WO2023005394A1 - 一种内镜用切开装置 - Google Patents

一种内镜用切开装置 Download PDF

Info

Publication number
WO2023005394A1
WO2023005394A1 PCT/CN2022/095411 CN2022095411W WO2023005394A1 WO 2023005394 A1 WO2023005394 A1 WO 2023005394A1 CN 2022095411 W CN2022095411 W CN 2022095411W WO 2023005394 A1 WO2023005394 A1 WO 2023005394A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
state
distal end
protrusion
pulling
Prior art date
Application number
PCT/CN2022/095411
Other languages
English (en)
French (fr)
Inventor
时百明
Original Assignee
杭州安杰思医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州安杰思医学科技股份有限公司 filed Critical 杭州安杰思医学科技股份有限公司
Priority to CN202280052313.4A priority Critical patent/CN117750917A/zh
Publication of WO2023005394A1 publication Critical patent/WO2023005394A1/zh
Priority to US18/292,913 priority patent/US20240335213A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3209Incision instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/00336Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means with a protective sleeve, e.g. retractable or slidable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B2017/32006Surgical cutting instruments with a cutting strip, band or chain, e.g. like a chainsaw

Definitions

  • This specification relates to a medical device, in particular to an incision device for an endoscope.
  • Endoscopic retrograde cholangiopancreatography (Endoscopic Retrograde Cholangio Pancreatography, ERCP) refers to inserting a guide wire or related instruments (such as incision knife, contrast catheter, etc.) tube) surgery. With its unique advantages such as small trauma and quick recovery, it has been widely used in the diagnosis and treatment of biliary and pancreatic diseases. Intubation is a key technique in ERCP surgery, but due to the abnormal physiological structure of the duodenal papilla in some patients (for example, thick and long folds of the duodenal papilla), it will increase the difficulty of intubation and reduce the success of intubation rate and increase the risk of postoperative complications such as pancreatitis and perforation.
  • An embodiment of the present specification provides an endoscopic incision device, including: a sheath tube, the sheath tube has a proximal end and a distal end, the sheath tube is provided with a channel extending along the axial direction, and the channel can accommodate a pulling part; the pulling part includes a pulling wire and a protrusion disposed at the distal end of the pulling wire, and the pulling wire moves axially in the channel so that the protrusion is in the first state and Switch between the second state; when the protrusion is in the first state, the protrusion is accommodated in the channel; when the protrusion is in the second state, the protrusion protrudes beyond the outside the far end of the channel.
  • the protruding part and the distal end of the sheath form a joint part, and the radial dimension of the joint part is larger than the diameter of the duodenal papilla;
  • the The radial dimension of the protruding portion is a first dimension, and the radial dimension from the first radially most distal end of the protruding portion to the second radially most distal end of the sheath tube distal end is a second dimension; the first dimension is greater than For the second size, the radial dimension of the joint part is the first size; if the second size is larger than the first size, the radial dimension of the joint part is the second size.
  • the radial dimension of the protrusion in the second state is larger than the radial dimension of the protrusion in the first state; the radial dimension of the protrusion in the first state is smaller than or It is equal to the radial dimension of the distal end of the sheath; in the second state, the radial dimension of the protrusion is greater than the radial dimension of the distal end of the sheath.
  • the radial dimension of the protrusion is 2-10 mm; the radial dimension of the distal end of the sheath is 1.8-2 mm.
  • the channels include a first channel for receiving a guide wire and a second channel for receiving a puller.
  • the protrusion is deflected away from the axis when transitioning from the first state to the second state.
  • the second channel is located eccentrically.
  • the distal end of the sheath is provided with a cutting wire for cutting tissue, and the second channel jointly accommodates the pulling part and the cutting wire.
  • the distal end of the sheath is provided with a cutting wire for cutting tissue
  • the channel further includes a third channel, the second channel accommodates the pulling part, and the third channel accommodates the pulling part. Shred.
  • the second channel or the third channel is an injection channel.
  • the channel further includes a fourth channel, the first channel accommodates the guide wire, the second channel accommodates the pulling part, and the third channel accommodates the cut wire, so
  • the fourth channel is the injection channel.
  • the first channel has a C-shaped cross-section, and the first channel includes the guide wire receiving portion and the slit portion.
  • the protrusion is composed of one or more pulling wires, forming a semi-closed or closed loop.
  • the protruding part is composed of one or more pulling wires, forming a semi-closed or closed network.
  • the protrusion consists of one or more pulling wires forming a helix.
  • the radial dimension of the protruding portion is approximately equal from the distal end to the proximal end, or increases gradually, or decreases gradually.
  • control part includes a pull handle, and the axial push and pull of the pull handle or the rotation of the pull handle controls the axial movement of the pull wire in the channel. moving such that the protrusion transitions between a first state and a second state.
  • the pulling handle when the protrusion is in the second state, the pulling handle is also used to control the axial movement of the pulling wire in the channel, so that the protrusion pulls the tissue pull.
  • the distal end of the pulling wire is fixedly connected to the proximal end of the protrusion, or the distal end of the pulling wire is detachably connected to the proximal end of the protrusion.
  • the projections are used to pull duodenal papillae tissue.
  • One of the embodiments of the present specification provides an operation method of the incision device for endoscope, which is applied to the incision device for endoscope in any of the above embodiments, and the operation method includes: controlling the passage of the pulling wire in the sheath move axially from the proximal end to the distal end, so that the protruding part is converted from the first state to the second state; when the protruding part is in the second state, the pulling wire is controlled to move axially in the sheath channel moving so that the protruding part in the second state pulls the duodenal papilla fold tissue in the insertion tube channel.
  • the operation method further includes: controlling the pulling wire to move axially from the distal end to the proximal end of the sheath channel, so that the protrusion is converted from the second state to the first state; After the protruding part is converted to the first state, the control guide wire protrudes from the distal end of the sheath and enters the common bile duct or pancreatic duct through the intubation channel.
  • One of the embodiments of the present specification provides an endoscope, including the incision device for endoscope in any one of the above embodiments.
  • Fig. 1 is a schematic structural view of an exemplary endoscopic incision device according to some embodiments of the present specification
  • Fig. 2 is a schematic structural view of another exemplary endoscopic incision device according to some embodiments of the present specification
  • Fig. 3 is a schematic diagram of different cross-sections of a sheath according to some embodiments of the present specification
  • Fig. 4 is a schematic diagram showing different shapes of protrusions according to some embodiments of the present specification.
  • Fig. 5 is an enlarged schematic diagram of M in Fig. 1;
  • Fig. 6 is an enlarged schematic diagram of N in Fig. 2;
  • Fig. 7 is a working schematic diagram of the endoscopic incision device without a pulling part according to some embodiments of the present specification
  • Fig. 8 is a working schematic diagram of the endoscopic incision device according to some embodiments of the present specification when it has a pulling part;
  • Figure 9 is a schematic diagram of the duodenal papilla before stretching according to some embodiments of the present specification.
  • Fig. 10 is a schematic diagram of the stretched duodenal papilla according to some embodiments of the present specification.
  • Fig. 11 is a flow chart of the operation method of the incision device for endoscope according to some embodiments of the present specification
  • Figure 12 is a schematic illustration of an endoscope according to some embodiments of the present specification.
  • papilla During the ERCP operation, when the folds of the duodenal papilla (referred to as papilla for short) are thick and long, it usually makes intubation more difficult and faces the risk of intubation failure. Thick and long papillary folds usually means that there are many folds in the cannulation channel (the cannulation channel shown in Figure 10) that connects the nipple opening and common bile duct and pancreatic duct in the nipple, making the shape of the inner wall of the cannulation channel It is an S shape with large ups and downs.
  • cannulation includes not only the insertion of a guide wire into the common bile duct or pancreatic duct through the cannulation channel, but also related instruments (eg, balloon catheters, mesh baskets, incision knives, cell brushes, stents, contrast catheters, Snare, etc.) are inserted through the cannula channel into the common bile duct or pancreatic duct under the guidance of the guide wire.
  • related instruments eg, balloon catheters, mesh baskets, incision knives, cell brushes, stents, contrast catheters, Snare, etc.
  • the embodiment of this specification provides an endoscopic incision device, which may include a sheath, the sheath has a proximal end and a distal end, and a channel extending along the axial direction is provided in the sheath, the The channel can store the pulling part.
  • the pulling part includes a pulling wire and a protruding part arranged at the distal end of the pulling wire. By moving the pulling wire axially in the channel, the protruding part can be driven to be accommodated in the channel or to protrude from the distal end of the channel. When the protruding part protrudes from the distal end of the channel, the protruding part can contact with the papilla plica, so that the papilla plica can be repaired. pull.
  • nipple folds are stretched and squeezed under the pulling action of the protruding part, and finally tend to be flattened, so that the shape of the inner wall of the intubation channel changes from a relatively undulating S-shape to a gentle S-shape, thus widening the intubation channel , the guide wire is not easily blocked by the folds, which reduces the resistance of the guide wire inserted into the intubation channel, so that the guide wire can be smoothly inserted into the common bile duct or pancreatic duct that you want to enter, which can reduce the difficulty of intubation and improve the efficiency of intubation. Success rate.
  • distal end and proximal end referred to in the embodiments of this specification may respectively refer to the end away from the operator and the end close to the operator during intubation.
  • Fig. 1 is a schematic structural view of an exemplary endoscopic incision device according to some embodiments of the present specification.
  • Fig. 2 is a schematic structural view of another exemplary incision device for endoscope according to some embodiments of the present specification.
  • the endoscopic incision device 100 includes a sheath 20 , and the sheath 20 has a proximal end and a distal end.
  • the proximal end and the distal end of the sheath tube 20 may be respectively the right end and the left end of the sheath tube 20 shown in FIG. 1 .
  • the sheath tube 20 is provided with a channel extending along the axial direction (or referred to as the length direction), and the channel can be used to accommodate the pulling part 40 .
  • the pulling part 40 may include a pulling wire 42 and a protruding part 41 disposed at a distal end of the pulling wire 42 .
  • the protrusion 41 can be switched between the first state and the second state by axially moving the pull wire 42 within the channel of the sheath 20 .
  • the protruding portion 41 when the protruding portion 41 is in the first state, the protruding portion 41 is accommodated in the channel of the sheath tube 20; 41 can be combined with the papilla folds to pull the duodenal papilla fold tissue (abbreviated as folds).
  • folds are stretched and squeezed under the action of pulling, and gradually approach the flattened state from the initial curved state.
  • the width of the intubation channel is increased, the resistance of the guide wire in the intubation channel is reduced, the difficulty of intubation is reduced, and the success rate of intubation is improved.
  • a more detailed description of how the protrusion 41 pulls the plica can be found elsewhere in this specification and will not be described in detail here.
  • the endoscopic incision device 100 may further include a control unit 10 .
  • the control part 10 can include a pulling handle 14, and the pulling handle 14 can control the axial movement of the pulling wire 42 in the channel in the sheath tube 20 (for example, the second channel 22 shown in FIG. 3 ) by axially pushing or rotating. , so that the protrusion 41 switches between the first state and the second state.
  • the pulling handle 14 can also be used to control the axial movement of the pulling wire 42 in the channel of the sheath tube 20, so that the protruding part 41 pulls the fold tissue .
  • the proximal end of the protruding part 41 can be connected to the distal end of the pulling wire 42, so that the axial movement of the pulling wire 42 in the passage can drive the protruding part 41 to move, so that the protruding part 41 can move from the passage to the far end of the passage outside, and from outside the distal end of the channel to inside the channel.
  • the distal end of the pulling wire 42 and the proximal end of the protruding part 41 are fixedly connected by means of welding, bonding, etc., and this connection method has a simple process and a firm connection effect.
  • the distal end of the pulling wire 42 is detachably connected to the proximal end of the protruding part 41 through buckle, screw connection or interference fit.
  • the distal end of the pulling wire 42 can be provided with an external thread
  • the proximal end of the protrusion 41 can be provided with a threaded hole adapted to the external thread, and the pulling can be realized by tightening and unscrewing the thread. Detachable connection of wire 42 to protrusion 41 .
  • the protruding part 41 can be detached from the distal end of the pulling wire 42 when the plica is normal without blocking the intubation tube, and the protruding part 41 can be removed from the distal end of the pulling wire 42 when the plica is abnormal (for example, thick and long). ) will block the intubation, the protrusion 41 is connected to the distal end of the pulling wire 42, and the folds are pulled by the protrusion 41 to solve the problem that the folds block the intubation, so as to realize the flexible use of the endoscopic incision device.
  • the distal end of the pulling wire 42 can be directly configured as the protrusion 41 , that is, the pulling wire 42 and the protrusion 41 are integrally structured.
  • the control part 10 is provided with an inlet 12 for the pulling part 40 to enter the channel of the sheath tube 20 , and the proximal end of the pulling wire 42 protrudes outside the inlet 12 and is connected with the pulling part 40 .
  • the handle 14 is fixedly connected.
  • the inlet 12 can be provided with an internal thread.
  • the pulling handle 14 may be provided with an external thread adapted to the internal thread of the inlet 12 .
  • the control part 10 is provided with an inlet 12 for the pulling part 40 to enter the channel of the sheath tube 20 , and the proximal end of the pulling wire 42 protrudes outside the inlet 12 and is aligned with the pulling part 40 .
  • the handle 14 is fixedly connected.
  • a pulling handle 14 is installed in the inlet 12 .
  • the operator can drive the pulling wire 42 to move axially in the channel by directly pushing and pulling the pulling handle 14 in the axial direction.
  • axially pushing and pulling the pulling handle 14 can be understood as pushing the pulling handle 14 toward the inlet 12 or pulling it out from the inlet 12 , and the direction of pushing and pulling can be the axial direction of the inlet.
  • a guide wire 50 is also accommodated in the channel in the sheath 20, and by inserting the guide wire 50 into the common bile duct or the pancreatic duct, related instruments (for example, balloons) Catheter, mesh basket, incision knife, cell brush, stent, contrast catheter, snare, etc.) are inserted into the common bile duct or pancreatic duct under the guidance of the guide wire 50 to perform corresponding surgical operations.
  • the distal end of the sheath 20 can also be provided with a cutting wire 30 for cutting tissue, and the cutting wire can be received in a channel in the sheath 20 .
  • cutting the papillary sphincter, common bile duct or the end part of the pancreatic duct and other parts can be achieved by applying high-frequency electricity to the cutting wire 30 .
  • the channel in the sheath 20 can be used as an injection channel, and the injection channel can be used for the contrast agent to pass into the common bile duct or the pancreatic duct for visualization.
  • control part 10 may be provided with a first opening 13, and the first opening 13 may communicate with a channel (for example, an injection channel) in the sheath 20, so that the contrast agent may be injected into the injection channel through the first opening 13. inside the channel.
  • a second opening 16 can be provided on the control part 10, and the second opening 16 can communicate with a channel (for example, the first channel 21) in the sheath 20, so that the guide wire 50 can pass through the second opening 16 Enter the first channel 21.
  • Fig. 3 is a schematic diagram of different cross-sections of a sheath according to some embodiments of the present specification.
  • the channel in the sheath 20 may include a first channel 21 for receiving the guide wire 50 and a second channel for receiving the puller 40 twenty two.
  • the axial movement of the pulling wire 42 in the second channel 22 can make the protrusion 41 switch between the first state and the second state.
  • the protruding portion 41 when the protruding portion 41 is in the first state, the protruding portion 41 is accommodated in the second channel 22 ; when the protruding portion 41 is in the second state, the protruding portion 41 can protrude outside the distal end of the second channel 22 .
  • the second channel 22 may also be an injection channel.
  • the second channel 22 can be used to receive the puller 40 and the shred 30 together.
  • the channels in the sheath 20 may include a first channel 21 , a second channel 22 and a third channel 23 .
  • the first channel 21 is used for accommodating the guide wire 50
  • the second channel 22 is used for accommodating the pulling part 40
  • the third channel is used for accommodating the shredded wire 30 .
  • the second channel 22 or the second channel 23 may serve as an injection channel.
  • the channels in the sheath 20 may include a first channel 21 , a second channel 22 , a third channel 23 and a fourth channel 24 .
  • the first channel 21 is used to store the guide wire 50
  • the second channel 22 is used to store the pulling part 40
  • the third channel is used to store the cut wire 30
  • the fourth channel 24 is used as an injection channel.
  • the cross-section of the first channel 21 may have a closed shape.
  • a closed shape can be understood as a shape with a closed contour.
  • the cross section of the first channel 21 may be circular.
  • the cross-section of the first channel 21 can also be a regular or irregular shape with a closed contour such as a triangle, a rectangle, and a regular pentagon.
  • the cross section of the first channel 21 may be a C-shaped cross section, that is, the shape of the cross-sectional profile of the first channel 21 is approximately C-shaped.
  • the first channel 21 may include a guide wire receiving portion 212 and a slit portion 211 .
  • the sheath 20 may include a distal end 20A at its distal end, a proximal port 20B at its proximal end, and an intermediate port 20C between the distal end 20A and the proximal port 20B.
  • the first channel 21 may be located within the wall of the sheath 20 extending along the distal end to the proximal end of the sheath 20 .
  • the slit portion 211 is disposed at a portion of the first channel 21 between the near port 20B and the middle port 20C.
  • slit portion 211 may be a radial opening of sheath 20 extending between proximal port 20B and intermediate port 20C.
  • the slit portion 211 may be a weakened region of the sheath 20 , a radially open region of the slit extending between the proximal port 20B and the intermediate port 20C.
  • the distal end of the guidewire 50 when the guidewire 50 is received in the first channel 21 , the distal end of the guidewire 50 can be inserted into the intermediate port 20C, pass through the first channel 21 and emerge from the distal end 20A of the sheath 20 .
  • the guide wire 50 By putting the guide wire 50 into the first channel 21 by using the intermediate port 20C as the guide wire inlet, it is not necessary to separately provide the guide wire inlet (for example, the second opening 16 ) on the control part 10 .
  • the guide wire 50 can be easily and quickly separated from the sheath tube 20 or the guide wire 50 can be accommodated in the sheath tube 20.
  • fast switching technology can be realized.
  • the setting of the slit portion 211 can facilitate the rapid detachment of the guide wire 50 from the sheath tube 20, so that the guide wire 50 can be remain in the common bile duct or pancreatic duct, and the sheath tube 20 and corresponding instruments are withdrawn from the patient's body, so that the sheath tube 20 of the instrument for performing other surgical operations can be inserted into the common bile duct or pancreatic duct under the guidance of the guide wire 50 , in order to achieve the purpose of rapid exchange of equipment.
  • the width of the slit portion 211 can be smaller than the diameter of the guide wire 50, which can ensure that the guide wire 50 will not be detached from the sheath tube 20 through the slit portion 211 without external force, reducing the 50 the risk of the guidewire 50 detaching from the sheath 20 during the insertion of the guided instrument.
  • the endoscopic incision device changes the protrusion 41 from the first state to the second state, and the protrusion 41 protrudes outside the distal end of the second channel 22 and elastically expands and/or deflects in the radial direction , so that the radial dimension of the protruding portion 41 or the radial dimension of the junction formed by the protruding portion 41 and the distal end of the sheath tube 20 is increased to be greater than the diameter of the duodenal papilla (for example, the duodenum shown in FIG. 9 Intestinal papilla diameter D), so that the protruding part 41 can better combine (or fit) with the fold.
  • the radial dimension of the protruding portion 41 or the radial dimension of the junction formed by the protruding portion 41 and the distal end of the sheath tube 20 is increased to be greater than the diameter of the duodenal papilla (for example, the duodenum shown in FIG. 9 Intestinal papilla diameter D), so
  • the protruding part 41 when the protruding part 41 is in the second state, when the protruding part 41 is driven by the pulling wire 42 to move along the axial direction of the intubation channel, it can pull the folds, stretch and squeeze, which is equivalent to The folds are smoothed, so that the folds can approach the flattened state from bending, which increases the width of the intubation channel, thereby reducing the difficulty of intubation and improving the success rate of intubation.
  • the protruding part 41 may also have a certain pulling effect on the folds. The protruding part 41 and how the protruding part 41 realizes the pulling of the fold will be described in detail below in conjunction with the accompanying drawings.
  • the protruding part 41 when the protruding part 41 is switched from the first state to the second state, radial elastic expansion and/or deflection can occur, and when the protruding part 41 is switched from the second state to the first state, the protruding part 41 can To return to the shape in the first state, that is, the protruding portion 41 needs to have a certain elastic deformation capacity.
  • the material of the protruding portion 41 can be made of a shape memory material with certain elasticity.
  • the material of the protrusion 41 may include, but not limited to, metal materials such as stainless steel, nickel-titanium alloy, iron-platinum alloy, polymer materials such as polyurethane, polyolefin, epoxy resin, etc., and shape memory ceramic materials. etc. or a combination thereof.
  • the protruding part 41 may be composed of one or more pulling wires, forming a semi-closed or closed loop.
  • a semi-closed ring can be understood as a ring that is not completely closed but has an opening.
  • the pulling wire and the pulling wire 42 may be the same, that is, the pulling wire and the pulling wire 42 have the same diameter, material, and the like.
  • protrusion 41 may be part of pull wire 42 .
  • the distal portion of the pulling wire 42 can be bent to form a semi-closed or closed loop.
  • the protruding part 41 may also be composed of one or more pulling wires to form a semi-closed or closed loop, and then be fixedly or detachably connected to the distal end of the pulling wire 42 .
  • the protrusion 41 may be pre-shaped as a ring of variable radial dimension. Specifically, the protruding portion 41 may have different radial dimensions under the condition of no force and the condition of different force.
  • the protruding part 41 when the protruding part 41 is in the first state, it is accommodated in the second channel 22, and the second channel 22 can generate a restraining force on the radial expansion of the protruding part 41, so that the radial dimension of the protruding part 41 is smaller; However, when the protruding portion 41 is in the second state, the protruding portion 41 is no longer subjected to force, the protruding portion 41 expands radially, and its radial dimension becomes larger.
  • the protruding portion 41 may be a circular or non-circular (eg, triangular, rectangular, pentagonal, hexagonal, etc. regular or irregular) ring structure.
  • the protruding portion 41 may include, but not limited to, a ring structure having a shape as shown in FIGS. 4( a ) to ( m ).
  • the protruding part 41 of the annular structure with different shapes can make the radial dimension change rate of the protruding part 41 different from the first state to the second state, and also make the protruding part 41 exert a different force direction on the folds, so as to suit Cannulation of cannulation channels with folds of varying degrees of curvature.
  • the protruding part 41 may be composed of one or more traction wires of shape memory material with certain elasticity, forming a semi-closed or closed network.
  • the protruding portion 41 may be in the shape of a mesh as shown in FIG. 4(n).
  • the protrusion 41 can have a better pulling effect on the folds.
  • the larger the combined area of the protruding part 41 and the fold the larger the area of the fold can be stretched and squeezed when the protruding part 41 moves in the axial direction, which not only has a better effect on flattening the fold, but also The time for making the folds approach from the bent state to the flattened state can be shortened, so as to improve the intubation efficiency.
  • the protrusion 41 may consist of one or more puller wires, forming a helix.
  • the protruding portion 41 may be in a spiral shape as shown in FIG. 4( o ).
  • the protruding part 41 in the second state is driven by the pulling wire 42 When pulling the folds, the protruding part 41 can have a better pulling effect on the folds.
  • the axial transmission and propulsion force generated by the protruding part 41 on the folds is more concentrated, so that the pulling effect of the protruding part 41 on the folds is better.
  • the more concentrated the axial transmission and propulsion force generated by the protruding part 41 on the fold the greater the degree of stretching and extrusion deformation of the fold under the pull of the protruding part 41, and the faster and better the fold will be.
  • the ground tends to be flattened from the curved state, which is conducive to improving the efficiency and success rate of intubation.
  • the radial dimension of the helical protrusion 41 may be approximately equal from the distal end to the proximal end. In some embodiments, the radial dimension of the protruding portion 41 is approximately equal from the distal end to the proximal end may mean that the variation rate of the radial dimension of the protruding portion from the distal end to the proximal end is within 5%. In some embodiments, the radial dimension of the protruding portion 41 is substantially equal from the distal end to the proximal end may mean that the variation rate of the radial dimension of the protruding portion from the distal end to the proximal end is within 3%.
  • the radial dimension of the protruding portion 41 is approximately equal from the distal end to the proximal end may mean that the variation rate of the radial dimension of the protruding portion from the distal end to the proximal end is within 1%.
  • the radial dimension of the helical protrusion 41 can be different from the distal end to the proximal end, and the different radial dimensions from the distal end to the proximal end can adapt to different fold structures.
  • the radial dimension of the helical protrusion 41 may gradually increase from the distal end to the proximal end.
  • the helical protrusion 41 whose radial dimension gradually increases from the distal end to the proximal end can be quickly accommodated into the channel of the sheath tube 20 (for example, the second channel 22 ) or protrude out of the channel of the sheath tube 20 to achieve protrusion.
  • the rapid transition between the first state and the second state of the portion 41 does not affect the subsequent operation of the guide wire entering the cannula channel after the folds are pulled by the helical protrusion 41 .
  • the radial dimension of the helical protrusion 41 may gradually decrease from the distal end to the proximal end.
  • the structure of the protruding portion 41 can be designed based on the principle of umbrella retraction, so that the protruding portion 41 can change from the first state to the second state and when it is in the second state, the radial dimension increases and is greater than Purpose of duodenal papilla diameter.
  • the protruding portion 41 may include a rod (similar to an umbrella handle) and a main body (similar to an umbrella cover) connected to the distal end of the rod.
  • the rod is covered with a sliding piece that can slide axially relative to the rod.
  • the sliding piece is connected to the main body through a plurality of connecting pieces (similar to umbrella ribs).
  • the sliding piece When the sliding piece slides toward the distal end of the rod, the sliding piece can pass through The connecting piece drives the main body to expand, and when the sliding piece slides toward the proximal end of the rod, the sliding piece can drive the main body to fold through the connecting piece.
  • the main body can be a mesh structure as shown in FIG. 4(n), and the sliding of the slider on the rod can drive the mesh structure to expand or collapse.
  • the proximal end of the rod can be connected to the distal end of the pulling wire 42 , and an additional pulling wire for driving the slider to slide on the rod can also be provided in the channel of the sheath 20 .
  • the sliding part on the rod can be driven by artificially pushing and pulling the extra pulling wire to move axially in the channel of the sheath tube 20, thereby driving the main part to expand or collapse.
  • the extra pulling wire in the above embodiments can be replaced by a telescopic rod, and the sliding part can be driven to slide on the rod by using the telescopic movement of the telescopic rod.
  • the main body can have different opening degrees by controlling the axial movement distance of the additional pulling wire in the channel or controlling the extension length of the telescopic rod, so that the protruding part 41 is in the second state It can have different radial dimensions, so that it is suitable for pulling the folds in the cannula channels with different diameters or pulling the folds of different shapes and degrees of curvature, so as to ensure that the protruding part 41 and the folds have a larger The combined area makes the protruding part 41 have a better pulling effect on the folds.
  • the protruding part 41 By designing the protruding part 41 based on the umbrella principle, it can not only ensure that the radial dimension of the protruding part 41 can be increased when it is in the second state, so as to achieve a better pulling effect on the folds, but also improve the protruding part 41 from the first Efficiency of change between state and second state.
  • the protrusion 41 can be a balloon, and correspondingly, the pulling wire 42 can be replaced by a pulling catheter communicated with the balloon.
  • the protruding part 41 When the protruding part 41 is in the first state, the pressure inside the balloon is small, and the balloon has a small volume and is accommodated in the channel of the sheath tube 20.
  • the pulling catheter moves axially toward the distal end, the protruding part 41 In the second state, that is, the balloon protrudes outside the distal end of the channel of the sheath tube 20.
  • the gas is injected into the balloon by pulling the catheter, so that the radial expansion of the balloon can occur, the radial size increases, and it can be in contact with the folds.
  • the radial size of the balloon can be controlled by the volume of gas introduced into the balloon, so that it is suitable for different diameters of cannula channels to folds. Pulling or pulling on folds of different shapes and degrees of curvature, etc., ensures that the protruding part 41 and the folds have a larger combined area, so that the protruding part 41 has a better pulling effect on the folds.
  • the protruding part 41 can rotate (for example, rotate around the central axis of the pulling wire 42) while moving axially to realize the pulling of the folds, so that the folds on the inner wall of the cannula channel can be aligned with the protruding Part 41 is combined.
  • axial rotation of protrusion 41 may be achieved by rotating sheath 20 .
  • the axial rotation of the protrusion 41 can be achieved by rotating the pulling wire 42 .
  • a rotating mechanism can be provided between the protrusion 41 and the distal end of the pulling wire 42, and the rotating mechanism can drive the protrusion 41 to rotate axially without the pulling wire 42 rotating.
  • the rotating mechanism can be a driving mechanism (for example, a motor) capable of outputting rotational motion, and the protrusion 41 is driven to rotate axially through the driving mechanism, so that the protrusion 41 can be rotated axially without artificially. It is beneficial to improve the efficiency and effect of pulling the folds by the protruding part 41 .
  • the friction force between the protrusion 41 and the fold can be increased by increasing the surface roughness of the protrusion 41, so as to prevent the protrusion 41 from slipping during the pulling of the fold and cannot continue Stretching of the folds occurs.
  • the surface roughness of the protrusion 41 can be improved by providing several fine structures (eg, protrusions, pits, etc.) on the surface of the protrusion 41 .
  • the protruding part 41 when the protruding part 41 is converted from the first state to the second state, the protruding part 41 can be elastically expanded so as to be pulled in combination with the folds. Specifically, taking the ring-shaped protrusion 41 as an example, as shown in FIG.
  • the radial dimension of is less than or equal to the radial dimension of the distal end of the sheath tube 20. In some embodiments, the radial dimension of the protrusion 41 is smaller than the diameter of the second channel 22 in the first state.
  • the pulling wire 42 moves axially from the proximal end to the distal end in the second channel 22 through axial pushing or rotation of the pulling handle 14 , so that the protruding part 41 can be converted from the first state to the second state.
  • the annular protrusion 41 When the annular protrusion 41 is in the second state, the annular protrusion 41 can protrude outside the distal end of the second channel 22, the annular protrusion 41 is elastically expanded, and the radial dimension of the protrusion 41 increases, that is, the second
  • the radial dimension B (or called the first dimension) of the protruding portion 41 in the second state is greater than the radial dimension of the protruding portion 41 in the first state, and the radial dimension B of the protruding portion 41 is far greater than the sheath tube 20 in the second state.
  • the radial dimension of the end The radial dimension of the end.
  • the radial dimension B of the protrusion 41 may be greater than the diameter of the duodenal papilla (ie, the diameter D of the duodenal papilla shown in FIG. 9 or FIG. 10 ).
  • the radial dimension of the distal end of the sheath 20 may be 1.8-2 mm.
  • the radial dimension of the protrusion 41 in the second state may be 2-10 mm.
  • the radial dimension of the protrusion 41 in the second state may be 4-10 mm.
  • the radial dimension of the protrusion 41 in the second state may be 6-10 mm.
  • the radial dimension of the protrusion 41 in the second state may be 8-10 mm.
  • the protrusion 41 when the protrusion 41 transitions from the first state to the second state, the protrusion 41 can be deflected away from an axis (eg, the axis as shown in FIG. 5 or FIG. 6 ) to facilitate engagement with the plication Pull it.
  • the second channel 22 can be set eccentrically (that is, the axis of the second channel 22 does not coincide with the axis of the sheath tube 20), so that the larger the angle at which the protrusion 41 is deflected away from the axis in the second state, It is more conducive to the combination with the duodenal papilla fold tissue, so as to have a better pulling effect.
  • the radial dimension of the protrusion 41 is smaller than the diameter of the second channel 22; when the pulling wire 42 is axially moved from the proximal end to the distal end in the second channel 22 by the axial push or rotation of the pulling handle 14, it can make The protrusion 41 transitions from the first state to the second state.
  • the annular protrusion 41 can protrude beyond the distal end of the second channel 22 , and at this time, the annular protrusion 41 is deflected away from the axis.
  • the radial dimension C (second dimension) from the first radially most distal end of the annular protrusion 41 to the second radially most distal end of the sheath tube distal end 20A is greater than the diameter of the duodenal papilla, so that the second The deflected protruding part 41 combines with the duodenal papilla fold tissue to pull the duodenal papilla fold tissue, so that the intubation channel is widened, and the resistance of the fold tissue encountered when the guide wire enters the intubation channel becomes smaller. Small, thereby reducing the difficulty of intubation and improving the success rate of intubation.
  • the protrusion 41 when the annular protrusion 41 transitions from the first state to the second state, the protrusion 41 can elastically expand and deflect away from the axis so as to pull it in conjunction with the plica.
  • the radial dimension B (first dimension) of the protruding portion 41 in the second state can be larger than the radial dimension of the protruding portion 41 in the first state.
  • the protruding part 41 and the distal end of the sheath tube 20 can form a joint part, and the radial dimension of the joint part can be larger than the diameter of the duodenal papilla, so that it is compatible with the duodenal papilla fold
  • the combined part of the tissue can rely on the dual functions of "elastic expansion of the protruding part” and “deflection of the protruding part” to pull the duodenal papillary fold tissue, and the pulling effect is better, so that the intubation channel is widened and the guide wire enters
  • the folded tissue resistance encountered during intubation becomes smaller, thereby reducing the difficulty of intubation and improving the success rate of intubation.
  • the radial dimension B (first dimension) of the protrusion 41 when in the second state, is larger than the radial direction from the first radially most distal end of the protrusion 41 to the second radially most distal end of the sheath tube distal end.
  • dimension C (second dimension) the first dimension can be used as the radial dimension of the joint.
  • the radial dimension B (first dimension) of the protruding portion 41 is smaller than the radial dimension C (second dimension) from the first radially most distal end of the protruding portion 41 to the second radially most distal end of the sheath tube distal end. ), the second dimension can be used as the radial dimension of the joint.
  • the channel of the sheath tube 20 may include a negative pressure channel (not shown in the figure), by generating negative pressure in the negative pressure channel, the folds in the cannula channel can be pulled under the action of negative pressure suction Tight, so that the width of the intubation channel can be increased, and the fold tissue resistance encountered when the guide wire enters the intubation channel becomes smaller, thereby reducing the difficulty of intubation and improving the success rate of intubation.
  • a negative pressure channel not shown in the figure
  • the operator can enter the body through the duodenoscope to find the opening of the duodenal papilla, and adjust the position at the far end 20A of the sheath tube 20 of the incision device 100 for the endoscope
  • the bending angle and the bending direction can make the distal end 20A of the sheath tube 20 enter the papilla orifice of the duodenum. In some cases, as shown in FIG.
  • the diameter of the duodenal papilla is D greater than that of the sheath tube 20 shown in FIG.
  • the radial dimension A) of the end, the control part 10 can drive the pulling wire 42 to move from the proximal end to the distal end in the second channel 22, and the protruding part 41 connected to the distal end of the pulling wire 42 protrudes from the sheath tube Outside (the first state is converted to the second state), the radial dimension of the protruding portion 41 becomes larger, and in the second state, the radial dimension B of the protruding portion 41 is greater than the radial dimension A of the distal end of the sheath, and protrudes farther than the sheath tube.
  • the protruding portion 41 outside the end 20A is made of shape memory material, which maintains a certain rigidity under no force.
  • the protruding part 41 in the second state is in contact with the tissue of the duodenal papillae to combine, and is driven by the pulling wire 42 to move axially in the insertion channel, and pulls the duodenal papillae
  • the tissue is stretched and squeezed, and the folds are flattened after being stretched, and the cannulation channel from the original duodenal papilla to the common bile duct or pancreatic duct changes from a steep S-shape as shown in Figure 9 to that shown in Figure 10 Gentle S shape.
  • the control part 10 can drive the pulling wire 42 to move from the distal end to the proximal end in the second channel 22, and the distal end connected to the pulling wire 42
  • the protruding part 41 is received from the outside of the sheath tube 20 into the second channel 22 of the sheath tube 20 (the second state is converted to the first state).
  • the guide wire 50 protrudes from the distal end 20A of the sheath tube 20 and is pulled.
  • the intubation channel from the duodenal papilla to the common bile duct is more suitable for the diffusion of the contrast agent so that the contrast effect is better, and it is also more suitable for the guide wire 50 to enter the common bile duct, thereby improving the success rate of intubation.
  • the protruding part 41 when the protruding part 41 is converted from the first state to the second state, the protruding part 41 is deflected away from the axis, and the deflected protruding part 41 completes the pulling effect on the duodenal papilla plica tissue, which can also realize Same effect as above.
  • the second channel 22 for accommodating the protruding part 41 is arranged eccentrically, so that when the protruding part 41 is converted from the first state to the second state, the deflection angle at which the protruding part 41 deflects away from the axis is larger, which is more conducive to the The combination of duodenal papillary fold tissue has a better pulling effect.
  • the embodiment of the present specification also provides an operation method of the incision device for endoscope, and the method can be applied to the incision device 100 for endoscope in any embodiment of the present specification.
  • Fig. 11 is a flow chart of the operation method of the incision device for endoscope according to some embodiments of the present specification.
  • the operating method 200 of the mirror incision device may include:
  • Step 210 control the pulling wire 42 to move axially from the proximal end to the distal end in the channel of the sheath tube 20, so that the protruding part 41 is converted from the first state to the second state.
  • the operator can axially push and pull or rotate the control handle 14 in the control part 10 to control the axial movement of the pulling wire 42 in the channel of the sheath tube 20 (for example, the second channel 22 ) from the proximal end to the distal end,
  • the protruding part 41 connected to the distal end of the pulling wire 42 is driven to move from being accommodated in the channel (ie, the first state) to protruding out of the distal end of the channel (ie, the second state).
  • Step 220 when the protruding part is in the second state, control the pulling wire 42 to move axially in the channel of the sheath 20, so that the protruding part 41 in the second state is opposite to the duodenum in the intubation channel.
  • the nipple fold tissue is stretched.
  • the protruding part 41 when the protruding part 41 is in the second state, the protruding part 41 is in the channel of the intubation tube. Radial expansion and/or deflection will occur when the protruding part 41 is converted from the first state to the second state, so that the protruding part 41 in the second state can be better compatible with the duodenal papilla fold tissue in the insertion tube channel.
  • the operator can axially push and pull or rotate the control handle 14 in the control part 10 to control the axial movement of the pulling wire 42 in the channel of the sheath tube 20 (for example, the second channel 22 ) from the proximal end to the distal end and from the distal end to the distal end.
  • the axial movement to the proximal end drives the protruding part 41 to move axially back and forth in the intubation channel.
  • the protruding part 41 During the back and forth axial movement of the protruding part 41, the protruding part 41 has a pulling effect on the duodenal papilla fold tissue, so that The duodenal papillary fold tissue can be approached from a curved state to a flattened state, thereby increasing the width of the cannulation channel.
  • Step 230 control the pulling wire 42 to move axially from the distal end to the proximal end in the channel of the sheath tube 20, so that the protruding part 41 is converted from the second state to the first state.
  • the operator can push and pull or rotate the control handle 14 in the control portion 10 to control the pulling wire.
  • Step 240 after the protruding portion is converted to the first state, the control guide wire is stretched out from the distal end 20A of the sheath 20, and enters the common bile duct or the pancreatic duct through the cannula channel.
  • the operator can first put the guide wire 50 into the channel (for example, the first channel 21 ) of the sheath tube 20 through the second opening 16 on the control part 10 , and then let the guide wire 50 pass through the distal end of the sheath tube 20 20A protrudes, and then enters the common bile duct or pancreatic duct through the cannula channel, so that related instruments (such as balloon catheters, mesh baskets, incision knives, cell brushes, stents, contrast catheters, snares, etc.) Under the guidance of 50, it is inserted into the common bile duct or pancreatic duct for corresponding operation.
  • related instruments such as balloon catheters, mesh baskets, incision knives, cell brushes, stents, contrast catheters
  • the operator can also inject a contrast agent into the channel of the sheath 20 (for example, an injection channel) through the first opening 13 on the control part 10, and then enter the common bile duct or pancreatic duct through the intubation channel to Develop.
  • a contrast agent for example, an injection channel
  • the embodiment of the present specification also provides an endoscope, which may include the incision device 100 for endoscope in any embodiment of the present specification.
  • Figure 12 is a schematic illustration of an endoscope according to some embodiments of the present specification.
  • the endoscope 300 may include the endoscope incision device 100 .
  • the endoscope 300 may further include an operating handle 310 and an insertion part 320, and the insertion part 320 may be inserted into a patient's body for imaging.
  • the insertion part 320 may include an instrument channel, the sheath tube 20 of the endoscopic incision device 100 and components received in the channel of the sheath tube 20 (for example, the pulling part 40, the cutting wire 30, the guide wire 50 etc.) can be accommodated in the instrument channel.
  • the control part 10 of the endoscopic incision device 100 can be set independently from the operating handle 310 , or can be integrated on the operating handle. When using the endoscope 300 to perform the intubation operation, the operator can insert the insertion part 320 into the patient's body for imaging to find the opening of the duodenal papilla.
  • the bending angle and bending direction can make the distal end 20A of the sheath tube 20 enter the opening of the duodenal papilla, and then pull the duodenal papilla fold tissue in the insertion tube passage through the protrusion 41 to increase the thickness of the insertion tube passage.
  • the width can reduce the difficulty of intubation and increase the success rate of intubation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种内镜用切开装置(100),包括:鞘管(20),鞘管(20)具有近端和远端,鞘管(20)设有沿着轴向方向延伸的通道,通道能够收纳牵拉部(40);牵拉部(40)包括牵拉丝(42)和设置于牵拉丝(42)远端的突出部(41),牵拉丝(42)在通道内轴向移动使得突出部(41)在第一状态和第二状态之间转换;突出部(41)位于第一状态时,突出部(41)收纳于通道内;突出部(41)位于第二状态时,突出部(41)突出于通道远端外。

