X transceiver unit.
  • the mobile peripheral devices such as vehicles and pedestrians can obtain their own PDOP from the GNSS positioning module. Then, these peripheral devices can send their own PDOP as a field of the above reply message to the vehicle to be positioned via the V2X transceiver unit.
  • the above-mentioned GNSS positioning module may be a module capable of providing GNSS solutions for peripheral devices.
  • the above-mentioned GNSS positioning module may be, for example, a GPS module, a BDS module and the like. This embodiment of the present application does not limit it.
  • the positioning assistance device 1 to k may be any k devices among the peripheral devices whose PDOP is lower than the PDOP of the vehicle to be positioned.
  • the above positioning assisting device 1 to positioning assisting device k may be any k devices among the peripheral devices whose PDOP is lower than a preset accuracy.
  • the above-mentioned positioning auxiliary device 1 to k may be any k devices among the peripheral devices whose PDOP is lower than the PDOP of the vehicle to be positioned and lower than the PDOP of the vehicle to be positioned.
  • the above-mentioned positioning assistance devices 1 to k may be the k devices with the smallest PDOP among the peripheral devices whose PDOP is lower than the PDOP of the vehicle to be positioned.
  • the vehicle to be positioned broadcasts a first UWB message, and the first UWB message can be used to obtain the position and speed of peripheral devices.
  • the vehicle to be positioned may have a UWB transceiver unit.
  • the vehicle to be positioned may broadcast the first UWB message at time A through the UWB transceiver unit.
  • the first UWB message may carry the vehicle ID of the vehicle to be positioned, and request information for obtaining the location and speed of the peripheral device. That is, the first UWB message can be used to obtain the position and speed of the peripheral device.
  • the positioning assistance device 1 may respond to the first UWB message and reply to the second UWB response message.
  • the positioning assistance device 2 may respond to the first UWB message and reply a third UWB response message.
  • the positioning assistance device k may respond to the first UWB message and reply to the fourth UWB response message.
  • the positioning aid may have a UWB transceiving unit.
  • the positioning auxiliary device 1 to the positioning auxiliary device k can all respond to the above-mentioned first UWB message, and reply a UWB response message including its own position and speed through its own UWB transceiver unit.
  • the positioning assistance device may determine, according to the vehicle ID in the first UWB message, that the first UWB message comes from the vehicle to be positioned, and then reply a UWB response message to the vehicle to be positioned.
  • the positioning assistance device 1 may reply the second UWB response message.
  • the second UWB response message may include the identification of the positioning assistance device 1, the position of the positioning assistance device 1 at time A, the time when the positioning assistance device 1 receives the first UWB message, and the time when the positioning assistance device 1 receives the first UWB message.
  • the positioning assistance device 2 may reply the third UWB response message.
  • the third UWB response message may include the identification of the positioning assisting device 2, the position of the positioning assisting device 2 at time A, the time when the positioning assisting device 2 receives the first UWB message, and the time when the positioning assisting device 2 receives the first UWB message.
  • the positioning assistance device k may reply the fourth UWB response message.
  • the fourth UWB response message may include the identification of the positioning assistance device k, the position of the positioning assistance device k at time A, the time when the positioning assistance device k receives the first UWB message, and the time when the positioning assistance device k receives the first UWB message.
  • the vehicle to be positioned determines the distance between itself and the positioning auxiliary device 1 to the positioning auxiliary device k according to the received UWB response message, and then determines its own position.
  • the above-mentioned received UWB response message may include the position and speed of the corresponding peripheral device.
  • the vehicle to be positioned broadcasts the first UWB message at time t1.
  • the speed of the vehicle to be positioned is v1.
  • the positioning assistance device 1 receives the above-mentioned first UWB packet at time t2.
  • the velocity of the positioning aid 1 is v2.
  • the positioning assistance device 1 replies with a second UWB response message at time t3.
  • the velocity of the positioning aid 1 is v3.
  • the information carried in the second UWB response message may include the identification of the positioning assistance device 1, t2, t3, v2 and v3.
  • the vehicle to be positioned receives the second UWB response message at time t4.
  • the speed of the vehicle to be positioned is v4.
  • the vehicle to be positioned can determine (v1+v4)/2 as its average speed during the time period from broadcasting the first UWB message to receiving the second UWB response message (ie T round ) .
  • the vehicle to be positioned can determine (v2+v3)/2 as the positioning aid 1 within the time period from receiving the first UWB message to replying the second UWB response message (ie T reply ). average speed.
  • the above-mentioned T round and T reply are all short time periods (for example, both are less than 5 seconds).
  • the speed of the vehicle to be positioned and of the positioning aid 1 usually does not change much over a short period of time.
  • the average speed of the vehicle to be positioned determined by the method described above and the average speed of the positioning assistance device 1 have a small error.
  • the vehicle to be positioned can calculate the speed difference v offset between itself and the positioning auxiliary device 1 according to the following formula (1):
  • the vehicle to be positioned can determine the distance L1 between itself and the positioning assistance device 1 at time t1 according to the following formula (2):
  • c is the propagation speed of the electromagnetic wave.
  • the value of c can be 3*10 ⁇ 8m/s.
  • the sum of the distance traveled by the first UWB message transmission to the positioning aid device 1 and the distance traveled by the second UWB response message transmission to the vehicle to be positioned can be: the distance between the vehicle to be positioned and the positioning aid device 1 at time t1 twice the distance (i.e. L1 above).
  • the sum of the distance traveled by the first UWB message transmission to the positioning aid device 1 and the distance traveled by the second UWB response message transmission to the vehicle to be positioned can be: the time and distance between the first UWB message transmission and the positioning aid device 1 The product of the sum of the time for the second UWB response message transmission to arrive at the vehicle to be positioned, and the electromagnetic wave propagation speed.
  • the above speed difference v offset is the average speed (v1+v4)/2 of the vehicle to be positioned.
  • the sum of the distance traveled by the first UWB message transmission to the positioning aid device 1 and the distance traveled by the second UWB response message transmission to the vehicle to be positioned can be: the distance between the vehicle to be positioned and the positioning aid device 1 at time t1 Twice the distance (that is, the above-mentioned L1), and the distance traveled by the vehicle to be positioned within T round time.
  • the vehicle to be positioned can determine the value of T round *v offset as the variation of the distance between itself and the positioning assistance device 1 within the T round time.
  • L1 is equal to the transmission distance of the first UWB message, or there is a small gap between the two
  • +T round *v offset means that the transmission distance of the second UWB response message is equal, or there is a small gap between the two.
  • the vehicle to be positioned can more accurately calculate the distance L1 between itself and the positioning auxiliary device 1 at time t1 according to the above formula (2).
  • the distance between the vehicle to be positioned and the positioning auxiliary device 2 to the positioning auxiliary device k at time t1 can be calculated with reference to the above method. I won't go into details here.
  • the above-mentioned method for calculating the distance between the vehicle to be positioned and the positioning auxiliary device can be applied to a vehicle to be positioned that travels in a straight line at a constant speed.
  • the positioning auxiliary device is a movable peripheral device such as a vehicle or a pedestrian, the positioning auxiliary device is also at a constant speed, and the moving direction is parallel to the driving direction of the vehicle to be positioned.
  • the vehicle to be positioned is not traveling in a straight line at a constant speed, and the positioning auxiliary equipment is moving at a non-uniform speed or the moving direction is not parallel to the driving direction of the vehicle to be positioned, the value of the above T round *v offset cannot be accurately reflected in the T round time to be determined
  • the amount of change in the distance between the vehicle and the positioning aid 1. Then, the distance error between the vehicle to be positioned and the positioning auxiliary device calculated by the above method may be large.
  • the vehicle to be positioned can also obtain the moving direction, moving speed, Information such as mobile acceleration. These information may be carried in the UWB response message returned by the positioning assistance device. Then, the vehicle to be positioned can determine the distance between itself and the positioning auxiliary device in combination with its own driving direction, driving speed, and driving acceleration, as well as the moving direction, moving speed, and moving acceleration of the positioning auxiliary device. Combined with the above information such as direction, speed, acceleration, etc., the vehicle to be positioned can more accurately determine the distance between itself and the positioning auxiliary device.
  • the vehicle to be positioned before the vehicle to be positioned selects the positioning assistance device from the peripheral devices, in addition to obtaining the PDOP of the peripheral devices, information such as the moving speed and the moving direction of the peripheral devices can also be obtained.
  • the vehicle to be positioned can select the positioning auxiliary device according to the PDOP, moving speed, and moving direction of the surrounding devices. Among them, the vehicle to be positioned can be screened according to the PDOP of the peripheral equipment. For example, the vehicle to be positioned can first screen out several devices with the smallest PDOP. Alternatively, the vehicle to be positioned may first screen out devices whose PDOP is lower than the PDOP of the vehicle to be positioned.
  • the vehicle to be positioned may first screen out devices whose PDOP is lower than a preset accuracy.
  • a specific method for screening peripheral devices by the vehicle to be positioned according to the PDOP of the peripheral devices is not limited.
  • the vehicle to be positioned can select a device whose moving speed is constant and/or whose moving direction is parallel to the driving direction of the vehicle to be positioned from the devices screened out according to the above PDOP as the positioning auxiliary device.
  • the above-mentioned moving speed being a uniform speed may mean that the moving speed of the peripheral device is constant or the change of the moving speed does not exceed the preset speed variation range.
  • the angle between the moving direction of the peripheral device and the driving direction of the vehicle to be positioned is smaller than the preset angle also includes the case where the moving direction of the peripheral device is parallel to the driving direction of the vehicle to be positioned.
  • the above-mentioned device whose moving speed is uniform and whose moving direction is parallel to the driving direction of the vehicle to be positioned can be used as a positioning auxiliary device to better help the vehicle to be positioned to improve the positioning accuracy. That is to say, when the positioning accuracy of multiple peripheral devices is high (that is, the PDOP is small), the vehicle to be positioned can preferentially select a moving speed that is uniform and/or the moving direction is parallel to the driving direction of the vehicle to be positioned. device as a positioning aid.
  • the vehicle to be positioned can use the above-mentioned UWB technology to obtain the information it needs (such as the speed of the positioning auxiliary device, the time of receiving the UWB message and the time of replying the UWB response message, etc.). Since UWB technology has the advantages of low power spectral density of transmitted signals, insensitivity to channel fading, strong anti-interference ability, and strong penetration, the accuracy of distance measurement for vehicles to be positioned is higher through this UWB technology.
  • the vehicle to be positioned can also implement distance measurement through other types of wireless carrier communication technologies.
  • the device can also reply to the vehicle to be positioned including its own position and Speed UWB reply message.
  • the vehicle to be positioned can determine whether the device is the positioning auxiliary device selected by itself according to the device identification in the UWB message. If it is not the positioning auxiliary device selected by itself, the vehicle to be positioned can discard the UWB response message returned by the device. That is to say, the vehicle to be positioned can only calculate the distance between itself and the selected positioning aid. This saves the power consumption of the vehicle to be located and increases the speed at which it can determine its position.
  • the vehicle to be positioned can calculate its own position.
  • the vehicle to be positioned selects three positioning aids (ie, positioning aid 1, positioning aid 2, and positioning aid 3) to determine its own position as an example, and introduces an implementation method for the positioning vehicle to calculate its own position .
  • the position of the positioning assistance device 1 at time t1 is (x1, y1).
  • x1 may represent the longitude of the positioning assistance device 1 at time t1.
  • y1 may represent the latitude of the positioning assistance device 1 at time t1.
  • the position of the positioning aid 2 at the instant t1 is (x2, y2).
  • x2 may represent the longitude of the positioning assistance device 2 at time t1.
  • y2 may represent the latitude of the positioning assistance device 2 at time t1.
  • the position of the positioning aid 3 at the instant t1 is (x3, y3).
  • x3 may represent the longitude of the positioning assistance device 3 at time t1.
  • y3 may represent the latitude of the positioning assistance device 3 at time t1.
  • the distance between the positioning assistance device 1 and the vehicle to be positioned at time t1 is L1.
  • the distance between the positioning auxiliary device 2 and the vehicle to be positioned at time t1 is L2.
  • the distance between the positioning auxiliary device 3 and the vehicle to be positioned at time t1 is L3.
  • the vehicle to be positioned can determine its position (x, y) at time t1 according to the following equation group (3):
  • x may represent the longitude of the vehicle to be positioned at time t1.
  • y can represent the latitude of the vehicle to be positioned at time t1.
  • the latitude and longitude sent by the positioning assistance device to the vehicle to be positioned may be the latitude and longitude in the spherical coordinate system.
  • the vehicle to be positioned may first perform a coordinate system conversion, converting the latitude and longitude of the positioning auxiliary device in the spherical coordinate system to the latitude and longitude of the positioning auxiliary device in the plane coordinate system.
  • the position (x1, y1) of the above-mentioned positioning assistance device 1 at the time t1, the position (x2, y2) of the above-mentioned positioning assistance device 2 at the time t1, and the position (x3, y3) of the above-mentioned positioning assistance device 3 at the time t1 may be The latitude and longitude in the plane coordinate system.
  • (x, y) obtained by the above calculation can represent the position of the vehicle to be positioned in the spherical coordinate system.
  • the vehicle to be positioned can obtain the latitude and longitude of the vehicle to be positioned in the spherical coordinate system according to the conversion relationship between the spherical coordinate system and the plane coordinate system.
  • the positions of the three positioning aids are The three circles with the center of the circle and the distance from the vehicle to be positioned to the three auxiliary devices to be positioned as the center of the circle may not intersect, or intersect but do not have a common intersection point.
  • the vehicle to be positioned can use the triangular center of gravity positioning algorithm to determine its own position.
