WO2021027924A1 - 数据传输方法、装置及计算机可读存储介质 - Google Patents

数据传输方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2021027924A1
WO2021027924A1 PCT/CN2020/109206 CN2020109206W WO2021027924A1 WO 2021027924 A1 WO2021027924 A1 WO 2021027924A1 CN 2020109206 W CN2020109206 W CN 2020109206W WO 2021027924 A1 WO2021027924 A1 WO 2021027924A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
channel
power saving
communication node
message
Prior art date
Application number
PCT/CN2020/109206
Other languages
English (en)
French (fr)
Inventor
彭佛才
徐俊
陈梦竹
马璇
郭秋瑾
戴博
马骁颖
韩翠红
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20852143.5A priority Critical patent/EP4017129A4/en
Publication of WO2021027924A1 publication Critical patent/WO2021027924A1/zh
Priority to US17/670,166 priority patent/US20220248329A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a wireless communication network, for example, to a data transmission method, device, and computer-readable storage medium.
  • Discontinuous Reception means that user equipment (User Equipment, UE) does not continuously receive signals or channels sent by base stations, but intermittently receives signals or channels sent by base stations.
  • the period of discontinuous reception by the UE is called a DRX cycle (DRX cycle).
  • a DRX cycle includes the wake time of discontinuous reception (On duration of a DRX cycle, DRX-ON) and the sleep time of discontinuous reception (Off duration of a DRX cycle, DRX-OFF).
  • 3GPP 3rd Generation Partnership Project
  • the present application provides a data transmission method, device, and computer-readable storage medium, which can improve the transmission efficiency between a first communication node and a second communication node, thereby saving power for the first communication node.
  • An embodiment of the application provides a data transmission method, including:
  • the first communication node obtains the configuration parameters configured by the second communication node for the first communication node
  • the first communication node receives the first message sent by the second communication node, where the first message includes a power saving signal or a power saving channel;
  • the first communication node sends a second message to the second communication node.
  • An embodiment of the application provides a data transmission method, including:
  • the second communication node configures configuration parameters for the first communication node
  • the second communication node sends a first message to the first communication node, where the first message includes a power saving signal or a power saving channel;
  • the second communication node sends a third message to the first communication node, and the third message includes the reference signal.
  • An embodiment of the application provides a data transmission device, including a processor, which is configured to implement the method of any of the foregoing embodiments when a computer program is executed.
  • the embodiments of the present application also provide a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the method of any of the foregoing embodiments is implemented.
  • FIG. 1 is a schematic flowchart of a data transmission method provided by an embodiment
  • FIG. 2 is a schematic flowchart of another data transmission method provided by an embodiment
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment
  • FIG. 4 is a schematic flowchart of still another data transmission method provided by an embodiment
  • FIG. 5 is a schematic diagram of the time position of a pre-window provided by an embodiment
  • FIG. 6 is a schematic diagram of a power saving signal/channel triggering a base station to send a channel state information reference signal, a power saving signal/channel triggering a UE to send a sounding reference signal, and the sounding reference signal is associated with a channel state information reference signal according to an embodiment. ;
  • FIG. 7 is a schematic diagram of a power saving signal/channel triggering a base station to send a channel state information reference signal and the sounding reference signal is associated with the power saving signal/channel according to an embodiment
  • FIG. 8 is a schematic diagram of a downlink control information triggering a base station to send a channel state information reference signal, a downlink control information triggering a UE to send a sounding reference signal, and the sounding reference signal is associated with a channel state information reference signal according to an embodiment
  • FIG. 9 is a power saving signal/channel triggering a base station to send a channel state information reference signal, a power saving signal/channel triggering a UE to send a random access channel, and the random access channel is associated with a channel state information reference signal according to an embodiment.
  • FIG. 10 is a schematic diagram of a power saving signal/channel triggering a UE to send a sounding reference signal and the sounding reference signal is associated with a channel state information reference signal according to an embodiment
  • FIG. 11 is a schematic diagram of a power saving signal/channel triggering a base station to send a channel state information reference signal and a UE sending a physical uplink control channel according to a CSI-RS measurement result according to an embodiment
  • FIG. 12 is a schematic diagram of copying one or more symbols of a power saving signal/channel to enhance decoding performance of a power saving signal/channel according to an embodiment
  • FIG. 13 is a schematic diagram of copying the demodulation reference signal of the power saving signal/channel to enhance the decoding performance of the power saving signal/channel according to an embodiment
  • FIG. 14 is a schematic structural diagram of a data transmission device provided by an embodiment
  • 15 is a schematic structural diagram of another data transmission device provided by an embodiment
  • FIG. 16 is a schematic structural diagram of yet another data transmission device provided by an embodiment
  • FIG. 17 is a schematic structural diagram of still another data transmission device provided by an embodiment
  • FIG. 18 is a schematic structural diagram of a UE provided by an embodiment
  • FIG. 19 is a schematic structural diagram of a base station provided by an embodiment.
  • DRX means that the UE does not continuously receive signals or channels sent by the base station, but intermittently receives signals or channels sent by the base station.
  • the period of discontinuous reception by the UE is called a DRX cycle, and a DRX cycle includes DRX-ON and DRX-OFF. If a UE receives dedicated scheduling information for the UE while it is in DRX-ON, it will start an inactivity timer, which makes the UE remain awake until the timer expires; Before the timer expires, if the UE receives the dedicated scheduling information for the UE again, the timer will restart.
  • the period during which the UE stays awake (including the time caused by DRX-ON and the awake time caused by the timer, the waiting time after the scheduling request is sent, etc.) is called the active time or active time (Active Time).
  • the active time or active time (Active Time).
  • the inactive time the time other than the active time is called the inactive time (Outside of Active Time).
  • the UE needs to receive the Physical Downlink Control Channel (PDCCH), the Downlink Control Information (DCI) carried by the PDCCH, and possibly the Physical Downlink Shared Channel (Physical Downlink) when DRX-ON Shared Channel, PDSCH) (PDSCH is scheduled by PDCCH), and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) (PUSCH is scheduled by PDCCH) may also be sent.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • PUSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the data transmission efficiency may be relatively low. The low transmission efficiency causes the UE to waste more power and causes the UE chip to overheat.
  • the base station can send channel-state information reference signal (Channel-State Information Reference Signal, CSI-RS), tracking reference signal (Tracking Reference Signal, T-RS);
  • the base station may also allow the UE to send a sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • TCI Transmission Configuration Indicator
  • the base station uses PUSCH or a physical uplink control channel (Physical Uplink Control Channel, PUCCH) to report channel state information (Channel-State Information, CSI).
  • PUCCH Physical Uplink Control Channel
  • the base station may configure PUCCH resources for reporting CSI for the UE.
  • the base station may configure one or more Radio Network Temporary Identifiers (RNTI) for the UE.
  • RNTI is used for the reception or transmission of signals/channels (that is, signals or channels).
  • the base station knows that the UE needs to receive or send data during DRX-ON (for example, there is data to be transmitted in the downlink direction; another example is to let the UE report measurement results, such as Channel Quality Indicator (CQI), etc.), then the base station
  • the power saving signal or channel (power saving signal or channel also belongs to PDCCH) can be sent out when DRX-ON or DRX-OFF to wake up the UE or let the UE do a certain operation. In this way, the UE can be prepared to receive or send data, so that data transmission can be completed more efficiently, so that the UE can save power.
  • the base station can send a power saving signal or channel to let the UE skip this DRX-ON time (or even the subsequent DRX-ON time). ON time). In this way, the UE does not need to wake up, so that the UE can save power.
  • the embodiments of the present application provide a mobile communication network (including but not limited to the fifth-generation mobile communication network (5th-Generation, 5G)).
  • the network architecture of the network may include network-side devices (such as one or more Type of base station, transmission node, access node (AP, Access Point), relay, node B (Node B, NB), terrestrial radio access (UTRA, Universal Terrestrial Radio Access), evolved terrestrial radio access (EUTRA) , Evolved Universal Terrestrial Radio Access, etc.) and terminals (UE, user equipment data cards, relays, mobile devices, etc.).
  • network-side devices such as one or more Type of base station, transmission node, access node (AP, Access Point), relay, node B (Node B, NB), terrestrial radio access (UTRA, Universal Terrestrial Radio Access), evolved terrestrial radio access (EUTRA) , Evolved Universal Terrestrial Radio Access, etc.
  • terminals UE, user equipment data cards, relays, mobile devices, etc.
  • a data transmission method, device, and computer-readable storage medium that can run on the above-mentioned network architecture are provided to enable the second communication node to better know the link status of the first communication node (including Uplink and Downlink) to improve the transmission efficiency between the first communication node and the second communication node, so that the first communication node saves power.
  • the operating environment of the foregoing data transmission method provided in the embodiments of the present application is not limited to the foregoing network architecture.
  • Fig. 1 is a schematic flowchart of a data transmission method provided by an embodiment. As shown in Fig. 1, the method provided in this embodiment is applicable to a first communication node (such as a UE), and the method includes the following steps.
  • a first communication node such as a UE
  • the first communication node obtains configuration parameters configured by the second communication node for the first communication node.
  • the method for the first communication node to obtain the configuration parameters configured by the second communication node for the first communication node may be obtained by broadcasting by the second communication node, or may directly receive the configuration parameters sent by the second communication node.
  • the configuration parameters include:
  • a demodulation reference signal (DeModulation Reference Signal, DM-RS) resource used to decode the first message
  • the configuration parameter indicates:
  • PS-RNTI Power Saving RNTI
  • the configuration parameters include:
  • the configuration parameters include:
  • BWP bandwidth part
  • the configuration parameter includes: the maximum number of multiple-input multiple-output layers for the serving cell where the BWP is located.
  • the first communication node receives a first message sent by the second communication node, where the first message includes a power saving signal or a power saving channel.
  • the first message belonging to the primary cell is used to trigger the first communication node to send the CSI of each serving cell to the second communication node.
  • the first message includes:
  • the PUSCH resource associated with the first message configured for the first communication node is not limited to the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations:
  • the bits to be sent in the first message may be scrambled according to PS-RNTI.
  • the encoded bits in the first message may be scrambled according to PS-RNTI.
  • the DM-RS sequence initialization seed in the first message may include PS-RNTI.
  • the Cyclic Redundancy Check (CRC) bits of the first message may be scrambled according to PS-RNTI.
  • the first communication node when calculating the CRC of the first message, adds L "0"s before the original information to be calculated, and L is a positive integer.
  • the first communication node when receiving the first message, assumes that the DM-RS of the first message and the synchronization signal block (Synchronization Signal Block, SSB) have the same quasi-co-location (Quasi-Co-Location, QCL) characteristics.
  • SSB Synchronization Signal Block
  • the first communication node sends a second message to the second communication node.
  • the second message is triggered by the first message.
  • the method for the first communication node to send the second message to the second communication node may be: the first communication node sends an SRS to the second communication node according to the first message.
  • the method for the first communication node to send the second message to the second communication node may be: after decoding the first message, the first communication node uses the PUSCH to send aperiodic CSI to the second communication node.
  • the resource used when the PUSCH is used to send aperiodic CSI to the second communication node may be represented by a resource indication value (Resource Indication Value, RIV), or may be configured by a higher layer, which is not specifically limited in the embodiment of the present application.
  • RIV Resource Indication Value
  • the bits to be transmitted in the PUSCH can be scrambled according to the PS-RNTI.
  • the DM-RS sequence initialization seed in the PUSCH may include PS-RNTI.
  • the CRC bits of PUSCH can be scrambled according to PS-RNTI.
  • the method for the first communication node to send the second message to the second communication node may be: after decoding the first message, the first communication node uses the PUCCH to send aperiodic CSI to the second communication node.
  • the bits to be sent in the PUCCH can be scrambled according to PS-RNTI.
  • the DM-RS sequence initialization seed in the PUCCH may include PS-RNTI.
  • the CRC bits of PUCCH can be scrambled according to PS-RNTI.
  • the PUCCH resource used when the first communication node sends aperiodic CSI is indicated by the first message. Specifically, the PUCCH resource number used when the first communication node sends aperiodic CSI is implicitly indicated by the first message.
  • the method may further include: the first communication node performs BWP handover, and the BWP handover is triggered by the first message
  • the first A method for a communication node to send the second message to the second communication node may be: when there is a BWP handover, the first communication node sends CSI to the second communication node.
  • the method for the first communication node to send CSI to the second communication node may be: the first communication node sends the CSI to the second communication node at the Xth time slot after the BWP switch is completed.
  • Send CSI, X is a positive integer.
  • the method for the first communication node to send CSI to the second communication node may be: the first communication node sends CSI to the second communication node according to the CSI mask.
  • the method for the first communication node to send CSI to the second communication node may be as follows: the first communication node sends the definition to the second communication node according to specific signaling CSI of the dormant secondary cell.
  • the method for the first communication node to send the CSI to the second communication node may be: the first communication node sends the configuration to the second communication node according to specific signaling The CSI of the secondary cell of the temporary reference signal.
  • Fig. 2 is a schematic flowchart of another data transmission method provided by an embodiment. As shown in Fig. 2, the method provided in this embodiment is applicable to a second communication node (such as a base station), and the method includes the following steps.
  • a second communication node such as a base station
  • the second communication node configures configuration parameters for the first communication node.
  • the configuration parameters include:
  • the configuration parameter indicates:
  • PS-RNTI is used as part of the initialization seed of the CSI-RS sequence.
  • the configuration parameters include:
  • the configuration parameters include:
  • the configuration parameter if the configuration parameter does not include the maximum number of multiple-input multiple-output layers for a BWP, the configuration parameter includes: the maximum number of multiple-input multiple-output layers for the serving cell where the BWP is located.
  • the second communication node sends a first message to the first communication node, where the first message includes a power saving signal or a power saving channel.
  • the first message belonging to the primary cell is used to trigger the first communication node to send the CSI of each serving cell to the second communication node.
  • the first message includes:
  • the PUSCH resource associated with the first message configured for the first communication node is not limited to the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations:
  • the bits to be sent in the first message may be scrambled according to PS-RNTI.
  • the encoded bits in the first message may be scrambled according to PS-RNTI.
  • the DM-RS sequence initialization seed in the first message may include PS-RNTI.
  • the CRC bits of the first message may be scrambled according to PS-RNTI.
  • the second communication node receives the second message sent by the first communication node.
  • the second message is triggered by the first message.
  • the method for the second communication node to receive the second message sent by the first communication node may be: the second communication node receives the SRS sent by the first communication node according to the first message.
  • the method for the second communication node to receive the second message sent by the first communication node may be: the second communication node receives the aperiodic CSI sent by the first communication node by using the PUSCH.
  • the bits to be transmitted in the PUSCH can be scrambled according to the PS-RNTI.
  • the DM-RS sequence initialization seed in the PUSCH may include PS-RNTI.
  • the CRC bits of PUSCH can be scrambled according to PS-RNTI.
  • the method for the second communication node to receive the second message sent by the first communication node may be: the second communication node receives the aperiodic CSI sent by the first communication node by using the PUCCH.
  • the bits to be sent in the PUCCH can be scrambled according to PS-RNTI.
  • the DM-RS sequence initialization seed in the PUCCH may include PS-RNTI.
  • the CRC bits of PUCCH can be scrambled according to PS-RNTI.
  • the method for the second communication node to receive the second message sent by the first communication node may be: the second communication node receives the first communication node to send according to the CSI mask. CSI.
  • the method for the second communication node to receive the second message sent by the first communication node may be: the second communication node receives the first communication node to send according to specific signaling Defines the CSI of the dormant secondary cell.
  • the method for the second communication node to receive the second message sent by the first communication node may be: the second communication node receives the first communication node to send according to specific signaling The CSI of the secondary cell configured with temporary reference signals.
  • the second communication node may initialize the SRS sequence according to the PS-RNTI.
  • FIG. 3 is a schematic flowchart of another data transmission method provided by an embodiment. As shown in FIG. 3, the method provided in this embodiment is applicable to a second communication node (such as a base station), and the method includes the following steps.
  • a second communication node such as a base station
  • the second communication node configures configuration parameters for the first communication node.
  • the configuration parameters include:
  • the configuration parameter indicates:
  • PS-RNTI is used as part of the initialization seed of the CSI-RS sequence.
  • the configuration parameters include:
  • the second communication node sends a first message to the first communication node, where the first message includes a power saving signal or a power saving channel.
  • the CRC bits of the first message may be scrambled according to PS-RNTI.
  • PS-RNTI is used to initialize the sequence in sequence generation, and the sequence is used to generate the following reference signal.
  • the first message includes:
  • the PUSCH resource associated with the first message configured for the first communication node is not limited to the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations:
  • the second communication node sends a third message to the first communication node, where the third message includes the reference signal.
  • the third message is triggered by the first message.
  • FIG. 4 is a schematic flowchart of another data transmission method provided by an embodiment. As shown in FIG. 4, the method provided in this embodiment is applicable to a first communication node (such as a UE), and the method includes the following steps.
  • a first communication node such as a UE
  • the first communication node obtains configuration parameters configured by the second communication node for the first communication node.
  • the configuration parameters include:
  • the configuration parameter indicates:
  • PS-RNTI is used as part of the initialization seed of the CSI-RS sequence.
  • the configuration parameters include:
  • the first communication node receives a first message sent by the second communication node, where the first message includes a power saving signal or a power saving channel.
  • the CRC bits of the first message may be scrambled according to PS-RNTI. That is, the first communication node can descramble the first message according to the PS-RNTI.
  • the first message includes:
  • the PUSCH resource associated with the first message configured for the first communication node is not limited to the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations:
  • the first communication node receives a third message sent by the second communication node, where the third message includes the reference signal.
  • the third message is triggered by the first message.
  • the first communication node as the UE, the second communication node as the base station, and the first message as the power saving signal or the power saving channel (for brevity, the following will be referred to as the power saving signal/channel) as an example, and some exemplary implementations are listed.
  • Mode is used to describe the data transmission method provided in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the time position of a pre-window provided by an embodiment.
  • the pre-window also known as the Preparation Period
  • the UE needs to be prepared to receive data sent by the base station or send data to the base station.
  • the base station may configure multiple secondary carriers (ie, secondary cells (SCell)) for the UE.
  • SCell secondary cells
  • the SCell may be activated or deactivated.
  • the base station can deactivate an SCell, but when the base station wants to use the SCell, the base station must quickly activate the SCell. In this activation process, the base station can activate the SCell by means of cross-carrier scheduling or cross-carrier activation.
  • the base station can be configured with reference signals (e.g., SSB, CSI-RS, tracking reference signal (Tracking Reference Signal, TRS), primary synchronization signal (Primary Synchronization Signal, PSS), secondary synchronization signal (Secondary Synchronization Signal, SSS), SRS, DM -RS, phase tracking reference signal (Phase Tracking Reference Signal, PT-RS), also known as Temporary Reference Signal (Temporary RS), allows UE to do synchronization, automatic gain control (AGC), CSI measurement, etc. jobs. After completing these tasks, the transmission efficiency between the base station and the UE can be improved, so that the UE can save power.
  • the embodiments of this application are related to pre-windows and temporary reference signals.
  • the base station (and UE) it is necessary for the base station (and UE) to use pre-windows (sending reference signals, measuring reference signals, and reporting channel conditions) in order to obtain channel conditions in time; If the downlink signal/channel (such as SSB, CSI-RS, TRS) received last time by the UE exceeds a certain time (such as 100ms), then it is also necessary to use the pre-window; if the base station (or UE) needs to transmit If the amount of data is relatively large (such as 100MByte), it is also necessary to use the pre-window; if the UE needs to receive paging messages (Paging) in the next period of time (such as 10ms), then it is also necessary to use the pre-window It is necessary to use pre-window in scenarios where the signal changes drastically (such as high-speed rail and highway); if the base station does not configure DRX for the UE but uses the power-saving
  • the base station In the operation of the pre-window, if the base station expects to obtain downlink channel conditions but does not need uplink channel conditions, then the base station can be allowed to send CSI-RS, and the UE can measure and report CSI; if the base station needs to perform beam management, then it can be allowed to The base station sends the CSI-RS, and the UE sends the associated SRS according to the CSI-RS measurement result; if the base station obtains the uplink channel status, the UE can send the SRS.
  • the DM-RS of the power saving signal/channel can be copied and sent before the power saving signal/channel.
  • FIG. 6 shows a power saving signal/channel triggering a base station to send a channel state information reference signal, and a power saving signal/channel triggering a UE to send a sounding reference signal and a sounding reference provided by an embodiment.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • PS-RNTI The UE needs to check the RNTI when DRX-OFF. For example, the UE checks the RNTI a period of time before DRX-ON (eg, the first 5-10 Slots).
  • the inspection contents include: power saving signal/channel, PDCCH, DCI, CSI-RS, TRS, DM-RS, SSS, PSS, SSB, PT-RS.
  • the base station needs to check the RNTI before the DRX-ON of the UE and the DRX-ON time (or the DRX activation time of the UE).
  • the content to be checked includes: SRS (for example, SRS triggered by power saving signal/channel), physical random access channel (PRACH; for example, PRACH triggered by power saving signal/channel), PUCCH (for example, PUCCH for reporting CSI triggered by power saving signals/channels), PUSCH (for example, PUSCH for reporting CSI triggered by power saving signals/channels).
  • SRS for example, SRS triggered by power saving signal/channel
  • PRACH physical random access channel
  • PUCCH for example, PUCCH for reporting CSI triggered by power saving signals/channels
  • PUSCH for example, PUSCH for reporting CSI triggered by power saving signals/channels.
  • CSI-RS resources These resources can be one or more CSI-RS resources triggered by power saving signals/channels. These resources are used by the base station to transmit CSI-RS. These resources can be on different BWPs of different serving cells.
  • the CSI-RS transmission time relative to the time deviation of the power saving signal/channel If the time deviation is a negative number (the unit can be Slot or absolute time, such as milliseconds), it means that the CSI-RS is relative to the power saving signal/channel Early transmission; if the time deviation is zero, it means that the CSI-RS and the power saving signal/channel are sent in the same time slot; if the time deviation is a positive number, it means that the CSI-RS is relative to the power saving signal/channel Sent later.
  • the parameter used for the initialization value of the sequence of the aforementioned CSI-RS (n ID ; the value range is 0-1023).
  • the PS-RNTI is used to initialize the sequence, and then the sequence is used to generate a reference signal (e.g., CSI-RS).
  • n ID can also be applied to TRS.
  • the user equipment initializes the CSI-RS receiving sequence according to the PS-RNTI; the user equipment initializes the TRS receiving sequence according to the PS-RNTI.
  • CSI-RS uses PS-RNTI as part of the initialization seed.
  • the initialization seed c init is:
  • n ID n PS-RNTI mod 1024.
  • the initialization seed c init may also be:
  • SRS resources These resources can be one or more resources triggered by power saving signals/channels. These resources are used by the UE to send SRS. These resources can be on different bandwidth parts (BWP) of different serving cells. In an embodiment, these SRS resources may be aperiodic.
  • the transmission time of these SRSs has a time offset (slotOffset) relative to the power saving signal/channel. In an embodiment, the range of the time deviation is from 0 to 100 slots. In an embodiment, if the sending time of the SRS is not within the range of the DRX-ON or Active Time of the UE, the UE needs to send the SRS in the first time slot of DRX-ON.
  • the power saving signal/channel may indicate a time offset.
  • the power saving signal/channel may indicate a list of time deviations (given multiple time deviations, the UE can select a minimum and available time deviation to send the SRS).
  • these SRS resources may be periodic or semi-persistent.
  • these SRS resources are transmitted using 2 antenna ports.
  • the UE may alternately send SRS on different BWPs.
  • the UE may alternately transmit SRS triggered by the power saving signal/channel on different BWPs.
  • the UE may alternately transmit SRS triggered by the power saving signal/channel on different BWPs of different serving cells.
  • CSI-RS resources associated with the aforementioned SRS can be the aforementioned CSI-RS resources triggered by the power saving signal/channel (ie, the CSI-RS resources listed above), or they can be Additionally configured CSI-RS resources.
  • the sequence initialization value of the above SRS (c Init ; the value range is 0-1023).
  • c(i) is the pseudo-random sequence
  • l 0 is the start position of the time domain
  • l' is the symbol index of the SRS
  • mod is the modulo operation
  • v is the parameter to generate the sequence.
  • the user equipment initializes the SRS sequence according to the PS-RNTI.
  • SRS uses PS-RNTI as part of the initialization seed.
  • the initialization seed u ie, sequence group number
  • f gh is the group frequency hopping function
  • l' is the symbol index of the SRS
  • SRS power saving
  • SRS powerSaving
  • BeamManagement beam management
  • the base station sends power saving signals/channels.
  • the power saving signal/channel is a PDCCH.
  • PS-RNTI can be used to scramble the CRC bits of the power saving signal/channel; PS-RNTI can be used to scramble the load of the power saving signal/channel (or bits before encoding); and PS-RNTI can be used to Scramble the coded bits of the power saving signal/channel.
  • the power-saving signal/channel can be targeted at only one UE or a group of UEs.
  • the power saving signal/channel is descrambled by the UE’s cell radio network temporary identification (Cell-RNTI, C-RNTI), or PS-RNTI descrambled, or used at the same time PS-RNTI and C-RNTI descrambling.
  • Cell-RNTI cell radio network temporary identification
  • PS-RNTI PS-RNTI descrambled
  • the last 16 bits of a 24-bit CRC are scrambled with C-RNTI (for example, the last 16 bits of a 24-bit CRC are modulo-2 added to the binary bits of C-RNTI, and then modulo-2 is used.
  • the addition result replaces the last 16 bits of the 24-bit CRC; in one embodiment, the first 16 bits of the 24-bit CRC are added modulo 2 with the binary bits of the C-RNTI, and then the modulo 2 addition result is used to replace 24
  • using PS-RNTI to scramble the load (or bits before encoding) a(i) of the power saving signal/channel includes the following operations:
  • the scrambling sequence is initialized using the following initialization seed c init :
  • c init n PS-RNTI mod 2 10 .
  • n PS-RNTI is the value of PS-RNTI.
  • c init takes a physical cell identifier (Physical Cell Identifier, PCI; that is, ).
  • using PS-RNTI to scramble the coded bit b(i) of the power saving signal/channel includes the following operations:
  • the scrambling sequence is initialized using the following initialization seed c init :
  • c init (n RNTI ⁇ 2 16 + n ID ) mod 2 31 ;
  • n ID takes the physical cell number (PCI; that is, ).
  • the power saving signal/channel is descrambled by PS-RNTI.
  • PS-RNTI For example, when scrambling, the last 16 bits of a 24-bit CRC are descrambled by PS-RNTI; or the first 16 bits of a 24-bit CRC are descrambled by PS-RNTI.
  • the user equipment descrambles the power saving signal/channel according to the PS-RNTI.
  • the user equipment descrambles the CRC of the power saving signal/channel according to the PS-RNTI.
  • the aforementioned PS-RNTI may be pre-configured by the base station (for example, configured through RRC signaling) or calculated (the base station and the UE use the same calculation method).
  • PS-RNTI Slot+80*CORESET.
  • Slot is the number of the time slot where the power saving signal/channel is located
  • CORESET is the number of the control resource set where the power saving signal/channel is located.
  • the value of CORESET is the search space number.
  • PS-RNTI Slot+160*CORESET.
  • PS-RNTI Slot+80*CORESET+800*CCE, where CCE is the minimum control channel element (CCE) number used by the power saving signal/channel.
  • the UE when the UE receives the power saving signal/channel, it can be assumed that the power saving signal/channel and the SSB are quasi-co-located (QCL, Qusi-CoLocation). In an embodiment, when the UE receives the power saving signal/channel, it can be assumed that the DM-RS and SSB of the power saving signal/channel are quasi-co-sited. In an embodiment, when the UE receives the power saving signal/channel, it can be assumed that the DM-RS antenna port of the power saving signal/channel and the SSB are quasi-co-sited.
  • QCL Qusi-CoLocation
  • the UE receives the power saving signal/channel it can be assumed that the DM-RS and CSI-RS of the power saving signal/channel are quasi-co-sited. In an embodiment, when the UE receives the power saving signal/channel, it may be assumed that the DM-RS antenna port of the power saving signal/channel and the CSI-RS are quasi-co-sited. In an embodiment, when the UE receives the power saving signal/channel, it can be assumed that the DM-RS and TRS of the power saving signal/channel are quasi-co-sited. In an embodiment, when the UE receives the power saving signal/channel, it can be assumed that the DM-RS antenna port of the power saving signal/channel and the TRS are quasi-co-sited.
  • the UE when the UE receives the power saving signal/channel, it can be assumed that the CORESET of the power saving signal/channel and the recently scheduled CORESET are quasi-co-sited. In an embodiment, when the UE receives the power saving signal/channel, it can be assumed that the CORESET of the power saving signal/channel and the recently scheduled CORESET with the smallest ID number are quasi-co-sited. In one embodiment, when the UE receives the power saving signal/channel, the SSB can be used as a reference for the spatial reception parameter (Spatial Rx Parameter) of the power saving signal/channel.
  • the spatial reception parameter Spatial Rx Parameter
  • the SSB when the UE receives the power saving signal/channel, can be used as a reference for the DM-RS spatial reception parameters of the power saving signal/channel. In an embodiment, when the UE receives the power saving signal/channel, the CSI-RS or TRS can be used as a reference for the spatial reception parameters of the power saving signal/channel. In an embodiment, when the UE receives the power saving signal/channel, the CSI-RS or TRS can be used as a reference for the DM-RS spatial reception parameters of the power saving signal/channel. In an embodiment, when the UE receives the power saving signal/channel, the most recently scheduled CORESET can be used as a reference for the spatial reception parameters of the power saving signal/channel.
  • the most recently scheduled CORESET can be used as a reference for the spatial reception parameter of the CORESET of the power saving signal/channel.
  • the recently scheduled CORESET with the smallest ID number can be used as a reference for the spatial reception parameters of the CORESET of the power saving signal/channel.
  • the power saving signal/channel configuration is the fourth type of QCL (QCL-TypeD).
  • the CORESET of the power saving signal/channel is configured as QCL-TypeD.
  • the DM-RS of the power saving signal/channel is configured as QCL-TypeD.
  • the DM-RS port of the power saving signal/channel is configured as QCL-TypeD.
  • the power saving signal/channel configuration is QCL-TypeD which has the same characteristics as the QCL-TypeD of the CSI-RS.
  • the CORESET of the power saving signal/channel is configured as QCL-TypeD with the same characteristics as the QCL-TypeD of the CSI-RS.
  • the DM-RS of the power saving signal/channel is configured as QCL-TypeD with the same characteristics as the QCL-TypeD of the CSI-RS.
  • the DM-RS port of the power saving signal/channel is configured as a QCL-TypeD with the same QCL-TypeD characteristics of the CSI-RS.
  • the power saving signal/channel configuration is QCL-TypeD with the same characteristics as the QCL-TypeD of the SSB.
  • the CORESET of the power saving signal/channel is configured as QCL-TypeD with the same characteristics as the QCL-TypeD of the SSB.
  • the DM-RS of the power saving signal/channel is configured as QCL-TypeD with the same characteristics as the QCL-TypeD of the SSB.
  • the DM-RS port of the power saving signal/channel is configured as QCL-TypeD with the same characteristics as the QCL-TypeD of the SSB. In an embodiment, in the above configuration, if QCL-TypeD can be configured, it is configured as QCL-TypeD.
  • the base station sends CSI-RS or TRS.
  • the base station can transmit one or more of these signals.
  • Such a signal can be triggered by the power saving signal/channel, or it can be independent of the power saving signal/channel. If the base station sends a CSI-RS signal that is triggered by a power saving signal/channel, then the power saving signal/channel will have 0 bits or 1 bit or 2 bits or 3 bits to indicate what resources the CSI-RS uses to send (for unsupported For a power-saving technology UE, 0 bits can be used here; or, the UE will ignore these bits).
  • the UE when the UE receives CSI-RS or TRS, it can be assumed that the CSI-RS or TRS and SSB are quasi-co-located (QCL, Qusi-CoLocation). In an embodiment, when the UE receives CSI-RS or TRS, it can be assumed that the CSI-RS or TRS and the power saving signal/channel are quasi-co-located (QCL, Qusi-CoLocation). In an embodiment, when the UE receives the CSI-RS or TRS, it may be assumed that the CSI-RS or TRS and the DM-RS of the power saving signal/channel are quasi-co-located (QCL, Qusi-CoLocation).
  • the CSI-RS is configured as QCL-TypeD.
  • the TRS is configured as QCL-TypeD.
  • the CSI-RS is configured as QCL-TypeD with the same QCL-TypeD characteristics of the power saving signal/channel.
  • the CSI-RS is configured as QCL-TypeD which is the same as the QCL-TypeD characteristic of the CORESET of the power saving signal/channel.
  • the CSI-RS is configured as a QCL-TypeD that has the same QCL-TypeD characteristics of the DM-RS of the power saving signal/channel. In an embodiment, the CSI-RS is configured as a QCL-TypeD with the same QCL-TypeD characteristics of the DM-RS port of the power saving signal/channel.
  • the SSB can be used as a reference for the spatial reception parameters of the CSI-RS or TRS.
  • the power saving signal/channel can be used as a reference for the spatial reception parameters of the CSI-RS or TRS.
  • the DM-RS of the power saving signal/channel can be used as a reference for the spatial reception parameters of the CSI-RS or TRS.
  • the DM-RS antenna port of the power saving signal/channel can be used as a reference for the CSI-RS or TRS spatial reception parameters.
  • the base station needs to send multiple CSI-RS according to the trigger situation /TRS (for example, each CSI-RS/TRS corresponds to a power saving signal/channel); in one embodiment, the UE only needs to report CSI (including timing relationships) according to the last power saving signal/channel; in an implementation In an example, the UE only needs to report CSI (including timing relationship) according to the first power-saving signal/channel; in one embodiment, the UE only needs to report CSI according to the first power-saving signal/channel successfully decoded ( Including timing relationship); In one embodiment, the UE only needs to send SRS (including timing relationship) according to the last power saving signal/channel; in one embodiment, the UE only needs to send SRS based on the power saving signal/channel on the best beam Channel to report CSI (including timing relationship); in one embodiment, the base station can send power saving signals
  • a set of CSI-RS resource groups may include multiple CSI-RS resource sets.
  • a set of CSI-RS resource sets may include CSI-RS resource sets of multiple carriers.
  • one CSI trigger state can be associated with one or more (at most 3) CSI resource settings; one CSI resource setting can include one or more CSI-RS resource sets. The CSI trigger situation is shown in Table 1 to Table 3 below.
  • the CSI-RS transmission operation triggered by the power saving signal/channel is the same as the CSI-RS transmission operation triggered by scheduling DCI (or scheduling PDCCH; for example, DCI Format 0_1) (wherein, scheduling PDCCH is in UE's DRX activation time transmission/reception).
  • scheduling DCI or scheduling PDCCH; for example, DCI Format 0_1
  • scheduling PDCCH is in UE's DRX activation time transmission/reception.
  • the CSI-RS transmission operation triggered by the power saving signal/channel eg, sent at a time outside the UE’s DRX activation time; sent when DRX-OFF
  • the RS transmission operation is the same (for example, the CSI-RS triggered by the scheduled PDCCH is transmitted at the DRX activation time of the UE).
  • the CSI-RS receiving operation triggered by the power saving signal/channel is the same as the CSI-RS receiving operation triggered by the scheduling DCI.
  • the CSI-RS receiving operation triggered by the power saving signal/channel eg, receiving at a time outside the UE’s DRX activation time; receiving at DRX-OFF
  • the receiving operation of RS is the same.
  • the CSI report operation triggered by the power saving signal/channel is the same as the CSI report operation triggered by the scheduled DCI.
  • the CSI report operation triggered by the power saving signal/channel is the same as the CSI report operation triggered by the scheduled DCI ( Among them, the CSI report triggered by the scheduled PDCCH is issued at the DRX activation time of the UE).
  • the UE if the UE is configured with DRX, the UE should report the latest CSI measurement result that occurred outside the DRX activation time. In an embodiment, if the UE is configured with DRX, the UE should report the latest CSI measurement result triggered by the power saving signal/channel outside the DRX activation time.
  • the UE should report the latest CSI measurement result triggered by the power saving signal/channel.
  • the transmission operation of the TRS triggered by the power saving signal/channel is the same as the transmission operation of the TRS triggered by the scheduling DCI.
  • the receiving operation of the TRS triggered by the power saving signal/channel is the same as the receiving operation of the TRS triggered by the scheduling DCI.
  • the base station triggers the UE to send SRS.
  • the UE may send one or more SRS.
  • This SRS can be triggered by a power saving signal/channel, or it can be triggered by DCI. If the UE sending the SRS signal is triggered by the power saving signal/channel, then the power saving signal/channel will have 1 bit or 2 bits to indicate what resources the SRS uses to send. In an embodiment, if the UE receives two or more power-saving signals/channels with inconsistent contents, for example, one power-saving signal/channel requires the UE to send SRS, and another power-saving signal/channel does not require the UE to send SRS, Then the UE will not send SRS.
  • the UE if the UE receives 2 or more power saving signals/channels with inconsistent contents, the UE needs to send SRS. In an embodiment, if the UE receives two or more power-saving signals/channels with inconsistent content, the UE executes the power-saving signal/channel with the smallest CCE number. In one embodiment, if the UE receives 2 or more power-saving signals/channels with inconsistent content, the UE will perform the power-saving signal/channel with the largest CCE aggregation degree (if the aggregation degree is the same, it will be The smallest power saving signal/channel with the smallest CCE number). As shown in Table 4 and Table 5 below.
  • the sending operation of SRS triggered by the power saving signal/channel is the same as the sending operation of SRS triggered by scheduling DCI (or scheduling PDCCH; for example, DCI Format 0_1) (wherein, the SRS triggered by scheduling DCI is The UE’s DRX activation time is sent).
  • the sending operation of SRS triggered by the power saving signal/channel (for example, the SRS at this time is sent at a time outside the UE’s DRX activation time; sent at the time of DRX-OFF) is the same as that triggered by the scheduling DCI
  • the sending operation of SRS is the same.
  • the sending operation of the SRS triggered by the power saving signal/channel is the same as the sending operation of the SRS triggered by the group common DCI Format 2_3 (wherein, the SRS triggered by the group common DCI Format 2_3 is in the DRX of the UE. Activation time sent).
  • the UE can measure the downlink channel conditions, obtain the best downlink beam (Beam) by measurement, and send the SRS on the resource corresponding to the best beam.
  • Beam the best downlink beam
  • the base station knows the best downlink beam, and also knows the uplink channel conditions and beam conditions, so as to infer the downlink channel conditions.
  • the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • the UE when the CSI-RS reference signal received power (CSI-RSRP, CSI-RS Reference Signal Received Power) received by the UE is lower than a certain value (for example, -120dBm), the UE may not need to monitor the above-mentioned province.
  • CSI-RSRP CSI-RS Reference Signal Received Power
  • the UE operates according to normal DRX); in one embodiment, when the reference signal received power (SSB-RSRP) of the synchronization signal block (SSB) received by the UE is lower than a certain value (for example, -130dBm), the UE may not need to monitor the above-mentioned power-saving signal/channel; in one embodiment, when the UE receives the reference signal received power (SSB-RSRP) of the secondary synchronization signal (SSS) of the synchronization signal block (SSB) When) is lower than a certain value (for example, -135dBm), the UE may not need to monitor the above-mentioned power saving signal/channel.
  • SSB-RSRP reference signal received power
  • SSS secondary synchronization signal
  • SSB secondary synchronization signal
  • the UE When the UE does not need to monitor the aforementioned power-saving signal/channel, part of the power can be saved, and it can also prevent the UE from detecting misdetection/missing detection, and preventing the UE from generating erroneous operations.
  • FIG. 7 is a schematic diagram of a power saving signal/channel triggering a base station to send a channel state information reference signal and the sounding reference signal is associated with the power saving signal/channel according to an embodiment.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • Temporary wireless network identification (PS-RNTI) for power saving The UE needs to check the RNTI when DRX-OFF. For example, the UE checks the RNTI a period of time before DRX-ON (eg, the first 0-20 Slots).
  • the inspection contents include: power saving signal/channel, physical downlink control channel (PDCCH), downlink control information (DCI), channel state information reference signal (CSI-RS), tracking reference signal (TRS), demodulation reference signal (DM) -RS), secondary synchronization signal (SSS), primary synchronization signal (PSS), synchronization signal block (SSB), phase tracking reference signal (PT-RS).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • DM demodulation reference signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • SSB phase tracking reference signal
  • PT-RS phase tracking reference signal
  • DM-RS demodulation reference signal
  • ID DM-RS scrambling code number
  • the base station can be configured with one or more such IDs.
  • ID is used to initialize the value when generating the DM-RS sequence.
  • the user equipment initializes the DM-RS reception sequence according to PS-RNTI (n PS-RNTI ).
  • PS-RNTI PS-RNTI
  • DM-RS uses PS-RNTI as part of the initialization seed c init , as follows:
  • N ID n PS-RNTI
  • mod is the modulo operation.
  • the value of N ID is the C-RNTI (n C-RNTI ) of the UE; in an embodiment, during the active time of the UE (Active Time), the value of N ID is the C-RNTI of the UE. .
  • N ID (n PS-RNTI + n C-RNTI ) mod 2 16 .
  • N ID (n PS-RNTI + n C-RNTI ) mod 2 16 .
  • N ID (n PS-RNTI + n C-RNTI ) mod 2 16 .
  • there is N ID n PS-RNTI .
  • DM-RS uses PS-RNTI as part of the initialization seed c init , as follows:
  • N ID is a parameter configured by a higher layer (for example, taken as 0).
  • the transmission configuration indication information (TCI) of the aforementioned DM-RS can be configured to be the same as the TCI of the synchronization signal block (SSB).
  • the TCI of the DM-RS is configured to be the same as the TCI of the DM-RS in the synchronization signal block (SSB).
  • the TCI of the DM-RS is configured to be the same as the TCI of the CSI-RS.
  • the DM-RS may be configured to be the same as the QCL of the synchronization signal block (SSB).
  • the DM-RS port can be configured to be the same as the QCL of the synchronization signal block (SSB).
  • the DM-RS can be configured to be the same as the QCL of the CSI-RS.
  • the DM-RS port can be configured to be the same as the QCL of the CSI-RS.
  • SRS Sounding Reference Signal
  • BWP bandwidth parts
  • SRS resources can be associated with the power saving signal/channel, and can also be associated with the DM-RS on the power saving signal/channel mentioned above.
  • these SRS resources may be associated with SSB.
  • these SRS resources may be associated with CSI-RS.
  • the above-mentioned sequence initialization value of the SRS for example, the SRS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the SRS sequence.
  • SRS power saving
  • SRS powerSaving
  • BeamManagement beam management
  • the timing relationship between the SRS and the power saving signal/channel For example, after receiving the power saving signal/channel (Slot N) plus a fixed constant K time slots, the UE sends the SRS on Slot N+K.
  • the timing relationship can also be directly given in the power saving signal/channel. For example, a bit of "0" indicates that the SRS is sent after 2 slots, and a bit of "1" indicates that the SRS is sent after 4 slots.
  • the base station sends power saving signals/channels.
  • the power saving signal/channel needs to be scrambled with the C-RNTI or PS-RNTI of the UE.
  • a scrambling code sequence for example, a pseudo-random sequence
  • PS-RNTI can be used for descrambling during DRX-OFF (or a time outside the DRX activation time)
  • C-RNTI can be used for descrambling at other times (eg, DRX activation time).
  • the above power saving signal/channel triggers the UE to send SRS.
  • the UE may send one or more SRS.
  • the power-saving signal/channel will have 1 bit or 2 bits to indicate what resources the SRS uses to transmit. As shown in Table 6 and Table 7 below.
  • the UE can measure downlink channel conditions (through DM-RS), obtain the best downlink beam (Beam) by measurement, and send SRS on the resource corresponding to the best beam.
  • the base station After receiving the SRS, the base station knows the best downlink beam, and also knows the uplink channel conditions and beam conditions, so as to infer the downlink channel conditions.
  • the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • FIG. 8 is a kind of downlink control information that triggers the base station to send the channel state information reference signal, and the downlink control information triggers the UE to send the sounding reference signal and the sounding reference signal is associated with the channel.
  • Schematic diagram of the status information reference signal is a kind of downlink control information that triggers the base station to send the channel state information reference signal, and the downlink control information triggers the UE to send the sounding reference signal and the sounding reference signal is associated with the channel.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • Temporary wireless network identification (PS-RNTI) for power saving The UE needs to check the RNTI when DRX-OFF. For example, the UE checks the RNTI for a period of time before DRX-ON (eg, the first 2-10 Slots).
  • the inspection contents include: power saving signal/channel, physical downlink control channel (PDCCH), downlink control information (DCI), channel state information reference signal (CSI-RS), tracking reference signal (TRS), demodulation reference signal (DM) -RS), secondary synchronization signal (SSS), primary synchronization signal (PSS), synchronization signal block (SSB), phase tracking reference signal (PT-RS).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • DM demodulation reference signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • SSB phase tracking reference signal
  • PT-RS phase tracking reference signal
  • CSI-RS resources can be one or more CSI-RS resources triggered by PDCCH/DCI. These resources are used by the base station to transmit CSI-RS. These resources can be on different bandwidth parts (BWP) of different serving cells. In an embodiment, these CSI-RS resources include CSI-RS resources (CSI-RS-Resource-Mobility) used for mobility measurement. In an embodiment, the CSI-RS resource used for mobility measurement is triggered by the power saving signal/channel. In an embodiment, the CSI-RS resource used for mobility measurement appears outside of the DRX active time of the UE (Outside of the DRX active time).
  • the UE should measure the CSI-RS resources used for mobility measurement that appear outside the DRX activation time of the UE. In an embodiment, if the UE is configured with DRX, the UE should measure the CSI-RS resources used for mobility measurement triggered by the power saving signal/channel that appear outside the DRX activation time of the UE.
  • CSI-IM Channel State Information Interference Measurement Resources
  • NZP-CSI-RS non-zero power CSI-RS resources
  • ZP-CSI-RS zero power CSI-RS resources
  • the aforementioned PDCCH/DCI scrambling method for example, the PDCCH/DCI can be scrambled with PS-RNTI.
  • the CRC of PDCCH/DCI is descrambled with PS-RNTI.
  • the sequence initialization value of the aforementioned CSI-RS for example, the CSI-RS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the CSI-RS sequence.
  • SRS Sounding Reference Signal
  • SRS resources can be one or more resources triggered by power saving signals/channels. These resources are used by the UE to send SRS. These resources can be on different bandwidth parts (BWP) of different serving cells.
  • BWP bandwidth parts
  • the above-mentioned SRS resources may be SRS resources associated with CSI-RS.
  • the aforementioned SRS resource may be an SRS resource associated with an SSB.
  • CSI-RS resources associated with the aforementioned SRS can be the aforementioned CSI-RS resources triggered by PDCCH/DCI (for example, the CSI-RS resources listed above), or they can be configured separately CSI-RS resources.
  • the above-mentioned sequence initialization value of the SRS for example, the SRS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the SRS sequence.
  • SRS power saving
  • the use of SRS can also be configured as "beam Management” (beamManagement), or “codebook”, or “nonCodebook” (nonCodebook), or “antenna Switching”.
  • Report channel state information (CSI) resources Including: using PUCCH to report CSI resources, and using PUSCH to report CSI resources (for example, configuring one or 2 or 4 or 8 resources). In one embodiment, these resources are only allocated to the default bandwidth part (BWP) or the initial BWP. In one embodiment, these resources are configured on each BWP.
  • BWP bandwidth part
  • the base station sends power saving signals/channels.
  • PDCCH/DCI needs to be scrambled with the C-RNTI or PS-RNTI of the UE.
  • a scrambling code sequence for example, a pseudo-random sequence
  • PS-RNTI can be used for scrambling in DRX-OFF
  • C-RNTI can be used for scrambling at other times.
  • the CRC and PS-RNTI of the PDCCH can also be modulo-2 added to scramble the PDCCH.
  • the base station transmits CSI-RS or TRS.
  • the base station can transmit one or more of these signals.
  • a signal can be triggered by PDCCH/DCI, or it can be configured separately.
  • the base station sends the CSI-RS signal triggered by the PDCCH/DCI, then the PDCCH/DCI will have 0 bits or 1 bit or 2 bits or 3 bits to indicate what resources the CSI-RS uses to send (for those that do not support power saving technology) UE, here can be 0 bits; in one embodiment, 0 bits means that there is no such field); in one embodiment, if there is no uplink shared channel (Uplink Shared Channel, UL-SCH) at this time (that is, there is no pending transmission Upstream data), a 2-bit redundancy version (Redundancy version) can also be used to indicate what resources the CSI-RS uses to transmit (that is, in one embodiment, the DRX-OFF, DRX-ON or DRX activation time (DRX Under ACTIVE TIME
  • the base station sends CSI-RS (or TRS) on the Zth time slot after the PDCCH or power saving signal/channel is sent.
  • Z is an integer
  • Z is the smallest integer that makes the Zth time slot fall in the UE’s DRX-ON.
  • Z is the smallest integer that makes the Zth time slot fall in the UE’s DRX activation time ⁇ As shown in Table 8-Table 10 below.
  • the base station When the base station allocates PUSCH frequency resources for reporting channel state information (CSI) to the UE, it can use Bits indicate the allocated resources (represented by the resource indicator value RIV).
  • CSI channel state information
  • Means rounding up, Means rounding down, log2() means taking the logarithm to base 2
  • L RBs represents the number of RBs allocated to the UE for reporting channel state information (CSI) (ie, length )
  • RB start represents the start RB number of the RB allocated to the UE for reporting channel state information (CSI).
  • CSI channel state information
  • the allocated resource unit may be modified to 2 RBs (or 3 RBs, or 4 RBs).
  • L RBs are all based on 2 RBs (or 3 RBs, or 4 RBs), and RB start also uses every 2 RBs (or every 3 RBs, or every 4 RBs) as a starting point.
  • the PUSCH resource used for reporting the CSI report triggered by the power saving signal/channel does not exceed a certain amount. For example, no more than 1/2, or 1/3, or 1/4, or 1/8, or 1/16, or 1/32 of the BWP bandwidth.
  • the base station may use 1 bit or 2 bits or 3 bits to indicate the resources allocated to the PUSCH. For example, a 1-bit "0" indicates that the UE should use the first set of PUSCH resources to report CSI, and a 1-bit "1" indicates that the UE should use the second set of PUSCH resources to report CSI. For another example, a 2-bit “00” indicates that the UE should use the first set of PUSCH resources to report CSI, a 2-bit “01” indicates that the UE should use the second set of PUSCH resources to report CSI, and a 2-bit “10” indicates that the UE should report CSI.
  • the 3-bit "000” indicates that the UE should use the first set of PUSCH resources to report CSI
  • the 3-bit "001” indicates that the UE should use the second set of PUSCH resources to report CSI
  • the 3-bit "010” indicates that the UE should Use the third set of PUSCH resources to report CSI
  • 3-bit "011” indicates that the UE should use the fourth set of PUSCH resources to report CSI
  • 3-bit "100” indicates that the UE should use the fifth set of PUSCH resources to report CSI
  • 3 bits The "101” means that the UE should use the sixth set of PUSCH resources to report CSI
  • the 3-bit "110” means that the UE should use the seventh set of PUSCH resources to report CSI
  • the 3-bit "111” means that the UE should use the eighth set of PUSCH Resources to report CSI.
  • a similar method can also be used to indicate which resource the PUCCH uses to report CSI.
  • the UE receives two or more power-saving signals/channels with inconsistent content, for example, one power-saving signal/channel requires the UE to report CSI, and another power-saving signal/channel does not require the UE to report CSI, Then the UE will not report CSI.
  • the UE if the UE receives two or more power-saving signals/channels with inconsistent contents, the UE needs to report CSI.
  • the base station receives the CSI report carried on the PUCCH; in one embodiment, the base station receives the CSI report carried on the PUSCH; in one embodiment, the base station receives the power saving signal carried on the PUCCH/ Channel-triggered CSI report; in one embodiment, the base station receives the CSI report carried on the PUSCH and triggered by the power saving signal/channel.
  • the aforementioned PUCCH resource (PUCCH-CSI-Resource) for reporting CSI configured by the base station for the UE includes a PUCCH resource list (pucch-CSI-ResourceList), a report slot configuration (reportSlotConfig), one or more PUCCH resource set (PUCCH-ResourceSet), each PUCCH resource set has a resource set number (PUCCH-ResourceSetId), each PUCCH resource set includes one or more PUCCH resources (PUCCH-Resource), each PUCCH resource has a resource number ( PUCCH-ResourceId), starting physical resource block (Physical Resource Block, PRB) number (startingPRB), and PUCCH format (format).
  • the PUCCH format includes PUCCH format 2 (PUCCH-format2), PUCCH format 3 (PUCCH-format3), and PUCCH format 4 (PUCCH-format4).
  • these PUCCH formats include the number of PRBs (nrofPRBs).
  • the PUCCH resources (ie, nrofPRBs) used for reporting CSI reports triggered by power saving signals/channels do not exceed a certain number. For example, no more than 1/2, or 1/3, or 1/4, or 1/8, or 1/16, or 1/32 of the BWP bandwidth.
  • these PUCCH formats use PS-RNTI for scrambling, as follows:
  • c init n PS-RNTI ⁇ 2 15 + n ID ;
  • n PS-RNTI is the value of PS-RNTI (decimal)
  • n ID is a parameter configured by the higher layer, and the value is 0-1023
  • n ID can also be a cell Number (PCI).
  • the aforementioned PUSCH resource is defined on a certain BWP.
  • the base station if the base station indicates (for example, indicated by the 2-bit BWP number in the power saving signal/channel; indicated by the PDCCH; or indicated by the scheduling DCI), there is a BWP handover (that is, the UE is about to switch between the current BWP).
  • the base station will send CSI-RS on the target BWP, the UE will receive and measure the CSI-RS on the target BWP, and the UE will send the CSI report on the first set of PUSCH resources of the target BWP ; In an embodiment, the UE will send a CSI report on the first set of PUCCH resources of the target BWP. In an embodiment, the UE will report the CSI in the first slot after the BWP handover is completed.
  • the UE will report the CSI in the second slot after the BWP handover is completed. In an embodiment, the UE will report the CSI in the third slot after the BWP handover is completed. In an embodiment, the UE will report the CSI in the fourth slot after the BWP handover is completed. In an embodiment, the UE reports CSI on the Xth time slot after the completion of the BWP handover.
  • X is a positive integer. In an embodiment, X is the smallest integer such that the Xth slot falls on the DRX-ON of the UE.
  • the base station triggers the UE to send SRS.
  • the UE may send one or more SRS.
  • This SRS can be triggered by PDCCH/DCI. If the UE sending the SRS signal is triggered by the PDCCH/DCI, then the PDCCH/DCI will have 1 bit or 2 bits to indicate what resources the SRS uses to send. As shown in Table 11 and Table 12 below.
  • the UE can measure and report downlink channel conditions (CSI), obtain the best downlink beam (Beam) by measuring, and send SRS on the resource corresponding to the best beam.
  • CSI downlink channel conditions
  • Beam best downlink beam
  • the base station knows the best downlink beam, and also knows the uplink channel conditions and beam conditions, so as to infer the downlink channel conditions.
  • the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • FIG. 9 is a power saving signal/channel that triggers the base station to send the channel state information reference signal, and the power saving signal/channel triggers the UE to send the random access channel and randomly
  • FIG. 9 is a power saving signal/channel that triggers the base station to send the channel state information reference signal, and the power saving signal/channel triggers the UE to send the random access channel and randomly
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • Temporary wireless network identification (PS-RNTI) for power saving The UE needs to check the RNTI when DRX-OFF. For example, the UE checks the RNTI for a period of time before DRX-ON (eg, the first 5-10 Slots).
  • the inspection contents include: power saving signal/channel, physical downlink control channel (PDCCH), downlink control information (DCI), channel state information reference signal (CSI-RS), tracking reference signal (TRS), demodulation reference signal (DM) -RS), secondary synchronization signal (SSS), primary synchronization signal (PSS), synchronization signal block (SSB), phase tracking reference signal (PT-RS).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • DM demodulation reference signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • SSB phase tracking reference signal
  • PT-RS phase tracking reference signal
  • CSI-RS resources These resources can be one or more CSI-RS resources triggered by power saving signals/channels. These resources are used by the base station to transmit CSI-RS. These resources can be on different bandwidth parts (BWP) of different serving cells.
  • BWP bandwidth parts
  • the sequence initialization value of the aforementioned CSI-RS for example, the CSI-RS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the CSI-RS sequence.
  • Random Access Channel (PRACH) resources These resources can be one or more resources triggered by power saving signals/channels. These resources are used by the UE to send PRACH. These resources can be on different bandwidth parts (BWP) of different serving cells.
  • PRACH resources include: preamble ID (for example, the number of a dedicated preamble), frequency resources (for example, which physical resource blocks on which BWP are sent), the time offset of PRACH relative to power saving signals/channels, and PRACH (that is, preamble) ) The cyclic offset and PRACH format used.
  • these PRACH resources are PRACH resources associated with CSI-RS.
  • these PRACH resources are PRACH resources associated with the SSB.
  • the PRACH resource is indicated by the power saving signal/channel.
  • the PRACH resource corresponds to the resource used by the power saving signal/channel in a one-to-one correspondence.
  • CSI-RS resources associated with the aforementioned PRACH can be the aforementioned CSI-RS resources triggered by the power saving signal/channel (for example, the CSI-RS resources listed above), or they can be Additionally configured CSI-RS resources.
  • the above-mentioned PRACH sequence initialization value for example, the SRS can be scrambled with PS-RNTI, that is, the PS-RNTI is used for sequence initialization.
  • the base station can also configure a specific value to initialize the PRACH sequence.
  • the base station sends power saving signals/channels.
  • the power saving signal/channel can trigger the UE to acquire system information (eg, system information block No. 8 SIB8).
  • the aggregation degree of the power saving signal/channel is 1, 2, 4, 8, 16, and 32.
  • the power saving signal/channel has a candidate position; this position has 16 consecutive CCEs.
  • the degree of aggregation of the power saving signal/channel is 16 control channel elements (CCE)
  • the power saving signal/channel has 2 candidate positions; each position has 16 consecutive CCEs.
  • the power saving signal/channel when the aggregation degree of the power saving signal/channel is 32 CCEs, the power saving signal/channel has a candidate position; this position has 32 consecutive CCEs.
  • a high degree of aggregation is conducive to the successful transmission of power-saving signals/channels, thereby reducing UE missed detection.
  • the UE receives the aforementioned power saving signal/channel.
  • the UE may assume that the power saving signal/channel and the SSB are QCL.
  • the UE may assume that the DM-RS and SSB of the power saving signal/channel are QCL.
  • the UE may assume that the DM-RS of the power saving signal/channel and the SSB have the same QCL characteristics.
  • the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the power saving signal/channel and the CSI-RS are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS and CSI-RS of the power saving signal/channel are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS and the CSI-RS of the power saving signal/channel have the same QCL characteristics. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the power saving signal/channel and the CSI-RS used for random access are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the CSI-RS associated with random access are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel has the same QCL characteristics as the CSI-RS associated with random access. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the power saving signal/channel and the SSB used for random access are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the SSB associated with the random access are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel has the same QCL characteristics as the SSB associated with random access. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the power saving signal/channel is QCL associated with the CSI-RS used for beam management. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the CSI-RS associated with beam management are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the CSI-RS associated with beam management have the same QCL characteristics. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the power saving signal/channel and the SSB used for beam management are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the SSB associated with beam management are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel has the same QCL characteristics as the SSB associated with beam management. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the power saving signal/channel is associated with the channel state measurement (including using codebook codebook, nonCodebook not using codebook, antenna Switching).
  • CSI-RS is QCL.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the CSI-RS associated with the channel state measurement are QCL.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the DM-RS of the power saving signal/channel and the CSI-RS associated with the channel state measurement have the same QCL characteristics.
  • the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE may assume that the power saving signal/channel and the SSB used for channel state measurement are QCL.
  • the UE may assume that the DM-RS of the power saving signal/channel and the SSB associated with the channel state measurement are QCL.
  • the UE may assume that the DM-RS of the power saving signal/channel has the same QCL characteristics as the SSB associated with the channel state measurement.
  • the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE may assume that the power saving signal/channel and the CSI-RS used for beam management are QCL.
  • the UE may assume that the DM-RS port of the power saving signal/channel and the CSI-RS associated with beam management are QCL.
  • the UE may assume that the DM-RS port of the power saving signal/channel has the same QCL characteristics as the CSI-RS associated with the beam management.
  • the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE may assume that the power saving signal/channel and the SSB used for beam management are QCL.
  • the UE may assume that the DM-RS port of the power saving signal/channel and the SSB associated with beam management are QCL.
  • the UE may assume that the DM-RS port of the power saving signal/channel has the same QCL characteristics as the SSB associated with beam management.
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the DM-RS port of the power saving signal/channel has the same QCL characteristics as the most recently received SSB. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters. In an embodiment, when the UE receives the power-saving signal/channel, the UE may assume that the power-saving signal/channel is associated with the channel state measurement (including using codebook codebook, nonCodebook not using codebook, antenna Switching) CSI-RS is QCL.
  • the channel state measurement including using codebook codebook, nonCodebook not using codebook, antenna Switching
  • the UE when the UE receives the power saving signal/channel, the UE may assume that the DM-RS port of the power saving signal/channel and the CSI-RS associated with the channel state measurement are QCL. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS port of the power saving signal/channel has the same QCL characteristics as the CSI-RS associated with the channel state measurement. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the UE may assume that the power-saving signal/channel is QCL associated with the CSI-RS recently received for channel state measurement. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS port of the power saving signal/channel is QCL associated with the CSI-RS recently received for channel state measurement. In an embodiment, when the UE receives the power saving signal/channel, the UE may assume that the DM-RS port of the power saving signal/channel has the same QCL characteristics as the CSI-RS associated with the channel state measurement recently received. In an embodiment, if applicable, the same QCL characteristics include: Doppler frequency shift, Doppler delay spread, average delay, delay spread, and spatial reception parameters.
  • the base station transmits CSI-RS or TRS.
  • the base station can transmit one or more of these signals.
  • Such a signal can be triggered by the power saving signal/channel, or it can be independent of the power saving signal/channel.
  • the base station sends a CSI-RS signal that is triggered by a power saving signal/channel, then the power saving signal/channel will have 0 bits or 1 bit or 2 bits or 3 bits to indicate what resources the CSI-RS uses to send (for unsupported For the UE with power saving technology, it can be 0 bit here). As shown in Table 13-Table 15 below.
  • CSI-RS trigger value To 00 There is no CSI-RS trigger. 01 The CSI-RS is sent on the first set of resources configured by the base station. 10 The CSI-RS is sent on the second set of resources configured by the base station. 11 The CSI-RS is sent on the third set of resources configured by the base station.
  • the base station triggers the UE to send PRACH.
  • the UE may send one or more PRACHs.
  • This PRACH can be triggered by a power saving signal/channel, DCI, or PDCCH Order (PDCCH Order).
  • the PRACH signal sent by the UE is triggered by the provincial telecommunication signal/channel, then the power-saving signal/channel will have 1 or 2 bits indicating which resources PRACH uses to transmit.
  • the power saving signal/channel will indicate the PRACH resource configuration information.
  • the UE uses the configured PRACH resource to send the PRACH in the n+4th time slot.
  • the UE uses the configured PRACH resource to transmit the PRACH in the n+Kth time slot, where K is such that the n+Kth time slot
  • K is such that the n+Kth time slot
  • the time slots fall within the smallest integer of the UE’s DRX-ON. As shown in Table 16 and Table 17 below.
  • the UE can measure the downlink channel conditions, obtain the best downlink beam (Beam), and send PRACH on the resource corresponding to the best beam.
  • Beam the best downlink beam
  • the base station knows the best beam in the downlink, the timing deviation between the uplink timing and the downlink (therefore, the timing advance TA can be calculated and the uplink synchronization status can be known), and the uplink channel status is also known. And Beam, thereby inferring the downlink channel conditions.
  • the base station knows the channel conditions, the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • FIG. 10 is a schematic diagram of a power saving signal/channel triggering a UE to send a sounding reference signal and the sounding reference signal is associated with a channel state information reference signal according to an embodiment.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • Temporary wireless network identification (PS-RNTI) for power saving The UE needs to check the RNTI when DRX-OFF. For example, the UE checks the RNTI for a period of time before DRX-ON (eg, the first 5-10 Slots).
  • the inspection contents include: power saving signal/channel, physical downlink control channel (PDCCH), downlink control information (DCI), channel state information reference signal (CSI-RS), tracking reference signal (TRS), demodulation reference signal (DM) -RS), secondary synchronization signal (SSS), primary synchronization signal (PSS), synchronization signal block (SSB), phase tracking reference signal (PT-RS).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • DM demodulation reference signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • SSB phase tracking reference signal
  • PT-RS phase tracking reference signal
  • CSI-RS resources These resources are used by the base station to send CSI-RS. These resources include the time deviation of the CSI-RS sent earlier than the power saving signal/channel (for example, sending one slot before the power saving signal/channel; another example, sending 2 slots before the power saving signal/channel, and for example, with The power saving signal/channel is sent on the same Slot). These resources can be on different bandwidth parts (BWP) of different serving cells.
  • BWP bandwidth parts
  • the sequence initialization value of the aforementioned CSI-RS for example, the CSI-RS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the CSI-RS sequence.
  • SRS Sounding Reference Signal
  • BWP bandwidth parts
  • CSI-RS resources associated with the aforementioned SRS can be the aforementioned CSI-RS resources triggered by power saving signals/channels (for example, the CSI-RS resources listed above), or they can be Additionally configured CSI-RS resources.
  • the above-mentioned sequence initialization value of the SRS for example, the SRS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the SRS sequence.
  • SRS power saving
  • SRS powerSaving
  • BeamManagement beam management
  • the base station sends CSI-RS or TRS.
  • the base station can transmit one or more of these signals.
  • Such signals can be independent of power saving signals/channels.
  • the base station sends power saving signals/channels.
  • the base station triggers the UE to send SRS.
  • the UE may send one or more SRS.
  • This SRS can be triggered by a power saving signal/channel, or it can be triggered by DCI. If the UE sending the SRS signal is triggered by the power saving signal/channel, then the power saving signal/channel will have 1 bit or 2 bits to indicate what resources the SRS uses to send. As shown in Table 18 and Table 19 below.
  • the UE can measure the downlink channel conditions, obtain the best downlink beam (Beam) by measurement, and send the SRS on the resource corresponding to the best beam.
  • Beam the best downlink beam
  • the base station knows the best downlink beam, and also knows the uplink channel conditions and beam conditions, so as to infer the downlink channel conditions.
  • the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • FIG. 11 is a power-saving signal/channel that triggers the base station to send the channel state information reference signal and the UE sends the physical uplink control channel according to the measurement result of the CSI-RS provided by an embodiment.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • Temporary wireless network identification (PS-RNTI) for power saving The UE needs to check the RNTI when DRX-OFF. For example, the UE checks the RNTI for a period of time before DRX-ON (eg, the first 5-10 Slots).
  • the inspection contents include: power saving signal/channel, physical downlink control channel (PDCCH), downlink control information (DCI), channel state information reference signal (CSI-RS), tracking reference signal (TRS), demodulation reference signal (DM) -RS), secondary synchronization signal (SSS), primary synchronization signal (PSS), synchronization signal block (SSB), phase tracking reference signal (PT-RS).
  • PDCCH physical downlink control channel
  • DCI downlink control information
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • DM demodulation reference signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • SSB phase tracking reference signal
  • PT-RS phase tracking reference signal
  • CSI-RS resources These resources can be one or more CSI-RS resources triggered by power saving signals/channels. These resources are used by the base station to transmit CSI-RS. These resources can be on different bandwidth parts (BWP) of different serving cells.
  • the CSI-RS resource includes a resource number (nzp-CSI-RS-ResourceId).
  • the time deviation is a negative number (unit can be Slot or absolute time, such as milliseconds), it means that the CSI-RS is relative to the power saving signal/channel It is sent early; if the time deviation is zero, it means that the CSI-RS and the power saving signal/channel are sent in the same time slot; if the time deviation is a positive number, it means that the CSI-RS is relative to the power saving signal/channel It was sent later.
  • the sequence initialization value of the aforementioned CSI-RS for example, the CSI-RS can be scrambled with PS-RNTI, that is, the PS-RNTI is used to initialize the sequence.
  • the base station can also configure a specific value to initialize the CSI-RS sequence.
  • the PS-RNTI is for a group of UEs
  • the CSI-RS resources and TRS resources should also be for a group of UEs
  • the initialization value is also for a group of UEs.
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUCCH resources can be indicated by power saving signals/channels (for example, a bit of "0" means using the first set of resources, and a bit of "1" means using the second set of resources; when power saving signals/channels use C-RNTI When descrambling, it means using the first set of resources; for another example, when the power saving signal/channel is descrambled by PS-RNTI, it means using the second set of resources).
  • These resources can be on different bandwidth parts (BWP) of different serving cells.
  • the first set of PUCCH resources refers to the resource with the smallest number (the smallest pucch-ResourceId).
  • the second set of PUCCH resource numbers adds 1 to the previous set of numbers.
  • the DM-RS sequence initialization value of the above PUCCH for example, the DM-RS can be scrambled with PS-RNTI, that is, the PS-RNTI is used for sequence initialization.
  • the base station can also configure a specific value to initialize the DM-RS sequence.
  • the aforementioned PUCCH scrambling method For example, the bits before PUCCH encoding are descrambled with PS-RNTI (for example, PS-RNTI is used to generate a pseudo-random sequence, and then the pseudo-random sequence is modulo 2 added with the bits before encoding) ;
  • PUCCH encoded bits are descrambled with PS-RNTI;
  • PUCCH CRC is descrambled with PS-RNTI (for example, the last 6 bits of PS-RNTI are modulated with the 6-bit CRC of PUCCH 2 plus; another example, use the last 11 bits of PS-RNTI and the 11-bit CRC of PUCCH for modulo 2 addition;
  • the reported CSI has segments use the last 11 bits of PS-RNTI and PUCCH
  • the 11-bit CRC of the first segment is modulo-2 added, and the first 11 bits of PS-RNTI and the 11-bit CRC of the second segment of PUCCH are used for modulo-2 addition;
  • another example is when
  • Physical Uplink Shared Channel (PUSCH) resources These resources can be one or more resources triggered by power saving signals/channels. These resources are used for the PUSCH when the UE transmits the aperiodic channel state information (A-CSI).
  • the base station may configure one or more sets of PUSCH resources.
  • the identification method of the PUSCH resource number may be similar to the aforementioned identification method of the PUCCH resource number.
  • the bits before PUSCH encoding are descrambled with PS-RNTI (for example, PS-RNTI is used to generate a pseudo-random sequence, and then the pseudo-random sequence is modulo 2 added with the bits before encoding) .
  • the PUSCH encoded bits are descrambled with PS-RNTI.
  • the CRC of the PUSCH is descrambled with PS-RNTI.
  • the last 16 bits of the 24-bit CRC of the PUSCH are descrambled with PS-RNTI.
  • the 16-bit CRC of the PUSCH is descrambled with the 16-bit PS-RNTI.
  • the DM-RS sequence initialization value of the above PUSCH For example, the DM-RS can be scrambled with PS-RNTI, that is, the PS-RNTI is used for sequence initialization.
  • the base station can also configure a specific value to initialize the DM-RS sequence.
  • CSI-RS or TRS can be sent on this special BWP to help the decoding of power saving signals/channels, and the UE to perform AGC, synchronization, CSI measurement, CSI report, etc.
  • resources eg, CORESET, search space, search space set
  • the base station only sends power saving signals/channels on the currently active BWP ;
  • the UE only receives power saving signals/channels on the currently active BWP.
  • only the resources used to transmit power saving signals/channels are configured on the default BWP, and the base station only sends power saving signals/channels on the default BWP; UE Only receive power saving signals/channels on the default BWP.
  • only the resources (such as CORESET, search space, search space set) for sending power saving signals/channels are configured on the initial BWP, and the base station only sends power saving signals/channels on the initial BWP; UE Only receive power saving signals/channels on the initial BWP.
  • the base station sends power saving signals/channels.
  • the base station sends CSI-RS.
  • the base station can transmit one or more of these signals. Such a signal can be triggered by the power saving signal/channel, or it can be independent of the power saving signal/channel. If the base station sends a CSI-RS signal that is triggered by a power saving signal/channel, then the power saving signal/channel will have 0 bits or 1 bit or 2 bits or 3 bits to indicate what resources the CSI-RS uses to send (for unsupported For the UE with power saving technology, it can be 0 bit here). As shown in Table 20 and Table 21 below.
  • the power saving signal/channel is for a single UE (ie, UE-Specific), then there are 0-6 bits of CSI-RS trigger (CSI Request) bits; in an embodiment, 0- 3 bits.
  • the power saving signal/channel is for a group of UEs (ie, Group-Common), then there are 0-3 bits of CSI-RS trigger (CSI Request) bits; in an embodiment, 0 -2 bits.
  • the number of bits is configured by a higher layer (eg, RRC).
  • CSI-RS trigger CSI Request bits
  • the power saving signal/channel is sent during the DRX-OFF period or the inactive time (Outside of DRX Active Time)
  • there are 0-3 bits of CSI-RS trigger (CSI Request) bits In the embodiment, 0-2 bits.
  • the power saving signal/channel is sent at the activation time, there are 0-6 bits of CSI-RS trigger (CSI Request) bits; in an embodiment, 0-3 bits.
  • the number of bits is configured by a higher layer (eg, RRC).
  • CSI Request 2-bit CSI-RS trigger
  • CSI Request The CSI-RS trigger (CSI Request) bit is used for other purposes; or it is fixed to "0" or "00".
  • the base station if the base station wants to send a power saving signal/channel, the base station also needs to send CSI-RS or TRS. For example, the base station sends the power saving signal/channel and CSI-RS in the same slot; another example, after the base station sends the power saving signal/channel in the Nth slot, it sends the CSI-RS in the N+Kth slot; and for example, The base station sends the CSI-RS in the NLth slot before sending the power saving signal/channel in the Nth Slot, where N, K, and L are all integers.
  • the base station delays the transmission until the DRX-ON time of the UE (for example, on the first Slot of DRX-ON)
  • the base station delays the transmission within the active time of the UE (for example, in the active time of the active time). Sent on a Slot).
  • the base station if the power saving signal/channel to be sent by the base station indicates the switching of the bandwidth part (BWP), the base station also needs to send CSI-RS or TRS. In an embodiment, if the power saving signal/channel to be sent by the base station indicates bandwidth part (BWP) switching, the base station also needs to send CSI-RS or TRS on the target BWP; the UE needs to receive CSI on the target BWP -RS or TRS.
  • BWP bandwidth part
  • the UE if the UE successfully receives the power saving signal/channel, the UE also needs to receive CSI-RS or TRS. In an embodiment, if the UE successfully decodes the power saving signal/channel, the UE also needs to report CSI. In an embodiment, the UE uses PUSCH to report CSI after successfully decoding the power saving signal. In one embodiment, the UE uses PUSCH to report aperiodic CSI after successfully decoding the power saving signal. In an embodiment, the UE uses PUCCH to report CSI after successfully decoding the power saving signal. In an embodiment, the UE uses PUCCH to report aperiodic CSI after successfully decoding the power saving signal.
  • the UE uses PUCCH to report periodic CSI after successfully decoding the power saving signal.
  • the UE if the UE successfully decodes the power saving signal/channel, the UE also needs to send SRS. For example, suppose the UE successfully decodes the power saving signal/channel in the Nth Slot, then the UE needs to receive the CSI-RS in the N+Kth Slot. As another example, assuming that the UE successfully decodes the power saving signal/channel in the Nth Slot, the UE should report the CSI in the N+Mth Slot.
  • the UE should send the SRS in the N+Pth Slot, where N, K, M, and P are all integers.
  • the UE receives the CSI-RS or TRS within the DRX-ON time (or active time) (For example, receive on the first Slot of DRX-ON).
  • the bits to be sent in the PUSCH are scrambled according to the PS-RNTI, as follows:
  • the scrambling sequence is initialized using the following initialization seed c init :
  • c init n RNTI ⁇ 2 15 + n ID ;
  • n RNTI takes the value of PS-RNTI
  • n ID is a parameter configured by a higher layer.
  • n RNTI is a cell radio network temporary identity (C-RNTI) or modulation and coding scheme C-RNTI (MCS-C-RNTI) or a configured scheduling RNTI (Configured Scheduling Radio Network Temporary Identifier, CS-RNTI)
  • C-RNTI cell radio network temporary identity
  • MCS-C-RNTI modulation and coding scheme
  • CS-RNTI Configured Scheduling Radio Network Temporary Identifier
  • PS-RNTI is used as part of the DM-RS sequence initialization seed c init in PUSCH, as follows:
  • n SCID ⁇ 0,1 ⁇ is the parameter configured by the higher layer, (which is, ).
  • the PDCCH/DCI that triggers PUSCH transmission eg, report CSI
  • C-RNTI or MCS-C-RNTI or CS-RNTI or PS-RNTI is scrambled by C-RNTI or MCS-C-RNTI or CS-RNTI or PS-RNTI
  • the bit (b(i)) to be sent in the PUCCH is scrambled according to the PS-RNTI, as follows:
  • the scrambling sequence is initialized using the following initialization seed c init :
  • c init n RNTI ⁇ 2 15 + n ID ;
  • n RNTI takes the value of PS-RNTI
  • n ID is a parameter configured by a higher layer.
  • n RNTI takes the cell radio network temporary identity (C-RNTI)
  • PS-RNTI is used as part of the DM-RS sequence initialization seed c init in the PUCCH, as follows:
  • Is the number of symbols in a slot Is the slot number of the current wireless frame when the subcarrier interval is configured as ⁇ , and l is the symbol index,
  • the PS-RNTI is used as part of the DM-RS sequence initialization seed c init in the PUCCH, as follows:
  • PS-RNTI is used as a part of the DM-RS sequence generation parameter f ss in PUCCH, as follows:
  • f ss (n ID + n PS-RNTI ) mod 30 or, simply, n ID + n PS-RNTI To replace the value of n ID .
  • the UE if the power saving signal/channel decoded by the UE indicates the switching of the bandwidth part (BWP), the UE also needs to receive CSI-RS or TRS. In an embodiment, if the power saving signal/channel decoded by the UE indicates the switching of the bandwidth part (BWP), the UE also needs to report CSI. In an embodiment, if the power saving signal/channel decoded by the UE indicates the switching of the bandwidth part (BWP), the UE also needs to send an SRS.
  • the first set of CSI-RS resources corresponds to the first downlink beam.
  • the second set of CSI-RS resource numbers (NZP-CSI-RS-ResourceId) adds one to the previous set of CSI-RS resource numbers.
  • the first uplink beam is determined by the SRS resource corresponding to the first set of CSI-RS resources.
  • the first set of CSI-RS resources corresponds to the first downlink beam set; one beam set may include one or more beams.
  • one downlink beam set corresponds to one uplink beam set.
  • the CSI-RS resource triggered by the power saving signal/channel is transmitted using a single antenna port (for example, the port number is 0 or 3000).
  • the CSI-RS resource triggered by the power saving signal/channel is transmitted using two antenna ports (for example, the port numbers are 0 and 1; or 3000 and 3001).
  • the CSI-RS resource triggered by the power saving signal/channel is transmitted using 4 antenna ports (for example, the port numbers are 0, 1, 2, and 3; or 3000, 3001, 3002, and 3003). In an embodiment, the CSI-RS resource triggered by the power saving signal/channel is transmitted using 8 antenna ports (for example, the port number is 0, 1, 2, ... 7; or 3000, 3001, ...3007).
  • the base station triggers the UE to send PUSCH or PUCCH (to report CSI).
  • the UE successfully decodes the power saving signal/channel it needs to measure the CSI-RS on the resource configured by the base station and report the CSI on the configured PUCCH resource.
  • the UE successfully decodes the power saving signal/channel it needs to measure the CSI-RS on the resource configured by the base station and report the CSI on the configured PUSCH resource.
  • the UE after the UE successfully decodes the power-saving signal/channel, it needs to measure the CSI-RS on the resource configured by the base station and report the CSI on the configured PUSCH resource or PUCCH resource; in one embodiment, the UE should The PUCCH resource is preferred for reporting.
  • the UE can measure the downlink channel conditions.
  • the base station After receiving the PUSCH or PUCCH, the base station knows the downlink channel conditions, and can also (through DM-RS) infer the uplink channel conditions. After the base station knows the channel conditions, the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • FIG. 12 is a schematic diagram of copying one or more symbols of a power saving signal/channel to enhance decoding performance of a power saving signal/channel provided by an embodiment.
  • the base station Before sending the power saving signal/channel, the base station copies one or more symbols of the power saving signal/channel to be sent and sends it before the power saving signal/channel. For example, assuming that the power saving signal/channel is composed of one OFDM symbol in time, this symbol can be copied and placed on the symbol before the power saving signal/channel for transmission. In an embodiment, this one symbol can be copied and placed on the one symbol before the power saving signal/channel and the previous two symbols for transmission (ie, two symbols are transmitted). In an embodiment, this one symbol can be copied and placed on one symbol before the power saving signal/channel, the previous 2 symbols, and the previous 3 symbols for transmission (that is, 3 symbols are transmitted).
  • this symbol can be copied and placed on the second symbol before the power saving signal/channel for transmission (that is, one symbol is separated, and a total of one symbol is transmitted).
  • this symbol can be copied and placed on the third symbol before the power saving signal/channel for transmission (ie, two symbols are separated, and a total of one symbol is transmitted).
  • this symbol can be copied and placed in a slot (Slot) before the power saving signal/channel for transmission (that is, a Slot is separated, that is, 14 symbols are separated, and a total of A symbol).
  • a Slot is separated, that is, 14 symbols are separated, and a total of A symbol.
  • this symbol can be copied and placed on 2 slots (Slot) before the power saving signal/channel for transmission (that is, 2 Slots are separated, that is, 28 symbols are separated, a total of A symbol was sent).
  • the second symbol can be copied and placed on the symbol before the power saving signal/channel for transmission.
  • these two symbols can be copied and sent before the power saving signal/channel.
  • the third symbol can be copied and placed on a symbol before the power saving signal/channel for transmission.
  • these 3 symbols can be copied and sent before the power saving signal/channel.
  • the order of resource elements (Resource Elements, RE) of the power saving signals/channels can be reversed to distinguish true power saving (PS) signals and copied symbols.
  • the power saving signal/channel consists of one OFDM symbol in time and M subcarriers in frequency (numbered as 0, 1, 2, 3,..., M-2, M-1 )
  • M subcarriers in frequency numbered as 0, 1, 2, 3,..., M-2, M-1
  • you can place it in the reverse order for example, according to the number M-1, M-2, M-3,..., 2, 1, 0 place).
  • the power saving signal/channel when copying, can be shifted by a fixed phase. For example, multiply the data on each RE by exp(-j ⁇ ).
  • exp() is an exponent based on the natural logarithm
  • j is the imaginary unit
  • is the phase.
  • the UE can combine the power-saving signal/channel with the previously received copy content, thereby improving the decoding performance of the power-saving signal/channel, thereby saving the power of the UE.
  • FIG. 13 is a schematic diagram of copying the demodulation reference signal of the power saving signal/channel to enhance the decoding performance of the power saving signal/channel provided by an embodiment.
  • the base station Before sending the power saving signal/channel, the base station copies the demodulation reference signal (DM-RS) of the power saving signal/channel to be sent, and sends it before the power saving signal/channel.
  • the DM-RS in this symbol can be copied and placed on the symbol before the power saving signal/channel for transmission.
  • this one symbol can be copied and placed on the one symbol before the power saving signal/channel and the previous two symbols for transmission (that is, the DM-RS with two symbols is transmitted).
  • this symbol can be copied and placed on one symbol before the power saving signal/channel, the previous 2 symbols, and the previous 3 symbols for transmission (ie, 3 symbols DM-RS are transmitted).
  • the DM-RS of this symbol can be copied and placed on the second symbol before the power saving signal/channel for transmission (that is, one symbol is separated, and a total of one symbol of DM-RS is transmitted) .
  • the DM-RS of this symbol can be copied and placed on the third symbol before the power saving signal/channel for transmission (that is, separated by 2 symbols, a total of one symbol of DM-RS is transmitted ).
  • the DM-RS of this symbol can be copied and placed on the previous Slot before the power saving signal/channel for transmission (that is, one Slot is separated, that is, 14 symbols are separated, and a total of transmission DM-RS with one symbol).
  • the DM-RS of this symbol can be copied and placed on the first 2 Slots before the power saving signal/channel for transmission (that is, 2 Slots are separated, that is, 28 symbols are separated, A total of one symbol of DM-RS) is sent.
  • the DM-RS in these 2 symbols can be copied and placed in the original order on the 2 symbols before the power saving signal/channel for transmission.
  • the power saving signal/channel is composed of 2 OFDM symbols in time
  • all the DM-RS in these 2 symbols can be copied and placed on the symbol before the power saving signal/channel in the order of time and frequency.
  • Send the density of DM-RS is generally 1/4 or 1/3, so it can be put down).
  • the power saving signal/channel is composed of 2 OFDM symbols in time
  • all the DM-RS in these 2 symbols can be copied and placed in a Slot before the power saving signal/channel in the order of time and frequency. Send the first symbol up.
  • the DM-RS in these 3 symbols can be copied and placed in the original order on the 3 symbols before the power saving signal/channel for transmission.
  • the power saving signal/channel is composed of 3 OFDM symbols in time
  • all the DM-RS in these 3 symbols can be copied and placed on the symbol before the power saving signal/channel in the order of time and frequency. send.
  • the original initialization seed c init remains unchanged. In one embodiment, when the DM-RS is copied, the position where the DM-RS symbol is actually placed is used to regenerate the initialization seed c init .
  • the UE can combine the DM-RS of the power-saving signal/channel with the previously received copy of the DM-RS content, which can improve the demodulation/decoding performance of the power-saving signal/channel, thereby saving the UE Electricity.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • the resources of the reference signal (e.g., CSI-RS, TRS) sent before the power saving signal/channel is sent;
  • Resources used by power saving signals/channels eg, control resource set CORESET, search space, search space set
  • Resources of reference signals eg, CSI-RS, TRS; TRS can be obtained by configuring CSI-RS
  • the resource for the UE to send a reference signal for example, SRS
  • the UE transmits resources of uplink channels (e.g., PRACH, PUCCH, PUSCH) (e.g., PUCCH resources for UE reporting CSI, PUSCH resources for UE reporting CSI).
  • resources of uplink channels e.g., PRACH, PUCCH, PUSCH
  • PUCCH resources for UE reporting CSI e.g., PUSCH resources for UE reporting CSI.
  • the base station sends the reference signal before the power saving signal/channel is sent.
  • the base station is sending a power saving signal/channel.
  • Some bit fields of the power saving signal/channel trigger the base station or/and the UE to perform certain operations. As shown in Table 22-Table 24 below.
  • the base station directly operates according to the one-bit "1” or the 2-bit “11” or the 3-bit “111” in the above table.
  • the power saving signal/channel does not have a corresponding bit, but after the UE successfully receives the power saving signal/channel, it will follow the one-bit "1” or the 2-bit "11” or the 3-bit in the above table. "111" to operate.
  • the power saving signal/channel is to express "Go-To-Sleep (GTS)"
  • GTS Go-To-Sleep
  • both the base station and the UE directly follow the one-bit "0" or 2 in the above table.
  • One-bit "00" or three-bit "000” are executed. That is, there is no operation.
  • the trigger bit field of the power saving signal/channel is all "0"
  • the trigger bit field of the power saving signal/channel is all "0”
  • it means that there is no CSI trigger when the trigger bit field of the power saving signal/channel is all "0”, it means that there is no CSI-RS trigger (and thus no CSI report).
  • the trigger bit field of the power saving signal/channel when the trigger bit field of the power saving signal/channel is all "0", it means that the CSI report is not triggered. In an embodiment, when the trigger bit field of the power saving signal/channel is all "0", it means that there is no SRS trigger.
  • the UE can measure the downlink channel conditions.
  • the base station After receiving the PUSCH or PUCCH (where the CSI report is carried on the PUCCH or PUSCH), the base station knows the downlink channel status, and can also infer the uplink channel status. After the base station knows the channel conditions, the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing the service delay and reducing the power consumption of the UE.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • the resource for the UE to send a reference signal for example, SRS
  • the UE sends the ACK resources for the power-saving signal/channel carried on the PUCCH (for example, PUCCH uses format 0 or format1; the time deviation of PUCCH relative to power-saving signal/channel; PUCCH relative to the above SRS Deviation; frequency resource used by PUCCH).
  • PUCCH uses format 0 or format1; the time deviation of PUCCH relative to power-saving signal/channel; PUCCH relative to the above SRS Deviation; frequency resource used by PUCCH.
  • the base station sends power saving signals/channels.
  • the UE receives the aforementioned power saving signal/channel.
  • the UE successfully decodes the aforementioned power saving signal/channel, it sends an SRS.
  • the power saving signal/channel is for a group of UEs (ie, the group is common. For example, when the power saving signal/channel is scrambled with PS-RNTI), then the UE transmits the SRS on the first set of SRS resources.
  • the power saving signal/channel is for a single UE (ie, UE-specific. For example, when the power saving signal/channel is scrambled with C-RNTI or CS-RNTI or MCS-RNTI), then the UE is in the second set of SRS SRS is sent on the resource.
  • the UE successfully decodes the above-mentioned power saving signal/channel, it sends an ACK through the PUCCH. If the power saving signal/channel is for a group of UEs (that is, the group is common), then the UE sends PUCCH (bearing ACK) on the first set of PUCCH resources. If the power saving signal/channel is for a single UE (ie, dedicated to the UE), the UE transmits the PUCCH on the second set of PUCCH resources.
  • the UE needs to send an ACK (carried on the PUCCH) for the power saving signal/channel, then the UE needs the previous slot of the PUCCH to send the SRS. In an embodiment, if the UE needs to send an ACK (carried on the PUCCH) for the power saving signal/channel, then the UE needs the first 2 slots of the PUCCH to send the SRS (send once). In an embodiment, if the UE needs to send an ACK (carried on the PUCCH) for the power saving signal/channel, then the UE needs to send the SRS in both the previous slot and the first 2 slots of the PUCCH (transmit 2 times).
  • the UE needs to send an ACK (carried on the PUCCH) for the power saving signal/channel, the UE needs to send the SRS on the previous symbol of the PUCCH. In an embodiment, if the UE needs to send an ACK for the power saving signal/channel, the UE needs to send the SRS on the first and the first 2 symbols of the PUCCH (2 times in total). In an embodiment, if the UE needs to send an ACK for the power saving signal/channel, the UE needs to send the SRS on the first to the first 3 symbols of the PUCCH (total 3 times). In an embodiment, if the UE needs to send an ACK for the power saving signal/channel, the UE needs to send the SRS on the first to the first 4 symbols of the PUCCH (4 times in total).
  • the UE can measure the downlink channel conditions. After receiving the SRS, the base station knows the uplink channel conditions. Thereby PUCCH can be decoded better. After the base station knows the correct decoding of the power-saving signal/channel and the channel condition, the transmission efficiency between the base station and the UE can be improved, so that data transmission can be completed faster, thereby reducing service delay and reducing the power consumption of the UE.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • the period (T) and deviation (O) of the power saving signal/channel sent by the base station can separately configure the cycle and deviation of the power-saving signal/wake-up signal (WUS) in the channel, and the cycle of the power-saving signal/go-to-sleep signal (GTS) in the channel. And deviation.
  • the base station transmits the resources of reference signals (eg, CSI-RS).
  • reference signals eg, CSI-RS
  • the UE transmits the resource of the reference signal (eg, SRS).
  • the reference signal eg, SRS
  • the UE reports the PUCCH resources of the CSI.
  • the UE reports the PUSCH resources of the CSI.
  • This parameter can be applied to the BWP belonging to the carrier.
  • This parameter is a positive integer. In one embodiment, the value range is 1-8.
  • the parameter may be for the downlink direction (eg, for PDSCH). In an embodiment, the parameter may be for the uplink direction (for example, for PUSCH).
  • the maximum number of multiple input multiple output layers for a BWP (maxMIMO-Layers-BWP).
  • This parameter is a positive integer. In one embodiment, the value range is 1-8. In an embodiment, the presence of this parameter is optional (that is, the base station may not configure this parameter). If this parameter does not appear, then the UE should use maxMIMO-Layers for the carrier instead of maxMIMO-Layers-BWP. In an embodiment, if the parameter does not appear, then the maxMIMO-Layers-BWP value is 2.
  • the maximum multiple input multiple output layer timer for BWP (maxMIMO-Layers-BWP-Timer).
  • maxMIMO-Layers-BWP-Timer when a BWP is activated (ie, a BWP becomes an active BWP), the timer is started. When the timer expires, maxMIMO-Layers-BWP should take the value of maxMIMO-Layers. In an embodiment, when the timer expires, maxMIMO-Layers-BWP should take the value of min (maxMIMO-Layers, maxMIMO-Layers-BWP). Among them, min() is the smaller of 2 numbers. In an embodiment, when the timer expires, maxMIMO-Layers-BWP should take the value of min(2, maxMIMO-Layers-BWP).
  • the base station sends CSI-RS.
  • the base station sends power saving signals/channels.
  • O is the transmission time deviation of the power saving signal/channel
  • mod() is the modulo operation
  • SFN is the system frame number (take 0.1-01023)
  • F is the length of a radio frame
  • SLOT is the current Time slot number (take 0...9)
  • T is the transmission period of the power saving signal/channel.
  • the UE will receive the power saving signal/channel when the above conditions are met.
  • the power saving signal/channel has a wake-up function (WUS, notifying the UE that it needs to receive PDCCH) and a sleep function (GTS, notifying the UE that it does not need to receive a PDCCH).
  • WUS wake-up function
  • GTS sleep function
  • the UE sends an SRS corresponding to the CSI-RS sent by the base station for the second time, and reports CSI.
  • the base station can perform the same operation on each carrier, and the UE can also perform the same operation on each carrier. These operations can be performed synchronously on each carrier or independently.
  • other operations e.g., CSI-RS Transmission/reception, SRS transmission
  • PCell Primary Cell
  • SRS transmission can be synchronized on each carrier. That is, the power saving signal/channel on the primary carrier (PCell) will trigger the UE to report the CSI of each carrier (or serving cell; Serving Cell).
  • other operations can be performed synchronously on each carrier.
  • other operations such as CSI-RS transmission/reception, SRS transmission
  • SRS transmission can be synchronized on each cell.
  • the respective power saving signals/channels on each carrier trigger the UE to report the CSI of the respective carrier (or serving cell; Serving Cell).
  • the power saving signal/channel on the primary carrier triggers the UE to receive the CSI-RS of each carrier (or serving cell; Serving Cell).
  • the respective power saving signal/channel on each carrier triggers the UE to receive the CSI-RS of the respective carrier (or serving cell; Serving Cell).
  • the power saving signal/channel on the primary carrier triggers the UE to send SRS on each carrier (or serving cell; Serving Cell).
  • the respective power saving signals/channels on each carrier trigger the UE to send SRS on the respective carrier (or serving cell; Serving Cell).
  • the power saving signal/channel on the primary carrier triggers the base station to send CSI-RS on each carrier (or serving cell; Serving Cell).
  • the respective power saving signals/channels on each carrier trigger the base station to send CSI-RS on the respective carrier (or serving cell; Serving Cell).
  • the carrier indication in the power saving signal/channel will indicate which carrier or carriers need the UE to report CSI.
  • the carrier indication in the power saving signal/channel will indicate which carrier or carriers need the UE to receive CSI-RS.
  • the carrier indication in the power saving signal/channel will indicate which carrier or carriers need the UE to transmit SRS.
  • the power saving signal/channel will indicate that the primary carrier and the activated secondary carrier require the UE to report CSI.
  • the power saving signal/channel triggers the primary carrier and the activated secondary carrier to require the UE to send SRS.
  • the power saving signal/channel will indicate that the primary carrier and the activated secondary carrier require the UE to report CSI.
  • the power saving signal/channel triggers the primary carrier and the activated secondary carrier to require the UE to send SRS.
  • DC Dual Connection
  • the above operations can be performed independently on the primary cell group (MCG, Primary Cell Group) and the secondary cell group (SCG, Secondary Cell Group).
  • the bit field in the power saving signal/channel indicates the carrier (or serving cell) where the UE needs to report CSI. In an embodiment, the bit field in the power saving signal/channel indicates the carrier (or serving cell) on which the UE needs to send the SRS. As shown in Table 25-Table 28 below.
  • the power saving signal/channel has a 0-10 bit Reference Signal (RS) indicator bit, which is used to indicate the combination of the UE reporting CSI or/and sending SRS. These combinations are indicated by the control element (MAC CE) of media access control. Assuming that the power saving signal/channel has a 3-bit RS indicator bit, and assuming that there are currently 10 active carriers (serving cells), then MAC CE can be used to indicate the operation of these carriers, as shown in Table 29 below.
  • RS Reference Signal
  • MAC CE control element
  • the base station and the UE can perform the same above-mentioned operations on the active BWP of each carrier.
  • the base station and the UE may perform the same operation described above on the active BWP on each activated carrier. These operations can be performed synchronously (that is, performed at the same time) on the active BWP of each carrier, or they can be performed independently (that is, they do not need to be performed at the same time, but are performed asynchronously).
  • the power saving signal/channel on the active BWP of the primary carrier and no power saving signal/channel on the secondary carrier
  • other operations can be performed synchronously on the active BWP of each carrier.
  • the power saving signal/channel triggers the UE to perform BWP switching or downlink BWP switching, or by scheduling DCI, or by downlink scheduling DCI, or by PDCCH, or by scheduling downlink PDCCH Trigger
  • the base station and UE need to perform the above operations (such as CSI-RS transmission/reception, SRS transmission) in the target BWP.
  • the UE after the UE receives the power saving signal/channel, it needs to report CSI on each BWP. In an embodiment, the UE needs to report CSI on each BWP of each carrier after receiving the power saving signal/channel. In an embodiment, the UE needs to report CSI on each BWP of each activated carrier after receiving the power saving signal/channel. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI on the active BWP of each activated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI on the active BWP of the primary carrier and each activated secondary carrier.
  • the UE receives the power saving signal/channel it needs to send SRS on each BWP. In an embodiment, after the UE receives the power saving signal/channel, it needs to send SRS on each BWP of each carrier. In an embodiment, after the UE receives the power saving signal/channel, the SRS needs to be sent on each BWP of each activated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to send SRS on the active BWP of each activated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to send SRS on the active BWP of the primary carrier and each activated secondary carrier.
  • the UE receives the power saving signal/channel it needs to report CSI and send SRS on each BWP. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI and send SRS on each BWP of each carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI and send SRS on each BWP of each activated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI and send SRS on the active BWP of each activated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI and send SRS on the active BWP of the primary carrier and each activated secondary carrier.
  • the bit field in the power saving signal/channel indicates the BWP for which the UE needs to report CSI. In an embodiment, the bit field in the power saving signal/channel indicates that the UE needs to send the BWP of the SRS. As shown in Table 30-Table 33 below.
  • the power saving signal/channel has 0-10 bits of RS indicator bits, which are used to indicate the combination of the UE reporting the CSI of the BWP or/and sending the SRS on the BWP. These combinations are indicated by the control element (MAC CE) of media access control. Assuming that the power saving signal/channel has a 4-bit RS indicator bit, and assuming that there are currently 16 active carriers (serving cells) and 64 BWPs are configured, then MAC CE can be used to indicate the operations on the BWP of these carriers, as follows Table 34 below.
  • a certain carrier or BWP
  • a certain carrier or BWP
  • a certain secondary carrier or BWP
  • the base station needs The above-mentioned CSI-RS transmission operation is performed on the dormant carrier (or dormant BWP).
  • a certain secondary carrier or BWP
  • BWP secondary carrier
  • the UE needs to be on the dormant carrier (Or dormant BWP) perform the above-mentioned CSI-RS reception, SRS transmission and CSI report operations.
  • the bit field in the power saving signal/channel indicates the carrier (or serving cell) on which the UE needs to report CSI.
  • the bit field in the power saving signal/channel indicates the carrier (or serving cell) on which the UE needs to send the SRS. As shown in Table 35-Table 38 below.
  • the bit field in the power saving signal/channel indicates the BWP (including the dormant BWP and the BWP that defines the dormant behavior) where the UE needs to report CSI.
  • the bit field in the power saving signal/channel indicates the BWP (including the dormant BWP and the BWP that defines the dormant behavior) that the UE needs to send the SRS. As shown in Table 39-Table 42 below.
  • the PUCCH resource number (or PUCCH channel index; or resource set) used when the UE reports CSI may be implicitly indicated by the power saving signal/channel. For example, when the UE reports a CSI report triggered by a power saving signal/channel (or the UE sends out confirmation information for the power saving signal/channel to successfully decode the power saving signal/channel), the PUCCH resource number used is
  • n CCE, 0 is the first control element (CCE) number of the power saving signal/channel
  • N CCE is the number of CCEs in the control resource set (CORESET) of the power saving signal/channel
  • n PS-RNTI Is the value of the power saving RNTI (0...65535)
  • mod() is a modulo operation
  • N PUCCH is the number of PUCCH resources.
  • the PUCCH resource number used by the UE when reporting the CSI report triggered by the power saving signal/channel is n PS-RNTI modN PUCCH .
  • the PUSCH resource number used is n PS-RNTI modN PUSCH , where N PUSCH is the number of configured PUSCH resources.
  • the UE needs to report the CSI report triggered by the power saving signal/channel.
  • RRC Radio Resource Control
  • the UE needs to report the CSI report triggered by the power saving signal/channel.
  • the higher layer configures the CSI-Mask and the CSI-Mask value is True, the UE needs to report the CSI report triggered by the power saving signal/channel.
  • the higher layer configures the CSI-Mask and the CSI-Mask value is False, the UE needs to report the CSI report triggered by the power saving signal/channel.
  • the UE needs to report the CSI report carried by the PUCCH triggered by the power saving signal/channel. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is False, the UE needs to report the CSI report carried by the PUCCH triggered by the power saving signal/channel. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is True, the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is False, the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel.
  • the UE needs to report the CSI report triggered by the power saving signal/channel. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is True and the UE is in the DRX active time, the UE needs to report the CSI report triggered by the power saving signal/channel. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is True and the UE is at a time outside the DRX activation time, the UE needs to report the CSI report triggered by the power saving signal/channel.
  • the UE needs to report the CSI report triggered by the power saving signal/channel. In an embodiment, if the higher layer configures CSI-Mask and the value of CSI-Mask is False and the UE is outside the DRX activation time, the UE needs to report the CSI report triggered by the power saving signal/channel.
  • the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel.
  • the UE needs to report the CSI carried on the PUSCH triggered by the power saving signal/channel report.
  • the UE needs to report the CSI report carried on the PUCCH triggered by the power saving signal/channel.
  • the UE needs to report the CSI carried on the PUCCH triggered by the power saving signal/channel report.
  • the UE does not report the CSI carried on the PUCCH triggered by the power saving signal/channel report.
  • the higher layer configures CSI-Mask and the CSI-Mask value is False and the UE is outside the DRX activation time, the UE does not report the CSI carried on the PUSCH triggered by the power saving signal/channel report.
  • the UE does not report the CSI report carried on the PUCCH triggered by the power saving signal/channel. In an embodiment, if the higher layer does not configure the CSI-Mask and the UE is at a time outside the DRX activation time, the UE does not report the CSI report carried on the PUSCH triggered by the power saving signal/channel.
  • the UE needs to report the CSI report triggered by the power saving signal/channel during DRX-ON.
  • the UE needs to report the CSI report triggered by the power saving signal/channel when DRX-OFF.
  • the UE needs to report the CSI report triggered by the power saving signal/channel at a time outside the DRX activation time.
  • the UE needs to report the CSI report triggered by the power saving signal/channel during DRX-ON. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is False, the UE needs to report the CSI report triggered by the power saving signal/channel when DRX-OFF. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is False, the UE needs to report the CSI report triggered by the power saving signal/channel at a time outside the DRX activation time.
  • the UE needs to report the CSI report carried on the PUCCH triggered by the power saving signal/channel when DRX-OFF. In an embodiment, if the higher layer configures the CSI-Mask and the CSI-Mask value is False, the UE needs to report the CSI report carried on the PUCCH triggered by the power saving signal/channel at a time outside the DRX activation time.
  • the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel when DRX-OFF.
  • the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel at a time outside the DRX activation time.
  • the UE needs to report the CSI report carried on the PUCCH triggered by the power saving signal/channel when DRX-OFF. In an embodiment, if the upper layer does not configure the CSI-Mask, the UE needs to report the CSI report carried on the PUCCH triggered by the power saving signal/channel at a time outside the DRX activation time. In an embodiment, if the upper layer does not configure CSI-Mask, the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel when DRX-OFF. In an embodiment, if the upper layer does not configure the CSI-Mask, the UE needs to report the CSI report carried on the PUSCH triggered by the power saving signal/channel at a time outside the DRX activation time.
  • the UE does not report the CSI report carried on the PUCCH triggered by the power saving signal/channel during DRX-OFF. In an embodiment, if the upper layer does not configure CSI-Mask, the UE does not report the CSI report carried on the PUCCH triggered by the power saving signal/channel at a time outside the DRX activation time. In an embodiment, if the upper layer does not configure CSI-Mask, the UE does not report the CSI report carried on the PUSCH triggered by the power saving signal/channel during DRX-OFF. In an embodiment, if the upper layer does not configure CSI-Mask, the UE does not report the CSI report carried on the PUSCH triggered by the power saving signal/channel at a time outside the DRX activation time.
  • the UE may report to the base station the maximum number of MIMO layers that the UE expects to be configured (maxMIMO-Layers-Expect) and whether the maximum number of MIMO layers is configured for BWP (ApplyperBWP).
  • maxMIMO-Layers-Expect is a positive integer with a value of 1-8
  • ApplyperBWP is a Boolean (BOOL) parameter with a value of TRUE (that is, configured for BWP) or FALSE (that is, configured for carrier).
  • the reporting method can be physical layer signaling, MAC CE or RRC signaling. After receiving the parameters, the base station can configure appropriate parameters for the UE, thereby saving power.
  • maxMIMO-Layers-Expect may be 4.
  • maxMIMO-Layers-Expect may be 2.
  • ApplyperBWP may be FALSE (that is, configured for the carrier; the maximum number of MIMO layers of each BWP is based on the configuration of the carrier).
  • ApplyperBWP may be TRUE.
  • the base station knows the status of the downlink channel and the status of the uplink channel (and the beam status), thereby improving the transmission efficiency and saving power.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • the base station transmits the resources of reference signals (eg, CSI-RS).
  • reference signals eg, CSI-RS
  • the base station transmits resources for temporary reference signals (eg, SSB, CSI-RS, TRS).
  • resources for temporary reference signals eg, SSB, CSI-RS, TRS.
  • the UE transmits the resource of the reference signal (eg, SRS).
  • the reference signal eg, SRS
  • the UE reports the PUCCH resources of the CSI.
  • the UE reports the PUSCH resources of the CSI.
  • the base station sends CSI-RS.
  • the base station sends power saving signals/channels.
  • the UE receives the power saving signal/channel.
  • the power saving signal/channel has a wake-up function (WUS, notifying the UE that it needs to receive PDCCH) and a sleep function (GTS, notifying the UE that it does not need to receive a PDCCH).
  • WUS wake-up function
  • GTS sleep function
  • the base station transmits the CSI-RS for the second time.
  • the UE sends an SRS corresponding to the CSI-RS sent by the base station for the second time, and reports CSI.
  • the base station can perform the same operation on each carrier, and the UE can also perform the same operation on each carrier. These operations can be performed synchronously on each carrier or independently.
  • other operations e.g., CSI-RS Transmission/reception, SRS transmission
  • PCell Primary Cell
  • SRS transmission can be synchronized on each carrier. That is, the power saving signal/channel on the primary carrier (PCell) will trigger the UE to report the CSI of each carrier (or serving cell; Serving Cell).
  • a specific DCI or PDCCH or MAC CE on the primary carrier triggers the UE to report the CSI of each carrier.
  • other operations eg, CSI-RS
  • MCG Master Cell Group
  • SCG secondary cell group
  • other operations eg, CSI-RS
  • SpCell special Cell
  • other operations such as CSI-RS transmission/reception
  • SRS transmission can be synchronized on each cell.
  • the respective power saving signals/channels on each carrier trigger the UE to report the CSI of the respective carrier (or serving cell; Serving Cell).
  • the power saving signal/channel on the primary carrier triggers the UE to receive the CSI-RS of each carrier (or serving cell; Serving Cell).
  • the respective power saving signal/channel on each carrier triggers the UE to receive the CSI-RS of the respective carrier (or serving cell; Serving Cell).
  • the power saving signal/channel on the primary carrier triggers the UE to send SRS on each carrier (or serving cell; Serving Cell).
  • the respective power saving signals/channels on each carrier trigger the UE to send SRS on the respective carrier (or serving cell; Serving Cell).
  • the power saving signal/channel on the primary carrier triggers the base station to send CSI-RS on each carrier (or serving cell; Serving Cell).
  • the respective power saving signals/channels on each carrier trigger the base station to send CSI-RS on the respective carrier (or serving cell; Serving Cell).
  • the carrier indication in the power saving signal/channel will indicate which carrier or carriers need the UE to report CSI.
  • the carrier indication in the power saving signal/channel will indicate which carrier or carriers need the UE to receive CSI-RS.
  • the carrier indication in the power saving signal/channel will indicate which carrier or carriers need the UE to transmit SRS.
  • the power saving signal/channel will indicate that the primary carrier and the activated secondary carrier require the UE to report CSI.
  • the power saving signal/channel triggers the primary carrier and the activated secondary carrier to require the UE to send SRS.
  • the power saving signal/channel will indicate that the primary carrier and the activated secondary carrier require the UE to report CSI.
  • the power saving signal/channel triggers the primary carrier and the activated secondary carrier to require the UE to send SRS.
  • DC Dual Connection
  • the above operations can be performed independently on the primary cell group (MCG, Primary Cell Group) and the secondary cell group (SCG, Secondary Cell Group).
  • the base station can perform the same operation on each deactivated carrier (Deactived SCell; Released SCell) of the UE; the UE can also perform the same operation on each deactivated carrier Perform the same operation on.
  • the base station may perform the same operation on each active carrier of the UE; the UE may also perform the same operation on each active carrier.
  • the base station can perform the same operation on each carrier in the activation process of the UE; the UE can also perform the same operation on each carrier in the activation process. Operation.
  • the base station may trigger the base station to send temporary reference signals (eg, SSB, CSI-RS, TRS) on the deactivated carrier of the UE on the primary carrier. For example, use PDCCH or DCI or power saving signal/channel to trigger.
  • the base station may send the temporary reference signal on the deactivated carrier of the UE, and the UE may receive the temporary reference signal on the deactivated carrier.
  • the base station may trigger the UE to receive the temporary reference signal.
  • the base station may trigger the UE to report CSI according to the temporary reference signal.
  • the UE may report CSI according to the temporary reference signal on the deactivated carrier.
  • the base station may trigger the UE to send SRS on the deactivated carrier on the primary carrier.
  • the base station may use specific signaling (eg, specific DCI or specific PDCCH or MAC CE or specific signal) to trigger the UE to report CSI according to the temporary reference signal.
  • specific signaling eg, specific DCI or specific PDCCH or MAC CE or specific signal
  • a specific DCI or a specific PDCCH or a MAC CE or a specific signal may be scheduled across carriers.
  • a specific DCI or a specific PDCCH or a MAC CE or a specific signal may activate the secondary cell across carriers.
  • a specific DCI or a specific PDCCH or a MAC CE or a specific signal may be used by the primary carrier to activate the secondary cell across carriers.
  • the bit field in the power saving signal/channel indicates the carrier (or serving cell; including the deactivated carrier) for which the UE needs to report CSI.
  • the bit field in the power saving signal/channel indicates the carrier (or serving cell; including the deactivated carrier) where the UE needs to send the SRS.
  • the specific DCI or specific PDCCH or MAC CE or specific signal on the primary carrier indicates the carrier (or serving cell; including the deactivated carrier) where the UE needs to report CSI.
  • the specific DCI or specific PDCCH or MAC CE or specific signal on the secondary carrier indicates the carrier (or serving cell; including the deactivated carrier) where the UE needs to report CSI.
  • the specific DCI or specific PDCCH or MAC CE or specific signal on the primary carrier indicates the carrier (or serving cell; including the deactivated carrier) where the UE needs to send the SRS.
  • the specific DCI or specific PDCCH or MAC CE or specific signal on the secondary carrier indicates the carrier (or serving cell; including the deactivated carrier) where the UE needs to send the SRS. As shown in Table 43-Table 46 below.
  • the power saving signal/channel has 0-10 bits of RS indicator bits, which are used to indicate the combination of the UE reporting CSI or/and sending SRS. These combinations are indicated by the control element (MAC CE) of media access control. Assuming that the power saving signal/channel has a 3-bit RS indicator bit, and assuming that there are currently 10 active carriers (serving cells), then MAC CE can be used to indicate the operation of these carriers, as shown in Table 47 below.
  • the UE after receiving the power saving signal/channel, the UE needs to report CSI on each BWP of each deactivated carrier. In an embodiment, the UE needs to report CSI on each BWP of each deactivated carrier after receiving the power saving signal/channel. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI on the default BWP or the initial BWP of each deactivated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to send SRS on each BWP of each deactivated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to send an SRS on the default BWP or the initial BWP of each deactivated carrier.
  • the UE after the UE receives the power saving signal/channel, it needs to report CSI and send SRS on each BWP of each deactivated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI and send SRS on the default BWP or initial BWP of each deactivated carrier.
  • the UE after receiving the power saving signal/channel, the UE needs to report CSI on each BWP configured with a temporary reference signal of each deactivated carrier. In an embodiment, after the UE receives a specific DCI or a specific PDCCH or a MAC CE or a specific signal, it needs to report CSI on each BWP configured with a temporary reference signal of each deactivated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to report CSI on each downlink BWP configured with a temporary reference signal of each deactivated carrier.
  • the UE after the UE receives a specific DCI or a specific PDCCH or a MAC CE or a specific signal, it needs to report CSI on each downlink BWP configured with a temporary reference signal of each deactivated carrier. In an embodiment, after the UE receives the power saving signal/channel, it needs to send SRS on the uplink BWP of each deactivated carrier corresponding to each downlink BWP configured with temporary reference signals. In an embodiment, after the UE receives a specific DCI or a specific PDCCH or MAC CE or a specific signal, it needs to transmit on the uplink BWP of each deactivated carrier corresponding to each downlink BWP configured with a temporary reference signal SRS.
  • the bit field in the power saving signal/channel indicates the BWP for which the UE needs to report CSI. In an embodiment, the bit field in the power saving signal/channel indicates that the UE needs to send the BWP of the SRS. In an embodiment, a specific DCI or a specific PDCCH or a MAC CE or a specific signal indicates that the UE needs to report the BWP of CSI. In an embodiment, a specific DCI or a specific PDCCH or a MAC CE or a specific signal indicates that the UE needs to send the BWP of the SRS. As shown in Table 48-Table 51 below.
  • a carrier or BWP
  • the base station and UE need to perform the above operations (such as CSI-RS transmission/reception, SRS transmission) on the carrier (or BWP). ).
  • a certain secondary carrier or BWP
  • the base station needs to send the power saving signal/channel on the primary carrier (or special carrier, or special carrier) before and after The foregoing CSI-RS transmission operation is performed on a carrier configured with a temporary reference signal (or a BWP configured with a temporary reference signal).
  • a secondary carrier or BWP
  • the UE needs to configure a temporary reference signal before and after receiving the power saving signal/channel on the primary carrier (or special carrier).
  • the above-mentioned CSI-RS reception, SRS transmission and CSI report operations are performed on the signal carrier (or the BWP configured with the temporary reference signal).
  • the bit field in the power saving signal/channel indicates the carrier (or serving cell) on which the UE needs to report CSI. In an embodiment, the bit field in the power saving signal/channel indicates the carrier (or serving cell) on which the UE needs to send the SRS. As shown in Table 52-Table 55 below.
  • the bit field in the power saving signal/channel indicates the BWP (including the BWP configured with temporary reference signals) for which the UE needs to report CSI. In an embodiment, the bit field in the power saving signal/channel indicates the BWP (including the uplink BWP corresponding to the downlink BWP configured with the temporary reference signal) that the UE needs to send the SRS. As shown in Table 56-Table 59 below.
  • the PUCCH resource number (or PUCCH channel index; or resource set) used when the UE reports CSI may be implicitly indicated by a specific DCI or a specific PDCCH or MAC CE or a specific signal.
  • the PUCCH used The resource number is
  • n CCE, 0 is the first control element (CCE) number of a specific DCI or a specific PDCCH or MAC CE or a specific signal
  • N CCE is the number of a specific DCI or a specific PDCCH or MAC CE or a specific signal
  • CCE the control element
  • n PS-RNTI is the value of the power saving RNTI (0...65535)
  • mod() is the modulo operation
  • N PUCCH is the number of PUCCH resources.
  • the PUCCH resource number used is n C-RNTI mod N PUCCH or n CA-RNTI mod N PUCCH .
  • n C-RNTI is the UE's cell radio network temporary identifier
  • n CA-RNTI is the UE's carrier activated radio network temporary identifier.
  • the PUSCH resource number used is n C-RNTI mod N PUSCH or n CA-RNTI mod N PUCCH , Among them, N PUSCH is the number of configured PUSCH resources.
  • the CSI-RS triggered by a specific DCI or a specific PDCCH or a MAC CE or a specific signal uses C-RNTI or a carrier activation-radio network temporary identifier (CA-RNTI) to perform Initialize part of the seed.
  • CA-RNTI carrier activation-radio network temporary identifier
  • the temporary reference signal uses C-RNTI or CA-RNTI as part of the initialization seed.
  • the temporary reference signal when the temporary reference signal is triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal, the specific DCI or a specific PDCCH or MAC CE or a specific signal is scrambled using C-RNTI or CA-RNTI.
  • the temporary reference signal when the temporary reference signal is triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal, the bits before coding of the specific DCI or a specific PDCCH or MAC CE or a specific signal use C-RNTI or CA-RNTI Come scramble.
  • the coded bits of the specific DCI or a specific PDCCH or MAC CE or a specific signal use C-RNTI or CA-RNTI Come scramble.
  • the temporary reference signal is triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal
  • the CRC bits of the specific DCI or a specific PDCCH or MAC CE or a specific signal are added using C-RNTI or CA-RNTI.
  • the SRS triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal uses C-RNTI or CA-RNTI as part of the initialization seed.
  • the UE needs to report the CSI report triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal .
  • the higher layer configures the CSI-Mask and the CSI-Mask value is True, the UE needs to report a CSI report triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal.
  • the UE needs to report a CSI report triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal.
  • the higher layer configures the CSI-Mask and the CSI-Mask value is True, the UE needs to report the CSI report carried by the PUCCH triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal.
  • the UE needs to report the CSI report carried by the PUCCH triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal.
  • the UE needs to report the CSI report carried on the PUSCH triggered by a specific DCI, a specific PDCCH, a MAC CE, or a specific signal.
  • the UE needs to report the CSI report carried on the PUSCH triggered by a specific DCI or a specific PDCCH or MAC CE or a specific signal.
  • the base station knows the status of the downlink channel and the status of the uplink channel (and the beam status), thereby improving the transmission efficiency and saving power.
  • the base station configures some configuration parameters for the UE. These configuration parameters include:
  • the control resource set (CORESET) used by the power saving signal/channel can configure multiple CORESETs (for example, three) for the power saving signal/channel, and the beam direction of each CORESET can be different.
  • each BWP can be configured with CORESET for the power saving signal/channel.
  • the minimum RB number of the CORESET is the minimum RB number of the BWP where the CORESET is located.
  • the CORESET and the BWP where the CORESET is located have the same starting RB number.
  • the maximum RB number of the CORESET is the maximum RB number of the BWP where the CORESET is located.
  • the CORESET and the BWP where the CORESET is located have the same ending RB number.
  • CORESET and CORESET 0 ie, CORESET 0
  • CORESET size ie, the two CORESETs contain the same number of RBs.
  • the base station can configure one or more CSI-RS resources (or CSI-RS resource sets) for each beam direction.
  • the base station may configure one or more CSI-RS resources (or CSI-RS resource sets) in the same beam direction as the CORESET used for power saving signals/channels (ie, the CORESET and CSI-RS The beam direction is the same).
  • the base station may configure one or more associated CSI-RS resources (or CSI-RS resource sets) on CORESET used for power saving signals/channels.
  • these CSI-RS resources may be periodic resources, semi-persistent periodic resources, or aperiodic resources.
  • the base station may configure one or more PUCCH resources (or PUCCH resource set; or PUCCH channel index) for reporting CSI for the UE.
  • the base station may configure the UE to feed back one or more PUCCH resources for correctly receiving the power saving signal/channel.
  • the base station may configure one or more PUCCH resources (or PUCCH resource sets; or PUCCH channel indexes) associated with power saving signals/channels for the UE.
  • the base station may configure one or more SRS resources associated with the CSI-RS resource number (NZP-CSI-RS-ResourceId) for the UE. In an embodiment, the base station may configure one or more SRS resources associated with the power saving signal/channel for the UE. In an embodiment, the base station may configure one or more SRS resources associated with the CORESET of the power saving signal/channel for the UE. In an embodiment, the base station may configure one or more SRS resources associated with the beam direction of the power saving signal/channel for the UE. In an embodiment, these SRS resources may be periodic resources, semi-persistent periodic resources, or aperiodic resources.
  • the base station transmits CSI-RS before transmitting the power saving signal/channel. Since the UE is moving, the base station may not know exactly which direction the UE is in. Therefore, when the base station sends CSI-RS, it can send the CSI-RS in the beam direction of the power saving signal/channel to be sent by the base station next. For example, if the base station wants to send power saving signals/channels in 3 beam directions in the future, the base station sends CSI-RS in the 3 beam directions respectively. For example, the base station can perform beam scanning and only send one CSI-RS at a time.
  • the base station sends power saving signals/channels.
  • the base station can use beam scanning to send a power saving signal/channel in one beam direction at a time. For example, in the first time slot, the base station uses the CORESET corresponding to the first beam direction to send the power saving signal/channel; in the second time slot, the base station uses the CORESET corresponding to the second beam direction to send the power saving Signal/channel: In the 3rd time slot, the base station uses the CORESET corresponding to the 3rd beam direction to send the power saving signal/channel. For another example, the base station sequentially sends a power-saving signal/channel on CORESET for different beam directions.
  • the base station simultaneously transmits power saving signals/channels in multiple beam directions on multiple CORESETs (for example, each CORESET corresponds to one beam direction; in one embodiment, a CORESET may have multiple beam directions) .
  • the base station transmits the power saving signal/channel in the beam direction corresponding to the CSI-RS.
  • the base station sends the CSI-RS again.
  • the CSI-RS sent at this time may be triggered by a power saving signal/channel.
  • the CSI-RS sent at this time may be triggered by respective corresponding power saving signals/channels.
  • the CSI-RS sent at this time may be triggered by the power saving signal/channel in the respective beam direction.
  • the CSI-RS sent at this time corresponds to the power saving signal/channel one to one.
  • the beam direction of the CSI-RS sent at this time corresponds to the beam direction of the power saving signal/channel one to one.
  • the CSI-RS sent at this time is sent using beam scanning.
  • the beam scanning mode used by the CSI-RS sent at this time is the same as the beam scanning mode used by the power saving signal/channel. In an embodiment, the beam scanning mode used by the CSI-RS sent at this time is the same as the beam scanning mode used by the CORESET where the power saving signal/channel is located.
  • the UE receives the aforementioned CSI-RS and reports CSI.
  • the UE reports the CSI of the beam directions corresponding to all power saving signals/channels.
  • the UE only reports the CSI (in one embodiment, including the beam number) of the beam direction corresponding to the power saving signal/channel with the best channel quality.
  • the UE reports the beam numbers of the power-saving signal/channel in descending order of channel quality.
  • the UE reports the beam number of the power saving signal/channel with the best channel quality.
  • the reported CSI may be a periodic CSI report, a semi-persistent periodic CSI report, or an aperiodic CSI report.
  • the base station receives the report of the UE.
  • the UE sends SRS.
  • the UE transmits the SRS in a beam scanning manner. For example, the UE sends the SRS on the first beam in the first time slot; the UE sends the SRS on the second beam in the second time slot; the UE sends the SRS on the third beam in the third time slot.
  • the UE transmits SRS in multiple beam directions at once.
  • the SRS is associated with the aforementioned CSI-RS.
  • the UE only transmits SRS in the beam direction corresponding to the power saving signal/channel with the best channel quality.
  • the UE only sends the SRS associated with the CSI-RS in the beam direction corresponding to the CSI-RS with the best channel quality. In an embodiment, the UE only transmits the SRS associated with the above-mentioned CSI-RS in a beam scanning manner in the beam direction corresponding to the CSI-RS with the best channel quality.
  • the base station receives the above-mentioned SRS.
  • the base station knows the downlink channel conditions and beam conditions, as well as the uplink channel conditions and beam conditions, thereby improving transmission efficiency and saving power for the UE.
  • FIG. 14 is a schematic structural diagram of a data transmission device provided by an embodiment.
  • the data transmission device may be configured in a first communication node. As shown in FIG. 14, it includes: an obtaining module 10, a receiving module 11, and a sending module 12.
  • the obtaining module 10 is configured to obtain configuration parameters configured by the second communication node for the first communication node;
  • the receiving module 11 is configured to receive a first message sent by a second communication node, where the first message includes a power saving signal or a power saving channel;
  • the sending module 12 is configured to send the second message to the second communication node.
  • the data transmission device provided in this embodiment implements the data transmission method of the foregoing embodiment.
  • the implementation principle and technical effect of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • the second message is triggered by the first message.
  • the configuration parameters include:
  • the sending module 12 is configured to send a sounding reference signal SRS to the second communication node according to the first message.
  • the sending module 12 is configured to use the physical uplink shared channel PUSCH to send aperiodic channel state information CSI to the second communication node after decoding the first message.
  • the resource indicator value RIV is used to indicate the resource used when the PUSCH is used to send aperiodic CSI to the second communication node.
  • the higher layer configures the resources used when PUSCH is used to send aperiodic CSI to the second communication node.
  • the bits to be sent in the PUSCH are scrambled according to the power-saving wireless network temporary identification PS-RNTI.
  • the DM-RS sequence initialization seed in PUSCH includes PS-RNTI.
  • the cyclic redundancy check CRC bits of the PUSCH are scrambled according to the PS-RNTI.
  • the sending module 12 is configured to use the physical uplink control channel PUCCH to send aperiodic CSI to the second communication node after decoding the first message.
  • the bits to be transmitted in the PUCCH are scrambled according to PS-RNTI.
  • the DM-RS sequence initialization seed in the PUCCH includes PS-RNTI.
  • the CRC bits of the PUCCH are scrambled according to PS-RNTI.
  • the PUCCH resource used when the first communication node sends aperiodic CSI is indicated by the first message.
  • the PUCCH resource number used when the first communication node sends aperiodic CSI is implicitly indicated by the first message.
  • FIG. 15 is a schematic structural diagram of another data transmission device provided by an embodiment, and the data transmission device further includes: a switching module 13.
  • the switching module 13 is configured to perform BWP switching of the bandwidth part, and the BWP switching is triggered by the first message.
  • the sending module 12 is configured to send CSI to the second communication node when there is a BWP handover.
  • the sending module 12 is configured to send CSI to the second communication node in the Xth time slot after the BWP switching is completed, and X is a positive integer.
  • the first message belonging to the primary cell is used to trigger the first communication node to send the CSI of each serving cell to the second communication node.
  • the first message includes:
  • the PUSCH resource associated with the first message configured for the first communication node is not limited to the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations: the following abbreviations:
  • FIG. 16 is a schematic structural diagram of another data transmission device provided by an embodiment.
  • the data transmission device further includes a processing module 14.
  • the processing module 14 is configured to add L "0"s before the original information to be calculated when calculating the CRC of the first message, and L is a positive integer.
  • the first communication node when receiving the first message, assumes that the DM-RS of the first message and the synchronization signal block SSB have the same quasi-co-site QCL characteristics.
  • the sending module 12 is configured to send CSI to the second communication node according to the CSI mask.
  • the sending module 12 is configured to send the CSI of the secondary cell that defines the sleep behavior to the second communication node according to specific signaling.
  • the sending module 12 is configured to send the CSI of the secondary cell configured with the temporary reference signal to the second communication node according to specific signaling.
  • the configuration parameter indicates:
  • PS-RNTI is used as part of the initialization seed of the CSI-RS sequence.
  • the configuration parameters include:
  • the configuration parameters include:
  • the configuration parameter includes: the maximum number of multiple-input multiple-output layers for the serving cell where the BWP is located.
  • the bits to be sent in the first message are scrambled according to PS-RNTI.
  • the encoded bits in the first message are scrambled according to PS-RNTI.
  • the DM-RS sequence initialization seed in the first message includes PS-RNTI.
  • the CRC bits of the first message are scrambled according to PS-RNTI.
  • FIG. 17 is a schematic structural diagram of still another data transmission device provided by an embodiment.
  • the data transmission device may be configured in a second communication node, as shown in FIG. 17, including: a configuration module 20 and a sending module 21.
  • the configuration module 20 is set to configure configuration parameters for the first communication node
  • the sending module 21 is configured to send a first message to the first communication node, the first message including a power saving signal or a power saving channel; and send a third message to the first communication node, the third message including a reference signal.
  • the data transmission device provided in this embodiment implements the data transmission method of the foregoing embodiment.
  • the implementation principle and technical effect of the data transmission device provided in this embodiment are similar, and will not be repeated here.
  • the third message is triggered by the first message.
  • the cyclic redundancy check CRC bit of the first message is scrambled according to the power-saving wireless network temporary identification PS-RNTI.
  • PS-RNTI is used to initialize a sequence in sequence generation, and the sequence is used to generate a reference signal.
  • the configuration parameters include:
  • the configuration parameter indicates:
  • PS-RNTI is used as part of the initialization seed of the CSI-RS sequence.
  • the configuration parameters include:
  • the first message includes:
  • An embodiment of the present application further provides a data transmission device, including a processor, which is configured to implement the method provided in any embodiment of the present application when the computer program is executed.
  • the data transmission device may be the first communication node provided in any embodiment of the application, or may be the second communication node provided in any embodiment of the application, which is not specifically limited in this application.
  • the following embodiments respectively provide a schematic structural diagram of a data transmission apparatus as a UE and a base station.
  • FIG 18 shows a schematic structural diagram of a UE provided by an embodiment.
  • the UE can be implemented in various forms.
  • the UE in this application can include, but is not limited to, mobile phones, smart phones, laptops, and digital broadcast receivers. , Personal Digital Assistant (PDA), Tablet PC (Portable Device, PAD), Portable Media Player (PMP), navigation device, vehicle terminal equipment, vehicle display terminal, vehicle electronic rearview mirror, etc.
  • Mobile terminal equipment such as digital television (television, TV), desktop computer, etc.
  • the UE 50 may include a wireless communication unit 51, an audio/video (A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, and an interface unit 57.
  • Figure 18 shows a UE including various components, but it should be understood that implementation of all the illustrated components is not required. More or fewer components can be implemented instead.
  • the wireless communication unit 51 allows radio communication between the UE 50 and the base station or network.
  • the A/V input unit 52 is configured to receive audio or video signals.
  • the user input unit 53 may generate key input data according to commands input by the user to control various operations of the UE 50.
  • the sensing unit 54 detects the current state of the UE 50, the location of the UE 50, the presence or absence of the user's touch input to the UE 50, the orientation of the UE 50, the acceleration or deceleration movement and direction of the UE 50, and so on, and generates a signal for controlling the UE Command or signal for 50 operations.
  • the interface unit 57 is used as an interface through which at least one external device can connect to the UE 50.
  • the output unit 55 is configured to provide output signals in a visual, audio, and/or tactile manner.
  • the memory 56 may store a software program for processing and control operations executed by the processor 58, etc., or may temporarily store data that has been output or will be output.
  • the memory 56 may include at least one type of storage medium.
  • the UE 50 can cooperate with a network storage device that performs the storage function of the memory 56 through a network connection.
  • the processor 58 generally controls the overall operation of the UE 50.
  • the power supply unit 59 receives external power or internal power under the control of the processor 58 and provides appropriate power required to operate various elements and components.
  • the processor 58 executes at least one functional application and data processing by running a program stored in the memory 56, for example, to implement the method provided in the embodiment of the present application.
  • FIG. 19 shows a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 60, a memory 61, and a communication interface 62; the number of processors 60 in the base station may be one or more
  • a processor 60 is taken as an example; the processor 60, the memory 61, and the communication interface 62 in the base station may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the bus represents one or more of several types of bus structures, including a memory bus or a memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any bus structure among multiple bus structures.
  • the memory 61 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes at least one functional application and data processing of the base station by running software programs, instructions, and modules stored in the memory 61, that is, realizes the above-mentioned data transmission method.
  • the memory 61 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 61 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 61 may include a memory remotely provided with respect to the processor 60, and these remote memories may be connected to the base station through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication interface 62 can be configured to receive and send data.
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer storage media in the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electric, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination of the above.
  • Computer-readable storage media include (non-exhaustive list): electrical connections with one or more wires, portable computer disks, hard drives, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), electrically erasable, programmable Read-Only Memory (EPROM), flash memory, optical fiber, portable compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage Components, magnetic storage devices, or any suitable combination of the above.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and the computer-readable program code is carried in the data signal. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of the present disclosure can be written in one or more programming languages or a combination of multiple programming languages.
  • the programming languages include object-oriented programming languages-such as Java, Smalltalk, C++, Ruby, Go also includes conventional procedural programming languages-such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer (for example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) DVD or CD) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种数据传输方法、装置及计算机可读存储介质。该数据传输方法包括:第一通信节点获取第二通信节点为第一通信节点配置的配置参数;第一通信节点接收第二通信节点发送的第一消息,第一消息包括省电信号或者省电信道;第一通信节点向第二通信节点发送第二消息。

Description

数据传输方法、装置及计算机可读存储介质
本申请要求在2019年08月15日提交中国专利局、申请号为201910755610.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种数据传输方法、装置及计算机可读存储介质。
背景技术
不连续接收(Discontinuous Reception,DRX)是指用户设备(User Equipment,UE)不用连续地接收基站发送的信号或者信道,而是间歇地接收基站发送的信号或者信道。UE不连续接收的周期称为一个DRX周期(DRX cycle)。一个DRX周期包括不连续接收的醒着时间(On duration of a DRX cycle,DRX-ON)和不连续接收的休眠时间(Off duration of a DRX cycle,DRX-OFF)。然而,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)尚未确定基站和UE在DRX-ON之前这一段时间内做什么操作可以达到让UE省电的目的。
发明内容
本申请提供一种数据传输方法、装置及计算机可读存储介质,能够提高第一通信节点和第二通信节点之间的传输效率,从而使第一通信节点省电。
本申请实施例提供一种数据传输方法,包括:
第一通信节点获取第二通信节点为第一通信节点配置的配置参数;
第一通信节点接收第二通信节点发送的第一消息,第一消息包括省电信号或者省电信道;
第一通信节点向第二通信节点发送第二消息。
本申请实施例提供一种数据传输方法,包括:
第二通信节点为第一通信节点配置配置参数;
第二通信节点向第一通信节点发送第一消息,第一消息包括省电信号或者省电信道;
第二通信节点向第一通信节点发送第三消息,第三消息包括参考信号。
本申请实施例提供一种数据传输装置,包括:处理器,处理器用于在执行 计算机程序时实现上述任一实施例的方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的方法。
附图说明
图1为一实施例提供的一种数据传输方法的流程示意图;
图2为一实施例提供的另一种数据传输方法的流程示意图;
图3为一实施例提供的又一种数据传输方法的流程示意图;
图4为一实施例提供的再一种数据传输方法的流程示意图;
图5为一实施例提供的一种预窗的时间位置示意图;
图6为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号、由省电信号/信道触发UE发送探测参考信号并且探测参考信号关联到信道状态信息参考信号的示意图;
图7为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号并且探测参考信号关联到省电信号/信道的示意图;
图8为一实施例提供的一种由下行控制信息触发基站发送信道状态信息参考信号、由下行控制信息触发UE发送探测参考信号并且探测参考信号关联到信道状态信息参考信号的示意图;
图9为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号、由省电信号/信道触发UE发送随机接入信道并且随机接入信道关联到信道状态信息参考信号的示意图;
图10为一实施例提供的一种由省电信号/信道触发UE发送探测参考信号并且探测参考信号关联到信道状态信息参考信号的示意图;
图11为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号并且UE根据对CSI-RS的测量结果来发送物理上行控制信道的示意图;
图12为一实施例提供的一种拷贝省电信号/信道的一个或多个符号来增强省电信号/信道解码性能的示意图;
图13为一实施例提供的一种拷贝省电信号/信道的解调参考信号来增强省电信号/信道解码性能的示意图;
图14为一实施例提供的一种数据传输装置的结构示意图;
图15为一实施例提供的另一种数据传输装置的结构示意图;
图16为一实施例提供的又一种数据传输装置的结构示意图;
图17为一实施例提供的再一种数据传输装置的结构示意图;
图18为一实施例提供的一种UE的结构示意图;
图19为一实施例提供的一种基站的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
DRX是指UE不用连续地接收基站发送的信号或者信道,而是间歇地接收基站发送的信号或者信道。UE不连续接收的周期称为一个DRX周期,一个DRX周期包括DRX-ON和DRX-OFF。如果一个UE在处于DRX-ON的时候接收到了针对该UE的专用调度信息,那么会启动一个不激活定时器,该定时器使得该UE继续保持醒着的状态直到该定时器失效;如果在该定时器失效之前,UE又接收到了针对该UE的专用调度信息,那么该定时器会重新启动。UE在保持醒着的状态(包括DRX-ON和定时器引起的醒着的时间、调度请求发出之后的等待时间等带来的时间)的这段时间称之为活动时间或激活时间(Active Time)。相应地,在一个DRX周期中,除活动时间之外的时间称为不激活时间(Outside of Active Time)。
根据3GPP协议可知,UE需要在DRX-ON的时候接收物理下行控制信道(Physical Downlink Control Channel,PDCCH)、PDCCH承载的下行控制信息(Downlink Control Information,DCI)以及可能的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)(PDSCH由PDCCH来调度),还可能会发送物理上行共享信道(Physical Uplink Shared Channel,PUSCH)(PUSCH由PDCCH来调度)。在DRX-OFF(或不激活时间),由于UE的信道状况发生了变化,而基站不能知道在UE的DRX-OFF(或不激活时间)时UE的信道状况究竟发生了什么变化,那么,如果在DRX-ON的时候,UE需要接收或发送数据,则这种情况下数据传输效率可能会比较低。低的传输效率会使UE浪费较多的电能,导致UE芯片过热。
如果基站需要了解UE的信道状况(包括波束Beam的情况),基站可以发送信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS)、跟踪参考信号(Tracking Reference Signal,T-RS);基站也可以让UE发送探测 参考信号(Sounding Reference Signal,SRS)。基站在发送上述参考信号的时候,需要指定该参考信号的发送配置指示信息(Transmission Configuration Indicator,TCI)。UE在测量得到上述参考信号之后,使用PUSCH或物理上行控制信道(Physical Uplink Control Channel,PUCCH)来报告信道状态信息(Channel-State Information,CSI)。基站可以给UE配置用于报告CSI的PUCCH资源。
基站可以给UE配置一个或多个无线网络临时标识(Radio Network Temporary Identifier,RNTI)。RNTI用于信号/信道(即信号或者信道)的接收或发送。
假设基站知道UE需要在DRX-ON的时候接收或发送数据(例如,下行方向有数据要传输;又如,让UE报告测量结果,如信道质量指示(Channel Quality Indicator,CQI)等),则基站可以在DRX-ON或DRX-OFF的时候发出省电信号或者信道(省电信号或者信道也属于PDCCH)去唤醒UE或让UE做某一种操作。如此,可以让UE做好接收或发送数据的准备,从而能够更高效地完成数据传输,从而使UE省电。
假设基站知道UE既不需要在DRX-ON的时候接收数据,也不需要发送数据,则基站可以发出省电信号或者信道让UE跳过这次的DRX-ON时间(甚至后续的若干个DRX-ON时间)。如此,可以让UE不用醒来,从而使UE省电。
由于3GPP尚未确定基站和UE在DRX-ON之前这一段时间内做什么操作可以达到让UE省电的目的。因此,本申请实施例提供了一种移动通信网络(包括但不限于第五代移动通信网络(5th-Generation,5G)),该网络的网络架构可以包括网络侧设备(例如一种或多种类型的基站,传输节点,接入节点(AP,Access Point),中继,节点B(Node B,NB),陆地无线电接入(UTRA,Universal Terrestrial Radio Access),演进型陆地无线电接入(EUTRA,Evolved Universal Terrestrial Radio Access)等)和终端(UE,用户设备数据卡,中继(relay),移动设备等)。在本申请实施例中,提供一种可运行于上述网络架构上的数据传输方法、装置及计算机可读存储介质,能够使第二通信节点更好地知道第一通信节点的链路状况(包括上行和下行),提高第一通信节点和第二通信节点之间的传输效率,从而使第一通信节点省电。本申请实施例中提供的上述数据传输方法的运行环境并不限于上述网络架构。
下面,对数据传输方法、装置及其技术效果进行描述。
图1为一实施例提供的一种数据传输方法的流程示意图,如图1所示,本实施例提供的方法适用于第一通信节点(如UE),该方法包括如下步骤。
S110、第一通信节点获取第二通信节点为第一通信节点配置的配置参数。
在一实施例中,第一通信节点获取第二通信节点为第一通信节点配置的配置参数的方法可以通过第二通信节点广播获得,也可以直接接收第二通信节点发送的配置参数。
在一实施例中,配置参数包括:
用于解码第一消息的解调参考信号(DeModulation Reference Signal,DM-RS)资源;
DM-RS的扰码号码。
在一实施例中,配置参数指示:
CSI-RS的序列初始化方式;
用省电无线网络临时标识(Power Saving RNTI,PS-RNTI)去做CSI-RS序列的初始化种子的一部分。
在一实施例中,配置参数包括:
CSI-RS相对第一消息提早发送的时间偏差。
在一实施例中,配置参数包括:
针对一个带宽部分(BandWidth Part,BWP)的最大多输入多输出层数。
在本实施例中,若配置参数不包括针对一个BWP的最大多输入多输出层数,则配置参数包括:针对该BWP所在服务小区的最大多输入多输出层数。
S120、第一通信节点接收第二通信节点发送的第一消息,第一消息包括省电信号或者省电信道。
在一实施例中,属于主小区的第一消息用于触发第一通信节点向第二通信节点发送各个服务小区的CSI。
在一实施例中,第一消息包括:
在第一消息的控制资源集(Control-Resource Set,CORESET)资源上配置与CORESET资源关联的CSI-RS资源;
为第一通信节点配置的与第一消息关联的SRS资源;
为第一通信节点配置的与第一消息关联的PUCCH资源;
为第一通信节点配置的与第一消息关联的PUSCH资源。
在一实施例中,第一消息中待发送的比特可以根据PS-RNTI加扰。
在一实施例中,第一消息中编码之后的比特可以根据PS-RNTI加扰。
在一实施例中,第一消息中DM-RS序列初始化种子可以包括PS-RNTI。
在一实施例中,第一消息的循环冗余校验(Cyclic Redundancy Check,CRC)比特可以根据PS-RNTI加扰。
在一实施例中,第一通信节点在计算第一消息的CRC时,在待计算的原始信息前添加L个“0”,L为正整数。
在一实施例中,在接收第一消息时,第一通信节点假定第一消息的DM-RS与同步信号块(Synchronization Signal Block,SSB)具有相同的准共站址(Quasi-Co-Location,QCL)特性。
S130、第一通信节点向第二通信节点发送第二消息。
在一实施例中,第二消息是由第一消息触发的。
在一实施例中,第一通信节点向第二通信节点发送第二消息的方法可以为:第一通信节点根据第一消息,向第二通信节点发送SRS。
在一实施例中,第一通信节点向第二通信节点发送第二消息的方法可以为:在解码第一消息后,第一通信节点利用PUSCH向第二通信节点发送非周期CSI。
利用PUSCH向第二通信节点发送非周期CSI时使用的资源可以使用资源指示值(Resource Indication Value,RIV)来表示,也可以由高层配置,本申请实施例对此不作具体限制。
本实施例中,PUSCH中待发送的比特可以根据PS-RNTI加扰。
本实施例中,PUSCH中DM-RS序列初始化种子可以包括PS-RNTI。
本实施例中,PUSCH的CRC比特可以根据PS-RNTI加扰。
在一实施例中,第一通信节点向第二通信节点发送第二消息的方法可以为:在解码第一消息后,第一通信节点利用PUCCH向第二通信节点发送非周期CSI。
本实施例中,PUCCH中待发送的比特可以根据PS-RNTI加扰。
本实施例中,PUCCH中DM-RS序列初始化种子可以包括PS-RNTI。
本实施例中,PUCCH的CRC比特可以根据PS-RNTI加扰。
第一通信节点发送非周期CSI时使用的PUCCH资源由第一消息指示。具体的,第一通信节点发送非周期CSI时使用的PUCCH资源号码隐含地由第一消息指示。
在一实施例中,在上述实施例步骤S110-S130的基础上,若该方法还可以包括:第一通信节点进行BWP切换,BWP切换由第一消息触发,那么,在本实施例中,第一通信节点向第二通信节点发送第二消息的方法可以为:在有BWP 切换时,第一通信节点向第二通信节点发送CSI。在一实施例中,在有BWP切换时,第一通信节点向第二通信节点发送CSI的方法可以为:第一通信节点在BWP切换完成后的第X个时隙上,向第二通信节点发送CSI,X为正整数。
在一实施例中,在第二消息为CSI的情况下,第一通信节点向第二通信节点发送CSI的方法可以为:第一通信节点根据CSI的掩码,向第二通信节点发送CSI。
在一实施例中,在第二消息为CSI的情况下,第一通信节点向第二通信节点发送CSI的方法可以为:第一通信节点根据特定的信令,向第二通信节点发送定义了休眠行为的辅小区的CSI。
在一实施例中,在第二消息为CSI的情况下,第一通信节点向第二通信节点发送CSI的方法可以为:第一通信节点根据特定的信令,向第二通信节点发送配置了临时参考信号的辅小区的CSI。
图2为一实施例提供的另一种数据传输方法的流程示意图,如图2所示,本实施例提供的方法适用于第二通信节点(如基站),该方法包括如下步骤。
S210、第二通信节点为第一通信节点配置配置参数。
在一实施例中,配置参数包括:
第一消息的DM-RS资源;
DM-RS的扰码号码。
在一实施例中,配置参数指示:
CSI-RS的序列初始化方式;
用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
在一实施例中,配置参数包括:
CSI-RS相对第一消息提早发送的时间偏差。
在一实施例中,配置参数包括:
针对一个BWP的最大多输入多输出层数。
在一实施例中,在本实施例中,若配置参数不包括针对一个BWP的最大多输入多输出层数,则配置参数包括:针对该BWP所在服务小区的最大多输入多输出层数。
S220、第二通信节点向第一通信节点发送第一消息,第一消息包括省电信号或者省电信道。
在一实施例中,属于主小区的第一消息用于触发第一通信节点向第二通信节点发送各个服务小区的CSI。
在一实施例中,第一消息包括:
在第一消息的CORESET资源上配置与CORESET资源关联的CSI-RS资源;
为第一通信节点配置的与第一消息关联的SRS资源;
为第一通信节点配置的与第一消息关联的PUCCH资源;
为第一通信节点配置的与第一消息关联的PUSCH资源。
在一实施例中,第一消息中待发送的比特可以根据PS-RNTI加扰。
在一实施例中,第一消息中编码之后的比特可以根据PS-RNTI加扰。
在一实施例中,第一消息中DM-RS序列初始化种子可以包括PS-RNTI。
在一实施例中,第一消息的CRC比特可以根据PS-RNTI加扰。
S230、第二通信节点接收第一通信节点发送的第二消息。
在一实施例中,第二消息是由第一消息触发的。
在一实施例中,第二通信节点接收第一通信节点发送的第二消息的方法可以为:第二通信节点接收第一通信节点根据第一消息发送的SRS。
在一实施例中,第二通信节点接收第一通信节点发送的第二消息的方法可以为:第二通信节点接收第一通信节点利用PUSCH发送的非周期CSI。
本实施例中,PUSCH中待发送的比特可以根据PS-RNTI加扰。
本实施例中,PUSCH中DM-RS序列初始化种子可以包括PS-RNTI。
本实施例中,PUSCH的CRC比特可以根据PS-RNTI加扰。
在一实施例中,第二通信节点接收第一通信节点发送的第二消息的方法可以为:第二通信节点接收第一通信节点利用PUCCH发送的非周期CSI。
本实施例中,PUCCH中待发送的比特可以根据PS-RNTI加扰。
本实施例中,PUCCH中DM-RS序列初始化种子可以包括PS-RNTI。
本实施例中,PUCCH的CRC比特可以根据PS-RNTI加扰。
在一实施例中,在第二消息为CSI的情况下,第二通信节点接收第一通信节点发送的第二消息的方法可以为:第二通信节点接收第一通信节点根据CSI的掩码发送的CSI。
在一实施例中,在第二消息为CSI的情况下,第二通信节点接收第一通信 节点发送的第二消息的方法可以为:第二通信节点接收第一通信节点根据特定的信令发送的定义了休眠行为的辅小区的CSI。
在一实施例中,在第二消息为CSI的情况下,第二通信节点接收第一通信节点发送的第二消息的方法可以为:第二通信节点接收第一通信节点根据特定的信令发送的配置了临时参考信号的辅小区的CSI。
在一实施例中,第二通信节点可以根据PS-RNTI来初始化SRS序列。
图3为一实施例提供的又一种数据传输方法的流程示意图,如图3所示,本实施例提供的方法适用于第二通信节点(如基站),该方法包括如下步骤。
S310、第二通信节点为第一通信节点配置配置参数。
在一实施例中,配置参数包括:
第一消息的DM-RS资源;
DM-RS的扰码号码。
在一实施例中,配置参数指示:
CSI-RS的序列初始化方式;
用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
在一实施例中,配置参数包括:
CSI-RS相对第一消息提早发送的时间偏差。
S320、第二通信节点向第一通信节点发送第一消息,第一消息包括省电信号或者省电信道。
在一实施例中,第一消息的CRC比特可以根据PS-RNTI加扰。
在本实施例中,PS-RNTI用于在序列生成中初始化序列,该序列用于生成下述参考信号。
在一实施例中,第一消息包括:
在第一消息的CORESET资源上配置与CORESET资源关联的CSI-RS资源;
为第一通信节点配置的与第一消息关联的SRS资源;
为第一通信节点配置的与第一消息关联的PUCCH资源;
为第一通信节点配置的与第一消息关联的PUSCH资源。
S330、第二通信节点向第一通信节点发送第三消息,第三消息包括参考信号。
在一实施例中,第三消息是由第一消息触发的。
图4为一实施例提供的再一种数据传输方法的流程示意图,如图4所示,本实施例提供的方法适用于第一通信节点(如UE),该方法包括如下步骤。
S410、第一通信节点获取第二通信节点为第一通信节点配置的配置参数。
在一实施例中,配置参数包括:
用于解码第一消息的DM-RS资源;
DM-RS的扰码号码。
在一实施例中,配置参数指示:
CSI-RS的序列初始化方式;
用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
在一实施例中,配置参数包括:
CSI-RS相对第一消息提早发送的时间偏差。
S420、第一通信节点接收第二通信节点发送的第一消息,第一消息包括省电信号或者省电信道。
在一实施例中,第一消息的CRC比特可以根据PS-RNTI加扰。即第一通信节点可以根据PS-RNTI来解扰第一消息。
在一实施例中,第一消息包括:
在第一消息的CORESET资源上配置与CORESET资源关联的CSI-RS资源;
为第一通信节点配置的与第一消息关联的SRS资源;
为第一通信节点配置的与第一消息关联的PUCCH资源;
为第一通信节点配置的与第一消息关联的PUSCH资源。
S430、第一通信节点接收第二通信节点发送的第三消息,第三消息包括参考信号。
在一实施例中,第三消息是由第一消息触发的。
下面,以第一通信节点是UE,第二通信节点是基站,第一消息是省电信号或者省电信道(为了简洁,下述记为省电信号/信道)为例,罗列一些示例性实施方式,用于说明本申请实施例提供的数据传输方法。
图5为一实施例提供的一种预窗的时间位置示意图。如图5所示,预窗(也 被称为准备时间(Preparation Period))指出现在不连续接收的醒着时间(DRX-ON)之前或在DRX-ON早期的一段时间。在预窗这一段时间内,UE需要做好接收基站发送的数据或向基站发送数据的准备。另外,在5G-新无线接入技术(New Radio Access Technology,NR)的载波聚合(Carrier Aggregation,CA)中,基站可以给UE配置多个辅载波(即辅小区(SCell))。在SCell的运行过程中,SCell可能是激活的,也可能是去激活的。为了使UE省电,基站可以让一个SCell处于去激活状态,但基站要用这个SCell的时候,基站要快速地激活这个SCell。在这个激活过程中,基站可以用跨载波调度或跨载波激活的方式来激活这个SCell。基站可以配置参考信号(如,SSB、CSI-RS、跟踪参考信号(Tracking Reference Signal,TRS)、主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、SRS、DM-RS、相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)),又称为临时参考信号(Temporary RS),让UE做好同步、自动增益控制(Automatic Gain Control,AGC)、CSI测量等工作。做好了这些工作之后,基站与UE之间的传输效率可以得到提高,从而可以使UE省电。本申请实施例跟预窗和临时参考信号有关。
如果基站给UE配置的DRX周期较大(例如10240ms),那么,为了及时得到信道状况,基站(和UE)使用预窗(发送参考信号、测量参考信号、报告信道状况)是很有必要的;如果UE上次收到的下行信号/信道(如,SSB、CSI-RS、TRS)超过一定时间(如100ms),那么,使用预窗也是很有必要的;如果基站(或UE)需要传输的数据量比较多(如100MByte),那么,使用预窗也是很有必要的;如果UE在接下来的一段时间(如10ms)需要接收寻呼消息(Paging),那么,使用预窗也是很有必要的;在信号变化比较剧烈的场景(如高铁、高速公路)下,使用预窗也是很有必要的;如果基站没有给UE配置DRX但使用了省电信号/信道(使UE监视/跳过监视PDCCH)且省电信号/信道的发送间隔或周期比较大(如20480ms),那么,使用预窗也是很有必要的。
在对预窗的操作中,如果基站期望获得下行信道状况而不需要上行信道状况,那么,可以让基站发送CSI-RS、让UE测量和上报CSI;如果基站需要进行波束管理,那么,可以让基站发送CSI-RS、让UE根据CSI-RS的测量结果来发送关联的SRS;如果基站为了获得上行信道状况,可以让UE发送SRS。
为了使省电信号/信道解码更可靠,可以复制省电信号/信道的DM-RS,放在省电信号/信道之前去发送。
在第一个示例性实施方式中,图6为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号、由省电信号/信道触发UE发送探测参考 信号并且探测参考信号关联到信道状态信息参考信号的示意图。
首先,基站给UE配置一些配置参数。这些配置参数包括:
PS-RNTI:UE需要在DRX-OFF时检查该RNTI。例如,UE在DRX-ON之前的一段时间(如,前5-10个Slot)去检查该RNTI。检查的内容包括:省电信号/信道、PDCCH、DCI、CSI-RS、TRS、DM-RS、SSS、PSS、SSB、PT-RS。在一实施例中,基站需要在UE的DRX-ON之前及DRX-ON时间(或UE的DRX激活时间)检查该RNTI。检查的内容包括:SRS(例如,由省电信号/信道触发的SRS)、物理随机接入信道(Physical Random Access Channel,PRACH;例如,由省电信号/信道触发的PRACH)、PUCCH(例如,由省电信号/信道触发的用于报告CSI的PUCCH)、PUSCH(例如,由省电信号/信道触发的用于报告CSI的PUSCH)。
CSI-RS资源:这些资源可以是由省电信号/信道触发的一个或多个CSI-RS资源。这些资源用于基站发送CSI-RS。这些资源可以在不同服务小区的不同的BWP上。
CSI-RS的发送时间相对省电信号/信道的时间偏差:如果时间偏差是一个负数(单位可以是Slot,也可以是绝对时间,如毫秒),则表示CSI-RS相对省电信号/信道是提早发送的;如果时间偏差是零,则表示CSI-RS和省电信号/信道是在同一个时隙发送的;如果时间偏差是一个正数,则表示CSI-RS相对省电信号/信道是推后发送的。
上述CSI-RS的序列初始化值使用的参数(n ID;取值范围为0-1023)。在序列生成中,用PS-RNTI来初始化该序列,然后用该序列来产生参考信号(如,CSI-RS)。例如CSI-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化(如,n ID=n PS-RNTI;或者对PS-RNTI取1024的模得到初始化值n ID=n PS-RNTI mod 1024,即初始化值取PS-RNTI的二进制的低10比特)。基站也可配置一个特定的值去初始化CSI-RS的序列(例如,n ID=0)。在一实施例中,上述参数n ID也可以应用到TRS上。在一实施例中,用户设备根据PS-RNTI来初始化CSI-RS接收序列;用户设备根据PS-RNTI来初始化TRS接收序列。在一实施例中,CSI-RS用PS-RNTI去作为初始化种子的一部分。例如,初始化种子c init为:
Figure PCTCN2020109206-appb-000001
其中,
Figure PCTCN2020109206-appb-000002
为一个时隙的符号数,
Figure PCTCN2020109206-appb-000003
为子载波间隔配置为μ时当前无线帧的时隙号码,l为符号索引,n ID=n PS-RNTI mod 1024。
在一实施例中,初始化种子c init还可以为:
Figure PCTCN2020109206-appb-000004
其中,n ID为高层配置的参数(例如,n ID=0)。
SRS资源:这些资源可以是由省电信号/信道触发的一个或多个资源。这些资源用于UE发送SRS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。在一实施例中,这些SRS资源可以是非周期的(aperiodic)。这些SRS的发送时间相对省电信号/信道有一个时间偏差(slotOffset)。在一实施例中,时间偏差的范围为0至100个时隙(Slot)。在一实施例中,如果SRS的发送时刻不在UE的DRX-ON或激活时间(Active Time)范围内,则UE需要在DRX-ON的第一个时隙发送SRS。在一实施例中,省电信号/信道可以指示一个时间偏差。在一实施例中,省电信号/信道可以指示一个时间偏差的列表(给出多个时间偏差,UE可选一个最小且可用的时间偏差来发送SRS)。在一实施例中,这些SRS资源可以是周期的(periodic)或半持久的(semi-persistent)。在一实施例中,这些SRS资源使用2个天线端口来发送。在一实施例中,UE可以在不同的BWP上轮流发送SRS。在一实施例中,UE可以在不同的BWP上轮流发送由省电信号/信道触发的SRS。在一实施例中,UE可以在不同服务小区的不同BWP上轮流发送由省电信号/信道触发的SRS。
与上述SRS相关联的CSI-RS资源:这些CSI-RS资源可以是上述的由省电信号/信道触发的CSI-RS资源(即,已在上面列出的CSI-RS资源),也可以是另外配置的CSI-RS资源。
上述SRS的序列初始化值(c Init;取值范围为0-1023)。例如SRS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化(如,c Init=n PS-RNTI;或者对PS-RNTI取1024的模得到初始化值c Init=n PS-RNTI mod 1024,即初始化值取PS-RNTI的二进制的低10比特)。基站也可配置一个特定的值去初始化SRS的 序列,例如,c Init=1023,用c Init对伪随机序列c(i)做初始化;伪随机序列c(i)用于如下的组跳频函数中f gh()或者v参数生成:
Figure PCTCN2020109206-appb-000005
或者,
Figure PCTCN2020109206-appb-000006
其中,
Figure PCTCN2020109206-appb-000007
为子载波间隔配置为μ时当前无线帧的时隙号码,c(i)为伪随机序列,
Figure PCTCN2020109206-appb-000008
为一个时隙的符号数,l 0为时域起始位置,l'为SRS的符号索引,mod为取模操作,v为产生序列的参数,
Figure PCTCN2020109206-appb-000009
为SRS序列的长度,
Figure PCTCN2020109206-appb-000010
为一个RB上的子载波个数。
在一实施例中,基站在接收SRS时,基站根据PS-RNTI来初始化SRS接收序列(如,c Init=n PS-RNTI mod 1024)。在一实施例中,用户设备根据PS-RNTI来初始化SRS序列。在一实施例中,SRS用PS-RNTI去作为初始化种子的一部分。例如,初始化种子u(即,序列组号)为:
Figure PCTCN2020109206-appb-000011
其中,f gh为组跳频函数,
Figure PCTCN2020109206-appb-000012
为子载波间隔配置为μ时当前无线帧的时隙号码,l'为SRS的符号索引,
Figure PCTCN2020109206-appb-000013
SRS的用途配置为“省电”,即“PowerSaving”。也可以把SRS的用途配置为“波束管理”(beamManagement)。
其次,基站发送省电信号/信道。在一实施例中,省电信号/信道为一个PDCCH。在一实施例中,可以用PS-RNTI来加扰省电信号/信道的CRC比特;用PS-RNTI来加扰省电信号/信道的载荷(或编码前的比特);用PS-RNTI来加扰省电信号/信道的编码后的比特。省电信号/信道可以只针对一个UE,也可以针对一组UE。如果省电信号/信道只针对一个UE,那么省电信号/信道由UE的小区无线网络临时标识(Cell-RNTI,C-RNTI)去加扰,或者用PS-RNTI去加 扰,或者同时使用PS-RNTI和C-RNTI去加扰。例如,在加扰的时候,24比特的CRC的后16比特用C-RNTI去加扰(例如,24比特的CRC的后16比特与C-RNTI的二进制比特进行模2加,然后用模2加的结果去替换24比特的CRC的后16比特;在一实施例中,24比特的CRC的前16比特与C-RNTI的二进制比特进行模2加,然后用模2加的结果去替换24比特的CRC的前16比特),24比特的CRC的前24-16=8比特用PS-RNTI的后8比特或PS-RNTI的前8比特去加扰;或者,24比特的CRC的后16比特用PS-RNTI去加扰,24比特的CRC的前24-16=8比特用C-RNTI的后8比特或C-RNTI的前8比特去加扰;或者,先对PS-RNTI和C-RNTI进行模2加,然后用模2加之后的值去跟24比特的CRC的后16比特去加扰。
在一实施例中,上述用PS-RNTI来加扰省电信号/信道的载荷(或编码前的比特)a(i)包括如下操作:
Figure PCTCN2020109206-appb-000014
其中,
Figure PCTCN2020109206-appb-000015
为加扰之后的比特,c(i)为加扰序列,mod2为对前面2个相加数之和取2的模(即,模2加)。加扰序列使用下列初始化种子c init进行初始化:
c init=n PS-RNTI;或者,
c init=n PS-RNTI mod 2 10
其中,n PS-RNTI为PS-RNTI的值。在一实施例中,c init取物理小区号码(Physical Cell Identifier,PCI;即,
Figure PCTCN2020109206-appb-000016
)。
在一实施例中,上述用PS-RNTI来加扰省电信号/信道的编码后的比特b(i)包括如下操作:
Figure PCTCN2020109206-appb-000017
其中,
Figure PCTCN2020109206-appb-000018
为加扰之后的比特,c(i)为加扰序列,mod2为对前面2个相加数之和取2的模(即,模2加)。加扰序列使用下列初始化种子c init进行初始化:
c init=(n RNTI·2 16+n ID)mod 2 31
其中,n RNTI取PS-RNTI的值(n RNTI=n PS-RNTI),n ID为高层配置的参数。在一实施例中,n RNTI取值为0(即,n RNTI=0)。在一实施例中,n ID取物理小区号码(PCI;即,
Figure PCTCN2020109206-appb-000019
)。在一实施例中,n RNTI取PS-RNTI的值(n RNTI=n PS-RNTI),n ID取C-RNTI的值(n RNTI=n C-RNTI)。在一实施例中,n RNTI取C-RNTI的值(n RNTI=n C-RNTI),n ID取PS-RNTI的值(n RNTI=n PS-RNTI)。
在一实施例中,基站在计算省电信号/信道的CRC时,需要在待计算的原始信息最前面添加L个“0”。在一实施例中,UE在计算省电信号/信道的CRC时,需要在待计算的原始信息最前面添加L个“0”。其中,L为正整数;例如,L=24。在一实施例中,基站或UE在计算省电信号/信道的CRC时,CRC寄存器初始化成全“0”。
如果省电信号/信道针对一组UE,那么省电信号/信道由PS-RNTI去加扰。例如,在加扰的时候,24比特的CRC的后16比特用PS-RNTI去加扰;或者24比特的CRC的前16比特用PS-RNTI去加扰。与上述方法类似,在一实施例中,用户设备根据PS-RNTI来解扰省电信号/信道。在一实施例中,用户设备根据PS-RNTI来解扰省电信号/信道的CRC。
在一实施例中,上述PS-RNTI可以是基站事先配置好的(例如,通过RRC信令来配置),也可以是计算出来的(基站和UE使用相同的计算方法)。例如,PS-RNTI=Slot+80*CORESET。其中,Slot为省电信号/信道所在的时隙号码,CORESET为省电信号/信道所在的控制资源集号码。在一实施例中,CORESET取值为搜索空间号码。在一实施例中,PS-RNTI=Slot+160*CORESET。在一实施例中,PS-RNTI=Slot+80*CORESET+800*CCE,其中,CCE为省电信号/信道使用的最小控制信道元素(Control Channel Element,CCE)号码。在一实施例中,PS-RNTI=Slot+160*CORESET+1600*CCE。在一实施例中,PS-RNTI=Slot+80*CORESET+320*BWP,其中,BWP为省电信号/信道所在的BWP号码。在一实施例中,PS-RNTI=Slot+80*CORESET+320*BWP+1280*Carrier,其中,Carrier为省电信号/信道所在的载波号码或服务小区号码。
在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道与SSB是准共站址的(QCL,Qusi-CoLocation)。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的DM-RS与SSB是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的DM-RS天线端口与SSB是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的DM-RS与CSI-RS是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的DM-RS天线端口与CSI-RS是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的DM-RS与TRS是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的DM-RS天线端口与TRS是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的CORESET与最近调度的CORESET是准共站址的。在一实施例中,UE在接收省电信号/信道时,可假定省电信号/信道的CORESET与最近调度的具有最小ID号码的CORESET是准共站址的。 在一实施例中,UE在接收省电信号/信道时,SSB可作为省电信号/信道的空间接收参数(Spatial Rx Parameter)的参考。在一实施例中,UE在接收省电信号/信道时,SSB可作为省电信号/信道的DM-RS的空间接收参数的参考。在一实施例中,UE在接收省电信号/信道时,CSI-RS或TRS可作为省电信号/信道的空间接收参数的参考。在一实施例中,UE在接收省电信号/信道时,CSI-RS或TRS可作为省电信号/信道的DM-RS的空间接收参数的参考。在一实施例中,UE在接收省电信号/信道时,最近调度的CORESET可作为省电信号/信道的空间接收参数的参考。在一实施例中,UE在接收省电信号/信道时,最近调度的CORESET可作为省电信号/信道的CORESET的空间接收参数的参考。在一实施例中,UE在接收省电信号/信道时,最近调度的具有最小ID号码的CORESET可作为省电信号/信道的CORESET的空间接收参数的参考。在一实施例中,省电信号/信道配置为QCL的第4种类型(QCL-TypeD)。在一实施例中,省电信号/信道的CORESET配置为QCL-TypeD。在一实施例中,省电信号/信道的DM-RS配置为QCL-TypeD。在一实施例中,省电信号/信道的DM-RS端口配置为QCL-TypeD。在一实施例中,省电信号/信道配置为与CSI-RS的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道的CORESET配置为与CSI-RS的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道的DM-RS配置为与CSI-RS的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道的DM-RS端口配置为与CSI-RS的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道配置为与SSB的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道的CORESET配置为与SSB的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道的DM-RS配置为与SSB的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,省电信号/信道的DM-RS端口配置为与SSB的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,在上述配置中,如果QCL-TypeD可以配置,则配成QCL-TypeD。
再次,基站发送CSI-RS或TRS。基站可以发送一个或多个这样的信号。这样的信号可以是由省电信号/信道触发的,也可以是独立于省电信号/信道的。如果基站发送CSI-RS信号是由省电信号/信道触发的,那么,省电信号/信道会有0比特或1比特或2比特或3比特指示CSI-RS使用什么资源去发送(对于不支持省电技术的UE,这里可以是0比特;或者,UE会忽略这些比特)。在一实施例中,UE在接收CSI-RS或TRS时,可假定CSI-RS或TRS与SSB是准共站址的(QCL,Qusi-CoLocation)。在一实施例中,UE在接收CSI-RS或TRS时,可假定CSI-RS或TRS与省电信号/信道是准共站址的(QCL,Qusi-CoLocation)。在一实施例中,UE在接收CSI-RS或TRS时,可假定CSI-RS或TRS与省电信号/信道的DM-RS是准共站址的(QCL,Qusi-CoLocation)。在一实施例中, UE在接收CSI-RS或TRS时,可假定CSI-RS或TRS与省电信号/信道的DM-RS天线端口是QCL的。在一实施例中,CSI-RS配置为QCL-TypeD。在一实施例中,TRS配置为QCL-TypeD。在一实施例中,CSI-RS配置为与省电信号/信道的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,CSI-RS配置为与省电信号/信道的CORESET的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,CSI-RS配置为与省电信号/信道的DM-RS的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,CSI-RS配置为与省电信号/信道的DM-RS端口的QCL-TypeD特性相同的QCL-TypeD。在一实施例中,UE在接收CSI-RS或TRS时,SSB可作为CSI-RS或TRS的空间接收参数的参考。在一实施例中,UE在接收CSI-RS或TRS时,省电信号/信道可作为CSI-RS或TRS的空间接收参数的参考。在一实施例中,UE在接收CSI-RS或TRS时,省电信号/信道的DM-RS可作为CSI-RS或TRS的空间接收参数的参考。在一实施例中,UE在接收CSI-RS或TRS时,省电信号/信道的DM-RS天线端口可作为CSI-RS或TRS的空间接收参数的参考。如果基站发送多次/多个这样的省电信号/信道(如,重复发送N=4次;又如,用多个波束发送相同的内容),那么基站需要根据触发情况发送多个CSI-RS/TRS(例如,每个CSI-RS/TRS对应一个省电信号/信道);在一实施例中,UE只需要根据最后一个省电信号/信道来报告CSI(包括定时关系);在一实施例中,UE只需要根据第一个省电信号/信道来报告CSI(包括定时关系);在一实施例中,UE只需要根据第一个成功解码到的省电信号/信道来报告CSI(包括定时关系);在一实施例中,UE只需要根据最后一个省电信号/信道来发送SRS(包括定时关系);在一实施例中,UE只需要根据最佳波束上的省电信号/信道来报告CSI(包括定时关系);在一实施例中,基站可以在多个控制资源集(CORESET)上发送省电信号/信道(如,每个CORESET各发送一个;又如,选择3个CORESET,每个CORESET各发送一个);在一实施例中,UE根据最佳接收质量(如,波束最佳;又如,RSRP最高)的CORESET来报告CSI(包括报告的定时关系);在一实施例中,UE报告CSI的时间偏移(相对省电信号/信道)为max(X,Y),其中,X为基站配置的时间偏移,Y为省电信号/信道相对DRX-ON的时间差,max()为取2者中较大的数;在一实施例中,UE报告CSI的时间偏移(相对省电信号/信道)为min(X,Y),其中,X为基站配置的时间偏移,Y为省电信号/信道相对DRX-ON的时间差,min()为取2者中较小的数;在一实施例中,UE只需要根据最佳波束上的省电信号/信道来发送SRS(包括定时关系)。在一实施例中,一套CSI-RS资源组可包含多个CSI-RS资源集。在一实施例中,一套CSI-RS资源组可包含多个载波的CSI-RS资源集。在一实施例中,一个CSI触发状态可关联到一个或多个(最多3个)CSI资源设置;一个CSI资源设置可包含一个或多个CSI-RS资源集。CSI触发情况如下面 的表1-表3所示。
表1
Figure PCTCN2020109206-appb-000020
表2
Figure PCTCN2020109206-appb-000021
Figure PCTCN2020109206-appb-000022
表3
Figure PCTCN2020109206-appb-000023
在一实施例中,由省电信号/信道触发的CSI-RS的发送操作与由调度DCI(或调度PDCCH;如,DCI Format 0_1)触发的CSI-RS的发送操作相同(其中,调度PDCCH在UE的DRX激活时间发送/接收)。在一实施例中,由省电信号/信道触发的CSI-RS的发送操作(如,在UE的DRX激活时间之外的时间发送;在DRX-OFF时发送)与由调度DCI触发的CSI-RS的发送操作相同(如,由调度PDCCH触发的CSI-RS在UE的DRX激活时间发送)。在一实施例中,由省电信号/信道触发的CSI-RS的接收操作与由调度DCI触发的CSI-RS的接收操作 相同。在一实施例中,由省电信号/信道触发的CSI-RS的接收操作(如,在UE的DRX激活时间之外的时间接收;在DRX-OFF时接收)与由调度DCI触发的CSI-RS的接收操作相同。在一实施例中,由省电信号/信道触发的CSI报告操作与由调度DCI触发的CSI报告操作相同。在一实施例中,由省电信号/信道触发的CSI报告操作(如,在UE的DRX激活时间之外的时间报告;在DRX-OFF时报告)与由调度DCI触发的CSI报告操作相同(其中,由调度PDCCH触发的CSI报告在UE的DRX激活时间发出)。在一实施例中,如果UE配置了DRX,那么UE应报告最近的出现在DRX激活时间之外的CSI测量结果。在一实施例中,如果UE配置了DRX,那么UE应报告最近的在DRX激活时间之外的由省电信号/信道触发的CSI测量结果。在一实施例中,如果UE配置了DRX,那么UE应报告最近的由省电信号/信道触发的CSI测量结果。在一实施例中,由省电信号/信道触发的TRS的发送操作与由调度DCI触发的TRS的发送操作相同。在一实施例中,由省电信号/信道触发的TRS的接收操作与由调度DCI触发的TRS的接收操作相同。
然后,基站触发UE发送SRS。UE可以发送一个或多个SRS。这个SRS可以是由省电信号/信道触发的,也可以是由DCI触发的。如果UE发送SRS信号是由省电信号/信道触发的,那么,省电信号/信道会有1比特或2比特指示SRS使用什么资源去发送。在一实施例中,如果UE接收到内容不一致的2个或多个省电信号/信道,例如一个省电信号/信道要求UE发送SRS,而另一个省电信号/信道不要求UE发送SRS,那么UE将不发送SRS。在一实施例中,如果UE接收到内容不一致的2个或多个省电信号/信道,那么UE需要发送SRS。在一实施例中,如果UE接收到内容不一致的2个或多个省电信号/信道,那么UE按照具有最小CCE号码的省电信号/信道来执行。在一实施例中,如果UE接收到内容不一致的2个或多个省电信号/信道,那么UE按照具有最大CCE聚合度的省电信号/信道来执行(如果聚合度一样,则按其所在的最小CCE号码最小的省电信号/信道来执行)。如下面的表4和表5所示。
表4
Figure PCTCN2020109206-appb-000024
表5
Figure PCTCN2020109206-appb-000025
在一实施例中,由省电信号/信道触发的SRS的发送操作与由调度DCI(或调度PDCCH;如,DCI Format 0_1)触发的SRS的发送操作相同(其中,由调度DCI触发的SRS在UE的DRX激活时间发送)。在一实施例中,由省电信号/信道触发的SRS的发送操作(如,这时候的SRS在UE的DRX激活时间之外的时间发送;在DRX-OFF时发送)与由调度DCI触发的SRS的发送操作相同。在一实施例中,由省电信号/信道触发的SRS的发送操作与由组公共的DCI Format 2_3触发的SRS的发送操作相同(其中,由组公共的DCI Format 2_3触发的SRS在UE的DRX激活时间发送)。
通过上述操作之后,UE可以测量下行的信道状况、测量得到下行最佳的波束(Beam)并在与最佳Beam对应的资源上发送SRS。基站在接收到SRS之后,知道了下行最佳的Beam,也知道了上行的信道状况和Beam的情况,从而推断出下行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在一实施例中,当UE接收到的CSI-RS的参考信号接收功率(CSI-RSRP,CSI-RS Reference Signal Received Power)低于一定值时(如,-120dBm),UE可以不用监听上述省电信号/信道(这时候,UE按正常的DRX去操作);在一实施例中,当UE接收到的同步信号块(SSB)的参考信号接收功率(SSB-RSRP)低于一定值时(如,-130dBm),UE可以不用监听上述省电信号/信道;在一实施例中,当UE接收到的同步信号块(SSB)的辅同步信号(SSS)的参考信号接收功率(SSB-RSRP)低于一定值时(如,-135dBm),UE可以不用监听上述省电信号/信道。当UE不用监听上述省电信号/信道时,可以节省一部分电能,也可以防止UE误检/漏检,防止UE产生错误操作。
在第二个示例性实施方式中,图7为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号并且探测参考信号关联到省电信号/信道的示意图。
首先,基站给UE配置一些配置参数。这些配置参数包括:
用于省电的无线网络临时标识(PS-RNTI):UE需要在DRX-OFF时检查该RNTI。例如,UE在DRX-ON之前的一段时间(如,前0-20个Slot)去检查该RNTI。检查的内容包括:省电信号/信道、物理下行控制信道(PDCCH)、下行控制信息(DCI)、信道状态信息参考信号(CSI-RS)、跟踪参考信号(TRS)、解调参考信号(DM-RS)、辅同步信号(SSS)、主同步信号(PSS)、同步信号块(SSB)、相位跟踪参考信号(PT-RS)。
用于解码省电信号/信道的解调参考信号(DM-RS)的资源:例如,DM-RS扰码号码(ID)。基站可以配置一个或多个这样的ID。例如,这样的ID用16比特对应的整数(即,ID的范围为0~65535)来表达,例如,ID=0,又如,ID=1。这样的ID用于产生DM-RS序列时的初始化值。在一实施例中,用户设备根据PS-RNTI(n PS-RNTI)来初始化DM-RS接收序列。在一实施例中,DM-RS用PS-RNTI去作为初始化种子c init的一部分,如下:
Figure PCTCN2020109206-appb-000026
其中,
Figure PCTCN2020109206-appb-000027
为一个时隙的符号数,
Figure PCTCN2020109206-appb-000028
为子载波间隔配置为μ时当前无线帧的时隙号码,l为符号索引,N ID=n PS-RNTI,mod为取模操作。在一实施例中,N ID取值为UE的C-RNTI(n C-RNTI);在一实施例中,在UE的激活时间内(Active Time),N ID取值为UE的C-RNTI。在一实施例中,N ID=(n PS-RNTI+n C-RNTI)mod 2 16。在一实施例中,在UE的激活时间内(DRX Active Time),N ID=(n PS-RNTI+n C-RNTI)mod 2 16。在一实施例中,在UE的激活时间之外(Outside of DRX Active Time;或DRX OFF),有N ID=n PS-RNTI
在一实施例中,DM-RS用PS-RNTI去作为初始化种子c init的一部分,如下:
Figure PCTCN2020109206-appb-000029
其中,N ID为高层配置的参数(如,取为0)。
上述DM-RS的发送配置指示信息(TCI):例如,可以配置成与同步信号块(SSB)的TCI相同。又如,DM-RS的TCI配置成与同步信号块(SSB)中的DM-RS的TCI相同。再如,DM-RS的TCI配置成与CSI-RS的TCI相同。
上述DM-RS的QCL配置:例如,DM-RS可以配置成与同步信号块(SSB)的QCL相同。又例如,DM-RS端口可以配置成与同步信号块(SSB)的QCL相同。又例如,DM-RS可以配置成与CSI-RS的QCL相同。又例如,DM-RS端口可以配置成与CSI-RS的QCL相同。
探测参考信号(SRS)资源:这些资源可以是由省电信号/信道触发的一个或多个资源。这些资源用于UE发送SRS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。这些资源可以关联到省电信号/信道上,也可以关联到上述的省电信号/信道上的DM-RS上。在一实施例中,这些SRS资源可以关联到SSB。在一实施例中,这些SRS资源可以关联到CSI-RS。
上述SRS的序列初始化值:例如SRS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化SRS的序列。
SRS的用途配置为“省电”,即“PowerSaving”。也可以把SRS的用途配置为“波束管理”(beamManagement)。
SRS相对省电信号/信道的定时关系:例如,在接收到省电信号/信道的时隙(Slot N)加上一个固定常数K个时隙后,UE在Slot N+K上发送SRS。定时关系也可以直接在省电信号/信道中给出。例如,一比特的“0”表示在2个Slot后发送SRS,一比特的“1”表示在4个Slot后发送SRS。
其次,基站发送省电信号/信道。省电信号/信道需要用UE的C-RNTI或PS-RNTI来加扰。例如,在加扰的时候,可以用PS-RNTI来产生一个扰码序列(例如,伪随机序列),然后用这个扰码序列来对省电信号/信道编码前的比特进行加扰;或者,用这个扰码序列来对省电信号/信道编码后的比特进行加扰。另外,可以在DRX-OFF(或DRX激活时间之外的时间)时用PS-RNTI去加扰,而在其他时间(如,DRX激活时间)用C-RNTI去加扰。
再次,上述省电信号/信道触发UE发送SRS。UE可以发送一个或多个SRS。省电信号/信道会有1比特或2比特指示SRS使用什么资源去发送。如下面的表6和表7所示。
表6
Figure PCTCN2020109206-appb-000030
Figure PCTCN2020109206-appb-000031
表7
Figure PCTCN2020109206-appb-000032
通过上述操作之后,UE可以(通过DM-RS)测量下行的信道状况、测量得到下行最佳的波束(Beam)并在与最佳Beam对应的资源上发送SRS。基站在接收到SRS之后,知道了下行最佳的Beam,也知道了上行的信道状况和Beam的情况,从而推断出下行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在第三个示例性实施方式中,图8为一实施例提供的一种由下行控制信息触发基站发送信道状态信息参考信号、由下行控制信息触发UE发送探测参考信号并且探测参考信号关联到信道状态信息参考信号的示意图。
首先,基站给UE配置一些配置参数。这些配置参数包括:
用于省电的无线网络临时标识(PS-RNTI):UE需要在DRX-OFF时检查该RNTI。例如,UE在DRX-ON之前的一段时间(如,前2-10个Slot)去检查该RNTI。检查的内容包括:省电信号/信道、物理下行控制信道(PDCCH)、下行控制信息(DCI)、信道状态信息参考信号(CSI-RS)、跟踪参考信号(TRS)、解调参考信号(DM-RS)、辅同步信号(SSS)、主同步信号(PSS)、同步信号块(SSB)、相位跟踪参考信号(PT-RS)。
CSI-RS资源:这些资源可以是由PDCCH/DCI触发的一个或多个CSI-RS资源。这些资源用于基站发送CSI-RS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。在一实施例中,这些CSI-RS资源包括用于移动性测量的CSI-RS资源(CSI-RS-Resource-Mobility)。在一实施例中,用于移动性测量的 CSI-RS资源是由省电信号/信道触发的。在一实施例中,用于移动性测量的CSI-RS资源出现在UE的DRX激活时间之外(Outside of the DRX active time)。在一实施例中,如果UE配置了DRX,那么,UE应测量出现在UE的DRX激活时间之外的用于移动性测量的CSI-RS资源。在一实施例中,如果UE配置了DRX,那么,UE应测量出现在UE的DRX激活时间之外的由省电信号/信道触发的用于移动性测量的CSI-RS资源。
信道状态信息干扰测量资源(Channel State Information Interference Measurement,CSI-IM),如非零功率CSI-RS资源(NZP-CSI-RS)或零功率CSI-RS资源(ZP-CSI-RS):如果UE配置了DRX,那么,UE应测量出现在UE的DRX激活时间之外的由省电信号/信道触发的用于干扰测量的CSI-IM资源。在一实施例中,如果UE在DRX激活时间之外至少测量了一次由省电信号/信道触发的CSI-RS发送机会,那么UE应报告CSI测量报告。
上述PDCCH/DCI的加扰方式:例如,PDCCH/DCI可以用PS-RNTI去加扰。例如,PDCCH/DCI的CRC用PS-RNTI去加扰。
上述CSI-RS的序列初始化值:例如CSI-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化CSI-RS的序列。
探测参考信号(SRS)资源:这些资源可以是由省电信号/信道触发的一个或多个资源。这些资源用于UE发送SRS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。在一实施例中,上述SRS资源可以是关联到CSI-RS的SRS资源。在一实施例中,上述SRS资源可以是关联到SSB的SRS资源。
与上述SRS相关联的CSI-RS资源:这些CSI-RS资源可以是上述的由PDCCH/DCI触发的CSI-RS资源(如,已在上面列出的CSI-RS资源),也可以是另外配置的CSI-RS资源。
上述SRS的序列初始化值:例如SRS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化SRS的序列。
SRS的用途配置为“省电”,即“PowerSaving”。也可以把SRS的用途配置为“波束管理”(beamManagement),或者“码本方式”(codebook),或者“非码本方式”(nonCodebook),或者“天线切换”(antennaSwitching)。
报告信道状态信息(CSI)的资源。包括:用PUCCH来报告CSI的资源、用PUSCH来报告CSI的资源(例如,配置一个或2个或4个或8个资源)。在一实施例中,这些资源只配置到默认带宽部分(BWP)或初始BWP上。在一实施例中,在每个BWP上都配置这些资源。
其次,基站发送省电信号/信道。
再次,基站发送PDCCH/DCI。PDCCH/DCI需要用UE的C-RNTI或PS-RNTI来加扰。例如,在加扰的时候,可以用PS-RNTI来产生一个扰码序列(例如,伪随机序列),然后用这个扰码序列来对省电信号/信道编码前的比特进行加扰;或者,用这个扰码序列来对省电信号/信道编码后的比特进行加扰。另外,可以在DRX-OFF时用PS-RNTI去加扰,而在其他时间用C-RNTI去加扰。另外,也可以对PDCCH的CRC与PS-RNTI进行模2加来加扰该PDCCH。
接着,基站发送CSI-RS或TRS。基站可以发送一个或多个这样的信号。这样的信号可以是由PDCCH/DCI触发的,也可以是另外配置的。如果基站发送CSI-RS信号是由PDCCH/DCI触发的,那么,PDCCH/DCI会有0比特或1比特或2比特或3比特指示CSI-RS使用什么资源去发送(对于不支持省电技术的UE,这里可以是0比特;在一实施例中,0比特表示没有这个域);在一实施例中,如果这时候没有上行共享信道(Uplink Shared Channel,UL-SCH)(即,没有待传输的上行数据),也可以用2比特冗余版本(Redundancy version)来指示CSI-RS使用什么资源去发送(即,在一实施例中,在DRX-OFF、DRX-ON或DRX激活时间(DRX ACTIVE TIME)下,Redundancy version比特的含义不同。在一实施例中,基站在PDCCH或省电信号/信道发送之后的第Z个时隙上发送CSI-RS(或TRS)。其中,Z为整数。在一实施例中,Z为使得第Z个时隙落在UE的DRX-ON的最小整数。在一实施例中,Z为使得第Z个时隙落在UE的DRX激活时间的最小整数。如下面的表8-表10所示。
表8
Figure PCTCN2020109206-appb-000033
表9
Figure PCTCN2020109206-appb-000034
Figure PCTCN2020109206-appb-000035
表10
Figure PCTCN2020109206-appb-000036
基站在给UE分配用于报告信道状态信息(CSI)的PUSCH的频率资源的时候,可以使用
Figure PCTCN2020109206-appb-000037
比特来指示分配的资源(用资源指示值RIV来表示)。
如果
Figure PCTCN2020109206-appb-000038
那么
Figure PCTCN2020109206-appb-000039
否则
Figure PCTCN2020109206-appb-000040
其中,
Figure PCTCN2020109206-appb-000041
在这里面,
Figure PCTCN2020109206-appb-000042
表示上取整,
Figure PCTCN2020109206-appb-000043
表示下取整,log2()表示取以2为底的对数,
Figure PCTCN2020109206-appb-000044
表示以资源块(resource block,RB)为单位的上行(UL)的带宽部分(BWP)的大小,L RBs表示给UE分配的用于报告信道状态信息(CSI)的RB的数量(即,长度),
Figure PCTCN2020109206-appb-000045
RB start表示给UE分配的用于报告信道状态信息(CSI)的RB的起始RB号码。例如,假设上行BWP带宽为100个RB,分配了3个连续的RB,起始RB号码为9,那么RIV=100*(3-1)+9=209。用
Figure PCTCN2020109206-appb-000046
比特来表示RIV=209是0000011010001。
在一实施例中,为减少表达资源指示值RIV需要的比特数,可以把分配的资源单位修改成2个RB(或3个RB,或4个RB)。这时候,
Figure PCTCN2020109206-appb-000047
L RBs、都是以2个RB(或3个RB,或4个RB)为单位的,RB start也是以每2个RB(或每3个RB,或每4个RB)来作为起点的。
在一实施例中,用于报告由省电信号/信道触发的CSI报告所使用的PUSCH资源不超过一定的数量。例如,不超过BWP带宽的1/2,或者1/3,或者1/4,或者1/8,或者1/16,或者1/32。
在一实施例中,基站可以用1比特或2比特或3比特来指示配置给PUSCH的资源。例如,1比特的“0”表示UE应使用第一套PUSCH资源来报告CSI,1比特的“1”表示UE应使用第2套PUSCH资源来报告CSI。又例如,2比特的“00”表示UE应使用第一套PUSCH资源来报告CSI,2比特的“01”表示UE应使用第2套PUSCH资源来报告CSI,2比特的“10”表示UE应使用第3套PUSCH资源来报告CSI,2比特的“11”表示UE应使用第4套PUSCH资源来报告CSI。再如,3比特的“000”表示UE应使用第一套PUSCH资源来报告CSI,3比特的“001”表示UE应使用第2套PUSCH资源来报告CSI,3比特的“010”表示UE应使用第3套PUSCH资源来报告CSI,3比特的“011”表示UE应使用第4套PUSCH资源来报告CSI;3比特的“100”表示UE应使用第5套PUSCH资源来报告CSI,3比特的“101”表示UE应使用第6套PUSCH资源来报告CSI,3比特的“110”表示UE应使用第7套PUSCH资源来报告CSI,3比特的“111”表示UE应使用第8套PUSCH资源来报告CSI。在一实施例中,也可以用类似的方法来指示PUCCH使用哪个资源来报告CSI。在一实施例中,如果UE接收到内容不一致的2个或多个省电信号/信道,例如一个省 电信号/信道要求UE报告CSI,而另一个省电信号/信道不要求UE报告CSI,那么UE将不报告CSI。在一实施例中,如果UE接收到内容不一致的2个或多个省电信号/信道,那么UE需要报告CSI。在一实施例中,基站接收承载在PUCCH上的CSI报告;在一实施例中,基站接收承载在PUSCH上的CSI报告;在一实施例中,基站接收承载在PUCCH上的由省电信号/信道触发的CSI报告;在一实施例中,基站接收承载在PUSCH上的由省电信号/信道触发的CSI报告。
在一实施例中,基站给UE配置的上述报告CSI的PUCCH资源(PUCCH-CSI-Resource)包括,PUCCH资源列表(pucch-CSI-ResourceList),报告的时隙配置(reportSlotConfig),一个或多个PUCCH资源集(PUCCH-ResourceSet),每个PUCCH资源集具有资源集号码(PUCCH-ResourceSetId),每个PUCCH资源集包括一个或多个PUCCH资源(PUCCH-Resource),每个PUCCH资源具有资源号码(PUCCH-ResourceId)、起始物理资源块(Physical Resource Block,PRB)号码(startingPRB)和PUCCH格式(format)。在一实施例中,PUCCH格式包括PUCCH格式2(PUCCH-format2)、PUCCH格式3(PUCCH-format3)、PUCCH格式4(PUCCH-format4)。在一实施例中,这些PUCCH格式包含PRB数量(nrofPRBs)。在一实施例中,用于报告由省电信号/信道触发的CSI报告所使用的PUCCH资源(即,nrofPRBs)不超过一定的数量。例如,不超过BWP带宽的1/2,或者1/3,或者1/4,或者1/8,或者1/16,或者1/32。在一实施例中,这些PUCCH格式使用PS-RNTI来加扰,如下:
c init=n PS-RNTI·2 15+n ID
其中,c init用来初始化产生扰码序列的初始值,n PS-RNTI为PS-RNTI的值(十进制),n ID为高层配置的参数,取值为0~1023;n ID也可以是小区号码(PCI)。
在一实施例中,上述PUSCH资源是定义在某个BWP上的。例如,某次报告使用BWP ID=0的第一套PUSCH资源;又如,某次报告使用BWP ID=1的第2套PUSCH资源。
在一实施例中,上述PUSCH资源可以关联到省电信号/信道所在的CCE。假设用于发送省电信号/信道的最小CCE号码为k=3,配置的PUSCH资源个数为N=4(即,共4套资源),那么,这时候使用的PUSCH资源号码为mod(k,N)=mod(3,4)=3,则这次报告CSI将使用号码为3的PUSCH资源(即,第4套PUSCH资源)。
在一实施例中,如果基站指示(如,通过省电信号/信道中的2比特BWP号码指示出来;通过PDCCH指示;或通过调度DCI指示)有BWP切换(即,UE即将在不同于当前BWP的BWP上接收或发送数据),那么,基站将在目标 BWP上发送CSI-RS,UE将在目标BWP上接收和测量CSI-RS,UE将在目标BWP的第一套PUSCH资源上发送CSI报告;在一实施例中,UE将在目标BWP的第一套PUCCH资源上发送CSI报告。在一实施例中,UE将在BWP切换完成之后的第一个Slot报告CSI。在一实施例中,UE将在BWP切换完成之后的第2个Slot报告CSI。在一实施例中,UE将在BWP切换完成之后的第3个Slot报告CSI。在一实施例中,UE将在BWP切换完成之后的第4个Slot报告CSI。在一实施例中,UE在BWP切换完成之后的第X个时隙上报告CSI。其中,X为正整数。在一实施例中,X为使得第X个时隙落在UE的DRX-ON的最小整数。
然后,基站触发UE发送SRS。UE可以发送一个或多个SRS。这个SRS可以是由PDCCH/DCI触发的。如果UE发送SRS信号是由PDCCH/DCI触发的,那么,PDCCH/DCI会有1比特或2比特指示SRS使用什么资源去发送。如下面的表11和表12所示。
表11
Figure PCTCN2020109206-appb-000048
表12
Figure PCTCN2020109206-appb-000049
通过上述操作之后,UE可以测量和报告下行的信道状况(CSI)、测量得到下行最佳的波束(Beam)并在与最佳Beam对应的资源上发送SRS。基站在接收到SRS之后,知道了下行最佳的Beam,也知道了上行的信道状况和Beam的情况,从而推断出下行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在第四个示例性实施方式中,图9为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号、由省电信号/信道触发UE发送随机接入信道并且随机接入信道关联到信道状态信息参考信号的示意图。
首先,基站给UE配置一些配置参数。这些配置参数包括:
用于省电的无线网络临时标识(PS-RNTI):UE需要在DRX-OFF时检查该RNTI。例如,UE在DRX-ON之前的一段时间(如,前5-10个Slot)去检查该RNTI。检查的内容包括:省电信号/信道、物理下行控制信道(PDCCH)、下行控制信息(DCI)、信道状态信息参考信号(CSI-RS)、跟踪参考信号(TRS)、解调参考信号(DM-RS)、辅同步信号(SSS)、主同步信号(PSS)、同步信号块(SSB)、相位跟踪参考信号(PT-RS)。
CSI-RS资源:这些资源可以是由省电信号/信道触发的一个或多个CSI-RS资源。这些资源用于基站发送CSI-RS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。
SSB资源。
上述CSI-RS的序列初始化值:例如CSI-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化CSI-RS的序列。
随机接入信道(PRACH)资源:这些资源可以是由省电信号/信道触发的一个或多个资源。这些资源用于UE发送PRACH。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。PRACH的资源包括:前导ID(例如,专用前导的号码)、频率资源(如,在哪个BWP上面的哪些物理资源块上面发送)、PRACH相对省电信号/信道的时间偏差、PRACH(即,前导)所使用的循环偏移、PRACH的格式。在一实施例中,这些PRACH资源是关联到CSI-RS的PRACH资源。在一实施例中,这些PRACH资源是关联到SSB的PRACH资源。在一实施例中,PRACH资源由省电信号/信道指示出来。在一实施例中,PRACH资源与省电信号/信道使用的资源一一对应。
与上述PRACH相关联的CSI-RS资源:这些CSI-RS资源可以是上述的由省电信号/信道触发的CSI-RS资源(如,已在上面列出的CSI-RS资源),也可以是另外配置的CSI-RS资源。
与上述PRACH相关联的SSB资源。
上述PRACH的序列初始化值:例如SRS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化PRACH的序 列。
其次,基站发送省电信号/信道。在一实施例中,省电信号/信道可触发UE获取系统信息(如,第8号系统信息块SIB8)。在一实施例中,省电信号/信道的聚合度为1、2、4、8、16、32。在一实施例中,当省电信号/信道的聚合度为16个控制信道单元(CCE)时,省电信号/信道有一个候选位置;该位置有16个连续的CCE。在一实施例中,当省电信号/信道的聚合度为16个控制信道单元(CCE)时,省电信号/信道有2个候选位置;每个位置有16个连续的CCE。在一实施例中,当省电信号/信道的聚合度为32个CCE时,省电信号/信道有一个候选位置;这个位置有32个连续的CCE。高的聚合度有利于省电信号/信道的成功传输,从而降低UE漏检情况。
再次,UE接收上述省电信号/信道。UE在接收省电信号/信道时,UE可假定省电信号/信道与SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与SSB具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于随机接入相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于随机接入相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于随机接入相关联的CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于随机接入相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于随机接入相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于随机接入相关联的SSB具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道 与用于波束管理相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于波束管理相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于波束管理相关联的CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于波束管理相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于波束管理相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于波束管理相关联的SSB具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于信道状态测量(包括使用码本codebook、不使用码本nonCodebook、天线切换antennaSwitching)相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于信道状态测量相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于信道状态测量相关联的CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于信道状态测量相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于信道状态测量相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS与用于信道状态测量相关联的SSB具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于波束管理相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与用于波束管理相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与用于波束管理相关联的CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于波束管理相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS 端口与用于波束管理相关联的SSB是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与用于波束管理相关联的SSB具有相同的QCL特性。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与最近接收到的SSB具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与用于信道状态测量(包括使用码本codebook、不使用码本nonCodebook、天线切换antennaSwitching)相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与用于信道状态测量相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与用于信道状态测量相关联的CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道与最近接收到用于信道状态测量相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与最近接收到用于信道状态测量相关联的CSI-RS是QCL的。在一实施例中,UE在接收省电信号/信道时,UE可假定省电信号/信道的DM-RS端口与最近接收到用于信道状态测量相关联的CSI-RS具有相同的QCL特性。在一实施例中,如果可以使用,相同的QCL特性包括:多普勒频移、多普勒时延扩展、平均时延、时延扩展、空间接收参数。
接着,基站发送CSI-RS或TRS。基站可以发送一个或多个这样的信号。这样的信号可以是由省电信号/信道触发的,也可以是独立于省电信号/信道的。如果基站发送CSI-RS信号是由省电信号/信道触发的,那么,省电信号/信道会有0比特或1比特或2比特或3比特指示CSI-RS使用什么资源去发送(对于不支持省电技术的UE,这里可以是0比特)。如下面的表13-表15所示。
表13
Figure PCTCN2020109206-appb-000050
表14
省电信号/信道的2比特 含义
的CSI-RS触发取值  
00 没有CSI-RS触发。
01 在基站配置的第一套资源上发送CSI-RS。
10 在基站配置的第2套资源上发送CSI-RS。
11 在基站配置的第3套资源上发送CSI-RS。
表15
Figure PCTCN2020109206-appb-000051
然后,基站触发UE发送PRACH。UE可以发送一个或多个PRACH。这个PRACH可以是由省电信号/信道触发的,也可以是由DCI触发的,也可以是由PDCCH命令(PDCCH Order)触发的。如果UE发送PRACH信号是由省电信 号/信道触发的,那么,省电信号/信道会有1比特或2比特指示PRACH使用什么资源去发送。省电信号/信道会指示出PRACH资源的配置信息。在一实施例中,如果UE在第n个时隙接收到省电信号/信道,则UE在第n+4个时隙使用配置的PRACH资源去发送PRACH。在一实施例中,如果UE在第n个时隙接收到省电信号/信道,则UE在第n+K个时隙使用配置的PRACH资源去发送PRACH,其中,K是使得第n+K个时隙落在UE的DRX-ON的最小整数。如下面的表16和表17所示。
表16
Figure PCTCN2020109206-appb-000052
表17
Figure PCTCN2020109206-appb-000053
通过上述操作之后,UE可以测量下行的信道状况、测量得到下行最佳的波束(Beam)并在与最佳Beam对应的资源上发送PRACH。基站在接收到PRACH之后,知道了下行最佳的Beam,也知道了上行定时相对下行的定时偏差(从而可计算出定时提前量TA,从而知道了上行同步状况),也知道了上行的信道状况和Beam的情况,从而推断出下行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在第五个示例性实施方式中,图10为一实施例提供的一种由省电信号/信道触发UE发送探测参考信号并且探测参考信号关联到信道状态信息参考信号的示意图。
首先,基站给UE配置一些配置参数。这些配置参数包括:
用于省电的无线网络临时标识(PS-RNTI):UE需要在DRX-OFF时检查该RNTI。例如,UE在DRX-ON之前的一段时间(如,前5-10个Slot)去检查该RNTI。检查的内容包括:省电信号/信道、物理下行控制信道(PDCCH)、下行控制信息(DCI)、信道状态信息参考信号(CSI-RS)、跟踪参考信号(TRS)、解调参考信号(DM-RS)、辅同步信号(SSS)、主同步信号(PSS)、同步信号块(SSB)、相位跟踪参考信号(PT-RS)。
CSI-RS资源:这些资源用于基站发送CSI-RS。这些资源包括CSI-RS相对省电信号/信道提早发送的时间偏差(例如,在省电信号/信道前一个Slot发送;又如,在省电信号/信道前2个Slot发送,再如,与省电信号/信道在同一个Slot上发送)。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。
上述CSI-RS的序列初始化值:例如CSI-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化CSI-RS的序列。
探测参考信号(SRS)资源:这些资源可以是由省电信号/信道触发的一个或多个资源。这些资源用于UE发送SRS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。
与上述SRS相关联的CSI-RS资源:这些CSI-RS资源可以是上述的由省电信号/信道触发的CSI-RS资源(如,已在上面列出的CSI-RS资源),也可以是另外配置的CSI-RS资源。
上述SRS的序列初始化值:例如SRS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化SRS的序列。
SRS的用途配置为“省电”,即“PowerSaving”。也可以把SRS的用途配置为“波束管理”(beamManagement)。
其次,基站发送CSI-RS或TRS。基站可以发送一个或多个这样的信号。这样的信号可以是独立于省电信号/信道的。
再次,基站发送省电信号/信道。
然后,基站触发UE发送SRS。UE可以发送一个或多个SRS。这个SRS可以是由省电信号/信道触发的,也可以是由DCI触发的。如果UE发送SRS信号是由省电信号/信道触发的,那么,省电信号/信道会有1比特或2比特指示SRS使用什么资源去发送。如下面的表18和表19所示。
表18
Figure PCTCN2020109206-appb-000054
表19
Figure PCTCN2020109206-appb-000055
通过上述操作之后,UE可以测量下行的信道状况、测量得到下行最佳的波束(Beam)并在与最佳Beam对应的资源上发送SRS。基站在接收到SRS之后,知道了下行最佳的Beam,也知道了上行的信道状况和Beam的情况,从而推断出下行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在第六个示例性实施方式中,图11为一实施例提供的一种由省电信号/信道触发基站发送信道状态信息参考信号并且UE根据对CSI-RS的测量结果来发送物理上行控制信道的示意图。
首先,基站给UE配置一些配置参数。这些配置参数包括:
用于省电的无线网络临时标识(PS-RNTI):UE需要在DRX-OFF时检查该RNTI。例如,UE在DRX-ON之前的一段时间(如,前5-10个Slot)去检查该RNTI。检查的内容包括:省电信号/信道、物理下行控制信道(PDCCH)、下行控制信息(DCI)、信道状态信息参考信号(CSI-RS)、跟踪参考信号(TRS)、解调参考信号(DM-RS)、辅同步信号(SSS)、主同步信号(PSS)、同步信号块(SSB)、相位跟踪参考信号(PT-RS)。
CSI-RS资源:这些资源可以是由省电信号/信道触发的一个或多个CSI-RS资源。这些资源用于基站发送CSI-RS。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。在一实施例中,CSI-RS资源包括资源号码 (nzp-CSI-RS-ResourceId)。
CSI-RS的发送时间相对省电信号/信道的时间偏差:如果时间偏差是一个负数(单位可以是Slot,也可以是绝对时间,如,毫秒),则表示CSI-RS相对省电信号/信道是提早发送的;如果时间偏差是零,则表示CSI-RS和省电信号/信道是在同一个时隙发送的;如果时间偏差是一个正数,则表示CSI-RS相对省电信号/信道是推后发送的。
上述CSI-RS的序列初始化值:例如CSI-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化CSI-RS的序列。在一实施例中,如果PS-RNTI是针对一组UE的,那么CSI-RS资源和TRS资源也应是针对一组UE的,初始化值也是针对一组UE的。
物理上行控制信道(PUCCH)资源:这些资源可以是由省电信号/信道触发的一套或多套资源。这些资源用于UE发送承载非周期信道状态信息(Aperiodic Channel State Information,A-CSI)时的PUCCH。承载A-CSI时的资源可以与承载周期信道状态信息(Periodic Channel State Information,P-CSI)的资源相同;承载A-CSI时的资源可以与承载周期信道状态信息(P-CSI)的资源不同。PUCCH资源可以由省电信号/信道指示出来(如,一比特的“0”表示使用第一套资源,一比特的“1”表示使用第2套资源;当省电信号/信道用C-RNTI去加扰时,表示使用第一套资源;又如,当省电信号/信道用PS-RNTI去加扰时,表示使用第二套资源)。这些资源可以在不同服务小区的不同的带宽部分(BWP)上。在一实施例中,第一套PUCCH资源指具有最小号码(pucch-ResourceId最小)的资源。在一实施例中,第一套PUCCH资源指号码为0(pucch-ResourceId=0)的资源。在一实施例中,第一套PUCCH资源指号码为1(pucch-ResourceId=1)的资源。第2套PUCCH资源号码在前一套号码的基础上加1。在一实施例中,第一套PUCCH资源指资源集号码为0(PUCCH-ResourceSetId=0)且资源号码为0(pucch-ResourceId=0)的资源。
上述PUCCH的DM-RS序列初始化值:例如,DM-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化DM-RS的序列。
上述PUCCH的加扰方式:例如,PUCCH编码前的比特用PS-RNTI去加扰(例如,用PS-RNTI产生一个伪随机序列,之后,用伪随机序列与编码前的比特进行模2加);又如,PUCCH编码后的比特用PS-RNTI去加扰;再如,PUCCH的CRC用PS-RNTI去加扰(例如,用PS-RNTI的后6比特与PUCCH的6比特的CRC进行模2加;又如,用PS-RNTI的后11比特与PUCCH的11比特的CRC进行模2加;又如,在报告的CSI有分段的时候,用PS-RNTI的后11比 特与PUCCH的第一段的11比特的CRC进行模2加,用PS-RNTI的前11比特与PUCCH的第2段的11比特的CRC进行模2加;又如,在报告的CSI有分段的时候,用PS-RNTI的后11比特与PUCCH的第一段的11比特的CRC进行模2加,用PS-RNTI的从后往前数的第6至16比特这11个比特与PUCCH的第2段的11比特的CRC进行模2加;又如,在报告的CSI有分段的时候,都用PS-RNTI的后11比特与PUCCH这2个段的CRC进行模2加)。
物理上行共享信道(PUSCH)资源:这些资源可以是由省电信号/信道触发的一个或多个资源。这些资源用于UE发送承载非周期信道状态信息(A-CSI)时的PUSCH。在一实施例中,基站可配置一套或多套PUSCH资源。在一实施例中,PUSCH资源的号码的标识方法可以与上述PUCCH资源号码的标识方法类似。
上述PUSCH的加扰方式:例如,PUSCH编码前的比特用PS-RNTI去加扰(例如,用PS-RNTI产生一个伪随机序列,之后,用伪随机序列与编码前的比特进行模2加)。在一实施例中,PUSCH编码后的比特用PS-RNTI去加扰。在一实施例中,PUSCH的CRC用PS-RNTI去加扰。在一实施例中,PUSCH的24比特的CRC的后16比特用PS-RNTI去加扰。在一实施例中,PUSCH的16比特的CRC用16比特的PS-RNTI去加扰。
上述PUSCH的DM-RS序列初始化值:例如,DM-RS可以用PS-RNTI去加扰,即,用PS-RNTI去做序列的初始化。基站也可配置一个特定的值去初始化DM-RS的序列。
配置一个专门的BWP,用于发送发省电信号/信道。这时候,可以在这个专门的BWP上发送CSI-RS或TRS,从而有助于省电信号/信道的解码,以及UE进行AGC、同步、CSI测量、CSI报告等。在一实施例中,在各个BWP上都配置用于发送省电信号/信道的资源(如,CORESET、搜索空间、搜索空间集),但基站只在当前活动的BWP上发送省电信号/信道;UE只在当前活动的BWP上接收省电信号/信道。在一实施例中,只在默认BWP上配置用于发送省电信号/信道的资源(如,CORESET、搜索空间、搜索空间集),基站只在默认的BWP上发送省电信号/信道;UE只在默认的BWP上接收省电信号/信道。在一实施例中,只在初始BWP上配置用于发送省电信号/信道的资源(如,CORESET、搜索空间、搜索空间集),基站只在初始的BWP上发送省电信号/信道;UE只在初始的BWP上接收省电信号/信道。
其次,基站发送省电信号/信道。
再次,基站发送CSI-RS。基站可以发送一个或多个这样的信号。这样的信号可以是由省电信号/信道触发的,也可以是独立于省电信号/信道的。如果基站 发送CSI-RS信号是由省电信号/信道触发的,那么,省电信号/信道会有0比特或1比特或2比特或3比特指示CSI-RS使用什么资源去发送(对于不支持省电技术的UE,这里可以是0比特)。如下面的表20和表21所示。
表20
Figure PCTCN2020109206-appb-000056
表21
Figure PCTCN2020109206-appb-000057
在一实施例中,如果省电信号/信道是针对单个UE的(即,UE-Specific),那么有0-6比特的CSI-RS触发(CSI Request)比特;在一实施例中,0-3比特。在一实施例中,如果省电信号/信道是针对一组UE的(即,Group-Common),那么有0-3比特的CSI-RS触发(CSI Request)比特;在一实施例中,0-2比特。在一实施例中,比特数由高层(如,RRC)来配置。
在一实施例中,如果省电信号/信道是DRX-OFF时期或非激活时间(Outside of DRX Active Time)发送的,那么有0-3比特的CSI-RS触发(CSI Request)比特;在一实施例中,0-2比特。在一实施例中,如果省电信号/信道是在激活时间发送的,那么有0-6比特的CSI-RS触发(CSI Request)比特;在一实施例中,0-3比特。在一实施例中,比特数由高层(如,RRC)来配置。
在一实施例中,如果省电信号/信道要表达的是“进入睡眠(Go-To-Sleep;GTS)”这样的操作,那么,2比特的CSI-RS触发(CSI Request)预留;或者CSI-RS触发(CSI Request)比特作为其他的用途;或者固定为“0”或“00”。
在一实施例中,如果基站要发送省电信号/信道,则基站也需要发送CSI-RS 或TRS。例如,基站在同一个Slot发送省电信号/信道和CSI-RS;又如,基站在第N个Slot发送省电信号/信道之后,在第N+K个Slot发送CSI-RS;再如,基站在第N个Slot发送省电信号/信道之前,在第N-L个Slot发送CSI-RS,其中,N、K和L都是整数。在一实施例中,如果第N+K个Slot不在UE的DRX-ON的时间内,那么基站延迟到UE的DRX-ON的时间内再发送(例如,在DRX-ON的第一个Slot上发送);在一实施例中,如果第N+K个Slot不在UE的活动时间(Active Time)的时间内,那么基站延迟到UE的活动时间的时间内再发送(例如,在活动时间的第一个Slot上发送)。
在一实施例中,如果基站要发送的省电信号/信道中指示了带宽部分(BWP)的切换,则基站也需要发送CSI-RS或TRS。在一实施例中,如果基站要发送的省电信号/信道中指示了带宽部分(BWP)的切换,则基站也需要在目标BWP上发送CSI-RS或TRS;UE需要在目标BWP上接收CSI-RS或TRS。
在一实施例中,如果UE成功地接收到了省电信号/信道,则UE也需要接收CSI-RS或TRS。在一实施例中,如果UE成功地解码出了省电信号/信道,则UE也需要报告CSI。在一实施例中,UE在成功解码省电信号之后,使用PUSCH报告CSI。在一实施例中,UE在成功解码省电信号之后,使用PUSCH报告非周期CSI。在一实施例中,UE在成功解码省电信号之后,使用PUCCH报告CSI。在一实施例中,UE在成功解码省电信号之后,使用PUCCH报告非周期CSI。在一实施例中,UE在成功解码省电信号之后,使用PUCCH报告周期CSI。在一实施例中,如果UE成功地解码出了省电信号/信道,则UE也需要发送SRS。例如,假设UE在第N个Slot成功地解码出了省电信号/信道,那么UE要在第N+K个Slot接收CSI-RS。又如,假设UE在第N个Slot成功地解码出了省电信号/信道,那么UE要在第N+M个Slot报告CSI。再如,假设UE在第N个Slot成功地解码出了省电信号/信道,那么UE要在第N+P个Slot发送SRS,其中,N、K、M和P都是整数。在一实施例中,如果第N+K个Slot不在UE的DRX-ON的时间内(或活动时间内),那么UE在DRX-ON的时间内(或活动时间内)接收CSI-RS或TRS(例如,在DRX-ON的第一个Slot上接收)。在一实施例中,如果第N+M个Slot不在UE的DRX-ON的时间内(或活动时间内),那么UE在DRX-ON的时间内(或活动时间内)报告CSI(例如,在DRX-ON的第Q个Slot上报告CSI,Q为整数,例如,Q=4)。在一实施例中,如果第N+P个Slot不在UE的DRX-ON的时间内(或活动时间内),那么UE在DRX-ON的时间内(或活动时间内)发送SRS(例如,在DRX-ON的第R个Slot上发送SRS,R为整数,例如,R=2)。在一实施例中,由省电信号/信道触发的SRS在由省电信号/信道触发的CSI-RS之后发送,它们之间有一定的时间偏差(如,偏差X=2个时隙)。在一实施例中,由省电信号/信道触发的SRS在由省电信号 /信道触发的CSI-RS之前发送,它们之间有一定的时间偏差(如,偏差X=3个时隙)。
在一实施例中,UE用PUSCH来报告非周期CSI时,根据PS-RNTI来加扰PUSCH中待发送的比特(b (q)(i)),如下:
Figure PCTCN2020109206-appb-000058
其中,
Figure PCTCN2020109206-appb-000059
为加扰之后的比特,c (q)(i)为加扰序列,mod2为对前面2个相加数之和取2的模(即,模2加)。加扰序列使用下列初始化种子c init进行初始化:
c init=n RNTI·2 15+n ID
其中,n RNTI取PS-RNTI的值,n ID为高层配置的参数。在一实施例中,n RNTI取小区无线网络临时标识(C-RNTI)或调制编码方案C-RNTI(MCS-C-RNTI)或配置的调度RNTI(Configured Scheduling Radio Network Temporary Identifier,CS-RNTI)的值,n ID取PS-RNTI的值(或者,n ID=n PS-RNTI mod 2 10)。
在一实施例中,UE用PUSCH来报告非周期CSI时,用PS-RNTI来作为PUSCH中DM-RS序列初始化种子c init的一部分,如下:
Figure PCTCN2020109206-appb-000060
其中,
Figure PCTCN2020109206-appb-000061
为一个时隙的符号数,
Figure PCTCN2020109206-appb-000062
为子载波间隔配置为μ时当前无线帧的时隙号码,l为符号索引,n SCID={0,1}为高层配置的参数,
Figure PCTCN2020109206-appb-000063
(即,
Figure PCTCN2020109206-appb-000064
)。在一实施例中,
Figure PCTCN2020109206-appb-000065
在一实施例中,当触发PUSCH发送(如,报告CSI)的PDCCH/DCI是由C-RNTI或MCS-C-RNTI或CS-RNTI或PS-RNTI加扰时,
Figure PCTCN2020109206-appb-000066
在一实施例中,UE用PUCCH来报告非周期CSI时(或反馈确认消息ACK时),根据PS-RNTI来加扰PUCCH中待发送的比特(b(i)),如下:
Figure PCTCN2020109206-appb-000067
其中,
Figure PCTCN2020109206-appb-000068
为加扰之后的比特,c(i)为加扰序列,mod2为对前面2个相加数之和取2的模(即,模2加)。加扰序列使用下列初始化种子c init进行初始化:
c init=n RNTI·2 15+n ID
其中,n RNTI取PS-RNTI的值,n ID为高层配置的参数。在一实施例中,n RNTI取小区无线网络临时标识(C-RNTI),n ID取PS-RNTI的值(或者,n ID=n PS-RNTI mod 2 10)。
在一实施例中,UE用PUCCH来报告非周期CSI时(或反馈确认消息ACK时),用PS-RNTI来作为PUCCH中DM-RS序列初始化种子c init的一部分,如下:
Figure PCTCN2020109206-appb-000069
其中,
Figure PCTCN2020109206-appb-000070
为一个时隙的符号数,
Figure PCTCN2020109206-appb-000071
为子载波间隔配置为μ时当前无线帧的时隙号码,l为符号索引,
Figure PCTCN2020109206-appb-000072
在一实施例中,用PS-RNTI来作为PUCCH中DM-RS序列初始化种子c init的一部分,如下:
Figure PCTCN2020109206-appb-000073
或者,
Figure PCTCN2020109206-appb-000074
其中,
Figure PCTCN2020109206-appb-000075
为下取整操作,n ID取PS-RNTI的值,或者,n ID=n PS-RNTI mod 2 10
在一实施例中,用PS-RNTI来作为PUCCH中DM-RS序列产生参数f ss的一部分,如下:
f ss=n ID mod 30;
其中,n ID取PS-RNTI的值,或者,n ID=n PS-RNTI mod 2 10
在一实施例中,如果高层(指RRC;无线资源控制层)配置了n ID,那么 f ss=(n ID+n PS-RNTI)mod 30或者,简单地,用n ID+n PS-RNTI的值去替代n ID的值。
在一实施例中,如果UE解码出的省电信号/信道指示了带宽部分(BWP)的切换,则UE也需要接收CSI-RS或TRS。在一实施例中,如果UE解码出的省电信号/信道指示了带宽部分(BWP)的切换,则UE也需要报告CSI。在一实施例中,如果UE解码出的省电信号/信道指示了带宽部分(BWP)的切换,则UE也需要发送SRS。
在一实施例中,第一套CSI-RS资源(NZP-CSI-RS-ResourceId=0或NZP-CSI-RS-ResourceId=1)与第一个下行波束相对应。在一实施例中,第一套CSI-RS资源集(resourceSet=0或resourceSet=1)的第一套CSI-RS资源(NZP-CSI-RS-ResourceId=0或NZP-CSI-RS-ResourceId=1)与第一个下行波束相对应。第2套CSI-RS资源号码(NZP-CSI-RS-ResourceId)在前一套CSI-RS资源号码的基础上加一。第一个上行波束由与第一套CSI-RS资源集相对应的SRS资源确定。在一实施例中,第一套CSI-RS资源集(resourceSet=0或resourceSet=1)与第一个下行波束集相对应;一个波束集可以包含一个或多个波束。在一实施例中,一个下行波束集与一个上行波束集相对应。在一实施例中,由省电信号/信道触发的CSI-RS资源使用单个天线端口来发送(如,端口号码为0或3000)。在一实施例中,由省电信号/信道触发的CSI-RS资源使用2个天线端口来发送(如,端口号码为0和1;或者3000和3001)。在一实施例中,由省电信号/信道触发的CSI-RS资源使用4个天线端口来发送(如,端口号码为0、1、2和3;或者3000、3001、3002和3003)。在一实施例中,由省电信号/信道触发的CSI-RS资源使用8个天线端口来发送(如,端口号码为0、1、2、......7;或者3000、3001、......3007)。
然后,基站触发UE发送PUSCH或PUCCH(以报告CSI)。在一实施例中,UE在成功解码省电信号/信道之后,需要在基站配置的资源上测量CSI-RS,并在配置的PUCCH资源上报告CSI。在一实施例中,UE在成功解码省电信号/信道之后,需要在基站配置的资源上测量CSI-RS,并在配置的PUSCH资源上报告CSI。在一实施例中,UE在成功解码省电信号/信道之后,需要在基站配置的资源上测量CSI-RS,并在配置的PUSCH资源或PUCCH资源上报告CSI;在一实施例中,UE应优先选择PUCCH资源来报告。通过上述操作之后,UE可以测量下行的信道状况。基站在接收到PUSCH或PUCCH之后,知道了下行的信道状况,也可以(通过DM-RS)推断出上行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在第七个示例性实施方式中,图12为一实施例提供的一种拷贝省电信号/信道的一个或多个符号来增强省电信号/信道解码性能的示意图。
基站在发送省电信号/信道之前,拷贝即将发送的省电信号/信道的一个或多个符号,放在省电信号/信道之前发送。例如,假设省电信号/信道在时间上由一个OFDM符号组成,那么,可以拷贝这一个符号并放在省电信号/信道之前的一个符号上去发送。在一实施例中,可以拷贝这一个符号并放在省电信号/信道之前的一个符号和之前的2个符号上去发送(即,发送了2个符号)。在一实施例中,可以拷贝这一个符号放在省电信号/信道之前的一个符号、之前的2个符号和之前的3个符号上去发送(即,发送了3个符号)。
在一实施例中,可以拷贝这一个符号并放在省电信号/信道之前的第2个符号上去发送(即,隔开了一个符号,共发送了一个符号)。
在一实施例中,可以拷贝这一个符号并放在省电信号/信道之前的第3个符号上去发送(即,隔开了2个符号,共发送了一个符号)。
在一实施例中,可以拷贝这一个符号并放在省电信号/信道之前的一个时隙(Slot)上去发送(即,隔开了一个Slot,即,隔开了14个符号,共发送了一个符号)。
在一实施例中,可以拷贝这一个符号并放在省电信号/信道之前的2个时隙(Slot)上去发送(即,隔开了2个Slot,即,隔开了28个符号,共发送了一个符号)。
假设省电信号/信道在时间上由2个OFDM符号组成,那么,可以拷贝第二个符号并放在省电信号/信道之前的一个符号上去发送。在一实施例中,可以拷贝这2个符号并放在省电信号/信道之前去发送。
假设省电信号/信道在时间上由3个OFDM符号组成,那么,可以拷贝第3个符号并放在省电信号/信道之前的一个符号上去发送。在一实施例中,可以拷贝这3个符号并放在省电信号/信道之前去发送。
在一实施例中,在拷贝的时候,可以翻转省电信号/信道的资源单元(Resource Element,RE)的顺序,以区分真正的省电(Power Saving,PS)信号和拷贝符号。例如,假设省电信号/信道在时间上由一个OFDM符号组成,在频率上由M个子载波组成(编号为0、1、2、3、......、M-2、M-1),那么,在放置拷贝出来的RE的时候,可以按照相反的顺序来放置(例如,按编号M-1、M-2、M-3、......、2、1、0来放置)。
在一实施例中,在拷贝的时候,可以对省电信号/信道偏移一个固定的相位。例如,对每个RE上的数据都乘以exp(-jθ)。其中,exp()是以自然对数为底的指 数,j是虚数单位,θ为相位。
使用上述技术之后,UE可以把省电信号/信道与之前接收到的拷贝内容进行合并,从而可以提高省电信号/信道的解码性能,进而使UE省电。
在第八个示例性实施方式中,图13为一实施例提供的一种拷贝省电信号/信道的解调参考信号来增强省电信号/信道解码性能的示意图。
基站在发送省电信号/信道之前,拷贝即将发送的省电信号/信道的解调参考信号(DM-RS),放在省电信号/信道之前发送。例如,假设省电信号/信道在时间上由一个OFDM符号组成,那么,可以拷贝这一个符号里面的DM-RS并放在省电信号/信道之前的一个符号上去发送。在一实施例中,可以拷贝这一个符号并放在省电信号/信道之前的一个符号和之前的2个符号上去发送(即,发送了2个符号的DM-RS)。在一实施例中,可以拷贝这一个符号放在省电信号/信道之前的一个符号、之前的2个符号和之前的3个符号上去发送(即,发送了3个符号DM-RS)。
在一实施例中,可以拷贝这一个符号的DM-RS并放在省电信号/信道之前的第2个符号上去发送(即,隔开了一个符号,共发送了一个符号的DM-RS)。
在一实施例中,可以拷贝这一个符号的DM-RS并放在省电信号/信道之前的第3个符号上去发送(即,隔开了2个符号,共发送了一个符号的DM-RS)。
在一实施例中,可以拷贝这一个符号的DM-RS并放在省电信号/信道之前的前一个Slot上去发送(即,隔开了一个Slot,即,隔开了14个符号,共发送了一个符号的DM-RS)。
在一实施例中,可以拷贝这一个符号的DM-RS并放在省电信号/信道之前的前2个Slot上去发送(即,隔开了2个Slot,即,隔开了28个符号,共发送了一个符号的DM-RS)。
假设省电信号/信道在时间上由2个OFDM符号组成,那么,可以拷贝这2个符号里面的DM-RS并按原有的顺序放在省电信号/信道之前的2个符号上去发送。
假设省电信号/信道在时间上由2个OFDM符号组成,那么,可以拷贝这2个符号里面的全部DM-RS并按先时间后频率的顺序放在省电信号/信道之前的一个符号上去发送(DM-RS的密度一般是1/4或1/3,故可以放得下)。
假设省电信号/信道在时间上由2个OFDM符号组成,那么,可以拷贝这2个符号里面的全部DM-RS并按先时间后频率的顺序放在省电信号/信道之前的 一个Slot的第一个符号上去发送。
假设省电信号/信道在时间上由3个OFDM符号组成,那么,可以拷贝这3个符号里面的DM-RS并按原有的顺序放在省电信号/信道之前的3个符号上去发送。
假设省电信号/信道在时间上由3个OFDM符号组成,那么,可以拷贝这3个符号里面的全部DM-RS并按先时间后频率的顺序放在省电信号/信道之前的一个符号上去发送。
在一实施例中,在拷贝DM-RS的时候,保持原来的初始化种子c init不变。在一实施例中,在拷贝DM-RS的时候,使用实际放置DM-RS符号的位置来重新产生初始化种子c init
使用上述技术之后,UE可以把省电信号/信道的DM-RS与之前接收到的拷贝的DM-RS内容进行合并,从而可以提高省电信号/信道的解调/解码性能,进而使UE省电。
在第九个示例性实施方式中,首先,基站给UE配置一些配置参数。这些配置参数包括:
在省电信号/信道发送之前发送的参考信号(如,CSI-RS、TRS)的资源;
省电信号/信道使用的资源(如,控制资源集CORESET、搜索空间、搜索空间集);
在省电信号/信道发送之后发送的参考信号(如,CSI-RS、TRS;TRS可以通过对CSI-RS进行一定的配置得到)的资源;
UE发送参考信号(如,SRS)的资源;
UE发送上行信道(如,PRACH、PUCCH、PUSCH)的资源(如,UE报告CSI的PUCCH资源、UE报告CSI的PUSCH资源)。
其次,基站在省电信号/信道发送之前发送参考信号。
然后,基站在发送省电信号/信道。省电信号/信道的一些比特域触发基站或/和UE做一定的操作。如下面的表22-表24所示。
表22
Figure PCTCN2020109206-appb-000076
Figure PCTCN2020109206-appb-000077
表23
Figure PCTCN2020109206-appb-000078
表24
Figure PCTCN2020109206-appb-000079
Figure PCTCN2020109206-appb-000080
在一实施例中,基站直接按照上述表格中的一比特的“1”或2比特的“11”或3比特的“111”来操作。在一实施例中,省电信号/信道没有相应的比特,但UE在成功接收到省电信号/信道之后,按照上述表格中的一比特的“1”或2比特的“11”或3比特的“111”来操作。
在一实施例中,如果省电信号/信道要表达的是“进入睡眠(Go-To-Sleep;GTS)”,那么,基站和UE都直接按照上述表格中的一比特的“0”或2比特的“00”或3比特的“000”来执行。即,没有操作。在一实施例中,省电信号/信道的触发比特域为全“0”时,表示UE没有操作。在一实施例中,省电信号/信道的触发比特域为全“0”时,表示没有CSI触发。在一实施例中,省电信号/信道的触发比特域为全“0”时,表示没有CSI-RS触发(从而没有CSI报告)。在一实施例中,省电信号/信道的触发比特域为全“0”时,表示没有触发CSI报告。在一实施例中,省电信号/信道的触发比特域为全“0”时,表示没有SRS触发。
通过上述操作之后,UE可以测量下行的信道状况。基站在接收到PUSCH或PUCCH之后(其中,CSI报告承载在PUCCH或PUSCH上),知道了下行的信道状况,也可以推断出上行的信道状况。基站在知道信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务 时延,降低了UE的耗电。
在第十个示例性实施方式中,首先,基站给UE配置一些配置参数。这些配置参数包括:
UE发送参考信号(如,SRS)的资源;
UE发送承载在PUCCH上的针对省电信号/信道的确认正确收到(ACK)的资源(如,PUCCH使用format 0或format1;PUCCH相对省电信号/信道的时间偏差;PUCCH相对上述SRS的时间偏差;PUCCH使用的频率资源)。
其次,基站发送省电信号/信道。
然后,UE接收上述省电信号/信道。
再然后,UE如果成功解码上述省电信号/信道,则发送SRS。如果省电信号/信道是针对一组UE的(即,组公共。例如,当省电信号/信道用PS-RNTI来加扰时),那么UE在第一套SRS资源上发送SRS。如果省电信号/信道是针对单个UE的(即,UE专用。例如,当省电信号/信道用C-RNTI或CS-RNTI或MCS-RNTI来加扰时),那么UE在第二套SRS资源上发送SRS。
最后,UE如果成功解码上述省电信号/信道,则通过PUCCH发送ACK。如果省电信号/信道是针对一组UE的(即,组公共),那么UE在第一套PUCCH资源上发送PUCCH(承载ACK)。如果省电信号/信道是针对单个UE的(即,UE专用),那么UE在第二套PUCCH资源上发送PUCCH。
在一实施例中,如果UE需要针对省电信号/信道发送ACK(承载在PUCCH上),那么,UE需要PUCCH的前一个Slot发送SRS。在一实施例中,如果UE需要针对省电信号/信道发送ACK(承载在PUCCH上),那么,UE需要PUCCH的前2个Slot发送SRS(发送一次)。在一实施例中,如果UE需要针对省电信号/信道发送ACK(承载在PUCCH上),那么,UE需要PUCCH的前一个Slot和前2个Slot都发送SRS(发送2次)。在一实施例中,如果UE需要针对省电信号/信道发送ACK(承载在PUCCH上),那么,UE需要PUCCH的前一个符号上发送SRS。在一实施例中,如果UE需要针对省电信号/信道发送ACK,那么,UE需要PUCCH的前一个和前2个符号上发送SRS(共发送了2次)。在一实施例中,如果UE需要针对省电信号/信道发送ACK,那么,UE需要PUCCH的前一个至前3个符号上发送SRS(共发送了3次)。在一实施例中,如果UE需要针对省电信号/信道发送ACK,那么,UE需要PUCCH的前一个至前4个符号上发送SRS(共发送了4次)。
通过上述操作之后,UE可以测量下行的信道状况。基站在接收到SRS之后, 知道了上行的信道状况。从而能更好地解码PUCCH。基站在知道省电信号/信道的正确解码和信道状况之后,可以提高基站与UE之间的传输效率,从而能更快地完成数据传输,从而降低了业务时延,降低了UE的耗电。
在第十一个示例性实施方式中,首先,基站给UE配置一些配置参数。这些配置参数包括:
基站发送省电信号/信道的周期(T)和偏差(O)。在一实施例中,基站可以分开配置省电信号/信道中唤醒信号(wake-up signal,WUS)的周期与偏差、省电信号/信道中睡眠信号(go-to-sleep,GTS)的周期与偏差。周期与偏差的单位可以是时隙、无线帧、毫秒、秒。例如,T=100个时隙,O=5个时隙(其中,偏差为相对系统帧号为SFN=0的无线帧的第一个时隙的时间差)。
基站发送省电信号/信道的持续时间(D)。例如,持续发送D=2个时隙。
基站发送参考信号(如,CSI-RS)的资源。
参考信号(如,CSI-RS)相对省电信号/信道提早发送的时间(B)。例如,B=2个时隙。
参考信号(如,CSI-RS)相对省电信号/信道推后发送的时间(A)。例如,A=1个时隙。
UE发送参考信号(如,SRS)的资源。
SRS相对省电信号/信道的时间差(S)。例如,S=3个时隙。
UE报告CSI的PUCCH资源。
UE报告CSI的PUSCH资源。
针对载波(或服务小区)的最大多输入多输出层数(maxMIMO-Layers)。该参数可作用到属于该载波的BWP上。该参数为正整数。在一实施例中,取值范围为1~8。在一实施例中,该参数可以是针对下行方向的(如,针对PDSCH)。在一实施例中,该参数可以是针对上行方向的(如,针对PUSCH)。
针对一个BWP的最大多输入多输出层数(maxMIMO-Layers-BWP)。该参数为正整数。在一实施例中,取值范围为1~8。在一实施例中,该参数的出现是可选的(即,基站可能不配置这个参数)。如果该参数没有出现,那么,UE应使用针对载波的maxMIMO-Layers来取代maxMIMO-Layers-BWP的值。在一实施例中,如果该参数没有出现,那么,maxMIMO-Layers-BWP取值为2。
针对BWP的最大多输入多输出层数定时器(maxMIMO-Layers-BWP-Timer)。在一实施例中,当一个BWP得到激活时(即, 一个BWP成为活动BWP),该定时器启动。当该定时器超时时,maxMIMO-Layers-BWP应取maxMIMO-Layers的值。在一实施例中,当该定时器超时时,maxMIMO-Layers-BWP应取min(maxMIMO-Layers,maxMIMO-Layers-BWP)的值。其中,min()为取2个数中的较小者。在一实施例中,当该定时器超时时,maxMIMO-Layers-BWP应取min(2,maxMIMO-Layers-BWP)的值。
其次,基站发送CSI-RS。例如,相对省电信号/信道提早发送B=2个时隙。
再其次,基站发送省电信号/信道。假设基站使用的子载波间隔为15kHz,那么,一个时隙的长度为1ms,一个无线帧的长度为F=10ms。假设周期T=100个时隙=100ms,偏差O=5个时隙=5ms,持续发送D=2个时隙,那么,基站在每T/F=100/10=10个无线帧发送一次省电信号/信道,每次持续发送D=2个时隙,每次发送在时隙为O和O+1的时刻发送。即,在每个无线帧的时隙5和6上发送。则,基站在满足下列条件时,会发送省电信号/信道:
O=mod(SFN*F+SLOT,T);
其中,O为省电信号/信道的发送时间偏差,mod()为取模操作,SFN为系统帧号(取0......1023),F为一个无线帧的长度,SLOT为当前时隙号码(取0......9),T为省电信号/信道的发送周期。
在一实施例中,UE在满足上述条件时,会接收省电信号/信道。
在一实施例中,省电信号/信道具有唤醒功能(WUS,通知UE需要接收PDCCH)和睡眠功能(GTS,通知UE不用接收PDCCH)。
接着,基站第2次发送CSI-RS。例如,相对省电信号/信道落后发送A=1个时隙。
最后,UE发送与基站第2次发送的CSI-RS对应的SRS、报告CSI。
在一实施例中,如果基站给UE配置了多个载波(即,多个服务小区),那么,基站可以在各个载波上执行相同的操作,UE也可以在各个载波上执行相同的操作。这些操作在各个载波上可以同步进行,也可以独立进行。在一实施例中,除了在主载波(PCell,Primary Cell;主小区)上有省电信号/信道(而辅载波上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个载波上可以同步进行。即,主载波(PCell)上的省电信号/信道会触发UE报告各个载波(或服务小区;Serving Cell)的CSI。在一实施例中,除了在主小区组(MCG;Master Cell Group)上有省电信号/信道(而辅小区组(Secondary Cell Group,SCG)上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个载波上可以同步进行。在一实施例中, 除了在特殊小区(SpCell;Special Cell)上有省电信号/信道(而其他小区上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个小区上可以同步进行。在一实施例中,除了在PUCCH辅小区组(PUCCH-SCell)上有省电信号/信道(而其他小区上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个小区上可以同步进行。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发UE报告各自载波(或服务小区;Serving Cell)的CSI。在一实施例中,主载波(PCell)上的省电信号/信道会触发UE接收各个载波(或服务小区;Serving Cell)的CSI-RS。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发UE接收各自载波(或服务小区;Serving Cell)的CSI-RS。在一实施例中,主载波(PCell)上的省电信号/信道会触发UE在各个载波(或服务小区;Serving Cell)上发送SRS。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发UE在各自载波(或服务小区;Serving Cell)上发送SRS。在一实施例中,主载波(PCell)上的省电信号/信道会触发基站在各个载波(或服务小区;Serving Cell)上发送CSI-RS。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发基站在各自载波(或服务小区;Serving Cell)上发送CSI-RS。在一实施例中,省电信号/信道中的载波指示会指出哪个或哪些载波需要UE报告CSI。在一实施例中,省电信号/信道中的载波指示会指出哪个或哪些载波需要UE接收CSI-RS。在一实施例中,省电信号/信道中的载波指示会指出哪个或哪些载波需要UE发送SRS。在一实施例中,省电信号/信道会指出主载波和激活的辅载波需要UE报告CSI。在一实施例中,省电信号/信道会触发主载波和激活的辅载波需要UE发送SRS。在一实施例中,省电信号/信道会指出主载波和激活的辅载波需要UE报告CSI。在一实施例中,省电信号/信道会触发主载波和激活的辅载波需要UE发送SRS。在一实施例中,在双连接(DC,Dual Connection)配置下,上述操作在主小区组(MCG,Primary Cell Group)和辅小区组(SCG,Secondary Cell Group)上可以独立进行。
在一实施例中,省电信号/信道中的比特域指示UE需要报告CSI的载波(或服务小区)。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的载波(或服务小区)。如下面的表25-表28所示。
表25
Figure PCTCN2020109206-appb-000081
Figure PCTCN2020109206-appb-000082
表26
Figure PCTCN2020109206-appb-000083
表27
Figure PCTCN2020109206-appb-000084
表28
Figure PCTCN2020109206-appb-000085
在一实施例中,省电信号/信道具有0-10比特的参考信号(Reference Signal,RS)指示比特,用于指出UE报告CSI或/和发送SRS的组合情况。这些组合情况由媒体接入控制的控制元素(MAC CE)来指出。假设省电信号/信道具有3比特的RS指示比特,又假设目前有10个激活的载波(服务小区),那么可通过MAC CE来指示这些载波的操作,如下面的表29所示。
表29
Figure PCTCN2020109206-appb-000086
在一实施例中,如果基站给UE配置了多个带宽部分(BWP;每个载波最多可配4个BWP,但在一个时刻每个载波只有一个BWP在活动(称之为活动BWP)——接收或发送数据),那么,基站和UE可以在各个载波的活动BWP上执行相同的上述操作。在一实施例中,基站和UE可以在各个激活的载波上的活动BWP上执行相同的上述操作。这些操作在各个载波的活动BWP上可以同步进行(即,同时执行),也可以独立进行(即,不必同时执行,异步执行)。在一实施例中,除了在主载波的活动BWP上有省电信号/信道(而辅载波上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个载波的活动BWP上可以同步进行。如果某个载波有BWP切换(如,由省电信号/信道触发UE进行BWP切换或下行BWP切换,或者由调度DCI触发,或者由下行调度DCI触发,或者由PDCCH触发,或者由调度下行的PDCCH触发),则基站和UE需要在目标BWP进行上述操作(如,CSI-RS的发送/接收、SRS的发送)。
在一实施例中,UE在接收到省电信号/信道之后,在各个BWP上都需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个载波的各个BWP上都需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个激活的载波的各个BWP上都需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个激活的载波的活动BWP上需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在主载波和各个激活的辅载波的活动BWP上需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个BWP上都需要发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个载波的各个BWP上都需要发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个激活的载波的各个BWP上都需要发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个激活的载波的活动BWP上需要 发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在主载波和各个激活的辅载波的活动BWP上需要发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个BWP上都需要报告CSI和发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个载波的各个BWP上都需要报告CSI和发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个激活的载波的各个BWP上都需要报告CSI和发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个激活的载波的活动BWP上需要报告CSI和发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在主载波和各个激活的辅载波的活动BWP上需要报告CSI和发送SRS。
在一实施例中,省电信号/信道中的比特域指示UE需要报告CSI的BWP。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的BWP。如下面的表30-表33所示。
表30
Figure PCTCN2020109206-appb-000087
Figure PCTCN2020109206-appb-000088
表31
Figure PCTCN2020109206-appb-000089
Figure PCTCN2020109206-appb-000090
表32
Figure PCTCN2020109206-appb-000091
Figure PCTCN2020109206-appb-000092
表33
Figure PCTCN2020109206-appb-000093
在一实施例中,省电信号/信道具有0-10比特的RS指示比特,用于指出UE报告BWP的CSI或/和在BWP上发送SRS的组合情况。这些组合情况由媒体接入控制的控制元素(MAC CE)来指出。假设省电信号/信道具有4比特的RS指示比特,又假设目前有16个激活的载波(服务小区)且配置有64个BWP,那么可通过MAC CE来指示这些载波的BWP上的操作,如下面的表34所示。
表34
Figure PCTCN2020109206-appb-000094
在一实施例中,如果某个载波(或BWP)定义了休眠行为(Dormant behaviour)或休眠状态(Dormant state),那么基站和UE需要在该载波(或BWP) 上进行上述操作(如,CSI-RS的发送/接收、SRS的发送)。在一实施例中,如果某个辅载波(或BWP)定义了休眠行为或休眠状态,那么,在主载波(或特别载波,或特殊载波)上发送省电信号/信道之前和之后,基站需要在该休眠载波(或休眠BWP)上进行上述CSI-RS的发送操作。在一实施例中,如果某个辅载波(或BWP)定义了休眠行为或休眠状态,那么,在主载波(或特别载波)上接收省电信号/信道之前和之后,UE需要在该休眠载波(或休眠BWP)上进行上述CSI-RS接收、SRS的发送和CSI报告的操作。
在一实施例中,如果某个辅载波定义了休眠行为或休眠状态,那么,省电信号/信道中的比特域指示UE需要报告CSI的载波(或服务小区)。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的载波(或服务小区)。如下面的表35-表38所示。
表35
Figure PCTCN2020109206-appb-000095
表36
Figure PCTCN2020109206-appb-000096
Figure PCTCN2020109206-appb-000097
表37
Figure PCTCN2020109206-appb-000098
表38
Figure PCTCN2020109206-appb-000099
Figure PCTCN2020109206-appb-000100
在一实施例中,省电信号/信道中的比特域指示UE需要报告CSI的BWP(包括休眠BWP和定义了休眠行为的BWP)。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的BWP(包括休眠BWP和定义了休眠行为的BWP)。如下面的表39-表42所示。
表39
Figure PCTCN2020109206-appb-000101
Figure PCTCN2020109206-appb-000102
表40
Figure PCTCN2020109206-appb-000103
Figure PCTCN2020109206-appb-000104
表41
Figure PCTCN2020109206-appb-000105
Figure PCTCN2020109206-appb-000106
表42
Figure PCTCN2020109206-appb-000107
在一实施例中,UE在报告由省电信号/信道触发的CSI报告时,最大码率指示取为0(maxCodeRate=0),对应的码率(Code rate)为0.08。在一实施例中,UE报告CSI时使用的PUCCH资源号码(或PUCCH信道索引;或资源集)可 隐含地由省电信号/信道指示出来。例如,UE在报告由省电信号/信道触发的CSI报告(或者,UE发出针对省电信号/信道的成功解码省电信号/信道的确认信息)时,使用的PUCCH资源号码为
Figure PCTCN2020109206-appb-000108
其中,
Figure PCTCN2020109206-appb-000109
为下取整操作,n CCE,0为省电信号/信道的第一个控制元素(CCE)号码,N CCE为省电信号/信道的控制资源集(CORESET)的CCE数量,n PS-RNTI为省电RNTI的值(0......65535),mod()为取模操作,N PUCCH为PUCCH资源的数量。
在一实施例中,UE在报告由省电信号/信道触发的CSI报告时,使用的PUCCH资源号码为n PS-RNTImodN PUCCH
在一实施例中,UE在报告由省电信号/信道触发的CSI报告时,使用的PUSCH资源号码为n PS-RNTImodN PUSCH,其中,N PUSCH为配置的PUSCH资源的数量。
在一实施例中,如果高层(指RRC;无线资源控制)配置了CSI报告的掩码(CSI-Mask)时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True时,UE需要报告由省电信号/信道触发的由PUCCH承载的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False时,UE需要报告由省电信号/信道触发的由PUCCH承载的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True时,UE需要报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False时,UE需要报告由省电信号/信道触发的承载在PUSCH上的CSI报告。
在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True且UE处于DRX激活时间时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True且UE处于DRX激活时间之外的时间时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如 果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间之外的时间时,UE需要报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间时,UE需要报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间之外的时间时,UE需要报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间时,UE需要报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间之外的时间时,UE需要报告由省电信号/信道触发的承载在PUCCH上的CSI报告。
在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间之外的时间时,UE不报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False且UE处于DRX激活时间之外的时间时,UE不报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask且UE处于DRX激活时间之外的时间时,UE不报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask且UE处于DRX激活时间之外的时间时,UE不报告由省电信号/信道触发的承载在PUSCH上的CSI报告。
在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True,UE需要在DRX-ON时报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True,UE需要在DRX-OFF时报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True,UE需要在DRX激活时间之外的时间报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX-ON时报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX-OFF时报告由省电信号/信道触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX激活时间之外的时间报告由省电信号/信道触发的CSI报告。
在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX-OFF时报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX激活时间之外的时间报告由省电信号/信道触发的承载在PUCCH上的 CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX-OFF时报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False,UE需要在DRX激活时间之外的时间报告由省电信号/信道触发的承载在PUSCH上的CSI报告。
在一实施例中,如果高层没有配置CSI-Mask,UE需要在DRX-OFF时报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask,UE需要在DRX激活时间之外的时间报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask,UE需要在DRX-OFF时报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask,UE需要在DRX激活时间之外的时间报告由省电信号/信道触发的承载在PUSCH上的CSI报告。
在一实施例中,如果高层没有配置CSI-Mask,UE在DRX-OFF时不报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask,UE在DRX激活时间之外的时间不报告由省电信号/信道触发的承载在PUCCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask,UE在DRX-OFF时不报告由省电信号/信道触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层没有配置CSI-Mask,UE在DRX激活时间之外的时间不报告由省电信号/信道触发的承载在PUSCH上的CSI报告。
另外,UE可以给基站报告UE期望配置的最大MIMO层数(maxMIMO-Layers-Expect)、最大MIMO层数是否是针对BWP来配置(ApplyperBWP)。其中,maxMIMO-Layers-Expect为正整数,取值为1~8;ApplyperBWP为布尔型(BOOL)参数,取值为TRUE(即,针对BWP来配置)或FALSE(即,针对载波来配置)。报告的方式可以是物理层信令、MAC CE或RRC信令。基站在收到该参数后,可以为UE配置合适的参数,从而能省电。在一实施例中,对于频率范围1(FR1;Frequency Range 1;低频,小于6GHz),maxMIMO-Layers-Expect可以是4。在一实施例中,对于频率范围2(FR2;Frequency Range 2;高频,大于6GHz),maxMIMO-Layers-Expect可以是2。在一实施例中,对于FR1,ApplyperBWP可以是FALSE(即,针对载波来配置;各个BWP的最大MIMO层数按照载波的配置来)。在一实施例中,对于FR2,ApplyperBWP可以是TRUE。
通过上述操作之后,基站知道了下行信道状况和上行信道状况(及Beam的状况),从而提高了传输效率,从而能省电。
在第十二个示例性实施方式中,首先,基站给UE配置一些配置参数。这些配置参数包括:
基站发送参考信号(如,CSI-RS)的资源。
基站发送临时参考信号(如,SSB、CSI-RS、TRS)的资源。
参考信号(如,CSI-RS)相对省电信号/信道提早发送的时间(B)。例如,B=2个时隙。
参考信号(如,CSI-RS)相对省电信号/信道推后发送的时间(A)。例如,A=1个时隙。
UE发送参考信号(如,SRS)的资源。
SRS相对省电信号/信道的时间差(S)。例如,S=3个时隙。
UE报告CSI的PUCCH资源。
UE报告CSI的PUSCH资源。
其次,基站发送CSI-RS。例如,相对省电信号/信道提早发送B=2个时隙。
再其次,基站发送省电信号/信道。
接着,UE接收省电信号/信道。在一实施例中,省电信号/信道具有唤醒功能(WUS,通知UE需要接收PDCCH)和睡眠功能(GTS,通知UE不用接收PDCCH)。
再接着,基站第2次发送CSI-RS。例如,相对省电信号/信道落后发送A=1个时隙。
最后,UE发送与基站第2次发送的CSI-RS对应的SRS、报告CSI。
在一实施例中,如果基站给UE配置了多个载波(即,多个服务小区),那么,基站可以在各个载波上执行相同的操作,UE也可以在各个载波上执行相同的操作。这些操作在各个载波上可以同步进行,也可以独立进行。在一实施例中,除了在主载波(PCell,Primary Cell;主小区)上有省电信号/信道(而辅载波上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个载波上可以同步进行。即,主载波(PCell)上的省电信号/信道会触发UE报告各个载波(或服务小区;Serving Cell)的CSI。在一实施例中,主载波上的特定DCI或PDCCH或MAC CE会触发UE报告各个载波的CSI。在一实施例中,除了在主小区组(MCG;Master Cell Group)上有省电信号/信道(而辅小区组SCG上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个载波上可以同步进行。在一实施例中,除了在特殊小区(SpCell;Special Cell)上有省电信号/信道(而其他小区上没有省电信号 /信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个小区上可以同步进行。在一实施例中,除了在PUCCH辅小区组(PUCCH-SCell)上有省电信号/信道(而其他小区上没有省电信号/信道)之外,其他操作(如,CSI-RS的发送/接收、SRS的发送)在各个小区上可以同步进行。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发UE报告各自载波(或服务小区;Serving Cell)的CSI。在一实施例中,主载波(PCell)上的省电信号/信道会触发UE接收各个载波(或服务小区;Serving Cell)的CSI-RS。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发UE接收各自载波(或服务小区;Serving Cell)的CSI-RS。在一实施例中,主载波(PCell)上的省电信号/信道会触发UE在各个载波(或服务小区;Serving Cell)上发送SRS。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发UE在各自载波(或服务小区;Serving Cell)上发送SRS。在一实施例中,主载波(PCell)上的省电信号/信道会触发基站在各个载波(或服务小区;Serving Cell)上发送CSI-RS。在一实施例中,各个载波(Serving Cell)上的各自的省电信号/信道会触发基站在各自载波(或服务小区;Serving Cell)上发送CSI-RS。在一实施例中,省电信号/信道中的载波指示会指出哪个或哪些载波需要UE报告CSI。在一实施例中,省电信号/信道中的载波指示会指出哪个或哪些载波需要UE接收CSI-RS。在一实施例中,省电信号/信道中的载波指示会指出哪个或哪些载波需要UE发送SRS。在一实施例中,省电信号/信道会指出主载波和激活的辅载波需要UE报告CSI。在一实施例中,省电信号/信道会触发主载波和激活的辅载波需要UE发送SRS。在一实施例中,省电信号/信道会指出主载波和激活的辅载波需要UE报告CSI。在一实施例中,省电信号/信道会触发主载波和激活的辅载波需要UE发送SRS。在一实施例中,在双连接(DC,Dual Connection)配置下,上述操作在主小区组(MCG,Primary Cell Group)和辅小区组(SCG,Secondary Cell Group)上可以独立进行。
在一实施例中,如果基站给UE配置了多个载波,那么,基站可以在UE的各个去激活的载波(Deactived SCell;Released SCell)上执行相同的操作;UE也可以在各个去激活的载波上执行相同的操作。在一实施例中,如果基站给UE配置了多个载波,那么,基站可以在UE的各个正在激活的载波上执行相同的操作;UE也可以在各个正在激活的载波上执行相同的操作。在一实施例中,如果基站给UE配置了多个载波,那么,基站可以在UE的各个处于激活过程中的载波上执行相同的操作;UE也可以在各个处于激活过程中的载波上执行相同的操作。在一实施例中,基站可以在主载波上触发基站在UE的去激活的载波上发送临时参考信号(如,SSB、CSI-RS、TRS)。例如,用PDCCH或DCI或省电信号/信道来触发。在一实施例中,基站可以在UE的去激活的载波上发送临时参 考信号,UE可以在去激活的载波上接收临时参考信号。在一实施例中,基站可以触发UE接收临时参考信号。在一实施例中,基站可以触发UE根据临时参考信号来报告CSI。在一实施例中,UE可以根据去激活的载波上的临时参考信号来报告CSI。在一实施例中,基站可以在主载波上触发UE在去激活的载波上发送SRS。
在一实施例中,基站可以用特定的信令(如,特定DCI或特定PDCCH或MAC CE或特定的信号)来触发UE根据临时参考信号来报告CSI。在一实施例中,特定DCI或特定PDCCH或MAC CE或特定的信号可以是跨载波调度的。在一实施例中,特定DCI或特定PDCCH或MAC CE或特定的信号可以是跨载波激活辅小区的。在一实施例中,特定DCI或特定PDCCH或MAC CE或特定的信号可以是由主载波来跨载波激活辅小区的。
省电信号/信道中的比特域指示UE需要报告CSI的载波(或服务小区;包括去激活的载波)。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的载波(或服务小区;包括去激活的载波)。在一实施例中,主载波上的特定DCI或特定PDCCH或MAC CE或特定的信号指示UE需要报告CSI的载波(或服务小区;包括去激活的载波)。在一实施例中,辅载波上的特定DCI或特定PDCCH或MAC CE或特定的信号指示UE需要报告CSI的载波(或服务小区;包括去激活的载波)。在一实施例中,主载波上的特定DCI或特定PDCCH或MAC CE或特定的信号指示UE需要发送SRS的载波(或服务小区;包括去激活的载波)。在一实施例中,辅载波上的特定DCI或特定PDCCH或MAC CE或特定的信号指示UE需要发送SRS的载波(或服务小区;包括去激活的载波)。如下面的表43-表46所示。
表43
Figure PCTCN2020109206-appb-000110
表44
Figure PCTCN2020109206-appb-000111
Figure PCTCN2020109206-appb-000112
表45
Figure PCTCN2020109206-appb-000113
表46
Figure PCTCN2020109206-appb-000114
Figure PCTCN2020109206-appb-000115
在一实施例中,省电信号/信道具有0-10比特的RS指示比特,用于指出UE报告CSI或/和发送SRS的组合情况。这些组合情况由媒体接入控制的控制元素(MAC CE)来指出。假设省电信号/信道具有3比特的RS指示比特,又假设目前有10个激活的载波(服务小区),那么可通过MAC CE来指示这些载波的操作,如下面的表47所示。
表47
Figure PCTCN2020109206-appb-000116
在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的各个BWP上都需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的各个BWP上需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的默认BWP或初始BWP上需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的各个BWP上需要发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的默认BWP或初始BWP上需要发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的各个BWP上都需要报告CSI和发送SRS。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的默认BWP或初始BWP上需要报告CSI和发送SRS。
在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的各个配置了临时参考信号的BWP上都需要报告CSI。在一实施例中,UE在接收到特定DCI或特定PDCCH或MAC CE或特定的信号之后,在各个去激活的载波的各个配置了临时参考信号的BWP上都需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的各个配置了临时参考信号的下行BWP上都需要报告CSI。在一实施例中,UE在接收到特定DCI或特定PDCCH或MAC CE或特定的信号之后,在各个去激活的载波的各个配置了临时参考信号的下行BWP上都需要报告CSI。在一实施例中,UE在接收到省电信号/信道之后,在各个去激活的载波的与各个配置了临时参考信号的下行BWP相对应的上行BWP上都需要发送SRS。在一实施例中,UE在接收到特定DCI 或特定PDCCH或MAC CE或特定的信号之后,在各个去激活的载波的与各个配置了临时参考信号的下行BWP相对应的上行BWP上都需要发送SRS。
在一实施例中,省电信号/信道中的比特域指示UE需要报告CSI的BWP。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的BWP。在一实施例中,特定DCI或特定PDCCH或MAC CE或特定的信号指示UE需要报告CSI的BWP。在一实施例中,特定DCI或特定PDCCH或MAC CE或特定的信号指示UE需要发送SRS的BWP。如下面的表48-表51所示。
表48
Figure PCTCN2020109206-appb-000117
表49
Figure PCTCN2020109206-appb-000118
Figure PCTCN2020109206-appb-000119
表50
Figure PCTCN2020109206-appb-000120
表51
Figure PCTCN2020109206-appb-000121
Figure PCTCN2020109206-appb-000122
在一实施例中,如果某个载波(或BWP)配置了临时参考信号,那么基站和UE需要在该载波(或BWP)上进行上述操作(如,CSI-RS的发送/接收、SRS的发送)。在一实施例中,如果某个辅载波(或BWP)配置了临时参考信号,那么,在主载波(或特别载波,或特殊载波)上发送省电信号/信道之前和之后,基站需要在该配置了临时参考信号的载波(或配置了临时参考信号的BWP)上进行上述CSI-RS的发送操作。在一实施例中,如果某个辅载波(或BWP)配置了临时参考信号,那么,在主载波(或特别载波)上接收省电信号/信道之前和之后,UE需要在该配置了临时参考信号的载波(或配置了临时参考信号的BWP)上进行上述CSI-RS接收、SRS的发送和CSI报告的操作。
在一实施例中,如果某个辅载波配置了临时参考信号,那么,省电信号/信道中的比特域指示UE需要报告CSI的载波(或服务小区)。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的载波(或服务小区)。如下面的表52-表55所示。
表52
Figure PCTCN2020109206-appb-000123
Figure PCTCN2020109206-appb-000124
表53
Figure PCTCN2020109206-appb-000125
表54
Figure PCTCN2020109206-appb-000126
表55
Figure PCTCN2020109206-appb-000127
Figure PCTCN2020109206-appb-000128
在一实施例中,省电信号/信道中的比特域指示UE需要报告CSI的BWP(包括配置了临时参考信号的BWP)。在一实施例中,省电信号/信道中的比特域指示UE需要发送SRS的BWP(包括与配置了临时参考信号的下行BWP相对应的上行BWP)。如下面的表56-表59所示。
表56
Figure PCTCN2020109206-appb-000129
表57
Figure PCTCN2020109206-appb-000130
表58
Figure PCTCN2020109206-appb-000131
Figure PCTCN2020109206-appb-000132
表59
Figure PCTCN2020109206-appb-000133
在一实施例中,UE在报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI报告时,最大码率指示取为0(maxCodeRate=0),对应的码率(Code rate)为0.08。在一实施例中,UE报告CSI时使用的PUCCH资源号码(或PUCCH信道索引;或资源集)可隐含地由特定DCI或特定PDCCH或MAC CE或特定的信号指示出来。例如,UE在报告由省电信号/信道触发的CSI报告(或者,UE发出针对特定DCI或特定PDCCH或MAC CE或特定的信号的成功解码省电信号/信道的确认信息)时,使用的PUCCH资源号码为
Figure PCTCN2020109206-appb-000134
其中,
Figure PCTCN2020109206-appb-000135
为下取整操作,n CCE,0为特定DCI或特定PDCCH或MAC CE或特定的信号的第一个控制元素(CCE)号码,N CCE为特定DCI或特定PDCCH或MAC CE或特定的信号的控制资源集(CORESET)的CCE数量,n PS-RNTI为省电RNTI的值(0......65535),mod()为取模操作,N PUCCH为PUCCH资源的数量。
在一实施例中,UE在报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI报告时,使用的PUCCH资源号码为n C-RNTI mod N PUCCH或n CA-RNTI mod N PUCCH,其中,n C-RNTI为UE的小区无线网临时标识,n CA-RNTI为UE的载波激活无线网临时标识。
在一实施例中,UE在报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI报告时,使用的PUSCH资源号码为n C-RNTI mod N PUSCH或n CA-RNTI mod N PUCCH,其中,N PUSCH为配置的PUSCH资源的数量。
在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI-RS使用C-RNTI或载波激活无线网临时标识(Carrier Activation-Radio Network Temporary Identifier,CA-RNTI)来做初始化种子的一部分。在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发临时参考信号时,临时参考信号使用C-RNTI或CA-RNTI来做初始化种子的一部分。在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发临时参考信号时,特定DCI或特定PDCCH或MAC CE或特定的信号使用C-RNTI或CA-RNTI来加扰。在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发临时参考信号时,特定DCI或特定PDCCH或MAC CE或特定的信号的编码前的比特使用C-RNTI或CA-RNTI来加扰。在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发临时参考信号时,特定DCI或特定PDCCH或MAC CE或特定的信号的编码后的比特使用C-RNTI或CA-RNTI来加扰。在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发临时参考信号时,特定DCI或特定PDCCH或MAC CE或特定的信号的CRC比特使用C-RNTI或CA-RNTI来加扰。在一实施例中,由特定DCI或特定PDCCH或MAC CE或特定的信号触发的SRS使用C-RNTI或CA-RNTI来做初始化种子的一部分。
在一实施例中,如果高层(指RRC;无线资源控制)配置了CSI报告的掩码(CSI-Mask)时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask 取值为True时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的由PUCCH承载的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的由PUCCH承载的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为True时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的承载在PUSCH上的CSI报告。在一实施例中,如果高层配置了CSI-Mask且CSI-Mask取值为False时,UE需要报告由特定DCI或特定PDCCH或MAC CE或特定的信号触发的承载在PUSCH上的CSI报告。
通过上述操作之后,基站知道了下行信道状况和上行信道状况(及Beam的状况),从而提高了传输效率,从而能省电。
在第十三个示例性实施方式中,首先,基站给UE配置一些配置参数。这些配置参数包括:
省电信号/信道使用的控制资源集(CORESET)。基站可以给省电信号/信道配置多个CORESET(例如,3个),各个CORESET的波束方向可以不同。在一实施例中,每个BWP都可以给省电信号/信道配置CORESET。在一实施例中,CORESET的最小RB号码是该CORESET所在的BWP的最小RB号码。在一实施例中,CORESET与该CORESET所在的BWP具有相同的起始RB号码。在一实施例中,CORESET的最大RB号码是该CORESET所在的BWP的最大RB号码。在一实施例中,CORESET与该CORESET所在的BWP具有相同的结束RB号码。在一实施例中,CORESET与0号CORESET(即,CORESET 0)具有同样的CORESET大小(即,这2个CORESET包含的RB数相同)。
CSI-RS资源。基站可以给每个波束方向配置一个或多个CSI-RS资源(或CSI-RS资源集)。在一实施例中,基站可以在与用于省电信号/信道的CORESET相同的波束方向上配置一个或多个CSI-RS资源(或CSI-RS资源集)(即,CORESET和CSI-RS的波束方向相同)。在一实施例中,基站可以在与用于省电信号/信道的CORESET上配置一个或多个关联的CSI-RS资源(或CSI-RS资源集)。在一实施例中,这些CSI-RS资源可以是周期性的资源,也可以是半持久的周期性的资源,也可以是非周期的资源。
PUCCH资源。基站可以给UE配置用于报告CSI的一个或多个PUCCH资源(或PUCCH资源集;或PUCCH信道索引)。在一实施例中,基站可以给UE配置用于反馈正确接收到省电信号/信道的一个或多个PUCCH资源。在一实施例中,基站可以给UE配置一个或多个与省电信号/信道关联的PUCCH资源 (或PUCCH资源集;或PUCCH信道索引)。
SRS资源。基站可以给UE配置一个或多个与CSI-RS资源号码(NZP-CSI-RS-ResourceId)关联的SRS资源。在一实施例中,基站可以给UE配置一个或多个与省电信号/信道关联的SRS资源。在一实施例中,基站可以给UE配置与省电信号/信道的CORESET关联的一个或多个SRS资源。在一实施例中,基站可以给UE配置与省电信号/信道的波束方向关联的一个或多个SRS资源。在一实施例中,这些SRS资源可以是周期性的资源,也可以是半持久的周期性的资源,也可以是非周期的资源。
其次,基站在发送省电信号/信道之前发送CSI-RS。由于UE在运动,基站可能不能确切地知道UE在哪一个方向,因此,基站在发送CSI-RS的时候,可以在接下来基站要发的省电信号/信道的波束方向上发送CSI-RS。例如,如果基站将来要在3个波束方向上发送省电信号/信道,那么基站在这3个波束方向上分别发送CSI-RS。例如,基站可以进行波束扫描,一个时刻只发送一个CSI-RS。
再次,基站发送省电信号/信道。基站可以使用波束扫描的方式,一个时刻在一个波束方向上发送一个省电信号/信道。例如,在第一个时隙,基站使用与第一个波束方向对应的CORESET来发送省电信号/信道;在第2个时隙,基站使用与第2个波束方向对应的CORESET来发送省电信号/信道;在第3个时隙,基站使用与第3个波束方向对应的CORESET来发送省电信号/信道。又如,基站在针对不同波束方向的CORESET上依次发送一个省电信号/信道。在一实施例中,基站在多个CORESET上同时发送多个波束方向的省电信号/信道(例如,每个CORESET对应一个波束方向;在一实施例中,一个CORESET可以有多个波束方向)。在一实施例中,基站在上述与CSI-RS对应的波束方向上发送省电信号/信道。
然后,基站再次发送CSI-RS。在一实施例中,这时候发送的CSI-RS可以是由省电信号/信道触发的。在一实施例中,这时候发送的CSI-RS可以是由各自对应的省电信号/信道触发的。在一实施例中,这时候发送的CSI-RS可以是由各自对应的波束方向上的省电信号/信道触发的。在一实施例中,这时候发送的CSI-RS与省电信号/信道一一对应。在一实施例中,这时候发送的CSI-RS的波束方向与省电信号/信道的波束方向一一对应。在一实施例中,这时候发送的CSI-RS使用波束扫描的方式来发送。在一实施例中,这时候发送的CSI-RS使用的波束扫描方式与省电信号/信道使用的波束扫描方式相同。在一实施例中,这时候发送的CSI-RS使用的波束扫描方式与省电信号/信道所在的CORESET使用的波束扫描方式相同。
再然后,UE接收上述CSI-RS和报告CSI。在一实施例中,UE报告全部省 电信号/信道所对应波束方向的CSI。在一实施例中,UE只报告具有最佳信道质量的省电信号/信道所对应波束方向的CSI(在一实施例中,包含波束号码)。在一实施例中,UE按信道质量由好到差的顺序报告省电信号/信道的波束号码。在一实施例中,UE报告具有最佳信道质量的省电信号/信道的波束号码。在一实施例中,报告CSI可以是周期性的CSI报告,也可以是半持久的周期性的CSI报告,也可以是非周期的CSI报告。
接着,基站接收UE的报告。
再接着,UE发送SRS。在一实施例中,UE以波束扫描方式发送SRS。例如,UE在第一个时隙在第一个波束上发送SRS;UE在第2个时隙在第2个波束上发送SRS;UE在第3个时隙在第3个波束上发送SRS。在一实施例中,UE一次在多个波束方向上发送SRS。在一实施例中,该SRS是与上述CSI-RS相关联的。在一实施例中,UE只在具有最佳信道质量的省电信号/信道所对应波束方向上发送SRS。在一实施例中,UE只在具有最佳信道质量的CSI-RS所对应波束方向上发送与上述CSI-RS相关联的SRS。在一实施例中,UE只在具有最佳信道质量的CSI-RS所对应波束方向上以波束扫描方式发送与上述CSI-RS相关联的SRS。
最后,基站接收上述SRS。通过接收CSI报告和测量SRS,基站知道了下行信道状况和波束情况,也知道了上行信道状况和波束情况,从而能提高传输效率,从而能使UE省电。
图14为一实施例提供的一种数据传输装置的结构示意图,该数据传输装置可以配置于第一通信节点中,如图14所示,包括:获取模块10,接收模块11和发送模块12。
获取模块10,设置为获取第二通信节点为第一通信节点配置的配置参数;
接收模块11,设置为接收第二通信节点发送的第一消息,第一消息包括省电信号或者省电信道;
发送模块12,设置为向第二通信节点发送第二消息。
本实施例提供的数据传输装置为实现上述实施例的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,第二消息是由第一消息触发的。
在一实施例中,配置参数包括:
用于解码第一消息的解调参考信号DM-RS资源;
DM-RS的扰码号码。
在一实施例中,发送模块12,是设置为根据第一消息,向第二通信节点发送探测参考信号SRS。
在一实施例中,发送模块12,是设置为在解码第一消息后,利用物理上行共享信道PUSCH向第二通信节点发送非周期信道状态信息CSI。
在一实施例中,使用资源指示值RIV来表示利用PUSCH向第二通信节点发送非周期CSI时使用的资源。
在一实施例中,由高层配置利用PUSCH向第二通信节点发送非周期CSI时使用的资源。
在一实施例中,PUSCH中待发送的比特根据省电无线网络临时标识PS-RNTI加扰。
在一实施例中,PUSCH中DM-RS序列初始化种子包括PS-RNTI。
在一实施例中,PUSCH的循环冗余校验CRC比特根据PS-RNTI加扰。
在一实施例中,发送模块12,是设置为在解码第一消息后,利用物理上行控制信道PUCCH向第二通信节点发送非周期CSI。
在一实施例中,PUCCH中待发送的比特根据PS-RNTI加扰。
在一实施例中,PUCCH中DM-RS序列初始化种子包括PS-RNTI。
在一实施例中,PUCCH的CRC比特根据PS-RNTI加扰。
在一实施例中,第一通信节点发送非周期CSI时使用的PUCCH资源由第一消息指示。
在一实施例中,第一通信节点发送非周期CSI时使用的PUCCH资源号码隐含地由第一消息指示。
在一实施例中,参考图14,图15为一实施例提供的另一种数据传输装置的结构示意图,该数据传输装置还包括:切换模块13。
切换模块13,设置为进行带宽部分BWP切换,BWP切换由第一消息触发。
在一实施例中,发送模块12,是设置为在有BWP切换时,向第二通信节点发送CSI。
在一实施例中,发送模块12,是设置为在BWP切换完成后的第X个时隙上,向第二通信节点发送CSI,X为正整数。
在一实施例中,属于主小区的第一消息用于触发第一通信节点向第二通信 节点发送各个服务小区的CSI。
在一实施例中,第一消息包括:
在第一消息的控制资源集CORESET资源上配置与CORESET资源关联的信道状态信息参考信号CSI-RS资源;
为第一通信节点配置的与第一消息关联的SRS资源;
为第一通信节点配置的与第一消息关联的PUCCH资源;
为第一通信节点配置的与第一消息关联的PUSCH资源。
在一实施例中,参考图14,图16为一实施例提供的又一种数据传输装置的结构示意图,该数据传输装置还包括:处理模块14。
处理模块14,设置为在计算第一消息的CRC时,在待计算的原始信息前添加L个“0”,L为正整数。
在一实施例中,在接收第一消息时,第一通信节点假定第一消息的DM-RS与同步信号块SSB具有相同的准共站址QCL特性。
在一实施例中,发送模块12,是设置为根据CSI的掩码,向第二通信节点发送CSI。
在一实施例中,发送模块12,是设置为根据特定的信令,向第二通信节点发送定义了休眠行为的辅小区的CSI。
在一实施例中,发送模块12,是设置为根据特定的信令,向第二通信节点发送配置了临时参考信号的辅小区的CSI。
在一实施例中,配置参数指示:
CSI-RS的序列初始化方式;
用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
在一实施例中,配置参数包括:
CSI-RS相对第一消息提早发送的时间偏差。
在一实施例中,配置参数包括:
针对一个BWP的最大多输入多输出层数。
在一实施例中,若配置参数不包括针对一个BWP的最大多输入多输出层数,则配置参数包括:针对该BWP所在服务小区的最大多输入多输出层数。
在一实施例中,第一消息中待发送的比特根据PS-RNTI加扰。
在一实施例中,第一消息中编码之后的比特根据PS-RNTI加扰。
在一实施例中,第一消息中DM-RS序列初始化种子包括PS-RNTI。
在一实施例中,第一消息的CRC比特根据PS-RNTI加扰。
图17为一实施例提供的再一种数据传输装置的结构示意图,该数据传输装置可以配置于第二通信节点中,如图17所示,包括:配置模块20和发送模块21。
配置模块20,设置为为第一通信节点配置配置参数;
发送模块21,设置为向第一通信节点发送第一消息,第一消息包括省电信号或者省电信道;以及向第一通信节点发送第三消息,第三消息包括参考信号。
本实施例提供的数据传输装置为实现上述实施例的数据传输方法,本实施例提供的数据传输装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,第三消息是由第一消息触发的。
在一实施例中,第一消息的循环冗余校验CRC比特根据省电无线网络临时标识PS-RNTI加扰。
在一实施例中,PS-RNTI用于在序列生成中初始化序列,该序列用于生成参考信号。
在一实施例中,配置参数包括:
第一消息的解调参考信号DM-RS资源;
DM-RS的扰码号码。
在一实施例中,配置参数指示:
信道状态信息参考信号CSI-RS的序列初始化方式;
用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
在一实施例中,配置参数包括:
CSI-RS相对第一消息提早发送的时间偏差。
在一实施例中,第一消息包括:
在第一消息的控制资源集CORESET资源上配置与CORESET资源关联的信道状态信息参考信号CSI-RS资源;
为第一通信节点配置的与第一消息关联的探测参考信号SRS资源;
为第一通信节点配置的与第一消息关联的物理上行控制信道PUCCH资源;
为第一通信节点配置的与第一消息关联的物理上行共享信道PUSCH资源。
本申请实施例还提供了一种数据传输装置,包括:处理器,处理器用于在执行计算机程序时实现如本申请任意实施例所提供的方法。具体的,该数据传输装置可以为本申请任意实施例所提供的第一通信节点,也可以为本申请任意实施例所提供的第二通信节点,本申请对此不作具体限制。
下述实施例分别提供一种数据传输装置为UE和基站的结构示意图。
图18示出了一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置、车载终端设备、车载显示终端、车载电子后视镜等等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等等的固定终端设备。
如图18所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等等。图18示出了包括多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。
本实施例中,无线通信单元51允许UE 50与基站或网络之间的无线电通信。A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等等,并且生成用于控制UE 50的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视觉、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的方法。
图19示出了一实施例提供的一种基站的结构示意图,如图19所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是一个或多个,图19中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图19中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的数据传输方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable,programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存 储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++、Ruby、Go,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (48)

  1. 一种数据传输方法,包括:
    第一通信节点获取第二通信节点为所述第一通信节点配置的配置参数;
    所述第一通信节点接收所述第二通信节点发送的第一消息,所述第一消息包括省电信号或者省电信道;
    所述第一通信节点向所述第二通信节点发送第二消息。
  2. 根据权利要求1所述的方法,其中,所述第二消息是由所述第一消息触发的。
  3. 根据权利要求1所述的方法,其中,所述配置参数包括:
    用于解码所述第一消息的解调参考信号DM-RS;
    所述DM-RS的扰码号码。
  4. 根据权利要求1所述的方法,其中,所述第一通信节点向所述第二通信节点发送第二消息,包括:
    所述第一通信节点根据所述第一消息,向所述第二通信节点发送探测参考信号SRS。
  5. 根据权利要求1所述的方法,其中,所述第一通信节点向所述第二通信节点发送第二消息,包括:
    在解码所述第一消息后,所述第一通信节点利用物理上行共享信道PUSCH向所述第二通信节点发送非周期信道状态信息CSI。
  6. 根据权利要求5所述的方法,其中,在使用资源指示值RIV来表示利用所述PUSCH向所述第二通信节点发送所述非周期CSI的情况下使用的资源。
  7. 根据权利要求5所述的方法,其中,在由高层配置利用所述PUSCH向所述第二通信节点发送所述非周期CSI的情况下使用的资源。
  8. 根据权利要求5所述的方法,其中,所述PUSCH中待发送的比特根据省电无线网络临时标识PS-RNTI加扰。
  9. 根据权利要求5所述的方法,其中,所述PUSCH中DM-RS的序列初始化种子包括PS-RNTI。
  10. 根据权利要求5所述的方法,其中,所述PUSCH的循环冗余校验CRC比特根据PS-RNTI加扰。
  11. 根据权利要求1所述的方法,其中,所述第一通信节点向所述第二通信节点发送第二消息,包括:
    在解码所述第一消息后,所述第一通信节点利用物理上行控制信道PUCCH向所述第二通信节点发送非周期CSI。
  12. 根据权利要求11所述的方法,其中,所述PUCCH中待发送的比特根据PS-RNTI加扰。
  13. 根据权利要求11所述的方法,其中,所述PUCCH中DM-RS的序列初始化种子包括PS-RNTI。
  14. 根据权利要求11所述的方法,其中,所述PUCCH的CRC比特根据PS-RNTI加扰。
  15. 根据权利要求11所述的方法,其中,在所述第一通信节点发送所述非周期CSI的情况下使用的PUCCH资源由所述第一消息指示。
  16. 根据权利要求15所述的方法,其中,在所述第一通信节点发送所述非周期CSI的情况下使用的PUCCH资源号码隐含地由所述第一消息指示。
  17. 根据权利要求1所述的方法,还包括:
    所述第一通信节点进行带宽部分BWP切换,所述BWP切换由所述第一消息触发。
  18. 根据权利要求17所述的方法,其中,所述第一通信节点向所述第二通信节点发送第二消息,包括:
    在有所述BWP切换的情况下,所述第一通信节点向所述第二通信节点发送CSI。
  19. 根据权利要求18所述的方法,其中,所述在有所述BWP切换的情况下,所述第一通信节点向所述第二通信节点发送CSI,包括:
    所述第一通信节点在所述BWP切换完成后的第X个时隙上,向所述第二通信节点发送所述CSI,X为正整数。
  20. 根据权利要求1所述的方法,其中,属于主小区的所述第一消息用于触发所述第一通信节点向所述第二通信节点发送多个服务小区的CSI。
  21. 根据权利要求1所述的方法,其中,所述第一消息包括:
    在所述第一消息的控制资源集CORESET资源上配置与所述CORESET资源关联的信道状态信息参考信号CSI-RS资源;
    为所述第一通信节点配置的与所述第一消息关联的SRS资源;
    为所述第一通信节点配置的与所述第一消息关联的PUCCH资源;
    为所述第一通信节点配置的与所述第一消息关联的PUSCH资源。
  22. 根据权利要求1所述的方法,还包括:
    所述第一通信节点在计算所述第一消息的CRC的情况下,在待计算的原始信息前添加L个“0”,L为正整数。
  23. 根据权利要求1所述的方法,其中,在接收所述第一消息的情况下,所述第一通信节点假定所述第一消息的DM-RS天线端口与同步信号块SSB具有相同的准共站址QCL特性。
  24. 根据权利要求5、11或18中的任意一项所述的方法,其中,所述第一通信节点向所述第二通信节点发送CSI,包括:
    所述第一通信节点根据CSI的掩码,向所述第二通信节点发送CSI。
  25. 根据权利要求5、11或18中的任意一项所述的方法,其中,所述第一通信节点向所述第二通信节点发送CSI,包括:
    所述第一通信节点根据特定的信令,向所述第二通信节点发送定义了休眠行为的辅小区的CSI。
  26. 根据权利要求5、11或18中的任意一项所述的方法,其中,所述第一通信节点向所述第二通信节点发送CSI,包括:
    所述第一通信节点根据特定的信令,向所述第二通信节点发送配置了临时参考信号的辅小区的CSI。
  27. 根据权利要求1所述的方法,其中,所述配置参数指示:
    CSI-RS的序列初始化方式;
    用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
  28. 根据权利要求1所述的方法,其中,所述配置参数包括:
    CSI-RS相对所述第一消息提早发送的时间偏差。
  29. 根据权利要求1所述的方法,其中,所述配置参数包括:
    针对一个BWP的最大多输入多输出层数。
  30. 根据权利要求29所述的方法,其中,在所述配置参数不包括所述针对一个BWP的最大多输入多输出层数的情况下,所述配置参数包括:针对所述BWP所在服务小区的最大多输入多输出层数。
  31. 根据权利要求1所述的方法,其中,所述第一消息中待发送的比特根据PS-RNTI加扰。
  32. 根据权利要求1所述的方法,其中,所述第一消息中编码之后的比特 根据PS-RNTI加扰。
  33. 根据权利要求1所述的方法,其中,所述第一消息中DM-RS的序列初始化种子包括PS-RNTI。
  34. 根据权利要求1所述的方法,其中,所述第一消息的CRC比特根据PS-RNTI加扰。
  35. 一种数据传输方法,包括:
    第二通信节点为第一通信节点配置配置参数;
    所述第二通信节点向所述第一通信节点发送第一消息,所述第一消息包括省电信号或者省电信道;
    所述第二通信节点向所述第一通信节点发送第三消息,所述第三消息包括参考信号。
  36. 根据权利要求35所述的方法,其中,所述第三消息是由所述第一消息触发的。
  37. 根据权利要求35所述的方法,其中,所述第一消息的循环冗余校验CRC比特根据省电无线网络临时标识PS-RNTI加扰。
  38. 根据权利要求37所述的方法,其中,所述PS-RNTI用于在序列生成中初始化所述序列,所述序列用于生成所述参考信号。
  39. 根据权利要求35所述的方法,其中,所述配置参数包括:
    所述第一消息的解调参考信号DM-RS;
    所述DM-RS的扰码号码。
  40. 根据权利要求35所述的方法,其中,所述配置参数指示:
    信道状态信息参考信号CSI-RS的序列初始化方式;
    用PS-RNTI去做CSI-RS序列的初始化种子的一部分。
  41. 根据权利要求35所述的方法,其中,所述配置参数包括:
    CSI-RS相对所述第一消息提早发送的时间偏差。
  42. 根据权利要求35所述的方法,其中,所述第一消息包括:
    在所述第一消息的控制资源集CORESET资源上配置与所述CORESET资源关联的信道状态信息参考信号CSI-RS资源;
    为所述第一通信节点配置的与所述第一消息关联的探测参考信号SRS资源;
    为所述第一通信节点配置的与所述第一消息关联的物理上行控制信道PUCCH资源;
    为所述第一通信节点配置的与所述第一消息关联的物理上行共享信道PUSCH资源。
  43. 根据权利要求35所述的方法,其中,所述配置参数包括:
    针对一个BWP的最大多输入多输出层数。
  44. 根据权利要求43所述的方法,其中,在所述配置参数不包括所述针对一个BWP的最大多输入多输出层数的情况下,所述配置参数包括:针对所述BWP所在服务小区的最大多输入多输出层数。
  45. 根据权利要求43所述的方法,其中,在所述配置参数不包括所述针对一个BWP的最大多输入多输出层数的情况下,UE使用针对载波的最大多输入多输出层数来取代所述针对一个BWP的最大多输入多输出层数的值。
  46. 根据权利要求37所述的方法,还包括:在激活时间之外,所述第一消息的CRC比特根据PS-RNTI加扰。
  47. 一种数据传输装置,包括:处理器,所述处理器用于在执行计算机程序时实现如权利要求1-46中任一项所述的数据传输方法。
  48. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-46中任一项所述的数据传输方法。
PCT/CN2020/109206 2019-08-15 2020-08-14 数据传输方法、装置及计算机可读存储介质 WO2021027924A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20852143.5A EP4017129A4 (en) 2019-08-15 2020-08-14 METHOD AND DEVICE FOR TRANSMITTING DATA AND COMPUTER READABLE STORAGE MEDIA
US17/670,166 US20220248329A1 (en) 2019-08-15 2022-02-11 Data transmission method and device, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755610.5A CN110536387B (zh) 2019-08-15 2019-08-15 一种数据传输方法、装置及计算机可读存储介质
CN201910755610.5 2019-08-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/670,166 Continuation US20220248329A1 (en) 2019-08-15 2022-02-11 Data transmission method and device, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2021027924A1 true WO2021027924A1 (zh) 2021-02-18

Family

ID=68663545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109206 WO2021027924A1 (zh) 2019-08-15 2020-08-14 数据传输方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220248329A1 (zh)
EP (1) EP4017129A4 (zh)
CN (2) CN110536387B (zh)
WO (1) WO2021027924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019824A1 (en) * 2020-07-22 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Radio network nodes, user equipment, and methods performed in a wireless communication network
CN114158070A (zh) * 2021-11-26 2022-03-08 中国联合网络通信集团有限公司 专网中数据传输的方法和装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536387B (zh) * 2019-08-15 2023-08-01 中兴通讯股份有限公司 一种数据传输方法、装置及计算机可读存储介质
CN112788654B (zh) * 2019-11-08 2023-04-14 大唐移动通信设备有限公司 信息上报方法、终端及基站
CN111901016B (zh) * 2019-11-08 2023-10-20 中兴通讯股份有限公司 一种数据处理方法、装置、第一通信节点和第二通信节点及存储介质
CN114503486B (zh) * 2019-12-26 2024-02-27 Oppo广东移动通信有限公司 一种测量方法、电子设备及存储介质
US20230050787A1 (en) * 2020-02-14 2023-02-16 Qualcomm Incorporated Aperiodic measurement configuration
WO2021184201A1 (en) * 2020-03-17 2021-09-23 Mediatek Singapore Pte. Ltd. Methods and apparatus of csi report to support reliable multicast transmission
WO2021203324A1 (en) * 2020-04-08 2021-10-14 Apple Inc. SCell Dormancy Reliability Improvement
WO2021259343A1 (en) * 2020-06-24 2021-12-30 Mediatek Inc. Efficient adaption of ue power saving in 5g new radio (nr)
CN114071765B (zh) * 2020-08-05 2023-09-01 维沃移动通信有限公司 传输控制方法、装置及电子设备
WO2022027568A1 (en) * 2020-08-07 2022-02-10 Zte Corporation Monitoring control channels using higher layer configuration
US20230327726A1 (en) * 2020-08-20 2023-10-12 Qualcomm Incorporated Beam updates during a secondary cell group (scg) dormancy period
WO2022038576A1 (en) * 2020-08-21 2022-02-24 Lenovo (Singapore) Pte. Ltd. Configuring a wakeup signal
AU2021418389A1 (en) * 2021-01-13 2023-07-27 Huawei Technologies Co., Ltd. Communication method and apparatus
CN115334677A (zh) * 2021-05-10 2022-11-11 华为技术有限公司 一种通信方法及装置
CN115942437A (zh) * 2021-08-13 2023-04-07 华为技术有限公司 通信处理方法和通信处理装置
WO2023039910A1 (zh) * 2021-09-18 2023-03-23 北京小米移动软件有限公司 一种临时参考信号传输方法、装置及存储介质
US11968044B2 (en) * 2022-03-24 2024-04-23 Qualcom Incorporated Interference mitigation by pseudo-random muting for sounding reference signals
CN117835420A (zh) * 2022-09-23 2024-04-05 中兴通讯股份有限公司 信道探测参考信号资源配置方法、计算机设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053321A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Beam management for beam-swept wakeup signals
CN110536387A (zh) * 2019-08-15 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置及计算机可读存储介质
CN111083770A (zh) * 2019-08-15 2020-04-28 中兴通讯股份有限公司 一种终端的省电方法、省电装置、信息的发送方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115414A2 (en) * 2011-02-21 2012-08-30 Samsung Electronics Co., Ltd. Method and apparatus for saving power of user equipment in wireless communication system
WO2017167755A1 (en) * 2016-04-01 2017-10-05 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communications
US10728950B2 (en) * 2016-08-26 2020-07-28 Qualcomm Incorporated Beam training for discontinuous reception (DRX) mode operation
US10993183B2 (en) * 2017-08-11 2021-04-27 Qualcomm Incorporated Wake up procedure using pseudo-omni beam
US10652826B2 (en) * 2018-03-23 2020-05-12 Samsung Electronics Co., Ltd. Method and apparatus for power saving signal design in NR
US20200037247A1 (en) * 2018-07-25 2020-01-30 Mediatek Inc. Wake-up signal operation for ue power saving

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190053321A1 (en) * 2017-08-11 2019-02-14 Qualcomm Incorporated Beam management for beam-swept wakeup signals
CN110536387A (zh) * 2019-08-15 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置及计算机可读存储介质
CN111083770A (zh) * 2019-08-15 2020-04-28 中兴通讯股份有限公司 一种终端的省电方法、省电装置、信息的发送方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on UE power saving schemes with adaption to UE traffic", 3GPP DRAFT; R1-1903344, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 22 February 2019 (2019-02-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051601021 *
MEDIATEK INC.: "NR UE Power Saving Designs", 3GPP DRAFT; R1-1903353_NR UE POWER SAVING DESIGNS_REVFINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 23 February 2019 (2019-02-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051601029 *
See also references of EP4017129A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022019824A1 (en) * 2020-07-22 2022-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Radio network nodes, user equipment, and methods performed in a wireless communication network
CN114158070A (zh) * 2021-11-26 2022-03-08 中国联合网络通信集团有限公司 专网中数据传输的方法和装置
CN114158070B (zh) * 2021-11-26 2023-09-19 中国联合网络通信集团有限公司 专网中数据传输的方法和装置

Also Published As

Publication number Publication date
CN110536387B (zh) 2023-08-01
EP4017129A4 (en) 2023-08-30
CN110536387A (zh) 2019-12-03
EP4017129A1 (en) 2022-06-22
CN116847442A (zh) 2023-10-03
US20220248329A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2021027924A1 (zh) 数据传输方法、装置及计算机可读存储介质
CN110583052B (zh) 终端装置、基础设施设备、无线电信系统和方法
US10856224B2 (en) Method and system for enabling discontinuous reception (DRX) over an unlicensed band in cellular networks
US11778555B2 (en) Method and apparatus for saving power of user equipment in wireless communication system
CN113767699A (zh) 确定用于物理下行链路控制信道(pdcch)监测的搜索空间集的方法和设备
US20220167267A1 (en) Terminal power saving method, power saving apparatus, information sending method and apparatus, storage medium, and electronic device
EP3949541B1 (en) Control channel monitoring in a wireless communication system
US20230262601A1 (en) Radio resource configuration for power saving
US20220201516A1 (en) Control information processing
EP3996427B1 (en) Wake-up signal (wus) detection method and apparatus
EP3965479A1 (en) Method and apparatus for waking up terminal device, and network device and terminal device
WO2021088087A1 (zh) 一种参考信号发送和接收的方法及装置
US20220086756A1 (en) User Equipment Receiver for Wake Up Signal Reception
JP2023550486A (ja) 無線通信システムにおいて無線信号の送受信方法及び装置
JP2023532537A (ja) 伝送処理方法、装置及び端末
US20220231818A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
US20220132545A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
EP4187982A1 (en) Sleep indication method and apparatus, terminal, and network side device
CN117296441A (zh) 发送和接收多播会话激活通知的方法
RU2812018C2 (ru) Способ и устройство передачи данных и машиночитаемый носитель хранения данных
US12003337B2 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
CN113950130B (zh) 休眠指示方法、终端、网络侧设备和存储介质
US20230412341A1 (en) Tracking reference signal configuration
US20220131656A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system
US20220231800A1 (en) Method and apparatus for transmitting/receiving wireless signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022103569

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020852143

Country of ref document: EP

Effective date: 20220315