Description

一种内镜用切开装置
交叉引用
本申请要求2021年7月28日提交的申请号为202110854782.5的中国申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及一种医疗器械,特别涉及一种内镜用切开装置。
背景技术
内镜逆行胰胆管造影术(Endoscopic Retrograde Cholangio Pancreatography,ERCP)是指将导丝或相关器械(例如,切开刀、造影导管等)通过十二指肠乳头插入胆总管或胰管(简称为插管)的手术操作。其凭借创伤小、恢复快等独特优势在胆胰疾病诊治中应用日益广泛。插管是ERCP手术中的关键技术,但由于部分患者的十二指肠乳头的生理结构可能较为异常(例如,十二指肠乳头的皱襞粗长),会增加插管难度、降低插管成功率以及增大术后胰腺症、穿孔等并发症出现的风险。
因此,如何降低插管难度、提高插管成功率并减少术后并发症出现的风险是ERCP手术中值得关注的问题。
发明内容
本说明书实施例提供一种内镜用切开装置,包括:鞘管,所述鞘管具有近端和远端,所述鞘管设有沿着轴向方向延伸的通道,所述通道能够收纳牵拉部;所述牵拉部包括牵拉丝和设置于所述牵拉丝远端的突出部,所述牵拉丝在所述通道内轴向移动使得所述突出部在第一状态和第二状态之间转换;所述突出部位于所述第一状态时,所述突出部收纳于所述通道内;所述突出部位于所述第二状态时,所述突出部突出于所述通道远端外。
在一些实施例中,所述突出部位于所述第二状态时,所述突出部与所述鞘管远端构成结合部,所述结合部径向尺寸大于十二指肠乳头直径;所述突出部径向尺寸为第一尺寸,所述突出部第一径向最远端至所述鞘管远端第二径向最远端的径向尺寸为第二尺寸;所述第一尺寸大于所述第二尺寸,则所述结合部径向尺寸为所述第一尺寸;所述第二尺寸大于所述第一尺寸,则所述结合部径向尺寸为第二尺寸。
在一些实施例中,所述第二状态时所述突出部径向尺寸大于所述第一状态时所述突出部径向尺寸;所述第一状态时所述突出部的径向尺寸小于或等于所述鞘管远端径向尺寸;所述第二状态时所述突出部的径向尺寸大于所述鞘管远端径向尺寸。
在一些实施例中,所述第二状态时所述突出部的径向尺寸为2-10mm;所述鞘管远端的径向尺寸为1.8-2mm。
在一些实施例中,所述通道包括用于收纳导丝的第一通道和用于收纳牵拉部的第二通道。
在一些实施例中,从所述第一状态转换成所述第二状态时,所述突出部远离轴线发生偏转。
在一些实施例中,所述第二通道偏心设置。
在一些实施例中,所述鞘管远端设有用于切割组织的切丝,所述第二通道共同收纳所述牵拉部和所述切丝。
在一些实施例中,所述鞘管远端设有用于切割组织的切丝,所述通道还包括第三通道,所述第二通道收纳所述牵拉部,所述第三通道收纳所述切丝。
在一些实施例中,所述第二通道或者所述第三通道为注射通道。
在一些实施例中,所述通道还包括第四通道,所述第一通道收纳所述导丝,所述第二通道收纳所述牵拉部,所述第三通道收纳所述切丝,所述第四通道为注射通道。
在一些实施例中,所述第一通道为C型截面,所述第一通道包括所述导丝容纳部和狭缝部。
在一些实施例中,所述突出部由一根或多根牵引线组成,形成半封闭或封闭的环状。
在一些实施例中,所述突出部由一根或多根牵引线组成,形成半封闭或封闭的网状。
在一些实施例中,所述突出部由一根或多根牵引线组成,形成螺旋状。
在一些实施例中,所述突出部的径向尺寸由远端至近端大致相等,或逐渐增大,或逐渐减小。
在一些实施例中,还包括控制部,所述控制部包括牵拉手柄,所述牵拉手柄的轴向推拉或者所述牵拉手柄的旋转控制所述牵拉丝在所述通道内轴向移动,使得所述突出部在第一状态和第二状态之间转换。
在一些实施例中,在所述突出部处于第二状态时,所述牵拉手柄还用于控制所述牵拉丝在所述通道内轴向移动,以使得所述突出部对组织进行牵拉。
在一些实施例中,所述牵拉丝的远端和所述突出部的近端固定连接,或者,所述牵拉丝的远端和所述突出部的近端可拆卸连接。
在一些实施例中,所述突出部用于对十二指肠乳头皱襞组织进行牵拉。
本说明书实施例之一提供一种内镜用切开装置的操作方法,应用于上述任一实施例中 的内镜用切开装置,所述操作方法包括:控制牵拉丝在鞘管的通道内由近端至远端轴向移动,使突出部从第一状态转换为第二状态;在所述突出部位于所述第二状态时,控制所述牵拉丝在鞘管通道内轴向移动,使位于所述第二状态下的突出部对插管通道内的十二指肠乳头皱襞组织进行牵拉。
在一些实施例中,所述操作方法还包括:控制所述牵拉丝在鞘管通道由远端至近端轴向移动,使所述突出部从第二状态转换为第一状态;在所述突出部转换为所述第一状态后,控制导丝从鞘管的远端伸出,经插管通道进入胆总管或胰管内。
本说明书实施例之一提供一种内镜,包括上述任一实施例中的内镜用切开装置。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性内镜用切开装置的结构示意图;
图2是根据本说明书一些实施例所示的另一示例性内镜用切开装置的结构示意图;
图3是根据本说明书一些实施例所示的鞘管的不同截面示意图;
图4是根据本说明书一些实施例所示的突出部的不同形状示意图;
图5是图1中的M放大示意图;
图6是图2中的N放大示意图;
图7是根据本说明书一些实施例所示的内镜用切开装置不具有牵拉部时的工作示意图;
图8是根据本说明书一些实施例所示的内镜用切开装置具有牵拉部时的工作示意图;
图9是根据本说明书一些实施例所示的牵拉前的十二指肠乳头的示意图;
图10是根据本说明书一些实施例所示的牵拉后的十二指肠乳头的示意图;
图11是根据本说明书一些实施例所示的内镜用切开装置的操作方法的流程图;
图12是根据本说明书一些实施例所示的内镜的示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
在ERCP手术中,当患者的十二指肠乳头(简称为乳头)皱襞粗长时,通常会使得插管的难度增加并面临插管失败的风险。乳头皱襞粗长通常是指乳头中连通乳头口与胆总管和胰管两者共同的插管通道(如图10所示的插管通道)内具有很多的皱襞,使得插管通道的内壁的形状为起伏较大的S形。这些皱襞会增大导丝插入插管通道内的阻力,阻挡导丝按照正常的方向前进,使导丝无法顺利插入想要进入的胆总管或胰管。另外,乳头皱襞粗长还会影响造影剂的注入,从而影响胆总管或胰管的显影效果。在这种情况下,通过反复调试插管方向或者使用乳头预切开的方法虽然能够实现成功插管,但这会对乳头组织造成损伤,增加术后胰腺症、穿孔等并并发症的风险。可以理解的是,插管不仅包括导丝通过插管通道插入胆总管或胰管中,还可以包括相关器械(例如,球囊导管、网篮、切开刀、细胞刷、支架、造影导管、圈套器等)在导丝的引导下通过插管通道插入胆总管或胰管中。
本说明书实施例提供了一种内镜用切开装置,该内镜用切开装置可以包括鞘管,鞘管具有近端和远端,鞘管内设有沿着轴向方向延伸的通道,该通道能够收纳有牵拉部。牵拉部包括牵拉丝和设置于牵拉丝远端的突出部。通过使牵拉丝在通道内轴向移动,能够带动突出部收纳于通道内或突出于通道远端,当突出部突出于通道远端时,突出部可以与乳头皱襞接触,以对乳头皱襞进行牵拉。乳头皱襞在突出部的牵拉作用下拉伸挤压并最终趋近于展平状态,使得插管通道的内壁形状由起伏较大的S形变为平缓的S形,从而使得插管通道变宽,导丝不容易受到皱襞的阻挡,减小了导丝插入插管通道内的阻力,使得导丝能够顺利插入想要进入的胆总管或胰管,进而能够减小插管难度,提高插管成功率。需要说明的是,本说明书实施例中所涉及的“远端”和“近端”可以分别指进行插管时远离操作者的一端和靠近操作者的一端。
下面将结合附图对本说明书实施例提供的内镜用切开装置进行详细说明。
图1是根据本说明书一些实施例所示的示例性内镜用切开装置的结构示意图。图2是根据本说明书一些实施例所示的另一示例性内镜用切开装置的结构示意图。
结合图1和图2所示,内镜用切开装置100包括鞘管20,鞘管20具有近端和远端。其中,鞘管20的近端和远端可以分别是图1中示出的鞘管20的右端和左端。在一些实施例中,鞘管20设有沿着轴向方向(或称作长度方向)延伸的通道,通道可以用于收纳牵拉部40。牵拉部40可以包括牵拉丝42和设置于牵拉丝42远端的突出部41。通过使牵拉丝42在鞘管20通道内轴向移动,可以使得突出部41在第一状态和第二状态之间转换。其中,当突出部41位于第一状态时,突出部41收纳于鞘管20的通道内;当突出部41位于第二状态时,突出部41突出于鞘管20的通道远端外,突出部41能够与乳头皱襞结合以用于对十二指肠乳头 皱襞组织(简称为皱襞)进行牵拉,皱襞在牵拉作用下拉伸挤压,由最初的弯曲状态逐渐趋近于展平状态,使得插管通道宽度增大,减小了导丝在插管通道内的阻力,减小了插管难度,提高了插管成功率。关于突出部41是如何对皱襞进行牵拉的更多描述可以在本说明书其他地方找到,在此先不做详细说明。
在一些实施例中,继续参见图1和图2所示,内窥镜切开装置100还可以包括控制部10。控制部10可以包括牵拉手柄14,牵拉手柄14可以通过轴向推拉或旋转控制牵拉丝42在鞘管20内的通道(例如,图3所示的第二通道22)内轴向移动,以使得突出部41在第一状态和第二状态之间转换。在一些实施例中,在突出部41处于第二状态时,牵拉手柄14还可以用于控制牵拉丝42在鞘管20通道内轴向移动,以使得突出部41对皱襞组织进行牵拉。其中,突出部41的近端可以连接于牵拉丝42的远端,使得牵拉丝42在通道内轴向移动能够带动突出部41运动,使得突出部41能够从通道内运动至通道远端外,以及从通道远端外运动至通道内。在一些实施例中,牵拉丝42的远端和突出部41的近端通过焊接、粘结等方式进行固定连接,该连接方式工艺简单,连接效果牢固。在一些实施例中,牵拉丝42的远端和突出部41的近端通过卡扣、螺纹连接或过盈配合等方式进行可拆卸连接。作为示例性说明,牵拉丝42的远端可以设置有外螺纹,突出部41的近端可以设置有与该外螺纹适配的螺纹孔,通过螺纹拧紧和拧松的方式即可实现牵拉丝42与突出部41的可拆卸连接。通过使牵拉丝42和突出部41可拆卸连接,可以在皱襞正常而不会阻挡插管时,将突出部41从牵拉丝42的远端拆卸下去,而在皱襞异常(例如,粗长)会阻挡插管时,将突出部41连接于牵拉丝42的远端,通过突出部41牵拉皱襞来解决皱襞阻挡插管的问题,以此实现内镜用切开装置的灵活运用。在一些实施例中,可以直接将牵拉丝42的远端构造成突出部41,即牵拉丝42与突出部41为一体结构。
在一些实施例中,如图1所示,控制部10上开设有供牵拉部40进入鞘管20的通道内的入口12,牵拉丝42的近端突出于入口12外并与牵拉手柄14固定连接。其中,入口12可以设置内螺纹。牵拉手柄14上可以设置有与入口12内螺纹适配的外螺纹。通过将牵拉手柄14与入口12进行螺纹装配,然后旋转牵拉手柄14,可以调整牵拉手柄14位于入口12内的部分的长度,以带动牵拉丝42在通道内轴向移动。
在一些实施例中,如图2所示,控制部10上开设有供牵拉部40进入鞘管20的通道内的入口12,牵拉丝42的近端突出于入口12外并与牵拉手柄14固定连接。牵拉手柄14安装于入口12内。操作者可以直接通过轴向推拉牵拉手柄14的方式来带动牵拉丝42在通道内轴向移动。其中,轴向推拉牵拉手柄14可以理解为将牵拉手柄14推向入口12或从入口12 向外拉出,推拉的方向可以为入口的轴向方向。
在一些实施例中,如图1和图2所示,鞘管20内的通道内还收纳有导丝50,通过将导丝50插入胆总管或胰管内,可以使得相关器械(例如,球囊导管、网篮、切开刀、细胞刷、支架、造影导管、圈套器等)在导丝50的引导下插入胆总管或胰管内,以进行相应的手术操作。在一些实施例中,鞘管20远端还可以设有用于切割组织的切丝30,切丝可以被收纳于鞘管20内的通道内。在一些实施例中,通过对切丝30通以高频电,可以实现对乳头括约肌、胆总管或胰管的末端部分等部位的切割。在一些实施例中,鞘管20内的通道可以作为注射通道,注射通道可以用于供造影剂通过进入胆总管或胰管内,以进行显影。
在一些实施例中,控制部10上可以设有第一开口13,第一开口13可以与鞘管20内的通道(例如,注射通道)连通,使造影剂可以通过第一开口13注射进入注射通道内。在一些实施例中,控制部10上可以设有第二开口16,第二开口16可以与鞘管20内的通道(例如,第一通道21)连通,使得导丝50能够从第二开口16进入第一通道21内。
下面将结合附图对鞘管20的结构进行详细说明。
图3是根据本说明书一些实施例所示的鞘管的不同截面示意图。
在一些实施例中,如图3(c)和(f)所示,鞘管20内的通道可以包括用于收纳导丝50的第一通道21和用于收纳牵拉部40的第二通道22。其中,牵拉丝42在第二通道22内的轴向移动,可以使得突出部41在第一状态和第二状态之间转换。具体地,突出部41位于第一状态时,突出部41收纳于第二通道22内;突出部41位于第二状态时,突出部41可突出于第二通道22远端外。在一些实施例中,第二通道22还可以为注射通道。在一些实施例中,第二通道22可以用于共同收纳牵拉部40和切丝30。
在一些实施例中,如图3(b)和(e)所示,鞘管20内的通道可以包括第一通道21、第二通道22以及第三通道23。其中,第一通道21用于收纳导丝50,第二通道22用于收纳牵拉部40,第三通道用于收纳切丝30。在一些实施例中,第二通道22或第二通道23可以作为注射通道。
在一些实施例中,如图3(a)和(d)所示,鞘管20内的通道可以包括第一通道21、第二通道22、第三通道23以及第四通道24。其中,第一通道21用于收纳导丝50,第二通道22用于收纳牵拉部40,第三通道用于收纳切丝30,第四通道24作为注射通道。
在一些实施例中,第一通道21的截面可以具有封闭形状。其中,封闭形状可以理解为具有闭合轮廓的形状。在一些实施例中,如图3(a)、(b)以及(c)所示,第一通道21的截面可以为圆形。在一些实施例中,第一通道21的截面还可以为三角形、矩形、正五边形 等规则或不规则的具有闭合轮廓的形状。
在一些实施例中,如图3(d)、(e)以及(f)所示,第一通道21的截面可以是C型截面,即第一通道21的截面轮廓的形状近似于C型。进一步地,第一通道21可以包括导丝容纳部212和狭缝部211。结合图1所示,鞘管20可以包括位于其远端的远端20A、位于其近端的近端口20B以及位于远端20A和近端口20B之间的中间端口20C。在一些实施例中,第一通道21可以位于鞘管20的壁内,沿着鞘管20的远端至近端延伸。在一些实施例中,狭缝部211设置于第一通道21位于近端口20B和中间端口20C之间的部分。在一些实施例中,狭缝部211可以为鞘管20在近端口20B和中间端口20C之间延伸的径向开口。在一些实施例中,狭缝部211可以为鞘管20的弱化区域,径向开口区域在近端口20B和中间端口20C之间延伸的狭缝。在一些实施例中,在将导丝50收纳于第一通道21时,导丝50的远端可以插入中间端口20C内,穿过第一通道21并从鞘管20的远端20A露出。通过将中间端口20C作为导丝入口将导丝50放入第一通道21内,可以不用单独在控制部10上设置导丝入口(例如,第二开口16)。同时,通过第一通道21的狭缝部211以及导丝50的远端从中间端口20C插入的设计,可以轻易、快速地实现将导丝50从鞘管20中分离或将导丝50收纳于其第一通道21内,从而可以实现快速交换技术。作为示例性说明,在使用内镜切开装置100在将导丝50插入胆总管或胰管内后,狭缝部211的设置可以易于导丝50从鞘管20内快速脱离,使得导丝50得以保留在胆总管或胰管内,而将鞘管20及相应器械从患者体内抽离,以便于执行其他手术操作的器械的鞘管20能够通过得以在导丝50的引导下插入胆总管或胰管内,以达到快速交换器械的目的。在一些实施例中,狭缝部211的宽度可以小于导丝50的直径,这样可以保证导丝50在没有外力的情况下不会通过狭缝部211从鞘管20中脱离,降低了导丝50在引导器械插入的过程中,导丝50从鞘管20中脱离的风险。
本说明书实施例提供的内镜用切开装置通过使突出部41从第一状态变换至第二状态,突出部41突出于第二通道22远端外并发生径向弹性张开和/或偏转,使得突出部41的径向尺寸或者突出部41与鞘管20远端所构成的结合部的径向尺寸增大,以大于十二指肠乳头直径(例如,图9所示的十二指肠乳头直径D),使得突出部41能够与皱襞较好地结合(或贴合)。在一些实施例中,当突出部41位于第二状态下时,突出部41通过牵拉丝42的带动沿插管通道的轴向进行移动时,能够牵拉皱襞拉伸挤压,相当于对皱襞进行捋平,使得皱襞从弯曲得以趋近于展平状态,增大了插管通道的宽度,进而降低了插管难度,提高了插管成功率。在一些实施例中,突出部41从第一状态变换至第二状态的过程中,突出部41对皱襞也可以具有一定的牵拉作用。下面将结合附图对突出部41以及突出部41是如何实现对皱襞的 牵拉进行详细说明。
在一些实施例中,为了使突出部41从第一状态切换到第二状态时,能够发生径向弹性张开和/或偏转,并且从第二状态切换到第一状态时,突出部41能够恢复到位于第一状态时的形状,即突出部41需要具有一定的弹性形变能力。对此,突出部41的材料可以采用具有一定弹性的形状记忆材料制成。在一些实施例中,突出部41的材料可以包括但不限于诸如不锈钢、镍钛合金、铁铂合金等的金属材料,诸如聚氨酯、聚烯烃、环氧树脂等的高分子材料以及形状记忆陶瓷材料等或其组合。
在一些实施例中,突出部41可以由一根或多根牵引线组成,形成半封闭或封闭的环状。其中,半封闭的环状可以理解为未完全闭合而具有开口的环状。在一些实施例中,牵引线可以和牵拉丝42相同,即牵引线和牵拉丝42具有相同的直径、材料等。在一些实施例中,突出部41可以是牵拉丝42的一部分。例如,可以将牵拉丝42的远端部分弯折形成半封闭或封闭的环状。在一些实施例中,突出部41也可以由一根或多个牵引线组成而形成半封闭或封闭的环状后,再与牵拉丝42的远端固定连接或可拆卸连接。在一些实施例中,突出部41可以预定型为径向尺寸可发生变化的环。具体地,突出部41可以在不受力的情况下和受力不同的情况下具有不同的径向尺寸。作为示例性说明,突出部41位于第一状态时,收纳于第二通道22内,第二通道22能够对突出部41的径向扩张产生约束力,使得突出部41的径向尺寸较小;而当突出部41位于第二状态时,突出部41不再受力,突出部41发生径向扩张,其径向尺寸变大。在一些实施例中,突出部41可以为圆形、非圆形(例如,三角形、矩形、五边形、六边形等规则或不规则)的环状结构。作为示例性说明,突出部41可以包括但不限于具有如图4(a)~(m)所示的形状的环状结构。不同形状的环状结构的突出部41可以使得突出部41从第一状态到第二状态的径向尺寸变化率不同,并且也会使得突出部41对皱襞牵拉的施力方向不同,以适合具有不同弯曲程度的皱襞的插管通道的插管。
在一些实施例中,突出部41可以为一根或多根具有一定弹性的形状记忆材料的牵引线组成,形成半封闭或封闭的网状。作为示例性说明,突出部41可以为如图4(n)所示的网状。通过将突出部41设置为网状,可以使得突出部41从第一状态转换至第二状态时,能够针对皱襞的具体情况(例如,皱襞在插管通道内的分布、皱襞的形状、皱襞的弯曲程度等)进行多个方向的径向弹性扩张和/或偏转,使得第二状态下的突出部41与皱襞结合面积更大,当第二状态下的突出部41在牵拉丝的带动下对皱襞进行牵拉时,能够让突出部41对皱襞具有更好的牵拉效果。具体地,突出部41与皱襞结合面积越大,突出部41在轴向移动时,便能牵拉越大面积的皱襞拉伸挤压,不仅可以使皱襞的展平具有较好的效果,还能减小使皱襞 从弯曲状态趋近于展平状态的时间,以此来提高插管效率。
在一些实施例中,突出部41可以由一根或多根牵拉线组成,形成螺旋状。作为示例性说明,突出部41可以为如图4(o)所示的螺旋状。通过将突出部41设置为螺旋状,可以使得突出部41从第一状态转换至第二状态时,能够针对皱襞的具体情况(例如,皱襞在插管通道内的分布、皱襞的形状、皱襞的弯曲程度等)进行多个方向的径向弹性扩张和/或偏转,使得第二状态下的突出部41与皱襞结合面积更大,当第二状态下的突出部41在牵拉丝42的带动下对皱襞进行牵拉时,能够让突出部41对皱襞具有更好的牵拉效果。另外,当螺旋状的突出部41位于第二状态与皱襞结合时,突出部41对皱襞产生的沿着轴向传导和推进的力更集中,使得突出部41对皱襞的牵拉效果更好。具体地,突出部41对皱襞产生的沿着轴向传导和推进的力越集中,皱襞在突出部41的牵拉下拉伸挤压的变形程度就越大,皱襞便能更快、更好地从弯曲状态趋近于展平状态,从而有利于提高插管效率和成功率。
在一些实施例中,螺旋状的突出部41的径向尺寸由远端至近端可以大致相等。在一些实施例中,突出部41的径向尺寸由远端至近端大致相等可以是指突出部由远端至近端的径向尺寸的变化率在5%以内。在一些实施例中,突出部41的径向尺寸由远端至近端大致相等可以是指突出部由远端至近端的径向尺寸的变化率在3%以内。在一些实施例中,突出部41的径向尺寸由远端至近端大致相等可以是指突出部由远端至近端的径向尺寸的变化率在1%以内。通过使螺旋状的突出部41的径向尺寸由远端至近端大致相等,可以使得突出部41与皱襞结合时对皱襞的牵拉作用比较均一,适合稳定地牵拉皱襞。
在一些实施例中,螺旋状的突出部41的径向尺寸由远端至近端可以不同,由远端至近端不同的径向尺寸可以适应不同的皱襞结构。在一些实施例中,螺旋状的突出部41的径向尺寸由远端至近端可以逐渐增大。当径向尺寸由远端至近端逐渐增大的螺旋状的突出部41轴向移动时,最初与皱襞的结合面积较小,随着继续轴向移动,突出部41与皱襞的结合面积越来越大,对皱襞的牵拉作用逐渐增强,适合插管通道内皱襞阻挡较为集中的区域的牵拉情况。另外,径向尺寸由远端至近端逐渐增大的螺旋状的突出部41可以快速收纳至鞘管20通道(例如,第二通道22)内或突出于鞘管20通道外,以实现突出部41第一状态和第二状态之间的快速变换,而不影响螺旋状的突出部41在皱襞完成牵拉后导丝进入插管通道的后续操作。在一些实施例中,螺旋状的突出部41的径向尺寸由远端至近端也可以逐渐减小。
在一些实施例中,突出部41的结构可以基于伞的收放原理来设计,以达到突出部41从第一状态和第二状态之间变换以及位于第二状态时径向尺寸增大并大于十二指肠乳头直径的目的。具体地,突出部41可以包括杆件(类似于伞柄)和连接于杆件远端的主体部(类似 于伞面)。杆件上套设有能够相对杆件轴向滑动的滑动件,滑动件通过多个连接件(类似于伞骨)与主体部连接,当滑动件朝向杆件远端滑动时,滑动件能够通过连接件带动主体部张开,而当滑动件朝向杆件近端滑动时,滑动件能够通过连接件带动主体部收拢。在一些实施例中,主体部可以为如图4(n)所示的网状结构,滑动件在杆件上的滑动可以带动该网状结构进行张开或收拢。在一些实施例中,杆件的近端可以与牵拉丝42的远端连接,鞘管20的通道内还可以设置有用于带动滑动件在杆件上滑动的额外的牵拉丝。当突出部41突出于通道远端外时,通过人为地推拉额外的牵拉丝在鞘管20的通道内轴向移动可以带动滑动件在杆件上的滑动,从而带动主部部进行张开或收拢。在一些实施例中,上述实施例中的额外的牵拉丝可以用伸缩杆来代替,通过利用伸缩杆的伸缩运动可以带动滑动件在杆件上的滑动。在一些实施例中,可以通过控制额外的牵拉丝在通道内轴向移动的距离或者控制伸缩杆的伸长长度来使得主体部具有不同的张开程度,从而使得突出部41位于第二状态时能够具有不同的径向尺寸,从而适用于在具有不同直径的插管通道对皱襞的牵拉或对不同形状、弯曲程度等的皱襞的牵拉,从而保证突出部41与皱襞具有较大的结合面积,使得突出部41对皱襞具有较好的牵拉效果。通过基于伞的原理来设计突出部41,不仅可以保证突出部41处于第二状态时径向尺寸可以增大,以实现对皱襞较好的牵拉作用,而且还能提高突出部41从第一状态和第二状态之间的变化效率。
在一些实施例中,突出部41可以为球囊,对应地,牵拉丝42则可以用与球囊连通的牵拉导管来代替。当突出部41位于第一状态时,球囊内的压强较小,球囊具有较小的体积而被收纳于鞘管20通道内,随着牵拉导管向远端轴向移动,突出部41位于第二状态,即球囊突出于鞘管20通道远端外,此时通过牵拉导管向球囊内通入气体,使得球囊可以发生径向扩张,径向尺寸增大,能够与皱襞较好地结合,以实现对皱襞的牵拉。在一些实施例中,当突出部41位于第二状态时,球囊的径向尺寸可以通过向球囊内通入气体的体积来控制,从而适用于在具有不同直径的插管通道对皱襞的牵拉或对不同形状、弯曲程度等的皱襞的牵拉,从而保证突出部41与皱襞具有较大的结合面积,使得突出部41对皱襞具有较好的牵拉效果。
在一些实施例中,由于皱襞可能分布在插管通道内壁周向上的任意位置,为了使得突出部41能够对插管通道内壁周向上的皱襞具有均一的牵拉作用,以稳定地对皱襞进行牵拉,突出部41可以在轴向移动实现对皱襞的牵拉的过程中同时进行转动(例如,绕牵拉丝42的中心轴转动),以使得插管通道内壁周向上的皱襞均能与突出部41结合。在一些实施例中,可以通过使鞘管20转动来实现突出部41的轴向转动。在一些实施例中,可以通过使牵拉丝42转动来实现突出部41的轴向转动。在一些实施例中,可以在突出部41和牵拉丝42的远 端之间设置旋转机构,该旋转机构可以带动突出部41进行轴向转动,而牵拉丝42不会发生转动。在一些实施例中,该旋转机构可以是能够输出旋转运动的驱动机构(例如,电机),通过驱动机构来驱动突出部41进行轴向转动,可以无需人为地使突出部41进行轴向转动,有利于提高突出部41对皱襞牵拉的效率和效果。
在一些实施例中,可以通过增大突出部41的表面粗糙度的方式来增大突出部41与皱襞之间的摩擦力,来防止突出部41在牵拉皱襞的过程中滑脱,而无法继续牵拉皱襞的情况发生。在一些实施例中,可以通过在突出部41的表面上设置若干细微结构(例如,凸起、凹坑等)来提高突出部41的表面粗糙度。
在一些实施例中,当突出部41从第一状态转换成第二状态时,突出部41可以弹性张开,以便于与皱襞结合对其进行牵拉。具体地,以突出部41为环形为例,如图5所示,环形的突出部41位于第一状态时可预先收纳至鞘管20通道(即第二通道22)内,此时突出部41的径向尺寸小于或等于鞘管20远端的径向尺寸。在一些实施例中,第一状态时突出部41的径向尺寸小于第二通道22的直径。通过牵拉手柄14的轴向推动或旋转带动牵拉丝42在第二通道22内由近端至远端轴向移动,可以使得突出部41从第一状态转换至第二状态。当环形的突出部41位于第二状态时,环形的突出部41可突出于第二通道22远端外,环形的突出部41发生弹性张开,突出部41的径向尺寸增大,即第二状态时突出部41的径向尺寸B(或称为第一尺寸)大于第一状态时突出部41的径向尺寸,并且第二状态时突出部41的径向尺寸B大于鞘管20远端的径向尺寸。进一步地,第二状态时突出部41的径向尺寸B可以大于十二指肠乳头直径(即图9或图10所示的十二指肠乳头直径D)。在一些实施例中,鞘管20远端的径向尺寸可以为1.8-2mm。在一些实施例中,第二状态时突出部41的径向尺寸可以为2-10mm。在一些实施例中,第二状态时突出部41的径向尺寸可以为4-10mm。在一些实施例中,第二状态时突出部41的径向尺寸可以为6-10mm。在一些实施例中,第二状态时突出部41的径向尺寸可以为8-10mm。通过上述设置,可以使得第二状态时弹性张开的突出部41与十二指肠乳头皱襞组织结合而对十二指肠乳头皱襞组织进行牵拉,使得插管通道变宽,导丝进入插管通道时遇到的皱襞组织阻力变小,进而降低了插管难度,提高插管成功率。
在一些实施例中,当突出部41从第一状态转换成第二状态时,突出部41可以远离轴线(例如,如图5或图6中所示的轴线)发生偏转,以便于与皱襞结合对其进行牵拉。在一些实施例中,第二通道22可以偏心设置(即第二通道22的轴线与鞘管20的轴线不重合),以使得第二状态时的突出部41远离轴线发生偏转的角度越大,更有利于与十二指肠乳头皱襞组织的结合,以具有更好的牵拉效果。在一些实施例中,以突出部41为环形为例,如图6所 示,环形的突出部41位于第一状态时可预先收纳至鞘管20通道(即第二通道22)内,此时突出部41的径向尺寸小于第二通道22的直径;当通过牵拉手柄14的轴向推动或旋转带动牵拉丝42在第二通道22内由近端至远端轴向移动,可以使得突出部41从第一状态转换至第二状态。当环形的突出部41位于第二状态时,环形的突出部41可突出于第二通道22远端外,此时环形的突出部41远离轴线发生偏转。其中,环形的突出部41第一径向最远端至鞘管远端20A第二径向最远端的径向尺寸C(第二尺寸)大于十二指肠乳头直径,这样可以使得第二状态时偏转的突出部41与十二指肠乳头皱襞组织结合而对十二指肠乳头皱襞组织进行牵拉,使得插管通道变宽,导丝进入插管通道时遇到的皱襞组织阻力变小,进而降低了插管难度,提高插管成功率。
在一些实施例中,当环形的突出部41从第一状态转换成第二状态时,突出部41可以弹性张开并远离轴线发生偏转,以便于与皱襞结合对其进行牵拉。其中,第二状态时的突出部41的径向尺寸B(第一尺寸)能够大于第一状态时的突出部41的径向尺寸。进一步地,当突出部41位于第二状态时,突出部41与鞘管20远端可以构成结合部,结合部的径向尺寸可以大于十二指肠乳头直径,使得与十二指肠乳头皱襞组织结合的结合部可以依靠“突出部弹性张开”及“突出部偏转”双重作用对十二指肠乳头皱襞组织进行牵拉,牵拉效果更好,使得插管通道变宽,导丝进入插管通道时遇到的皱襞组织阻力变小,进而降低了插管难度,提高了插管成功率。在一些实施例中,当第二状态时突出部41的径向尺寸B(第一尺寸)大于突出部41第一径向最远端至鞘管远端第二径向最远端的径向尺寸C(第二尺寸)时,第一尺寸可以作为结合部的径向尺寸。当第二状态时突出部41的径向尺寸B(第一尺寸)小于突出部41第一径向最远端至鞘管远端第二径向最远端的径向尺寸C(第二尺寸)时,第二尺寸可以作为结合部的径向尺寸。
在一些实施例中,鞘管20通道可以包括负压通道(图中未示出),通过使负压通道内产生负压,可以使得插管通道内的皱襞在负压吸力的作用下被拉紧,而使得插管通道的宽度得以增大,导丝进入插管通道时遇到的皱襞组织阻力变小,进而降低了插管难度,提高了插管成功率。
下面将结合附图对本说明书实施例提供的内镜用切开装置100的操作过程进行详细说明。
在使用内镜用切开装置100时,操作者可以通过十二指肠镜进入体内寻找到十二指肠乳头开口,通过调节内镜用切开装置100的鞘管20的远端20A处的弯曲角度和弯曲方向,可以使得鞘管20的远端20A进入十二指肠乳头口。在一些情况下,如图7所示,当不设有 牵拉部40的鞘管20进入十二指肠乳头后,由于十二指肠乳头皱襞组织在插管通道的径向上具有一定长度,导丝50从十二指肠乳头口进入胆总管的路径时导丝50与皱襞组织结合阻力较大,造成导丝50的通过性差。另外,由于皱襞粗长也会影响注射显影剂的扩散,使得胆管造影效果较差,不能准确定位胆总管或胰管位置,从而给后续导丝50进入胆总管或胰管造成较大障碍。
在一些实施例中,如图8所示,内镜用切开装置100的鞘管20进入十二指肠乳头后(十二指肠乳头直径为D大于图6中所示的鞘管20远端的径向尺寸A),控制部10可以带动牵拉丝42在第二通道22内由近端至远端运动,与牵拉丝42远端连接的突出部41从鞘管内突出于鞘管外(第一状态转换至第二状态),突出部41的径向尺寸变大,且第二状态时突出部41的径向尺寸B大于鞘管远端径向尺寸A,突出于鞘管远端20A外的突出部41由形状记忆材料组成,在不受力的状态下保持一定的刚性。第二状态时的突出部41与十二指肠乳头皱襞组织接触以结合,并且在牵拉丝42的带动下在插管通道内轴向移动,并通过牵拉作用将十二指肠乳头皱襞组织拉伸挤压,皱襞受到牵拉后褶皱展平,原十二指肠乳头至胆总管或胰管的插管通道由如图9所示的陡峭的S形变成如图10所示的平缓的S形。当突出部41完成对十二指肠乳头皱襞组织牵拉作用后,控制部10可以带动牵拉丝42在第二通道22内由远端至近端运动,与牵拉丝42远端连接的突出部41从鞘管20外收纳至鞘管20的第二通道22内(第二状态转换至第一状态),此时导丝50从鞘管20的远端20A伸出,被牵拉后的十二指肠乳头至胆总管的插管通道更适合造影剂的扩散使得造影效果更好,也更适合导丝50进入胆总管,从而提高插管成功率。
在一些实施例中,突出部41从第一状态转换成第二状态时,突出部41远离轴线发生偏转,通过偏转的突出部41完成对十二指肠乳头皱襞组织牵拉作用,也能实现上述同样效果。在一些实施例中,收纳突出部41的第二通道22偏心设置,使得突出部41从第一状态转换成第二状态时突出部41远离轴线发生偏转的偏转角度更大,更有利于与十二指肠乳头皱襞组织的结合,以具有较好的牵拉效果。
本说明书实施例还提供了一种内镜用切开装置的操作方法,该方法可以应用于本说明书任一实施例中的内镜用切开装置100。
图11是根据本说明书一些实施例所示的内镜用切开装置的操作方法的流程图。
如图11所示,镜用切开装置的操作方法200可以包括:
步骤210,控制牵拉丝42在鞘管20的通道内由近端至远端轴向移动,使突出部41从第一状态转换为第二状态。具体地,操作者可以通过控制部10中的控制手柄14轴向推拉或 旋转控制牵拉丝42在鞘管20的通道(例如,第二通道22)内由近端至远端轴向移动,以带动连接于牵拉丝42远端的突出部41从收纳于通道内(即第一状态)运动至突出于通道远端外(即第二状态)。
步骤220,在突出部位于所述第二状态时,控制牵拉丝42在鞘管20的通道内轴向移动,使位于第二状态下的突出部41对插管通道内的十二指肠乳头皱襞组织进行牵拉。具体地,当突出部41位于第二状态下时,突出部41处于插管通道内。突出部41从第一状态转换为第二状态时会发生径向扩张和/或偏转,使得位于第二状态下的突出部41能够与插管通道内的十二指肠乳头皱襞组织较好地结合。操作者可以通过控制部10中的控制手柄14轴向推拉或旋转控制牵拉丝42在鞘管20的通道(例如,第二通道22)内由近端至远端轴向移动以及由远端至近端轴向移动,带动突出部41在插管通道内来回轴向移动,在突出部41的来回轴向移动过程中,突出部41对十二指肠乳头皱襞组织具有牵拉作用,使得十二指肠乳头皱襞组织从弯曲得以趋近于展平状态,以此增大插管通道的宽度。
步骤230,控制牵拉丝42在鞘管20的通道内由远端至近端轴向移动,使突出部41从第二状态转换为第一状态。具体地,在突出部41完成对十二指肠乳头皱襞组织的牵拉把插管通道的宽度增大后,操作者可以通过控制部10中的控制手柄14轴向推拉或旋转控制牵拉丝42在鞘管20的通道由远端至近端轴向移动,带动突出部41从突出于鞘管20远端外(第二状态)运动至收纳于鞘管20内(第一状态),以便于执行后续操作。例如,通过插管通道插入导丝或注塑造影剂等。
步骤240,在突出部转换为第一状态后,控制导丝从鞘管20的远端20A伸出,经插管通道进入胆总管或胰管。具体地,操作者可以先通过控制部10上的第二开口16将导丝50放入鞘管20的通道(例如,第一通道21)内,然后使导丝50从鞘管20的远端20A伸出,然后经插管通道内进入胆总管或胰管内,以使得相关器械(例如,球囊导管、网篮、切开刀、细胞刷、支架、造影导管、圈套器等)在导丝50的引导下插入胆总管或胰管内,以进行相应的手术操作。在一些实施例中,操作者还可以通过控制部10上的第一开口13注射造影剂至鞘管20的通道(例如,注射通道)内,然后通过插管通道进入胆总管或胰管内,以进行显影。
本说明书实施例还提供了一种内镜,该内镜可以包括本说明书任一实施例中的内镜用切开装置100。图12是根据本说明书一些实施例的内镜的示意图。如图12所示,内镜300可以包括内镜用切开装置100。作为示例性说明,内镜300还可以包括操作手柄310和插入部320,插入部320可以插入患者体内以进行成像。在一些实施例中,插入部320可以包括器械通道,内镜用切开装置100的鞘管20以及收纳于鞘管20通道中的部件(例如,牵拉部40、 切丝30、导丝50等)可以被收纳于器械通道内。在一些实施例中,内镜用切开装置100的控制部10可以相对于操作手柄310独立设置,也可以集成在操作手柄上。在使用内镜300进行插管操作时,操作者可以通过插入部320插入患者体内进行成像以找到十二指肠乳头开口,通过调节内镜用切开装置100的鞘管20的远端20A处的弯曲角度和弯曲方向,可以使得鞘管20的远端20A进入十二指肠乳头开口,然后通过突出部41牵拉插管通道内的十二指肠乳头皱襞组织以增大插管通道的宽度,从而可以降低插管难度、增大插管成功率。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (23)

  1. 一种内镜用切开装置,包括:
    鞘管,所述鞘管具有近端和远端,所述鞘管设有沿着轴向方向延伸的通道,所述通道能够收纳牵拉部;
    所述牵拉部包括牵拉丝和设置于所述牵拉丝远端的突出部,所述牵拉丝在所述通道内轴向移动使得所述突出部在第一状态和第二状态之间转换;所述突出部位于所述第一状态时,所述突出部收纳于所述通道内;所述突出部位于所述第二状态时,所述突出部突出于所述通道远端外。
  2. 根据权利要求1所述的内镜用切开装置,其特征在于,所述突出部位于所述第二状态时,所述突出部与所述鞘管远端构成结合部,所述结合部径向尺寸大于十二指肠乳头直径;所述突出部径向尺寸为第一尺寸,所述突出部第一径向最远端至所述鞘管远端第二径向最远端的径向尺寸为第二尺寸;所述第一尺寸大于所述第二尺寸,则所述结合部径向尺寸为所述第一尺寸;所述第二尺寸大于所述第一尺寸,则所述结合部径向尺寸为第二尺寸。
  3. 根据权利要求1或2所述的内镜用切开装置,其特征在于,所述第二状态时所述突出部径向尺寸大于所述第一状态时所述突出部径向尺寸;所述第一状态时所述突出部的径向尺寸小于或等于所述鞘管远端径向尺寸;所述第二状态时所述突出部的径向尺寸大于所述鞘管远端径向尺寸。
  4. 根据权利要求3所述的内镜用切开装置,其特征在于,所述第二状态时所述突出部的径向尺寸为2-10mm;所述鞘管远端的径向尺寸为1.8-2mm。
  5. 根据权利要求1所述的内镜用切开装置,其特征在于,所述通道包括用于收纳导丝的第一通道和用于收纳牵拉部的第二通道。
  6. 根据权利要求5所述的内镜用切开装置,其特征在于,从所述第一状态转换成所述第二状态时,所述突出部远离轴线发生偏转。
  7. 根据权利要求6所述的内镜用切开装置,其特征在于,所述第二通道偏心设置。
  8. 根据权利要求5所述的内镜用切开装置,其特征在于,所述鞘管远端设有用于切割组 织的切丝,所述第二通道共同收纳所述牵拉部和所述切丝。
  9. 根据权利要求5所述的内镜用切开装置,其特征在于,所述鞘管远端设有用于切割组织的切丝,所述通道还包括第三通道,所述第二通道收纳所述牵拉部,所述第三通道收纳所述切丝。
  10. 根据权利要求9所述的内镜用切开装置,其特征在于,所述第二通道或者所述第三通道为注射通道。
  11. 根据权利要求9所述的内镜用切开装置,其特征在于,所述通道还包括第四通道,所述第一通道收纳所述导丝,所述第二通道收纳所述牵拉部,所述第三通道收纳所述切丝,所述第四通道为注射通道。
  12. 根据权利要求5至11中任一权利要求所述的内镜用切开装置,其特征在于,所述第一通道为C型截面,所述第一通道包括所述导丝容纳部和狭缝部。
  13. 根据权利要求1所述的内镜用切开装置,其特征在于,所述突出部由一根或多根牵引线组成,形成半封闭或封闭的环状。
  14. 根据权利要求1所述的内镜用切开装置,其特征在于,所述突出部由一根或多根牵引线组成,形成半封闭或封闭的网状。
  15. 根据权利要求1所述的内镜用切开装置,其特征在于,所述突出部由一根或多根牵引线组成,形成螺旋状。
  16. 根据权利要求15所述的内镜用切开装置,其特征在于,所述突出部的径向尺寸由远端至近端大致相等,或逐渐增大,或逐渐减小。
  17. 根据权利要求1所述的内镜用切开装置,其特征在于,还包括控制部,所述控制部包括牵拉手柄,所述牵拉手柄的轴向推拉或者所述牵拉手柄的旋转控制所述牵拉丝在所述通道内轴向移动,使得所述突出部在第一状态和第二状态之间转换。
  18. 根据权利要求17所述的内镜用切开装置,其特征在于,在所述突出部处于第二状态时,所述牵拉手柄还用于控制所述牵拉丝在所述通道内轴向移动,以使得所述突出部对组织进行牵拉。
  19. 根据权利要求1所述的内镜用切开装置,其特征在于,所述牵拉丝的远端和所述突出部的近端固定连接,或者,所述牵拉丝的远端和所述突出部的近端可拆卸连接。
  20. 根据权利要求1至19中任一权利要求所述的内镜用切开装置,其特征在于,所述突出部用于对十二指肠乳头皱襞组织进行牵拉。
  21. 一种内镜用切开装置的操作方法,应用于如权利要求1-20任一项所述的内镜用切开装置,其特征在于,所述操作方法包括:
    控制牵拉丝在鞘管的通道内由近端至远端轴向移动,使突出部从第一状态转换为第二状态;
    在所述突出部位于所述第二状态时,控制所述牵拉丝在鞘管通道内轴向移动,使位于所述第二状态下的所述突出部对插管通道内的十二指肠乳头皱襞组织进行牵拉。
  22. 根据权利要求21所述的内镜用切开装置的操作方法,其特征在于,所述操作方法还包括:控制所述牵拉丝在鞘管通道由远端至近端轴向移动,使所述突出部从所述第二状态转换为所述第一状态;
    在所述突出部转换为所述第一状态后,控制导丝从所述鞘管的远端伸出,经所述插管通道进入胆总管或胰管内。
  23. 一种内镜,其特征在于,包括如权利要求1-20任一项所述的内镜用切开装置。
PCT/CN2022/095411 2021-07-28 2022-05-27 一种内镜用切开装置 WO2023005394A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280052313.4A CN117750917A (zh) 2021-07-28 2022-05-27 一种内镜用切开装置
US18/292,913 US20240335213A1 (en) 2021-07-28 2023-05-27 Endoscopic incision devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110854782 2021-07-28
CN202110854782.5 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023005394A1 true WO2023005394A1 (zh) 2023-02-02

Family

ID=85086256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095411 WO2023005394A1 (zh) 2021-07-28 2022-05-27 一种内镜用切开装置

Country Status (3)

Country Link
US (1) US20240335213A1 (zh)
CN (1) CN117750917A (zh)
WO (1) WO2023005394A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203263495U (zh) * 2013-05-28 2013-11-06 高峰玉 一种用于治疗胆道狭窄的气囊刀
CN104434269A (zh) * 2014-11-28 2015-03-25 姚俊 一种双导丝乳头切开刀
CN207996227U (zh) * 2017-06-29 2018-10-23 李堃 一种用于胆管插管的新型针状刀
US20190374279A1 (en) * 2018-06-11 2019-12-12 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
CN111528988A (zh) * 2020-04-09 2020-08-14 大连大学附属中山医院 一种横向取石网篮
CN111938751A (zh) * 2020-09-14 2020-11-17 南微医学科技股份有限公司 一种取物装置及医疗设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203263495U (zh) * 2013-05-28 2013-11-06 高峰玉 一种用于治疗胆道狭窄的气囊刀
CN104434269A (zh) * 2014-11-28 2015-03-25 姚俊 一种双导丝乳头切开刀
CN207996227U (zh) * 2017-06-29 2018-10-23 李堃 一种用于胆管插管的新型针状刀
US20190374279A1 (en) * 2018-06-11 2019-12-12 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
CN111528988A (zh) * 2020-04-09 2020-08-14 大连大学附属中山医院 一种横向取石网篮
CN111938751A (zh) * 2020-09-14 2020-11-17 南微医学科技股份有限公司 一种取物装置及医疗设备

Also Published As

Publication number Publication date
CN117750917A (zh) 2024-03-22
US20240335213A1 (en) 2024-10-10

Similar Documents

Publication Publication Date Title
US5846251A (en) Access device with expandable containment member
US5971938A (en) Access device with expandable containment member
US6126633A (en) Surgical instrument
US20060135963A1 (en) Expandable gastrointestinal sheath
EP2025298B1 (en) Endoscopic high-frequency knife
US5108413A (en) Dilator for opening the lumen of a tubular organ
CN107233656B (zh) 鼻窦球囊导管系统
JP7162727B2 (ja) 採石バスケット及び採石バスケットに用いられる二腔式エンドキャップ
US11096714B2 (en) Endoscopic treatment tool
US8376992B2 (en) Balloon catheter and sheath fabrication method
US11647899B2 (en) Devices, systems and methods for accessing a body lumen
US20200214764A1 (en) Devices, systems and methods for accessing a body lumen
WO2023005394A1 (zh) 一种内镜用切开装置
CN109044525B (zh) 一种导丝接头
JP4512723B2 (ja) 内視鏡用スネア
CN211962134U (zh) 一种微创手术取物器械
US20150164528A1 (en) Tissue extraction devices and related methods
CN216628695U (zh) 一种内镜下多功能复合切割钳
WO2024001476A1 (zh) 控弯切开刀
US20210321995A1 (en) Devices, systems, and methods for accessing a body lumen
US20240115287A1 (en) Nectrotic tissue debridement device
CN217219139U (zh) 取石支架和取石装置
JPH07148171A (ja) 管状挿入具
US20230285721A1 (en) Devices, systems, and methods for catheter with actuating portion
JP7532277B2 (ja) バルーンカテーテル及びカテーテルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052313.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848004

Country of ref document: EP

Kind code of ref document: A1