  • the vehicle to be positioned can determine a triangle according to the positions of the three positioning aids. The location of each positioning aid can be a vertex of this triangle. Then, the vehicle to be positioned can calculate the center of gravity of the triangle, and determine the center of gravity of the triangle as the position of the vehicle to be positioned.
  • the vehicle to be positioned can determine its own position according to the reply message from the positioning auxiliary device.
  • the above-mentioned positioning aids have a relatively high accuracy, and usually can achieve a positioning accuracy within a centimeter level.
  • the positioning auxiliary device is a device with relatively high positioning accuracy, the vehicle to be positioned can determine its position more accurately according to the distance between itself and the positioning auxiliary device and the position of the positioning auxiliary device.
  • the above method can effectively improve the positioning accuracy of the vehicle to be located, so that the positioning accuracy of the vehicle to be located can reach within centimeters.
  • the vehicle to be positioned can obtain the PDOP of the peripheral device through the UWB transceiver unit.
  • the vehicle to be positioned may broadcast the first UWB message through its own UWB transceiver unit.
  • the first UWB message may also carry the request information for obtaining the PDOP of the peripheral device. That is to say, in addition to being used to obtain the position and speed of the peripheral device, the first UWB packet can also be used to obtain the PDOP of the peripheral device.
  • the peripheral device may reply a UWB response message to the vehicle to be positioned.
  • the UWB response message returned by the peripheral device may carry its own PDOP in addition to the position, speed and other information mentioned in the foregoing embodiments.
  • the vehicle to be positioned can select at least 3 positioning auxiliary devices from the peripheral devices according to the PDOP in the UWB response message returned from the peripheral devices.
  • the selected positioning assistance device has a smaller PDOP among the above peripheral devices.
  • the vehicle to be positioned can determine its own position according to the position, speed and other information carried in the UWB response message returned by the positioning assistance device.
  • the method for determining the position of the vehicle to be positioned can specifically refer to step S406 in the method shown in FIG. 4 . I won't go into details here.
  • the vehicle to be positioned and its peripheral equipment may not have a V2X transceiver unit, or may not use a V2X transceiver unit to implement the vehicle positioning method provided in this application.
  • the vehicle to be positioned can directly use UWB technology to obtain relevant data required for ranging and positioning (such as PDOP of peripheral devices, speed of peripheral devices, position of peripheral devices, etc.).
  • relevant data required for ranging and positioning such as PDOP of peripheral devices, speed of peripheral devices, position of peripheral devices, etc.
  • the above method of only using the UWB technology to realize the positioning can better improve the efficiency of positioning and improve the positioning accuracy .
  • Fig. 7 exemplarily shows a schematic structural diagram of a vehicle to be positioned according to an embodiment of the present application.
  • the vehicle to be positioned may include: a data acquisition unit 701 , a V2X transceiver unit 702 , a UWB transceiver unit 703 , a target selection unit 704 , a distance measurement unit 705 and a position determination unit 706 .
  • These units can be coupled via a bus.
  • the bus can be, for example, a controller area network (controller area network, CAN) bus.
  • controller area network controller area network, CAN
  • the data acquisition unit 701 can be used to acquire the vehicle ID of the vehicle to be positioned.
  • the vehicle ID can be used to uniquely identify the vehicle to be positioned.
  • the vehicle ID may be, for example, a vehicle identification number (VIN).
  • the data acquisition unit 701 may transmit the vehicle ID to the V2X transceiver unit 702 and the UWB transceiver unit 703 .
  • the V2X transceiver unit 702 can be used to broadcast a PDOP request message.
  • the PDOP request message may include the vehicle ID of the vehicle to be positioned.
  • the V2X transceiving unit 702 is also configured to receive a reply message from a peripheral device in response to the PDOP request message.
  • the above reply message may include the PDOP of the corresponding peripheral device.
  • the V2X transceiver unit 702 may transmit the reply message to the target selection unit 704 .
  • the UWB transceiver unit 703 may be configured to broadcast the first UWB message mentioned in the foregoing embodiments.
  • the first UWB message may carry the vehicle ID of the vehicle to be positioned, and request information for obtaining the location and speed of the peripheral device.
  • the UWB transceiver unit 703 can also be used to receive a UWB response message (such as the second UWB response message, the third UWB response message, and the fourth UWB response message mentioned in the foregoing embodiment) in response to the first UWB message reply from the peripheral device. arts).
  • the UWB response message replied by the peripheral device may carry information such as the location and speed of the peripheral device.
  • the UWB transceiver unit 703 may transmit the returned UWB response message to the ranging unit 705 .
  • the target selection unit 704 may be configured to receive the reply message transmitted by the above-mentioned V2X transceiver unit 702 . According to the PDOP of the peripheral device in the reply message, the target selection unit 704 may select a device with higher positioning accuracy from the peripheral devices as the positioning auxiliary device.
  • the target selecting unit 704 may sort the peripheral devices in ascending order according to the size of the PDOP of the peripheral devices. Then, the target selection unit 704 may select the top k devices.
  • the k selected devices are positioning auxiliary devices. k is an integer greater than or equal to 3.
  • the PDOPs of the above k selected devices are all lower than the PDOPs of the vehicle to be positioned.
  • the target selection unit 704 may transmit the identification of the positioning assistance device to the ranging unit 705 .
  • the data acquiring unit 701 may also acquire the PDOP of the vehicle to be positioned, and transmit the PDOP of the vehicle to be positioned to the target selecting unit 704 .
  • the target selection unit 704 can compare the PDOP of the vehicle to be positioned with the PDOPs of peripheral devices, and select k devices from the peripheral devices whose PDOP is lower than the PDOP of the vehicle to be positioned, as positioning auxiliary devices. k is an integer greater than or equal to 3.
  • the target selection unit 704 may transmit the identification of the positioning assistance device to the ranging unit 705 .
  • the target selecting unit 704 may select k devices from peripheral devices whose PDOP is lower than a preset precision according to the size of the PDOP of the peripheral devices as positioning auxiliary devices.
  • the k devices may be any k devices among peripheral devices whose PDOP is lower than the preset accuracy.
  • the embodiment of the present application does not limit the value of the foregoing preset precision.
  • the target selection unit 704 may transmit the identification of the positioning assistance device to the ranging unit 705 .
  • the data acquiring unit 701 may also acquire the PDOP of the vehicle to be positioned, and transmit the PDOP of the vehicle to be positioned to the target selecting unit 704 .
  • the target selection unit 704 can select k devices from the peripheral devices whose PDOP is lower than the preset accuracy and lower than the PDOP of the vehicle to be positioned according to the size of the PDOP of the vehicle to be positioned and the size of the PDOP of the peripheral devices, as positioning auxiliary devices .
  • the k devices may be any k devices among peripheral devices whose PDOP is lower than the preset accuracy and lower than the PDOP of the vehicle to be positioned.
  • the embodiment of the present application does not limit the value of the foregoing preset precision.
  • the target selection unit 704 may transmit the identification of the positioning assistance device to the ranging unit 705 .
  • the ranging unit 705 can be used to calculate the distance between the vehicle to be positioned and the positioning assistance device. Specifically, when receiving the UWB response message transmitted by the UWB transceiver unit 703 and the identification of the positioning auxiliary device transmitted by the target selection unit 704, the distance measuring unit 705 can select from the identification of the surrounding equipment in the above UWB response message. The UWB response message returned by the positioning aid device. Then, the ranging unit 705 may extract the information carried in the UWB response message returned by the positioning assistance device.
  • the distance measuring unit 705 can calculate the distance between the vehicle to be positioned and the positioning assistance device according to step S406 in the method shown in FIG. 4 . Further, the ranging unit 705 may transmit the distance between the vehicle to be positioned and the positioning auxiliary device, and the position of the positioning auxiliary device to the position determining unit 706 .
  • the location determining unit 706 may be used to determine the location of the vehicle to be positioned.
  • the position determining unit 706 may determine the position of the vehicle to be positioned according to step S406 in the method shown in FIG. 4 .
  • the data acquisition unit 701, the V2X transceiver unit 702, the UWB transceiver unit 703, the target selection unit 704, the distance measurement unit 705 and the position determination unit 706 of the vehicle to be positioned may be integrated in a telematics box, In the electronic control unit (electronic control unit, ECU) such as car T-BOX for short), car machine, etc.
  • ECU electronic control unit
  • these units can also be integrated in different positions of the vehicle to be positioned.
  • the functions of the above-mentioned V2X transceiver unit 702 may be implemented by a chip capable of V2X communication.
  • the chip capable of V2X communication may be an independent chip.
  • V2X chips For example, V2X chips.
  • the chip capable of V2X communication may also have other functions. That is, the chip capable of V2X communication is integrated with a V2X transceiver unit 702 and other functional units.
  • the functions of the above-mentioned UWB transceiver unit 703 can be realized by a UWB electronic tag.
  • the vehicle to be positioned may also have a GNSS positioning module (not shown in FIG. 7 ).
  • the vehicle to be positioned can obtain its own PDOP from the GNSS positioning module.
  • the positioning accuracy threshold for example, 3
  • the vehicle to be positioned can determine its own position through the aforementioned vehicle positioning method shown in FIG. 4 . It can be understood that the greater the value of PDOP, the lower the positioning accuracy of the vehicle to be positioned through the GNSS positioning module.
  • the vehicle to be positioned can consider the positioning obtained by the GNSS positioning module to be unreliable.
  • the positioning accuracy of the vehicle to be positioned can be improved and a more accurate position can be obtained by using the equipment with high positioning accuracy in its peripheral equipment to determine its own position.
  • the vehicle to be positioned can consider the positioning obtained by the GNSS positioning module to be reliable. Then, when it is judged that its own PDOP is less than or equal to the positioning accuracy threshold, the vehicle to be positioned can determine the positioning obtained through the GNSS positioning module as its own position.
  • the first UWB message broadcast by the UWB transceiving unit 703 of the vehicle to be positioned may also carry request information for obtaining the PDOP of the peripheral device.
  • the UWB response message returned by the peripheral device may carry its own PDOP.
  • the UWB transceiver unit 703 may deliver the UWB response message returned by the peripheral device to the target selection unit 704 .
  • the target selection unit 704 may select a positioning assistance device from the peripheral devices according to the PDOP of the peripheral device, and deliver the UWB response message returned by the positioning assistance device to the ranging unit 705 .
  • the ranging unit 705 can determine the distance between the vehicle to be positioned and the positioning assistance device.
  • the location determination unit 706 may determine the location of the vehicle to be located.
  • the vehicle to be positioned does not need to obtain the PDOP of the peripheral device through the V2X transceiver unit 702 .
  • the V2X transceiver unit 702 is optional.
  • the vehicle to be positioned may not have the V2X transceiver unit 702 .
  • Fig. 8 exemplarily shows a schematic structural diagram of a positioning assistance device provided by an embodiment of the present application.
  • the positioning assistance device may be a peripheral device of the vehicle to be positioned.
  • the peripheral device of the vehicle to be positioned may be: a device capable of establishing a communication connection with the vehicle to be positioned.
  • the positioning assistance device may include: a data acquisition unit 801 , a V2X transceiver unit 802 and a UWB transceiver unit 803 . These units can be connected via a bus. The embodiment of the present application does not limit the specific implementation manner in which these units are connected through a bus. in:
  • the data obtaining unit 801 may be configured to obtain information such as identification, PDOP, position (for example, longitude and latitude), speed, acceleration, etc. of the positioning assistance device.
  • the positioning assistance device may have a GNSS positioning module (not shown in FIG. 8 ).
  • the data acquiring unit 801 can acquire the PDOP and position of the positioning assistance device from the GNSS positioning module.
  • the positioning aid can have an acceleration sensor (not shown in FIG. 8 ).
  • the data acquiring unit 801 can acquire the velocity and acceleration of the positioning assistance device from the acceleration sensor.
  • the data obtaining unit 801 may obtain the above information.
  • the data acquiring unit 801 may transmit the information acquired by itself to the V2X transceiving unit 802 and the UWB transceiving unit 803 . Wherein, the data acquisition unit 801 may transmit the identification and PDOP of the positioning assistance device to the V2X transceiver unit 802 . The data acquisition unit 801 may transmit information such as the identification, position, speed, acceleration, etc. of the positioning aid to the UWB transceiver unit.
  • the V2X transceiver unit 802 may be configured to receive a PDOP request from a vehicle to be positioned. In response to the PDOP request, the V2X transceiver unit 802 may send a reply message to the vehicle to be positioned.
  • the reply message may include the identification of the positioning assistance device and the PDOP.
  • the types of the above reply messages are also different for different types of positioning assistance devices.
  • the above reply message sent by the roadside unit may be RSI.
  • the above reply message sent by the traffic light may be SPAT.
  • the above reply message sent by the vehicle may be a BSM.
  • the above reply message sent by the pedestrian may be RSM.
  • the UWB transceiver unit 803 may be configured to receive the first UWB message from the vehicle to be positioned. In response to the first UWB message, the UWB transceiver unit 803 may reply a UWB response message to the vehicle to be positioned. Wherein, the UWB response message replied by the UWB transceiver unit 803 may carry information such as the position and speed of the positioning assistance device.
  • the data acquisition unit 801 , the V2X transceiver unit 802 and the UWB transceiver unit 803 of the positioning assistance device may be respectively integrated in different chips.
  • the function of the above-mentioned V2X transceiver unit 802 may be implemented by a chip with V2X communication capability. That is, the V2X transceiver unit 802 may be integrated in the V2X chip.
  • the functions of the above-mentioned UWB transceiver unit 803 can be realized by a UWB electronic tag.
  • the vehicle to be positioned in addition to selecting three or more positioning aids and using the position determining scheme shown in FIG. 6 for positioning, can also use only one or two positioning aids to determine its own position Location.
  • the vehicle to be positioned and the positioning auxiliary device may have multiple UWB electronic tags.
  • the vehicle to be positioned can use multiple UWB electronic tags to determine the direction information between itself and a positioning auxiliary device, as well as the distance between itself and the positioning auxiliary device during the process of sending and receiving UWB messages. According to the above-mentioned direction information, distance and the position of this positioning auxiliary device, the vehicle to be positioned can determine its own position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

提供了一种车辆定位方法、车辆、计算机可读存储介质及计算机程序产品。其中,该车辆定位方法包括:待定位车辆可具备车联网V2X通信能力和超宽带UWB电子标签。待定位车辆可以通过V2X通信的方式获取周边设备的综合位置精度PDOP,并根据PDOP从周边设备中至少选取三个PDOP最小的设备,作为定位辅助设备(S401)。待定位车辆可以通过UWB电子标签与定位辅助设备交互UWB报文,获取定位辅助设备的位置(S402)。根据发送和接收到UWB报文的时间差,待定位车辆可以确定自己与各定位辅助设备之间的距离,并结合自己与各定位辅助设备之间的距离、定位辅助设备的位置,待定位车辆可以确定自己的位置(S406)。该方法中,待定位车辆可以借助定位精度高的设备来提高自己的定位精度。

Description

车辆定位方法及相关装置
本申请要求于2021年07月29日提交中国专利局、申请号为202110866063.5、申请名称为“车辆定位方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能汽车技术领域,尤其涉及一种车辆定位方法及相关装置。
背景技术
目前车辆上的自动驾驶技术、车联网技术、车道级导航技术等智能汽车领域技术的实现均依赖车辆的定位。车辆的定位精度越高,车辆自动驾驶的安全性和可靠性越高,在车道级导航过程中导航方案越准确,预警误报的概率越低。
但车辆的定位精度受到天气、高楼等许多因素的影响,如何提高车辆的定位精度是我们亟需解决的技术问题。
发明内容
本申请提供一种车辆定位方法及相关装置。该方法可以借助周边设备中定位精度高的设备来确定车辆的位置,提高车辆的定位精度。
第一方面,本申请提供一种车辆定位方法。该方法可应用于第一车辆。在该方法中,第一车辆可以:获取第一对象的定位信息,第一对象可包括以下一项或多项:第二车辆、行人携带的设备。上述定位信息可包括第一对象的位置。确定第一车辆与第一对象的距离。根据第一对象的位置、第一车辆与第一对象的距离,确定第一车辆的位置。
其中,上述第一对象的位置可包括第一对象的经纬度。在一些实施例中,除了上述经纬度,上述第一对象的位置还可包括第一对象的相对位置。例如,第一对象对象的位置可包括该第一对象所在车道的信息、该第一对象与该第一对象所在车道的车道线之间的距离等等。
上述第一车辆的位置可包括第一车辆的经纬度。
由上述方法可知,上述第一对象可以是第一车辆周边可以移动的对象。例如第一车辆周边的车辆(即第二车辆)、第一车辆周边的行人携带的设备(如手机、智能手表、平板电脑等等)。上述第二车辆、行人携带的设备通常具备与第一车辆通信的能力,可以告知第一车辆自己的定位信息等。第一车辆可以借助该第一对象来确定自己的位置。上述方法可以不用单独安装位置固定的设备(如基站等)来确定第一车辆的位置。这可以更好地利用周边已有的设备来进行车辆定位。
结合第一方面,在一些实施例中,上述第一对象还可以包括基础设施。例如:路边单元、红绿灯等等。上述基础设施也可以具备与第一车辆通信的能力,告知第一车辆自己的定位信息。
结合第一方面,在一些实施例中,上述第一对象有m个。m可以为大于或等于3的整数。即第一车辆可以借助三个或三个以上的第一对象来确定自己的位置。示例性的,根据三个第一对象的位置以及第一车辆与这三个第一对象之间的距离,第一车辆可以利用三点定位的方 法来确定自己的位置。
结合第一方面,在一些实施例中,第一对象的定位信息中还可以包含定位精度。该定位精度可以由综合位置精度(position dilution of precision,PDOP)表示。PDOP的值越小可以表示定位精度越高。
在一种可能的实现方式中,上述第一对象的定位精度高于第一车辆的定位精度。示例性的,第一车辆可以获取到多个周边设备的定位信息。根据该定位信息中包含的定位精度,第一车辆可以从该多个周边设备中选取上述第一对象。第一车辆可以确定自己的定位精度。第一车辆可以从定位精度比自己高的周边设备中任意选取m个。上述被选取出来的m个周边设备即为m个第一对象。这m个第一对象的定位精度均高于第一车辆的定位精度。
由上述方法可知,第一车辆可以借助定位精度比自己高的周边设备来确定自己的位置。由于第一对象的定位精度高于第一车辆的定位精度,第一对象通过定位模块(如GPS模块)确定出的位置比第一车辆通过定位模块(如GPS模块)确定出的位置要准确。第一车辆根据自己与第一对象的距离,以及第一对象的位置可以更加准确地确定自己的位置。
在一种可能的实现方式中,上述第一对象的定位精度高于第一阈值。即第一对象的PDOP的值低于预设的阈值。上述第一阈值可用于筛选定位精度高的周边设备。示例性的,第一车辆可以获取到多个周边设备的定位信息。根据该定位信息中包含的定位精度,第一车辆可以从该多个周边设备中选取上述第一对象。其中,第一车辆可以从定位精度高于第一阈值的周边设备中任意选取m个。上述被选取出来的m个周边设备即为m个第一对象。这m个第一对象的定位精度均高于第一阈值。
在一种可能的实现方式中,上述第一对象可以是第一车辆的周边设备中定位精度最高的。示例性的,第一车辆可以获取到k个第二对象的定位信息。上述k个第二对象可以是能够与第一车辆通信的周边设备。根据定位精度,第一车辆可以从这k个第二对象中选取出m个第一对象。这m个第一对象可以是这k个第二对象中定位精度最高的m个。
由上述方法可知,第一车辆可以借助周边设备中定位精度高的设备来确定自己的位置。在第一车辆的定位精度较差或者第一车辆不具备独立定位能力的情况下,上述方法可以有效提高车辆的定位精度。
在一种可能的实现方式中,上述第一对象可以是定位精度高于第一车辆的周边设备中,定位精度最高的。示例性的,第一车辆可以获取到k个第二对象的定位信息。上述k个第二对象可以是能够与第一车辆通信的周边设备。根据定位精度,第一车辆可以从这k个第二对象中选取出m个第一对象。这m个第一对象的定位精度高于第一车辆的定位精度,且这m个第一对象是这k个第二对象中定位精度最高的m个。
由上述方法可知,相比于从定位精度比第一车辆高的周边设备中任意选取出m个第一对象,从定位精度比第一车辆高的周边设备中选取出定位精度最高的m个周边设备作为m个第一对象可以更好的提高第一车辆的定位精度。
在一种可能的实现方式中,上述第一对象的定位精度高于第一车辆的定位精度,且高于第一阈值。
结合第一方面,在一些实施例中,上述第一车辆和上述第一对象均具备V2X通信能力和收发UWB报文的能力。利用上述V2X通信能力和收发UWB报文的能力,第一车辆可以获取第一对象的定位信息。该定位信息中可包含第一对象的位置和第一对象的定位精度。
具体的,第一车辆可以广播V2X业务数据。第一V2X业务数据可用于请求定位精度。第一车辆可以接收到第一对象的第二V2X业务数据。第一对象的第二V2X业务数据可包含 第一对象的标识、定位精度。第一车辆还可以广播第一UWB报文,第一UWB报文包含第一车辆的标识、获取其它对象的位置和速度的请求信息。第一车辆可以接收到第一对象的第二UWB报文。第一对象的第二UWB报文包含第一对象的标识、第一对象接收第一UWB报文和发送第二UWB报文的时间、第一对象接收第一UWB报文和发送第二UWB报文时的速度、第一UWB报文被发送时第一对象的位置。第一对象接收第一UWB报文和发送第二UWB报文的时间、第一对象接收第一UWB报文和发送第二UWB报文时的速度可用于确定第一车辆和第一对象的距离。
其中,第一车辆可以利用飞行时间法(time of flight,TOF)来确定第一车辆和第一对象的距离。根据第一车辆发送第一UWB报文是时间和第一对象接收第一UWB报文的时间,第一车辆可以确定第一UWB报文的传输时间。根据第一对象发送第二UWB报文的时间和第一车辆接收第二UWB报文的时间,第一车辆可以确定第二UWB报文的传输时间。第一UWB报文和第二UWB报文是以电磁波的形式在空中传输,传输速度接近3*10^8m/s。第一UWB报文和第二UWB报文的传输路径可以为第一车辆在发送第一UWB报文时第一车辆和第一对象的距离的两倍、第一UWB报文和第二UWB报文传输过程中第一车辆和第一对象的距离的变化量这两者的和。第一UWB报文和第二UWB报文传输过程中第一车辆和第一对象的距离的变化量,可以根据第一对象接收第一UWB报文和发送第二UWB报文时的速度以及第一车辆发送第一UWB报文和接收第二UWB报文时的速度确定。由此可知,第一车辆可以确定出自己发送第一UWB报文时自己与第一对象的距离。
由上述方法可知,第一车辆可以利用V2X通信能力来获取第一对象的定位精度,并利用UWB技术来获取第一对象的位置以及接收和回复UWB报文的时间。由于UWB技术具有发射信号功率谱密度低、对信道衰落不敏感、抗干扰能力强、穿透性强等优点,第一车辆通过该UWB技术实现测距的准确性更高,从而可以更准确地确定自己的位置。
结合第一方面,在一些实施例中,上述第一车辆和上述第一对象可具备收发UWB报文的能力。利用上述收发UWB报文的能力,第一车辆可以获取第一对象的定位信息。该定位信息中可包含第一对象的位置和第一对象的定位精度。
具体的,第一车辆可以广播第三UWB报文。第三UWB报文包含获取其它对象的定位精度、位置和速度的请求信息。第一车辆可以接收到第一对象的第四UWB报文。第一对象的第四UWB报文包含第一对象的标识、定位精度、第一对象接收第三UWB报文和发送第四UWB应答报文的时间、第一对象接收第三UWB报文和发送第四UWB报文时的速度、第三UWB报文被发送时第一对象的位置。第一对象接收第三UWB报文和发送第四UWB报文的时间、第一对象接收第三UWB报文和发送第四UWB报文时的速度用于确定第一车辆和第一对象的距离。
由上述方法可知,第一车辆和第一对象可以不具有V2X收发单元,或者可以不利用V2X收发单元实现本申请提供的车辆定位方法。其中,第一车辆可以直接利用UWB技术来获取测距和定位所需要的相关数据(如周边设备的PDOP、周边设备的速度、周边设备的位置等)。相比于先通过V2X收发单元获取周边设备的PDOP来选取第一对象,然后再通过UWB技术实现定位,上述仅利用UWB技术来实现定位的方法可以更好地提高定位的效率,并提高定位精度。
结合第一方面,在一些实施例中,第一车辆可以借助三个或三个以上的第一对象来确定自己的位置。其中,第一车辆可以计算第一交点的位置,并将第一交点的位置确定为第一车辆的位置。第一交点可以为m个圆公共的交点,m个圆中的一个圆为以m个第一对象中的一 个第一对象的位置为圆心,第一车辆与一个第一对象的距离为半径的圆。
示例性的,第一车辆可以借助三个第一对象来确定自己的位置。即上述m的值为3。第一车辆可以根据下述方程组来计算自己的位置:
Figure PCTCN2022108186-appb-000001
其中,(x,y)可以为第一车辆的位置(即经纬度)。(x1,y1)可以为第一个第一对象的位置。(x2,y2)可以为第二个第一对象的位置。(x3,y3)可以为第三个第一对象的位置。L1、L2、L3可以分别为第一车辆与第一个第一对象、第二个第一对象和第三个第一对象之间的距离。
结合第一方面,在一些实施例中,上述第一对象的个数m的取值可以是小于3的正整数。其中,第一车辆和第一对象可以具有多个用于收发UWB报文的模块(如UWB电子标签)。示例性的,第一车辆可以通过多个UWB电子设备标签,在发送和接收UWB报文的过程中,确定自己与第一对象的方向信息,以及自己与第一对象的距离。根据上述方向信息、距离以及第一对象的位置,第一车辆可以确定自己的位置。
结合第一方面,在一些实施例中,第一车辆还可以确定自己的定位精度,并判断自己的定位精度是否低于第二阈值。当判断出自己的定位精度低于第二阈值,第一车辆可以通过前述方法借助周边设备来确定自己的位置。当判断出自己的定位精度高于第二阈值,第一车辆可以通过自己的定位模块(如GPS模块)进行定位。即当判断出自己的定位精度高于第二阈值,第一车辆可以不用借助周边设备来定位,而利用自己的定位模块实现独立定位。
结合第一方面,在一些实施例中,上述第一车辆的位置还可以包含第一车辆所在车道的信息、第一车辆与第一车辆所在车道的车道线之间的距离等。由于第一车辆可以借助周边设备提高自己的定位精度,那么上述第一车辆所在车道的信息、第一车辆与第一车辆所在车道的车道线之间的距离均比较准确,这可以减少车道级导航过程中预警误报的情况。
第二方面,本申请提供一种车辆。该车辆为第一车辆。该第一车辆可包括定位信息获取单元、距离确定单元和位置确定单元。其中,定位信息获取单元可用于获取第一对象的定位信息。第一对象可包括以下一项或多项:第二车辆、行人携带的设备。定位信息可包括第一对象的位置。距离确定单元可用于确定第一车辆与第一对象的距离。位置确定单元可用于根据第一对象的位置、第一车辆与第一对象的距离,确定第一车辆的位置。
由上述方法可知,上述第一对象可以是第一车辆周边可以移动的对象。例如第一车辆周边的车辆(即第二车辆)、第一车辆周边的行人携带的设备(如手机、智能手表、平板电脑等等)。上述第二车辆、行人携带的设备通常具备与第一车辆通信的能力,可以告知第一车辆自己的定位信息等。第一车辆可以借助该第一对象来确定自己的位置。上述方法可以不用单独安装位置固定的设备(如基站等)来确定第一车辆的位置。这可以更好地利用周边已有的设备来进行车辆定位。
结合第二方面,在一些实施例中,上述第一对象还可以包括基础设施。例如:路边单元、红绿灯等等。上述基础设施也可以具备与第一车辆通信的能力,告知第一车辆自己的定位信息。
结合第二方面,在一些实施例中,上述第一对象有m个。m可以为大于或等于3的整数。即第一车辆可以借助三个或三个以上的第一对象来确定自己的位置。示例性的,根据三个第 一对象的位置以及第一车辆与这三个第一对象之间的距离,第一车辆可以利用三点定位的方法来确定自己的位置。
结合第二方面,在一些实施例中,第一对象的定位信息中还可以包含定位精度。该定位精度可以由PDOP表示。PDOP的值越小可以表示定位精度越高。
在一种可能的实现方式中,上述第一对象的定位精度高于第一车辆的定位精度。示例性的,第一车辆可以获取到多个周边设备的定位信息。根据该定位信息中包含的定位精度,第一车辆可以从该多个周边设备中选取上述第一对象。第一车辆可以确定自己的定位精度。第一车辆可以从定位精度比自己高的周边设备中任意选取m个。上述被选取出来的m个周边设备即为m个第一对象。这m个第一对象的定位精度均高于第一车辆的定位精度。
由上述方法可知,第一车辆可以借助定位精度比自己高的周边设备来确定自己的位置。由于第一对象的定位精度高于第一车辆的定位精度,第一对象通过定位模块(如GPS模块)确定出的位置比第一车辆通过定位模块(如GPS模块)确定出的位置要准确。第一车辆根据自己与第一对象的距离,以及第一对象的位置可以更加准确地确定自己的位置。
在一种可能的实现方式中,上述第一对象的定位精度高于第一阈值。即第一对象的PDOP的值低于预设的阈值。上述第一阈值可用于筛选定位精度高的周边设备。示例性的,第一车辆可以获取到多个周边设备的定位信息。根据该定位信息中包含的定位精度,第一车辆可以从该多个周边设备中选取上述第一对象。其中,第一车辆可以从定位精度高于第一阈值的周边设备中任意选取m个。上述被选取出来的m个周边设备即为m个第一对象。这m个第一对象的定位精度均高于第一阈值。
在一种可能的实现方式中,上述第一对象可以是第一车辆的周边设备中定位精度最高的。示例性的,第一车辆可以获取到k个第二对象的定位信息。上述k个第二对象可以是能够与第一车辆通信的周边设备。根据定位精度,第一车辆可以从这k个第二对象中选取出m个第一对象。这m个第一对象可以是这k个第二对象中定位精度最高的m个。
由上述方法可知,第一车辆可以借助周边设备中定位精度高的设备来确定自己的位置。在第一车辆的定位精度较差或者第一车辆不具备独立定位能力的情况下,上述方法可以有效提高车辆的定位精度。
在一种可能的实现方式中,上述第一对象可以是定位精度高于第一车辆的周边设备中,定位精度最高的。示例性的,第一车辆可以获取到k个第二对象的定位信息。上述k个第二对象可以是能够与第一车辆通信的周边设备。根据定位精度,第一车辆可以从这k个第二对象中选取出m个第一对象。这m个第一对象的定位精度高于第一车辆的定位精度,且这m个第一对象是这k个第二对象中定位精度最高的m个。
由上述方法可知,相比于从定位精度比第一车辆高的周边设备中任意选取出m个第一对象,从定位精度比第一车辆高的周边设备中选取出定位精度最高的m个周边设备作为m个第一对象可以更好的提高第一车辆的定位精度。
在一种可能的实现方式中,上述第一对象的定位精度高于第一车辆的定位精度,且高于第一阈值。
结合第二方面,在一些实施例中,上述定位信息获取单元可包含V2X收发单元和UWB收发单元。其中,V2X收发单元可用于广播第一V2X业务数据,第一V2X业务数据用于请求定位精度。V2X收发单元还可用于接收第一对象的第二V2X业务数据,第一对象的第二V2X业务数据包含第一对象的标识、定位精度。UWB收发单元可用于广播第一UWB报文,第一UWB报文包含第一车辆的标识、获取其它对象的位置和速度的请求信息。UWB收发单 元还可用于接收第一对象的第二UWB报文,第一对象的第二UWB报文包含第一对象的标识、第一对象接收第一UWB报文和发送第二UWB报文的时间、第一对象接收第一UWB报文和发送第二UWB报文时的速度、第一UWB报文被发送时第一对象的位置。第一对象接收第一UWB报文和发送第二UWB报文的时间、第一对象接收第一UWB报文和发送第二UWB报文时的速度用于确定第一车辆和第一对象的距离。
由上述方法可知,第一车辆可以利用V2X通信能力来获取第一对象的定位精度,并利用UWB技术来获取第一对象的位置以及接收和回复UWB报文的时间。由于UWB技术具有发射信号功率谱密度低、对信道衰落不敏感、抗干扰能力强、穿透性强等优点,第一车辆通过该UWB技术实现测距的准确性更高,从而可以更准确地确定自己的位置。
结合第二方面,在一些实施例中,上述定位信息获取单元可包含UWB收发单元。UWB收发单元可具体用于:广播第三UWB报文,第三UWB报文包含获取其它对象的定位精度、位置和速度的请求信息。接收第一对象的第四UWB报文,第一对象的第四UWB报文包含第一对象的标识、定位精度、第一对象接收第三UWB报文和发送第四UWB应答报文的时间、第一对象接收第三UWB报文和发送第四UWB报文时的速度、第三UWB报文被发送时第一对象的位置。第一对象接收第三UWB报文和发送第四UWB报文的时间、第一对象接收第三UWB报文和发送第四UWB报文时的速度用于确定第一车辆和第一对象的距离。
由上述方法可知,第一车辆和第一对象可以不具有V2X收发单元,或者可以不利用V2X收发单元实现本申请提供的车辆定位方法。其中,第一车辆可以直接利用UWB技术来获取测距和定位所需要的相关数据(如周边设备的PDOP、周边设备的速度、周边设备的位置等)。相比于先通过V2X收发单元获取周边设备的PDOP来选取第一对象,然后再通过UWB技术实现定位,上述仅利用UWB技术来实现定位的方法可以更好地提高定位的效率,并提高定位精度。
结合第一方面,在一些实施例中,第一车辆可以借助三个或三个以上的第一对象来确定自己的位置。其中,上述位置确定单元可以计算第一交点的位置,并将第一交点的位置确定为第一车辆的位置。第一交点可以为m个圆公共的交点,m个圆中的一个圆为以m个第一对象中的一个第一对象的位置为圆心,第一车辆与一个第一对象的距离为半径的圆。
第三方面,本申请提供一种车辆,该车辆可包括通信模块、存储器和处理器。其中,通信模块可用于发送和接收V2X业务数据,还可用于发送和接收UWB报文。存储器可用于存储车辆的定位精度,还可用于存储计算机程序。处理器可用于调用计算机程序,使得车辆执行如第一方面中任一可能的实现方法。
第四方面,本申请提供一种芯片,该芯片应用于车辆,该芯片包括一个或多个处理器,该处理器用于调用计算机指令以使得该车辆执行如第一方面中任一可能的实现方法。
第五方面,本申请提供一种包含指令的计算机程序产品,其特征在于,当上述计算机程序产品在车辆上运行时,使得该车辆执行如第一方面中任一可能的实现方法。
第六方面,本申请提供一种计算机可读存储介质,包括指令,其特征在于,当上述指令在车辆上运行时,使得该车辆执行如第一方面中任一可能的实现方法。
可以理解地,上述第三方面提供的车辆、第四方面提供的芯片、第五方面提供的计算机程序产品、第六方面提供的计算机可读存储介质均用于执行本申请实施例所提供的方法。因此,其所能达到的有益效果可参考对应方法中的有益效果,此处不再赘述。
附图说明
图1A和图1B是本申请实施例提供的一种车辆定位的场景示意图;
图2是本申请实施例提供的一种电子设备100的结构示意图;
图3是本申请实施例提供的另一种车辆定位的场景示意图;
图4是本申请实施例提供的一种车辆定位方法的流程图;
图5是本申请实施例提供的一种车辆测距的示意图;
图6是本申请实施例提供的一种车辆定位的示意图;
图7是本申请实施例提供的一种待定位车辆的结构示意图;
图8是本申请实施例提供的一种定位辅助设备的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例中具体以车道级导航的场景为例来介绍本申请实施例提供的车辆定位方法。不限于导航的场景,本申请提供的车辆定位方法还可以适用于自动驾驶的场景、车联网的场景等等智能汽车相关的场景。
为了便于理解,这里先对车道级导航的概念进行介绍。
车道级导航可以在导航过程中高精度还原真实道路场景。例如,当前道路上车道的划分情况、本车位于哪一条车道上、本车周边的车辆的行驶情况等等。车道级导航在为用户规划驾驶路线时,可以具体到用户应该在哪条车道上行驶。在需要变化车道时,车道级导航可以提醒用户变道。本申请实施例对车道级导航提供的导航功能不作限定。
图1A示例性示出了一种车道级导航的场景。开启车道级导航功能后,电子设备可以显示如图1A所示的用户界面。该电子设备可以是手机、平板电脑、车载电脑等设备。本申请实施例对该电子设备的类型不作限定。通过该车道级导航,用户可以知道当前车道的划分情况(如本车行驶方向共有4条车道)、自己位于哪一条车道上(如本车位于左侧第二条车道上)、本车周边的车辆的行驶情况(如本车左前方和右后方均有同方向行驶的车辆)。另外,车道级导航提醒用户提前向右变道,以便驶入右侧支路。可以看出,相比于传统导航(如无法精确到车道情况的导航),车道级导航可以为用户提供车道级驾驶动作指引,降低用户对导航的理解难度,提升驾驶安全。
车道级导航为用户提供准确地导航指引依赖于车辆的高精度定位。可以理解的,车辆定的位精度越高,车道级导航可以更准确地获取车辆当前的行驶状态(如车速、所在车道),从而更准确地为用户提供驾驶动作指引。若车辆的定位精度较低,车道级导航过程中预警误报 的概率往往就会越高。
图1B示例性示出了一种车辆的定位精度低,车辆在导航过程中出现预警误报的场景。
如图1B所示,位置201为车辆的实际位置。位置202为该车辆的定位位置。位置202可以是该车辆的车载电脑通过全球卫星定位系统(global positioning system,GPS)进行定位得到的。在车道级导航的过程中,车载电脑会将位置202确定为车辆所处的位置,来为车辆提供导航的功能。可以看出,车辆在位置202时与该车辆前面的车辆相距很近,两车有碰撞的可能。车辆在位置202时与当前所在车道的左车道线相距很近,该车辆有变道的意图。那么,车载电脑可能会提示前向碰撞预警以及变道预警。然而,车辆实际处在图1B所示的位置202。在该位置202,该车辆不会与前车相碰,也没有变道的意图。那么,上述前向碰撞预警以及变道预警为预警误报,会给用户驾驶车辆造成干扰。
在一种可能的实现方式中,电子设备(如车载电脑)中可包含双频GPS模块。通过该双频GPS模块,电子设备可以同时接收GPS L1频段和GPS L5频段的卫星信号。利用双频卫星信号对电离层不同的延迟度,电子设备可以消除电离层对电磁波信号延迟的影响。另外,电子设备利用双频GPS模块观测两个频段的卫星信号,可以加速位置的解算,使得定位更快。但该方法需要双频GPS模块。相比于单频GPS模块,双频GPS模块的成本更高,但定位精度并未显著提升,且仍难以达到车道级导航所需要的定位精度(厘米级以内)。
在另一种可能的实现方式中,电子设备(如车载电脑)可以通过GPS模块(如单频GPS模块)和基站对车辆进行定位。上述基站可以为提供蜂窝移动通信的设备。每一个基站所在的位置是固定且确定的。其中,电子设备可以利用自己与基站之间的通信时间差来计算车辆(该电子设备所在的车辆)的位置。但电子设备与基站在通信过程传输的信号可能是经过多个物体反射后到达对端的。那么根据上述通信时间差所确定的基站与车辆之间的距离可能不是两者之间的直线距离,车辆的定位精度也较低。
本申请实施例提供一种车辆定位方法,该方法可以借助周边设备中定位精度高的设备来提高车辆的定位精度。其中,待定位车辆可以获取周边设备的综合位置精度(position dilution of precision,PDOP)。根据周边设备的PDOP,待定位车辆可以从周边设备中选取出PDOP最小的k个设备,作为定位辅助设备。上述k为大于或等于3的整数。进一步的,待定位车辆可以确定时刻A自己与这k个定位辅助设备之间的距离。待定位车辆还可以获取时刻A这k个定位辅助设备的位置。根据时刻A自己与这k个定位辅助设备之间的距离以及这k个定位辅助设备的位置,待定位车辆可以确定自己在时刻A的位置。
上述待定位车辆和上述周边设备均可以是具备车联网通信能力的事物。上述周边设备可以例如是车辆、行人(具体可以为行人所携带的设备)、基础设施等等。也即是说,上述待定位车辆在行驶过程中可以与上述周边设备进行信息交互。
为了便于描述和理解,本申请后续实施例中在上述周边设备为车辆的情况下,该周边设备实际上可以是该车辆的车载电脑、或者位于该车辆中的用户所携带的电子设备(如手机、平板电脑、智能手环、智能手表等)等等能用于反映该车辆的行驶状态的电子设备。在上述周边设备为行人的情况下,该周边设备实际上可以是行人所携带的电子设备,例如手机、平板电脑、智能手环、智能手表等。在上述周边设备为基础设施的情况下,该周边设备实际上可以是该基础设施上配置的电子设备。该电子设备可以向周边交通参与者(如车辆、行人)发送该基础设施的标识、位置等信息。后续实施例中对上述内容不再重复解释说明。
为了便于理解,下面对本申请实施例涉及的一些概念进行介绍。
1、车联网
车联网(vehicle to everything),简称V2X,可以表示一种低时延、高可靠的超视距通信技术。具备V2X通信能力的事物可以与周边设备进行信息交互。在一种可能的实现方式中,V2X技术可以是通过无线电波传播方式来实现感知的技术。
其中,V2X中X是可变量。该X可被替换为V、I、P等等。示例性的,车辆与车辆连接(vehicle to vehicle,V2V)技术中,各车辆(具体可以是车辆上的车载电脑)彼此可以直接进行无线通信,交换信息,而无需中间设备(如基站)转发。车辆与基础设施连接(vehicle to infrastructure,V2I)技术中,车辆可以与基础设施(具体可以是基础设施上配置的提供V2X通信能力的设备)直接进行无线通信,交换信息。上述基础设施可以包含但不限于:交通信号灯、公交站、路边单元(road side unit,RSU)、电线杆、立交桥、大楼。车辆与行人连接(vehicle to pedestrian,V2P)技术中,车辆可以与行人(具体可以是行人所携带的设备)直接进行无线通信,交换信息。上述行人所携带的设备可以例如是手机、平板电脑、智能手表、智能手环等等具备V2X通信能力的设备。
在一些实施例中,V2X技术具体可以为以下任意一种:专用短程通信技术(dedicated short range communications,DSRC)、基于长期演进(long term Evolution,LTE)移动蜂窝网络的V2X通信技术(简称LTE-V2X)、基于5G通信的V2X通信技术(简称5G-V2X)。不限于上述DSRC、LTE-V2X、5G-V2X,V2X技术还可以通过其他通信技术方向的技术实现。
在一些实施例中,具备V2X通信能力的事物可以是具有V2X收发单元的事物。例如,车辆具备V2X通信能力可以表示车辆具有V2X收发单元。基础设施具备V2X通信能力可以表示基础设施上配置有具有V2X收发单元的设备。行人具备V2X通信能力可以表示行人携带具有V2X收发单元的设备。上述V2X收发单元可以通过上述DSRC、LTE-V2X、5G-V2X等等无线通信技术实现数据的发送和接收。其中,上述V2X收发单元可用于发送自己的标识信息、PDOP等等信息,并接收其它事物的V2X收发单元发送的标识信息、PDOP等等。上述V2X收发单元可以集成在一个单独的芯片上,例如V2X芯片。可选的,上述V2X收发单元也可以与设备的其它功能单元集成在一个处理器上。本申请实施例对此不作限定。
2、综合位置精度PDOP
定位结果的准确程度与用于测量的人造卫星和卫星信号接收设备的几何形状相关。PDOP可以表示根据上述用于测量的人造卫星和卫星信号接收设备的几何形状进行定位所引起的偏差。即,一个事物的PDOP可以表示这一个事物的定位精度。PDOP可以是通过GPS模块获得的。其中,PDOP具体可以为经度、维度和高程等误差平方和的开根号值。可以理解的,在对一个事物进行定位时,天空中用于测量的人造卫星分布程度越好,定位精度越高。其中,PDOP的值越小,定位精度越高。
3、超宽带(ultra wide band,UWB)技术
UWB技术是一种无线载波通信技术。UWB技术利用纳秒级的非正弦波窄脉冲传输数据,可以占据较宽的频谱范围。其中,UWB的工作频段可以为3.1GHz~10.6GHz。UWB技术具有发射信号功率谱密度低、对信道衰落不敏感、抗干扰能力强、不会对统一环境下的其他设备产生干扰、穿透性强、定位精度高等优点。
在一些实施例中,电子设备可以利用UWB技术实现定位。其中,利用UWB技术实现定位的原理可以是到达时间差原理(time difference of arrival,TDOA)。具体的,电子设备可以向至少三个定位基站发送UWB报文。上述定位基站可用于响应接收到的UWB报文回复自己的位置。上述UWB报文可以包含电子设备的标识。电子设备可以根据自己发送UWB报文和接收到上述回复的时间差,确定自己与各定位基站之间的距离。进一步的,根据自己与各定位基站之间的距离以及各定位基站的位置,电子设备可以确定自己的位置。
在一些实施例中,电子设备可以利用UWB技术携带自己接收到其他设备发送UWB报文的时间、自己发送UWB报文的时间、自己的速度和位置等等数据。本申请实施例对UWB报文携带的数据类型不作限定。
下面介绍本申请实施例涉及的一种电子设备的结构示意图。
如图2所示,电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块 (subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复 用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括GPS,全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递 到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行电子设备100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。
耳机接口170D用于连接有线耳机。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C 测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。
环境光传感器180L用于感知环境光亮度。
指纹传感器180H用于采集指纹。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。同一个SIM卡接口195可以同时插入多张卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
电子设备100可以是手机、平板电脑、笔记本电脑、可穿戴设备(如智能手表、智能手环、智能眼镜)、智能汽车、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personaldigital assistant,PDA)等等。本申请实施例对电子设备100的具体类型不作限定。不限于图2所示的模块,电子设备100还可以包含更多或更少的模块。
本申请实施例中的待定位车辆和定位辅助设备的结构可以参考图2所示电子设备100的结构示意图。可以理解的,待定位车辆和定位辅助设备均可具有前述实施例提及的V2X收发单元和UWB收发单元。
下面介绍本申请实施例提供的一种车辆定位场景。
如图3所示,车辆301为待定位车辆。在该车辆定位场景中,待定位车辆301的周边设备可包括路边单元302、红绿灯303、车辆304、车辆305、车辆306、车辆307、行人308。
1、选取定位辅助设备
在一些实施例中,上述待定位车辆301和上述周边设备均具备V2X通信能力。待定位车辆301可以获取周边设备的PDOP。
具体的,待定位车辆301可以通过V2X收发单元向周边设备发送PDOP请求消息,来获取周边设备的PDOP。周边设备可以通过自己的V2X收发单元接收到上述PDOP请求消息,并向待定位车辆301发送回复消息。该回复消息可包括周边设备的标识信息和PDOP。
其中,不同类型的周边设备发送的上述回复消息所包含的字段可以是不同的。车辆304~车辆307发送的回复消息可以是车辆基本安全消息(basic safety message,BSM)。BSM中的字段可以包含车辆标识(identification,ID)、经纬度、海拔、PDOP等等。路边单元302发送的回复消息可以是交通事件消息及交通标志牌信息(road side information,RSI)。RSI中的字段可以包含路边单元ID、经纬度、海拔、路测警示信息的类型(数值为0标识文本描述信息、数值大于0标识交通标志信息)等等。红绿灯303发送的回复消息可以是信号灯消息(signal phase and timing message,SPAT)。SPAT中的字段可以包含红绿灯ID、灯色、经纬度、海拔等等。行人308发送的回复消息可以是路测安全消息(road side message,RSM)。RSM中的字段可以包含行人ID、经纬度、海拔、PDOP、轨迹等等。本申请实施例对BSM、RSI、SPAT、RSM中包含的字段不作限定。BSM、RSI、SPAT、RSM中还可以包含更多或更少的字段。不限于BSM、RSI、SPAT、RSM,车辆、路边单元、红绿灯和行人发送的上述回复消息也可以为别的名称。
待定位车辆301可以通过自己的V2X收发单元接收上述回复消息。其中,待定位车辆301可以根据接收到的上述回复消息的类型确定发送该回复消息的周边设备的类型。例如,当接收到RSI,待定位车辆301可以确定该消息的发送者为路边单元。当接收到SPAT,待定位车辆301可以确定该消息的发送者为红绿灯。由上述不同类型的回复消息包含的字段可知,BSM和RSM中的字段均包含对应设备的PDOP。RSI和SPAT的字段中不包含PDOP。可以理解的,车辆和行人的位置是移动的。车辆和行人的位置改变后,他们各自的PDOP也可能变化。BSM和RSM中的PDOP可以分别反映当前车辆的定位精度和行人的定位精度。待定位车辆301可以从BSM和RSM中分别获取车辆的PDOP和行人的PDOP。而路边单元和红绿灯的位置是固定不变的。待定位车辆301可以将路边单元的PDOP和红绿灯的PDOP确定为0。
那么,根据上述回复消息,待定位车辆301可以获取周边设备的PDOP。示例性的,如图3所示,路边单元302的PDOP为0。红绿灯303的PDOP为0。车辆304的PDOP为3.6。车辆305的PDOP为0.8。车辆306的PDOP为2.3。车辆307的PDOP为1.5。行人308的PDOP为0.5。
进一步的,待定位车辆301可以根据各周边设备的PDOP,从周边设备中至少选取三个PDOP最小的设备,作为定位辅助设备。
示例性的,待定位车辆301可以选取路边单元302、红绿灯303、车辆305、车辆307和行人308作为定位辅助设备。
2、待定位车辆301确定自己与定位辅助设备的距离、定位辅助设备的位置,来计算自己的位置。
待定位车辆301还可以确定在时刻A自己与上述被选取出的定位辅助设置之间的距离。在一种可能的实现方式中,待定位车辆301可以通过UWB收发单元在时刻A广播UWB报文。定位辅助设备可以通过UWB收发单元接收待定位车辆301广播的UWB报文,并向待定位车辆301回复UWB应答报文。待定位车辆301可以根据自己广播的UWB报文和接收到定位辅助设备回复的UWB应答报文的时间差,来计算时刻A自己与定位辅助设备的距离。其中待定位车辆301与定位辅助设备的距离的具体计算方法将在后续实施例中介绍。这里先不展开说明。
定位辅助设备回复的UWB应答报文中可以携带自己在上述时刻A的位置。上述位置具体可以是经纬度。在一种可能的实现方式中,定位辅助设备可以每隔预设时间段确定一次自己的位置。定位辅助设备回复的UWB应答报文中携带的位置可以是离时刻A最近的一次所确定的位置。
根据上述待定位车辆301与定位辅助设备的距离、定位辅助设备的位置,待定位车辆301可以计算自己的位置。可以理解的,待定位车辆301位于以各定位辅助设备的位置为圆心,待定位车辆301与定位辅助设备的距离为半径的圆上。那么,至少三个圆相交可以确定一个交点。该交点所在的位置即为待定位车辆301的位置。待定位车辆301根据自己与定位辅助设备的距离、定位辅助设备的位置来计算自己的位置的具体方法将在后续实施例中介绍。这里先不展开说明。
在一些实施例中,待定位车辆301可以先获取自己的PDOP。若自己的PDOP小于或等于定位精度阈值(例如3),待定位车辆301可以将通过GNSS获取的定位确定为自己的位置。可以理解的,PDOP越小,待定位车辆301通过GNSS进行定位的定位精度越高。在自己的PDOP小于或等于定位精度阈值的情况下,待定位车辆301可以认为通过GNSS获取的定位是可靠的。若自己的PDOP大于上述定位精度阈值的情况下,待定位车辆301可以通过上述图3所示车辆定位场景中的方法进行定位。也即是说,在自己的定位精度较低的情况下,待定位车辆301可以借助周边设备中定位精度高(即PDOP小)的设备,来确定自己的位置。
可选的,待定位车辆301可以获取自己的PDOP以及周边设备的PDOP。待定位车辆301可以比较自己的PDOP和周边设备的PDOP。若周边设备中存在至少三个PDOP比待定位车辆301的PDOP低的设备,待定位车辆301可以从PDOP比自己的PDOP低的设备中选取出至少三个设备,作为定位辅助设备,并利用图3所示车辆定位场景中的方法进行定位。也即是说,待定位车辆可以利用周边设备中定位精度比自己高的设备来确定自己的位置,提高自己的定位精度。若周边设备中PDOP比待定位车辆301的PDOP低的设备少于三个,待定位车辆301可以仍然通过GNSS进行定位。可以理解的,若周边设备的定位精度比待定位车辆的定位精度还低,待定位车辆借助这些周边设备进行定位的误差可能也较大,这样难以提升待定位车辆的定位精度。
由图3所示的车辆定位场景可知,若待定位车辆的定位精度较低,该待定位车辆可以借 助周边设备中定位精度高的设备,来确定自己的位置。其中,定位精度高的周边设备在定位时可以比较准确地确定周边设备的位置。那么,待定位车辆根据自己与周边设备的距离以及周边设备的位置所确定出来的位置也是比较准确的。也即是说,上述实施例可以提高车辆的定位精度,减少车道级导航过程中预警误报的情况。另外,上述实施例的定位方法仅需待定位车辆具备V2X收发能力和UWB收发能力,而无需待定位车辆再增加其它提高定位精度的模块(如双频GPS模块等),可以有效在提高车辆定位精度的同时,降低车辆定位的成本。
基于图3所示的车辆定位场景,下面具体介绍本申请实施例提供的一种车辆定位方法。
图4示例性示出了车辆定位方法的流程图。如图4所示,该方法可包括步骤S401~S406。其中:
S401、待定位车辆获取附近具备车联网通信的周边设备的PDOP,并根据PDOP从周边设备中选取出定位辅助设备1~定位辅助设备k。定位辅助设备1~定位辅助设备k是上述周边设备中PDOP最小的k个设备,k为大于或等于3的整数。
在一种可能的实现方式中,待定位车辆和上述周边设备均具有V2X收发单元。待定位车辆可以通过V2X收发单元向周边设备发送PDOP请求消息,来请求获取周边设备的PDOP。周边设备可以通过V2X收发单元发送回复消息。其中,类型为车辆、行人等可以移动的周边设备可以从GNSS定位模块获取自己的PDOP。然后,这些周边设备可以将自己的PDOP作为上述回复消息的一个字段经由V2X收发单元发送给待定位车辆。上述GNSS定位模块可以是能为周边设备提供GNSS解决方案的模块。上述GNSS定位模块可以例如是GPS模块、BDS模块等等。本申请实施例对此不作限定。
待定位车辆获取周边设备的PDOP的具体方法可以参考前述图3所示的实施例。这里不再赘述。
可选的,上述定位辅助设备1~定位辅助设备k可以是上述周边设备中PDOP低于待定位车辆的PDOP的设备中的任意k个设备。或者,上述定位辅助设备1~定位辅助设备k可以是上述周边设备中PDOP低于预设精度的设备中的任意k个设备。或者,上述定位辅助设备1~定位辅助设备k可以是上述周边设备中PDOP低于待定位车辆的PDOP且低于待定位车辆的PDOP的设备中的任意k个设备。或者,上述定位辅助设备1~定位辅助设备k可以是上述周边设备中PDOP低于待定位车辆的PDOP的设备中,PDOP最小的k个设备。
S402、待定位车辆广播第一UWB报文,第一UWB报文可用于获取周边设备的位置和速度。
待定位车辆可具有UWB收发单元。待定位车辆可以通过UWB收发单元在时刻A广播第一UWB报文。第一UWB报文中可携带待定位车辆的车辆ID、获取周边设备的位置和速度的请求信息。即第一UWB报文可用于获取周边设备的位置和速度。
S403、定位辅助设备1可以响应第一UWB报文,回复第二UWB应答报文。
S404、定位辅助设备2可以响应第一UWB报文,回复第三UWB应答报文。
S405、定位辅助设备k可以响应第一UWB报文,回复第四UWB应答报文。
定位辅助设备可具有UWB收发单元。定位辅助设备1~定位辅助设备k均可以响应上述第一UWB报文,通过自己的UWB收发单元回复包含自己的位置和速度的UWB应答报文。在一种可能的实现方式中,定位辅助设备可以根据第一UWB报文中的车辆ID,确定第一UWB报文来源于上述待定位车辆,进而向上述待定位车辆回复UWB应答报文。
示例性的,定位辅助设备1可以回复第二UWB应答报文。第二UWB应答报文中可包 含定位辅助设备1的标识、定位辅助设备1在时刻A的位置、定位辅助设备1接收到第一UWB报文的时间、定位辅助设备1接收到第一UWB报文时的速度、定位辅助设备1回复第二UWB应答报文的时间、定位辅助设备1回复第二UWB应答报文时的速度。
定位辅助设备2可以回复第三UWB应答报文。第三UWB应答报文中可包含定位辅助设备2的标识、定位辅助设备2在时刻A的位置、定位辅助设备2接收到第一UWB报文的时间、定位辅助设备2接收到第一UWB报文时的速度、定位辅助设备2回复第三UWB应答报文的时间、定位辅助设备2回复第三UWB应答报文时的速度。
定位辅助设备k可以回复第四UWB应答报文。第四UWB应答报文中可包含定位辅助设备k的标识、定位辅助设备k在时刻A的位置、定位辅助设备k接收到第一UWB报文的时间、定位辅助设备k接收到第一UWB报文时的速度、定位辅助设备k回复第四UWB应答报文的时间、定位辅助设备k回复第四UWB应答报文时的速度。
需要进行说明的,除了上述定位辅助设备1~定位辅助设备k,周边设备中其余的设备若接收到上述第一UWB报文,也可以向上述待定位车辆回复包含自己的位置和速度的UWB应答报文。
S406、待定位车辆根据自己接收到的UWB应答报文,确定自己与定位辅助设备1~定位辅助设备k的距离,进而确定自己的位置。上述接收到的UWB应答报文中可包含对应周边设备的位置和速度。
这里具体以待定位车辆根据上述第二UWB应答报文确定自己和定位辅助设备1之间的距离为例,来说明待定位车辆与定位辅助设备的距离的一种计算方法。
如图5所示,待定位车辆在t1时刻广播第一UWB报文。在该t1时刻,待定位车辆的速度为v1。定位辅助设备1在t2时刻接收到上述第一UWB报文。在该t2时刻,定位辅助设备1的速度为v2。响应上述第一UWB报文,定位辅助设备1在t3时刻回复第二UWB应答报文。在该t3时刻,定位辅助设备1的速度为v3。由前述说明可知,第二UWB应答报文中携带的信息可包括定位辅助设备1的标识、t2、t3、v2和v3。待定位车辆在t4时刻接收到第二UWB应答报文。在该t4时刻,待定位车辆的速度为v4。
根据上述v1和v4,待定位车辆可以将(v1+v4)/2确定为自己在从广播第一UWB报文到接收到第二UWB应答报文的时间段(即T round)内的平均速度。根据上述v2和v3,待定位车辆可以将(v2+v3)/2确定为定位辅助设备1在从接收到第一UWB报文到回复第二UWB应答报文的时间段(即T reply)内的平均速度。上述T round和T reply均为时间长度较短的时间段(例如均小于5秒)。在较短的时间内,待定位车辆和定位辅助设备1的速度通常变化不大。通过上述方法所确定的待定位车辆的平均速度和定位辅助设备1的平均速度误差较小。
那么,待定位车辆可以根据下述公式(1)计算自己与定位辅助设备1的速度差v offset
Figure PCTCN2022108186-appb-000002
进一步的,待定位车辆可以根据下述公式(2)确定在t1时刻自己与定位辅助设备1的距离L1:
2*L1+T round*v offset=(T round-T reply)*c      (2)
其中,c为电磁波的传播速度。c的值可以为3*10^8m/s。
可以理解的,若待定位车辆的速度与定位辅助设备1的速度相同,那么上述速度差v offset为0。第一UWB报文传输达到定位辅助设备1所走的路程与第二UWB应答报文传输到达待定位车辆所走的路程之和可以为:在t1时刻待定位车辆与定位辅助设备1之间的距离(即上 述L1)的两倍。第一UWB报文传输达到定位辅助设备1所走的路程与第二UWB应答报文传输到达待定位车辆所走的路程之和可以为:第一UWB报文传输达到定位辅助设备1的时间与第二UWB应答报文传输到达待定位车辆的时间之和,与电磁波传播速度的乘积。
若定位辅助设备1的速度为0(例如定位辅助设备1为路边单元或红绿灯等基础设施),那么上述速度差v offset为待定位车辆的平均速度(v1+v4)/2。第一UWB报文传输达到定位辅助设备1所走的路程与第二UWB应答报文传输到达待定位车辆所走的路程之和可以为:在t1时刻待定位车辆与定位辅助设备1之间的距离(即上述L1)的两倍,与待定位车辆在T round时间内行驶的距离。
也即是说,待定位车辆可以将上述T round*v offset的值确定为在T round时间内自己与定位辅助设备1之间的距离的变化量。其中,在忽略第一UWB报文传输过程中待定位车辆和定位辅助设备1之间距离的变化的情况下,L1与第一UWB报文传输的路程相等,或者两者有较小差距,L1+T round*v offset的值第二UWB应答报文传输的路程相等,或者两者有较小的差距。
由此可见,待定位车辆根据上述公式(2)可以较准确地计算在t1时刻自己与定位辅助设备1的距离L1。
在t1时刻待定位车辆与定位辅助设备2~定位辅助设备k之间的距离均可以参考上述方法进行计算。这里不再赘述。
优选的,上述计算待定位车辆与定位辅助设备之间的距离的方法可以适用于直线匀速行驶的待定位车辆。其中,若定位辅助设备为车辆或行人等可以移动的周边设备,那么定位辅助设备也是匀速的,且移动方向与待定位车辆的行驶方向平行。
可以理解的,若待定位车辆不是直线匀速行驶的,定位辅助设备非匀速移动或移动方向与待定位车辆的行驶方向不平行,上述T round*v offset的值难以准确反映在T round时间内待定位车辆与定位辅助设备1之间的距离的变化量。那么上述方法计算得到的待定位车辆与定位辅助设备之间的距离误差可能较大。对于上述待定位车辆不是直线匀速行驶的,定位辅助设备非匀速移动或移动方向与待定位车辆的行驶方向不平行等复杂的场景,待定位车辆还可以获取定位辅助设备的移动方向、移动速度、移动加速度等信息。这些信息可以被携带在定位辅助设备回复的UWB应答报文中。那么,待定位车辆可以结合自己的行驶方向、行驶速度、行驶加速度以及定位辅助设备移动方向、移动速度、移动加速度来确定自己与定位辅助设备之间的距离。结合上述方向、速度、加速度等信息,待定位车辆可以更加准确地确定自己与定位辅助设备之间的距离。
在一些实施例中,待定位车辆在从周边设备中选取定位辅助设备之前,除了可以获取周边设备的PDOP,还可以获取周边设备的移动速度和移动方向等信息。待定位车辆可以根据周边设备的PDOP、移动速度、移动方向来选取定位辅助设备。其中,待定位车辆可以先根据周边设备的PDOP进行筛选。例如,待定位车辆可以先筛选出PDOP最小的若干个设备。或者,待定位车辆可以先筛选出PDOP低于待定位车辆的PDOP的设备。或者,待定位车辆可以先筛选出PDOP低于预设精度的设备。本申请实施例对待定位车辆根据周边设备的PDOP对周边设备进行筛选的具体方法不作限定。进一步的,待定位车辆可以从根据上述PDOP筛选出的设备中,选取移动速度为匀速和/或移动方向与待定位车辆的行驶方向平行的设备作为定位辅助设备。上述移动速度为匀速可以表示周边设备的移动速度大小不变或者移动速度的变化未超过预设速度变化范围。周边设备的移动方向与待定位车辆的行驶方向之间存在的夹 角小于预设夹角也包含与上述周边设备的移动方向与待定位车辆的行驶方向平行的情况中。
可以理解的,上述移动速度为匀速、移动方向与待定位车辆的行驶方向平行的设备作为定位辅助设备可以更好地帮助待定位车辆提高定位精度。也即是说,在多个周边设备的定位精度均较高(即PDOP较小)的情况下,待定位车辆可以优先选取移动速度为匀速和/或移动方向与待定位车辆的行驶方向平行的设备作为定位辅助设备。
优选的,待定位车辆可以利用上述UWB技术来获取自己需要的信息(如定位辅助设备的速度、接收到UWB报文的时间和回复UWB应答报文的时间等等)。由于UWB技术具有发射信号功率谱密度低、对信道衰落不敏感、抗干扰能力强、穿透性强等优点,待定位车辆通过该UWB技术实现测距的准确性更高。
不限于UWB技术,待定位车辆还可以通过其它类型的无线载波通信技术来实现测距。
在一些实施例中,待定位车辆的周边设备中,除被选取出的定位辅助设备以外的设备若接收到待定位车辆广播的第一UWB报文,也可以向待定位车辆回复包含自己位置和速度的UWB应答报文。当接收到设备回复的UWB应答报文,待定位车辆可以根据UWB报文中设备的标识来确定该设备是否是自己选取的定位辅助设备。如果不是自己选取的定位辅助设备,待定位车辆可以将该设备回复的UWB应答报文丢弃。也即是说,待定位车辆可以仅计算自己与被选取出的定位辅助设备之间的距离。这样可以节省待定位车辆的功耗,并提高确定自己位置的速度。
当确定了t1时刻自己与定位辅助设备1~定位辅助设备k之间的距离、定位辅助设备1~定位辅助设备k在t1时刻的位置,待定位车辆可以计算自己的位置。
这里以待定位车辆选取出三个定位辅助设备(即定位辅助设备1、定位辅助设备2、定位辅助设备3)来确定自己的位置为例,介绍待定位车辆计算自己的位置的一种实现方法。
如图6所示,定位辅助设备1在t1时刻的位置为(x1,y1)。其中,x1可以表示定位辅助设备1在t1时刻的经度。y1可以表示定位辅助设备1在t1时刻的纬度。定位辅助设备2在t1时刻的位置为(x2,y2)。其中,x2可以表示定位辅助设备2在t1时刻的经度。y2可以表示定位辅助设备2在t1时刻的纬度。定位辅助设备3在t1时刻的位置为(x3,y3)。其中,x3可以表示定位辅助设备3在t1时刻的经度。y3可以表示定位辅助设备3在t1时刻的纬度。定位辅助设备1与待定位车辆在t1时刻的距离为L1。定位辅助设备2与待定位车辆在t1时刻的距离为L2。定位辅助设备3与待定位车辆在t1时刻的距离为L3。待定位车辆可以根据下述方程组(3)来确定自己在t1时刻的位置(x,y):
Figure PCTCN2022108186-appb-000003
其中,x可以表示待定位车辆在t1时刻的经度。y可以表示待定位车辆在t1时刻的纬度。
需要进行说明的是,定位辅助设备发送给待定位车辆的经纬度可以是在球坐标系下的经纬度。待定位车辆可以先进行坐标系转换,将上述球坐标系下定位辅助设备的经纬度转换至平面坐标系下定位辅助设备的经纬度。上述定位辅助设备1在t1时刻的位置(x1,y1)、上 述定位辅助设备2在t1时刻的位置(x2,y2)、上述定位辅助设备3在t1时刻的位置(x3,y3)可以是在平面坐标系下的经纬度。那么上述计算得到的(x,y)可以表示球面坐标系下待定位车辆的位置。然后,待定位车辆可以根据球坐标系与平面坐标系的转换关系,得到待定位车辆在球坐标系下的经纬度。
在一些实施例中,待定位车辆借助定位辅助设备进行上述三定定位时,由于待定位车辆和定位辅助设备之间的距离计算可能存在少量误差,图6所示以三个定位辅助设备的位置为圆心、待定位车辆到三个待定位辅助设备的距离为圆心的三个圆可能不相交,或者相交但不存在一个共同的交点。那么,待定位车辆可以利用三角形重心定位算法来确定自己的位置。示例性的,待定位车辆可以根据三个定位辅助设备的位置确定一个三角形。每一个定位辅助设备所在的位置可以为这一个三角形的一个顶点。然后,待定位车辆可以计算这一个三角形的重心,并将这一个三角形的重心确定为待定位车辆的位置。
由上述图4所示的车辆定位方法可知,待定位车辆可以根据来自定位辅助设备的回复消息来确定自己的位置。上述定位辅助设备的精度比较高,通常可以达到厘米级以内的定位精度。由于定位辅助设备是定位精度比较高的设备,待定位车辆根据自己与定位辅助设备之间的距离以及定位辅助设备的位置,可以比较准确地确定自己的位置。尤其在待定位车辆的定位精度比较低(即PDOP的值较大)的情况下,上述方法可以有效地提高待定位车辆的定位精度,使得待定位车辆的定位精度达到厘米级以内。
在一些实施例中,待定位车辆可以通过UWB收发单元来获取周边设备的PDOP。具体的,待定位车辆可以通过自己的UWB收发单元广播上述第一UWB报文。除了前述实施例中的待定位车辆的车辆ID、获取周边设备的位置和速度的请求信息,第一UWB报文中还可以携带获取周边设备的PDOP的请求信息。也即是说,除了可用于获取周边设备的位置和速度,第一UWB报文还可用于获取周边设备的PDOP。
当接收到上述第一UWB报文,周边设备可以向待定位车辆回复UWB应答报文。其中,周边设备回复的UWB应答报文中除了携带有前述实施例提及的位置、速度等信息,还可以携带有自己的PDOP。待定位车辆可以根据来自周边设备回复的UWB应答报文中的PDOP,从周边设备中选取出至少3个定位辅助设备。被选取出的定位辅助设备是上述周边设备中PDOP较小的。进一步的,待定位车辆可以根据定位辅助设备回复的UWB应答报文中携带的位置、速度等信息确定自己的位置。待定位车辆确定自己的位置的方法具体可以参考前述图4所示方法中的步骤S406。这里不再赘述。
也即是说,待定位车辆和其周边设备可以不具有V2X收发单元,或者可以不利用V2X收发单元实现本申请提供的车辆定位方法。其中,待定位车辆可以直接利用UWB技术来获取测距和定位所需要的相关数据(如周边设备的PDOP、周边设备的速度、周边设备的位置等)。相比于先通过V2X收发单元获取周边设备的PDOP来选取定位辅助设备,然后再通过UWB技术实现定位,上述仅利用UWB技术来实现定位的方法可以更好地提高定位的效率,并提高定位精度。
图7示例性示出了本申请实施例提供的一种待定位车辆的结构示意图。
如图7所示,待定位车辆可包括:数据获取单元701、V2X收发单元702、UWB收发单元703、目标选取单元704、测距单元705和位置确定单元706。这些单元可以通过总线耦合。 该总线可以例如是控制器局域网络(controller area network,CAN)总线。本申请实施例对这些单元通过总线耦合的具体实现方式不作限定。其中:
数据获取单元701,可用于获取待定位车辆的车辆ID。该车辆ID可用于唯一标识该待定位车辆。该车辆ID可以例如是车辆识别号码(vehicle identification number,VIN)。数据获取单元701可以将车辆ID传递给V2X收发单元702和UWB收发单元703。
V2X收发单元702,可用于广播PDOP请求消息。该PDOP请求消息中可包括待定位车辆的车辆ID。V2X收发单元702还可用于接收周边设备响应该PDOP请求消息的回复消息。上述回复消息中可包含对应周边设备的PDOP。当接收到上述回复消息,V2X收发单元702可以将回复消息传递给目标选取单元704。
UWB收发单元703,可用于广播前述实施例提及的第一UWB报文。该第一UWB报文中可携带待定位车辆的车辆ID、获取周边设备的位置和速度的请求信息。UWB收发单元703还可用于接收周边设备响应该第一UWB报文回复的UWB应答报文(如前述实施例提及的第二UWB应答报文、第三UWB应答报文、第四UWB应答报文)。上述周边设备回复的UWB应答报文中可携带周边设备的位置、速度等信息。当接收到周边设备回复的UWB应答报文,UWB收发单元703可以将该回复的UWB应答报文传递给测距单元705。
目标选取单元704,可用于接收上述V2X收发单元702传递的回复消息。根据回复消息中周边设备的PDOP,目标选取单元704可以从周边设备中选取出定位精度较高的设备,作为定位辅助设备。
在一种可能的实现方式中,目标选取单元704可以根据周边设备的PDOP的大小,按照从小到大的顺序对各周边设备进行排序。然后,目标选取单元704可以选取排序在前的k的设备。这k个被选取出的设备即为定位辅助设备。k为大于或等于3的整数。可选的,上述被选取出的k个设备的PDOP均低于待定位车辆的PDOP。当选取出定位辅助设备,目标选取单元704可以将定位辅助设备的标识传递给测距单元705。
在另一种可能的实现方式中,数据获取单元701还可以获取待定位车辆的PDOP,并将待定位车辆的PDOP传递给目标选取单元704。目标选取单元704可以比较待定位车辆的PDOP和周边设备的PDOP,并从PDOP低于待定位车辆的PDOP的周边设备中选取出k个设备,作为定位辅助设备。k为大于或等于3的整数。当选取出定位辅助设备,目标选取单元704可以将定位辅助设备的标识传递给测距单元705。
在另一种可能的实现方式中,目标选取单元704可以根据周边设备的PDOP的大小,从PDOP低于预设精度的周边设备中选取出k个设备,作为定位辅助设备。其中,这k个设备可以是PDOP低于该预设精度的周边设备中的任意k个设备。本申请实施例对上述预设精度的取值不作限定。当选取出定位辅助设备,目标选取单元704可以将定位辅助设备的标识传递给测距单元705。
在另一种可能的实现方式中,数据获取单元701还可以获取待定位车辆的PDOP,并将待定位车辆的PDOP传递给目标选取单元704。目标选取单元704可以根据待定位车辆的PDOP的大小以及周边设备的PDOP的大小,从PDOP低于预设精度且低于待定位车辆的PDOP的周边设备中选取出k个设备,作为定位辅助设备。其中,这k个设备可以是PDOP低于该预设精度且低于待定位车辆的PDOP的周边设备中的任意k个设备。本申请实施例对上述预设精度的取值不作限定。当选取出定位辅助设备,目标选取单元704可以将定位辅助设备的标识传递给测距单元705。
测距单元705,可用于计算待定位车辆和定位辅助设备之间的距离。具体的,当接收到 上述UWB收发单元703传递的UWB应答报文,以及目标选取单元704传递的定位辅助设备的标识,测距单元705可以从上述UWB应答报文中的周边设备的标识选取出定位辅助设备回复的UWB应答报文。然后,测距单元705可以提取出定位辅助设备回复的UWB应答报文所携带的信息。例如,定位辅助设备接收到第一UWB报文的时间、定位辅助设备在接收到第一UWB报文时的速度和位置、定位辅助设备回复UWB应答报文的时间、定位辅助设备在回复UWB应答报文时的速度和位置。当提取出上述信息,测距单元705可以根据前述图4所示方法中的步骤S406来计算待定位车辆与定位辅助设备之间的距离。进一步的,测距单元705可以将待定位车辆与定位辅助设备之间的距离、定位辅助设备的位置传递给位置确定单元706。
位置确定单元706,可用于确定待定位车辆的位置。当接收到待定位车辆与定位辅助设备之间的距离、定位辅助设备的位置,位置确定单元706可以根据前述图4所示方法中的步骤S406来确定待定位车辆的位置。
在一些实施例中,待定位车辆的数据获取单元701、V2X收发单元702、UWB收发单元703、目标选取单元704、测距单元705和位置确定单元706可以集成在远程信息处理器(telematics box,简称车载T-BOX)、车机等电子控制器单元(electronic control unit,ECU)中。可选的,这些单元也可以集成在待定位车辆的不同位置。本申请实施例对此不作限定。示例性的,在一种可能的实现方式中,上述V2X收发单元702的功能可以通过具备V2X通信能力的芯片实现。该具备V2X通信能力的芯片可以是单独的芯片。例如V2X芯片。或者,该具备V2X通信能力的芯片还可以具备其它功能。即该具备V2X通信能力的芯片集成有V2X收发单元702以及其它功能单元。上述UWB收发单元703的功能可以通过UWB电子标签实现。
在一些实施例中,待定位车辆还可以具有GNSS定位模块(图7中未示出)。待定位车辆可以从GNSS定位模块中获取自己的PDOP。当判断出自己的PDOP大于定位精度阈值(例如3)时,待定位车辆可以通过前述图4所示的车辆定位方法来确定自己的位置。可以理解的,PDOP的值越大,待定位车辆通过GNSS定位模块进行定位的定位精度越低。在自己的PDOP大于定位精度阈值的情况下,待定位车辆可以认为通过GNSS定位模块获取的定位是不可靠的。那么,待定位车辆借助自己周边设备中定位精度高的设备来确定自己的位置可以提高定位精度,获得更准确地位置。在自己的PDOP小于或等于定位精度阈值的情况下,待定位车辆可以认为通过GNSS定位模块获取的定位是可靠的。那么,当判断出自己的PDOP小于或等于定位精度阈值,待定位车辆可以将通过GNSS定位模块获取的定位确定为自己的位置。
在一些实施例中,待定位车辆的UWB收发单元703广播的第一UWB报文中还可以携带获取周边设备的PDOP的请求信息。响应于该第一UWB报文,周边设备回复的UWB应答报文中可携带自己的PDOP。UWB收发单元703可以将周边设备回复的UWB应答报文传递给目标选取单元704。目标选取单元704可以根据周边设备的PDOP从周边设备中选取出定位辅助设备,并将定位辅助设备回复的UWB应答报文传递给测距单元705。进一步的,测距单元705可以确定待定位车辆和定位辅助设备之间的距离。位置确定单元706可以确定待定位车辆的位置。
由上述实施例可以看出,待定位车辆可以不用通过V2X收发单元702获取周边设备的PDOP。那么,V2X收发单元702是可选的。待定位车辆可以不具有V2X收发单元702。相 比于先通过V2X收发单元获取周边设备的PDOP来选取定位辅助设备,然后再通过UWB技术实现定位,上述仅利用UWB技术来实现定位的方法可以更好地提高定位的效率,并提高定位精度。
图8示例性示出了本申请实施例提供的一种定位辅助设备的结构示意图。
该定位辅助设备可以是待定位车辆的周边设备。待定位车辆的周边设备可以为:能够与待定位车辆建立通信连接的设备。
如图8所示,定位辅助设备可包括:数据获取单元801、V2X收发单元802和UWB收发单元803。这些单元可以通过总线连接。本申请实施例对这些单元通过总线连接的具体实现方式不作限定。其中:
数据获取单元801,可用于获取定位辅助设备的标识、PDOP、位置(例如,经纬度)、速度、加速度等等信息。在一种可能的实现方式中,定位辅助设备可以具有GNSS定位模块(图8中未示出)。数据获取单元801可以从GNSS定位模块中获取定位辅助设备的PDOP以及位置。定位辅助设备可以具有加速度传感器(图8中未示出)。数据获取单元801可以从加速度传感器获取定位辅助设备的速度以及加速度。其中,在定位辅助设备接收到来自待定位车辆的PDOP请求和/或前述实施例中的第一UWB报文后,数据获取单元801可以获取上述信息。
进一步的,数据获取单元801可以将自己获取到的信息传递给V2X收发单元802和UWB收发单元803。其中,数据获取单元801可以将定位辅助设备的标识、PDOP传递给V2X收发单元802。数据获取单元801可以将定位辅助设备的标识、位置、速度、加速度等信息传递给UWB收发单元。
V2X收发单元802,可用于接收来自待定位车辆的PDOP请求。响应于该PDOP请求,V2X收发单元802可以向待定位车辆发送回复消息。该回复消息中可包含定位辅助设备的标识和PDOP。
在一种可能的实现方式中,定位辅助设备的类型不同,上述回复消息的类型也是不同的。示例性的,路边单元发送的上述回复消息可以是RSI。红绿灯发送的上述回复消息可以是SPAT。车辆发送的上述回复消息可以是BSM。行人发送的上述回复消息可以是RSM。上述RSI、SPAT、BSM、RSM中所包含的字段可以参考前述实施例的介绍。本申请实施例对此不作限定。
UWB收发单元803,可用于接收来自待定位车辆的第一UWB报文。响应于该第一UWB报文,UWB收发单元803可以向待定位车辆回复UWB应答报文。其中,上述UWB收发单元803回复的UWB应答报文中可携带定位辅助设备的位置、速度等信息。
在一些实施例中,定位辅助设备的数据获取单元801、V2X收发单元802和UWB收发单元803可以分别集成在不同的芯片中。例如,上述V2X收发单元802的功能可以通过具备V2X通信能力的芯片实现。即V2X收发单元802可以集成在V2X芯片中。上述UWB收发单元803的功能可以通过UWB电子标签实现。
在一些实施例中,除了选取出三个或三个以上的定位辅助设备,利用图6所示的位置确定方案来定位,待定位车辆也可以仅利用一个或两个定位辅助设备来确定自己的位置。其中,待定位车辆和定位辅助设备可以具有多个UWB电子标签。示例性的,待定位车辆可以通过多个UWB电子标签,在发送和接收UWB报文的过程中,确定自己与一个定位辅助设备的 方向信息,以及自己与这一个定位辅助设备的距离。根据上述方向信息、距离以及这一个定位辅助设备的位置,待定位车辆可以确定自己的位置。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (25)

  1. 一种车辆定位方法,其特征在于,所述方法应用于第一车辆,所述方法包括:
    获取第一对象的定位信息,所述第一对象包括以下一项或多项:第二车辆、行人携带的设备,所述定位信息包括所述第一对象的位置;
    确定所述第一车辆与所述第一对象的距离;
    根据所述第一对象的位置、所述第一车辆与所述第一对象的距离,确定所述第一车辆的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述第一对象还包括基础设施。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一对象有m个,所述m为大于或等于3的整数。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述定位信息还包括定位精度,所述第一对象的定位精度高于所述第一车辆的定位精度。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述定位信息还包括定位精度,所述第一对象的定位精度高于第一阈值。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述定位信息还包括定位精度,所述第一对象是从k个第二对象中选取出来的,所述第一车辆获取的所述定位信息包含所述k个第二对象的定位信息,所述k为正整数,所述第一对象是所述k个第二对象中所述定位精度最高的。
  7. 根据权利要求1-3中任一项所述的方法,其特征在于,所述定位信息还包括定位精度,所述第一对象是从k个第二对象中选取出来的,所述第一车辆获取的所述定位信息包含所述k个第二对象的定位信息,所述k为正整数,所述第一对象的定位精度高于所述第一车辆的定位精度,且所述第一对象是所述k个第二对象中所述定位精度最高的。
  8. 根据权利要求1-3中任一项所述的方法,其特征在于,所述定位信息还包括定位精度,所述第一对象的定位精度高于所述第一车辆的定位精度,且所述第一对象的定位精度高于第一阈值。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一车辆和所述第一对象具备V2X通信能力和收发UWB报文的能力,所述获取第一对象的定位信息,具体包括:
    广播第一V2X业务数据,所述第一V2X业务数据用于请求定位精度,所述定位精度包含于所述定位信息;
    接收到所述第一对象的第二V2X业务数据,所述第一对象的所述第二V2X业务数据包含所述第一对象的标识、定位精度;
    广播第一UWB报文,所述第一UWB报文包含所述第一车辆的标识、获取其它对象的位置和速度的请求信息,所述位置包含于所述定位信息;
    接收到所述第一对象的第二UWB报文,所述第一对象的所述第二UWB报文包含所述第一对象的标识、所述第一对象接收所述第一UWB报文和发送所述第二UWB报文的时间、所述第一对象接收所述第一UWB报文和发送所述第二UWB报文时的速度、所述第一UWB报文被发送时所述第一对象的位置;所述第一对象接收所述第一UWB报文和发送所述第二UWB报文的时间、所述第一对象接收所述第一UWB报文和发送所述第二UWB报文时的速度用于确定所述第一车辆和所述第一对象的距离。
  10. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一车辆和所述第一对象具备收发UWB报文的能力,所述获取第一对象的定位信息,具体包括:
    广播第三UWB报文,所述第三UWB报文包含获取其它对象的定位精度、位置和速度的请求信息,所述定位精度和所述位置包含于所述定位信息;
    接收到所述第一对象的第四UWB报文,所述第一对象的所述第四UWB报文包含所述第一对象的标识、定位精度、所述第一对象接收所述第三UWB报文和发送所述第四UWB应答报文的时间、所述第一对象接收所述第三UWB报文和发送所述第四UWB报文时的速度、所述第三UWB报文被发送时所述第一对象的位置;所述第一对象接收所述第三UWB报文和发送所述第四UWB报文的时间、所述第一对象接收所述第三UWB报文和发送所述第四UWB报文时的速度用于确定所述第一车辆和所述第一对象的距离。
  11. 根据权利要求3-10中任一项所述的方法,其特征在于,所述确定所述第一车辆的位置,具体包括:
    计算第一交点的位置,并将所述第一交点的位置确定为所述第一车辆的位置,所述第一交点为m个圆公共的交点,所述m个圆中的一个圆为以所述m个所述第一对象中的一个第一对象的位置为圆心,所述第一车辆与所述一个第一对象的距离为半径的圆。
  12. 一种车辆,其特征在于,所述车辆为第一车辆,所述第一车辆包括:
    定位信息获取单元,用于获取第一对象的定位信息,所述第一对象包括以下一项或多项:第二车辆、行人携带的设备,所述定位信息包括所述第一对象的位置;
    距离确定单元,用于确定所述第一车辆与所述第一对象的距离;
    位置确定单元,用于根据所述第一对象的位置、所述第一车辆与所述第一对象的距离,确定所述第一车辆的位置。
  13. 根据权利要求12所述的车辆,其特征在于,所述第一对象还包括基础设施。
  14. 根据权利要求12或13所述的车辆,其特征在于,所述第一对象有m个,所述m为大于或等于3的整数。
  15. 根据权利要求12-14中任一项所述的车辆,其特征在于,所述定位信息还包括定位精度,所述第一对象的定位精度高于所述第一车辆的定位精度。
  16. 根据权利要求12-14中任一项所述的车辆,其特征在于,所述定位信息包括还定位精度,所述第一对象的定位精度高于第一阈值。
  17. 根据权利要求12-14中任一项所述的车辆,其特征在于,所述定位信息包括还定位精度,所述第一对象是从k个第二对象中选取出来的,所述定位信息获取单元获取的所述定位信息包含所述k个第二对象的定位信息,所述k为正整数,所述第一对象是所述k个第二对象中所述定位精度最高的。
  18. 根据权利要求12-14中任一项所述的车辆,其特征在于,所述定位信息还包括定位精度,所述第一对象是从k个第二对象中选取出来的,所述定位信息获取单元获取的所述定位信息包含所述k个第二对象的定位信息,所述k为正整数,所述第一对象的定位精度高于所述第一车辆的定位精度,且所述第一对象是所述k个第二对象中所述定位精度最高的。
  19. 根据权利要求12-14中任一项所述的车辆,其特征在于,所述定位信息还包括定位精度,所述第一对象的定位精度高于所述第一车辆的定位精度,且所述第一对象的定位精度高于第一阈值。
  20. 根据权利要求12-19中任一项所述的车辆,其特征在于,所述定位信息获取单元包含V2X收发单元和UWB收发单元,其中,
    所述V2X收发单元,用于广播第一V2X业务数据,所述第一V2X业务数据用于请求定位精度,所述定位精度包含于所述定位信息;
    所述V2X收发单元,还用于接收所述第一对象的第二V2X业务数据,所述第一对象的所述第二V2X业务数据包含所述第一对象的标识、定位精度;
    所述UWB收发单元,用于广播第一UWB报文,所述第一UWB报文包含所述第一车辆的标识、获取其它对象的位置和速度的请求信息,所述位置包含于所述定位信息;
    所述UWB收发单元,还用于接收所述第一对象的第二UWB报文,所述第一对象的所述第二UWB报文包含所述第一对象的标识、所述第一对象接收所述第一UWB报文和发送所述第二UWB报文的时间、所述第一对象接收所述第一UWB报文和发送所述第二UWB报文时的速度、所述第一UWB报文被发送时所述第一对象的位置;所述第一对象接收所述第一UWB报文和发送所述第二UWB报文的时间、所述第一对象接收所述第一UWB报文和发送所述第二UWB报文时的速度用于确定所述第一车辆和所述第一对象的距离。
  21. 根据权利要求12-19中任一项所述的车辆,其特征在于,所述定位信息获取单元包含UWB收发单元,所述UWB收发单元具体用于:
    广播第三UWB报文,所述第三UWB报文包含获取其它对象的定位精度、位置和速度的请求信息,所述定位精度和所述位置包含于所述定位信息;
    接收所述第一对象的第四UWB报文,所述第一对象的所述第四UWB报文包含所述第一对象的标识、定位精度、所述第一对象接收所述第三UWB报文和发送所述第四UWB应答报文的时间、所述第一对象接收所述第三UWB报文和发送所述第四UWB报文时的速度、所述第三UWB报文被发送时所述第一对象的位置;所述第一对象接收所述第三UWB报文和发送所述第四UWB报文的时间、所述第一对象接收所述第三UWB报文和发送所述第四 UWB报文时的速度用于确定所述第一车辆和所述第一对象的距离。
  22. 根据权利要求14-21中任一项所述的车辆,其特征在于,所述位置确定单元具体用于:
    计算第一交点的位置,并将所述第一交点的位置确定为所述第一车辆的位置,所述第一交点为m个圆公共的交点,所述m个圆中的一个圆为以所述m个所述第一对象中的一个第一对象的位置为圆心,所述第一车辆与所述一个第一对象的距离为半径的圆。
  23. 一种车辆,其特征在于,所述车辆包括:通信模块、存储器和处理器,其中,
    所述通信模块,用于发送和接收V2X业务数据,还用于发送和接收UWB报文;
    所述存储器,用于存储所述车辆的定位精度,还用于存储计算机程序;
    所述处理器,用于调用所述计算机程序,使得所述车辆执行权利要求1至11任一项所述的方法。
  24. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在车辆上运行,使得所述车辆执行如权利要求1至11任一项所述的方法。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品包含计算机指令,当所述计算机指令在车辆上运行,使得所述车辆执行如权利要求1至11任一项所述的方法。
PCT/CN2022/108186 2021-07-29 2022-07-27 车辆定位方法及相关装置 WO2023005961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110866063.5A CN115700401A (zh) 2021-07-29 2021-07-29 车辆定位方法及相关装置
CN202110866063.5 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023005961A1 true WO2023005961A1 (zh) 2023-02-02

Family

ID=85087487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108186 WO2023005961A1 (zh) 2021-07-29 2022-07-27 车辆定位方法及相关装置

Country Status (2)

Country Link
CN (1) CN115700401A (zh)
WO (1) WO2023005961A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001493A1 (fr) * 2006-06-30 2008-01-03 Nec Corporation Dispositif d'estimation de position pour véhicules, procédé d'estimation de position pour véhicules, et programme d'estimation de position pour véhicules
CN105282841A (zh) * 2014-06-12 2016-01-27 中兴通讯股份有限公司 一种定位方法、装置、定位中心和终端
CN106205178A (zh) * 2016-06-30 2016-12-07 联想(北京)有限公司 一种车辆定位方法及装置
CN109118794A (zh) * 2017-06-22 2019-01-01 中兴通讯股份有限公司 车辆定位方法、装置和终端设备
US20190302275A1 (en) * 2018-03-30 2019-10-03 Beijing Baidu Netcom Science Technology Co., Ltd. Vehicle positioning method, apparatus and device
CN110906944A (zh) * 2018-09-17 2020-03-24 千寻位置网络有限公司 多路径环境下的定位方法及装置、云端服务器
CN112284404A (zh) * 2020-09-16 2021-01-29 东风汽车集团有限公司 车辆定位方法、装置、设备及可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001493A1 (fr) * 2006-06-30 2008-01-03 Nec Corporation Dispositif d'estimation de position pour véhicules, procédé d'estimation de position pour véhicules, et programme d'estimation de position pour véhicules
CN105282841A (zh) * 2014-06-12 2016-01-27 中兴通讯股份有限公司 一种定位方法、装置、定位中心和终端
CN106205178A (zh) * 2016-06-30 2016-12-07 联想(北京)有限公司 一种车辆定位方法及装置
CN109118794A (zh) * 2017-06-22 2019-01-01 中兴通讯股份有限公司 车辆定位方法、装置和终端设备
US20190302275A1 (en) * 2018-03-30 2019-10-03 Beijing Baidu Netcom Science Technology Co., Ltd. Vehicle positioning method, apparatus and device
CN110906944A (zh) * 2018-09-17 2020-03-24 千寻位置网络有限公司 多路径环境下的定位方法及装置、云端服务器
CN112284404A (zh) * 2020-09-16 2021-01-29 东风汽车集团有限公司 车辆定位方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN115700401A (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2022170863A1 (zh) 超宽带定位方法及系统
JP5871952B2 (ja) ナビゲーションのためのカメラ対応ヘッドセット
WO2017155740A1 (en) System and method for automated recognition of a transportation customer
CN110505572B (zh) 一种室内定位方法及电子设备
CN112637758B (zh) 一种设备定位方法及其相关设备
WO2022062786A1 (zh) 控制接口的方法、通信装置
CN114463898A (zh) 一种快递取件提醒方法和装置
CN112492697A (zh) 一种数据传输方法及对应的终端
CN115336296A (zh) 定位辅助终端设备的确定方法、装置
WO2021103729A1 (zh) 终端间定位方法及装置
WO2023005961A1 (zh) 车辆定位方法及相关装置
CN112163061A (zh) 用户定位方法及装置、存储介质和电子设备
CN114928809B (zh) 一种地理围栏的使用方法及电子设备
WO2022228059A1 (zh) 一种定位方法和装置
WO2021164387A1 (zh) 目标物体的预警方法、装置和电子设备
US20230243982A1 (en) Low-Power-Consumption Positioning Method and Related Apparatus
CN113790732B (zh) 位置信息的生成方法及装置
CN116774203A (zh) 一种感知目标的方法和装置
CN116931019A (zh) 一种卫星信号捕获方法及相关装置
CN113790733B (zh) 一种导航方法及装置
US20240171672A1 (en) Display method, electronic device, and system
WO2023011602A1 (zh) 一种卫星通信系统中传输控制方法及相关装置
WO2020077738A1 (zh) 一种定位方法和装置
CN114079886A (zh) V2x报文发送方法、v2x通信设备及电子设备
WO2022237502A1 (zh) 一种同步方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE