WO2023005501A1 - 波导组件、光学装置及智能眼镜 - Google Patents

波导组件、光学装置及智能眼镜 Download PDF

Info

Publication number
WO2023005501A1
WO2023005501A1 PCT/CN2022/099554 CN2022099554W WO2023005501A1 WO 2023005501 A1 WO2023005501 A1 WO 2023005501A1 CN 2022099554 W CN2022099554 W CN 2022099554W WO 2023005501 A1 WO2023005501 A1 WO 2023005501A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide layer
region
light
waveguide
layer
Prior art date
Application number
PCT/CN2022/099554
Other languages
English (en)
French (fr)
Inventor
郑光
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110845991.3A external-priority patent/CN113433614A/zh
Priority claimed from CN202121714112.5U external-priority patent/CN215264107U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023005501A1 publication Critical patent/WO2023005501A1/zh
Priority to US18/396,574 priority Critical patent/US20240126005A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package

Definitions

  • the present application relates to the field of optical technology, in particular to a waveguide component, an optical device and smart glasses.
  • augmented reality Augmented Reality
  • smart glasses After wearing smart glasses with AR functions, users can experience the combination of virtual scenes and real scenes.
  • Smart glasses are usually equipped with a waveguide, through which the light emitted by the image source is transmitted, so that the human eye can observe the virtual scene.
  • Embodiments of the present application provide a waveguide assembly, an optical device, and smart glasses, which can improve the uniformity of light emitted by the optical device, thereby improving the performance of the smart glasses.
  • An embodiment of the present application provides a waveguide assembly, including:
  • a first spacer layer arranged between the first waveguide layer and the second waveguide layer, the first spacer layer includes a first region and a second region, and the refractive index of the first region is smaller than that of the first waveguide layer a refractive index of a waveguide layer and a refractive index of the second waveguide layer, the refractive index of the second region being smaller than the refractive index of the first region;
  • the first region When light enters the first waveguide layer from the side of the second waveguide layer toward the first region, the first region can reduce the lateral transmission period of the light, and the second region can make the total reflection of the first light of the first field of view angle in the light, so that the first waveguide layer can transmit the first light alone, and the second region can pass through the second field of view in the light angle of the second light so that the first waveguide layer and the second waveguide layer can jointly transmit the second light.
  • the embodiment of the present application also provides an optical device, including:
  • a waveguide component comprising a first waveguide layer; a second waveguide layer stacked with the first waveguide layer; and a first spacer layer arranged between the first waveguide layer and the second waveguide layer Between, the first spacer layer includes a first region and a second region, the refractive index of the first region is smaller than the refractive index of the first waveguide layer and the refractive index of the second waveguide layer, the second the refractive index of the region is less than the refractive index of the first region;
  • the first region When light enters the first waveguide layer from the side of the second waveguide layer toward the first region, the first region can reduce the lateral transmission period of the light, and the second region can make the total reflection of the first light of the first field of view angle in the light, so that the first waveguide layer can transmit the first light alone, and the second region can pass through the second field of view in the light second light rays at an angle such that the first waveguide layer and the second waveguide layer can jointly transmit the second light rays;
  • the first outcoupling grating is arranged on the side of the first waveguide layer away from the second waveguide layer, and the first outcoupling grating is arranged opposite to the second region;
  • the first waveguide layer when light enters the first waveguide layer from the side of the second waveguide layer toward the first region, it is coupled into the waveguide component through the coupling grating, the first light, the The second light is coupled out by the first output coupling grating.
  • the embodiment of the present application also provides a kind of smart glasses, including:
  • Optical device is installed on the described spectacle frame, and described optical device comprises:
  • a waveguide component comprising a first waveguide layer; a second waveguide layer stacked with the first waveguide layer; and a first spacer layer arranged between the first waveguide layer and the second waveguide layer Between, the first spacer layer includes a first region and a second region, the refractive index of the first region is smaller than the refractive index of the first waveguide layer and the refractive index of the second waveguide layer, the second the refractive index of the region is less than the refractive index of the first region;
  • the first region When light enters the first waveguide layer from the side of the second waveguide layer toward the first region, the first region can reduce the lateral transmission period of the light, and the second region can make the total reflection of the first light of the first field of view angle in the light, so that the first waveguide layer can transmit the first light alone, and the second region can pass through the second field of view in the light second light rays at an angle such that the first waveguide layer and the second waveguide layer can jointly transmit the second light rays;
  • the first outcoupling grating is arranged on the side of the first waveguide layer away from the second waveguide layer, and the first outcoupling grating is arranged opposite to the second region;
  • the first waveguide layer when light enters the first waveguide layer from the side of the second waveguide layer toward the first region, it is coupled into the waveguide component through the coupling grating, the first light, the The second light is coupled out by the first output coupling grating.
  • FIG. 1 is a schematic diagram of a first structure of an optical device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the first light transmission in the optical device provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the second light transmission in the optical device provided by the embodiment of the present application.
  • FIG. 4 is a schematic diagram of a second structure of an optical device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a third structure of an optical device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the third light transmission in the optical device provided by the embodiment of the present application.
  • FIG. 7 is a schematic plan view of a first type of optical device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a fourth structure of an optical device provided by an embodiment of the present application.
  • FIG. 9 is a second schematic plan view of the optical device provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a fifth structure of an optical device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a sixth structure of an optical device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of smart glasses provided by an embodiment of the present application.
  • FIG. 13 is a cross-sectional view of the smart glasses shown in FIG. 12 along the Q-Q direction.
  • An embodiment of the present application provides an optical device.
  • the optical device can be applied to smart glasses, so that users can observe the image formed by combining the actual scene and the virtual scene through the smart glasses, so as to experience the combination of virtual and reality.
  • FIG. 1 is a schematic diagram of a first structure of an optical device 100 provided in an embodiment of the present application.
  • the optical device 100 includes a waveguide component 10 and a grating component 20 , and the grating component 20 is arranged on one side of the waveguide component 10 .
  • the waveguide component 10 can transmit light
  • the grating component 20 can couple the light, for example, couple the light into the waveguide component 10 and couple the light transmitted in the waveguide component 10 out.
  • the waveguide component 10 includes a first waveguide layer 11 , a second waveguide layer 12 and a first spacer layer 13 .
  • the second waveguide layer 12 is stacked with the first waveguide layer 11
  • the first spacer layer 13 is arranged between the first waveguide layer 11 and the second waveguide layer 13 .
  • both the first waveguide layer 11 and the second waveguide layer 12 can be formed of materials that facilitate light transmission, such as glass.
  • the thickness of the first waveguide layer 11 is h 1 and the refractive index is n 1 .
  • the second waveguide layer 12 has a thickness h 2 and a refractive index n 2 .
  • the thickness h 1 of the first waveguide layer 11 and the thickness h 2 of the second waveguide layer 12 are shown in FIG. 1 .
  • the refractive index of the first waveguide layer 11 is the same as that of the second waveguide layer 12 , that is, n 1 and n 2 are equal, for example both are n.
  • the first spacer layer 13 includes a first region 131 and a second region 132 , and the first region 131 and the second region 132 may be spaced apart from each other.
  • the refractive index n d1 of the first region 131 may be close to the refractive index n 1 of the first waveguide layer 11 and the refractive index n 2 of the second waveguide layer 12, and smaller than the refractive index n 1 of the first waveguide layer 11 and the second waveguide layer 11.
  • Refractive index n 2 of layer 12 When the refractive index of the first waveguide layer 11 and the second waveguide layer 12 are the same and both are n, the refractive index n d1 of the first region 131 is smaller than n.
  • the refractive index n d2 of the second region 132 is smaller than the refractive index n d1 of the first region 131 .
  • the first region 131 can reduce the lateral transmission period of the light.
  • the transverse transmission period is the period when light is transmitted in the waveguide assembly 10 .
  • the second region 132 can totally reflect the first light of the first viewing angle in the light, so that the first waveguide layer 11 can transmit the first light alone.
  • the second region 132 can transmit the second light of the second viewing angle among the light, so that the first waveguide layer 11 and the second waveguide layer 12 can jointly transmit the second light.
  • the first region 131 when the first region 131 is not provided, the light is normally transmitted in the waveguide assembly 10 .
  • the first region 131 since the refractive index n d1 of the first region 131 is smaller than the refractive index n1 of the first waveguide layer 11 and the refractive index n2 of the second waveguide layer 12, the transmission path of the light can be changed so that the light The lateral transfer period is reduced.
  • the second region 132 When the second region 132 is not provided, the light is normally transmitted in the waveguide assembly 10 .
  • the refractive index n d2 of the second region 132 is smaller than the refractive index n d1 of the first region 131 , the refractive index n d2 of the second region 132 is also smaller than the refractive index n 1 of the first waveguide layer 11 and the refractive index n 2 of the second waveguide layer 12 , so the transmission path of the light can be changed. Specifically, for light rays with different viewing angles, the changing effects are different.
  • the first light of the first viewing angle among the light rays can be totally reflected in the second region 132, so the first waveguide layer 11 can transmit the first light alone; the second light of the second viewing angle among the light rays , can pass through the second region 132 , so the first waveguide layer 11 and the second waveguide layer 12 can jointly transmit the second light.
  • the grating assembly 20 includes an in-coupling grating 21 and a first out-coupling grating 22 .
  • Both the in-coupling grating 21 and the first out-coupling grating 22 may be one-dimensional gratings, for example, both may be transmissive gratings or reflective gratings.
  • the coupling-in grating 21 is disposed on the side of the first waveguide layer 11 away from the second waveguide layer 12 , and the coupling-in grating 21 is disposed opposite to the first region 131 .
  • the coupling-in grating 21 can couple light into the waveguide component 10 for transmission.
  • the first outcoupling grating 22 is disposed on a side of the first waveguide layer 11 away from the second waveguide layer 12 , and the first outcoupling grating 22 is disposed opposite to the second region 132 .
  • the first outcoupling grating 22 can couple out the light transmitted in the waveguide assembly 10 to the outside.
  • the first region 131 of the first spacer layer 13 can reduce the lateral transmission period of the light, when the light is coupled into the waveguide assembly 10 by the coupling grating 21, the effect of the light and the coupling grating 21 can be increased. The number of times, so the coupling efficiency of light can be improved.
  • FIG. 2 is a schematic diagram of the first light transmission in the optical device 100 provided by the embodiment of the present application.
  • the first light I 1 when the first light I 1 enters the first waveguide layer 11 from the side of the second waveguide layer 12 toward the first region 131 , it is coupled into the waveguide component 10 through the coupling grating 21 and transmitted.
  • the transmission period of the first light I 1 in the waveguide assembly 10 is Period1, and the diffraction angle is ⁇ 1 .
  • the first light I 1 can be totally reflected in the second region 132 of the first spacer layer 13 , and thus can be transmitted through the first waveguide layer 11 alone.
  • Period1 2*h 1 *tan( ⁇ 1 ).
  • the light I 1 transmitted in the first waveguide layer 11 is coupled out to the outside by the first outcoupling grating 22 .
  • the diffraction angle ⁇ 1 is the angle between the transmission direction of the first light I1 after total reflection in the second region 132 of the first spacer layer 13 and the normal line of the first outcoupling grating 22 .
  • FIG. 3 is a schematic diagram of a second light transmission in the optical device 100 provided by the embodiment of the present application.
  • the second light I 2 when the second light I 2 enters the first waveguide layer 11 from the side of the second waveguide layer 12 toward the first region 131 , it is coupled into the waveguide component 10 through the coupling grating 21 and transmitted.
  • the transmission period of the second light I 2 in the waveguide assembly 10 is Period2, and the diffraction angle is ⁇ 2 .
  • the second light ray I2 can pass through the second region 132 of the first spacer layer 13, and is totally reflected on the surface of the second waveguide layer 12 away from the first waveguide layer 11, so it can pass through the first waveguide layer 11 and the second waveguide layer 11.
  • the two waveguide layers 12 jointly perform transmission.
  • Period2 2*(h 1 +h 2 )*tan( ⁇ 2 ).
  • the light I 2 jointly transmitted by the first waveguide layer 11 and the second waveguide layer 12 is coupled out to the outside by the first outcoupling grating 22 .
  • the diffraction angle ⁇ 2 is the angle between the transmission direction of the second light ray I 2 after total reflection on the side of the second waveguide layer 12 away from the first waveguide layer 11 and the normal line of the first outcoupling grating 22 .
  • the light when the light enters the first waveguide layer 11 from the side of the second waveguide layer 12 toward the first region 131 , the light is a mixed light formed by light from multiple viewing angles.
  • the above-mentioned first light I 1 and second light I 2 are light rays of a certain viewing angle among the incident mixed light rays.
  • the first ray I 1 is a ray with a first viewing angle
  • the second ray I 2 is a ray with a second viewing angle
  • the first viewing angle and the second viewing angle are different viewing angles.
  • the first viewing angle may include an angle of 20°
  • the second viewing angle may include an angle of 0°.
  • the diffraction angle ⁇ 1 of the first ray I 1 and the diffraction angle ⁇ 2 of the second ray I 2 satisfy the following relationship, so that the first ray I 1 can be totally reflected in the second region 132, and To enable the second light ray I2 to pass through the second region 132:
  • n is the refractive index of the first waveguide layer 11 and the second waveguide layer 12
  • the refractive index of the first waveguide layer 11 is the same as that of the second waveguide layer 12
  • n d2 is the refractive index of the second region 132
  • ⁇ 1 is the diffraction angle of the first ray I1
  • ⁇ 2 is the diffraction angle of the second ray I2 .
  • sin ⁇ 1 (n d2 /n) is the critical angle of the diffraction angle when the light is totally reflected in the second region 132 .
  • the diffraction angle ⁇ 1 of the first ray I 1 is greater than the critical angle, so the first ray I 1 can be totally reflected;
  • the diffraction angle ⁇ 2 of the second ray I 2 is less than or equal to the critical angle, so the second ray I 2 will not Total reflection occurs, but is transmitted through the second region 132 .
  • the period of the coupling grating 21 can be set to 400nm (nanometer), the wavelengths of the first light I1 and the second light I2 are both 520nm, the first waveguide layer 11 and the second waveguide layer 12
  • the refractive index n is 1.7
  • the thickness h 1 of the first waveguide layer 11 and the thickness h 2 of the second waveguide layer 12 are both 0.4 mm (mm)
  • the refractive index n d2 of the second region 132 of the spacer layer 13 is 1.5.
  • the critical angle ⁇ of total reflection at the interface of the second region 132 is 61.9°.
  • the first light ray I 1 When the first ray I 1 is incident at an angle of 20°, its diffraction angle ⁇ 1 is 74.99°, which is greater than the critical angle ⁇ of total reflection, so the first ray I 1 will be totally reflected at the interface of the second region 132 . Therefore, the first light ray I 1 can be independently transmitted in the first waveguide layer 11 . At this time, the transmission period Period1 of the first light I 1 is 2.98 mm.
  • the second ray I 2 When the second ray I 2 is incident at an angle of 0°, that is, when the second ray I 2 is vertically coupled into the grating 21 and incident, its diffraction angle ⁇ 2 is 49.88°, which is smaller than the critical angle of total reflection ⁇ , so the second ray I 2 Total reflection does not occur at the interface of the second region 132 , so the second light ray I 2 can be jointly transmitted in the first waveguide layer 11 and the second waveguide layer 12 . At this time, the transmission period Period2 of the second light I 2 is 1.89 mm.
  • the transmission period Period1 of the first light I1 is relatively close to the transmission period Period2 of the second light I2 .
  • the lateral transmission period Period1 of the first light I 1 in the first waveguide layer 11 is the same as the lateral transmission period Period2 of the second light I 2 in the first waveguide layer 11 and the second waveguide layer 12 .
  • the exit pupil densities of the first light I 1 and the second light I 2 after exiting the optical device 100 are the same, and the uniformity of the first light I 1 and the second light I 2 is the best.
  • the thickness of the first waveguide layer 11 and the thickness of the second waveguide layer 12 satisfy the following relationship:
  • h 1 is the thickness of the first waveguide layer 11
  • h 2 is the thickness of the second waveguide layer 12 .
  • the thickness h 1 of the first waveguide layer 11 is between 0.05 mm and 3 mm.
  • the thickness h 2 of the second waveguide layer 12 is between 0.05 mm and 3 mm.
  • the refractive index n of the first waveguide layer 11 and the second waveguide layer 12 is between 1.6 and 2.1.
  • the refractive index n d1 of the first region 131 is close to the refractive index n of the first waveguide layer 11 and the second waveguide layer 12 .
  • the refractive index n d2 of the second region 132 is between 1.3 and 1.6.
  • the period of the coupling grating 21 is set to 400nm (nanometer), the wavelengths of the first light I 1 and the second light I 2 are both 520nm, the first waveguide layer 11 and the second waveguide layer 12
  • the refractive index n is 1.7
  • the thickness h 1 of the first waveguide layer 11 and the thickness h 2 of the second waveguide layer 12 are both 0.4 mm (mm)
  • the refractive index n d2 of the second region 132 of the spacer layer 13 is 1.5.
  • the critical angle ⁇ of total reflection at the interface of the second region 132 is 61.9°.
  • the transmission period Period1 of the first light I 1 is 1.89 mm.
  • the transmission period Period2 of the second light I 2 is 1.89 mm.
  • the transmission period Period1 of the first light I1 is the same as the transmission period Period2 of the second light I2 .
  • the second area 132 can make the first viewing angle
  • the first light is totally reflected and can pass through the second light of the second viewing angle, so that the light of different viewing angles can be transmitted in different waveguide layers, thereby facilitating the transmission cycle of the light of different viewing angles Adjust respectively, so that the transmission periods of the light rays with different viewing angles tend to be close, so the exit pupil density of the light rays with different viewing angles when they emerge from the optical device 100 can be close, so that the density of the light emitted by the optical device 100 can be improved. Uniformity.
  • FIG. 4 is a second schematic structural diagram of an optical device 100 provided in an embodiment of the present application.
  • the waveguide component 10 further includes M waveguide layers, and the M waveguide layers are sequentially stacked on the side of the second waveguide layer 12 facing away from the first waveguide layer 11 . At this time, the number of waveguide layers included in the waveguide component 10 is M+2.
  • a plurality of spacer layers are also arranged in the waveguide component 10 .
  • an Nth spacer layer is arranged between the Nth waveguide layer and the N+1th waveguide layer.
  • the refractive index of the Nth spacer layer is smaller than the refractive indices of the first waveguide layer 11 to the M+2th waveguide layer.
  • the first waveguide layer 11 to the Pth waveguide layer can jointly transmit the Pth light Ip of the Pth viewing angle among the incident light rays.
  • M, N, and P are all positive integers, N is greater than or equal to 2 and less than or equal to M+1, and P is greater than or equal to 3 and less than or equal to M+2.
  • M can be 1, 5, 8 and other numerical values.
  • N can take values 2, 3, 4, 5, 6, and P can take values 3, 4, 5, 6, 7.
  • the refractive index of the first waveguide layer 11 , the refractive index of the second waveguide layer 12 and the refractive indices of the M waveguide layers are all the same, for example, they can all be n.
  • nd (p+1) is the refractive index of the Pth spacer layer
  • nd (p) is the refractive index of the (P-1) spacer layer
  • n is the first waveguide layer 11, the second waveguide layer 12 and Refractive indices of the M waveguide layers.
  • the P-th light Ip can pass through the spacer layer before the P-th spacer layer, and is totally reflected at the P-th spacer layer.
  • the (M+2)th ray does not undergo total reflection at the spacer layer, but is jointly transmitted by all waveguide layers.
  • the transverse transmission period of the first light I1 , the transverse transmission period of the second light I2 , and the transverse transmission period of the Pth light Ip are all the same.
  • each waveguide layer satisfies the following relationship:
  • h p is the thickness of the P-th waveguide layer
  • ⁇ p is the diffraction angle of the P-th ray I p .
  • the thickness of each waveguide layer is between 0.05 mm and 3 mm, and the refractive index of each waveguide layer is between 1.6 and 2.1.
  • the refractive index of the Nth spacer layer is between 1.3 and 1.6, that is, the refractive index of each spacer layer is between 1.3 and 1.6.
  • the angular light is transmitted in different waveguide layers, so the uniformity of the light emitted by the optical device 100 can be improved.
  • FIG. 5 is a schematic diagram of a third structure of an optical device 100 provided in an embodiment of the present application.
  • FIG. 5 shows the situation when M takes a value of 1.
  • the waveguide assembly 10 also includes a third waveguide layer 14 .
  • the third waveguide layer 14 is disposed on a side of the second waveguide layer 12 away from the first waveguide layer 11 .
  • the third waveguide layer 14 has a thickness h3 and a refractive index n3.
  • the refractive index n3 of the third waveguide layer 14 may be the same as the refractive index of the first waveguide layer 11 and the refractive index of the second waveguide layer 12 , both being n.
  • a second spacer layer 15 is disposed between the second waveguide layer 12 and the third waveguide layer 14 .
  • the refractive index of the second spacer layer 15 is n d3 , and n d3 is smaller than n.
  • FIG. 6 is a schematic diagram of a third light transmission in the optical device 100 provided in the embodiment of the present application.
  • the third light I 3 when the third light I 3 enters the first waveguide layer 11 from the side of the second waveguide layer 12 toward the first region 131 , it is coupled into the waveguide component 10 through the coupling grating 21 and transmitted.
  • the transmission period of the third light I 3 in the waveguide assembly 10 is Period3, and the diffraction angle is ⁇ 3 .
  • the third light ray I3 can pass through the second region 132 of the first spacer layer 13 and the second spacer layer 15, and is totally reflected on the surface of the third waveguide layer 14 away from the first waveguide layer 11, so it can Transmission is performed through the first waveguide layer 11 , the second waveguide layer 12 and the third waveguide layer 14 .
  • Period3 2*(h 1 +h 2 +h 3 )*tan( ⁇ 3 ).
  • the light I 3 jointly transmitted by the first waveguide layer 11 , the second waveguide layer 12 , and the third waveguide layer 14 is coupled out to the outside by the first outcoupling grating 22 .
  • the diffraction angle ⁇ 3 is the angle between the transmission direction of the third ray I 3 after total reflection on the surface of the third waveguide layer 14 away from the first waveguide layer 11 and the normal line of the first outcoupling grating 22 .
  • FIG. 7 is a first schematic plan view of an optical device 100 provided in an embodiment of the present application.
  • the first outcoupling grating 22 is a two-dimensional grating.
  • FIG. 8 is a schematic diagram of the fourth structure of the optical device 100 provided by the embodiment of the present application
  • FIG. 9 is a second plane of the optical device 100 provided by the embodiment of the present application. schematic diagram.
  • the first spacer layer 13 further includes a third region 133 .
  • the third area 133 is located between the first area 131 and the second area 132 .
  • the grating assembly 20 also includes a first turning grating 23 .
  • the first turning grating 23 is arranged on the side of the first waveguide layer 11 away from the second waveguide layer 12 , and the first turning grating 23 is arranged opposite to the third region 133 .
  • the first turning grating 23 can change the transmission direction of the light.
  • the in-coupling grating 21 and the first out-coupling grating 22 can be misaligned, and the light coupled in the in-coupling grating 21 is transmitted to the first out-coupling grating through the first turning grating 23.
  • Grating 22 since the first turning grating 23 is provided, the in-coupling grating 21 and the first out-coupling grating 22 can be misaligned, and the light coupled in the in-coupling grating 21 is transmitted to the first out-coupling grating through the first turning grating 23.
  • a second outcoupling grating is further disposed on the outermost waveguide layer opposite to the first waveguide layer 11 in the waveguide component 10 .
  • the second outcoupling grating is arranged on the side of the outermost waveguide layer away from the first waveguide layer 11 .
  • the second outcoupling grating is disposed opposite to the second region 132 of the first spacer layer 13 .
  • FIG. 10 is a schematic diagram of a fifth structure of an optical device 100 provided in an embodiment of the present application.
  • the waveguide component 10 includes a first waveguide layer 11 and a second waveguide layer 12 , so the outermost waveguide layer opposite to the first waveguide layer 11 is the second waveguide layer 12 .
  • the second outcoupling grating 24 is disposed on the side of the second waveguide layer 12 away from the first waveguide layer 11 , and the second outcoupling grating 24 is disposed opposite to the second region 132 of the first spacer layer 13 .
  • the outermost waveguide layer opposite to the first waveguide layer 11 is the waveguide layer farthest from the first waveguide layer 11 .
  • the second outcoupling grating may also be a two-dimensional grating.
  • the outermost waveguide layer opposite to the first waveguide layer 11 in the waveguide assembly 10 is further provided with There is a second turning grating.
  • the second folding grating is arranged on the side of the outermost waveguide layer away from the first waveguide layer 11 .
  • the second turning grating is set opposite to the third area 133 .
  • the second turning grating can also change the transmission direction of the light.
  • FIG. 11 is a schematic diagram of a sixth structure of an optical device 100 provided in an embodiment of the present application.
  • the waveguide component 10 includes a first waveguide layer 11 and a second waveguide layer 12 , so the outermost waveguide layer opposite to the first waveguide layer 11 is the second waveguide layer 12 .
  • the second deflection grating 25 is disposed on the side of the second waveguide layer 12 away from the first waveguide layer 11 , and the second deflection grating 25 is disposed opposite to the third region 133 .
  • FIG. 12 is a schematic structural diagram of the smart glasses 1000 provided by the embodiment of the present application
  • FIG. 13 is a cross-sectional view of the smart glasses 1000 shown in FIG. 12 along the Q-Q direction.
  • the smart glasses 1000 include the above-mentioned optical device 100 , a frame 300 and an image source 500 , and the optical device 100 and the image source 500 are installed on the frame 300 .
  • the spectacle frame 300 includes a spectacle frame 310 and spectacle arms 320 connected with the spectacle frame 310 .
  • the spectacle frame 310 may be used to mount the optical device 100 .
  • the optical device 100 can transmit external light, so that the user can observe the real scene outside.
  • the glasses legs 320 are used to wear the smart glasses 1000 on the user's face, for example, the glasses legs 320 can be clamped on the user's ears to realize the wearing of the smart glasses 1000 .
  • the number of temples 320 can be two, and the two temples 320 are arranged symmetrically, for example, the two temples 320 can be connected to opposite ends of the frame 310 respectively.
  • the image source 500 can be installed inside the temple 320, which can not only facilitate the setting of the image source 500, but also realize the hiding of the image source 500.
  • the image source 500 can be used to generate light corresponding to the virtual scene, and project the light onto the optical device 100 for transmission.
  • the image source 500 can be a pico projector.
  • the image source 500 can generate light I A corresponding to the virtual scene, and project the light I A onto the optical device 100 .
  • the light IA is transmitted by the optical device 100 and then emitted, and finally received by the human eye 2000, so that the user can observe the virtual scene corresponding to the light IA .
  • the light I A is a mixed light of various viewing angles, and the light I A may include the above-mentioned first light I 1 , second light I 2 and third light I 3 .
  • the external light IB can pass through the optical device 100 and be directly received by the human eye 2000, so that the user can observe the real scene corresponding to the light IB .
  • the user can observe both the virtual scene and the real scene, so as to experience the combination of the virtual scene and the real scene.
  • the first spacer layer 13 is set in the optical device 100, and the first spacer layer 13 is set as the first area 131 and the second area 132.
  • the second area 132 can make the first
  • the first light at the viewing angle is totally reflected, and can pass through the second light at the second viewing angle, so that the light at different viewing angles can be transmitted in different waveguide layers, thereby facilitating the detection of different viewing angles.
  • the transmission period of the light is adjusted separately, so that the transmission period of the light of different viewing angles tends to be close, so that the exit pupil density of the light of different viewing angles can be close when it emerges from the optical device 100, thereby improving the optical device 100.
  • the uniformity of the emitted light when the light of the virtual scene is combined with the light of the real scene, the user can observe a better image, so the performance of the smart glasses 1000 can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种波导组件(10)、光学装置(100)及智能眼镜,波导组件(10)包括:第一波导层(11);第二波导层(12);第一间隔层(13),包括第一区域(131)及第二区域(132),第一区域(131)的折射率小于第一波导层(11)的折射率和第二波导层(12)的折射率,第二区域(132)的折射率小于第一区域(131)的折射率。

