WO2023030516A1 - 光学系统和可穿戴设备 - Google Patents

光学系统和可穿戴设备 Download PDF

Info

Publication number
WO2023030516A1
WO2023030516A1 PCT/CN2022/116993 CN2022116993W WO2023030516A1 WO 2023030516 A1 WO2023030516 A1 WO 2023030516A1 CN 2022116993 W CN2022116993 W CN 2022116993W WO 2023030516 A1 WO2023030516 A1 WO 2023030516A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
waveguide
optical path
adjustment unit
path adjustment
Prior art date
Application number
PCT/CN2022/116993
Other languages
English (en)
French (fr)
Inventor
汤伟平
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023030516A1 publication Critical patent/WO2023030516A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application belongs to the optical technology field of augmented reality glasses, and in particular relates to an optical system and a wearable device having the optical system.
  • the light emitted by the light source is imported from one end of the waveguide through the condensing lens, exported from the other end of the waveguide, and finally enters the human eye to present the picture.
  • the projection module composed of a screen and a condenser lens has a large volume and a clumsy shape, which cannot bring a good user experience to users.
  • the present application aims to provide an optical system and a wearable device, at least solving one of the problems of large volume and awkward appearance.
  • the embodiment of the present application proposes an optical system, including: a light source; Not parallel; lens module, the lens module is arranged between the light source and the waveguide, the light output surface of the light source faces the light incident surface of the lens module, and the light output surface of the lens module faces On the light incident surface of the waveguide, the lens module includes an optical path adjustment unit; wherein the lens module is used to collimate the light emitted by the light source, and the optical path adjustment unit is used to adjust the light path of the light
  • the transmission angle is such that the light is transmitted into the waveguide; the light is transmitted from the lens module after at least one total reflection in the optical path adjustment unit, and enters the waveguide.
  • the embodiments of the present application provide a wearable device, including the optical system described in the foregoing embodiments.
  • the light exit surface of the light source and the light entrance surface of the waveguide in a non-parallel structure, and at the same time setting a lens module with an optical path adjustment unit between the light source and the waveguide, the light emitted by the light source can be After at least one total reflection in the optical path adjustment unit, it is transmitted from the lens module to the waveguide, so that the space occupied by the light propagation path is reduced, so that the overall volume of the optical system is reduced.
  • Fig. 1 is a schematic structural diagram of an optical system according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the comparison before and after the optical path is unfolded.
  • optical system 100
  • Lens module 30 optical path adjustment unit 31;
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • An optical system 100 according to an embodiment of the present invention is described below with reference to FIG. 1 and FIG. 2 .
  • an optical system 100 includes: a light source 10 , a waveguide 20 and a lens module 30 .
  • the light emitting surface of the light source 10 faces the light incident surface of the waveguide 20
  • the light emitting surface of the light source 10 is not parallel to the light incident surface of the waveguide 20
  • the lens module 30 is arranged between the light source 10 and the waveguide 20, and the light emitting surface of the light source 10 Face to the light incident surface of the lens module 30
  • the light exit surface of the lens module 30 faces the light incident surface of the waveguide 20
  • the lens module 30 includes an optical path adjustment unit 31 .
  • the lens module 30 is used to collimate the light emitted by the light source 10, and the optical path adjustment unit 31 is used to adjust the transmission angle of the light so that the light passes into the waveguide 20, and the light passes through at least one total reflection in the optical path adjustment unit 31 Afterwards, it passes out from the lens module 30 and enters the waveguide 20 .
  • the optical system 100 is mainly composed of a light source 10 capable of emitting imaging light, a waveguide 20 capable of transmitting light, and a lens module 30 capable of adjusting the path of light.
  • the light source 10 may be a projection device capable of projection, and the light emitted by the light source 10 is the light actually emitted by the projection device.
  • the light source 10 has a light-emitting surface capable of emitting light
  • the waveguide 20 has a light-incoming surface capable of guiding light into the waveguide 20.
  • the planes are not parallel, that is, the light emitted from the light source 10 does not directly reach the light incident surface of the waveguide 20 after being propagated in a straight line, but needs to pass through the lens module 30 with the optical path adjustment unit 31 to adjust the optical path before entering the waveguide 20 of the incident surface.
  • the light exit surface of the light source 10 and the light entrance surface of the waveguide 20 are not arranged parallel to each other, that is, the light exit surface of the light source 10 and the light entrance surface of the waveguide 20 may be arranged perpendicular to each other, or the light exit surface of the light source 10 and the waveguide There is an included angle between the light incident surfaces of 20.
  • the angle formed between the light exit surface of the light source 10 and the light entrance surface of the waveguide 20 can be 30°, 45° or 60°, etc., the angle between the light exit surface of the light source 10 and the light entrance surface of the waveguide 20
  • the specific angle can be selected according to the actual situation, and the specific value of the predetermined angle of the included angle is not limited here.
  • the traditional structure in which the light source 10 and the waveguide 20 need to be arranged on a straight line can be changed, so that the light emitted by the light source 10 reaches the light incident surface of the waveguide 20 The distance is reduced, thereby reducing the footprint of the optical system.
  • the lens module 30 is arranged between the light emitting surface of the light source 10 and the light incident surface of the waveguide 20, and the light emitted by the light source 10 reaches the light incident surface of the waveguide 20 after being collimated by the lens module 30 and adjusted by the optical path adjustment unit 31 , the light can enter the interior of the waveguide 20 from the light incident surface of the waveguide 20 , and after being transmitted in the waveguide 20 , finally present an image that can be viewed by human eyes.
  • the lens module 30 also has a light incident surface and a light exit surface, wherein the light exit surface of the light source 10 can face the light incident surface of the lens module 30, and the light exit surface of the lens module 30 can face the light incident surface of the waveguide 20. noodle. That is to say, the light emitted by the light emitting surface of the light source 10 can enter the lens module 30 through the light incident surface of the lens module 30, and then the light is collimated by the lens module 30 and the optical path is adjusted to exit the lens module 30. The light incident surface of the waveguide 20 is irradiated.
  • the lens module 30 also has an optical path adjustment unit 31 , wherein the optical path adjustment unit 31 can be used to adjust the transmission angle of the light, so that the light can pass into the waveguide 20 .
  • the light can be transmitted from the lens module 30 after undergoing at least one total reflection in the optical path adjustment unit 31 .
  • the incident angle is greater than a certain critical angle (the light is far away from the normal)
  • the refracted light will disappear, and all the incident light will Be reflected without entering a medium with a low refractive index.
  • the angle between the light and the normal is greater than the critical angle of total reflection, so as to ensure that after the light enters the optical path adjustment unit 31, most of the light can pass through the optical path adjustment unit 31 to achieve total reflection, so that the loss rate of light is reduced and the utilization of the overall light is improved. rate, so as to ensure that the final presentation quality achieves the best effect.
  • the light exit surface of the light source 10 is arranged opposite to the light entrance surface of the lens assembly 30
  • the light entry surface of the waveguide 20 is opposite to the light exit surface of the lens assembly 30 .
  • the light from the light source 10 passes through the light-emitting surface to the light-incident surface of the lens assembly 30, the light enters the interior of the lens assembly 30 through the light-incident surface of the lens assembly 30, the light is collimated by the lens module 30, and passes through the optical path adjustment unit 31 After undergoing at least one total reflection, the light passes through the light exit surface of the lens assembly 30 to the light entrance surface of the waveguide 20 , and finally transmits in the waveguide 20 .
  • an optical path adjustment unit 31 is provided between the light source 10 and the waveguide 20.
  • the lens module 30, the light emitted by the light source 10 is transmitted from the lens module 30 to the waveguide 20 after undergoing at least one total reflection in the optical path adjustment unit 31, so that the space occupied by the light propagation path is reduced, so that the overall volume of the optical system 100 get smaller.
  • the optical path adjustment unit 31 has a light-incoming surface 311 , a first surface 312 and a second surface 313 , the light-incoming surface 311 faces the light-emitting surface of the light source 10 , and the first surface 312 faces The light incident surface of the waveguide, the second surface 313 is opposite to the first surface 312, the light enters the optical path adjustment unit 31 through the light incident surface 311, and is transmitted to the first surface 312 for total reflection.
  • 313 at least one reflection, when the incident angle of the light transmitted to the first surface 312 is smaller than the total reflection angle of the first surface 312 , the light is emitted from the optical path adjustment unit 31 .
  • the opposite arrangement of the second surface 313 and the first surface 312 may mean that there is an included angle between the second surface 313 and the first surface 312 , rather than being arranged parallel to each other.
  • the light When the light is reflected twice between the first surface 312 and the second surface 313, that is, the light is totally reflected once on the second surface 313, after the light enters the lens module 30, the light can enter from the optical path adjustment unit 31
  • the light surface 311 enters the optical path adjustment unit 31 , and reaches the second surface 313 after being totally reflected by the first surface 312 .
  • the light When the light is reflected four times between the first surface 312 and the second surface 313, that is, the light is totally reflected twice on the second surface 313, after the light enters the lens module 30, the light can be transmitted from the optical path adjustment unit 31
  • the light entering surface 311 enters the optical path adjustment unit 31, and reaches the second surface 313 after being totally reflected by the first surface 312. two surfaces 313 , and then the light is reflected by the second surface 313 to reach the first surface 312 , and finally exits the optical path adjustment unit 31 through the first surface 312 .
  • the number of total reflections is related to the specific structure of the optical path adjustment unit 31 .
  • the optical path adjustment unit 31 is a triangular prism
  • the included angle of the triangular prism changes, the number of total reflections of light in the optical path adjustment unit will change.
  • the principle when the light is reflected more times between the first surface 312 and the second surface 313 will not be repeated here.
  • the light may pass through the first surface 312 and be transmitted to the light incident surface of the waveguide 20 . Since the light is reflected by the second surface 313 and reaches the first surface 312, the angle between the light and the normal is smaller than the critical angle of total reflection, and total reflection will not occur. Therefore, the light reflected by the second surface 313 will pass through the first surface. 312 exits the optical path adjustment unit 31 .
  • the second surface 313 is coated with a reflective film, so as to reflect the light transmitted to the second surface 313 to the first surface 312 .
  • a reflective film on the second surface 313 , the reflection effect of light passing through the second surface 313 can be improved, thereby ensuring that the light can be completely reflected and reducing the risk of light being refracted out of the optical path adjustment unit 31 when passing through the second surface 313 .
  • the first surface 312 is parallel to the light incident surface of the waveguide.
  • the extending direction of the first surface 312 may be defined as extending up and down.
  • the first surface 312 may extend up and down, and the light incident surface of the waveguide may also extend in the up and down direction.
  • the first surface 312 and the light incident surface of the waveguide 20 may be arranged parallel to each other, and there may also be a gap between the first surface 312 and the light incident surface of the waveguide 20 .
  • the light can pass through the first surface 312 and then reach the waveguide 20 more effectively, avoiding problems such as unclear image quality in the final presentation.
  • the length of the first surface 312 in the first direction is set to be greater than the length of the light-incident surface of the waveguide 20 , more light can reach the waveguide 20 after passing through the first surface 312 .
  • the lens module 30 further includes: a first collimation unit 32 , and the first collimation unit 32 is arranged between the light exit surface and the light entrance surface 311 of the light source 10 To collimate the light entering the optical path adjusting unit 31 from the light source 10 , or the first collimating unit 32 is disposed between the first surface 312 and the light incident surface of the waveguide 20 to collimate the light entering the waveguide 20 from the optical path adjusting unit 31 .
  • the first collimating unit 32 can be disposed between the light exit surface of the light source 10 and the light entrance surface 311 , or between the first surface 312 and the light entrance surface of the waveguide 20 .
  • the first collimating unit 32 When the first collimating unit 32 is arranged between the light emitting surface and the light entering surface 311 of the light source 10, the light from the light source 10 can first be collimated by the first collimating unit 32 and then reach the light entering surface 311 of the optical path adjustment unit 31 . At this time, the first collimation unit 32 can make the light emitted from the light source 10 converge and then enter the optical path adjustment unit 31, so that it can not only prevent the light from being able to present a complete image when it reaches the human eye, but also further reduce the The light transmission distance makes the volume occupied by the optical system 100 smaller.
  • the light from the light source 10 can first pass through the optical path adjustment unit 31
  • the light surface 311 then reaches the second surface 313 through the total reflection of the first surface 312, and then reaches the first surface 312 through the reflection of the second surface 313, and then the light can pass through the first surface 312 and exit the optical path adjustment unit 31 to reach the first The collimation unit 32 , finally the light reaches the light incident surface of the waveguide 20 after being collimated by the first collimation unit 32 .
  • the first collimation unit 32 By arranging the first collimation unit 32 between the light exit surface of the light source 10 and the light entry surface 311, or the first collimation unit 32 between the first surface 312 and the light entry surface of the waveguide 20, the light transmission is ensured. Based on the effect, the occupied space of the optical system can be reduced.
  • the lens module 30 further includes: a second collimation unit 33, the optical path adjustment unit 31 is arranged between the first collimation unit 32 and the second collimation unit 33, The second collimating unit 33 is used to collimate the light entering the optical path adjusting unit 31 from the light source 10 or collimating the light entering the waveguide 20 from the optical path adjusting unit 31 .
  • the light from the light source 10 can firstly be collimated by the first collimation unit 32 and then reach the optical path adjustment unit 31, and then be adjusted by the optical path adjustment unit 31, and then be collimated by the second collimation unit 33 and then be radiated. into the waveguide 20.
  • the light from the light source 10 may first be collimated by the second collimation unit 33 and then reach the optical path adjustment unit 31, then be adjusted by the optical path adjustment unit 31, and then enter the waveguide 20 after being collimated by the first collimation unit 32.
  • the second collimating unit 33 By arranging the second collimating unit 33 to cooperate with the first collimating unit 32, it is beneficial to further improve the light transmission effect, improve the picture effect, and further reduce the occupied space of the optical system.
  • the light is emitted perpendicular to the first surface 312 after passing through the optical path adjustment unit 31 .
  • the light passing through the optical axis of the system can enter the interior of the optical path adjustment unit 31 through the light entrance surface 311 of the optical path adjustment unit 31, and the light can reach the second surface after being totally reflected by the first surface 312 of the optical path adjustment unit 31. 313 , finally the light can be reflected by the second surface 313 and exit the optical path adjustment unit 31 perpendicular to the first surface 312 of the optical path adjustment unit 31 .
  • the optical path adjustment unit 31 By sending the light passing through the optical axis of the system out of the optical path adjustment unit 31 perpendicular to the first surface 312 , it can ensure a good final imaging effect and avoid problems such as off-axis or image distortion.
  • the light emitted by the light source 10 is perpendicular to the light incident surface 311 and enters the light path adjustment unit 31 .
  • the light passing through the optical axis of the system can enter the interior of the optical path adjustment unit 31 vertically relative to the light entrance surface 311 of the optical path adjustment unit 31, and the light passes through the first side of the optical path adjustment unit 31.
  • the total reflection on the surface 312 can reach the second surface 313 , and finally the light can be reflected by the second surface 313 and exit the optical path adjustment unit 31 through the first surface 312 of the optical path adjustment unit 31 .
  • At least a part of the optical path adjustment unit 31 is provided with a black light absorbing part, and by providing the black light absorbing part, stray light can be effectively absorbed.
  • the black light absorbing part can be disposed on the edge or surface of the optical path adjustment unit 31 .
  • the angle ⁇ formed by the first surface 312 and the light entrance surface 313 is N times the angle ⁇ formed by the first surface 312 and the second surface 313, the number of reflections of the light inside the optical path adjustment unit 31 is N times .
  • N the number of reflections of light inside the optical path adjustment unit 31
  • the specific value of N is not limited here.
  • the angle formed by the light entrance surface 313 and the first surface 312 is ⁇
  • the angle formed by the light entrance surface 311 and the second surface 313 is ⁇
  • N ⁇
  • N is an integer greater than or equal to 1
  • the angle ⁇ formed by the light entrance surface 313 and the first surface 312 is N times the angle ⁇ formed by the light entrance surface 311 and the second surface 313, the number of reflections of the light inside the optical path adjustment unit 31 can be N times .
  • the optical path adjustment unit 31 can be equivalent to a piece of thick glass and added to system optimization.
  • the optical path adjustment unit 31 is a prism
  • the working principle of the optical path adjustment unit 31 is illustrated below with the number of total reflections as an example.
  • the first light 4 is the light path of the present application
  • the second light 5 is the supplementary two The light path after the same light path adjustment unit 31, wherein the size and shape of the two new light path adjustment units 31 are the same as the size and shape of the original light path adjustment unit 31, and the second light 5 is the expansion of the first light 4 after effect.
  • the first light 4 is the path of the light coincident with the optical axis of the optical system 100 , the first light 4 can enter the optical path adjustment unit 31 perpendicular to the light entrance surface 313 , and exit the optical path adjustment unit 31 perpendicular to the first surface 312 .
  • the first light 4 after entering the optical path adjustment unit 31 , the first light 4 forms three broken-line optical paths, which are respectively L1, L2, and L3.
  • L1 is the optical path length from the light entrance surface 311 to the first surface 312
  • L2 is the optical path length from the first surface 312 to the second surface 313
  • L3 is the optical path length from the second surface 313 to the first surface 312 .
  • the light-incoming surface 311 and the first surface 312 are respectively coated with an anti-reflection film. That is to say, an antireflection coating can be provided on the light entrance surface 311 of the optical path adjustment unit 31 , and an antireflection coating can also be provided on the first surface 312 of the optical path adjustment unit 31 .
  • the anti-reflection coating is also the anti-reflection coating. Its main function is to reduce or eliminate the reflected light from optical surfaces such as lenses, prisms, and plane mirrors, thereby increasing the light transmission of these components and reducing or eliminating the stray light of the system.
  • the area of the anti-reflection film may be the same as the surface areas of the light-incoming surface 311 and the first surface 312 respectively, that is, the anti-reflection film may completely cover the surfaces of the light-incoming surface 311 and the first surface 312 .
  • coating the light-incoming surface 311 with an anti-reflection film can make the light penetrate better, so that all the light can pass through the light-incoming surface 311 and enter the optical path adjustment unit 31 as much as possible.
  • the first surface 312 with an anti-reflection film the light reflected by the second surface 313 can pass through the first surface 312 and exit the optical path adjustment unit 31 as much as possible.
  • the volume of the optical system 100 can be reduced by arranging the light exit surface of the light source 10 and the light entrance surface of the waveguide 20 to be non-parallel to each other.
  • an optical path adjustment unit 31 is provided between the light output surface of the light source 10 and the light input surface of the waveguide 20, so as to achieve the effect of folding the optical path, so that the space occupied by the light propagation path is effectively reduced, and finally the overall optical system 100 is realized. volume reduction.
  • the wearable device according to the embodiment of the present application includes the optical system 100 according to the above-mentioned embodiment. Since the optical system 100 according to the above-mentioned embodiment of the present application has the above-mentioned technical effects, the wearable device according to the embodiment of the present application also has the corresponding The technical effect is to achieve the effect of folding the optical path, so that the space occupied by the light propagation path is effectively reduced, the overall volume of the optical system 100 is reduced, and finally the shape of the wearable device is smaller and lighter, bringing users Better experience effect.
  • the wearable device can be AR glasses
  • the waveguide 20 can be a lens of the AR glasses
  • the light source 10 can be a projection device arranged on a temple of the AR glasses
  • the reflection unit can be arranged in the middle of the glasses near the bridge of the nose.
  • the light emitted by 10 is transmitted from one end of the lens close to the light source 10 to the other end of the lens close to the bridge of the nose. After being reflected by the reflection unit, the light returns to the lens and is exported to the human eye from the light leading position on the lens.
  • the human eye is A virtual image emitted by the light source 10 can be viewed.
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Abstract

一种光学系统(100)和可穿戴设备,光学系统(100)包括:光源(10);波导(20),光源(10)的出光面朝向波导(20)的入光面,光源(10)的出光面与波导(20)的入光面不平行;镜头模组(30),镜头模组(30)设置于光源(10)与波导(20)之间,光源(10)的出光面朝向镜头模组(30)的入光面,镜头模组(30)的出光面朝向波导(20)的入光面,镜头模组(30)包括光路调整单元(31);其中,镜头模组(30)用于对光源(10)发出的光线进行准直,光路调整单元(31)用于调整光线的传输角度,以使光线传入波导;光线在光路调整单元(31)中经过至少一次全反射之后从镜头模组(30)传出,并进入波导(20)。

Description

光学系统和可穿戴设备
相关申请的交叉引用
本申请要求于2021年9月6日提交的申请号为202111040765.4,发明名称为“光学系统和可穿戴设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于增强现实眼镜光学技术领域,具体涉及一种光学系统和具有该光学系统的可穿戴设备。
背景技术
在增强现实(Augmented Reality,AR)技术领域中,光源发射的光线经过聚光镜头从波导的一端导入,并从波导的另一端导出,最终进入人眼呈现画面。但是,在目前现有的相关技术中,屏幕和聚光镜头组成的投影模组体积较大,外形较笨拙,无法给用户带来良好的使用体验。
发明内容
本申请旨在提供一种光学系统和可穿戴设备,至少解决体积较大以及外形较笨拙的问题之一。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提出了一种光学系统,包括:光源;波导,所述光源的出光面朝向所述波导的入光面,所述光源的出光面与所述波导的入光面不平行;镜头模组,所述镜头模组设置于所述光源与所述波导之间,所述光源的出光面朝向所述镜头模组的入光面,所述镜头模组的出光面朝向所述波导的入光面,所述镜头模组包括光路调整单元;其中,所述 镜头模组用于对所述光源发出的光线进行准直,所述光路调整单元用于调整所述光线的传输角度,以使所述光线传入所述波导;所述光线在所述光路调整单元中经过至少一次全反射之后从所述镜头模组传出,并进入所述波导。
第二方面,本申请实施例提出了一种可穿戴设备,包括上述实施例所述的光学系统。
在本申请的实施例中,通过将光源的出光面与波导的入光面设置为互相不平行的结构,同时在光源与波导之间设置具有光路调整单元的镜头模组,光源发出的光线可以在光路调整单元中经过至少一次全反射之后从镜头模组传输至波导,使得光线传播路径的占用空间减少,从而使得光学系统的整体体积变小。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的光学系统的结构示意图;
图2是光路展开前后对比示意图。
附图标记:
光学系统100;
光源10;
波导20;
镜头模组30;光路调整单元31;
进光面311;第一面312;第二面313;
第一准直单元32;第二准直单元33;
第一棱镜1;第二棱镜2;第三棱镜3;
第一光线4;第二光线5。
具体实施方式
下面将详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合图1和图2描述根据本发明实施例的光学系统100。
如图1和图2所示,根据本发明一些实施例的光学系统100包括:光源10、波导20和镜头模组30。
具体而言,光源10的出光面朝向波导20的入光面,光源10的出光面与波导20的入光面不平行,镜头模组30设置于光源10与波导20之间,光源10的出光面朝向镜头模组30的入光面,镜头模组30的出光面朝向波导20的入光面,镜头模组30包括光路调整单元31。其中,镜头模组30用于对光源10发出的光线进行准直,光路调整单元31用于调整光线的传输角度,以使光线传入波导20,光线在光路调整单元31中经过至少一次全反射之后从镜头模组30传出,并进入波导20。
换言之,根据本申请实施例的光学系统100主要由可以发出成像光线的光源10、能够传输光线的波导20以及能够对光线的路径进行调整的镜头模组30组成。其中,光源10可以为能够进行投影的投影设备,且由光源10发出的光线为投影设备实际发出的光线。
光源10具有能够发出光线的出光面,波导20具有能够将光线导入波导20的入光面,光源10的出光面能够朝向波导20的入光面,并且光源10的出光面与波导20的入光面不平行设置,即从光源10发出的光线,并不是经过直线传播后直接到达波导20的入光面,而是需要经过具有光路调整单元31的镜头模组30进行光路调整后再进入波导20的入光面。
需要说明的是,光源10的出光面与波导20的入光面不相互平行设置,即光源10的出光面与波导20的入光面可以是相互垂直设置的,或者光源10的出光面与波导20的入光面之间具有夹角。例如,光源10的出光面与波导20的入光面之间的形成的夹角可以为30°、45°或者60°等,光源10的出光面与波导20的入光面之间的夹角的具体角度,可以根据实际情况进行选择,在此对于夹角的预定角度的具体数值不作限定。通过将光源10的出光面与波导20的入光面彼此不平行的设置,可以改变传统的光源10与波导20需要在一条直线上布置的结构,使得光源10发出的光线到达波 导20入光面的距离减小,从而减小光学系统的占用空间。
镜头模组30设于光源10的出光面与波导20的入光面之间,光源10发出的光线经过镜头模组30的准直和光路调整单元31的光路调整之后到达波导20的入光面,光线可以从波导20的入光面进入波导20内部,在波导20内传输后,最终呈现出人眼可以观看的图像。
需要说明的是,镜头模组30也具有入光面和出光面,其中,光源10的出光面可以朝向镜头模组30的入光面,镜头模组30的出光面可以朝向波导20的入光面。也就是说,光源10的出光面发出的光线可以经过镜头模组30的入光面进入镜头模组30内,然后光线经过镜头模组30的准直和光路调整后从镜头模组30的出光面射向波导20的入光面。
进一步地,镜头模组30还具有光路调整单元31,其中,光路调整单元31可以用于调整光线的传输角度,从而使得光线能够传入波导20内部。
具体地,光线可以在光路调整单元31中经过至少一次全反射之后从镜头模组30传出。换句话说,当光线从较高折射率的介质进入到较低折射率的介质时,如果入射角大于某一临界角(光线远离法线)时,折射光线将会消失,所有的入射光线将被反射而不进入低折射率的介质。光线与法线的角度大于全反射临界角,从而可以保证光线进入光路调整单元31后,大部分的光线都能够经过光路调整单元31实现全反射,使得光线的损失率降低,提升整体光线的利用率,从而确保最终呈现画质达到最佳的效果。
下面结合具体实施例对本申请的光学系统100的光线的具体传输路径进行详细描述。
如图1所示,光源10的出光面与镜头组件30的入光面相对设置,波导20的入光面与镜头组件30的出光面相对设置。其中,光源10的光线经过出光面射向镜头组件30的入光面,光线经过镜头组件30的入光面进入镜头组件30内部,光线经过镜头模组30的准直,并且在光路调整单元31中经过至少一次全反射之后,光线经过镜头组件30的出光面射向波导20的入光面,最终在波导20内传输。
由此,根据本申请实施例的光学系统100,通过将光源10的出光面与波导20的入光面设置为彼此不平行的结构,同时在光源10与波导20之间设置具有光路调整单元31的镜头模组30,光源10发出的光线在光路调整单元31中经过至少一次全反射之后从镜头模组30传输至波导20,使得光线传播路径的占用空间减少,从而使得光学系统100的整体体积变小。
根据本申请的一个实施例,如图1所示,光路调整单元31具有进光面311、第一面312和第二面313,进光面311朝向光源10的出光面,第一面312朝向波导的入光面,第二面313与第一面312相对,光线经过进光面311进入光路调整单元31,并传输至第一面312发生全反射,光线在第一面312与第二面313之间进行至少一次反射,在光线传输至第一面312的入射角小于第一面312的全反射角的情况下,光线从光路调整单元31射出。
其中需要说明的是,第二面313与第一面312相对设置可以是指第二面313与第一面312之间具有夹角,而非彼此平行设置。
当光线在第一面312与第二面313之间进行两次反射时,即光线在第二面313上进行一次全反射,光线进入镜头模组30后,光线可以从光路调整单元31的进光面311进入光路调整单元31,经过第一面312的全反射后到达第二面313,光线经过第二面313的反射到达第一面312后,经过第一面312射出光路调整单元31。
当光线在第一面312与第二面313之间进行四次反射时,即光线在第二面313上进行两次全反射,光线进入镜头模组30后,光线可以从光路调整单元31的进光面311进入光路调整单元31,经过第一面312的全反射到达第二面313,光线经过第二面313的反射到达第一面312后,再次经过第一面312的全反射到达第二面313,然后光线经过第二面313的反射到达第一面312,最终经过第一面312射出光路调整单元31。
全反射的次数与光路调整单元31的具体结构有关。例如,当光路调整单元31为三角棱镜时,若三角棱镜的夹角度数改变,光线在光路调整单元 中经过全反射的次数就会有所改变。当光线在第一面312与第二面313之间进行更多次反射时的原理在此不再赘述。
需要说明的是,光线经过光路调整单元31的第二面313的反射后,可以穿过第一面312,并传输至波导20的入光面。由于光线经过第二面313的反射到达第一面312时,光线与法线的角度小于全反射临界角,不会出现全反射的情况,因此经过第二面313反射的光线会经过第一面312射出光路调整单元31。
根据本申请的一些可选实施例,第二面313镀有反射膜,以将传输至第二面313的光线反射至第一面312。通过在第二面313设置反射膜,可以提升光线经过第二面313时的反射效果,从而确保光线能够完全被反射,降低光线经过第二面313时被折射出光路调整单元31的风险。
根据本申请的一个实施例,如图1所示,第一面312与波导的入光面平行。
为了便于描述,可以将第一面312的延伸方向定义为上下延伸。
也就是说,第一面312可以沿上下延伸,波导的入光面也可以沿上下方向延伸。第一面312可以与波导20的入光面彼此平行设置,并且第一面312也可以与波导20的入光面之间留有间隙。
通过将第一面312与波导20的入光面平行设置,可以使得光线更加有效地经过第一面312后到达波导20,避免最终呈现的画质不清晰等问题。
可选地,通过将第一面312在第一方向的长度设置为大于波导20的入光面的长度,也可以使得更多地光线经过第一面312后到达波导20。
根据本申请的一些可选实施例,如图1所示,镜头模组30还包括:第一准直单元32,第一准直单元32设于光源10的出光面与进光面311之间以准直从光源10进入光路调整单元31的光线,或者第一准直单元32设于第一面312与波导20的入光面之间以准直从光路调整单元31进入波导20的光线。
也就是说,第一准直单元32既可以设在光源10的出光面与进光面311之间,也可以设在第一面312与波导20的入光面之间。
当第一准直单元32设在光源10的出光面与进光面311之间时,光源10的光线可以先经过第一准直单元32的准直后到达光路调整单元31的进光面311。此时,第一准直单元32可以使从光源10射出的光线经过汇聚后,射入光路调整单元31内,从而不仅可以避免光线在达到人眼时无法呈现完整的图像,而且还能够进一步降低光线传输的距离,使得光学系统100占用的体积更小。
当第一准直单元32设于第一面312与波导20的入光面之间,以光线在光路调整单元31内反射两次为例,光源10的光线可以先经过光路调整单元31的进光面311,然后经过第一面312的全反射到达第二面313,然后经过第二面313的反射到达第一面312,然后光线可以经过第一面312射出光路调整单元31后到达第一准直单元32,最后光线经过第一准直单元32的准直后到达波导20的入光面。
通过将第一准直单元32设于光源10的出光面与进光面311之间,或者第一准直单元32设于第一面312与波导20的入光面之间,在保证光线传输效果的基础上,可以减小光学系统的占用空间。
根据本申请的一个实施例,如图1所示,镜头模组30还包括:第二准直单元33,光路调整单元31设于第一准直单元32与第二准直单元33之间,第二准直单元33用以准直从光源10进入光路调整单元31的光线或者用以准直从光路调整单元31进入波导20的光线。
也就是说,光源10的光线可以首先经过第一准直单元32的准直后到达光路调整单元31,然后经过光路调整单元31的调整后,再经过第二准直单元33的准直后射入波导20内。或者光源10的光线可以首先经过第二准直单元33的准直后到达光路调整单元31,然后经过光路调整单元31的调整后,再经过第一准直单元32的准直后射入波导20内。
通过设置第二准直单元33与第一准直单元32相配合,可以有利于进一步提高光线传输效果,提升画面效果,并且进一步减小光学系统的占用空间。
根据本申请的一些可选实施例,如图1所示,光线经过光路调整单元31后垂直与第一面312射出。
也就是说,经过系统光轴的光线可以通过光路调整单元31的进光面311射入光路调整单元31的内部,光线经过光路调整单元31的第一面312的全反射后可以达到第二面313,最终光线可以经过第二面313的反射相对于光路调整单元31的第一面312垂直射出光路调整单元31。通过将经过系统光轴的光线垂直于第一面312射出光路调整单元31,可以保证最终成像的效果良好,避免出现离轴或图像畸变等问题。
根据本申请的一个实施例,如图1所示,光源10发出的光线垂直于进光面311射入光路调整单元31。
当光线在光路调整单元31经过一次全反射时,经过系统光轴的光线可以相对于光路调整单元31的进光面311垂直射入光路调整单元31的内部,光线经过光路调整单元31的第一面312的全反射后可以达到第二面313,最终光线可以经过第二面313的反射经过光路调整单元31的第一面312射出光路调整单元31。通过将经过系统光轴的光线垂直于进光面311射入光路调整单元31,可以保证最终成像的效果良好,避免出现离轴或图像畸变等问题。
可选地,光路调整单元31上至少一部分设有黑色吸光部,通过设置黑色吸光部,可以有效吸收杂散光。其中,黑色吸光部可以设置在光路调整单元31的棱边或面上。
根据本申请的一些可选实施例,如图1所示,光路调整单元31为三角棱镜,进光面311与第一面312形成的夹角为α,第一面312与第二面313形成的夹角为β,其中α=Nβ,N为大于等于1的整数。
其中当第一面312与进光面313形成的夹角α是第一面312与第二面313形成的夹角为β的N倍,则光线在光路调整单元31内部的反射次数为N次。例如,当α=2β,即N为2时,则光线在光路调整单元31内部的反射次数为2次;当α=4β,即N为4时,光线在光路调整单元31内部的反 射次数为4次,以此类推,在此对于N的具体数值不作限定。
如图1所示,进光面313与第一面312形成的夹角为α,进光面311与第二面313形成的夹角为γ,其中α=Nγ,N为大于等于1的整数。其中当进光面313与第一面312形成的夹角α是进光面311与第二面313形成的夹角γ的N倍时,光线在光路调整单元31内部的反射次数可以为N次。例如,当N为1,α=γ时,即光线在光路调整单元31内部的反射次数为1次;当N为3,α=3γ时,光线在光路调整单元31内部的反射次数为3次;当N为5,α=5γ时,光线在光路调整单元31内部的反射次数为5次,以此类推,在此对于N的具体数值不作限定。
此外,如果光路本身不够长,可以在光路调整单元31中形成中间像,通过二次成像的方式,提升像质。满足以上条件时,光路调整单元31可以等效成一块厚玻璃加入系统优化。
当光路调整单元31为棱镜时,下面以全反射次数为一次举例说明光路调整单元31的工作原理,如图2所示,第一光线4为本申请的光线路径,第二光线5为增补两个相同的光路调整单元31后的光线路径,其中,新增两个光路调整单元31的大小和形状与原有的光路调整单元31的大小和形状相同,第二光线5为第一光线4展开后的效果。其中,第一光线4为与光学系统100光轴重合的光线的路径,第一光线4可以垂直于进光面313射入光路调整单元31,垂直于第一面312射出光路调整单元31。
也就是说,第一光线4在进入光路调整单元31后形成三段折线光路,分别为L1、L2、L3。其中,L1为进光面311到第一面312的光路长度,L2为第一面312到第二面313的光路长度,L3为第二面313到第一面312的光路长度。
第二光线5为一条直线光路,第二光线5可以依次进过第一棱镜1、第二棱镜2和第三棱镜3,第二光线5的总长度为L,其中L=L1+L2+L3。也就是说,通过在光源10的出光面与波导20的入光面之间设置光路调整单元31,可以实现光路折叠,从而减小光线传输的空间,最终实现光学系统 100占用体积的减小。
此外,由于光线在第一面312反射了一次,光线在第二面313反射了一次,因此,通过几何分析可以得出,第一面312与进光面311形成夹角的角度是第一面312与第二面313形成夹角的角度的两倍。
根据本申请的一个实施例,进光面311和第一面312分别镀有增透膜。也就是说,光路调整单元31的进光面311可以设置增透膜,光路调整单元31的第一面312也可以设置增透膜。其中,增透膜也就是减反射膜,它的主要功能是减少或消除透镜、棱镜、平面镜等光学表面的反射光,从而增加这些元件的透光量,减少或消除系统的杂散光。
可选地,增透膜的面积可以分别与进光面311和第一面312的表面积相同,也就是说,增透膜可以完全覆盖进光面311和第一面312的表面。
通过利用增透膜自身的原理,在进光面311镀设增透膜可以使得光线更好地穿透,尽可能使得光线全部经过进光面311进入光路调整单元31内。此外,通过在第一面312镀设增透膜,从而可以使得经过第二面313反射的光线尽可能的经过第一面312射出光路调整单元31。
总而言之,根据本申请实施例的光学系统100,通过将光源10的出光面与波导20的入光面设置为彼此不平行的结构,从而可以减小光学系统100的体积。此外,在光源10的出光面与波导20的入光面之间设置光路调整单元31,从而起到折叠光路的效果,使得光线传播路径的占用空间得到有效地减少,最终实现光学系统100的整体体积的减小。
根据本申请实施例的可穿戴设备,包括根据上述实施例的光学系统100,由于根据本申请上述实施例的光学系统100具有上述技术效果,因此,根据本申请实施例的可穿戴设备也具有相应的技术效果,即实现了折叠光路的效果,使得光线传播路径的占用空间得到有效地减少,实现光学系统100的整体体积的减小,最终实现可穿戴设备的外形更小巧轻便,给用户带来更好的体验效果。
其中,可穿戴设备可以是AR眼镜,波导20可以是AR眼镜的镜片, 光源10可以是设于AR眼镜的一个镜腿上的投影设备,反射单元则可以设于眼镜中部靠近鼻梁的位置,光源10发出的光线从一个镜片靠近该光源10的一端,向该镜片靠近鼻梁的另一端传输,经过反射单元反射后,光线返回镜片,并且从镜片上的光线导出位置导出到人眼,人眼即可观看到光源10发出的虚像。
根据本发明实施例的可穿戴设备的其他构成例如投影设备和波导的装配结构等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种光学系统,包括:
    光源;
    波导,所述光源的出光面朝向所述波导的入光面,所述光源的出光面与所述波导的入光面不平行;
    镜头模组,所述镜头模组设置于所述光源与所述波导之间,所述光源的出光面朝向所述镜头模组的入光面,所述镜头模组的出光面朝向所述波导的入光面,所述镜头模组包括光路调整单元;
    其中,所述镜头模组用于对所述光源发出的光线进行准直,所述光路调整单元用于调整所述光线的传输角度,以使所述光线传入所述波导;所述光线在所述光路调整单元中经过至少一次全反射之后从所述镜头模组传出,并进入所述波导。
  2. 根据权利要求1所述的光学系统,其中,所述光路调整单元具有进光面、第一面和第二面,所述进光面朝向所述光源的出光面,所述第一面朝向所述波导的入光面,所述第二面与所述第一面相对,所述光线经过所述进光面进入所述光路调整单元,并传输至所述第一面发生全反射,所述光线在所述第一面与所述第二面之间进行至少一次反射,在所述光线传输至所述第一面的入射角小于所述第一面的全反射角的情况下,所述光线从所述光路调整单元射出。
  3. 根据权利要求2所述的光学系统,其中,所述第二面镀有反射膜,以将传输至所述第二面的光线反射至所述第一面。
  4. 根据权利要求2所述的光学系统,其中,所述第一面与所述波导的入光面平行。
  5. 根据权利要求2所述的光学系统,其中,镜头模组还包括:第一准直单元,所述第一准直单元设于所述光源的出光面与所述进光面之间以准直从所述光源进入所述光路调整单元的光线,或者第一准直单元设于所述第一面 与所述波导的入光面之间以准直从所述光路调整单元进入所述波导的光线。
  6. 根据权利要求5所述的光学系统,其中,镜头模组还包括:
    第二准直单元,所述光路调整单元设于所述第一准直单元与所述第二准直单元之间,所述第二准直单元用以准直从所述光源进入所述光路调整单元的光线或者用以准直从所述光路调整单元进入所述波导的光线。
  7. 根据权利要求4所述的光学系统,其中,所述光线经过所述光路调整单元后垂直于所述第一面射出。
  8. 根据权利要求2所述的光学系统,其中,所述光源发出的光线垂直于所述进光面射入所述光路调整单元。
  9. 根据权利要求2所述的光学系统,其中,所述光路调整单元为三角棱镜,所述进光面与所述第一面形成的夹角为α,所述第一面与所述第二面形成的夹角为β,其中α=Nβ,N为大于等于1的整数。
  10. 一种可穿戴设备,包括权利要求1-9中任一项所述的光学系统。
PCT/CN2022/116993 2021-09-06 2022-09-05 光学系统和可穿戴设备 WO2023030516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111040765.4A CN113625453A (zh) 2021-09-06 2021-09-06 光学系统和可穿戴设备
CN202111040765.4 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023030516A1 true WO2023030516A1 (zh) 2023-03-09

Family

ID=78389410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116993 WO2023030516A1 (zh) 2021-09-06 2022-09-05 光学系统和可穿戴设备

Country Status (2)

Country Link
CN (1) CN113625453A (zh)
WO (1) WO2023030516A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625453A (zh) * 2021-09-06 2021-11-09 维沃移动通信有限公司 光学系统和可穿戴设备
CN115166908B (zh) * 2022-07-22 2023-10-10 光信(徐州)电子科技有限公司 一种密集波分复用器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774661A (zh) * 2004-03-29 2006-05-17 索尼株式会社 光学装置以及虚像显示装置
JP2009031708A (ja) * 2007-06-26 2009-02-12 Nikon Corp コンバイナ光学系、装着型ディスプレイ装置、および眼鏡
CN104536139A (zh) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 一种棱镜耦合的楔形平面波导光学器件
CN107703632A (zh) * 2017-10-23 2018-02-16 南京理湃光电技术有限公司 棱镜耦合的光折叠波导显示器件
CN108732767A (zh) * 2018-08-29 2018-11-02 深圳珑璟光电技术有限公司 一种紧凑型自由曲面波导近眼显示光学装置
CN109445096A (zh) * 2018-11-06 2019-03-08 天津大学 一种全彩倾斜波导投影显示系统
US20190187472A1 (en) * 2017-12-18 2019-06-20 Samsung Electronics Co., Ltd. Optical system and wearable display apparatus having the same
CN113625453A (zh) * 2021-09-06 2021-11-09 维沃移动通信有限公司 光学系统和可穿戴设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774661A (zh) * 2004-03-29 2006-05-17 索尼株式会社 光学装置以及虚像显示装置
JP2009031708A (ja) * 2007-06-26 2009-02-12 Nikon Corp コンバイナ光学系、装着型ディスプレイ装置、および眼鏡
CN104536139A (zh) * 2015-01-25 2015-04-22 上海理湃光晶技术有限公司 一种棱镜耦合的楔形平面波导光学器件
CN107703632A (zh) * 2017-10-23 2018-02-16 南京理湃光电技术有限公司 棱镜耦合的光折叠波导显示器件
US20190187472A1 (en) * 2017-12-18 2019-06-20 Samsung Electronics Co., Ltd. Optical system and wearable display apparatus having the same
CN108732767A (zh) * 2018-08-29 2018-11-02 深圳珑璟光电技术有限公司 一种紧凑型自由曲面波导近眼显示光学装置
CN109445096A (zh) * 2018-11-06 2019-03-08 天津大学 一种全彩倾斜波导投影显示系统
CN113625453A (zh) * 2021-09-06 2021-11-09 维沃移动通信有限公司 光学系统和可穿戴设备

Also Published As

Publication number Publication date
CN113625453A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023030516A1 (zh) 光学系统和可穿戴设备
WO2019154430A1 (zh) 穿戴式ar系统、ar显示设备及其投射源模组
US6542307B2 (en) Compact near-eye illumination system
WO2022105687A1 (zh) 光学系统和可穿戴设备
WO2021179786A1 (zh) Ar光学系统和ar显示设备
CN107065181B (zh) 虚拟现实设备的光学系统
CN107065189B (zh) 一种光学模组及增强现实眼镜
US11754838B2 (en) Near-eye optical system
CN104597565A (zh) 增强现实的齿形镶嵌平面波导光学器件
WO2022193880A1 (zh) 近眼显示光学系统、滤光件及近眼显示设备
CN110646942A (zh) 一种超薄光学放大模组及其应用
WO2023273991A1 (zh) 光学系统和可穿戴设备
CN109844614B (zh) 显示装置
WO2023137959A1 (zh) 一种光学显示装置
CN107678165A (zh) 增强现实的显示装置及智能眼镜
TWM591624U (zh) 短距離之光學系統
TWM614817U (zh) 微型化頭戴顯示器之光學系統
TW202134734A (zh) 微型頭戴顯示器之光學系統
WO2023071032A1 (zh) 一种短焦折叠光学系统以及虚拟现实显示设备
WO2022218228A1 (zh) 光学系统和可穿戴设备
US20220276489A1 (en) Optical system and mixed reality device
US7350925B2 (en) Total internal reflection Fresnel lens and optical system using the same
TWI711838B (zh) 短距離之光學系統
CN215932268U (zh) 近眼显示光机及其设备
CN219936206U (zh) 一种阵列波导系统及近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE