WO2023273991A1 - 光学系统和可穿戴设备 - Google Patents

光学系统和可穿戴设备 Download PDF

Info

Publication number
WO2023273991A1
WO2023273991A1 PCT/CN2022/100484 CN2022100484W WO2023273991A1 WO 2023273991 A1 WO2023273991 A1 WO 2023273991A1 CN 2022100484 W CN2022100484 W CN 2022100484W WO 2023273991 A1 WO2023273991 A1 WO 2023273991A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
light
unit
reflective
path adjustment
Prior art date
Application number
PCT/CN2022/100484
Other languages
English (en)
French (fr)
Inventor
汤伟平
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023273991A1 publication Critical patent/WO2023273991A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide

Definitions

  • the present application belongs to the optical technology field of augmented reality glasses, and in particular relates to an optical system and a wearable device having the optical system.
  • the light emitted by the light source is introduced from one end of the waveguide through the collimating lens, exported from the other end of the waveguide, and finally enters the human eye to present the picture.
  • the projection module composed of the screen and the collimating lens is large in size, and the image quality (color, fringe) of the folded optical path is poor.
  • the present application aims to provide an optical system and a wearable device, which at least solve one of the problems in the background technology.
  • the embodiment of the present application proposes an optical system, including: a light source; a collimation unit, the collimation unit is arranged on the transmission path of the light emitted by the light source; a first waveguide, the first A first light guide part is provided in the waveguide, the first waveguide has a target exit surface, and the light guide surface of the first light guide part faces the light exit surface of the light source; a reflection unit, the reflection unit has a reflection surface, The reflective surface faces the target exit surface; a second waveguide, the second waveguide is arranged on the first side of the first waveguide, and a second light guide part is arranged in the second waveguide; an optical path adjustment unit, The optical path adjustment unit is arranged at the end of the second waveguide away from the collimation unit, and the optical path adjustment unit guides the light emitted from the reflective surface into the second waveguide; wherein, the light emitted by the light source passes through After the collimation unit is collimated, it is transmitted into the first waveguide, and
  • the embodiments of the present application provide a wearable device, including the optical system described in any of the foregoing embodiments.
  • the second waveguide is arranged on the first side of the first waveguide
  • the optical path adjustment unit is arranged on the end of the second waveguide away from the collimation unit, so that the light can be guided from the first waveguide, and then After being reflected by the reflection unit, it is finally guided into the second waveguide through the optical path adjustment unit, which can not only improve the image quality, but also improve the transmission efficiency of light and reduce the loss of light.
  • FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical system according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of an optical system according to yet another embodiment of the present application.
  • FIG. 4 is a schematic diagram of an optical system according to yet another embodiment of the present application.
  • Fig. 5 is a schematic diagram of an optical system according to yet another embodiment of the present application.
  • optical system 100
  • reflection unit 40 reflection surface 41;
  • Optical path adjustment unit 60 semi-transparent and semi-reflective film 61; reflective polarizer 62;
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • An optical system 100 according to an embodiment of the present application is described below with reference to FIGS. 1 to 5 .
  • an optical system 100 includes: a light source 10 , a collimation unit 20 , a first waveguide 30 , a reflection unit 40 , a second waveguide 50 and an optical path adjustment unit 60 .
  • the collimation unit 20 is arranged on the transmission path of the light emitted by the light source 10, and the first light guide part 31 is arranged in the first waveguide 30, the first waveguide 30 has a target exit surface, and the first light guide part 31
  • the light guiding surface faces the light emitting surface of the light source 10
  • the reflecting unit 40 has a reflecting surface 41
  • the reflecting surface faces the target emitting surface
  • the second waveguide 50 is arranged on the first side of the first waveguide 30, and the second waveguide 50 is provided with a second guiding surface.
  • the optical part 51 and the optical path adjusting unit 60 are disposed at an end of the second waveguide 50 away from the collimation unit 20 , and the optical path adjusting unit 60 guides the light emitted from the reflecting surface 41 into the second waveguide 50 .
  • the light emitted by the light source 10 is collimated by the collimating unit 20, then transmitted to the first waveguide 30, and emitted from the target exit surface after being reflected by the light guide surface, and the reflection surface 41 reflects the light emitted from the target exit surface to
  • the optical path adjustment unit 60 guides the light reflected by the reflective surface 41 into the second waveguide 50
  • the second light guide part 51 guides the light guided by the optical path adjustment unit 60 into the second waveguide 50 .
  • the optical system 100 is mainly composed of a light source 10 that can emit imaging light, a collimation unit 20 that collimates the light emitted by the light source 10, and a first waveguide that transmits the collimated light. 30.
  • a reflection unit 40 capable of reflecting light from the first waveguide 30, an optical path adjustment unit 60 capable of guiding the reflected light into the second waveguide 50, and a second waveguide 50 capable of leading out the light.
  • the light source 10 may be a projection device capable of projection, and the light emitted by the light source 10 is the light actually emitted by the projection device. When the light source 10 is not polarized light, a polarizer can be added as required.
  • the collimation unit 20 is disposed on the transmission path of the light emitted by the light source 10 , and the collimation unit 20 can collimate and adjust the light from the light source 10 .
  • the light collimated by the collimation unit 20 can enter the first waveguide 30 from the end of the first waveguide 30 close to the collimation unit 20 .
  • a first light guide part 31 is disposed inside the first waveguide 30 , and the first light guide part 31 may be located at an end of the first waveguide 30 close to the collimation unit 20 .
  • the first light guide part 31 has a light guide surface, and the light guide surface can be disposed opposite to the light emitting surface of the light source 10 . After the light from the light source 10 is collimated by the collimating unit 20, the light can enter the first waveguide 30 from the end of the first waveguide 30 close to the collimating unit 20, and reach the light guiding surface of the first light guiding part 31, and then the light can pass through After being reflected or refracted by the light guiding surface, the transmission continues in the first waveguide 30 .
  • the first waveguide 30 also has a target exit surface, which can be set at the end of the first waveguide 30 away from the collimation unit 20 , wherein the light transmitted in the first waveguide 30 can exit the first waveguide 30 through the target exit surface.
  • the reflection unit 40 can be arranged at the end of the first waveguide 30 away from the collimation unit 20, and the reflection unit 40 has a reflection surface 41, and the reflection surface 41 can reflect the light emitted from the target exit surface to the optical path adjustment unit 60.
  • the optical path adjustment unit 60 may be disposed at an end of the second waveguide 50 away from the collimation unit 20 , and the optical path adjustment unit 60 can guide the light reflected by the reflective surface 41 into the second waveguide 50 . It should be noted that the second waveguide 50 is disposed on the first side of the first waveguide 30 .
  • a second light guide part 51 is disposed inside the second waveguide 50 , and the second light guide part 51 can lead the light guided by the optical path adjustment unit 60 out of the second waveguide 50 , so that the light can enter the human eye 200 .
  • the extension direction of the first waveguide 30 can be defined as extending left and right, and the assembly direction of the light source 10 , collimator unit 20 and first waveguide 30 can be defined as assembly along the up and down direction.
  • the left end of the first waveguide 30 may be an end close to the collimation unit 20
  • the right end of the first waveguide 30 may be an end far away from the collimation unit 20
  • the first light guide part 31 can be arranged in the inside of the first waveguide 30 and the position on the left side (the first light guide part 31 here is the light introduction part, which can be geometric introduction or grating introduction, which is not described here. defined), the target exit surface can be set on the right end surface of the first waveguide 30 .
  • the light guiding surface of the first light guiding part 31 can be arranged opposite to the light emitting surface of the light source 10.
  • the first light guide part 31 may be located directly below the light source 10 and the area of the light guide surface of the first light guide part 31 may be larger than the area of the light output surface.
  • the light emitted by the light source 10 can be adjusted by the collimation unit 20 and then enter the interior of the first waveguide 30 from the left end of the first waveguide 30 , so that the light can be transmitted to the light guiding surface of the first light guiding part 31 . Under the action of refraction or reflection of the light guide surface, the light can continue to be transmitted inside the first waveguide 30 along the extension direction of the first waveguide 30 until the light can reach the target exit surface of the first waveguide 30 .
  • the second waveguide 50 may be disposed above the first waveguide 30 , and the left end of the second waveguide 50 may be disposed adjacent to the left end of the first waveguide 30 .
  • the extending direction of the first waveguide 30 and the extending direction of the second waveguide 50 may be arranged parallel to each other.
  • the optical path adjustment unit 60 may be disposed at the right end of the second waveguide 50 .
  • the optical path adjustment unit 60 may be located above the reflection unit 40 .
  • the human eye 200 may be located above the second waveguide 50 and may be opposite to the second light guide part 51 .
  • the light source 10 is located above the collimation unit 20, after the light emitted by the light source 10 passes through the collimation unit 20, the light can be transmitted from the left end of the first waveguide 30 to the right end of the first waveguide 30, and then when the light reaches the first waveguide 30
  • the first waveguide 30 can be emitted from the target exit surface at the right end.
  • the light emitted from the target exit surface can reach the reflective unit 40 , and the reflective surface 41 of the reflective unit 40 can reflect the light emitted from the target exit surface to the optical path adjustment unit 60 .
  • the optical path adjustment unit 60 can guide the light reflected by the reflective surface 41 into the right end of the second waveguide 50.
  • the light is guided out of the second waveguide 50 and reaches the human eye 200 , and the human eye 200 can watch the light guided out through the second light guiding part 51 .
  • the optical system 100 of the embodiment of the present application by disposing the second waveguide 50 on the first side of the first waveguide 30, and disposing the optical path adjustment unit 60 on the end of the second waveguide 50 away from the collimation unit 20 , so that the light can be introduced from the first waveguide 30, then reflected by the reflection unit 40, and finally introduced into the second waveguide 50 through the optical path adjustment unit 60, which can not only improve the image quality, but also under the condition that the light emitted by the light source 10 is polarized light , It can also improve the transmission efficiency of light and reduce the loss of light.
  • the reflective unit 40 is disposed at an end of the first waveguide 30 away from the collimation unit 20 , and the optical axis of the optical system 100 is perpendicular to the cut plane of the reflective unit 40 ,
  • the cut surface is the cut surface of the contact point between the light and the reflective unit when the light is transmitted to the reflective unit. That is to say, when the end of the first waveguide 30 away from the collimation unit is the right end, the reflection unit 40 can be located at the right end of the first waveguide 30, and the reflection unit 40 can be arranged opposite to the target exit surface of the first waveguide 30 .
  • the optical axis of the optical system 100 can be set perpendicular to the tangent plane of the reflection unit, where it should be noted that the tangent plane here refers to the plane passing through the contact point of the light and the reflection unit.
  • the optical system 100 can be perpendicular to the tangent plane of the reflection unit, the optical system can be in a coaxial state at this time, so that better image quality can be formed without blurred images.
  • the reflecting unit 40 By disposing the reflecting unit 40 at the end of the first waveguide 30 away from the collimating unit, the light reflected by the reflecting surface 41 can better reach the optical path adjustment unit 60 , thereby facilitating the adjustment of the light by the optical path adjustment unit 60 .
  • the optical axis of the optical system 100 perpendicular to the cut surface of the reflection unit 40, the light emitted from the target exit surface can better fall into the reflection surface 41, ensuring that the reflection surface 41 can reflect the light to the optical path adjustment unit 60, which can better reduce the loss of light.
  • the optical path adjustment unit 60 is a semi-transparent and semi-reflective film 61, and the semi-transparent and semi-reflective film 61 is arranged at the end of the first waveguide 30 away from the collimation unit 20 and the second waveguide 30. Between the ends of the two waveguides 50 away from the collimation unit 20 .
  • the optical path adjustment unit 60 may be a semi-transparent and semi-reflective film 61 .
  • the end of the first waveguide 30 away from the collimation unit 20 is the right end
  • the end of the second waveguide 50 away from the collimation unit 20 is also the right end
  • the semi-transparent and semi-reflective film 61 can be positioned at the right end of the first waveguide 30 and the second between the right ends of the waveguide 50.
  • the propagation path of the light may be: the light emitted by the light source 10 reaches the left end of the first waveguide 30 after being collimated by the collimating unit 20 . The light continues to transmit to the right end of the first waveguide 30 after being reflected or refracted by the first light guide part 31 .
  • the light reflected by the reflective surface 41 can pass through the semi-transparent film 61, wherein a part of the light passes through the semi-transparent film 61 and enters the second waveguide 50, and the rest of the light passes through the semi-transparent film 61 and reaches the reflection unit 40 , and then projected through the transflective film 61 to the second waveguide 50 after being reflected by the reflective surface 41 , and then irradiated to the human eye 200 through the second light guide portion 51 .
  • the optical system 100 can be placed under the coaxial condition, which can effectively avoid unclear image quality and even image distortion.
  • the light emitted by the light source 10 is linearly polarized light.
  • the light emitted by LCD Liquid Crystal Display, liquid crystal display.
  • the transmission efficiency of the light can be improved.
  • a polarizer is provided between the light source 10 and the light guide surface. That is to say, when the light emitted by the light source 10 is natural light, a polarizer can be arranged between the light guide surface and the light source 10, so that the light emitted by the light source 10 becomes polarized light and enters the first waveguide 30 after passing through the polarizer. Thereby improving the transmission efficiency of light.
  • the optical path adjustment unit 60 includes: a reflective polarizer 62 and a first glass plate 63, and the reflective polarizer is arranged on the side of the first waveguide 30 away from the collimation unit 20 Between one end and an end of the second waveguide 50 away from the collimating unit 20 , the first glass slide 63 is disposed between the target exit surface and the reflecting unit 40 . It should be noted that, under the condition that the optical system 100 in this embodiment is coaxial, a relatively ideal effect can also be achieved, and the specific reason will not be repeated here.
  • the reflective polarizer 62 can be located at the end of the first waveguide 30 away from the collimation unit 20 and the end of the second waveguide 50. between one end of the collimation unit 20 .
  • the reflective polarizer 62 can be positioned between the first waveguide 30 and the second waveguide. 50 , and the reflective polarizer 62 may be located above the first waveguide 30 and the reflective unit 40 at the same time.
  • the cross section of the reflective polarizer 62 may be strip-shaped.
  • the first glass plate 63 can be arranged between the target exit surface and the reflection unit 40, for example, the first glass plate 63 can be a quarter glass plate, at this time, the light emitted by the light source 10 can be linearly polarized light, or It may be natural light. When the light emitted by the light source is natural light, a polarizer needs to be added between the light source 10 and the light guide surface.
  • the glass slide is an optical device that can generate an additional optical path difference (or phase difference) between two mutually perpendicular light vibrations. Slides are usually fabricated from birefringent wafers such as quartz, calcite, or mica of precise thickness with the optical axis parallel to the wafer surface.
  • the glass that can make o light and e light produce ⁇ /4 additional optical path difference is called a quarter glass; the glass that can make o light and e light produce ⁇ /2 additional optical path difference
  • the slices are called half slides.
  • the glass with adjustable optical path difference is called compensator.
  • linearly polarized light is still linearly polarized light (but the phase has changed) after passing through 1/2 glass slide.
  • the linearly polarized light passes through 1/4 of the glass slide (when the vibration direction of the linearly polarized light is at an angle of 45 degrees to the crystal axis), circularly polarized light emerges, and in general, elliptically polarized light emerges.
  • Circularly polarized light becomes linearly polarized light after passing through 1/4 of the glass slide, and there will be extinction phenomenon when observed with a polarizer.
  • a polarizer When natural light passes through 1/4 of the glass slide, an infinite number of various elliptically polarized lights without a fixed phase relationship will be formed. After the combination, it is still natural light, and the light intensity does not change when observed with a polarizer.
  • the propagation path of light may be: the light emitted by the light source 10 reaches the left end of the first waveguide 30 after being collimated by the collimating unit 20 . After being reflected or refracted by the first light guide part 31 , the light continues to transmit to the right end of the first waveguide 30 .
  • the reflective polarizer 62 can screen the light, the light reflected by the reflective surface 41 passes through the first glass plate 63 again and the linearly polarized light can reach the second waveguide 50 through the reflective polarizer 62, and then the light can pass through the second waveguide 50.
  • the light guide part 51 guides the second waveguide 50 to the human eye 200 to form a better image quality.
  • the optical path adjustment unit 60 includes: a reflective polarizer 62, a second glass plate 64 and a third glass plate 65, and the reflective polarizer 62 is arranged on the first waveguide Between the end of the second waveguide 30 away from the collimation unit 20 and the end of the second waveguide 50 away from the collimation unit 20, the second glass slide 64 is arranged between the end of the first waveguide 30 close to the collimation unit 20 and the collimation unit 20 between. After being collimated by the collimating unit 20 , the light passes through the second glass slide 64 and enters the first waveguide 30 .
  • the third glass plate 65 is arranged between the end of the first waveguide 30 away from the collimation unit 20 and the reflective polarizer 62, the light derived from the first light guide part 31 passes through the third glass plate 65 and is transmitted to the reflective polarizer.
  • the polarizer 62 passes through the third glass plate 65 and is transmitted to the reflective surface 41 after being reflected by the reflective polarizer 62, and then passes through the third glass plate 65 again after being reflected by the reflective surface 41, and passes through the reflective polarizer 62 into the second waveguide 50 .
  • the optical path adjustment unit 60 can also be composed of a reflective polarizer 62 , a second glass slide 64 and a third glass slide 65 .
  • the reflective polarizer 62 can be arranged on the right end of the first waveguide 30 and the second waveguide 30.
  • the position between the right ends of the two waveguides 50 , and the third glass plate 65 may be disposed between the right end of the first waveguide 30 and the reflective polarizer 62 .
  • the reflective polarizer 62 and the third glass plate 65 may be located between the first waveguide 30 and the second waveguide 50 at the same time, and the reflective polarizer 62 may be located on the upper side of the third glass plate 65 .
  • the second glass slide 64 can be disposed at the left end of the first waveguide 30 and between the first waveguide 30 and the collimation unit 20 .
  • both the second glass slide 64 and the third glass slide 65 can be quarter slides, at this time, the light emitted by the light source 10 can still be linearly polarized light or natural light, when the light emitted by the light source is natural light, Then a polarizer needs to be added between the light source 10 and the second glass 64 .
  • the propagation path of the light can be as follows: the light emitted by the light source 10 can pass through the The second glass slide 64 enters the left end of the first waveguide 30, and at this moment, the light changes from linearly polarized light to circularly polarized light, and then the circularly polarized light can continue to the first waveguide 30 after being reflected or refracted by the first light guiding part 31. The right end transmits until it reaches the exit face of the target.
  • the point where the light falls into the reflective surface 41 can be defined as point D, if the light before the light reaches point D is the first circularly polarized light, the first circularly polarized light When passing through the third glass plate 65, the first circularly polarized light will become the first linearly polarized light.
  • the reflection axis direction of the reflective polarizer 62 when the reflection axis direction of the reflective polarizer 62 is suitable, it can reflect this first linearly polarized light;
  • the linearly polarized light can pass through the third glass plate 65 for the second time, and now the first linearly polarized light becomes the second circularly polarized light, and can reach point D;
  • the second circularly polarized light becomes the second linearly polarized light at this time, and the polarization directions of the second linearly polarized light and the first linearly polarized light are rotated by 90 degrees, so that the second linearly polarized light can just pass through A reflective polarizer 62 enters the second waveguide 50 .
  • the reflective polarizer 62 and the third glass plate 65 between the first waveguide 30 and the second waveguide 50 can be selected with appropriate lengths, and the expansion can pass through the reflective polarizer 62 and the third glass plate 65 amount of light.
  • the transmission efficiency of light can be improved and waste of light can be avoided, thereby ensuring clear image quality, color and lines.
  • the light emitted by the light source 10 is circularly polarized light
  • the optical path adjustment unit 60 includes: a reflective polarizer 62 and a fourth glass plate 66 .
  • the reflective polarizing plate is arranged between the end of the first waveguide 30 away from the collimation unit and the end of the second waveguide 50 away from the collimation unit, and the fourth glass plate 66 is arranged at the end of the first waveguide 30 away from the collimation unit.
  • the light guided by the first light guide part 31 passes through the fourth glass plate 66 and is transmitted to the reflective polarizer 62, and then passes through the fourth reflective polarizer after being reflected by the reflective polarizer 62.
  • the glass slide 66 is transmitted to the reflective surface 41 , and after being reflected by the reflective surface 41 , passes through the fourth glass slide 66 again, and enters the second waveguide 50 through the reflective polarizer 62 .
  • the target exit surface is staggered in the direction where the end of the second waveguide 50 away from the collimation unit 20 faces the direction of the end of the first waveguide 30 close to the collimation unit 20 , and the reflection The unit 40 is disposed between the target exit surface and an end surface of the second waveguide 50 away from the collimation unit 20 . That is to say, when the end of the first waveguide 30 close to the collimation unit 20 is the left end, and when the end of the first waveguide 30 away from the collimation unit 20 is the right end, the end of the second waveguide 50 far away from the collimation unit 20 is also the right end.
  • the right end of the first waveguide 30 may be located on the left side of the right end surface of the second waveguide 50 when the right end surface of the second waveguide 50 is used as a reference.
  • the right end of the second waveguide 50 extends a distance further to the right than the right end of the first waveguide 30 , and the right end of the second waveguide 50 protrudes a certain distance from the right end of the first waveguide 30 .
  • the reflective unit 40 may be located below the right end of the second waveguide 50 , and the left side of the reflective unit 40 may be disposed opposite to the target exit surface.
  • the optical path adjusting unit 60 can use a large amount of light reflected by the reflecting unit 40 .
  • the overall structure is more compact and facilitates the transmission of light, so that more light is guided into the second waveguide 50 through the optical path adjustment unit 60 .
  • the optical path adjustment unit 60 is a cylindrical mirror, and the reflection surface 41 of the optical path adjustment unit 60 is opposite to the end surface of the second waveguide 50 away from the collimation unit 20 , And the reflective surface 41 of the optical path adjustment unit 60 is arranged opposite to the reflective surface 41 of the reflective unit 40, the optical axis of the optical system 100 and the cut plane of the reflective unit 40 have a preset angle, the preset angle is 0°-90°, and the cut plane is light When transmitted to the reflection unit 40 , the tangent plane of the contact point between the light and the reflection unit 40 .
  • the optical system 100 can be placed under off-axis conditions to achieve a more ideal effect, so the optical axis of the optical system 100 and the tangent plane of the reflection unit 40 can be set at a preset angle,
  • the preset angle is 0°-90°, excluding the right end point value.
  • the tangent plane here also refers to the surface that passes through the contact point between the light and the reflective unit when the light irradiates the reflective unit.
  • the optical path adjustment unit 60 when the optical path adjustment unit 60 is a cylindrical reflector, the optical path adjustment unit 60 can be arranged at an end of the second waveguide 50 away from the collimation unit 20, and the reflection surface of the optical path adjustment unit 60 can be connected with the reflection unit 40.
  • the reflective surface 41 is oppositely arranged.
  • the transmission path of the light can be as follows: First, the light source 10 can be located above the collimation unit 20, and the light emitted by the light source 10 passes through the collimation unit 20 after being collimated, the light can be transmitted from the left end of the first waveguide 30 to the right end of the first waveguide 30, and when the light reaches the right end of the first waveguide 30, it can be emitted from the target exit surface. Then, the light emitted from the target emission surface can reach the reflection unit 40 , and the reflection surface 41 of the reflection unit 40 can reflect the light emitted from the target emission surface to the optical path adjustment unit 60 .
  • the light reaches the reflective surface of the optical path adjustment unit 60, and the light emitted from the reflective surface 41 can be transmitted to the second waveguide 50 after being reflected by the reflective surface of the optical path adjustment unit 60. After reaching the second waveguide 50, the light can pass through the second waveguide 50. The light part 51 leads out to the second waveguide 50 to reach the human eye 200 .
  • the optical path adjustment unit 60 As a cylindrical reflector opposite to the reflection unit 40, the complementary characteristics of the optical path adjustment unit 60 and the reflection unit 40 can be used to guide the light from the reflection unit 40 into the second waveguide 50, making up for the Disadvantages of image display caused by off-axis.
  • the target exit surface is flush with the end surface of the second waveguide 50 away from the collimation unit 20 , and the optical path adjustment unit 60 and the reflection unit 40 are arranged symmetrically. That is to say, when the optical path adjustment unit 60 is a cylindrical mirror arranged opposite to the reflection unit 40, in order to make the light reflected from the reflection surface 41 more comprehensively adjusted, the distance between the target exit surface and the second waveguide 50 One end face of the collimation unit 20 is flush with each other, and the optical path adjustment unit 60 and the reflective unit 40 are arranged symmetrically, so that more light reflected by the reflective surface 41 can be reflected to the reflective surface of the optical path adjustment unit 60 .
  • the right end of the first waveguide 30 can be at the same level as the right end of the second waveguide 50, and the right end of the second waveguide 50 can be located at the right end of the first waveguide 30 directly above the .
  • the size of the optical path adjusting unit 60 may be the same as that of the reflecting unit 40 , which is not limited here.
  • the shape of the optical path adjusting unit 60 may also be the same as that of the reflecting unit 40 , which is not limited here.
  • the optical path adjustment unit 60 and the reflection unit 40 can be arranged symmetrically, and the reflective surface of the optical path adjustment unit 60 and the reflective surface 41 of the reflective unit 40 can be arranged relatively.
  • the outer surfaces of the first waveguide 30 and the second waveguide 50 in the respective thickness directions are provided with opaque layers.
  • an opaque layer can be provided on the outer surfaces of the first waveguide 30 and the second waveguide 50 in the thickness direction, for example, the first waveguide 30 and the surrounding edges of the second waveguide 50 are painted black, and the specific material of the opaque layer is not limited here.
  • the optical system 100 of the embodiment of the present application by setting the first waveguide 30 as the lead-in waveguide, setting the second waveguide 50 as the lead-out waveguide, setting the second waveguide 50 on the first side of the first waveguide 30, and
  • the optical path adjustment unit 60 is arranged at the end of the second waveguide 50 away from the collimation unit 20, so that after the light is exported from the first waveguide 30, it can first pass through the reflection unit 40 and then pass through the optical path adjustment unit 60, and finally guide into the second waveguide 50 Then, it enters the human eye 200 from the second waveguide 50 .
  • the optical system 100 according to this embodiment can not only optimize the image quality of optical imaging, but also improve the efficiency of light and avoid energy loss of a large amount of light in the process of turning back.
  • the wearable device according to the embodiment of the present application includes the optical system 100 according to the above-mentioned embodiment. Since the optical system 100 according to the above-mentioned embodiment of the present application has the above-mentioned technical effects, the wearable device according to the embodiment of the present application also has the corresponding The technical effect is that the overall structure is more compact, and the color and lines of the image quality are clearer, so that the viewing experience of the human eye can be improved.
  • the wearable device may be AR glasses
  • the waveguide 30 may be a lens of the AR glasses
  • the light source 10 may be a projection device arranged on a temple of the AR glasses
  • the reflection unit 40 may be arranged in the middle of the glasses near the bridge of the nose.
  • the light emitted by the light source 10 is transmitted from one end of a lens close to the light source 10 to the other end of the lens close to the bridge of the nose, after being reflected by the reflection unit 40, the light returns to the lens, and is exported to the human eye 200 from the light leading position on the lens,
  • the virtual image emitted by the light source 10 can be seen by human eyes 200 .
  • references to the terms “one embodiment,” “some embodiments,” “exemplary embodiments,” “example,” “specific examples,” or “some examples” are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present application.
  • schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光学系统(100)和可穿戴设备,光学系统(100)包括:光源(10);准直单元(20);第一波导(30),第一波导(30)内设有第一导光部(31),第一波导(30)具有目标出射面,第一导光部(31)的导光面朝向光源(10)的出光面;反射单元(40),反射单元(40)具有反射面(41),反射面(41)朝向目标出射面;第二波导(50),第二波导(50)设于第一波导(30)的第一侧;光路调整单元(60),光路调整单元(60)设于第二波导(50)远离准直单元(20)的一端,光路调整单元(60)将反射面(41)射出的光线导入第二波导(50);其中,光源(10)发出的光线经过准直单元(20)准直后,传输至第一波导(30)中,并经过导光面反射后从目标出射面射出,反射面(41)将从目标出射面射出的光线反射至光路调整单元(60),光路调整单元(60)将反射面(41)反射的光线导入第二波导(50),第二导光部将光路调整单元(60)导入的光线导出第二波导(50)。

Description

光学系统和可穿戴设备
相关申请的交叉引用
本申请要求于2021年06月28日提交的申请号为2021107306520,发明名称为“光学系统和可穿戴设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于增强现实眼镜光学技术领域,具体涉及一种光学系统和具有该光学系统的可穿戴设备。
背景技术
在AR技术领域中,光源发射的光线经过准直镜头从波导的一端导入,并从波导的另一端导出,最终进入人眼呈现画面。
但是,在目前现有的相关技术中,屏幕和准直镜头组成的投影模组体积较大,且折回式光路的像质(色彩,条纹)较差。
发明内容
本申请旨在提供一种光学系统和可穿戴设备,至少解决背景技术的问题之一。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提出了一种光学系统,包括:光源;准直单元,所述准直单元设于所述光源的发出的光线的传输路径上;第一波导,所述第一波导内设有第一导光部,所述第一波导具有目标出射面,所述第一导光部的导光面朝向所述光源的出光面;反射单元,所述反射单元具有反射面,所述反射面朝向所述目标出射面;第二波导,所述第二波导设于 所述第一波导的第一侧,所述第二波导内设有第二导光部;光路调整单元,所述光路调整单元设于所述第二波导远离所述准直单元的一端,所述光路调整单元将所述反射面射出的光线导入所述第二波导;其中,所述光源发出的光线经过所述准直单元准直后,传输至所述第一波导中,并经过所述导光面反射后从所述目标出射面射出,所述反射面将从所述目标出射面射出的光线反射至所述光路调整单元,所述光路调整单元将所述反射面反射的光线导入所述第二波导,所述第二导光部将所述光路调整单元导入的光线导出所述第二波导。
第二方面,本申请实施例提出了一种可穿戴设备,包括上述任一实施例所述的光学系统。
在本申请的实施例中,通过将第二波导设于第一波导的第一侧,并且将光路调整单元设于第二波导远离准直单元的一端,使得光线可以从第一波导导入,然后经过反射单元的反射,最后经过光路调整单元导入第二波导,不仅能够提升像质,还可以提升光线的传播效率,减少光线的损失。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的光学系统的示意图;
图2是根据本申请又一个实施例的光学系统的示意图;
图3是根据本申请再一个实施例的光学系统的示意图;
图4是根据本申请再一个实施例的光学系统的示意图;
图5是根据本申请再一个实施例的光学系统的示意图。
附图标记:
光学系统100;
光源10;
准直单元20;
第一波导30;第一导光部31;
反射单元40;反射面41;
第二波导50;第二导光部51;
光路调整单元60;半透半反膜61;反射式偏振片62;
第一玻片63;第二玻片64;第三玻片65;第四玻片66;
人眼200。
具体实施方式
下面将详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合图1至图5描述根据本申请实施例的光学系统100。
如图1至图5所示,根据本申请一些实施例的光学系统100包括:光源10、准直单元20、第一波导30、反射单元40、第二波导50和光路调整单元60。
具体而言,准直单元20设于光源10发出的光线的传输路径上,第一波导30内设有第一导光部31,第一波导30具有目标出射面,第一导光部31的导光面朝向光源10的出光面,反射单元40具有反射面41,反射面朝向目标出射面,第二波导50设于第一波导30的第一侧,第二波导50内设有第二导光部51,光路调整单元60设于第二波导50远离准直单元20的一端,光路调整单元60将反射面41射出的光线导入第二波导50。其中,光源10发出的光线经过准直单元20准直后,传输至第一波导30中,并经过导光面反射后从目标出射面射出,反射面41将从目标出射面射出的光线反射至光路调整单元60,光路调整单元60将反射面41反射的光线导入第二波导50,第二导光部51将光路调整单元60导入的光线导出第二波导50。
换言之,根据本申请实施例的光学系统100主要由可以发出成像光线的光源10、对光源10发出的光线进行准直调整的准直单元20、对经过准直调整的光线进行传输的第一波导30、可以对第一波导30的光线进行反射的反射单元40、能够将反射出的光线导入第二波导50的光路调整单元60以及能够将光线导出的第二波导50构成。其中,光源10可以为能够进行投影的投影设备,且由光源10发出的光线为投影设备实际发出的光线。在光源10不是偏振光时,则可以根据需要加入偏振片。
需要说明的是,准直单元20设于光源10发出的光线的传输路径上,准直单元20能够将光源10的光线进行准直调整。经过准直单元20准直后的光线能够从第一波导30靠近准直单元20的一端进入第一波导30。
进一步地,第一波导30内设有第一导光部31,第一导光部31可以位于第一波导30靠近准直单元20的一端。此外,第一导光部31具有导光面,导光面能够与光源10的出光面相对设置。光源10的光线经过准直单元20准直后,光线能够从第一波导30靠近准直单元20的一端进入第一波导30,并到达第一导光部31的导光面,随后光线在经过导光面的反射或折射后继续在第一波导30内传输。另外,第一波导30还具有目标出射面,目标出射面可以设于第一波导30远离准直单元20的一端,其中第一波导30内传输的光线可以通过目标出射面射出第一波导30。
还需要说明的是,反射单元40可以设于第一波导30远离准直单元20的一端,并且反射单元40具有反射面41,反射面41能够将从目标出射面射出的光线反射至光路调整单元60。
进一步地,光路调整单元60可以设于第二波导50远离准直单元20的一端,光路调整单元60能够将反射面41反射的光线导入第二波导50。需要说明的是,第二波导50设于第一波导30的第一侧。
此外,第二波导50内设有第二导光部51,第二导光部51能够将光路调整单元60导入的光线导出第二波导50,从而使得光线能够进入人眼200。
为了便于描述,如图1所示,可以将此处将第一波导30的延伸方向定义为左右延伸,将光源10、准直单元20和第一波导30的装配方向定义为沿上下方向装配。
也就是说,第一波导30的左端可以为靠近准直单元20的一端,第一波导30的右端可以为远离准直单元20的一端。第一导光部31可以设于第一波导30的内部且靠左侧的位置(此处的第一导光部31为光线导入部分,可以为几何导入,也可以为光栅导入,在此不作限定),目标出射面可以设于第一波导30的右端端面。其中,第一导光部31的导光面能够与光源10的出光面 相对设置。例如,第一导光部31可以位于光源10的正下方并且第一导光部31的导光面的面积可以大于出光面的面积。
进一步地,光源10发出的光线可以经过准直单元20调整后,从第一波导30的左端进入第一波导30的内部,从而光线可以传输到第一导光部31的导光面上。光线经过导光面的折射或反射等作用下,可以继续在第一波导30内部沿第一波导30的延伸方向进行传输,直到光线能够到达第一波导30的目标出射面。
此外,第二波导50可以设于第一波导30的上方,并且第二波导50的左端可以与第一波导30的左端临近设置。例如,第一波导30的延伸方向可以与第二波导50的延伸方向互相平行设置。
需要说明的是,光路调整单元60可以设于第二波导50的右端。例如,当反射单元40设于第一波导30的右端时,光路调整单元60可以位于反射单元40的上方。此外,人眼200可以位于第二波导50的上方,并且可以与第二导光部51相对。
其中,光源10位于准直单元20上方,光源10发出的光线经过准直单元20后,光线能够从第一波导30的左端向第一波导30的右端传输中,然后当光线达到第一波导30的右端时能够从目标出射面射出第一波导30。接下来,从目标出射面射出的光线能够到达反射单元40,反射单元40的反射面41能够将从目标出射面射出的光线反射至光路调整单元60。最后,光路调整单元60可以将反射面41反射的光线导入至第二波导50的右端,光线进入第二波导50后,第二波导50内的第二导光部51将光路调整单元60导入的光线导出第二波导50,到达人眼200,人眼200可以观看经过第二导光部51导出的光线。
由此,根据本申请实施例的光学系统100,通过将第二波导50设于第一波导30的第一侧,并且将光路调整单元60设于第二波导50的远离准直单元20的一端,使得光线可以从第一波导30导入,然后经过反射单元40的反射,最后经过光路调整单元60导入第二波导50,不仅能够提升像质,而且在光 源10发出的光线为偏振光的条件下,还可以提升光线的传播效率,减少光线的损失。
根据本申请的一个实施例,如图1至图4所示,反射单元40设于第一波导30的远离准直单元20的一端,光学系统100的光轴与反射单元40的切面相垂直,切面为光线传输至反射单元时,光线与反射单元的接触点的切面。也就是说,当第一波导30的远离所述准直单元的一端为右端时,反射单元40可以位于第一波导30的右端,并且反射单元40能够与第一波导30的目标出射面相对设置。
进一步地,光学系统100的光轴能够与反射单元的切面垂直设置,其中需要说明的是,这里的切面是指经过光线与反射单元的接触点的面。当光学系统100的光轴能够与反射单元的切面垂直时,此时光学系统能够处于同轴的状态,从而可以形成较好地画质,不会出现成像模糊等情况。
通过将反射单元40设于第一波导30的远离所述准直单元的一端,可以使得反射面41反射的光线更好地到达光路调整单元60,从而便于光路调整单元60对光线的调整。此外,通过将光学系统100的光轴与反射单元40的切面垂直设置,可以使得从目标出射面射出的光线能够更好地落入反射面41,确保反射面41能够将光线反射到光路调整单元60内,从而可以更好地减少光线的损失。
根据本申请的一些可选实施例,如图1所示,光路调整单元60为半透半反膜61,半透半反膜61设于第一波导30的远离准直单元20的一端与第二波导50的远离准直单元20的一端之间。
也就是说,光路调整单元60可以为半透半反膜61。当第一波导30的远离准直单元20的一端为右端时,第二波导50的远离准直单元20的一端也为右端,半透半反膜61可以位于第一波导30的右端和第二波导50的右端之间的位置。
此时,光线的传播路径可以为:光源10发出的光线经过准直单元20的准直后,到达第一波导30的左端。光线经过第一导光部31的反射或折射后 继续向第一波导30的右端传输,当光线到达第一波导30的右端时,经过目标出射面射出的光线可以到达反射单元40。经过反射面41反射后的光线可以经过半透半反膜61,其中,一部分光线透过半透半反膜61进入第二波导50,剩余的光线经过半透半反膜61的反射到达反射单元40,然后经过反射面41的反射后投射穿过半透半反膜61到达第二波导50,然后经过第二导光部51射向人眼200。
需要说明的是,采用上述传输方式时,可以使光学系统100处于同轴的条件下,能够有效避免画质不清楚,甚至图像畸变的情况发生。
也就是说,每次当光线传输到设有半透半反膜61部分时,其中一部分光线能够透射射入第二波导50,另一部分光线能够经过半透半反膜61的反射,然后进入反射单元40,光线经过反射面41的反射后可以到达第二波导50。在产品实际使用过程中,可以采用如图1中光线的路径(即先反射后透射的路径),实现较为理想的光学效率,其中光学效率为反射率*透射率,例如光学效率50%*50%=25%。
可选地,光源10发出的光线为线偏振光。例如LCD(Liquid Crystal Display,液晶显示器)发出的光线。当光源的发出光线为线偏振光时,可以提升光线的传播效率。
可选地,光源10与导光面之间设有偏振片。也就是说,当光源10发出的光线为自然光时,可以通过在导光面与光源10之间设置偏振片,使得光源10发出光线经过偏振片后变为偏振光射入第一波导30内,从而提升光线的传播效率。
根据本申请的一个实施例,如图2所示,光路调整单元60包括:反射式偏振片62和第一玻片63,反射偏式振片设于第一波导30的远离准直单元20的一端与第二波导50的远离准直单元20的一端之间,第一玻片63设于目标出射面与反射单元40之间。需要说明的是,在本实施例中的光学系统100处于同轴的条件下,也能实现较为理想的效果,具体原因在此不再赘述。
具体地,当光路调整单元60为反射式偏振片62和第一玻片63时,其中, 反射式偏振片62可以位于第一波导30的远离准直单元20的一端与第二波导50的远离准直单元20的一端之间。例如,当第一波导30的远离准直单元的一端为右端,且第二波导50的远离准直单元20的一端也为右端时,反射式偏振片62可以位于第一波导30和第二波导50之间,并且,反射式偏振片62可以同时位于第一波导30和反射单元40的上方。可选地,反射式偏振片62的截面可以为长条形。
此外,第一玻片63可以设于目标出射面与反射单元40之间,例如,第一玻片63可以为四分之一玻片,此时光源10发出的光线可以为线偏振光,也可以为自然光,当光源发出的光为自然光时,则需要在光源10与导光面之间增设偏振片。需要说明的是,玻片是能使互相垂直的两光振动间产生附加光程差(或相位差)的光学器件。玻片通常由具有精确厚度的石英、方解石或云母等双折射晶片制作而成,其光轴与晶片表面平行。当线偏振光垂直入射到晶片时,其振动方向与晶片光轴夹θ角(θ≠0°),入射的光振动可分解成垂直于光轴(o振动)和平行于光轴(e振动)两个分量。
其中需要说明的是,能使o光和e光产生λ/4附加光程差的玻片称为四分之一玻片;能使o光和e光产生λ/2附加光程差的玻片称为二分之一玻片。而光程差可任意调节的玻片称补偿器。其中,线偏振光经过1/2玻片后仍然是线偏振光(但相位改变了)。而线偏振光通过1/4玻片时(当线偏振光振动方向与晶轴成45度角),出射圆偏振光,一般情况下出射椭圆偏振光。圆偏振光通过1/4玻片后变为线偏振光,再用偏振片观察会有消光现象。自然光通过1/4玻片,将形成无穷多个无固定位相关系的各种椭圆偏振光,其组合后仍然是自然光,用偏振片观察光强无变化。
也就是说,当第一玻片63为四分之一玻片时,光线的传播路径可以为:光源10的发出的光线经过准直单元20的准直后,到达第一波导30的左端。光线经过第一导光部31的反射或折射后继续向第一波导30的右端传输,当光线到达第一波导30的右端时,经过目标出射面射出的光线可以经过第一玻片63。
由于线偏振光经过四分之一玻片后会形成圆偏振光,因此,从目标出射面射出的光线经过第一玻片63后形成圆偏振光,圆偏振光到达反射单元40后,经过反射面41的反射会再次经过第一玻片63形成线偏振光,线偏振光可以到达反射式偏振片62。
由于反射式偏振片62可以筛选光线,因此经过反射面41反射的光线再次经过第一玻片63后的线偏振光,可以通过反射式偏振片62到达第二波导50,然后光线可以经过第二导光部51导出第二波导50射向人眼200,从而形成较好地像质。
根据本申请的一些可选实施例,如图3所示,光路调整单元60包括:反射式偏振片62、第二玻片64和第三玻片65,反射式偏振片62设于第一波导30的远离准直单元20的一端与第二波导50的远离准直单元20的一端之间,第二玻片64设于第一波导30的靠近准直单元20的一端与准直单元20之间。光线在经过准直单元20准直后,穿过第二玻片64进入第一波导30。由于第三玻片65设于第一波导30的远离准直单元20的一端与反射式偏振片62之间,因此第一导光部31导出的光线穿过第三玻片65传输至反射式偏振片62,在经过反射式偏振片62反射后穿过第三玻片65传输至反射面41,随后经过反射面41反射后,再次穿过第三玻片65,并穿过反射式偏振片62进入第二波导50。
光路调整单元60还可以由反射式偏振片62、第二玻片64和第三玻片65组成。当第一波导30的远离准直单元20的一端为右端,且第二波导50的远离准直单元20的一端也为右端时,反射式偏振片62可以设于第一波导30的右端与第二波导50的右端之间的位置,并且第三玻片65可以设于第一波导30的右端与反射式偏振片62之间。也就是说,反射式偏振片62和第三玻片65可以同时位于第一波导30和第二波导50之间,并且反射式偏振片62可以位于第三玻片65的上侧。此外,第二玻片64可以设于第一波导30的左端,并且位于第一波导30与准直单元20之间。
需要说明的是,在本实施例中的光学系统100处于同轴的条件下,也能 实现较为理想的效果,具体原因在此不再赘述。
可选地,第二玻片64和第三玻片65均可以为四分之一玻片,此时光源10发出的光线仍然可以为线偏振光或自然光,当光源发出的光线为自然光时,则需要在光源10与第二玻片64之间增设偏振片。
具体地,当第二玻片64和第三玻片65均可以为四分之一玻片时,光线的传播路径可以如下:光源10发出的光线经过准直单元20的准直后,可以通过第二玻片64进入第一波导30的左端,此时光线由线偏振光变为圆偏振光,然后圆偏振光可以经过第一导光部31的反射或折射后继续向第一波导30的右端传输,直至到达目标出射面。
如图3所示,为了便于描述,可以将光线落入反射面41的点定义为D点,如果光线再到达D点之前的光线是第一圆偏振光,第一圆偏振光在第一次经过第三玻片65时,第一圆偏振光会变成第一线偏振光,此时,反射式偏振片62的反射轴方向合适时,可以反射这个第一线偏振光;被反射的第一线偏振光可以第二次经过第三玻片65,此时第一线偏振光变为第二圆偏振光,并且可以到达D点;然后第二圆偏振光可以经过反射面41的反射第三次经过第三玻片65,此时第二圆偏振光变为第二线偏振光,第二线偏振光与第一线偏振光的偏振方向转了90度,使得第二线偏振光可以恰好透过反射式偏振片62进入第二波导50。
可选地,在第一波导30和第二波导50之间的反射式偏振片62和第三玻片65可以选择合适的长度,扩大可以从这个反射式偏振片62和第三玻片65通过的光的量。
也就是说,通过设置反射式偏振片62、第二玻片64和第三玻片65,可以提升光线的传播效率,避免光线的浪费,从而确保像质色彩和线条的清晰。
根据本申请的一个实施例,如图4所示,光源10发出的光线为圆偏振光,光路调整单元60包括:反射式偏振片62和第四玻片66。
具体地,反射偏式振片设于第一波导30的远离准直单元的一端与第二波导50的远离准直单元的一端之间,第四玻片66设于第一波导30的远离准直 单元20的一端与反射式偏振片62之间,第一导光部31导出的光线穿过第四玻片66传输至反射式偏振片62,经过反射式偏振片62反射后穿过第四玻片66传输至反射面41,经过反射面41反射后,再次穿过第四玻片66,并穿过反射式偏振片62进入第二波导50。
也就是说,当光源10发出的光线直接为圆偏振光时,则不需要在第一波导30的靠近准直单元20的一端与准直单元20之间设置四分之一玻片,省略将线偏振光转化为圆偏振光的步骤,大大提升了光线的传播效率。
根据本申请的一个实施例,如图1至图4所示,目标出射面相对于第二波导50远离准直单元20的一端端面向第一波导30靠近准直单元20的一端所在方向错开,反射单元40设于目标出射面与第二波导50远离准直单元20的一端端面之间。也就是说,当第一波导30靠近准直单元20的一端为左端时,第一波导30远离准直单元20的一端为右端时,第二波导50远离准直单元20的一端也为右端。此时,当以第二波导50的右端端面为基准时,第一波导30的右端可以位于第二波导50的右端端面的左侧。换句话说,第二波导50的右端较第一波导30的右端更向右侧延伸一段距离,第二波导50的右端伸出第一波导30的右端一段距离。
此时,反射单元40可以位于第二波导50的右端的下方,并且反射单元40的左侧可以与目标出射面相对设置。此时光路调整单元60可以大量经过反射单元40反射的光线。
通过将目标出射面与第二波导50远离准直单元20的一端端面彼此错开设置,并且将反射单元40设于目标出射面与第二波导50远离准直单元20的一端端面之间,不仅使得整体结构更加紧凑,而且有利于光线的传输,使得更多的光线通过光路调整单元60导入第二波导50。
根据本申请的一些可选实施例,如图5所示,光路调整单元60为柱面反射镜,光路调整单元60的反射面41与第二波导50的远离准直单元20的一端端面相对,且光路调整单元60的反射面41与反射单元40的反射面41相对设置,光学系统100的光轴与反射单元40的切面具有预设角度,预设角度 为0°~90°,切面为光线传输至反射单元40时,光线与反射单元40的接触点的切面。
需要说明的是,根据本实施例的传输方式,可以使光学系统100处于离轴的条件下,实现较为理想效果,因此可以将光学系统100的光轴与反射单元40的切面设置预设角度,预设角度为0°~90°,不包括右端点值,其中需要说明的是,这里的切面同样是指光线照射到反射单元时,经过光线与反射单元的接触点的面。
也就是说,当光路调整单元60为柱面反射镜时,可以将光路调整单元60设于第二波导50的远离准直单元20的一端,并且光路调整单元60的反射面可以与反射单元40的反射面41相对设置。
此时,当第二波导50的远离准直单元20的一端面为右端面时,光线的传输路径可以为:首先,光源10可以位于准直单元20上方,光源10发出的光线经过准直单元20准直后,光线能够从第一波导30的左端向第一波导30的右端传输,当光线到达第一波导30的右端时能够从目标出射面射出。然后,从目标出射面射出的光线能够到达反射单元40,反射单元40的反射面41能够将从目标出射面射出的光线反射至光路调整单元60。接下来,光线到达光路调整单元60的反射面,反射面41射出的光线经过光路调整单元60的反射面反射后可以传输至第二波导50,到达第二波导50后,光线可以经过第二导光部51导出第二波导50,从而到达人眼200。
通过将光路调整单元60设置为与反射单元40相对设置的柱面反射镜,可以利用光路调整单元60与反射单元40互补的特点,将光线从反射单元40导入至第二波导50中,弥补了离轴造成的图像显示的缺点。
根据本申请的一个实施例,如图5所示,目标出射面与第二波导50的远离准直单元20的一端端面平齐,光路调整单元60与反射单元40对称设置。也就是说,当光路调整单元60为与反射单元40相对设置的柱面反射镜,为了使从反射面41反射出的光线能够得到更全面的调整,将目标出射面与第二波导50的远离准直单元20的一端端面平齐设置,并且将光路调整单元60与 反射单元40对称设置,使得通过反射面41反射的光线能够更多地被反射至光路调整单元60的反射面上。
当第二波导50的远离准直单元20的一端为右端时,第一波导30的右端可以与第二波导50的右端处于同一水平面,并且第二波导50的右端可以位于第一波导30的右端的正上方。
当光路调整单元60与反射单元40均为柱面反射镜时,光路调整单元60的大小可以与反射单元40的大小可以相同,在此不进行限定。光路调整单元60的形状也可以和反射单元40的形状相同,在此不作限定。例如,当光路调整单元60与反射单元40的大小和形状完全相同时,可以将光路调整单元60与反射单元40对称设置,并且可以将光路调整单元60的反射面与反射单元40的反射面41相对。
根据本申请的一些可选实施例,第一波导30和第二波导50在各自厚度方向上的外表面设有不透光层。为了更好地吸收从第一波导30和第二波导50射出的杂散光,可以在第一波导30和第二波导50的厚度方向上的外表面设有不透光层,例如将第一波导30和第二波导50的周围边缘涂黑等,在此对不透光层的具体材质不进行限定。
总而言之,根据本申请实施例的光学系统100,通过将第一波导30设为导入波导,将第二波导50设为导出波导,将第二波导50设于第一波导30的第一侧,并且将光路调整单元60设于第二波导50的远离准直单元20的一端,从而使得光线从第一波导30导出后可先经过反射单元40后再经过光路调整单元60,最终导入第二波导50后,从第二波导50射入人眼200。根据本实施例的光学系统100不仅能够使得光学成像的画质得到了更好的优化,而且还能够提升光线的效率,避免大量光线在折返的过程中能量的散失。
根据本申请实施例的可穿戴设备,包括根据上述实施例的光学系统100,由于根据本申请上述实施例的光学系统100具有上述技术效果,因此,根据本申请实施例的可穿戴设备也具有相应的技术效果,即实现了整体结构更加紧凑,图像画质的色彩和线条更加清晰,从而能够提高人眼200观看体验效 果。
其中,可穿戴设备可以是AR眼镜,波导30可以是AR眼镜的镜片,光源10可以是设于AR眼镜的一个镜腿上的投影设备,反射单元40则可以设于眼镜中部靠近鼻梁的位置,光源10发出的光线从一个镜片靠近该光源10的一端,向该镜片靠近鼻梁的另一端传输,经过反射单元40反射后,光线返回镜片,并且从镜片上的光线导出位置导出到人眼200,人眼200即可观看到光源10发出的虚像。
根据本申请实施例的可穿戴设备的其他构成例如投影设备和波导的装配结构等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种光学系统,包括:
    光源;
    准直单元,所述准直单元设于所述光源发出的光线的传输路径上;
    第一波导,所述第一波导内设有第一导光部,所述第一波导具有目标出射面,所述第一导光部的导光面朝向所述光源的出光面;
    反射单元,所述反射单元具有反射面,所述反射面朝向所述目标出射面;
    第二波导,所述第二波导设于所述第一波导的第一侧,所述第二波导内设有第二导光部;
    光路调整单元,所述光路调整单元设于所述第二波导远离所述准直单元的一端,所述光路调整单元将所述反射面射出的光线导入所述第二波导;
    其中,所述光源发出的光线经过所述准直单元准直后,传输至所述第一波导中,并经过所述导光面反射后从所述目标出射面射出,所述反射面将从所述目标出射面射出的光线反射至所述光路调整单元,所述光路调整单元将所述反射面反射的光线导入所述第二波导,所述第二导光部将所述光路调整单元导入的光线导出所述第二波导。
  2. 根据权利要求1所述的光学系统,其中,所述反射单元设于所述第一波导的远离所述准直单元的一端,所述光学系统的光轴与所述反射单元的切面相垂直,所述切面为光线传输至所述反射单元时,所述光线与所述反射单元的接触点的切面。
  3. 根据权利要求2所述的光学系统,其中,所述光路调整单元为半透半反膜,所述半透半反膜设于所述第一波导的远离所述准直单元的一端与所述第二波导的远离所述准直单元的一端之间。
  4. 根据权利要求2所述的光学系统,其中,所述光源发出的光线为线偏振光。
  5. 根据权利要求2所述的光学系统,其中,所述光源与所述导光面之间设有偏振片。
  6. 根据权利要求4或5所述的光学系统,其中,所述光路调整单元包括:
    反射式偏振片,所述反射偏式振片设于所述第一波导的远离所述准直单元的一端与所述第二波导的远离所述准直单元的一端之间;
    第一玻片,所述第一玻片设于所述目标出射面与所述反射单元之间。
  7. 根据权利要求4或5所述的光学系统,其中,所述光路调整单元包括:
    反射式偏振片,所述反射式偏振片设于所述第一波导的远离所述准直单元的一端与所述第二波导的远离所述准直单元的一端之间;
    第二玻片,所述第二玻片设于所述第一波导的靠近所述准直单元的一端与所述准直单元之间,光线经过所述准直单元准直后,穿过所述第二玻片进入所述第一波导;
    第三玻片,所述第三玻片设于所述第一波导的远离所述准直单元的一端与所述反射式偏振片之间,所述第一导光部导出的光线穿过所述第三玻片传输至所述反射式偏振片,经过所述反射式偏振片反射后穿过所述第三玻片传输至所述反射面,经过所述反射面反射后,再次穿过所述第三玻片,并穿过所述反射式偏振片进入所述第二波导。
  8. 根据权利要求2所述的光学系统,其中,所述光源发出的光线为圆偏振光,所述光路调整单元包括:
    反射式偏振片,所述反射偏式振片设于所述第一波导的远离所述准直单元的一端与所述第二波导的远离所述准直单元的一端之间;
    第四玻片,所述第四玻片设于所述第一波导的远离所述准直单元的一端与所述反射式偏振片之间,所述第一导光部导出的光线穿过所述第四玻片传输至所述反射式偏振片,经过所述反射式偏振片反射后穿过所述第四玻片传输至所述反射面,经过所述反射面反射后,再次穿过所述第四玻片, 并穿过所述反射式偏振片进入所述第二波导。
  9. 根据权利要求1所述的光学系统,其中,所述目标出射面相对于所述第二波导远离所述准直单元的一端端面向所述第一波导靠近所述准直单元的一端所在方向错开,所述反射单元设于所述目标出射面与所述第二波导远离所述准直单元的一端端面之间。
  10. 根据权利要求1所述的光学系统,其中,所述光路调整单元为柱面反射镜,所述光路调整单元的所述反射面与所述第二波导的远离所述准直单元的一端端面相对,且所述光路调整单元的所述反射面与所述反射单元的所述反射面相对设置,所述光学系统的光轴与所述反射单元的切面具有预设角度,所述预设角度为0°~90°,所述切面为光线传输至所述反射单元时,所述光线与所述反射单元的接触点的切面。
  11. 根据权利要求10所述的光学系统,其中,所述目标出射面与所述第二波导的远离所述准直单元的一端端面平齐,所述光路调整单元与所述反射单元对称设置。
  12. 根据权利要求1所述的光学系统,其中,所述第一波导和所述第二波导在各自厚度方向上的外表面设有不透光层。
  13. 一种可穿戴设备,其中,包括权利要求1-12中任一项所述的光学系统。
PCT/CN2022/100484 2021-06-28 2022-06-22 光学系统和可穿戴设备 WO2023273991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110730652.0 2021-06-28
CN202110730652.0A CN113391393A (zh) 2021-06-28 2021-06-28 光学系统和可穿戴设备

Publications (1)

Publication Number Publication Date
WO2023273991A1 true WO2023273991A1 (zh) 2023-01-05

Family

ID=77624717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100484 WO2023273991A1 (zh) 2021-06-28 2022-06-22 光学系统和可穿戴设备

Country Status (2)

Country Link
CN (1) CN113391393A (zh)
WO (1) WO2023273991A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113391393A (zh) * 2021-06-28 2021-09-14 维沃移动通信有限公司 光学系统和可穿戴设备
WO2023224837A1 (en) * 2022-05-17 2023-11-23 Google Llc Waveguide with exit pupil expander and outcoupler on separate substrates

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062769A (zh) * 2014-06-30 2014-09-24 张鹏 一种光学装置
CN104570483A (zh) * 2015-01-06 2015-04-29 京东方科技集团股份有限公司 一种背光模组及显示装置
CN108474542A (zh) * 2016-01-15 2018-08-31 斯特拉斯堡大学 改进的光导件和光学系统
US20190187472A1 (en) * 2017-12-18 2019-06-20 Samsung Electronics Co., Ltd. Optical system and wearable display apparatus having the same
CN112269266A (zh) * 2020-11-19 2021-01-26 维沃移动通信有限公司 光学系统和可穿戴设备
CN112987166A (zh) * 2021-03-23 2021-06-18 深圳珑璟光电科技有限公司 光波导组件和头戴显示设备
CN112987164A (zh) * 2021-03-23 2021-06-18 深圳珑璟光电科技有限公司 光波导组件和头戴显示设备
CN113391393A (zh) * 2021-06-28 2021-09-14 维沃移动通信有限公司 光学系统和可穿戴设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508851B2 (en) * 2011-07-20 2013-08-13 Google Inc. Compact see-through display system
CN205643970U (zh) * 2016-05-16 2016-10-12 成都理想境界科技有限公司 一种背光单元、液晶模组以及虚拟现实设备
AU2020301646B2 (en) * 2019-06-27 2024-05-02 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via a light-guide optical element
CN211698438U (zh) * 2019-11-07 2020-10-16 中强光电股份有限公司 近眼光学系统
CN112230435A (zh) * 2020-11-19 2021-01-15 维沃移动通信有限公司 光学系统和可穿戴设备
CN112099239B (zh) * 2020-11-19 2021-06-08 北京亮亮视野科技有限公司 一种紧凑型波导显示光学系统及ar眼镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062769A (zh) * 2014-06-30 2014-09-24 张鹏 一种光学装置
CN104570483A (zh) * 2015-01-06 2015-04-29 京东方科技集团股份有限公司 一种背光模组及显示装置
CN108474542A (zh) * 2016-01-15 2018-08-31 斯特拉斯堡大学 改进的光导件和光学系统
US20190187472A1 (en) * 2017-12-18 2019-06-20 Samsung Electronics Co., Ltd. Optical system and wearable display apparatus having the same
CN112269266A (zh) * 2020-11-19 2021-01-26 维沃移动通信有限公司 光学系统和可穿戴设备
CN112987166A (zh) * 2021-03-23 2021-06-18 深圳珑璟光电科技有限公司 光波导组件和头戴显示设备
CN112987164A (zh) * 2021-03-23 2021-06-18 深圳珑璟光电科技有限公司 光波导组件和头戴显示设备
CN113391393A (zh) * 2021-06-28 2021-09-14 维沃移动通信有限公司 光学系统和可穿戴设备

Also Published As

Publication number Publication date
CN113391393A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
JP7411255B2 (ja) 偏光された内部反射体を採用する導光光学素子
WO2023273991A1 (zh) 光学系统和可穿戴设备
CN215982382U (zh) 用于将图像显示到观察者的眼睛中的显示器
KR100951213B1 (ko) 화상 표시 장치
CN112639592A (zh) 用于防窥显示器的光学堆叠
WO2019104046A1 (en) Optical display system, method, and applications
CN109283774B (zh) 一种投影镜头及投影系统
US10215908B1 (en) Optical waveguide and optical device
US11573357B2 (en) Lens assembly having circular reflective polarizer
US20070085970A1 (en) Image display device
CN114730086B (zh) 采用散光光学器件和像差补偿的显示器
CN115144952B (zh) 光波导器件及近眼显示装置
CN112540502A (zh) 一种投影显示设备及其投影光机
CN111638602B (zh) 光学装置及近眼显示设备
US20220155513A1 (en) Liquid crystal reflective polarizer and pancake lens assembly having the same
EP2362264A1 (en) Reflection type liquid crystal device and projector
TWI807358B (zh) 具有液晶元件的餅乾透鏡組件
TWI769448B (zh) 投射立體影像之投影裝置
JP2007047409A (ja) 液晶表示装置およびそれを備えた携帯型電子機器
US20240230953A1 (en) Relay redirector, display device and near-eye display system
WO2023116163A1 (zh) 一种光波导器件、显示装置和显示设备
CN219799825U (zh) 导光系统、光源装置及显示设备
US11215876B2 (en) Backlight source, backlight module and display device
CN118151478A (zh) 光学系统和投影装置
CN113568267A (zh) 投射立体影像的投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831807

Country of ref document: EP

Kind code of ref document: A1