WO2023005593A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2023005593A1
WO2023005593A1 PCT/CN2022/103059 CN2022103059W WO2023005593A1 WO 2023005593 A1 WO2023005593 A1 WO 2023005593A1 CN 2022103059 W CN2022103059 W CN 2022103059W WO 2023005593 A1 WO2023005593 A1 WO 2023005593A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
domain resource
frequency domain
wake
signal
Prior art date
Application number
PCT/CN2022/103059
Other languages
English (en)
French (fr)
Inventor
焦春旭
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22848198.2A priority Critical patent/EP4358554A1/en
Publication of WO2023005593A1 publication Critical patent/WO2023005593A1/zh
Priority to US18/424,708 priority patent/US20240172116A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0238Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is an unwanted signal, e.g. interference or idle signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to the field of communication technologies, and in particular, to a communication method, device, and system.
  • the network device can periodically send a wake-up signal (wake-up signal, WUS) to the terminal device.
  • WUS wake-up signal
  • the wake-up signal is a specific value
  • End devices can be woken up to send or receive information.
  • the embodiment of the invention discloses a communication method, device and system for reducing power consumption of terminal equipment in a sidelink.
  • the first aspect discloses a communication method, the communication method can be applied to the first terminal device, and can also be applied to a module (for example, a chip) in the first terminal device, and the application to the first terminal device will be described below as an example .
  • the communication method may include:
  • the first terminal device sends a wake-up signal to the second terminal device through the first frequency domain resource, the wake-up signal is used to activate the second frequency domain resource, and the first frequency domain resource is used for transmission by two or more terminal devices A wake-up signal, the first frequency domain resource does not overlap with the second frequency domain resource;
  • the first terminal device sends SL data to the second terminal device by using the second frequency domain resource.
  • the sending terminal device when the first terminal device is used as the sending terminal device and there is SL data to send, the sending terminal device can send a wake-up signal to the receiving terminal device through a frequency domain resource, so that the receiving terminal device (that is, the second terminal device ) can activate frequency domain resources for transmitting SL data according to the wake-up signal, and then the sending terminal device can send SL data to the receiving terminal device through the activated frequency domain resources.
  • the frequency domain resources used to transmit SL data can be in a deactivated state when there is no SL data transmission, and when there is SL data transmission, it can be activated by a wake-up signal transmitted by a frequency domain resource, which can reduce the number of resources used to transmit SL data.
  • the activation time of frequency domain resources for data because the bandwidth of frequency domain resources for transmitting wake-up signals is much smaller than the bandwidth of frequency domain resources for transmitting SL data, the frequency domain range that the receiving terminal equipment needs to monitor all the time is reduced. Under the condition of ensuring normal SL transmission, the power consumption of the terminal equipment can be reduced.
  • the first frequency domain resource can be used not only by the first terminal device, but also by other terminal devices, that is, the first frequency domain resource can be shared by multiple terminal devices, which can improve the utilization rate of the frequency domain resource.
  • the modulation mode of the wake-up signal is on off keying (on off keying, OOK) or binary phase shift keying (binary phase shift keying, BPSK).
  • the receiving terminal device since OOK does not carry information through phase or amplitude, but simply transmits information through whether to send a signal, the receiving terminal device does not need to demodulate the wake-up signal, and only needs to be able to detect the signal through envelope detection. Yes, therefore, the receiving terminal device only needs to include a simple receiver structure to receive the wake-up signal.
  • the design of this type of receiver is very simple, which can reduce the complexity of the hardware implementation of the terminal device, thereby reducing the power consumption of the receiving terminal device .
  • the wake-up signal modulated by BPSK can also be received by a receiver with low power consumption.
  • the wake-up signal includes a first sequence, the first sequence is determined according to a physical layer destination identifier of the second terminal device, and the first sequence occupies multiple time units.
  • the receiving terminal device can blindly detect the wake-up signal according to its own physical layer purpose identifier, and then accurately receive the signal sent to itself.
  • the wake-up signal can avoid the problem of erroneous activation of frequency domain resources for SL data transmission caused by receiving the wake-up signal sent to other terminal devices, thereby avoiding the problem of false alarms.
  • the sequence may be a code stream including multiple sequence values.
  • the first sequence includes a physical layer destination identifier of the second terminal device.
  • the receiving terminal device can judge whether it is a wake-up signal sent to itself according to whether the wake-up signal includes its own physical layer purpose identifier. Therefore, the receiving terminal device can accurately receive the wake-up signal sent to itself, The problem of erroneously activating frequency domain resources for SL data transmission due to receiving a wake-up signal sent to other terminal devices can be avoided, thereby avoiding the problem of false alarms.
  • the first sequence further includes a sequence identifier, and the sequence identifier is used to identify a starting position of the first sequence.
  • the receiving terminal device when the receiving terminal device performs blind detection, it can first determine the starting position of the first sequence according to the sequence identifier, and then judge whether it is sent to The own wake-up signal can reduce the number of times the terminal device uses its own physical layer purpose identifier to make judgments.
  • the wake-up signal further includes a second sequence
  • the second sequence includes a reversed sequence of the physical layer destination identifier of the second terminal device
  • the first sequence is the same as the second sequence.
  • the time units occupied by the two sequences are the same.
  • the receiving terminal device can judge whether it is a wake-up signal sent to itself according to whether the wake-up signal includes its own physical layer purpose identifier and the reversed sequence of its own physical layer purpose identifier. Therefore, the receiving terminal device The wake-up signal sent to itself can be accurately received, and the problem of falsely activating frequency domain resources for SL data transmission caused by receiving the wake-up signal sent to other terminal devices can be avoided, thereby avoiding the problem of false alarms.
  • the communication method may also include:
  • the first terminal device sending a wake-up signal to the second terminal device through the first frequency domain resource includes:
  • the first terminal device sends a wake-up signal to the second terminal device through the third frequency domain resource.
  • the sending terminal device will only send a wake-up signal to the receiving terminal device on the frequency domain resource determined according to the physical layer target identifier of the receiving terminal device.
  • Receive the wake-up signal sent to itself on the frequency domain resource determined by the layer purpose identifier which can avoid the problem of erroneously activating the frequency domain resource used for SL data transmission due to receiving the wake-up signal sent to other terminal devices, thereby avoiding false alarms.
  • police question since the receiving terminal device only needs to detect the wake-up signal sent to itself on the frequency domain resource determined according to the physical layer target identifier of the receiving terminal device, the bandwidth of the frequency domain resource detected by the receiving terminal device can be reduced, thereby further reducing the The power consumption of the device.
  • the communication method may also include:
  • the first terminal device determines a second time domain resource in the first time domain resource according to the physical layer target identifier of the second terminal device, and the first time domain resource is a time domain resource corresponding to the first frequency domain resource.
  • a domain resource, the second time domain resource is a time domain resource corresponding to the third frequency domain resource;
  • Sending, by the first terminal device, a wake-up signal to the second terminal device through the third frequency domain resource includes:
  • the first terminal device sends a wake-up signal to the second terminal device by using the second time domain resource and the third frequency domain resource.
  • the sending terminal device will only send a wake-up signal to the receiving terminal device on the time domain resource determined according to the physical layer destination identifier of the receiving terminal device.
  • Receive the wake-up signal sent to itself on the time-domain resource determined by the layer purpose identifier which can avoid the problem of erroneously activating the frequency-domain resource for SL data transmission due to receiving the wake-up signal sent to other terminal devices, thereby avoiding false alarms.
  • police question since the receiving terminal device only needs to detect the wake-up signal sent to itself on the time-domain resource determined according to the physical layer purpose identifier of the receiving terminal device, the time for the receiving terminal device to detect the wake-up signal can be reduced, thereby further reducing the time required for the terminal device. power consumption.
  • the first terminal device determining the second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device includes:
  • the first terminal device determines the second time domain resource in the first time domain resource according to P most significant bits (most significant bits, MSB) in the physical layer destination identifier of the second terminal device;
  • the first terminal device determining the third frequency domain resource in the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the first frequency domain resource and the second frequency domain resource correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the frequency domain resources used to transmit wake-up signals and the frequency domain resources used to transmit SL data correspond to different radio frequency transmission modules and/or radio frequency reception modules, so that simplified radio frequency transmission and/or low power consumption can Or the receiving module transmits the wake-up signal, and the SL data is transmitted through the radio frequency transmitting and/or receiving module with conventional power consumption, so that the power consumption of transmitting the wake-up signal can be further reduced.
  • using different radio frequency sending modules and/or radio frequency receiving modules can also ensure that the above two frequency domain resources can be in an active state at the same time, or that one is in an active state while the other is in a deactivated state.
  • the physical layer destination identifier is a 16-bit bit sequence.
  • the second aspect discloses a communication method, which can be applied to a second terminal device, or to a module (for example, a chip) in the second terminal device, and the application to the second terminal device will be described below as an example .
  • the communication method may include:
  • the second terminal device receives the wake-up signal from the first terminal device through the first frequency domain resource, and the first frequency domain resource is used for two or more terminal devices to transmit the wake-up signal;
  • the second terminal device activates a second frequency domain resource according to the wake-up signal, and the first frequency domain resource does not overlap with the second frequency domain resource;
  • the second terminal device receives the SL data from the first terminal device by using the second frequency domain resource.
  • the second terminal device can receive a wake-up signal from the sending terminal device (that is, the first terminal device) through a frequency domain resource, and then activate the SL data transmission device according to the wake-up signal.
  • the frequency domain resource, and then the SL data from the sending terminal device can be received through the frequency domain resource.
  • the frequency domain resources used to transmit SL data can be in a deactivated state when there is no SL data transmission, and when there is SL data transmission, it can be activated by a wake-up signal transmitted by a frequency domain resource, which can reduce the number of resources used to transmit SL data.
  • the activation time of frequency domain resources for data because the bandwidth of frequency domain resources for transmitting wake-up signals is much smaller than the bandwidth of frequency domain resources for transmitting SL data, the frequency domain range that the receiving terminal equipment needs to monitor all the time is reduced. Under the condition of ensuring normal SL transmission, the power consumption of the terminal equipment can be reduced.
  • the first frequency domain resource can be used not only by the first terminal device, but also by other terminal devices, that is, the first frequency domain resource can be shared by multiple terminal devices, which can improve the utilization rate of the frequency domain resource.
  • the modulation mode of the wake-up signal is OOK or BPSK.
  • the receiving terminal device since OOK does not carry information through phase or amplitude, but simply transmits information through whether to send a signal, the receiving terminal device does not need to demodulate the wake-up signal, and only needs to be able to detect the signal through envelope detection. Yes, therefore, the receiving terminal device only needs to include a simple receiver result to receive the wake-up signal.
  • the design of this type of receiver is very simple, which can reduce the complexity of the hardware implementation of the terminal device, thereby reducing the power consumption of the receiving terminal device .
  • the wake-up signal modulated by BPSK can also be received by a receiver with low power consumption.
  • the wake-up signal includes a first sequence, the first sequence is determined according to the physical layer purpose identifier of the second terminal device, and the first sequence occupies multiple time units;
  • the second terminal device receiving the wake-up signal from the first terminal device through the first frequency domain resource includes:
  • the second terminal device receives the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer destination identifier of the second terminal device.
  • the receiving terminal device can blindly detect the wake-up signal according to its own physical layer purpose identifier, and then accurately receive the signal sent to itself.
  • the wake-up signal can avoid the problem of erroneous activation of frequency domain resources for SL data transmission caused by receiving the wake-up signal sent to other terminal devices, thereby avoiding the problem of false alarms.
  • the sequence may be a code stream including multiple sequence values.
  • the first sequence includes a physical layer destination identifier of the second terminal device
  • the second terminal device receiving the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer purpose identifier of the second terminal device includes:
  • the second terminal device receives a wake-up signal from the first terminal device through the first frequency domain resource that includes the physical layer destination identifier of the second terminal device.
  • the receiving terminal device can judge whether it is a wake-up signal sent to itself according to whether the wake-up signal includes its own physical layer purpose identifier. Therefore, the receiving terminal device can accurately receive the wake-up signal sent to itself, The problem of erroneously activating frequency domain resources for SL data transmission due to receiving a wake-up signal sent to other terminal devices can be avoided, thereby avoiding the problem of false alarms.
  • the first sequence further includes a sequence identifier, and the sequence identifier is used to identify a starting position of the first sequence.
  • the receiving terminal device when the receiving terminal device performs blind detection, it can first determine the starting position of the first sequence according to the sequence identifier, and then judge whether it is sent to The own wake-up signal can reduce the number of times the terminal device uses its own physical layer purpose identifier to make judgments.
  • the wake-up signal further includes a second sequence, the second sequence includes a reversed sequence of the physical layer destination identifier of the second terminal device, and the first sequence is the same as the second sequence.
  • the time units occupied by the two sequences are the same;
  • the second terminal device receiving the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer purpose identifier of the second terminal device includes:
  • the second terminal device receives a wake-up from the first terminal device through the first frequency domain resource, which includes the physical layer purpose identifier of the second terminal device and the reversed sequence of the physical layer purpose identifier of the second terminal device Signal.
  • the receiving terminal device can judge whether it is a wake-up signal sent to itself according to whether the wake-up signal includes its own physical layer purpose identifier and the reversed sequence of its own physical layer purpose identifier. Therefore, the receiving terminal device The wake-up signal sent to itself can be accurately received, and the problem of falsely activating frequency domain resources for SL data transmission caused by receiving the wake-up signal sent to other terminal devices can be avoided, thereby avoiding the problem of false alarms.
  • the communication method may also include:
  • the second terminal device receiving the wake-up signal from the first terminal device through the first frequency domain resource includes:
  • the second terminal device receives a wake-up signal from the first terminal device through the third frequency domain resource.
  • the receiving terminal device can receive the wake-up signal sent to itself on the frequency domain resource determined according to the physical layer target identifier of the receiving terminal device, which can avoid receiving the wake-up signal sent to other terminal devices and causing errors.
  • the problem of activating frequency domain resources for SL data transmission can avoid the problem of false alarm.
  • the receiving terminal device since the receiving terminal device only needs to detect the wake-up signal sent to itself on the frequency domain resource determined according to the physical layer target identifier of the receiving terminal device, the bandwidth of the frequency domain resource detected by the receiving terminal device can be reduced, thereby further reducing the The power consumption of the device.
  • the communication method may also include:
  • the second terminal device determines a second time domain resource in a first time domain resource according to the physical layer target identifier of the second terminal device, and the first time domain resource is a time domain resource corresponding to the first frequency domain resource.
  • a domain resource the second time domain resource is a time domain resource corresponding to the third frequency domain resource;
  • the second terminal device receiving the wake-up signal from the first terminal device through the third frequency domain resource includes:
  • the second terminal device receives a wake-up signal from the first terminal device through the second time domain resource and the third frequency domain resource.
  • the receiving terminal device can receive the wake-up signal sent to itself on the time domain resource determined according to the physical layer destination identifier of the receiving terminal device, which can avoid receiving the wake-up signal sent to other terminal devices and causing errors.
  • the problem of activating frequency domain resources for SL data transmission can avoid the problem of false alarm.
  • the receiving terminal device since the receiving terminal device only needs to detect the wake-up signal sent to itself on the time-domain resource determined according to the physical layer purpose identifier of the receiving terminal device, the time for the receiving terminal device to detect the wake-up signal can be reduced, thereby further reducing the time required for the terminal device. power consumption.
  • the second terminal device determining the second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device includes:
  • the second terminal device determines the second time domain resource in the first time domain resource according to the P MSBs in the physical layer destination identifier of the second terminal device;
  • the second terminal device determining the third frequency domain resource in the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the second terminal device determines a third frequency domain resource in the first frequency domain resource according to Q LSBs in the physical layer destination identifier of the second terminal device, and the P and the Q are less than or equal to An integer of A, where A is the number of bits included in the physical layer purpose identifier.
  • the first frequency domain resource and the second frequency domain resource correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the frequency domain resources used to transmit wake-up signals and the frequency domain resources used to transmit SL data correspond to different radio frequency transmission modules and/or radio frequency reception modules, so that simplified radio frequency transmission and/or low power consumption can Or the receiving module transmits the wake-up signal, and the SL data is transmitted through the radio frequency transmitting and/or receiving module with conventional power consumption, so that the power consumption of transmitting the wake-up signal can be further reduced.
  • using different radio frequency sending modules and/or radio frequency receiving modules can also ensure that the above two frequency domain resources can be in an active state at the same time, or that one is in an active state while the other is in a deactivated state.
  • the physical layer destination identifier is a 16-bit bit sequence.
  • a third aspect discloses a communication device, where the communication device may be a first terminal device, or may be a module (for example, a chip) of the first terminal device.
  • the communication means may include:
  • a sending unit configured to send a wake-up signal to the second terminal device through the first frequency domain resource, the wake-up signal is used to activate the second frequency domain resource, and the first frequency domain resource is used for two or more terminal devices transmit a wake-up signal, and there is no overlap between the first frequency domain resource and the second frequency domain resource;
  • the sending unit is further configured to send SL data to the second terminal device through the second frequency domain resource.
  • the modulation mode of the wake-up signal is OOK or BPSK.
  • the wake-up signal includes a first sequence, the first sequence is determined according to a physical layer destination identifier of the second terminal device, and the first sequence occupies multiple time units.
  • the first sequence includes a physical layer destination identifier of the second terminal device.
  • the wake-up signal further includes a second sequence
  • the second sequence includes a reversed sequence of the physical layer destination identifier of the second terminal device
  • the first sequence is the same as the second sequence.
  • the time units occupied by the two sequences are the same.
  • the communication device further includes:
  • a processing unit configured to determine a third frequency domain resource among the first frequency domain resources according to the physical layer destination identifier of the second terminal device;
  • the sending unit sending the wake-up signal to the second terminal device through the first frequency domain resource includes:
  • the processing unit is further configured to determine a second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device, and the first time domain resource is a time domain resource corresponding to the first frequency domain resource, and the second time domain resource is a time domain resource corresponding to the third frequency domain resource;
  • Sending, by the sending unit, a wake-up signal to the second terminal device through the third frequency domain resource includes:
  • the determining, by the processing unit, the second time domain resource in the first time domain resource according to the physical layer destination identifier of the second terminal device includes:
  • the processing unit determining the third frequency domain resource in the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the first frequency domain resource and the second frequency domain resource correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the physical layer destination identifier is a 16-bit bit sequence.
  • a fourth aspect discloses a communication device, where the communication device may be a second terminal device, or may be a module (for example, a chip) of the second terminal device.
  • the communication means may include:
  • the receiving unit is configured to receive a wake-up signal from the first terminal device through a first frequency domain resource, and the first frequency domain resource is used for two or more terminal devices to transmit the wake-up signal;
  • a processing unit configured to activate a second frequency domain resource according to the wake-up signal, and the first frequency domain resource does not overlap with the second frequency domain resource;
  • the receiving unit is further configured to receive SL data from the first terminal device through the second frequency domain resource.
  • the modulation mode of the wake-up signal is OOK or BPSK.
  • the wake-up signal includes a first sequence, the first sequence is determined according to the physical layer purpose identifier of the second terminal device, and the first sequence occupies multiple time units;
  • the receiving unit receiving the wake-up signal from the first terminal device through the first frequency domain resource includes:
  • the first sequence includes a physical layer destination identifier of the second terminal device
  • the receiving unit receiving the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • a wake-up signal including the physical layer destination identifier of the second terminal device from the first terminal device is received through the first frequency domain resource.
  • the wake-up signal further includes a second sequence, the second sequence includes a reversed sequence of the physical layer destination identifier of the second terminal device, and the first sequence is the same as the second sequence.
  • the time units occupied by the two sequences are the same;
  • the receiving unit receiving the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the processing unit is further configured to determine a third frequency domain resource in the first frequency domain resource according to the physical layer destination identifier of the second terminal device;
  • the receiving unit receiving the wake-up signal from the first terminal device through the first frequency domain resource includes:
  • the processing unit is further configured to determine a second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device, and the first time domain resource is a time domain resource corresponding to the first frequency domain resource, and the second time domain resource is a time domain resource corresponding to the third frequency domain resource;
  • the reception by the receiving unit of the wake-up signal from the first terminal device through the third frequency domain resource includes:
  • the determining, by the processing unit, the second time domain resource in the first time domain resource according to the physical layer destination identifier of the second terminal device includes:
  • the processing unit determining the third frequency domain resource in the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the first frequency domain resource and the second frequency domain resource correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the physical layer destination identifier is a 16-bit bit sequence.
  • the fifth aspect discloses a communication device.
  • the communication device may include a processor, a memory, an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices outside the communication device
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the first aspect or any implementation manner of the first aspect.
  • the sixth aspect discloses a communication device.
  • the communication device may include a processor, a memory, an input interface and an output interface, the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to other communication devices outside the communication device
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the second aspect or any implementation manner of the second aspect.
  • a seventh aspect discloses a first terminal device.
  • the first terminal device may include a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other terminal devices other than the first terminal device, and the output interface is used to send information to other terminals other than the first terminal device.
  • the device outputs information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the first aspect or any implementation manner of the first aspect.
  • the eighth aspect discloses a second terminal device.
  • the second terminal device may include a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other terminal devices other than the second terminal device, and the output interface is used to send information to other terminals other than the second terminal device.
  • the device outputs information, and when the processor executes the computer program stored in the memory, the processor executes the communication method disclosed in the second aspect or any implementation manner of the second aspect.
  • a ninth aspect discloses a communication system, the communication system includes the communication device of the fifth aspect and the communication device of the sixth aspect, or includes the communication device of the seventh aspect and the communication device of the eighth aspect.
  • the tenth aspect discloses a computer-readable storage medium, on which a computer program or computer instruction is stored, and when the computer program or computer instruction is run, the communication method disclosed in the above aspects is implemented.
  • the eleventh aspect discloses a chip, including a processor, configured to execute a program stored in a memory, and when the program is executed, the chip executes the above method.
  • the memory is located outside the chip.
  • a twelfth aspect discloses a computer program product, the computer program product includes computer program code, and when the computer program code is executed, the above communication method is executed.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention
  • FIG. 2 is a network architecture diagram of a V2X disclosed in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a BWP activation disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of waking up a UE based on WUS disclosed in an embodiment of the present invention
  • Fig. 5 is a schematic diagram of energy saving based on SL DRX disclosed by an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a sequence included in a wake-up signal disclosed by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a first time domain resource and a first frequency domain resource disclosed by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a second terminal device activating a second frequency domain resource after receiving a wake-up signal disclosed in an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of activating a first frequency domain resource when a first terminal device sends a wake-up signal disclosed in an embodiment of the present invention
  • Fig. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • Fig. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the embodiment of the invention discloses a communication method, device and system for reducing power consumption of terminal equipment in SL. Each will be described in detail below.
  • FIG. 1 is a schematic diagram of a network architecture disclosed by an embodiment of the present invention.
  • the network architecture may include a terminal device 1 and a terminal device 2 .
  • the terminal device 1 and the terminal device 2 can communicate through SL.
  • FIG. 2 is a network architecture diagram of a vehicle-to-everything (V2X) communication disclosed in an embodiment of the present application.
  • V2X can include vehicle-to-vehicle (V2V) communication, vehicle-to-pedestrian (V2P) communication, vehicle-to-infrastructure (V2I) communication, vehicle-to-vehicle Communication with the network (vehicle to network, V2N).
  • V2V vehicle-to-vehicle
  • V2P vehicle-to-pedestrian
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-vehicle Communication with the network (vehicle to network, V2N).
  • terminal device 1 and the terminal device 2 may be the same device or different devices.
  • FIG. 2 is only an exemplary illustration of the network architecture shown in FIG. 1 , and does not constitute a limitation thereto.
  • FIG. 2 is only an example and does not constitute a limitation.
  • a terminal device also called UE, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc.
  • the terminal device can be a handheld terminal, a notebook computer, a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a tablet computer , wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop, WLL) station, machine type communication (machine type communication, MTC) terminals, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR ) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control
  • VR virtual reality
  • AR augmented reality
  • BWP bandwidth part
  • NR bandwidth part
  • BWP is a method introduced in NR to characterize the size of frequency domain resources used by communication links.
  • the UE In the uplink (uplink, UL) or downlink (downlink, DL), the UE can be configured with up to 4 BWPs, but there is only one activated (activated) BWP in the UE at the same time.
  • the bandwidth corresponding to each BWP may be different. The smaller the bandwidth corresponding to the activated BWP of the UE, the smaller the power consumption of the UE. Therefore, different BWPs can be activated according to different information transmission requirements of the UE, and the purpose of reducing the average power consumption of the UE can be achieved.
  • FIG. 3 is a schematic diagram of an activated BWP disclosed in an embodiment of the present invention.
  • the UE initially works in BWP1.
  • the 5G base station node B, gNB
  • the gNB can instruct the UE to switch from BWP1 to the corresponding network through downlink control information (DCI).
  • DCI downlink control information
  • BWP2 with larger bandwidth, that is, activate BWP2.
  • the gNB can also configure a BWP inactivity timer (BWP inactivity timer) for the UE.
  • BWP inactivity timer BWP inactivity timer
  • the UE can activate BWP1, so as to achieve the purpose of energy saving. It should be understood that there are multiple methods for realizing BWP activation in the NR system, and the method shown in FIG. 3 is only for illustrative purposes and does not constitute a limitation.
  • FIG. 4 is a schematic diagram of waking up a UE based on WUS disclosed by an embodiment of the present invention. As shown in Figure 4, UE receives WUS from gNB before each time period.
  • the NR system can greatly reduce the power consumption of the UE in occasional transmission scenarios, so as to achieve the purpose of energy saving.
  • NRSL is an important supporting technology for 5GV2X and device-to-device (D2D). Similar to the Uu interface, energy saving is also one of the important technical enhancement directions of the NR SL system.
  • the PC5 interface only allows the UE to be configured with one SL BWP.
  • the SL BWP When the SL BWP is in the activated state, the UE will send or receive SL data, control information, broadcast information, feedback information and other information on the SL BWP; when the SL BWP is in the deactivated state, the UE will No information is sent or received on BWP.
  • SL DRX mechanism For SL BWP in active state, SL DRX mechanism is introduced.
  • the UE can be configured with an SL DRX cycle that lasts for a specific length of time.
  • the UE In the SL DRX cycle, the UE only continuously monitors the physical sidelink control channel (PSCCH) during the DRX active time (DRX active time) and selectively Receive the physical sidelink shared channel (physical sidelinkshared channel, PSSCH), and do not monitor the PSCCH nor receive the PSSCH during the remaining time of the SL DRX cycle.
  • PSCCH physical sidelink control channel
  • DRX active time DRX active time
  • PSSCH physical sidelink shared channel
  • the UE when the UE is in the SL BWP active state, in the repeated SL DRX cycle in the time domain, the UE receives part of the time and does not receive the rest of the time, which can reduce the average power consumption.
  • the UE can save radio frequency power consumption and decoding power consumption of monitoring the PSCCH, thereby achieving a preliminary purpose of energy saving.
  • the PSCCH is a physical layer channel mainly used for transmitting SL control information
  • the PSSCH is a physical layer channel mainly used for transmitting SL data information.
  • the UE needs to continuously monitor and decode the PSCCH during the active time of the SL DRX, and at the same time potentially decode part of the PSSCH, which will continue to consume energy, resulting in high power consumption of the UE.
  • the service is sporadic, since SL data transmission occurs only occasionally, SL data will not be transmitted in most cases, resulting in waste of power consumption.
  • FIG. 6 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention. As shown in Fig. 6, the communication method may include the following steps.
  • the first terminal device sends a wake-up signal to the second terminal device by using the first frequency domain resource.
  • the second terminal device receives the wake-up signal from the first terminal device through the first frequency domain resource.
  • the wake-up signal can be transmitted on the physical sidelink control channel (PSCCH), can also be transmitted on the physical sidelink shared channel (PSSCH), and can also be transmitted on other sidelink channels , without limitation here.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • Sending to the second terminal device by using the first frequency domain resource may be understood as sending to the second terminal device on the first frequency domain resource.
  • the second terminal device activates the second frequency domain resource according to the wake-up signal.
  • the sending terminal device and the receiving terminal device need to transmit SL data, SL control information, SL reference signal, SL feedback information, SL synchronization information and other information in the same frequency domain resource. Based on energy saving requirements, when the frequency domain resource of the receiving terminal device does not need to transmit (ie receive and/or send) SL data, it can be switched from an activated state to a deactivated state.
  • the frequency domain resource here is the second frequency domain resource below.
  • the first terminal device can send a wake-up signal to the second terminal device through the first frequency domain resource, and the wake-up signal is used to activate the second frequency domain resource.
  • the first frequency domain resource does not overlap with the second frequency domain resource, it can be understood that the same frequency domain resource does not exist between the first frequency domain resource and the second frequency domain resource, and it can also be understood that the first frequency domain resource and the second frequency domain resource do not overlap. There is no intersection between frequency domain resources.
  • the bandwidth of the first frequency domain resource is much smaller than the bandwidth of the second frequency domain resource, therefore, the power consumption of the second terminal device for transmitting information through the first frequency domain resource is much smaller than the power consumption of transmitting information through the second frequency domain resource, thus The power consumption of the first terminal device and the second terminal device can be reduced.
  • the first frequency domain resource may be configured for the network device, may also be pre-configured, or may be configured by default.
  • the second frequency domain resource may be configured for the network device, may also be pre-configured, or may be configured by default.
  • the first frequency domain resource may be a frequency domain resource dedicated to transmitting wake-up signals
  • the second frequency domain resource may be a frequency domain resource dedicated to transmitting non-wake-up signal information such as SL data and/or SL control information.
  • the first frequency domain resource may be used for two or more terminal devices to transmit wake-up signals, and is not only used for transmitting wake-up signals between the first terminal device and the second terminal device.
  • the wake-up signal may be the above-mentioned WUS, or may be indication information.
  • the indication information may be used to indicate activation of the second frequency domain resource, and may also be used to indicate the second terminal device to receive SL data from the first terminal device through the second frequency domain resource.
  • the first terminal device may determine the state of the second frequency domain resource in the second terminal device.
  • the state of the second frequency domain resource includes an activated state and a deactivated state.
  • the second terminal device can transmit SL data with other terminal devices through the second frequency domain resource.
  • the state of the second frequency domain resource in the second terminal device is the deactivated state, the second terminal device cannot transmit SL data with other terminal devices through the second frequency domain resource.
  • the first terminal device may first determine the state of the second frequency domain resource in the second terminal device, and when the second frequency domain resource in the second terminal device When the state is the deactivated state, the first terminal device may send a wake-up signal to the second terminal device through the first frequency domain resource. When the state of the second frequency domain resource in the second terminal device is activated, the first terminal device may not send a wake-up signal to the second terminal device through the first frequency domain resource, which can reduce the number of information transmissions, thereby saving transmission resource.
  • the first terminal device cannot determine the state of the second frequency domain resource in the second terminal device. Therefore, in order to ensure that the second terminal device can receive SL data from the first terminal device, when there is SL data to be sent to the second terminal device in the first terminal device, the first terminal device can directly pass through the first frequency domain The resource sends a wake-up signal to the second terminal device.
  • the second terminal device may receive a wake-up signal from the first terminal device, and then activate the second frequency domain resource according to the wake-up signal.
  • the second terminal device receives the wake-up signal from the first terminal device, if the second frequency domain resource is already in the activated state, the second frequency domain resource is activated according to the wake-up signal.
  • the domain resource receives SL data from the first terminal device; if the second frequency domain resource is in the deactivated state, activating the second frequency domain resource according to the wake-up signal can be understood as switching the state of the second frequency domain resource from the deactivated state to deactivated state.
  • the modulation mode of the wake-up signal can be OOK or BPSK. Since OOK does not carry information through phase or amplitude, but simply transmits information through whether to send a signal, the receiving terminal device does not need to demodulate the wake-up signal, but only needs to be able to detect the signal through envelope detection. This type of receiver The design is very simple and the power consumption is low. Similarly, the wake-up signal modulated by BPSK can also be received by a receiver with low power consumption. It can be seen that the first terminal device uses OOK or BPSK to modulate the signal, which reduces the complexity of hardware implementation of the terminal device and can reduce the power consumption of the terminal device. In addition, the average power consumption of the second terminal device can be further reduced.
  • the first frequency domain resource can be used for two or more terminal devices to transmit wake-up signals
  • the wake-up signal when it is transmitted through the first frequency domain resource, it may be received by multiple terminal devices.
  • the wake-up signal can be It is only sent to one of the multiple terminal devices. Therefore, how the receiving terminal device determines that the received wake-up signal is a wake-up signal sent to itself is very important. The above problem can be solved in two ways, which will be described in detail below.
  • the wake-up signal may include a first sequence
  • the first sequence may be determined according to a physical layer destination identification (layer-1 destination identification) of the second terminal device, and the first sequence may occupy multiple time units.
  • the time unit can be a time slot, a symbol, or other units that can represent time-domain resources.
  • the sequence may include multiple sequence values, and the sequence values may be further embodied as bit values, that is, binary 0 or 1.
  • a sequence can be a codestream.
  • One time unit can transmit one bit value in the first sequence.
  • the first sequence may also be determined according to other information that can uniquely identify the second terminal device.
  • the first sequence may be determined according to the high-layer identifier of the second terminal device. It can be seen that the physical layer destination identifier of the second terminal device can be replaced with other information that can uniquely identify the second terminal device.
  • the physical layer destination identifier is a method for distinguishing different terminal devices in the physical layer of the NR SL system.
  • Each terminal device in the NR SL system has its own physical layer destination identifier for unicast services, and correspondingly has group-oriented The physical layer destination identifier of the user group of the broadcast service.
  • the second terminal device may receive the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer destination identifier of the second terminal device. After the second terminal device receives the wake-up signal from the first terminal device, it may first determine whether the wake-up signal is a wake-up signal generated according to the physical layer purpose identifier of the second terminal device. When the physical layer purpose of the device identifies the generated wake-up signal, it may determine that the wake-up signal is sent to itself, and then activate the second frequency domain resource according to the wake-up signal.
  • the second terminal device can determine the wake-up signal sent to the second terminal device according to the physical layer purpose identifier of the second terminal device, and then only respond to the wake-up signal transmitted to itself, which can reduce unnecessary operations, thereby further Reduce power consumption of the second terminal device.
  • the first sequence may include a physical layer destination identifier of the second terminal device.
  • the second terminal device may receive a wake-up signal from the first terminal device including the physical layer destination identifier of the second terminal device through the first frequency domain resource. That is, the second terminal device can determine whether the wake-up signal includes a wake-up signal generated by a physical layer purpose identifier, and when it is judged that the wake-up signal includes a physical layer purpose identifier of the second terminal device, it can determine that the wake-up signal is sent to itself. Signal.
  • the first sequence may also include a sequence identifier, which is used to identify the starting position of the first sequence.
  • the second terminal device may first determine the starting position of the first sequence according to the sequence identifier, that is, first determine the position of the sequence identifier, and may determine the starting position of the sequence identifier as the position of the first sequence. Then the second terminal device can judge whether it is a wake-up signal sent to itself according to whether the first sequence includes its own physical layer purpose identifier, that is, the second terminal device can judge whether the part after the sequence identifier includes its own physical layer purpose identifier .
  • the second terminal device may determine whether the 16 bits following the sequence identifier and adjacent to the sequence identifier include its own physical layer destination identifier. It should be understood that, in order to reduce power consumption of the second terminal device, the number of sequence values included in the sequence identifier may be smaller than the number of sequence values included in the first sequence.
  • the wake-up signal may further include a second sequence, and the second sequence may include a reversed sequence of the physical layer destination identifier of the second terminal device.
  • the second terminal device may receive a wake-up signal from the first terminal device through the first frequency domain resource, including the physical layer purpose identifier of the second terminal device and a reversed sequence of the physical layer purpose identifier of the second terminal device. That is, the second terminal device can judge whether the wake-up signal includes the wake-up signal generated by the physical layer purpose identifier, and the reversed sequence of the physical layer destination identifier of the second terminal device. Layer purpose identifier, and the reversed sequence of the physical layer destination identifier of the second terminal device, it can be determined that the wake-up signal is a wake-up signal sent to itself.
  • the time units occupied by the first sequence and the second sequence are the same, indicating that the first sequence and the second sequence have the same length, that is, the first sequence and the second sequence include the same number of sequence values.
  • the second sequence may also include a sequence identifier, which is used to identify the starting position of the second sequence.
  • the wake-up signal may include one sequence, or may include multiple sequences.
  • the wake-up signal may only include two sequences, that is, the first sequence and the second sequence, or may include three or more sequences.
  • the lengths of the sequences included in the wake-up signals may all be the same.
  • each sequence may include a sequence identification.
  • a sequence included in the wake-up signal may be transmitted through a frequency domain unit in the first frequency domain resource.
  • the first terminal device may transmit the sequence in the wake-up signal through a frequency domain unit in the first frequency domain resource.
  • the wake-up signal includes multiple sequences
  • the first terminal device may transmit M sequences through M frequency domain units in the first frequency domain resource, each frequency domain unit may transmit one sequence, and sequences transmitted by different frequency domain units may Same or different.
  • M is greater than or equal to the number of sequences included in the wake-up signal.
  • M is equal to the number of sequences included in the wake-up signal.
  • the frequency domain unit here may be one subcarrier, multiple subcarriers, or other frequency domain granularities.
  • a sequence can occupy N*K time domain resources.
  • N is the number of sequence values included in the sequence
  • K is the number of time-domain resources occupied by a single sequence value, that is, any sequence value in the wake-up signal can be represented by K time-domain resources.
  • N is an integer greater than or equal to 2
  • K is an integer greater than or equal to 1.
  • K can be 1, 12, 14, or other values.
  • the time domain resources may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or other symbols. Representing a sequence value through multiple OFDM symbols is beneficial to the design and implementation of terminal equipment modules.
  • the K time-domain resources are the above-mentioned time unit, that is, the time unit includes K time-domain resources.
  • the sequences included in the wake-up signal may all use a preset sequence with a length of S as the first S sequence values, where S is an integer greater than or equal to 2.
  • the value of the preset sequence can be the system default or pre-configured. For example, when the second terminal device detects one or more preset sequences of length S on the first frequency domain resource, it can be determined that the first terminal device starts to send a wake-up signal on the first frequency domain resource, and can avoid receiving The problem that the terminal device cannot know the start time point and end time point of transmitting the wake-up signal.
  • FIG. 7 is a schematic diagram of a sequence included in a wake-up signal disclosed by an embodiment of the present invention.
  • the wake-up signal includes a first sequence and a second sequence.
  • the wake-up signal sent by the first terminal device to the second terminal device includes two sequences.
  • the physical layer destination identifier ⁇ d 0 ,d 1 ,d 2 ,...,d 15 ⁇ of the second terminal device is ⁇ 0,0,1,1,1,0,1,0,1,0,1,0 ,0 ,0,0,0,1 ⁇
  • the preset sequence ⁇ h 0 ,h 1 ,h 2 ,h 3 ⁇ is ⁇ 1,1,1,1 ⁇ .
  • the two sequences transmitted on the two frequency domain units are ⁇ 1,1,1,1,0,0,1,1,1,0,1,0,1,0,1,0, 0,0,0,1 ⁇ and ⁇ 1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,1,1,1,0 ⁇ .
  • the wake-up signal includes the first sequence and the second sequence, which can avoid that when the receiving terminal device only determines whether to send the wake-up signal to itself by detecting whether the value of the corresponding sequence is 1, if the physical layer destination identifier of the second terminal device When it is a sequence of all 1s, this wake-up signal wakes up multiple terminal devices at the same time.
  • the problem of false alarm can be avoided.
  • the beginning of the sequence can also be accurately determined, so that the problem of false wakeup caused by partial overlap of sequences corresponding to sending wakeup signals to different terminal devices can be avoided.
  • the above-mentioned preset sequence of length S can also be used to distinguish whether the sending terminal device needs to activate the second frequency domain resource of the receiving terminal device or needs to deactivate it.
  • the second frequency domain resource of the terminal device is received.
  • the wake-up signal not only has the function of activating the second frequency domain resource, but also has the function of deactivating the second frequency domain resource.
  • the first terminal device may send a wake-up signal for deactivating the second frequency domain resource to the second terminal device.
  • a preset sequence of all 1s may be used to indicate that the sending terminal device needs to activate the second frequency domain resource of the receiving terminal device
  • a preset sequence of 1s and 0s may be used to indicate that the sending terminal device needs to deactivate the second frequency domain resource of the receiving terminal device.
  • the first terminal device may use one frequency domain unit to send a sequence in consecutive multiple time units. For example, if a sequence is 011, the first terminal device may first transmit 0 in a time unit in a frequency domain unit, then transmit 1 in the next adjacent time unit, and continue to transmit 1 in the next adjacent time unit.
  • the first sequence may include n sequence values, where n is greater than A, and A is the number of bits included in the physical layer destination identifier of the second terminal device.
  • the physical layer object identifier of the second terminal device including A bits may be extended into a first sequence with a length of n by means of redundant coding.
  • the first sequence will include several check digits determined according to the physical layer purpose identifier of the second terminal device, and the several check digits are used to help the second terminal device determine that the wake-up signal is sent to the second terminal device , so as to avoid the problem of false alarms. It should be understood that the foregoing redundant encoding manner is not specifically limited here.
  • a bit values corresponding to the physical layer target identifier of the second terminal device are used as the first A sequence values, and then the remaining nA sequence values are generated according to the physical layer target identifier of the second terminal device through redundant coding.
  • the first terminal device may determine the third frequency domain resource in the first frequency domain resource according to the physical layer purpose identifier of the second terminal device
  • the second terminal device may determine the third frequency domain resource according to the physical layer purpose identifier of the second terminal device
  • the third frequency domain resource is determined in the first frequency domain resource
  • the first terminal device can send a wake-up signal to the second terminal device through the third frequency domain resource
  • the second terminal device can receive the signal from the third frequency domain resource through the third frequency domain resource.
  • a wake-up signal of the first terminal device may be used to determine the third frequency domain resource in the first frequency domain resource according to the physical layer purpose identifier of the second terminal device.
  • the frequency domain resource for transmitting the wake-up signal for the second terminal device is determined according to the physical layer purpose identifier of the second terminal device, that is, the frequency domain resource for sending the wake-up signal for a certain terminal device is determined according to the physical layer purpose of the terminal device Therefore, it can be guaranteed that different frequency domain resources are used to send wake-up signals to different terminal devices. Correspondingly, different terminal devices can receive wake-up signals sent to themselves through different frequency domain resources.
  • the receiving terminal device only needs to receive the wake-up signal from its corresponding frequency domain resource to receive the wake-up signal sent to itself, which not only reduces the bandwidth for receiving the wake-up signal, but also determines the wake-up signal sent to itself, thereby
  • the power consumption can be reduced and the problem that a terminal device receives a wake-up signal sent to other terminal devices can be avoided, thereby avoiding false alarms.
  • the different frequency domain resources here can be understood as completely different, or partially different.
  • the third frequency domain resource may be determined by the first terminal device when there is SL data to be sent to the second terminal device in the first terminal device, or may be determined during or after the establishment process between the first terminal device and the second terminal device , it can also be established at other times.
  • the third frequency domain resource may be determined by the second terminal device during or after the establishment process between the first terminal device and the second terminal device.
  • the sending terminal device since the corresponding relationship between the physical layer purpose identifier of the receiving terminal device and the frequency domain resources used to transmit the wake-up signal to the receiving terminal device is established, the sending terminal device does not need to explicitly (explicitly) send the receiving terminal device
  • the physical layer purpose identifier is used as the content of the wake-up signal, but a frequency domain resource for transmitting the wake-up signal to the receiving terminal device is uniquely determined according to the physical layer purpose identifier of the receiving terminal device.
  • the sending terminal device can effectively make the sending terminal device limit the wake-up target to the receiving terminal device with a specific physical layer purpose identifier, which can avoid the problem of other terminal devices being woken up due to false alarms; at the same time, the receiving terminal device only
  • the wake-up signal is monitored on the time-frequency resource identified by the layer purpose, so that the wake-up signal transmitted to different terminal devices can be distinguished, and then the wake-up signal transmitted to itself can be responded only to.
  • the first terminal device may also determine the second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device, and the second terminal device may also determine the second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device.
  • the second time domain resource is determined from the first time domain resource.
  • the first terminal device may send a wake-up signal to the second terminal device through the second time domain resource and the third frequency domain resource, and correspondingly, the second terminal device receives the signal from the first terminal device through the second time domain resource and the third frequency domain resource The device's wakeup signal.
  • the first time domain resource is a time domain resource corresponding to the first frequency domain resource
  • the second time domain resource is a time domain resource corresponding to the third frequency domain resource.
  • the method for determining the second time domain resource is similar to the method for determining the third frequency domain resource, which will not be described in detail here.
  • Part or all of the starting point of the first time domain resource may be the same as the starting point of a radio frame (radio frame) satisfying the first condition.
  • the first terminal device and the second terminal device may determine the second time domain resource in the first time domain resource according to P most significant bits (most significant bits, MSBs) in the physical layer destination identifier of the second terminal device, and may determine the second time domain resource according to Q least significant bits (least significant bits, LSBs) in the physical layer destination identifier of the second terminal device determine the third frequency domain resource in the first frequency domain resource.
  • the first terminal device and the second terminal device may also determine the second time domain resource in the first time domain resource by the P least significant bits in the physical layer target identifier of the second terminal device, which may be based on the physical layer of the second terminal device
  • the Q most significant bits in the target identifier determine the third frequency domain resource in the first frequency domain resource.
  • P is an integer less than or equal to A
  • A is the number of bits included in the physical layer purpose identifier
  • Q is an integer less than or equal to A.
  • the first time domain resource may include T time domain units
  • the first frequency domain resource may include F frequency domain units
  • the second time domain resource may include X time domain units
  • the third frequency domain resource may include Y frequency domain resources unit.
  • X, Y, T and F are all integers greater than or equal to 1, T is greater than X, and F is greater than Y.
  • the granularity of the time-domain unit may be a time slot (slot), may also be a millisecond (ms), may also be K symbols, or may be other units that can represent time-domain resources.
  • the symbols may be OFDM symbols or other symbols, which are not limited here.
  • the granularity of the frequency domain unit can be a subcarrier, a physical resource block (physical resource block, PRB), or other units that can represent frequency domain resources.
  • the P bit of the physical layer destination identifier of the receiving terminal device can be represented by the positions of X time domain units, and the Q bit of the physical layer destination identifier of the receiving terminal device can be represented by the positions of Y frequency domain units, It is beneficial for the receiving terminal device to judge whether the wake-up signal is a wake-up signal transmitted to itself.
  • the first terminal device and the second terminal device may determine the position indices x 1 and x 2 of the X time domain units in the T time domain unit according to P MSBs in the physical layer destination identifier of the second terminal device.
  • the decimal system of the P MSB ⁇ d 0 ,d 1 ,d 2 ,...,d P-1 ⁇ of the physical layer purpose identifier can be expressed as
  • the relationship between D1 and x1 and x2 can be expressed as follows:
  • x 1 and x 2 satisfy 0 ⁇ x 1 ⁇ x 2 ⁇ T-1 and an integer of .
  • the first terminal device and the second terminal device may determine the position indices y 1 and y 2 of the Y frequency domain units in the F frequency domain units according to the Q LSBs of the physical layer destination identifier of the second terminal device.
  • the decimal system of the Q LSB ⁇ d AQ ,d A-Q+1 ,d A-Q+2 ,...,d A-1 ⁇ of the physical layer purpose identifier can be expressed as
  • the relationship between D2 and y1 and y2 can be expressed as follows:
  • y 1 and y 2 satisfy 0 ⁇ y 1 ⁇ y 2 ⁇ F-1 and an integer of .
  • d i can be 0 or 1.
  • FIG. 8 is a schematic diagram of a first time domain resource and a first frequency domain resource disclosed by an embodiment of the present invention. Assume that the time domain unit is a time slot, the frequency domain unit is a subcarrier, T is 20, F is 36, A is 16, P is 7, and Q is 9.
  • the second terminal device may monitor the wake-up signal on the four time-frequency resources, and activate the second frequency-domain resource according to the received wake-up signal.
  • T could be 40 and F could be 18.
  • the first terminal device sends SL data to the second terminal device by using the second frequency domain resource.
  • the first terminal device After the first terminal device sends a wake-up signal to the second terminal device through the first frequency domain resource, it may send SL data to the second terminal device through the second frequency domain resource.
  • the first terminal device may send the SL data to the second terminal device through the second frequency domain resource after N proc time units after sending the wake-up signal.
  • the first terminal device does not send SL data to the second terminal device before N proc time units after sending the wake-up signal, which can avoid the problem of SL data reception failure caused by the second terminal device not having activated the second frequency domain resource.
  • N proc is an integer greater than or equal to 1.
  • the time unit may be a time slot, may also be a symbol, and may also be a mini slot (mini slot). For example, a time unit can be one symbol, or multiple symbols.
  • N proc may be related to subcarrier spacing. For example, when the subcarrier spacing increases, the value of N proc also increases. It can be seen that the value of the above N proc may be positively correlated with the subcarrier spacing.
  • the above value of N proc may also be determined according to capability information of the second terminal device.
  • the second terminal device may determine the value of N proc according to the capability information of the second terminal device, and then may indicate the value of N proc to the first terminal device through signaling.
  • the second terminal device may also send the capability information of the second terminal device to the first terminal device.
  • the first terminal device may determine the N proc based on the capability information of the second terminal device. value.
  • the second terminal device may receive the SL data from the first terminal device through the second frequency domain resource.
  • the second terminal device When the second terminal device has finished receiving the SL data from the second terminal device, has not received the wake-up signal from other terminal devices, and has no SL data to be transmitted to other terminal devices, the second terminal device may use the second frequency domain resource The status of is switched from activated to deactivated.
  • the second terminal device When the second frequency domain resource of the second terminal device is in the deactivated state, the second terminal device needs to send or receive a sidelink synchronization signal block (sidelink synchronization signal block, S-SSB) in the second frequency domain resource, the S-SSB SSB is used for the second terminal device to keep synchronized with other terminal devices in the network.
  • sidelink synchronization signal block sidelink synchronization signal block, S-SSB
  • the synchronization between the first terminal device and the second terminal device can still be maintained, and the start point and end point of the wake-up signal transmission can have the same understanding , can avoid the situation that the second terminal device cannot be woken up by the first terminal device due to synchronization deviation, and can also avoid the problem that other terminal devices in the network are mistakenly woken up by the first terminal device due to synchronization deviation.
  • the first frequency domain resource and the second frequency domain resource may correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the first frequency domain resource and the second frequency domain resource in the first terminal device may correspond to different radio frequency sending modules.
  • the first frequency domain resource and the second frequency domain resource in the first terminal device may correspond to different radio frequency sending modules and radio frequency receiving modules.
  • the second terminal device only has the function of a receiving device
  • the first frequency domain resource and the second frequency domain resource in the second terminal device may correspond to different radio frequency receiving modules.
  • the first frequency domain resource and the second frequency domain resource in the second terminal device may correspond to different radio frequency sending modules and radio frequency receiving modules.
  • the terminal device can only activate one frequency domain resource at a time. Therefore, when the first terminal device needs to transmit a wake-up signal to the second terminal device through the first frequency domain resource, the first terminal device should have a radio frequency sending module corresponding to the first frequency domain resource. When the second terminal device needs to receive the wake-up signal from the first terminal device through the first frequency domain resource, the second terminal device should have a radio frequency receiving module corresponding to the first frequency domain resource.
  • first frequency domain resource and the second frequency domain resource have corresponding radio frequency sending modules and/or radio frequency receiving modules respectively, so that the first frequency domain resources and the second frequency domain resources are both in an active state at the same time, so that The first frequency domain resource is used for the transmission of the wake-up signal, and the second frequency domain resource is used for the transmission of the SL data.
  • the first frequency domain resource may be continuously in an activated state. It should be understood that the second terminal device needs to continuously monitor the wake-up signal, and judge whether to change the second frequency domain resource from the deactivated state to the activated state according to the wake-up signal, so as to avoid missing SL data. Therefore, on the side of the second terminal device, when the second terminal device is in the working state, for example, after the second terminal device is turned on, the second terminal device needs to ensure that the first frequency domain resource is continuously in the activated state. On the other hand, on the side of the first terminal device, the first frequency domain resource may also be in an active state continuously, and the state of the first frequency domain resource is not controlled according to an additional mechanism, which facilitates hardware implementation of the first terminal device.
  • FIG. 9 is a schematic diagram of a second terminal device activating a second frequency domain resource after receiving a wake-up signal according to an embodiment of the present invention.
  • the first frequency domain resource of the second terminal device is continuously in the activated state, and the second frequency domain resource of the second terminal device is originally in the deactivated state.
  • the second terminal device changes the second frequency domain resource from a deactivated state to an activated state.
  • the second terminal device may change the second frequency domain resource from an activated state to a deactivated state again.
  • the first frequency domain resource may be in an active state only when a wake-up signal needs to be transmitted. It should be understood that the working mode of the first terminal device may be to keep the second frequency domain resource continuously in an active state, therefore, the first terminal device does not need to receive a wake-up signal from any other terminal device, that is, it does not need to be in the first Monitoring wake-up signals on frequency domain resources can avoid unnecessary power consumption.
  • FIG. 10 is a schematic diagram of activating a first frequency domain resource when a first terminal device sends a wake-up signal according to an embodiment of the present invention.
  • the second frequency domain resource of the first terminal device is continuously activated, and the first frequency domain resource of the first terminal device is originally in the deactivated state.
  • the first terminal device changes the first frequency domain resource from a deactivated state to an activated state.
  • the first terminal device may re-transition the first frequency domain resource from an activated state to a deactivated state.
  • the SL data may be carried on the PSSCH for transmission.
  • first frequency domain resource and the second frequency domain resource may be bandwidth or bandwidth part (bandwidth part, BWP).
  • the functions performed by the first terminal device in the above communication methods may also be performed by modules (for example, chips) in the first terminal device, and the functions performed by the second terminal device may also be performed by modules in the second terminal device. modules (for example, chips) to execute.
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • the communication device may be the first terminal device, or may be a module in the first terminal device.
  • the communication device may include:
  • the sending unit 1101 is configured to send a wake-up signal to the second terminal device through the first frequency domain resource, the wake-up signal is used to activate the second frequency domain resource, and the first frequency domain resource is used for two or more terminal devices to transmit the wake-up signal , there is no overlap between the first frequency domain resource and the second frequency domain resource;
  • the sending unit 1101 is further configured to send SL data to the second terminal device through the second frequency domain resources.
  • the modulation mode of the wake-up signal is OOK or BPSK.
  • the wake-up signal includes a first sequence, the first sequence is determined according to the physical layer destination identifier of the second terminal device, and the first sequence occupies multiple time units.
  • the first sequence includes the physical layer destination identifier of the second terminal device.
  • the wake-up signal further includes a second sequence, the second sequence includes a reversed sequence of the physical layer destination identifier of the second terminal device, and the first sequence and the second sequence occupy the same time unit.
  • the communication device may also include:
  • a processing unit 1102 configured to determine a third frequency domain resource in the first frequency domain resource according to the physical layer purpose identifier of the second terminal device;
  • the sending unit 1101 sending the wake-up signal to the second terminal device through the first frequency domain resource includes:
  • the processing unit 1102 is further configured to determine the second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device, and the first time domain resource is the first time domain resource corresponding to the first frequency domain resource.
  • the sending unit 1101 sending the wake-up signal to the second terminal device through the third frequency domain resource includes:
  • the processing unit 1102 determining the second time domain resource in the first time domain resource according to the physical layer destination identifier of the second terminal device includes:
  • the processing unit 1102 determining the third frequency domain resource in the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the first frequency domain resource and the second frequency domain resource correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the physical layer destination identifier of the second terminal device is a 16-bit bit sequence.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may be the second terminal device, or may be a module in the second terminal device.
  • the communication device may include:
  • the receiving unit 1201 is configured to receive a wake-up signal from a first terminal device through a first frequency domain resource, and the first frequency domain resource is used for two or more terminal devices to transmit a wake-up signal;
  • the processing unit 1202 is configured to activate the second frequency domain resource according to the wake-up signal, and there is no overlap between the first frequency domain resource and the second frequency domain resource;
  • the receiving unit 1201 is further configured to receive SL data from the first terminal device through the second frequency domain resources.
  • the modulation mode of the wake-up signal is OOK or BPSK.
  • the wake-up signal includes a first sequence, the first sequence is determined according to the physical layer purpose identifier of the second terminal device, and the first sequence occupies multiple time units;
  • the receiving unit 1201 receiving the wake-up signal from the first terminal device through the first frequency domain resource includes:
  • the wake-up signal from the first terminal device is received through the first frequency domain resource.
  • the first sequence includes a physical layer destination identifier of the second terminal device
  • the receiving unit 1201 receiving the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • a wake-up signal including the physical layer destination identifier of the second terminal device from the first terminal device is received through the first frequency domain resource.
  • the wake-up signal further includes a second sequence, the second sequence includes a reversed sequence of the physical layer destination identifier of the second terminal device, and the time units occupied by the first sequence and the second sequence are the same;
  • the receiving unit 1201 receiving the wake-up signal from the first terminal device through the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the processing unit 1202 is further configured to determine a third frequency domain resource in the first frequency domain resource according to the physical layer purpose identifier of the second terminal device;
  • the receiving unit 1201 receiving the wake-up signal from the first terminal device through the first frequency domain resource includes:
  • the processing unit 1202 is further configured to determine the second time domain resource in the first time domain resource according to the physical layer purpose identifier of the second terminal device, and the first time domain resource is the first time domain resource corresponding to the first frequency domain resource.
  • the receiving unit 1201 receiving the wake-up signal from the first terminal device through the third frequency domain resource includes:
  • the processing unit 1202 determining the second time domain resource in the first time domain resource according to the physical layer destination identifier of the second terminal device includes:
  • the processing unit 1202 determining the third frequency domain resource in the first frequency domain resource according to the physical layer target identifier of the second terminal device includes:
  • the first frequency domain resource and the second frequency domain resource correspond to different radio frequency sending modules and/or radio frequency receiving modules.
  • the physical layer destination identifier of the second terminal device is a 16-bit bit sequence.
  • receiving unit 1201 and the processing unit 1202 can be directly obtained by referring to the relevant description of the second terminal device in the method embodiment shown in FIG. 6 above, and details are not repeated here.
  • FIG. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may be the communication device in the aforementioned embodiments, and the communication device used to implement the above method embodiments may be the communication device with terminal device functions in the aforementioned embodiments, or a functional module in the aforementioned communication device.
  • the communication device may be the communication device with terminal device functions in the aforementioned embodiments, or a functional module in the aforementioned communication device.
  • the communication device may include one or more processors 1301 .
  • the processor 1301 may also be referred to as a processing unit, and may implement certain control functions.
  • the processor 1301 may be a general-purpose processor or a special-purpose processor. For example, including: baseband processor, central processing unit, application processor, modem processor, graphics processor, image signal processor, digital signal processor, video codec processor, controller, memory, and/or Neural Network Processor, etc.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processing unit may be used to control the communication device, execute software programs and/or process data. Different processors may be independent devices, or may be integrated in one or more processors, for example, integrated in one or more application-specific integrated circuits.
  • the communication device may include one or more memories 1302 for storing instructions 1304, and the instructions may be executed on the processor 1301, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 1302 .
  • the processor 1301 and the memory 1302 can be set independently or integrated together.
  • the communication device may include an instruction 1303 (sometimes also referred to as a code or a program), and the instruction 1303 may be executed on the processor 1301, so that the communication device executes the methods described in the foregoing embodiments.
  • Data may be stored in the processor 1301 .
  • the communication device may further include a transceiver 1305 and an antenna 1306 .
  • the transceiver 1305 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver, an input/output interface, etc., and is used to realize the transceiver function of the communication device through the antenna 1306 .
  • the communication device may also include one or more of the following components: a wireless communication module, an audio module, an external memory interface, an internal memory, a universal serial bus (universal serial bus, USB) interface, a power management module, an antenna, Speakers, microphones, I/O modules, sensor modules, motors, cameras, or displays, etc.
  • a wireless communication module an audio module
  • an external memory interface an internal memory
  • a universal serial bus universal serial bus, USB
  • a power management module an antenna
  • Speakers microphones, I/O modules, sensor modules, motors, cameras, or displays, etc.
  • the communication device may include more or less components, or some components may be integrated, or some components may be separated. These components may be realized by hardware, software, or a combination of software and hardware.
  • the processor 1301 and transceiver 1305 described in the present invention can be realized in integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit (radio frequency identification, RFID), mixed signal IC, application specific integrated circuit (application specific integrated circuit) , ASIC), printed circuit board (printed circuit board, PCB), or electronic equipment, etc.
  • the communication device described herein can be an independent device (for example, an independent integrated circuit, a mobile phone, etc.), or it can be a part of a larger device (for example, a module that can be embedded in other devices). For details, please refer to the aforementioned The description of the terminal equipment will not be repeated here.
  • FIG. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include an input interface 1401 , a logic circuit 1402 and an output interface 1403 .
  • the input interface 1401 is connected to the output interface 1403 through a logic circuit 1402 .
  • the input interface 1401 is used for receiving information from other communication devices, and the output interface 1403 is used for outputting, scheduling or sending information to other communication devices.
  • the logic circuit 1402 is configured to perform operations other than the operations of the input interface 1401 and the output interface 1403 , for example, realizing the functions implemented by the processor 1301 in the above-mentioned embodiments.
  • the communication device may be a first terminal device, or may be a second terminal device.
  • the input interface 1401, the logic circuit 1402, and the output interface 1403 can be directly obtained by referring to the related descriptions of the first terminal device and the second terminal device in the above method embodiments, and details are not repeated here.
  • the embodiment of the present invention also discloses a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the methods in the above method embodiments are executed.
  • the embodiment of the present invention also discloses a computer program product including an instruction, and when the instruction is executed, the method in the above method embodiment is executed.
  • the embodiment of the present invention also discloses a communication system, where the communication system may include a first terminal device and a second terminal device.
  • the communication system may include a first terminal device and a second terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种通信方法、装置及系统,该方法包括:第一终端设备通过第一频域资源向第二终端设备发送唤醒信号,唤醒信号用于激活第二频域资源,第一频域资源用于两个或两个以上终端设备传输唤醒信号,第一频域资源与第二频域资源之间不重叠;第一终端设备通过第二频域资源向第二终端设备发送侧行链路SL数据。本发明实施例,可以降低侧行通信中终端设备的功耗。

Description

一种通信方法、装置及系统
本申请要求于2021年07月29日提交中国专利局、申请号为202110867122.0、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
在通信系统中,随着信息传输需求的不断增加,通信系统的软硬件复杂度均有大幅的增长,这种复杂度的增长直接造成终端设备的功耗大幅提升。目前,在终端设备与网络设备的通信过程中,为了降低终端设备的功耗,网络设备可以向终端设备周期性地发送唤醒信号(wake-up signal,WUS),当唤醒信号为特定值时,终端设备可以被唤醒用于发送或接收信息。
在通信系统中,除了终端设备与网络设备之间的通信之外,还有终端设备与终端设备之间的通信,即侧行链路(sidelink,SL)通信。如何降低终端设备与终端设备通信时终端设备的功耗已成为一个亟待解决的技术问题。
发明内容
本发明实施例公开了一种通信方法、装置及系统,用于降低侧行链路中终端设备的功耗。
第一方面公开一种通信方法,所述通信方法可以应用于第一终端设备,也可以应用于第一终端设备中的模块(例如,芯片),下面以应用于第一终端设备为例进行描述。所述通信方法可以包括:
第一终端设备通过第一频域资源向第二终端设备发送唤醒信号,所述唤醒信号用于激活第二频域资源,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号,所述第一频域资源与所述第二频域资源之间不重叠;
所述第一终端设备通过所述第二频域资源向所述第二终端设备发送SL数据。
本发明实施例中,当第一终端设备作为发送终端设备,且有SL数据发送时,发送终端设备可以通过一个频域资源向接收终端设备发送唤醒信号,以便接收终端设备(即第二终端设备)可以根据唤醒信号激活用于传输SL数据的频域资源,之后发送终端设备可以通过这个激活的频域资源向接收终端设备发送SL数据。可见,用于传输SL数据的频域资源在没有SL数据传输时,可以处于去激活状态,而有SL数据传输时,可以通过一个频域资源传输的唤醒信号进行激活,可以减少用于传输SL数据的频域资源的激活时间,由于传输唤醒信号的频域资源的带宽远小于用于传输SL数据的频域资源的带宽,接收终端设备需要一直监测的频域范围降低了,因此,在能够保证SL正常传输的情况下,可以降低终端设备的功耗。此外,由于第一频域资源不仅可以被第一终端设备使用,还可以被其它终端设备使用,即第一频域资源可以被多个终端设备共用,可以提高频域资源的利用率。
作为一种可能的实施方式,所述唤醒信号的调制方式为开关键控(on off keying,OOK) 或二进制移相键控(binary phase shift keying,BPSK)。
本发明实施例中,由于OOK并不通过相位或幅度承载信息,而是简单地通过是否发送信号来传输信息,接收终端设备不需要解调唤醒信号,只需要可以通过包络检测检测到信号即可,因此,接收终端设备只需要包括简单的接收机结构就可以接收到唤醒信号,这类接收机的设计非常简单,可以降低终端设备硬件实现的复杂度,从而可以降低接收终端设备的功耗。同理,通过BPSK调制的唤醒信号,也可以使用低功耗的接收机进行接收。
作为一种可能的实施方式,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元。
本发明实施例中,由于唤醒信号中的一个序列根据接收终端设备的物理层目的标识确定,因此,接收终端设备可以根据自身的物理层目的标识盲检唤醒信号,然后准确地接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。其中,序列可以为包括多个序列值的码流。
作为一种可能的实施方式,所述第一序列包括所述第二终端设备的物理层目的标识。
本发明实施例中,接收终端设备可以根据唤醒信号是否包括自身的物理层目的标识,来判断是否为发送给自身的唤醒信号,因此,接收终端设备可以准确地接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。
作为一种可能的实施方式,所述第一序列还包括序列标识,所述序列标识用于标识所述第一序列的起始位置。
本发明实施例中,接收终端设备在进行盲检时,可以先根据序列标识确定第一序列的起始位置,之后可以根据第一序列是否包括自身的物理层目的标识,来判断是否为发送给自身的唤醒信号,可以减少终端设备使用自身的物理层目的标识进行判断的次数。
作为一种可能的实施方式,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同。
本发明实施例中,接收终端设备可以根据唤醒信号是否包括自身的物理层目的标识以及自身的物理层目的标识取反后的序列,来判断是否为发送给自身的唤醒信号,因此,接收终端设备可以准确地接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。
作为一种可能的实施方式,所述通信方法还可以包括:
所述第一终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
所述第一终端设备通过第一频域资源向第二终端设备发送唤醒信号包括:
所述第一终端设备通过所述第三频域资源向第二终端设备发送唤醒信号。
本发明实施例中,发送终端设备只会在根据接收终端设备的物理层目的标识确定的频域资源上向接收终端设备发送唤醒信号,相应地,接收终端设备可以只在根据接收终端设备的物理层目的标识确定的频域资源上接收发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。此外,由于接收终端设备只需要在根据接收终端设备的物理层目的标识确定的频域资源上检测发送给自身的唤醒信号,可以减少接收终端设备检测的频域资源的带宽,从而 可以进一步降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:
所述第一终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
所述第一终端设备通过所述第三频域资源向第二终端设备发送唤醒信号包括:
所述第一终端设备通过所述第二时域资源和所述第三频域资源向第二终端设备发送唤醒信号。
本发明实施例中,发送终端设备只会在根据接收终端设备的物理层目的标识确定的时域资源上向接收终端设备发送唤醒信号,相应地,接收终端设备可以只在根据接收终端设备的物理层目的标识确定的时域资源上接收发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。此外,由于接收终端设备只需要在根据接收终端设备的物理层目的标识确定的时域资源上检测发送给自身的唤醒信号,可以减少接收终端设备检测唤醒信号的时间,从而可以进一步降低终端设备的功耗。
作为一种可能的实施方式,所述第一终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
所述第一终端设备根据所述第二终端设备的物理层目的标识中的P个最高有效位(most significant bit,MSB)在第一时域资源中确定第二时域资源;
所述第一终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
所述第一终端设备根据所述第二终端设备的物理层目的标识中的Q个最低有效位(least significant bit,LSB)在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特数。
作为一种可能的实施方式,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
本发明实施例中,用于传输唤醒信号的频域资源和用于传输SL数据的频域资源对应不同的射频发送模块和/或射频接收模块,如此可以通过低功耗的简化射频发送和/或接收模块传输唤醒信号,而通过常规功耗的射频发送和/或接收模块传输SL数据,从而可以进一步降低传输唤醒信号的功耗。另外,使用不同的射频发送模块和/或射频接收模块还可以保证上述两个频域资源可以同时处于激活状态,或者,一个处于激活状态而另一个处于去激活状态。
作为一种可能的实施方式,所述物理层目的标识为16比特的比特序列。
第二方面公开一种通信方法,所述通信方法可以应用于第二终端设备,也可以应用于第二终端设备中的模块(例如,芯片),下面以应用于第二终端设备为例进行描述。所述通信方法可以包括:
第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号;
所述第二终端设备根据所述唤醒信号激活第二频域资源,所述第一频域资源与所述第二频域资源之间不重叠;
所述第二终端设备通过所述第二频域资源接收来自所述第一终端设备的SL数据。
本发明实施例中,第二终端设备作为接收终端设备,可以通过一个频域资源接收到来自发送终端设备(即第一终端设备)的唤醒信号,之后可以根据唤醒信号激活用于传输SL数据的频域资源,进而可以通过这个频域资源接收到来自发送终端设备的SL数据。可见,用于传输SL数据的频域资源在没有SL数据传输时,可以处于去激活状态,而有SL数据传输时,可以通过一个频域资源传输的唤醒信号进行激活,可以减少用于传输SL数据的频域资源的激活时间,由于传输唤醒信号的频域资源的带宽远小于用于传输SL数据的频域资源的带宽,接收终端设备需要一直监测的频域范围降低了,因此,在能够保证SL正常传输的情况下,可以降低终端设备的功耗。此外,由于第一频域资源不仅可以被第一终端设备使用,还可以被其它终端设备使用,即第一频域资源可以被多个终端设备共用,可以提高频域资源的利用率。
作为一种可能的实施方式,所述唤醒信号的调制方式为OOK或BPSK。
本发明实施例中,由于OOK并不通过相位或幅度承载信息,而是简单地通过是否发送信号来传输信息,接收终端设备不需要解调唤醒信号,只需要可以通过包络检测检测到信号即可,因此,接收终端设备只需要包括简单的接收机结果就可以接收到唤醒信号,这类接收机的设计非常简单,可以降低终端设备硬件实现的复杂度,从而可以降低接收终端设备的功耗。同理,通过BPSK调制的唤醒信号,也可以使用低功耗的接收机进行接收。
作为一种可能的实施方式,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元;
所述第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号包括:
所述第二终端设备根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号。
本发明实施例中,由于唤醒信号中的一个序列根据接收终端设备的物理层目的标识确定,因此,接收终端设备可以根据自身的物理层目的标识盲检唤醒信号,然后准确地接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。其中,序列可以为包括多个序列值的码流。
作为一种可能的实施方式,所述第一序列包括所述第二终端设备的物理层目的标识;
所述第二终端设备根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
所述第二终端设备通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识的唤醒信号。
本发明实施例中,接收终端设备可以根据唤醒信号是否包括自身的物理层目的标识,来判断是否为发送给自身的唤醒信号,因此,接收终端设备可以准确地接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。
作为一种可能的实施方式,所述第一序列还包括序列标识,所述序列标识用于标识所述第一序列的起始位置。
本发明实施例中,接收终端设备在进行盲检时,可以先根据序列标识确定第一序列的起始位置,之后可以根据第一序列是否包括自身的物理层目的标识,来判断是否为发送给自身的唤醒信号,可以减少终端设备使用自身的物理层目的标识进行判断的次数。
作为一种可能的实施方式,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相 同;
所述第二终端设备根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
所述第二终端设备通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识以及所述第二终端设备的物理层目的标识取反后的序列的唤醒信号。
本发明实施例中,接收终端设备可以根据唤醒信号是否包括自身的物理层目的标识以及自身的物理层目的标识取反后的序列,来判断是否为发送给自身的唤醒信号,因此,接收终端设备可以准确地接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。
作为一种可能的实施方式,所述通信方法还可以包括:
所述第二终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
所述第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号包括:
所述第二终端设备通过所述第三频域资源接收来自第一终端设备的唤醒信号。
本发明实施例中,接收终端设备可以在根据接收终端设备的物理层目的标识确定的频域资源上接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。此外,由于接收终端设备只需要在根据接收终端设备的物理层目的标识确定的频域资源上检测发送给自身的唤醒信号,可以减少接收终端设备检测的频域资源的带宽,从而可以进一步降低终端设备的功耗。
作为一种可能的实施方式,所述通信方法还可以包括:
所述第二终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
所述第二终端设备通过所述第三频域资源接收来自第一终端设备的唤醒信号包括:
所述第二终端设备通过所述第二时域资源和所述第三频域资源接收来自第一终端设备的唤醒信号。
本发明实施例中,接收终端设备可以在根据接收终端设备的物理层目的标识确定的时域资源上接收到发送给自身的唤醒信号,可以避免接收到发送给其它终端设备的唤醒信号而导致错误的激活用于SL数据传输的频域资源的问题,从而可以避免虚警的问题。此外,由于接收终端设备只需要在根据接收终端设备的物理层目的标识确定的时域资源上检测发送给自身的唤醒信号,可以减少接收终端设备检测唤醒信号的时间,从而可以进一步降低终端设备的功耗。
作为一种可能的实施方式,所述第二终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
所述第二终端设备根据所述第二终端设备的物理层目的标识中的P个MSB在第一时域资源中确定第二时域资源;
所述第二终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
所述第二终端设备根据所述第二终端设备的物理层目的标识中的Q个LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目 的标识包括的比特数。
作为一种可能的实施方式,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
本发明实施例中,用于传输唤醒信号的频域资源和用于传输SL数据的频域资源对应不同的射频发送模块和/或射频接收模块,如此可以通过低功耗的简化射频发送和/或接收模块传输唤醒信号,而通过常规功耗的射频发送和/或接收模块传输SL数据,从而可以进一步降低传输唤醒信号的功耗。另外,使用不同的射频发送模块和/或射频接收模块还可以保证上述两个频域资源可以同时处于激活状态,或者,一个处于激活状态而另一个处于去激活状态。
作为一种可能的实施方式,所述物理层目的标识为16比特的比特序列。
第三方面公开一种通信装置,所述通信装置可以为第一终端设备,也可以为第一终端设备的模块(例如,芯片)。所述通信装置可以包括:
发送单元,用于通过第一频域资源向第二终端设备发送唤醒信号,所述唤醒信号用于激活第二频域资源,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号,所述第一频域资源与所述第二频域资源之间不重叠;
所述发送单元,还用于通过所述第二频域资源向所述第二终端设备发送SL数据。
作为一种可能的实施方式,所述唤醒信号的调制方式为OOK或BPSK。
作为一种可能的实施方式,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元。
作为一种可能的实施方式,所述第一序列包括所述第二终端设备的物理层目的标识。
作为一种可能的实施方式,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同。
作为一种可能的实施方式,所述通信装置还包括:
处理单元,用于根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
所述发送单元通过第一频域资源向第二终端设备发送唤醒信号包括:
通过所述第三频域资源向第二终端设备发送唤醒信号。
作为一种可能的实施方式,所述处理单元,还用于根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
所述发送单元通过所述第三频域资源向第二终端设备发送唤醒信号包括:
通过所述第二时域资源和所述第三频域资源向第二终端设备发送唤醒信号。
作为一种可能的实施方式,所述处理单元根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
根据所述第二终端设备的物理层目的标识中的P个MSB在第一时域资源中确定第二时域资源;
所述处理单元根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
根据所述第二终端设备的物理层目的标识中的Q个LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特 数。
作为一种可能的实施方式,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
作为一种可能的实施方式,所述物理层目的标识为16比特的比特序列。
第四方面公开一种通信装置,所述通信装置可以为第二终端设备,也可以为第二终端设备的模块(例如,芯片)。所述通信装置可以包括:
接收单元,用于通过第一频域资源接收来自第一终端设备的唤醒信号,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号;
处理单元,用于根据所述唤醒信号激活第二频域资源,所述第一频域资源与所述第二频域资源之间不重叠;
所述接收单元,还用于通过所述第二频域资源接收来自所述第一终端设备的SL数据。
作为一种可能的实施方式,所述唤醒信号的调制方式为OOK或BPSK。
作为一种可能的实施方式,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元;
所述接收单元通过第一频域资源接收来自第一终端设备的唤醒信号包括:
根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号。
作为一种可能的实施方式,所述第一序列包括所述第二终端设备的物理层目的标识;
所述接收单元根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识的唤醒信号。
作为一种可能的实施方式,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同;
所述接收单元根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识以及所述第二终端设备的物理层目的标识取反后的序列的唤醒信号。
作为一种可能的实施方式,所述处理单元,还用于根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
所述接收单元通过第一频域资源接收来自第一终端设备的唤醒信号包括:
通过所述第三频域资源接收来自第一终端设备的唤醒信号。
作为一种可能的实施方式,所述处理单元,还用于根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
所述接收单元通过所述第三频域资源接收来自第一终端设备的唤醒信号包括:
通过所述第二时域资源和所述第三频域资源接收来自第一终端设备的唤醒信号。
作为一种可能的实施方式,所述处理单元根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
根据所述第二终端设备的物理层目的标识中的P个MSB在第一时域资源中确定第二时域资源;
所述处理单元根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
根据所述第二终端设备的物理层目的标识中的Q个LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特数。
作为一种可能的实施方式,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
作为一种可能的实施方式,所述物理层目的标识为16比特的比特序列。
第五方面公开一种通信装置。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第六方面公开一种通信装置。该通信装置可以包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第七方面公开一种第一终端设备。第一终端设备可以包括处理器、存储器、输入接口和输出接口,输入接口用于接收来自第一终端设备之外的其它终端设备的信息,输出接口用于向第一终端设备之外的其它终端设备输出信息,当处理器执行存储器存储的计算机程序时,使得处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第八方面公开一种第二终端设备。第二终端设备可以包括处理器、存储器、输入接口和输出接口,输入接口用于接收来自第二终端设备之外的其它终端设备的信息,输出接口用于向第二终端设备之外的其它终端设备输出信息,当处理器执行存储器存储的计算机程序时,使得处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第九方面公开一种通信系统,该通信系统包括第五方面的通信装置和第六方面的通信装置,或者包括第七方面的通信装置和第八方面的通信装置。
第十方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如上述各方面公开的通信方法。
第十一方面公开一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被执行时,使得芯片执行上面的方法。
作为一种可能的实施方式,存储器位于芯片之外。
第十二方面公开一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述通信方法被执行。
附图说明
图1是本发明实施例公开的一种网络架构示意图;
图2是本申请实施例公开的一种V2X的网络架构图;
图3是本发明实施例公开的一种BWP激活的示意图;
图4是本发明实施例公开的一种基于WUS唤醒UE的示意图;
图5是本发明实施例公开的一种基于SL DRX节能的示意图;
图6是本发明实施例公开的一种通信方法的流程示意图;
图7是本发明实施例公开的一种唤醒信号包括的序列的示意图;
图8是本发明实施例公开的一种第一时域资源和第一频域资源的示意图;
图9是本发明实施例公开的一种第二终端设备接收到唤醒信号之后激活第二频域资源的示意图;
图10是本发明实施例公开的一种第一终端设备发送唤醒信号时激活第一频域资源的示意图;
图11是本发明实施例公开的一种通信装置的结构示意图;
图12是本发明实施例公开的另一种通信装置的结构示意图;
图13是本发明实施例公开的又一种通信装置的结构示意图;
图14是本发明实施例公开的又一种通信装置的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法、装置及系统,用于降低SL中终端设备的功耗。以下分别进行详细说明。
为了更好地理解本发明实施例,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。如图1所示,该网络架构可以包括终端设备1和终端设备2。终端设备1与终端设备2之间可以通过SL进行通信。
例如,请参阅图2,图2是本申请实施例公开的一种车联网通信(vehicle to everything,V2X)的网络架构图。如图2所示,V2X可以包括车与车(vehicle to vehicle,V2V)的通信、车与行人(vehicle to pedestrian,V2P)的通信、车与基础设施(vehicle to infrastructure,V2I)的通信、车与网络(vehicle to network,V2N)的通信。
应理解,终端设备1与终端设备2可以是同样的设备,也可以是不同的设备。
应理解,图2所示的网络架构只是对图1所示的网络架构的示例性说明,并不对其构成限定。
应理解,图2所示的网络架构只是示例性说明,并不对其构成限定。
终端设备,又可以称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。终端设备可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(如智能手表、智能手环、计步器等),车载设备(如汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(如冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无 线终端,或智慧家庭(smart home)中的无线终端、飞行设备(如智能机器人、热气球、无人机、飞机等)或其他可以接入网络的设备。
为了更好地理解本发明实施例,下面先对本发明实施例的相关技术进行描述。
在过去的几十年中,无线通信系统经历了从第一代模拟通信到第五代移动通信技术(5th generation,5G)新无线电(new radio,NR)的技术演变。在愈发膨胀的信息传输需求的推动下,无线通信系统的软硬件复杂度均有了大幅的增长,这种复杂度的增长直接造成终端设备的功耗大幅提升。此时,如果缺少有效的节能技术,那么将导致NR系统用户体验的明显下降。鉴于此,节能已经成为当下NR系统的重要技术增强方向之一。在NR系统中,网络设备与用户设备(userequipment,UE)间的通信接口被称为Uu接口。在NR Uu接口中,主要存在两类节能方案:从频域上动态地调整UE的工作带宽;从时域上动态地调整UE的工作时间。这两种方法的核心思想均是:根据UE的信息传输需求动态地调整无线资源,UE仅在适当大小的资源上开启硬件,可以避免UE在信息传输需求较低时仍使用较高的功耗工作,从而可以降低平均功耗。
具体地,在频域上可以通过带宽部分(bandwidth part,BWP)来实现节能。BWP是NR中引入的用于表征通信链路所使用的频域资源大小的方法。在上行链路(uplink,UL)或下行链路(downlink,DL)中,UE可以被配置至多4个BWP,但UE同一时刻仅会存在一个被激活(activated)的BWP。各个BWP对应的带宽大小可以是不同的,UE被激活的BWP对应的带宽越小,UE的功耗也越小。因此,可以根据UE信息传输需求的不同使不同BWP被激活,可以达到降低UE平均功耗的目的。请参阅图3,图3是本发明实施例公开的一种激活BWP的示意图。如图3所示,UE最初工作在BWP1,当UE的信息传输需求变大时,5G基站(next generation Node B,gNB)可以通过下行控制信息(downlink controlinformation,DCI)指示UE由BWP1切换到对应的带宽较大的BWP2上,即激活BWP2。此外,gNB还可以为UE配置BWP非活跃计时器(BWP inactivity timer),当UE在BWP2上经过一段时间均没有大的信息传输需求时,UE可以激活BWP1,从而可以达到节能的目的。应理解,在NR系统中存在多种实现BWP激活的方法,图3中示出的方法仅作为示意进行说明,并不构成限定。
在时域上节能的典型技术为唤醒信号(wake-up signal,WUS)。当UE在一段时间内不会存在信息传输需求时可以进入睡眠状态,关闭射频硬件从而可以明显地降低功耗。当Uu接口有信息传输需求时,gNB可以通过向UE发送包括WUS的DCI来唤醒UE,可以降低正常信息传输因节能技术所受到的影响。请参阅图4,图4是本发明实施例公开的一种基于WUS唤醒UE的示意图。如图4所示,UE在每个时间段之前接收来自gNB的WUS。当WUS内容为“1”时,表示UE在该时间段需要被唤醒,用于发送或接收信息,或者激活非连续接收(discontinuousreception,DRX)循环(cycle)来在特定时间上监测物理下行控制信道(physicaldownlink control channel,PDCCH),并根据DCI执行后续操作。对应地,当WUS内容为“0”时,表示UE在该时间段可以睡眠。基于WUS,NR系统能够大幅降低偶发传输场景下UE的功耗,从而可以达到节能的目的。
在无线通信系统中,除上述Uu接口外,还存在一种PC5接口,这是UE与UE之间的通信接口,该接口中的传输链路被定义为SL。NRSL是5GV2X和设备到设备通信(device-to-device,D2D)的重要支撑技术。与Uu接口类似,节能也是NR SL系统的重要技术增强方向之一。
与Uu接口不同,目前PC5接口仅允许UE被配置1个SL BWP。当该SL BWP处于激活状态时,UE将在该SL BWP上发送或接收SL数据、控制信息、广播信息、反馈信息等信息;当该 SL BWP处于去激活(deactivated)状态时,UE在该SL BWP上不发送也不接收任何信息。
对于处于激活状态的SL BWP,引入了SL DRX机制。UE可以被配置一个持续特定时间长度的SL DRX循环,在该SL DRX循环内,UE仅在DRX活跃时间(DRX active time)中持续地监测物理侧行控制信道(physicalsidelinkcontrol channel,PSCCH)并选择性地接收物理侧行共享信道(physical sidelinkshared channel,PSSCH),而在SL DRX循环的剩余时间内不监测PSCCH也不接收PSSCH。请参阅图5,图5是本发明实施例公开的一种基于SL DRX节能的示意图。如图5所示,UE处于SL BWP激活状态时,在时域重复的SL DRX循环中,UE在部分时间上进行接收,而在其余时间不接收,可以达到降低平均功耗的目的。UE可以通过减小监测PSCCH的时间,可以节省射频功耗和监测PSCCH的译码功耗,从而可以达到初步的节能目的。需要说明的是,PSCCH是主要用于传输SL控制信息的物理层信道,PSSCH是主要用于传输SL数据信息的物理层信道。
上述方式中,UE在SL DRX活跃时间内需要不断监测PSCCH并译码,同时还潜在地对部分PSSCH进行译码,这会持续地耗费能量,以致UE的功耗较大。当业务为偶发类业务时,由于SL数据传输只有偶尔才发生,在大多数情况下不会传输SL数据,以致造成了功耗的浪费。
基于上述网络架构,请参阅图6,图6是本发明实施例公开的一种通信方法的流程示意图。如图6所示,该通信方法可以包括以下步骤。
601.第一终端设备通过第一频域资源向第二终端设备发送唤醒信号。
相应地,第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号。
唤醒信号可以承载在物理侧行控制信道(physical sidelink control channel,PSCCH)上传输,也可以承载在物理侧行共享信道(physical sidelink share channel,PSSCH)上传输,还可以承载在其他侧行信道传输,在此不加限定。
通过第一频域资源向第二终端设备发送,可以理解为在第一频域资源上向第二终端设备发送。
602.第二终端设备根据唤醒信号激活第二频域资源。
发送终端设备与接收终端设备需要在相同的频域资源内进行SL数据、SL控制信息、SL参考信号、SL反馈信息、SL同步信息等信息的传输。基于节能的需求,接收终端设备的频域资源在不需要传输(即接收和/或发送)SL数据时,可以由激活状态切换为去激活状态。此处的频域资源为下面的第二频域资源。
因此,当第一终端设备中存在要向第二终端设备发送的SL数据时,第一终端设备可以通过第一频域资源向第二终端设备发送唤醒信号,唤醒信号用于激活第二频域资源。第一频域资源与第二频域资源不重叠,可以理解为第一频域资源与第二频域资源之间不存在相同的频域资源,也可以理解为第一频域资源与第二频域资源之间不存在交集。第一频域资源的带宽远小于第二频域资源的带宽,因此,第二终端设备通过第一频域资源的传输信息的功耗远小于通过第二频域资源传输信息的功耗,从而可以降低第一终端设备和第二终端设备的功耗。第一频域资源可以为网络设备配置的,也可以为预配置的,还可以为默认配置的。第二频域资源可以为网络设备配置的,也可以为预配置的,还可以为默认配置的。
应理解,第一频域资源可以是专门用于传输唤醒信号的频域资源,第二频域资源可以是专门用于传输SL数据和/或SL控制信息等非唤醒信号类信息的频域资源。第一频域资源可以用于两个或两个以上终端设备传输唤醒信号,并不是只用于第一终端设备与第二终端设备之间传输唤醒信号。
唤醒信号可以为上述WUS,也可以为指示信息。该指示信息可以用于指示激活第二频域资源,也可以用于指示第二终端设备通过第二频域资源接收来自第一终端设备的SL数据。
一种情况下,第一终端设备可以确定第二终端设备中第二频域资源的状态。第二频域资源的状态包括激活状态和去激活状态。当第二终端设备中的第二频域资源的状态为激活状态时,第二终端设备能够通过第二频域资源与其它终端设备传输SL数据。当第二终端设备中的第二频域资源的状态为去激活状态时,第二终端设备无法通过第二频域资源与其它终端设备传输SL数据。
当第一终端设备中存在要向第二终端设备发送的SL数据时,第一终端设备可以先确定第二终端设备中第二频域资源的状态,当第二终端设备中第二频域资源的状态为去激活状态时,第一终端设备可以通过第一频域资源向第二终端设备发送唤醒信号。当第二终端设备中第二频域资源的状态为激活状态时,第一终端设备可以不通过第一频域资源向第二终端设备发送唤醒信号,可以减少信息的传输次数,从而可以节约传输资源。
另一种情况下,第一终端设备无法确定第二终端设备中第二频域资源的状态。因此,为了保证第二终端设备能够接收到来自第一终端设备的SL数据,当第一终端设备中存在要向第二终端设备发送的SL数据时,第一终端设备可以直接通过第一频域资源向第二终端设备发送唤醒信号。
相应地,第二终端设备可以接收来自第一终端设备的唤醒信号,之后可以根据唤醒信号激活第二频域资源。当第二终端设备接收到来自第一终端设备的唤醒信号时,如果第二频域资源已经处于激活状态,根据唤醒信号激活第二频域资源,可以理解为根据唤醒信号确定需要通过第二频域资源接收来自第一终端设备的SL数据;如果第二频域资源处于去激活状态,根据唤醒信号激活第二频域资源,可以理解为将第二频域资源的状态由去激活状态切换为去激活状态。
唤醒信号的调制方式可以为OOK,也可以为BPSK。由于OOK并不通过相位或幅度承载信息,而是简单地通过是否发送信号来传输信息,接收终端设备不需要解调唤醒信号,只需要可以通过包络检测检测到信号即可,这类接收机的设计非常简单,功耗较低。同理,通过BPSK调制的唤醒信号,也可以使用低功耗的接收机进行接收。可见,第一终端设备使用OOK或BPSK的方式对信号进行调制,降低了终端设备硬件实现的复杂度,可以降低终端设备的功耗。此外,可以进一步降低了第二终端设备的平均功耗。
由于第一频域资源可以用于两个或两个以上终端设备传输唤醒信号,因此,当唤醒信号通过第一频域资源传输时,可能会被多个终端设备接收到,然而这个唤醒信号可以只是发送给这多个终端设备中的一个终端设备的,因此,接收终端设备如何确定接收到的唤醒信号是发送给自身的唤醒信号非常重要。可以通过两种方式解决上述问题,下面对这两种方式进行详细介绍。
一种方式为:唤醒信号可以包括第一序列,第一序列可以根据第二终端设备的物理层目的标识(layer-1 destination identification)确定,第一序列可以占用多个时间单元。时间单元可以为时隙,也可以为符号,还可以为其它可以表示时域资源的单元。应理解,序列可以为包括多个序列值,序列值可以进一步体现为比特值,即二进制的0或1。序列可以为码流。一个时间单元可以传输第一序列中的一个比特值。
应理解,第一序列也可以根据其它可以唯一标识第二终端设备的信息确定。例如,第一序列可以根据第二终端设备的高层标识确定。可见,第二终端设备的物理层目的标识可以替换为其它可以唯一标识第二终端设备的信息。
应理解,物理层目的标识是在NR SL系统的物理层中区分不同终端设备的方法,NR SL系统的各个终端设备均具有面向单播业务的自身的物理层目的标识,相应地还具有面向组播业务的用户组的物理层目的标识。
第二终端设备可以根据第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号。第二终端设备接收到来自第一终端设备的唤醒信号之后,可以先判断该唤醒信号是否为根据第二终端设备的物理层目的标识生成的唤醒信号,当判断出该唤醒信号为根据第二终端设备的物理层目的标识生成的唤醒信号时,可以确定该唤醒信号为发送给自身的唤醒信号,之后可以根据该唤醒信号激活第二频域资源。可见,第二终端设备可以根据第二终端设备的物理层目的标识确定发送给第二终端设备的唤醒信号,进而仅针对传输给自身的唤醒信号进行响应,可以减少不必要的操作,从而可以进一步降低第二终端设备的功耗。
第一序列可以包括第二终端设备的物理层目的标识。第二终端设备可以通过第一频域资源接收来自第一终端设备的包括第二终端设备的物理层目的标识的唤醒信号。即第二终端设备可以判断该唤醒信号是否包括物理层目的标识生成的唤醒信号,当判断出该唤醒信号包括第二终端设备的物理层目的标识时,可以确定该唤醒信号为发送给自身的唤醒信号。
第一序列还可以包括序列标识,序列标识用于标识第一序列的起始位置。第二终端设备在进行盲检时,可以先根据序列标识确定第一序列的起始位置,即先确定序列标识的位置,可以将序列标识的起始位置确定为第一序列的位置。之后第二终端设备可以根据第一序列是否包括自身的物理层目的标识,来判断是否为发送给自身的唤醒信号,即第二终端设备可以判断序列标识后的部分是否包括自身的物理层目的标识。例如,当物理层目的标识为16比特的比特序列时,第二终端设备可以判断与序列标识后且与序列标识相邻的16位比特是否包括自身的物理层目的标识。应理解,为了降低第二终端设备的功耗,序列标识包括的序列值的数量可以小于第一序列包括的序列值的数量。
唤醒信号还可以包括第二序列,第二序列可以包括第二终端设备的物理层目的标识取反后的序列。第二终端设备可以通过第一频域资源接收来自第一终端设备的包括第二终端设备的物理层目的标识以及第二终端设备的物理层目的标识取反后的序列的唤醒信号。即第二终端设备可以判断该唤醒信号是否包括物理层目的标识生成的唤醒信号,以及第二终端设备的物理层目的标识取反后的序列,当判断出该唤醒信号包括第二终端设备的物理层目的标识,以及第二终端设备的物理层目的标识取反后的序列时,可以确定该唤醒信号为发送给自身的唤醒信号。第一序列与第二序列占用的时间单元相同,表明第一序列与第二序列的长度相同,也即第一序列和第二序列包括的序列值的数量相同。
第二序列还可以包括序列标识,序列标识用于标识第二序列的起始位置。
应理解,唤醒信号可以包括一个序列,也可以包括多个序列。当唤醒信号包括多个序列时,唤醒信号可以只包括两个序列,即第一序列和第二序列,也可以包括三个或三个以上序列。唤醒信号包括的序列的长度可以均相同。当唤醒信号包括多个序列时,每个序列均可以包括序列标识。
唤醒信号包括的一个序列可以通过第一频域资源中的一个频域单元进行传输。当唤醒信号包括一个序列时,第一终端设备可以通过第一频域资源中的一个频域单元传输唤醒信号中的这个序列。当唤醒信号包括多个序列时,第一终端设备可以通过第一频域资源中的M个频域单元传输M个序列,每个频域单元可以传输一个序列,不同频域单元传输的序列可以相同,也可以不同。当不同频域单元传输的序列可以相同时,M为大于或等于唤醒信号包括的序列 的数量。当不同频域单元传输的序列不同时,M等于唤醒信号包括的序列的数量。此处的频域单元可以为一个子载波,也可以为多个子载波,还可以为其它频域粒度。
一个序列可以占用N*K个时域资源。N为序列包括的序列值的数量,K为单个序列值占用的时域资源的数量,即唤醒信号中的任一序列值可以通过K个时域资源进行表征。N为大于或等于2的整数,K为大于或等于1的整数。K可以为1,也可以为12,还可以为14,还可以为其它值。此处的时域资源可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以为其它符号。通过多个OFDM符号表征一个序列值有利于终端设备模块的设计和实现。K个时域资源即上述的时间单元,也即时间单元包括K个时域资源。
唤醒信号包括的序列可以均以长度为S的预设序列为前S个序列值,S为大于或等于2的整数。预设序列的值可以是系统默认的,也可以是预先配置的。例如,当第二终端设备在第一频域资源上检测到一个或多个长度为S的预设序列时,可以确定第一终端设备在第一频域资源上开始发送唤醒信号,可以避免接收终端设备无法获知传输唤醒信号的起始时间点和结束时间点的问题。
举例说明,请参阅图7,图7是本发明实施例公开的一种唤醒信号包括的序列的示意图。假设,唤醒信号包括第一序列和第二序列。如图7所示,第一终端设备向第二终端设备发送的唤醒信号包括2个序列。第二终端设备的物理层目的标识{d 0,d 1,d 2,……,d 15}为{0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,1},预设序列{h 0,h 1,h 2,h 3}为{1,1,1,1}。此时,在2个频域单元上传输的2个序列分别为{1,1,1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,1}和{1,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,1,1,1,0}。
可见,唤醒信号包括第一序列和第二序列,可以避免当接收终端设备只通过检测对应序列的值是否为1来确定是否发送给自身的唤醒信号时,如果第二终端设备的物理层目的标识为全1的序列时,这个唤醒信号同时唤醒多个终端设备的问题。即可以避免虚警的问题。此外,还可以准确地确定序列的开头,以便可以避免向不同终端设备发送唤醒信号所对应的序列存在部分重叠造成的错误唤醒问题。
当第二频域资源中的去激活需要第一终端设备指示时,上述长度为S的预设序列还可以用于区分发送终端设备需要激活接收终端设备的第二频域资源,还是需要去激活接收终端设备的第二频域资源。此时,唤醒信号不仅具有激活第二频域资源的功能,还具有去激活第二频域资源的功能。第一终端设备向第二终端设备发送完SL数据之后,可以向第二终端设备发送用于去激活第二频域资源的唤醒信号。例如,可以通过全部为1的预设序列表示发送终端设备需要激活接收终端设备的第二频域资源,可以通过1和0相间排列的预设序列表示发送终端设备需要去激活接收终端设备的第二频域资源。
第一终端设备可以使用一个频域单元在连续地多个时间单元发送一个序列。例如,一个序列为011,则第一终端设备可以在一个频域单元中的一个时间单元先传输0,之后在相邻的下一个时间单元传输1,在下一个相邻的时间单元继续传输1。
当唤醒信号仅包括通过第一频域资源中的一个频域单元传输的一个序列,且该序列包括根据第二终端设备的物理层目的标识确定的第一序列时,该第一序列可以包括n个序列值,其中n大于A,A为第二终端设备的物理层目的标识包括的比特数。包括A个比特的第二终端设备的物理层目标识可以是通过冗余编码的方式扩展为长度为n的第一序列。基于冗余编码,第一序列将包括根据第二终端设备的物理层目的标识确定的若干校验位,该若干校验位用于帮助第二终端设备确定该唤醒信号是发送给第二终端设备的,从而避免虚警的问题。应理解,上述冗余编码的方式在此不加具体限定。
例如,第一序列以第二终端设备的物理层目标识对应的A个比特值为前A个序列值,然后通过冗余编码的方式根据第二终端设备的物理层目标识生成剩余的n-A个序列值。冗余编码的方式由生成多项式g(x)=g 0+g 1x+g 2x 2+…+g Rx R描述,其中,g i的取值为0或1,R为生成多项式对应的幂次,如R=3幂次的生成多项式可以为g(x)=1+x+x 3
另一种方式为:第一终端设备可以根据第二终端设备的物理层目的标识在第一频域资源中确定第三频域资源,第二终端设备可以根据第二终端设备的物理层目的标识在第一频域资源中确定第三频域资源,第一终端设备可以通过第三频域资源向第二终端设备发送唤醒信号,相应地,第二终端设备可以通过第三频域资源接收来自第一终端设备的唤醒信号。
可见,为第二终端设备传输唤醒信号的频域资源是根据第二终端设备的物理层目的标识确定的,即为某一个终端设备发送唤醒信号的频域资源是根据这个终端设备的物理层目的标识确定的,因此,可以保证使用不同的频域资源向不同终端设备发送唤醒信号,相应地,不同终端设备可以通过不同频域资源接收发送给自身的唤醒信号。因此,接收终端设备只需要从自身对应的频域资源接收唤醒信号即可接收到发送给自身的唤醒信号,不仅可以使接收唤醒信号的带宽减小,还可以确定发送给自身的唤醒信号,从而可以降低功耗以及避免一个终端设备接收到发送给其它终端设备的唤醒信号的问题,从而可以避免虚警。此处的不同的频域资源可以理解为完全不同,也可以理解为部分不同。
第三频域资源可以是第一终端设备在第一终端设备中存在要向第二终端设备发送的SL数据时确定的,也可以是第一终端设备与第二终端设备建立过程或建立后确定的,还可以是在其他时候建立的。第三频域资源可以是第二终端设备在第一终端设备与第二终端设备建立过程或建立后确定的。
可见,由于建立了接收终端设备的物理层目的标识与用于向接收终端设备传输唤醒信号的频域资源之间的对应关系,因此,发送终端设备不需要显式地(explicitly)将接收终端设备的物理层目的标识作为唤醒信号的内容,而是根据接收终端设备的物理层目的标识唯一地确定一个用于向接收终端设备传输唤醒信号的频域资源。可以有效地令发送终端设备将唤醒的目标限定到具有特定物理层目的标识的接收终端设备,可以避免因虚警导致其他终端设备被唤醒的问题;同时,接收终端设备仅在对应于自身的物理层目的标识的时频资源上监测唤醒信号,从而可以对传输给不同终端设备的唤醒信号进行区分,进而可以仅针对传输给自身的唤醒信号进行响应。
此外,第一终端设备还可以根据第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,第二终端设备还可以根据第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源。第一终端设备可以通过第二时域资源和第三频域资源向第二终端设备发送唤醒信号,相应地,第二终端设备通过第二时域资源和第三频域资源接收来自第一终端设备的唤醒信号。第一时域资源为第一频域资源对应的时域资源,第二时域资源为第三频域资源对应的时域资源。
其中,确定第二时域资源与确定第三频域资源方法类似,在此不再详细赘述。
第一时域资源的部分或者全部的起始点可以与满足第一条件的无线帧(radio frame)的起始点相同。例如,第一条件可以为:(SFN mod Z)=0,SFN表示系统帧号(system frame number,SFN),mod表示取余运算,Z的取值为以下中的一个:{16,32,64,128}。可见,通过第一条件,发送终端设备和接收终端设备均将明确唤醒信号传输的起始点为每1024个无线帧中以Z 为周期的1024/Z个无线帧的起始点。
第一终端设备和第二终端设备可以根据第二终端设备的物理层目的标识中的P个最高有效位(most significant bit,MSB)在第一时域资源中确定第二时域资源,可以根据第二终端设备的物理层目的标识中的Q个最低有效位(least significant bit,LSB)在第一频域资源中确定第三频域资源。第一终端设备和第二终端设备也可以第二终端设备的物理层目的标识中的P个最低有效位在第一时域资源中确定第二时域资源,可以根据第二终端设备的物理层目的标识中的Q个最高有效位在第一频域资源中确定第三频域资源。P为小于或等于A的整数,A为物理层目的标识包括的比特数,Q为小于或等于A的整数。当P与Q的和大于A时,会产生冗余;当P与Q的和小于A时,会产生虚警的问题。因此,P与Q的和最好可以为A。
第一时域资源可以包括T个时域单元,第一频域资源可以包括F个频域单元,第二时域资源可以包括X个时域单元,第三频域资源可以包括Y个频域单元。X、Y、T和F均为大于或等于1的整数,T大于X,F大于Y。时域单元的粒度可以为时隙(slot),也可以为毫秒(ms),还可以为K个符号,还可以为其它可以表征时域资源的单元。符号可以为OFDM符号,也可以为其它符号,在此不加限定。频域单元的粒度可以为子载波,也可以为物理资源块(physical resource block,PRB),还可以为其它可以表征频域资源的单元。
可见,可以将接收终端设备的物理层目的标识的P位通过X个时域单元的位置表示出来,可以将接收终端设备的物理层目的标识的Q位通过Y个频域单元的位置表示出来,有利于接收终端设备判断上述唤醒信号是否是传输给自己的唤醒信号。
例如,第一终端设备和第二终端设备可以根据第二终端设备的物理层目的标识中的P个MSB确定X个时域单元在T时域单元中的位置索引x 1和x 2。该物理层目的标识的P个MSB{d 0,d 1,d 2,……,d P-1}的十进制可以表示为
Figure PCTCN2022103059-appb-000001
D 1与x 1和x 2之间的关系可以表示如下:
Figure PCTCN2022103059-appb-000002
其中,x 1和x 2为满足0≤x 1<x 2≤T-1且
Figure PCTCN2022103059-appb-000003
的整数。第一终端设备和第二终端设备可以根据第二终端设备的物理层目的标识的Q个LSB确定Y个频域单元在F个频域单元中的位置索引y 1和y 2。该物理层目的标识的Q个LSB{d A-Q,d A-Q+1,d A-Q+2,……,d A-1}的十进制可以表示为
Figure PCTCN2022103059-appb-000004
D 2与y 1和y 2之间的关系可以表示如下:
Figure PCTCN2022103059-appb-000005
其中,y 1和y 2为满足0≤y 1<y 2≤F-1且
Figure PCTCN2022103059-appb-000006
的整数。d i可以为0,也可以为1。
应理解,上述两个公式只是示例性地说明,并不对其构成限定。
举例说明,请参阅图8,图8是本发明实施例公开的一种第一时域资源和第一频域资源的示意图。假设时域单元为时隙、频域单元为子载波、T为20、F为36、A为16、P为7、Q为9。第二终端设备的物理层目的标识{d 0,d 1,d 2,……,d 15}为{0,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1},因此,7个MSB{d 0,d 1,……,d 6}为{0,1,1,0,0,1,1},9个LSB{d 7,d 8,……,d 15}为{1,0,0,1,0,0,0,0,1},从而 D 1=51,D 2=289。根据上述函数关系可得:x 1=14、x 2=17、y 1=10、y 2=20。因此,第一终端设备可以在如下四个时频资源上传输唤醒信号:(x 1,y 1)=(14,10),(x 1,y 2)=(14,20),(x 2,y 1)=(17,20),(x 2,y 2)=(17,20)。第二终端设备可以在该四个时频资源上监测唤醒信号,并根据接收到的唤醒信号激活第二频域资源。
应理解,上述是对第一时域资源和第一频域资源的示例性说明,并不对第一时域资源和第一频域资源构成限定。例如,T可以为40,F可以为18。
603.第一终端设备通过第二频域资源向第二终端设备发送SL数据。
第一终端设备通过第一频域资源向第二终端设备发送唤醒信号之后,可以通过第二频域资源向第二终端设备发送SL数据。第一终端设备可以在发送唤醒信号后的N proc个时间单元之后,通过第二频域资源向第二终端设备发送SL数据。第一终端设备在发送唤醒信号后的N proc个时间单元前不向第二终端设备发送SL数据,可以避免因第二终端设备尚未激活第二频域资源导致的SL数据接收失败的问题。从第一终端设备发送唤醒信号到第二终端设备激活第二频域资源需要时间,可以保证第二终端设备接收到唤醒信号,可以根据唤醒信号激活第二频域资源,从而可以保证第二终端设备能够正确地接收到第一终端设备通过第二频域资源发送的SL数据。N proc为大于或等于1的整数。时间单元可以为时隙,也可以为符号,还可以为迷你时隙(mini slot)。例如,一个时间单元可以为一个符号,也可以多个符号。
上述N proc的值可以与子载波间隔有关。例如,当子载波间隔增加时,N proc的值也随之增加。可见,上述N proc的值可以与子载波间隔正相关。
上述N proc的值也可以是根据第二终端设备的能力信息确定的。第二终端设备可以根据第二终端设备的能力信息确定上述N proc的值,之后可以通过信令向第一终端设备指示N proc的值。第二终端设备也可以向第一终端设备发送第二终端设备的能力信息,第一终端设备接收到来自第二终端设备的能力信息之后,可以根据第二终端设备的能力信息确定上述N proc的值。
相应地,第二终端设备可以通过第二频域资源接收来自第一终端设备的SL数据。
当第二终端设备接收完来自第二终端设备的SL数据,没有接收到来自其它终端设备的唤醒信号,且没有向其它终端设备传输的SL数据时,第二终端设备可以将第二频域资源的状态由激活状态切换为去激活状态。
当第二终端设备的第二频域资源处于去激活状态时,第二终端设备需要在第二频域资源内发送或接收侧行同步信号块(sidelinksynchronization signal block,S-SSB),该S-SSB用于第二终端设备与网络内的其他终端设备保持同步。可见,即使第二终端设备的第二频域资源处于去激活状态,第一终端设备和第二终端设备之间仍可以保持同步,进而对于唤醒信号发送的起始点和结束点可以有相同的认识,可以避免第二终端设备因同步偏差无法被第一终端设备唤醒的情况,也可以避免网络内的其他终端设备因同步偏差错误地被第一终端设备唤醒的问题。
第一频域资源和第二频域资源可以对应不同的射频发送模块和/或射频接收模块。当第一终端设备只具有发送设备的功能时,第一终端设备中的第一频域资源和第二频域资源可以对应不同的射频发送模块。当第一终端设备即具有发送设备的功能,又具有接收设备的功能时,第一终端设备中的第一频域资源和第二频域资源可以对应不同的射频发送模块和射频接收模块。当第二终端设备只具有接收设备的功能时,第二终端设备中的第一频域资源和第二频域资源可以对应不同的射频接收模块。当第二终端设备既具有发送设备的功能,又具有接收设备的功能时,第二终端设备中的第一频域资源和第二频域资源可以对应不同的射频发送模块和射频接收模块。
当一个终端设备仅具有一个射频发送模块和/或射频接收模块时,这个终端设备在同一时间仅能使一个频域资源处于激活状态。因此,当第一终端设备需要通过第一频域资源向第二终端设备传输唤醒信号时,第一终端设备应该具有对应于第一频域资源的射频发送模块。当第二终端设备需要通过第一频域资源接收来自第一终端设备的唤醒信号时,第二终端设备应该具有对应于第一频域资源的射频接收模块。可见,第一频域资源和第二频域资源分别具有对应的射频发送模块和/或射频接收模块,可以使得第一频域资源和第二频域资源在同一个时间均处于激活状态,以便第一频域资源用于唤醒信号的传输,第二频域资源用于SL数据的传输。
第一频域资源可以持续地处于激活状态。应理解,第二终端设备需要持续地监测唤醒信号,并根据唤醒信号判断是否需要使第二频域资源由去激活状态转变为激活状态,可以避免遗漏SL数据。因此,在第二终端设备侧,当第二终端设备处于工作状态时,例如第二终端设备开机后,第二终端设备需要保证第一频域资源持续地处于激活状态。另一方面,在第一终端设备侧,第一频域资源也可以持续地处于激活状态,不根据额外的机制控制第一频域资源的状态,利于第一终端设备的硬件实现。
请参阅图9,图9是本发明实施例公开的一种第二终端设备接收到唤醒信号之后激活第二频域资源的示意图。如图9所示,第二终端设备的第一频域资源持续地处于激活状态,第二终端设备的第二频域资源原本处于去激活状态,当第二终端设备在第一频域资源上接收的唤醒信号指示第二终端设备激活第二频域资源时,第二终端设备将第二频域资源由去激活状态转变为激活状态。待SL数据传输结束后,第二终端设备可以重新将第二频域资源由激活状态转变为去激活状态。
在第一终端设备侧,第一频域资源可以仅在需要传输唤醒信号时处于激活状态。应理解,第一终端设备的工作方式可以是保持第二频域资源持续地处于激活状态,因此,第一终端设备不需要接收来自任一其他终端设备的唤醒信号,也即不需要在第一频域资源上监测唤醒信号,可以避免不必要的功耗。
请参阅图10,图10是本发明实施例公开的一种第一终端设备发送唤醒信号时激活第一频域资源的示意图。如图10所示,第一终端设备的第二频域资源持续地处于激活状态,第一终端设备的第一频域资源原本处于去激活状态,当第一终端设备需要通过第一频域资源向第二终端设备发送唤醒信号时,第一终端设备将第一频域资源由去激活状态转变为激活状态。待唤醒信号传输结束后,第一终端设备可以重新将第一频域资源由激活状态转变为去激活状态。
其中,SL数据可以承载在PSSCH上传输。
应理解,上述A可以为16,也可以为其它值,在此不加限定。
应理解,第一频域资源和第二频域资源可以为带宽,也可以为带宽部分(bandwidth part,BWP)。
应理解,上述通信方法中由第一终端设备执行的功能也可以由第一终端设备元中的模块(例如,芯片)来执行,由第二终端设备执行的功能也可以由第二终端设备中的模块(例如,芯片)来执行。
应理解,上述实施例中相关信息(即相同信息或相似信息)可以相互参考。
基于上述网络架构,请参阅图11,图11是本发明实施例公开的一种通信装置的结构示意图。其中,该通信装置可以为第一终端设备,也可以为第一终端设备中的模块。如图11所示, 该通信装置可以包括:
发送单元1101,用于通过第一频域资源向第二终端设备发送唤醒信号,唤醒信号用于激活第二频域资源,第一频域资源用于两个或两个以上终端设备传输唤醒信号,第一频域资源与第二频域资源之间不重叠;
发送单元1101,还用于通过第二频域资源向第二终端设备发送SL数据。
在一个实施例中,唤醒信号的调制方式为OOK或BPSK。
在一个实施例中,唤醒信号包括第一序列,第一序列根据第二终端设备的物理层目的标识确定,第一序列占用多个时间单元。
在一个实施例中,第一序列包括第二终端设备的物理层目的标识。
在一个实施例中,唤醒信号还包括第二序列,第二序列包括第二终端设备的物理层目的标识取反后的序列,第一序列与第二序列占用的时间单元相同。
在一个实施例中,该通信装置还可以包括:
处理单元1102,用于根据第二终端设备的物理层目的标识在第一频域资源中确定第三频域资源;
发送单元1101通过第一频域资源向第二终端设备发送唤醒信号包括:
通过第三频域资源向第二终端设备发送唤醒信号。
在一个实施例中,处理单元1102,还用于根据第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,第一时域资源为第一频域资源对应的时域资源,第二时域资源为第三频域资源对应的时域资源;
发送单元1101通过第三频域资源向第二终端设备发送唤醒信号包括:
通过第二时域资源和第三频域资源向第二终端设备发送唤醒信号。
在一个实施例中,处理单元1102根据第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
根据第二终端设备的物理层目的标识中的P个MSB在第一时域资源中确定第二时域资源;
处理单元1102根据第二终端设备的物理层目的标识在第一频域资源中确定第三频域资源包括:
根据第二终端设备的物理层目的标识中的Q个LSB在所述第一频域资源中确定第三频域资源,P和Q为小于或等于A的整数,A为第二终端设备的物理层目的标识包括的比特数。
在一个实施例中,第一频域资源和第二频域资源对应不同的射频发送模块和/或射频接收模块。
在一个实施例中,第二终端设备的物理层目的标识为16比特的比特序列。
有关上述发送单元1101和处理单元1102更详细的描述可以直接参考上述图6所示的方法实施例中第一终端设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图12,图12是本发明实施例公开的另一种通信装置的结构示意图。其中,该通信装置可以为第二终端设备,也可以为第二终端设备中的模块。如图12所示,该通信装置可以包括:
接收单元1201,用于通过第一频域资源接收来自第一终端设备的唤醒信号,第一频域资源用于两个或两个以上终端设备传输唤醒信号;
处理单元1202,用于根据唤醒信号激活第二频域资源,第一频域资源与第二频域资源之间不重叠;
接收单元1201,还用于通过第二频域资源接收来自第一终端设备的SL数据。
在一个实施例中,唤醒信号的调制方式为OOK或BPSK。
在一个实施例中,唤醒信号包括第一序列,第一序列根据第二终端设备的物理层目的标识确定,第一序列占用多个时间单元;
接收单元1201通过第一频域资源接收来自第一终端设备的唤醒信号包括:
根据第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号。
在一个实施例中,第一序列包括第二终端设备的物理层目的标识;
接收单元1201根据第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
通过第一频域资源接收来自第一终端设备的包括第二终端设备的物理层目的标识的唤醒信号。
在一个实施例中,唤醒信号还包括第二序列,第二序列包括第二终端设备的物理层目的标识取反后的序列,第一序列与第二序列占用的时间单元相同;
接收单元1201根据第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
通过第一频域资源接收来自第一终端设备的包括第二终端设备的物理层目的标识以及第二终端设备的物理层目的标识取反后的序列的唤醒信号。
在一个实施例中,处理单元1202,还用于根据第二终端设备的物理层目的标识在第一频域资源中确定第三频域资源;
接收单元1201通过第一频域资源接收来自第一终端设备的唤醒信号包括:
通过第三频域资源接收来自第一终端设备的唤醒信号。
在一个实施例中,处理单元1202,还用于根据第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,第一时域资源为第一频域资源对应的时域资源,第二时域资源为第三频域资源对应的时域资源;
接收单元1201通过第三频域资源接收来自第一终端设备的唤醒信号包括:
通过第二时域资源和第三频域资源接收来自第一终端设备的唤醒信号。
在一个实施例中,处理单元1202根据第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
根据所述第二终端设备的物理层目的标识中的P个MSB在第一时域资源中确定第二时域资源;
处理单元1202根据第二终端设备的物理层目的标识在第一频域资源中确定第三频域资源包括:
根据第二终端设备的物理层目的标识中的Q个LSB在第一频域资源中确定第三频域资源,P和Q为小于或等于A的整数,A为第二终端设备的物理层目的标识包括的比特数。
在一个实施例中,第一频域资源和第二频域资源对应不同的射频发送模块和/或射频接收模块。
在一个实施例中,第二终端设备的物理层目的标识为16比特的比特序列。
有关上述接收单元1201和处理单元1202更详细的描述可以直接参考上述图6所示的方法实施例中第二终端设备的相关描述直接得到,这里不加赘述。
基于上述网络架构,请参阅图13,图13是本发明实施例公开的又一种通信装置的结构示 意图。该通信装置可以是前述实施例中的通信装置,用于实现上述方法实施例通信装置可以是前述实施例中的具备终端设备功能的通信装置,或者是前述通信装置中的功能模块。通信装置的具体的功能可以参见上述方法实施例中的说明。
该通信装置可以包括一个或多个处理器1301。处理器1301也可以称为处理单元,可以实现一定的控制功能。处理器1301可以是通用处理器或者专用处理器等。例如,包括:基带处理器,中央处理器,应用处理器,调制解调处理器,图形处理器,图像信号处理器,数字信号处理器,视频编解码处理器,控制器,存储器,和/或神经网络处理器等。基带处理器可以用于对通信协议以及通信数据进行处理。中央处理器可以用于对该通信装置进行控制,执行软件程序和/或处理数据。不同的处理器可以是独立的器件,也可以是集成在一个或多个处理器中,例如,集成在一个或多个专用集成电路上。
可选地,该通信装置可以包括一个或多个存储器1302,用以存储指令1304,该指令可在处理器1301上被运行,使得该通信装置执行上述方法实施例中描述的方法。
可选地,存储器1302中还可以存储有数据。处理器1301和存储器1302可以单独设置,也可以集成在一起。
可选地,该通信装置可以包括指令1303(有时也可以称为代码或程序),该指令1303可以在处理器1301上被运行,使得该通信装置执行上述实施例中描述的方法。处理器1301中可以存储数据。
可选地,该通信装置还可以包括收发器1305以及天线1306。收发器1305可以称为收发单元、收发机、收发电路、收发器,输入输出接口等,用于通过天线1306实现该通信装置的收发功能。
可选地,该通信装置还可以包括以下一个或多个部件:无线通信模块,音频模块,外部存储器接口,内部存储器,通用串行总线(universal serial bus,USB)接口,电源管理模块,天线,扬声器,麦克风,输入输出模块,传感器模块,马达,摄像头,或显示屏等等。可以理解,在一些实施例中,该通信装置可以包括更多或更少部件,或者某些部件集成,或者某些部件拆分。这些部件可以是硬件,软件,或者软件和硬件的组合实现。
本发明中描述的处理器1301和收发器1305可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency identification,RFID)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、或电子设备等上。实现本文描述的通信装置,可以是独立设备(例如,独立的集成电路,手机等),或者可以是较大设备中的一部分(例如,可嵌入在其他设备内的模块),具体可以参照前述关于终端设备的说明,在此不再赘述。
基于上述网络架构,请参阅图14,图14是本发明实施例公开的又一种通信装置的结构示意图。如图14所示,该通信装置可以包括输入接口1401、逻辑电路1402和输出接口1403。输入接口1401与输出接口1403通过逻辑电路1402相连接。其中,输入接口1401用于接收来自其它通信装置的信息,输出接口1403用于向其它通信装置输出、调度或者发送信息。逻辑电路1402用于执行除输入接口1401与输出接口1403的操作之外的操作,例如实现上述实施例中处理器1301实现的功能。其中,该通信装置可以为第一终端设备,也可以为第二终端设备。其中,有关输入接口1401、逻辑电路1402和输出接口1403更详细的描述可以直接参考上述方法实施例中第一终端设备和第二终端设备的相关描述直接得到,这里不加赘述。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行 上述方法实施例中的方法。
本发明实施例还公开一种包括指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种通信系统,该通信系统可以包括第一终端设备和第二终端设备,具体描述可以参考图6所示的通信方法。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (44)

  1. 一种通信方法,其特征在于,包括:
    第一终端设备通过第一频域资源向第二终端设备发送唤醒信号,所述唤醒信号用于激活第二频域资源,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号,所述第一频域资源与所述第二频域资源之间不重叠;
    所述第一终端设备通过所述第二频域资源向所述第二终端设备发送侧行链路SL数据。
  2. 根据权利要求1所述的方法,其特征在于,所述唤醒信号的调制方式为开关键控OOK或二进制移相键控BPSK。
  3. 根据权利要求1或2所述的方法,其特征在于,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元。
  4. 根据权利要求3所述的方法,其特征在于,所述第一序列包括所述第二终端设备的物理层目的标识。
  5. 根据权利要求3或4所述的方法,其特征在于,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同。
  6. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
    所述第一终端设备通过第一频域资源向第二终端设备发送唤醒信号包括:
    所述第一终端设备通过所述第三频域资源向第二终端设备发送唤醒信号。
  7. 根据权利要求6述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
    所述第一终端设备通过所述第三频域资源向第二终端设备发送唤醒信号包括:
    所述第一终端设备通过所述第二时域资源和所述第三频域资源向第二终端设备发送唤醒信号。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
    所述第一终端设备根据所述第二终端设备的物理层目的标识中的P个最高有效位MSB在第一时域资源中确定第二时域资源;
    所述第一终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
    所述第一终端设备根据所述第二终端设备的物理层目的标识中的Q个最低有效位LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特数。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
  10. 根据权利要求3-9任一项所述的方法,其特征在于,所述物理层目的标识为16比特的比特序列。
  11. 一种通信方法,其特征在于,包括:
    第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号;
    所述第二终端设备根据所述唤醒信号激活第二频域资源,所述第一频域资源与所述第二频域资源之间不重叠;
    所述第二终端设备通过所述第二频域资源接收来自所述第一终端设备的侧行链路SL数据。
  12. 根据权利要求11所述的方法,其特征在于,所述唤醒信号的调制方式为开关键控OOK或二进制移相键控BPSK。
  13. 根据权利要求11或12所述的方法,其特征在于,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元;
    所述第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    所述第二终端设备根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号。
  14. 根据权利要求13所述的方法,其特征在于,所述第一序列包括所述第二终端设备的物理层目的标识;
    所述第二终端设备根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    所述第二终端设备通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识的唤醒信号。
  15. 根据权利要求13或14所述的方法,其特征在于,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同;
    所述第二终端设备根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    所述第二终端设备通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识以及所述第二终端设备的物理层目的标识取反后的序列的唤醒信号。
  16. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
    所述第二终端设备通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    所述第二终端设备通过所述第三频域资源接收来自第一终端设备的唤醒信号。
  17. 根据权利要求16述的方法,其特征在于,所述方法还包括:
    所述第二终端设备根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
    所述第二终端设备通过所述第三频域资源接收来自第一终端设备的唤醒信号包括:
    所述第二终端设备通过所述第二时域资源和所述第三频域资源接收来自第一终端设备的唤醒信号。
  18. 根据权利要求17述的方法,其特征在于,所述第二终端设备根据所述第二终端设备 的物理层目的标识在第一时域资源中确定第二时域资源包括:
    所述第二终端设备根据所述第二终端设备的物理层目的标识中的P个最高有效位MSB在第一时域资源中确定第二时域资源;
    所述第二终端设备根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
    所述第二终端设备根据所述第二终端设备的物理层目的标识中的Q个最低有效位LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特数。
  19. 根据权利要求11-18任一项所述的方法,其特征在于,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述物理层目的标识为16比特的比特序列。
  21. 一种通信装置,其特征在于,所述装置为第一终端设备,包括:
    发送单元,用于通过第一频域资源向第二终端设备发送唤醒信号,所述唤醒信号用于激活第二频域资源,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号,所述第一频域资源与所述第二频域资源之间不重叠;
    所述发送单元,还用于通过所述第二频域资源向所述第二终端设备发送侧行链路SL数据。
  22. 根据权利要求21所述的装置,其特征在于,所述唤醒信号的调制方式为开关键控OOK或二进制移相键控BPSK。
  23. 根据权利要求21或22所述的装置,其特征在于,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元。
  24. 根据权利要求23所述的装置,其特征在于,所述第一序列包括所述第二终端设备的物理层目的标识。
  25. 根据权利要求23或24所述的装置,其特征在于,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同。
  26. 根据权利要求21或22所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
    所述发送单元通过第一频域资源向第二终端设备发送唤醒信号包括:
    通过所述第三频域资源向第二终端设备发送唤醒信号。
  27. 根据权利要求26述的装置,其特征在于,所述处理单元,还用于根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
    所述发送单元通过所述第三频域资源向第二终端设备发送唤醒信号包括:
    通过所述第二时域资源和所述第三频域资源向第二终端设备发送唤醒信号。
  28. 根据权利要求27所述的装置,其特征在于,所述处理单元根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
    根据所述第二终端设备的物理层目的标识中的P个最高有效位MSB在第一时域资源中确定第二时域资源;
    所述处理单元根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
    根据所述第二终端设备的物理层目的标识中的Q个最低有效位LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特数。
  29. 根据权利要求21-28任一项所述的装置,其特征在于,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
  30. 根据权利要求23-29任一项所述的装置,其特征在于,所述物理层目的标识为16比特的比特序列。
  31. 一种通信装置,其特征在于,所述装置为第二终端设备,包括:
    接收单元,用于通过第一频域资源接收来自第一终端设备的唤醒信号,所述第一频域资源用于两个或两个以上终端设备传输唤醒信号;
    处理单元,用于根据所述唤醒信号激活第二频域资源,所述第一频域资源与所述第二频域资源之间不重叠;
    所述接收单元,还用于通过所述第二频域资源接收来自所述第一终端设备的侧行链路SL数据。
  32. 根据权利要求31所述的装置,其特征在于,所述唤醒信号的调制方式为开关键控OOK或二进制移相键控BPSK。
  33. 根据权利要求31或32所述的装置,其特征在于,所述唤醒信号包括第一序列,所述第一序列根据所述第二终端设备的物理层目的标识确定,所述第一序列占用多个时间单元;
    所述接收单元通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号。
  34. 根据权利要求33所述的装置,其特征在于,所述第一序列包括所述第二终端设备的物理层目的标识;
    所述接收单元根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识的唤醒信号。
  35. 根据权利要求33或34所述的装置,其特征在于,所述唤醒信号还包括第二序列,所述第二序列包括所述第二终端设备的物理层目的标识取反后的序列,所述第一序列与所述第二序列占用的时间单元相同;
    所述接收单元根据所述第二终端设备的物理层目的标识,通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    通过第一频域资源接收来自第一终端设备的包括所述第二终端设备的物理层目的标识以及所述第二终端设备的物理层目的标识取反后的序列的唤醒信号。
  36. 根据权利要求31或32所述的装置,其特征在于,所述处理单元,还用于根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源;
    所述接收单元通过第一频域资源接收来自第一终端设备的唤醒信号包括:
    通过所述第三频域资源接收来自第一终端设备的唤醒信号。
  37. 根据权利要求36述的装置,其特征在于,所述处理单元,还用于根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源,所述第一时域资源为所述第一频域资源对应的时域资源,所述第二时域资源为所述第三频域资源对应的时域资源;
    所述接收单元通过所述第三频域资源接收来自第一终端设备的唤醒信号包括:
    通过所述第二时域资源和所述第三频域资源接收来自第一终端设备的唤醒信号。
  38. 根据权利要求37述的装置,其特征在于,所述处理单元根据所述第二终端设备的物理层目的标识在第一时域资源中确定第二时域资源包括:
    根据所述第二终端设备的物理层目的标识中的P个最高有效位MSB在第一时域资源中确定第二时域资源;
    所述处理单元根据所述第二终端设备的物理层目的标识在所述第一频域资源中确定第三频域资源包括:
    根据所述第二终端设备的物理层目的标识中的Q个最低有效位LSB在所述第一频域资源中确定第三频域资源,所述P和所述Q为小于或等于A的整数,所述A为所述物理层目的标识包括的比特数。
  39. 根据权利要求31-38任一项所述的装置,其特征在于,所述第一频域资源和所述第二频域资源对应不同的射频发送模块和/或射频接收模块。
  40. 根据权利要求33-39任一项所述的装置,其特征在于,所述物理层目的标识为16比特的比特序列。
  41. 一种通信装置,其特征在于,包括处理器、存储器和收发器,所述收发器用于接收来自所述通信装置之外的其它通信装置的信息,以及向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-10任一项所述的方法。
  42. 一种通信装置,其特征在于,包括处理器、存储器和收发器,所述收发器用于接收来自所述通信装置之外的其它通信装置的信息,以及向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求11-20任一项所述的方法。
  43. 一种通信系统,其特征在于,包括如权利要求41所述的装置以及如权利要求42所述的装置。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-20任一项所述的方法。
PCT/CN2022/103059 2021-07-29 2022-06-30 一种通信方法、装置及系统 WO2023005593A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22848198.2A EP4358554A1 (en) 2021-07-29 2022-06-30 Communication method, apparatus and system
US18/424,708 US20240172116A1 (en) 2021-07-29 2024-01-26 Communication method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110867122.0A CN115696274A (zh) 2021-07-29 2021-07-29 一种通信方法、装置及系统
CN202110867122.0 2021-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/424,708 Continuation US20240172116A1 (en) 2021-07-29 2024-01-26 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2023005593A1 true WO2023005593A1 (zh) 2023-02-02

Family

ID=85058652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103059 WO2023005593A1 (zh) 2021-07-29 2022-06-30 一种通信方法、装置及系统

Country Status (4)

Country Link
US (1) US20240172116A1 (zh)
EP (1) EP4358554A1 (zh)
CN (1) CN115696274A (zh)
WO (1) WO2023005593A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557815A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种节能信号的传输方法、终端和网络侧设备
CN110839214A (zh) * 2018-08-17 2020-02-25 北京展讯高科通信技术有限公司 唤醒信号的发送资源位置的配置方法、唤醒方法及其装置
CN112243287A (zh) * 2019-07-19 2021-01-19 华为技术有限公司 一种唤醒信号wus检测方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557815A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种节能信号的传输方法、终端和网络侧设备
CN110839214A (zh) * 2018-08-17 2020-02-25 北京展讯高科通信技术有限公司 唤醒信号的发送资源位置的配置方法、唤醒方法及其装置
CN112243287A (zh) * 2019-07-19 2021-01-19 华为技术有限公司 一种唤醒信号wus检测方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Resource allocation for sidelink power saving", 3GPP DRAFT; R1-2008971, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946759 *

Also Published As

Publication number Publication date
CN115696274A (zh) 2023-02-03
US20240172116A1 (en) 2024-05-23
EP4358554A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2021027924A1 (zh) 数据传输方法、装置及计算机可读存储介质
JP5248566B2 (ja) 無線通信システムにおける効果的なページング
US10986572B2 (en) Device and method of transmitting wake-up frames
US11729720B2 (en) Apparatuses, methods, and computer-readable medium for communication in a wireless local area network
WO2021062612A1 (zh) 通信方法及装置
JP2010068111A (ja) 無線通信基地局、無線通信端末、無線通信システム及び無線通信方法
TW202019226A (zh) 用於工作週期的低功率多使用者傳輸之通訊設備及通訊方法
CN116114334A (zh) 功率节省技术
CN114071558B (zh) 一种通信方法、装置及计算机可读存储介质
WO2023005593A1 (zh) 一种通信方法、装置及系统
US11849398B2 (en) Communication methods and devices
WO2021017626A1 (zh) 一种节电信号配置和传输方法及装置
CN112312524B (zh) 一种节电信号配置和传输方法及装置
WO2021017623A1 (zh) 一种节电信号配置和传输方法及装置
CN117546599A (zh) 用于下行链路通信和d2d通信的drx循环的对齐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848198

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022848198

Country of ref document: EP

Effective date: 20240116

NENP Non-entry into the national phase

Ref country code: DE