Description

波导组件、光学装置及智能眼镜
本申请要求于2021年07月26日提交中国专利局、申请号为202110845991.3、发明名称为“波导组件、光学装置及智能眼镜”以及2021年07月26日提交中国专利局、申请号为202121714112.5、实用新型名称为“波导组件、光学装置及智能眼镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,特别涉及一种波导组件、光学装置及智能眼镜。
背景技术
随着增强现实(Augmented Reality,AR)技术的快速发展,诸如智能眼镜等可穿戴设备得到了越来越多的应用。用户穿戴具有AR功能的智能眼镜后,即可体验虚拟场景与现实场景的结合。
智能眼镜中通常都设置有波导,通过波导来传输像源发出的光线,以使得人眼能够观察到虚拟场景。
发明内容
本申请实施例提供一种波导组件、光学装置及智能眼镜,可以提高光学装置出射的光线的均匀性,从而提高智能眼镜的性能。
本申请实施例提供一种波导组件,包括:
第一波导层;
第二波导层,与所述第一波导层层叠设置;以及
第一间隔层,设置在所述第一波导层与所述第二波导层之间,所述第一间隔层包括第一区域及第二区域,所述第一区域的折射率小于所述第一波导层的折射率和所述第二波导层的折射率,所述第二区域的折射率小于所述第一区域的折射率;
当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,所述第一区域能够减小光线的横向传输周期,所述第二区域能够使所述光 线中的第一视场角的第一光线发生全反射,以使所述第一波导层能够单独传输所述第一光线,所述第二区域能够透过所述光线中的第二视场角的第二光线,以使所述第一波导层和所述第二波导层能够共同传输所述第二光线。
本申请实施例还提供一种光学装置,包括:
波导组件,所述波导组件包括第一波导层;第二波导层,与所述第一波导层层叠设置;以及第一间隔层,设置在所述第一波导层与所述第二波导层之间,所述第一间隔层包括第一区域及第二区域,所述第一区域的折射率小于所述第一波导层的折射率和所述第二波导层的折射率,所述第二区域的折射率小于所述第一区域的折射率;
当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,所述第一区域能够减小光线的横向传输周期,所述第二区域能够使所述光线中的第一视场角的第一光线发生全反射,以使所述第一波导层能够单独传输所述第一光线,所述第二区域能够透过所述光线中的第二视场角的第二光线,以使所述第一波导层和所述第二波导层能够共同传输所述第二光线;
耦入光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述耦入光栅与所述第一区域正对设置;以及
第一耦出光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述第一耦出光栅与所述第二区域正对设置;
其中,当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,通过所述耦入光栅耦入所述波导组件,所述第一光线、所述第二光线均由所述第一耦出光栅耦出。
本申请实施例还提供一种智能眼镜,包括:
镜架;
光学装置,安装在所述镜架上,所述光学装置包括:
波导组件,所述波导组件包括第一波导层;第二波导层,与所述第一波导层层叠设置;以及第一间隔层,设置在所述第一波导层与所述第二波导层之间,所述第一间隔层包括第一区域及第二区域,所述第一区域的折射率小于所述第一波导层的折射率和所述第二波导层的折射率,所述第二区域的折射率小于所 述第一区域的折射率;
当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,所述第一区域能够减小光线的横向传输周期,所述第二区域能够使所述光线中的第一视场角的第一光线发生全反射,以使所述第一波导层能够单独传输所述第一光线,所述第二区域能够透过所述光线中的第二视场角的第二光线,以使所述第一波导层和所述第二波导层能够共同传输所述第二光线;
耦入光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述耦入光栅与所述第一区域正对设置;以及
第一耦出光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述第一耦出光栅与所述第二区域正对设置;
其中,当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,通过所述耦入光栅耦入所述波导组件,所述第一光线、所述第二光线均由所述第一耦出光栅耦出。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的光学装置的第一种结构示意图。
图2为本申请实施例提供的光学装置中的第一种光线传输示意图。
图3为本申请实施例提供的光学装置中的第二种光线传输示意图。
图4为本申请实施例提供的光学装置的第二种结构示意图。
图5为本申请实施例提供的光学装置的第三种结构示意图。
图6为本申请实施例提供的光学装置中的第三种光线传输示意图。
图7为本申请实施例提供的光学装置的第一种平面示意图。
图8为本申请实施例提供的光学装置的第四种结构示意图。
图9为本申请实施例提供的光学装置的第二种平面示意图。
图10为本申请实施例提供的光学装置的第五种结构示意图。
图11为本申请实施例提供的光学装置的第六种结构示意图。
图12为本申请实施例提供的智能眼镜的结构示意图。
图13为图12所示智能眼镜沿Q-Q方向的剖视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种光学装置。该光学装置可以应用于智能眼镜,使用户可以通过智能眼镜观察实际场景与虚拟场景所结合形成的图像,从而体验虚拟与现实的结合。
参考图1,图1为本申请实施例提供的光学装置100的第一种结构示意图。其中,光学装置100包括波导组件10和光栅组件20,光栅组件20设置在波导组件10一侧。可以理解的,波导组件10能够传输光线,光栅组件20能够对光线进行耦合,例如将光线耦入波导组件10以及将波导组件10中传输的光线耦出。
波导组件10包括第一波导层11、第二波导层12以及第一间隔层13。其中,第二波导层12与第一波导层11层叠设置,第一间隔层13设置在第一波导层11与第二波导层13之间。可以理解的,第一波导层11、第二波导层12都可以由诸如玻璃等利于光线传输的材质形成。第一波导层11的厚度为h 1,折射率为n 1。第二波导层12的厚度为h 2,折射率为n 2。其中,第一波导层11的厚度h 1、第二波导层12的厚度h 2如图1所示。在一些实施例中,可以设置为第一波导层11的折射率与第二波导层12的折射率相同,也即n 1与n 2相等,例如都为n。
其中,第一间隔层13包括第一区域131和第二区域132,第一区域131与第二区域132可以彼此间隔。第一区域131的折射率n d1可以与第一波导层11的折射率n 1、第二波导层12的折射率n 2接近,并且小于第一波导层11的折射率n 1和第二波导层12的折射率n 2。当第一波导层11的折射率和第二波 导层12的折射率相同,且都为n时,第一区域131的折射率n d1小于n。第二区域132的折射率n d2小于第一区域131的折射率n d1
实际应用中,当光线由第二波导层12一侧朝向第一区域131入射至第一波导层11时,第一区域131能够减小光线的横向传输周期。可以理解的,横向传输周期即为光线在波导组件10中进行传输时的周期。第二区域132能够使光线中的第一视场角的第一光线发生全反射,以使第一波导层11能够单独传输第一光线。并且,第二区域132能够透过光线中的第二视场角的第二光线,以使第一波导层11和第二波导层12能够共同传输第二光线。
可以理解的,未设置第一区域131时,光线在波导组件10中正常传输。设置第一区域131时,由于第一区域131的折射率n d1小于第一波导层11的折射率n 1和第二波导层12的折射率n 2,因此能够改变光线的传输路径,使光线的横向传输周期减小。
未设置第二区域132时,光线在波导组件10中正常传输。设置第二区域132时,由于第二区域132的折射率n d2小于第一区域131的折射率n d1,因此第二区域132的折射率n d2也小于第一波导层11的折射率n 1和第二波导层12的折射率n 2,因此能够改变光线的传输路径。具体地,对于不同视场角的光线,改变的效果不同。例如,光线中的第一视场角的第一光线,能够在第二区域132发生全反射,因此第一波导层11能够单独传输第一光线;光线中的第二视场角的第二光线,能够透过第二区域132,因此第一波导层11和第二波导层12能够共同传输第二光线。
光栅组件20包括耦入光栅21和第一耦出光栅22。耦入光栅21、第一耦出光栅22都可以为一维光栅,例如都可以为透射式光栅或反射式光栅。其中,耦入光栅21设置在第一波导层11背离第二波导层12的一侧,耦入光栅21与第一区域131正对设置。耦入光栅21能够将光线耦入到波导组件10中传输。第一耦出光栅22设置在第一波导层11背离第二波导层12的一侧,第一耦出光栅22与第二区域132正对设置。第一耦出光栅22能够将波导组件10中传输的光线耦出到外界。
可以理解的,由于第一间隔层13的第一区域131能够减小光线的横向传 输周期,因此当光线由耦入光栅21耦入到波导组件10时,能够增加光线与耦入光栅21的作用次数,因此能够提高光线的耦入效率。
参考图2,图2为本申请实施例提供的光学装置100中的第一种光线传输示意图。
其中,第一光线I 1由第二波导层12一侧朝向第一区域131入射至第一波导层11时,通过耦入光栅21耦入到波导组件10中传输。第一光线I 1在波导组件10中的传输周期为Period1,衍射角为θ 1。其中,第一光线I 1能够在第一间隔层13的第二区域132发生全反射,因此能够通过第一波导层11单独进行传输。此时,Period1=2*h 1*tan(θ 1)。随后,第一波导层11中传输的光线I 1由第一耦出光栅22耦出到外界。其中,衍射角θ 1为第一光线I 1在第一间隔层13的第二区域132发生全反射后的传输方向与第一耦出光栅22的法线的夹角。
参考图3,图3为本申请实施例提供的光学装置100中的第二种光线传输示意图。
其中,第二光线I 2由第二波导层12一侧朝向第一区域131入射至第一波导层11时,通过耦入光栅21耦入到波导组件10中传输。第二光线I 2在波导组件10中的传输周期为Period2,衍射角为θ 2。其中,第二光线I 2能够透过第一间隔层13的第二区域132,并在第二波导层12背离第一波导层11的表面发生全反射,因此能够通过第一波导层11和第二波导层12共同进行传输。此时,Period2=2*(h 1+h 2)*tan(θ 2)。随后,第一波导层11和第二波导层12共同传输的光线I 2由第一耦出光栅22耦出到外界。其中,衍射角θ 2为第二光线I 2在第二波导层12背离第一波导层11的一侧发生全反射后的传输方向与第一耦出光栅22的法线的夹角。
需要说明的是,当光线由第二波导层12一侧朝向第一区域131入射至第一波导层11时,光线是由多个视场角的光线形成的混合光线。上述第一光线I 1、第二光线I 2均为入射的混合光线中某个视场角的光线。例如,第一光线I 1为第一视场角的光线,第二光线I 2为第二视场角的光线,并且第一视场角与第二视场角为不同的视场角。例如,在实际应用中,第一视场角可以包括20°角,第二视场角可以包括0°角。
在一些实施例中,第一光线I 1的衍射角θ 1、第二光线I 2的衍射角θ 2满足以下关系式,以使第一光线I 1能够在第二区域132发生全反射,以及使第二光线I 2能够透过第二区域132:
θ 1>sin -1(n d2/n)
θ 2≤sin -1(n d2/n)
其中,n为第一波导层11和第二波导层12的折射率,第一波导层11的折射率和第二波导层12的折射率相同,n d2为第二区域132的折射率,θ 1为第一光线I 1的衍射角,θ 2为第二光线I 2的衍射角。
可以理解的,sin -1(n d2/n)为光线在第二区域132发生全反射时衍射角的临界角。第一光线I 1的衍射角θ 1大于该临界角,因此第一光线I 1能够发生全反射;第二光线I 2的衍射角θ 2小于等于该临界角,因此第二光线I 2不会发生全反射,而是透过第二区域132。
在一个实际应用示例中,可以将耦入光栅21的周期设置为400nm(纳米),第一光线I 1、第二光线I 2的波长均为520nm,第一波导层11和第二波导层12的折射率n为1.7,第一波导层11的厚度h 1、第二波导层12的厚度h 2均为0.4mm(毫米),间隔层13的第二区域132的折射率n d2为1.5。此时,第二区域132界面的全反射临界角β为61.9°。
当第一光线I 1以20°角入射时,其衍射角θ 1为74.99°,大于全反射临界角β,因此第一光线I 1会在第二区域132界面发生全反射。因此,第一光线I 1能够在第一波导层11中单独传输。此时,第一光线I 1的传输周期Period1为2.98mm。
当第二光线I 2以0°角入射时,也即第二光线I 2垂直耦入光栅21入射时,其衍射角θ 2为49.88°,小于全反射临界角β,因此第二光线I 2不会在第二区域132界面发生全反射,因此第二光线I 2能够在第一波导层11和第二波导层12中共同传输。此时,第二光线I 2的传输周期Period2为1.89mm。
由此可见,此时第一光线I 1的传输周期Period1与第二光线I 2的传输周期Period2较为接近。
在一些实施例中,第一光线I 1在第一波导层11中的横向传输周期Period1 与第二光线I 2在第一波导层11和第二波导层12中的横向传输周期Period2相同。此时,第一光线I 1和第二光线I 2由光学装置100出射后的出瞳密度相同,第一光线I 1和第二光线I 2的均匀性最好。
可以理解的,第一光线I 1的横向传输周期Period1与第二光线I 2的横向传输周期Period2相同时,第一波导层11的厚度与第二波导层12的厚度之间满足以下关系式:
2*(h 1+h 2)*tan(θ 2)=2*h 1*tan(θ 1)
其中,h 1为第一波导层11的厚度,h 2为第二波导层12的厚度。
在一些实施例中,第一波导层11的厚度h 1为0.05毫米至3毫米之间。第二波导层12的厚度h 2为0.05毫米至3毫米之间。第一波导层11和第二波导层12的折射率n为1.6至2.1之间。第一区域131的折射率n d1与第一波导层11和第二波导层12的折射率n接近。第二区域132的折射率n d2为1.3至1.6之间。
例如,在上述实际应用示例中,耦入光栅21的周期设置为400nm(纳米),第一光线I 1、第二光线I 2的波长均为520nm,第一波导层11和第二波导层12的折射率n为1.7,第一波导层11的厚度h 1、第二波导层12的厚度h 2均为0.4mm(毫米),间隔层13的第二区域132的折射率n d2为1.5。此时,第二区域132界面的全反射临界角β为61.9°。
当第一光线I 1以15.398°角入射时,其衍射角θ 1为67.058°,大于全反射临界角β,因此第一光线I 1会在第二区域132界面发生全反射。此时,第一光线I 1的传输周期Period1为1.89mm。
当第二光线I 2以0°角入射时,也即第二光线I 2垂直耦入光栅21入射时,其衍射角θ 2为49.88°,小于全反射临界角β,因此第二光线I 2不会在第二区域132界面发生全反射。此时,第二光线I 2的传输周期Period2为1.89mm。
由此可见,此时第一光线I 1的传输周期Period1与第二光线I 2的传输周期Period2相同。
本申请实施例提供的光学装置100中,通过设置第一间隔层13,并将第一间隔层13设置为第一区域131和第二区域132,第二区域132能够使第一 视场角的第一光线发生全反射,并且能够透过第二视场角的第二光线,因此能够使不同视场角的光线在不同的波导层中传输,从而便于对不同视场角的光线的传输周期分别进行调节,使不同视场角的光线的传输周期趋于接近,因此能够使不同视场角的光线从光学装置100中出射时的出瞳密度接近,从而可以提高光学装置100出射的光线的均匀性。
在一些实施例中,参考图4,图4为本申请实施例提供的光学装置100的第二种结构示意图。
波导组件10还包括M个波导层,M个波导层由第二波导层12背离第一波导层11的一侧依次层叠设置。此时,波导组件10包括的波导层的层数为M+2。
波导组件10中还设置有多个间隔层。其中,第N波导层与第N+1波导层之间设置有第N间隔层。第N间隔层的折射率小于第一波导层11至第M+2波导层的折射率。第一波导层11至第P波导层能够共同传输入射光线中的第P视场角的第P光线I p
其中,M、N、P均为正整数,N大于等于2且小于等于M+1,P大于等于3且小于等于M+2。例如,M可以为1、5、8等数值。举例而言,当M为5时,N可以取值2、3、4、5、6,P可以取值3、4、5、6、7。
在一些实施例中,第一波导层11的折射率、第二波导层12的折射率以及该M个波导层的折射率都相同,例如都可以为n。
其中,当P<M+2时,第P光线I p的衍射角θ p满足以下关系式:
sin -1(n d(p+1)/n)<θ p≤sin -1(n d(p)/n)
其中,n d(p+1)为第P间隔层的折射率,n d(p)为第(P-1)间隔层的折射率,n为第一波导层11、第二波导层12以及该M个波导层的折射率。
因此,第P光线I p能够透过第P间隔层之前的间隔层,并且在第P间隔层处发生全反射。第(M+2)光线不在间隔层处发生全反射,而是由所有的波导层共同进行传输。
在一些实施例中,第一光线I 1的横向传输周期、第二光线I 2的横向传输周期、第P光线I p的横向传输周期都相同。
其中,各个波导层的厚度满足以下关系式:
2*(h 1+h 2+…+h p)*tan(θ p)=2*h 1*tan(θ 1)
其中,h p为第P波导层的厚度,θ p为第P光线I p的衍射角。
在一些实施例中,该M个波导层中,每一波导层的厚度均为0.05毫米至3毫米之间,每一波导层的折射率均为1.6至2.1之间。多个间隔层中,第N间隔层的折射率为1.3至1.6之间,也即每一间隔层的折射率均为1.3至1.6之间。
可以理解的,波导组件10包括的波导层的层数越多,对入射光线的视场角的划分就越细,可以将入射光线划分为更多个不同的视场角光线,不同的视场角光线在不同的波导层中传输,因此能够使光学装置100出射的光线的均匀性更好。
在一些实施例中,参考图5,图5为本申请实施例提供的光学装置100的第三种结构示意图。
其中,图5所示为M取值1时的情形。波导组件10还包括第三波导层14。第三波导层14设置在第二波导层12背离第一波导层11的一侧。第三波导层14的厚度为h3,折射率为n3。其中,第三波导层14的折射率n3与第一波导层11的折射率、第二波导层12的折射率可以相同,都为n。
第二波导层12与第三波导层14之间设置有第二间隔层15。第二间隔层15的折射率为n d3,n d3小于n。
同时参考图6,图6为本申请实施例提供的光学装置100中的第三种光线传输示意图。
其中,第三光线I 3由第二波导层12一侧朝向第一区域131入射至第一波导层11时,通过耦入光栅21耦入到波导组件10中传输。第三光线I 3在波导组件10中的传输周期为Period3,衍射角为θ 3。其中,第三光线I 3能够透过第一间隔层13的第二区域132以及透过第二间隔层15,并在第三波导层14背离第一波导层11的表面发生全反射,因此能够通过第一波导层11、第二波导层12和第三波导层14共同进行传输。此时,Period3=2*(h 1+h 2+h 3)*tan(θ 3)。随后,第一波导层11、第二波导层12、第三波导层14共同传输的 光线I 3由第一耦出光栅22耦出到外界。其中,衍射角θ 3为第三光线I 3在第三波导层14背离第一波导层11的表面发生全反射后的传输方向与第一耦出光栅22的法线的夹角。
其中,θ 3≤sin -1(n d3/n),因此第三光线I 3能够透过第二间隔层15,而不会在第二间隔层15处发生全反射。
第三光线I 3的传输周期Period3与第一光线I 1的传输周期Period1相同时,满足以下关系式:
2*(h 1+h 2+h 3)*tan(θ 3)=2*h 1*tan(θ 1)
在一些实施例中,参考图7,图7为本申请实施例提供的光学装置100的第一种平面示意图。其中,第一耦出光栅22为二维光栅。
在一些实施例中,同时参考图8和图9,图8为本申请实施例提供的光学装置100的第四种结构示意图,图9为本申请实施例提供的光学装置100的第二种平面示意图。
其中,第一间隔层13还包括第三区域133。第三区域133位于第一区域131与第二区域132之间。
光栅组件20还包括第一转折光栅23。第一转折光栅23设置在第一波导层11背离第二波导层12的一侧,第一转折光栅23与第三区域133正对设置。第一转折光栅23能够改变光线的传输方向。
可以理解的,由于设置了第一转折光栅23,因此耦入光栅21和第一耦出光栅22可以错位设置,通过第一转折光栅23将耦入光栅21耦入的光线传输至第一耦出光栅22。
在一些实施例中,波导组件10中与第一波导层11相对的最外侧波导层上还设置有第二耦出光栅。第二耦出光栅设置在该最外侧波导层背离第一波导层11的一侧。第二耦出光栅与第一间隔层13的第二区域132正对设置。
可以理解的,通过设置第二耦出光栅,可以利用不同视场角的光线与波导组件10两侧作用次数不一样的特点,实现对不同视场角光线的分开调制,从而可以进一步提升出射光线的均匀性。
例如,参考图10,图10为本申请实施例提供的光学装置100的第五种结 构示意图。
其中,波导组件10包括第一波导层11和第二波导层12,因此与第一波导层11相对的最外侧波导层即为第二波导层12。第二耦出光栅24设置在第二波导层12背离第一波导层11的一侧,并且第二耦出光栅24与第一间隔层13的第二区域132正对设置。
可以理解的,当波导组件10还包括M个波导层时,与第一波导层11相对的最外侧波导层即为与第一波导层11距离最远的波导层。
在一些实施例中,第二耦出光栅也可以为二维光栅。
在一些实施例中,第一间隔层13包括位于第一区域131与第二区域132之间的第三区域133时,波导组件10中与第一波导层11相对的最外侧波导层上还设置有第二转折光栅。第二转折光栅设置在该最外侧波导层背离第一波导层11的一侧。第二转折光栅与第三区域133正对设置。第二转折光栅也能够改变光线的传输方向。
例如,参考图11,图11为本申请实施例提供的光学装置100的第六种结构示意图。
其中,波导组件10包括第一波导层11和第二波导层12,因此与第一波导层11相对的最外侧波导层即为第二波导层12。第二转折光栅25设置在第二波导层12背离第一波导层11的一侧,并且第二转折光栅25与第三区域133正对设置。
本申请实施例还提供一种智能眼镜。同时参考图12和图13,图12为本申请实施例提供的智能眼镜1000的结构示意图,图13为图12所示智能眼镜1000沿Q-Q方向的剖视图。
智能眼镜1000包括上述光学装置100、镜架300以及像源500,光学装置100、像源500都安装在镜架300上。
其中,镜架300包括眼镜框310以及与眼镜框310连接的眼镜腿320。眼镜框310可以用于安装光学装置100。光学装置100可以透过外界光线,从而用户可以观察到外界的真实场景。眼镜腿320用于将智能眼镜1000佩戴在用户脸部,例如眼镜腿320可以夹持在用户的耳朵上,以实现智能眼镜1000的 佩戴。可以理解的,眼镜腿320的数量可以为2个,并且2个眼镜腿320对称设置,例如2个眼镜腿320可以分别连接于眼镜框310的相对两端。
像源500可以安装在眼镜腿320内部,既能够便于像源500的设置,又能够实现对像源500的隐藏。其中,像源500可以用于产生虚拟场景对应的光线,并将光线投射到光学装置100上进行传输。例如,像源500可以为微型投影仪。
如图13所示,像源500可以产生虚拟场景对应的光线I A,并将光线I A投射到光学装置100上。光线I A经光学装置100传输后出射,最终被人眼2000接收到,从而用户能够观察到光线I A对应的虚拟场景。可以理解的,光线I A为各个视场角的混合光线,光线I A可以包括上述的第一光线I 1、第二光线I 2以及第三光线I 3
另一方面,外界光线I B能够透过光学装置100,直接被人眼2000接收到,从而用户能够观察到光线I B对应的真实场景。
因此,用户既能够观察到虚拟场景,又能够观察到真实场景,从而能够体验到虚拟场景与现实场景的结合。
本申请实施例提供的智能眼镜1000,通过在光学装置100中设置第一间隔层13,并将第一间隔层13设置为第一区域131和第二区域132,第二区域132能够使第一视场角的第一光线发生全反射,并且能够透过第二视场角的第二光线,因此能够使不同视场角的光线在不同的波导层中传输,从而便于对不同视场角的光线的传输周期分别进行调节,使不同视场角的光线的传输周期趋于接近,因此能够使不同视场角的光线从光学装置100中出射时的出瞳密度接近,从而可以提高光学装置100出射的光线的均匀性,当虚拟场景的光线与真实场景的光线结合时,用户能够观察到更好的图像,因此可以提高智能眼镜1000的性能。
在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
以上对本申请实施例提供的波导组件、光学装置及智能眼镜进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施 例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种波导组件,包括:
    第一波导层;
    第二波导层,与所述第一波导层层叠设置;以及
    第一间隔层,设置在所述第一波导层与所述第二波导层之间,所述第一间隔层包括第一区域及第二区域,所述第一区域的折射率小于所述第一波导层的折射率和所述第二波导层的折射率,所述第二区域的折射率小于所述第一区域的折射率;
    当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,所述第一区域能够减小光线的横向传输周期,所述第二区域能够使所述光线中的第一视场角的第一光线发生全反射,以使所述第一波导层能够单独传输所述第一光线,所述第二区域能够透过所述光线中的第二视场角的第二光线,以使所述第一波导层和所述第二波导层能够共同传输所述第二光线。
  2. 根据权利要求1所述的波导组件,其中,所述第一波导层的折射率与所述第二波导层的折射率相同。
  3. 根据权利要求2所述的波导组件,其中,
    所述第一波导层和所述第二波导层的折射率为1.6至2.1之间;
    所述第二区域的折射率为1.3至1.6之间。
  4. 根据权利要求2所述的波导组件,其中,所述第一光线的衍射角、所述第二光线的衍射角满足以下关系式,以使所述第一光线能够在所述第二区域发生全反射,以及使所述第二光线能够透过所述第二区域:
    θ 1>sin -1(n d2/n)
    θ 2≤sin -1(n d2/n)
    其中,n为所述第一波导层和所述第二波导层的折射率,n d2为所述第二区域的折射率,θ 1为所述第一光线的衍射角,θ 2为所述第二光线的衍射角。
  5. 根据权利要求4所述的波导组件,其中,所述第一光线在所述第一波导层中的横向传输周期与所述第二光线在所述第一波导层和所述第二波导层中的横向传输周期相同。
  6. 根据权利要求5所述的波导组件,其中,所述第一波导层和所述第二波导层满足以下关系式:
    2*(h 1+h 2)*tan(θ 2)=2*h 1*tan(θ 1)
    其中,h 1为所述第一波导层的厚度,h 2为所述第二波导层的厚度。
  7. 根据权利要求6所述的波导组件,其中,
    所述第一波导层的厚度为0.05毫米至3毫米之间;
    所述第二波导层的厚度为0.05毫米至3毫米之间。
  8. 根据权利要求1所述的波导组件,其中,还包括:
    M个波导层,所述M个波导层由所述第二波导层背离所述第一波导层的一侧依次层叠设置;
    第N波导层与第N+1波导层之间设置有第N间隔层,所述第N间隔层的折射率小于所述第一波导层至第M+2波导层的折射率,所述第一波导层至第P波导层能够共同传输所述光线中的第P视场角的第P光线;
    其中,M、N、P均为正整数,N大于等于2且小于等于M+1,P大于等于3且小于等于M+2。
  9. 根据权利要求8所述的波导组件,其中,所述第一波导层的折射率、所述第二波导层的折射率以及所述M个波导层的折射率都相同。
  10. 根据权利要求9所述的波导组件,其中,所述M个波导层中,每一波导层的折射率均为1.6至2.1之间,所述第N间隔层的折射率为1.3至1.6之间。
  11. 根据权利要求9所述的波导组件,其中,所述第一光线的横向传输周期、所述第二光线的横向传输周期、所述第P光线的横向传输周期都相同。
  12. 根据权利要求11所述的波导组件,其中,所述M个波导层中,每一波导层的厚度均为0.05毫米至3毫米之间。
  13. 一种光学装置,包括:
    波导组件,所述波导组件包括:第一波导层;第二波导层,与所述第一波导层层叠设置;以及第一间隔层,设置在所述第一波导层与所述第二波导层之间,所述第一间隔层包括第一区域及第二区域,所述第一区域的折射率小于所 述第一波导层的折射率和所述第二波导层的折射率,所述第二区域的折射率小于所述第一区域的折射率;
    当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,所述第一区域能够减小光线的横向传输周期,所述第二区域能够使所述光线中的第一视场角的第一光线发生全反射,以使所述第一波导层能够单独传输所述第一光线,所述第二区域能够透过所述光线中的第二视场角的第二光线,以使所述第一波导层和所述第二波导层能够共同传输所述第二光线;
    耦入光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述耦入光栅与所述第一区域正对设置;以及
    第一耦出光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述第一耦出光栅与所述第二区域正对设置;
    其中,当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,通过所述耦入光栅耦入所述波导组件,所述第一光线、所述第二光线均由所述第一耦出光栅耦出。
  14. 根据权利要求13所述的光学装置,其中,所述第一耦出光栅为二维光栅。
  15. 根据权利要求13所述的光学装置,其中,
    所述第一间隔层还包括第三区域,所述第三区域位于所述第一区域与所述第二区域之间;
    所述光学装置还包括第一转折光栅,所述第一转折光栅设置在所述第一波导层背离所述第二波导层的一侧,所述第一转折光栅与所述第三区域正对设置。
  16. 根据权利要求13所述的光学装置,其中,所述波导组件中与所述第一波导层相对的最外侧波导层上还设置有第二耦出光栅,所述第二耦出光栅设置在所述最外侧波导层背离所述第一波导层的一侧,所述第二耦出光栅与所述第二区域正对设置。
  17. 根据权利要求16所述的光学装置,其中,所述第二耦出光栅为二维光栅。
  18. 根据权利要求16所述的光学装置,其中,所述第一间隔层包括位于 所述第一区域与所述第二区域之间的第三区域时,所述最外侧波导层上还设置有第二转折光栅,所述第二转折光栅设置在所述最外侧波导层背离所述第一波导层的一侧,所述第二转折光栅与所述第三区域正对设置。
  19. 根据权利要求13所述的光学装置,其中,所述第一波导层的折射率与所述第二波导层的折射率相同。
  20. 一种智能眼镜,包括:
    镜架;
    光学装置,安装在所述镜架上,所述光学装置包括:
    波导组件,所述波导组件包括:第一波导层;第二波导层,与所述第一波导层层叠设置;以及第一间隔层,设置在所述第一波导层与所述第二波导层之间,所述第一间隔层包括第一区域及第二区域,所述第一区域的折射率小于所述第一波导层的折射率和所述第二波导层的折射率,所述第二区域的折射率小于所述第一区域的折射率;
    当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,所述第一区域能够减小光线的横向传输周期,所述第二区域能够使所述光线中的第一视场角的第一光线发生全反射,以使所述第一波导层能够单独传输所述第一光线,所述第二区域能够透过所述光线中的第二视场角的第二光线,以使所述第一波导层和所述第二波导层能够共同传输所述第二光线;
    耦入光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述耦入光栅与所述第一区域正对设置;以及
    第一耦出光栅,设置在所述第一波导层背离所述第二波导层的一侧,所述第一耦出光栅与所述第二区域正对设置;
    其中,当光线由所述第二波导层一侧朝向所述第一区域入射至所述第一波导层时,通过所述耦入光栅耦入所述波导组件,所述第一光线、所述第二光线均由所述第一耦出光栅耦出。
PCT/CN2022/099554 2021-07-26 2022-06-17 波导组件、光学装置及智能眼镜 WO2023005501A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/396,574 US20240126005A1 (en) 2021-07-26 2023-12-26 Waveguide assembly, optical device and intelligent glasses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110845991.3A CN113433614A (zh) 2021-07-26 2021-07-26 波导组件、光学装置及智能眼镜
CN202121714112.5U CN215264107U (zh) 2021-07-26 2021-07-26 波导组件、光学装置及智能眼镜
CN202121714112.5 2021-07-26
CN202110845991.3 2021-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/396,574 Continuation US20240126005A1 (en) 2021-07-26 2023-12-26 Waveguide assembly, optical device and intelligent glasses

Publications (1)

Publication Number Publication Date
WO2023005501A1 true WO2023005501A1 (zh) 2023-02-02

Family

ID=85087496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099554 WO2023005501A1 (zh) 2021-07-26 2022-06-17 波导组件、光学装置及智能眼镜

Country Status (2)

Country Link
US (1) US20240126005A1 (zh)
WO (1) WO2023005501A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131551A1 (en) * 2015-11-10 2017-05-11 Steven John Robbins Waveguides with embedded components to improve intensity distributions
CN110596807A (zh) * 2019-08-20 2019-12-20 深圳奥比中光科技有限公司 波导结构、显示装置及电子设备
CN211826603U (zh) * 2020-04-03 2020-10-30 深圳奥比中光科技有限公司 光波导、显示装置及电子设备
US20200409145A1 (en) * 2017-08-18 2020-12-31 EARDG Photonics, Inc. Waveguide image combiners for augmented reality displays
CN113433614A (zh) * 2021-07-26 2021-09-24 Oppo广东移动通信有限公司 波导组件、光学装置及智能眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170131551A1 (en) * 2015-11-10 2017-05-11 Steven John Robbins Waveguides with embedded components to improve intensity distributions
US20200409145A1 (en) * 2017-08-18 2020-12-31 EARDG Photonics, Inc. Waveguide image combiners for augmented reality displays
CN110596807A (zh) * 2019-08-20 2019-12-20 深圳奥比中光科技有限公司 波导结构、显示装置及电子设备
CN211826603U (zh) * 2020-04-03 2020-10-30 深圳奥比中光科技有限公司 光波导、显示装置及电子设备
CN113433614A (zh) * 2021-07-26 2021-09-24 Oppo广东移动通信有限公司 波导组件、光学装置及智能眼镜

Also Published As

Publication number Publication date
US20240126005A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US10852481B2 (en) Color separation in planar waveguides using wavelength filters
WO2015154643A1 (zh) 透过式眼镜显示器
CN112099239B (zh) 一种紧凑型波导显示光学系统及ar眼镜
WO2019144596A1 (zh) 一种光波导结构及显示装置
CN113433614A (zh) 波导组件、光学装置及智能眼镜
CN113433613A (zh) 波导组件、光学装置及智能眼镜
WO2023030516A1 (zh) 光学系统和可穿戴设备
CN215264107U (zh) 波导组件、光学装置及智能眼镜
CN217443725U (zh) 光机系统
CN110646942A (zh) 一种超薄光学放大模组及其应用
CN114675419B (zh) 一种近眼型虚拟现实光学模组
WO2018195983A1 (zh) 一种光波导结构及光学系统
Yan et al. Surface micro-reflector array for augmented reality display
WO2023005501A1 (zh) 波导组件、光学装置及智能眼镜
TWI824355B (zh) 一種光學系統及混合實境設備
WO2023000747A1 (zh) 波导组件、光学装置及智能眼镜
WO2022078072A1 (zh) 衍射光栅结构、成像装置及穿戴设备
CN215264106U (zh) 波导组件、光学装置及智能眼镜
WO2023246436A1 (zh) 光学系统以及显示装置
WO2024093348A1 (zh) 一种导光器件以及可穿戴设备
CN218601510U (zh) 一种光导系统以及投影设备
US20230418080A1 (en) Optical system and display device
CN213986900U (zh) Ar光学棱镜及ar显示设备
CN214278541U (zh) 一种增强现实光学系统
WO2019016926A1 (ja) 頭部装着型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE