WO2023004922A1 - 一种电感式水压传感器 - Google Patents

一种电感式水压传感器 Download PDF

Info

Publication number
WO2023004922A1
WO2023004922A1 PCT/CN2021/115685 CN2021115685W WO2023004922A1 WO 2023004922 A1 WO2023004922 A1 WO 2023004922A1 CN 2021115685 W CN2021115685 W CN 2021115685W WO 2023004922 A1 WO2023004922 A1 WO 2023004922A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
arc
hole
shaped
shaped plate
Prior art date
Application number
PCT/CN2021/115685
Other languages
English (en)
French (fr)
Inventor
韩元富
姜德志
李燕霞
王将
欧阳辉泉
胡小军
Original Assignee
浙江大元泵业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大元泵业股份有限公司 filed Critical 浙江大元泵业股份有限公司
Publication of WO2023004922A1 publication Critical patent/WO2023004922A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/10Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in inductance, i.e. electric circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means

Definitions

  • the invention belongs to the technical field of sensors, in particular to an inductive water pressure sensor.
  • a sensor is a device that receives a signal or stimulus and reacts, and can convert the physical or chemical quantity to be measured into another corresponding output device.
  • the inductive sensor is a device that uses the change of coil self-inductance or mutual inductance to realize non-electrical measurement. Using inductive sensors, parameters such as displacement, pressure, vibration, strain, and flow can be measured. In most applications like water pumps, such as household booster pumps, the water pump causes the pipeline to vibrate, which reduces the stability of the sensor on the pipeline and reduces the reliability of the sensor.
  • a Chinese patent with application number CN201921833919.3 discloses an inductive pressure sensor, including a pressure sensor body and a mounting sleeve
  • the mounting sleeve is installed on the bottom of the pressure sensor body, the lower end of the pressure sensor body is provided with a measuring medium inlet, the bottom of the mounting sleeve is provided with threads, and the two sides of the mounting sleeve are equipped with disassembly mechanism, the outer walls of both sides of the pressure sensor body are fixedly connected with installation rods, and the two sides of the upper surface of the installation sleeve are provided with installation grooves matching the installation rods, and the bottoms of the two installation rods are far away from the pressure
  • the inner wall of one side of the sensor body is equipped with a locking mechanism, and the inner surface of both sides of the installation sleeve is provided with a locking groove suitable for the disassembly mechanism;
  • the installation sleeve, disassembly mechanism, installation rod, installation groove, locking mechanism, first spring, connecting ring, ejector rod, spring seat and chuck add an easy-to-disassemble structure for the pressure sensor, so that it is convenient for people to adjust the pressure sensor later.
  • the present invention proposes an inductive water pressure sensor to solve the above problems.
  • the vibration generated by the water pump in the pipeline will drive the sensor to shake on the pipeline, resulting in a large error in the detection data of the sensor due to the influence of the shaking during the detection process, thereby reducing the reliability of the sensor.
  • the present invention proposes an inductive water pressure sensor.
  • an inductive hydraulic pressure sensor including a base, a base body, a coil and a magnetic core
  • the bottom of the seat is provided with a ring-shaped No. 1 slot with the No. 1 hole as the center of the circle, and a group of arc-shaped T-shaped slots are evenly opened in the No. 1 slot; sliders are set in the T-shaped slots, and the sliders and T-shaped The slot is slidingly connected, the slider and the inner wall of the T-shaped slot away from the No.
  • the top of the gasket is attached to the bottom of the screw, the outer surface of the first pipe is covered with the second pipe, and the first pipe is slidingly connected with the second pipe; the end of the second pipe far away from the first pipe is fixedly connected to the first plate, and
  • the No. 1 board is connected to the spacer through a return spring, and a magnetic core is fixedly connected to the top of the No. 1 board away from the No. 2 tube; a coil is fixedly connected to the position corresponding to the magnetic core in the base, and the coil is led out of the base through a data line.
  • the coil is drawn out of the matrix through the data line and electrically connected with the single-chip electromechanical device in the field of conventional inductive pressure sensors on the market; First, screw the end of the arc plate away from the base into the corresponding mounting hole through a wrench, the outer surface thread of the arc plate contacts the mounting hole and enters the mounting hole, and the end of the arc plate away from the base enters the mounting hole, then the user Continuously rotate the base, the arc plate is guided by the installation hole and the limit effect of the ring, so that each arc plate moves toward the No. 1 hole with the ring as the center, and each arc plate is close to the position of the base.
  • the inner wall of the installation hole increases the tightness between the arc-shaped plate and the installation hole, thereby increasing the stability of the base after installation, thereby increasing the accuracy of pressure detection, and avoiding the vibration of the water pump after the sensor is screwed into the installation hole through the bolt.
  • the vibration of the pipeline will drive the vibration between the base and the pipeline.
  • the base will become loose and the detection accuracy will be affected.
  • the base will continuously enter the installation hole through the arc plate, The friction between the surface of the pipe and the protrusion makes the protrusion move, and the movement of the protrusion drives the shaft to move until the shaft touches the pipe. At this time, the protrusion is located on both sides of the pipe.
  • the base is installed on the top of the base through bolts, and the No. 1 block slides into the No. 2 hole until the No. 1 block touches the protruding block, so that the No. 1 block has a limiting effect on the protruding block, so that the protruding block is locked, so that the pipe is locked between the adjacent protruding blocks, increasing the stability of the base after installation, and then increasing
  • the accuracy of pressure detection can avoid the base being gradually loosened by vibration, which will affect the detection accuracy; through the cooperation between the arc plate and the bump, the user can install the base with a wrench, and increase the sensor's
  • the degree of stability when the substrate needs to be replaced after a long period of use, it is only necessary to loosen the bolts between the base and the substrate to avoid twisting the base out of the mounting hole, which will cause wear to the mounting hole after frequent twisting, resulting in a stable
  • the liquid enters the closed space formed by the arc-shaped plate and pushes the diaphragm in the No.
  • the diaphragm is deformed by the force and drives the No. 1 plate to move, and the No. 1 plate drives the magnetic core to move, and the magnetic core is far away from the
  • the movement of the coil changes the magnetic permeability of the coil, thereby changing the inductance of the coil, and outputs the inductance to the single-chip microcomputer through the data line to become an electrical signal, and the single-chip computer calculates the current pipeline.
  • the pressure value in the tube adjust the pressure of the return spring in the No. 2 tube through the screw.
  • the section of the bump is semicircular.
  • the base When in use, the base continuously enters the installation hole through the arc-shaped plate, and the surface of the pipe contacts the protrusion. Since the cross-section of the protrusion is semicircular, the base continues to approach the surface of the pipe. After the pipe touches the protrusion, the protrusion is guided by the arc-shaped surface The function makes the curved surface of the pipe move the bump, increases the smoothness of the bump movement, and prevents the part of the bump away from the rotating shaft from touching the surface of the pipe after the bump touches the pipe, thereby preventing the bump from moving and causing the movement of the base to be blocked; The movement of the protrusion drives the shaft until the shaft touches the pipe. At this time, the protrusions are located on both sides of the pipe.
  • the base is installed on the top of the base through bolts, and the No. 1 block slides into the No. 2 hole until the No. 1 block touches the protrusion, so that The No. 1 block has a limiting effect on the protrusion, so that the protrusion is locked, thereby locking the base on the surface of the pipeline.
  • the end of the arc-shaped plate away from the No. 2 hole is inclined, and when the outer surface of the arc-shaped plate is vertical, the inner surface of the arc-shaped plate is inclined towards the No. 1 hole.
  • the arc-shaped plates When in use, as the user continues to rotate the base, the arc-shaped plates are guided by the mounting holes and limited by the ring, so that each arc-shaped plate moves toward the No. 1 hole with the ring as the center, and each The ends of the arc-shaped plates close to the base gradually approach each other until the arc-shaped plates enter the installation hole. At this time, the ends of the arc-shaped plates close to the base are close to each other to form a closed space. Since the end of the arc-shaped plates away from the second hole is inclined , and when the outer surface of the arc-shaped plate is vertical, the inner surface of the arc-shaped plate is inclined towards the No. The part of the confined space away from the No.
  • 1 hole has a large aperture, and the flow rate of the liquid increases when the liquid passes through the confined space formed by the inner surface of the arc plate, so that the diaphragm is subjected to an increase in liquid pressure, thereby increasing the sensitivity of the sensor and avoiding the diaphragm being less affected by the liquid flow. , leading to a reduction in the effect of diaphragm movement, thereby reducing the sensitivity of the sensor.
  • the section of the diaphragm is corrugated.
  • the liquid When in use, the liquid enters the confined space formed by the arc-shaped plate and pushes the diaphragm in the No. 1 hole, and the diaphragm is deformed by the force to drive the No. 1 plate to move.
  • the diaphragm cross-section By setting the diaphragm cross-section to be corrugated, the diaphragm deforms and arches under force.
  • the folds in the diaphragm are stretched, increasing the degree of stretching of the diaphragm, thereby increasing the movement effect of the diaphragm, thereby increasing the sensitivity of the sensor, avoiding the influence of the pulling force generated by the elastic deformation of the diaphragm itself, and consuming a part of the liquid to push the diaphragm
  • the force of the plate reduces the accuracy of the sensor's detection; the No.
  • the curved panels are provided with waterproof adhesive strips on both sides of adjacent curved panels.
  • the outer surface thread of the arc-shaped plate When in use, the outer surface thread of the arc-shaped plate is in contact with the installation hole through the installation of waterproof rubber strips, and enters the installation hole. After the end of the arc-shaped plate away from the base enters the installation hole, as the user continues to rotate the base, the arc-shaped plate Affected by the guiding effect of the installation hole and the limiting effect of the ring, each arc-shaped plate moves toward the No.
  • the waterproof rubber strip moves, when the adjacent curved plates are in contact, the waterproof rubber strip located between the adjacent curved plates is squeezed and deformed, thereby closing the gap between the adjacent curved plates and increasing the adjacent arc.
  • the tightness between the plates increases the accuracy of sensor detection and avoids gaps between adjacent arc-shaped plates, resulting in liquid leakage and reduced detection accuracy.
  • the end of the No. 1 block close to the No. 2 hole is in the shape of an arc; the bottom of the No. 1 plate is evenly fixed with a group of damping springs at a position away from the diaphragm.
  • the arc part of the No. 1 block touches the surface of the protrusion that is far away from the pipe, and the protrusion that is far away from the pipe. Affected by the limiting effect of the arc part of the No. 1 block, the swaying gap of the protrusion away from the pipe on the No. 1 block surface is reduced, the stability of the base after installation is increased, and the accuracy of pressure detection is increased, thereby increasing the reliability of the sensor.
  • the substrate continuously enters the installation hole through the arc-shaped plate, and the surface of the pipe rubs against the bumps to make the bumps move, and the bumps drive the shaft to move until The rotating shaft touches the pipe, at this time the bumps are located on both sides of the pipe, the base is installed on the top of the base through bolts, the No. 1 block slides into the No. 2 hole, until the No. position, so that the pipe is locked between the adjacent projections, increasing the stability of the base after installation, thereby increasing the accuracy of pressure detection.
  • An inductive water pressure sensor by setting the end of the arc-shaped plate away from the No. 2 hole to be inclined, and when the outer surface of the arc-shaped plate is vertical, the inner surface of the arc-shaped plate is inclined towards the No. 1 hole hole, so that the closed space formed by the inner surface of the curved plate is close to the No. 1 hole.
  • the hole diameter is small, and the closed space formed by the inner surface of the curved plate is far away from the No. 1 hole.
  • the hole diameter is large, and the liquid passes through the closed space formed by the inner surface of the curved plate.
  • Fig. 1 is a perspective view of the present invention
  • Fig. 2 is a kind of structural representation of the present invention
  • Fig. 3 is another kind of structural representation of the present invention.
  • Fig. 4 is a partial enlarged view of place A in Fig. 2;
  • Fig. 5 is a partial enlarged view of place B in Fig. 2;
  • base 1 No. 1 hole 11, diaphragm 12, No. 1 slot 13, T-shaped slot 14, slider 15, arc plate 2, thread 21, ring 22, No. 2 hole 3, rotating shaft 31, Protrusion 32, base 4, coil 41, No. 1 block 42, screw 43, No. 1 tube 44, gasket 45, No. 2 tube 46, No. 1 plate 5, magnetic core 51, waterproof rubber strip 52, shock-absorbing spring 53 .
  • an inductive water pressure sensor includes a base 1, a substrate 4, a coil 41 and a magnetic core 51; the center of the base 1 is provided with a hole 11, And the bottom of the base 1 is provided with an annular No. 1 slot 13 with No. 1 hole 11 as the center of the circle, and a group of arc-shaped T-shaped slots 14 are uniformly provided in the No. 1 slot 13; Block 15, and the slider 15 is slidingly connected with the T-shaped slot 14, the slider 15 and the inner wall of the T-shaped slot 14 away from the No.
  • a rotating shaft 31 is connected to the position close to the arc-shaped plate 2 in the No. 2 holes 3, and the rotating shaft 31 is evenly fixed.
  • a group of protrusions 32 are connected; a base 4 is installed on the top of the base 1, and the base 4 is connected to the base 1 by bolts; the position of the base 4 corresponding to the second hole 3 is fixedly connected with a block 42, and a The number block 42 is slidingly connected with the second hole 3; a screw 43 is provided at the top center of the base body 4, and the end of the screw 43 close to the base body 4 is located in the base body 4, and a No.
  • 1 tube 44 is fixedly connected in the base body 4 with the screw 43 as the center , a gasket 45 is slidably connected in the No. 1 tube 44, the top of the gasket 45 fits the bottom of the screw 43, the outer surface of the No. 1 tube 44 is provided with a No. 2 tube 46, and the No. 1 tube 44 is slidably connected with the No. 2 tube 46;
  • the end of the No. 2 tube 46 away from the No. 1 tube 44 is fixedly connected with a No. 1 plate 5, and the No. 1 plate 5 is connected with the gasket 45 by a back-moving spring.
  • the core 51 ; the coil 41 is fixedly connected to the position corresponding to the magnetic core 51 in the base body 4 , and the coil 41 is led out of the base body 4 through the data line.
  • the coil 41 is drawn out in the matrix 4 through the data line and is electrically connected with the single-chip electromechanical in the conventional inductive pressure sensor field on the market; position, first screw the end of the arc plate 2 far away from the base 1 into the corresponding mounting hole through a wrench, the outer surface thread 21 of the arc plate 2 contacts the mounting hole, and the end of the arc plate 2 far away from the base 1 enters the mounting hole , as the user continues to rotate the base 1, the arc-shaped plate 2 is guided by the installation hole and the limit effect of the ring 22, so that each arc-shaped plate 2 is centered on the ring 22 and approaches the direction of the No.
  • the base 1 continues to move toward the pipe.
  • the surface is close, the pipe surface rubs against the bump 32 to make the bump 32 move, and the motion of the bump 32 drives the rotation shaft 31 to move until the rotation shaft 31 touches the pipe.
  • the bump 32 is located on both sides of the pipe, and the base 4 is installed on the base through bolts. 1.
  • the No. 1 block 42 slides into the No. 2 hole 3 until the No. 1 block 42 touches the protrusion 32, so that the No.
  • 1 plate 5 drives the magnetic core 51 to move, the magnetic core 51 moves away from the coil 41, and the overlap between the magnetic core 51 and the coil 41 is reduced, changing the coil 41 permeability, thus changing the line
  • the inductance of the coil 41 is output to the single-chip microcomputer by the data line to become an electrical signal, and the single-chip microcomputer calculates the pressure value in the current pipeline; the pressure of the return spring in the second pipe 46 is adjusted by the screw 43.
  • the section of the bump 32 is semicircular.
  • the base 1 continuously enters the installation hole through the arc-shaped plate 2, and the surface of the pipe contacts the bump 32. Since the cross section of the bump 32 is semicircular, the base 1 continues to approach the surface of the pipe. After the pipe touches the bump 32, the bump 32 The block 32 is guided by the arc surface, so that the arc surface of the pipeline moves the bump 32, increases the smoothness of the movement of the bump 32, and prevents the part of the bump 32 away from the rotating shaft 31 from touching the surface of the pipeline after the bump 32 touches the pipeline. Thereby preventing the movement of the bump 32, causing the movement of the base 1 to be blocked; the movement of the bump 32 drives the movement of the rotating shaft 31 until the rotating shaft 31 touches the pipe.
  • the bump 32 is located on both sides of the pipe, and the base 4 is installed on the top of the base 1 through bolts.
  • the No. 1 block 42 slides into the No. 2 hole 3 until the No. 1 block 42 contacts the protrusion 32, so that the No. 1 block 42 has a limiting effect on the protrusion 32, so that the protrusion 32 is locked, thereby locking the base 1 in pipe surface.
  • the end of the arc-shaped plate 2 away from the No. 2 hole 3 is inclined, and when the outer surface of the arc-shaped plate 2 is vertical, the inner surface of the arc-shaped plate 2 is inclined towards the No. 1 hole. 11.
  • each arc-shaped plate 2 When in use, as the user continuously rotates the base 1, the arc-shaped plates 2 are guided by the installation holes and limited by the ring 22, so that each arc-shaped plate 2 approaches the No. 1 hole with the ring 22 as the center 11 direction movement, the end of each arc-shaped plate 2 close to the base 1 gradually approaches each other until the arc-shaped plate 2 enters the installation hole, at this time the ends of the arc-shaped plate 2 close to the base 1 are close to each other to form a closed space, due to the arc
  • the end of the shaped plate 2 away from the No. 2 hole 3 is inclined, and when the outer surface of the arc-shaped plate 2 is vertical, the inner surface of the arc-shaped plate 2 is inclined towards the No.
  • the hole diameter of the part close to No. 1 hole 11 is small, and the part of the closed space formed by the inner surface of the arc-shaped plate 2 is far away from the hole 11.
  • the hole diameter is large.
  • the diaphragm 12 is subjected to increased liquid pressure, which in turn increases the sensitivity of the sensor, and prevents the diaphragm 12 from being less affected by the liquid flow, resulting in a reduced movement effect of the diaphragm 12, thereby reducing the sensitivity of the sensor.
  • the section of the diaphragm 12 is corrugated.
  • the liquid When in use, the liquid enters the confined space formed by the arc-shaped plate 2 and pushes the diaphragm 12 in the No. 1 hole 11, and the diaphragm 12 is deformed by force to drive the No. 1 plate 5 to move.
  • the diaphragm 12 By setting the cross-section of the diaphragm 12 into a corrugated shape, The diaphragm 12 is deformed and arched under force, and the folds in the diaphragm 12 are stretched, increasing the stretching degree of the diaphragm 12, thereby increasing the movement effect of the diaphragm 12, thereby increasing the sensitivity of the sensor, and preventing the diaphragm 12 from being elastically deformed by itself.
  • the reduction of the overlapping parts between them changes the magnetic permeability of the coil 41, thereby changing the inductance of the coil 41, and outputs the inductance to the single-chip microcomputer through the data line to become an electrical signal, and the single-chip microcomputer calculates the current pressure value in the pipeline.
  • the curved panels 2 are provided with waterproof adhesive strips 52 on both sides of the adjacent curved panels 2 .
  • each arc-shaped plate 2 moves toward the direction of the first hole 11 with the ring 22 as the center, and each arc-shaped plate 2 approaches One end of the base 1 gradually approaches each other, and the curved plates 2 drive the waterproof rubber strip 52 to move.
  • the waterproof rubber strip 52 between the adjacent curved plates 2 is squeezed and deformed, thereby Seal the gaps between adjacent curved plates 2, increase the sealing performance between adjacent curved plates 2, thereby increasing the accuracy of sensor detection, and avoid gaps between adjacent curved plates 2, resulting in liquid seepage leakage, resulting in reduced detection accuracy.
  • the end of the No. 1 block 42 close to the No. 2 hole 3 is arc-shaped; the bottom of the No. 1 plate 5 is evenly fixed to a group of damping springs 53 at a position away from the diaphragm 12 .
  • the ends of the arc-shaped plate 2 close to the base 1 are closely attached to each other to form a closed space; the base 4 continuously enters the installation hole through the arc-shaped plate 2 Inside, the surface of the pipeline contacts the bump 32, and the friction between the surface of the pipeline and the bump 32 makes the bump 32 move, and the movement of the bump 32 drives the movement of the rotating shaft 31 until the rotating shaft 31 contacts the pipe; the base 4 is installed on the top of the base 1 through bolts, and a The No. block 42 slides into the No. 2 hole 3 until the No. 1 block 42 touches the bump 32; when testing, the liquid enters the closed space formed by the arc-shaped plate 2 and pushes the diaphragm 12 in the No.
  • the diaphragm 12 is pushed.
  • the plate 12 is deformed by force to drive the No. 1 plate 5 to move, and the No. 1 plate 5 drives the magnetic core 51 to move, and the magnetic core 51 moves away from the coil 41.
  • the reduction of the overlapping part between the magnetic core 51 and the coil 41 changes the magnetic force of the coil 41.
  • conductivity, thereby changing the inductance of the coil 41 the inductance is output to the single-chip microcomputer through the data line to become an electrical signal, and the single-chip microcomputer calculates the pressure value in the current pipeline; when the outer surface of the arc-shaped plate 2 is in a vertical state, the arc-shaped The inner surface of the plate 2 is inclined towards the No.

Abstract

一种电感式水压传感器,包括基座(1)、基体(4)、线圈(41)和磁芯(51);基座(1)中心位置开设有一号孔(11),且基座(1)底部以一号孔(11)为圆心开设有环形的一号槽(13),一号槽(13)内均匀开设有一组弧形的T型槽(14);T型槽(14)内均套设有滑块(15);通过设置凸块(32),基体(4)通过弧形板(2)不断进入安装孔内,管道表面与凸块(32)摩擦使得凸块(32)运动,凸块(32)运动带动转轴(31)运动,直到转轴(31)接触管道,此时凸块(32)位于管道两侧,将基体(4)通过螺栓安装在基座(1)顶部,一号块(42)滑动进入二号孔(3)内,直至一号块(42)接触凸块(32),使得一号块(42)对凸块(32)产生限位作用,从而使得管道锁定在相邻凸块(32)之间,增加基座(1)安装后的稳定性,进而增加压力检测准确程度。

Description

一种电感式水压传感器 技术领域
本发明属于传感器技术领域,具体的说是一种电感式水压传感器。
背景技术
传感器是接收信号或刺激并反应的器件,能将待测物理量或化学量转换成另一对应输出的装置。其中电感式传感器是利用线圈自感或互感系数的变化来实现非电量电测的一种装置。利用电感式传感器,能对位移、压力、振动、应变、流量等参数进行测量。在大多数的类似水泵应用的情况中,例如家用增压泵,水泵导致管道产生震动,从而使得传感器在管道上的稳定程度降低,降低了传感器使用的可靠程度。
现有技术中也出现了一项专利关于一种电感式水压传感器的技术方案,如申请号为CN201921833919.3的一项中国专利公开了一种电感式压力传感器,包括压力传感器本体和安装套座,所述安装套座安装在压力传感器本体的底部,所述压力传感器本体的下端设有测量介质进口,所述安装套座的底部设有螺纹,所述安装套座的两侧安装有拆卸机构,所述压力传感器本体的两侧外壁固定连接有安装杆,所述安装套座的上表面两侧位置开设有与安装杆相适配的安装槽,两个所述安装杆的底部远离压力传感器本体的一侧内壁安装有卡锁机构,所述安装套座的两侧内表面均开设有与所述拆卸机构相适配的卡槽;但是该技术方案存在不足,该专利所述通过设置安装套座、拆卸机构、安装杆、安装槽、卡锁机构、第一弹簧、连接圈、顶杆、弹簧座和卡头,为压力传感器增加了便于拆卸结构,从而方便人们在后期对压力传感器检修时的拆装工作,但在安装杆再次插入安装槽内时,卡头体积小于卡槽内空间的情况下,卡头在弹簧座的第二弹簧的作用下将卡头顶出并卡入卡槽内,导致卡头伸入卡槽内后,卡头表面与卡槽内壁存在晃动间隙,进而使得管道中的水泵在工作时产生振动带动传感器在管道上晃动,造成传感器在检测过程中由于晃动影响产生检测数据存在较大误差,进而降低了传感器使用的可靠程度。
鉴于此,本发明提出了一种电感式水压传感器,解决了上述问题。
发明内容
为了弥补现有技术的不足,解决管道中的水泵在工作时产生振动带动传感器在管道上晃动,造成传感器在检测过程中由于晃动影响产生检测数据存在较大误差,进而降低了传感器使用的可靠程度的问题,本发明提出了一种电感式水压传感器。
本发明解决其技术问题所采用的技术方案是:本发明所述的一种电感式水压传感器,包括基座、基体、线圈和磁芯;所述基座中心位置开设有一号孔,且基座底部以一号孔为圆心开设有环形的一号槽,一号槽内均匀开设有一组弧形的T型槽;所述T型槽内均套设有滑块,且滑块与T型槽滑动连接,滑块与T型槽远离一号孔的内壁通过复位弹簧连接,滑块远离基座的一端位于T型槽外,滑块远离T型槽的一端固连有弧形板,且弧形板圆弧外表面设置有螺纹,弧形板远离基座的一端套设有圆环,弧形板与圆环转动连接,每个弧形板远离基座的一端通过圆环串连;所述一号孔远离弧形板的一端固连有膜片;所述基座上均匀开设有一组二号孔,且二号孔远离一号孔,二号孔内靠近弧形板的位置转动连接有转轴,且转轴上均匀固连有一组凸块;所述基座顶部安装有基体,且基体与基座通过螺栓连接;所述基体对应二号孔的位置均固连有一号块,且一号块与二号孔滑动连接;所述基体顶部中心位置设置有螺钉,且螺钉靠近基体的一端位于基体内,基体内以螺钉为圆心固连有一号管,一号管内滑动连接有垫片,垫片顶部与螺钉底部贴合,一号管外表面套设有二号管,一号管与二号管滑动连接;所述二号管远离一号管的一端固连有一号板,且一号板与垫片通过复位弹簧连接,一号板顶部远离二号管的位置固连有磁芯;所述基体内对应磁芯的位置固连有线圈,且线圈通过数据线引出基体内。
使用时,在本发明生产时,将线圈通过数据线引出基体内并与市场上的常规电感式压力传感器领域的单片机电性连接;电感式水压传感器安装在管道或者缸体所需检测位置时,首先将弧形板远离基座的一端对应安装孔通过扳手扭入,弧形板外表面螺纹与安装孔接触进入安装孔,弧形板远离基座的一端进入安装孔后,随着使用人员不断将基座旋转,弧形板受安装孔导向作用和圆环的限位作用,使得每个弧形板以圆环为中心向靠近一号孔方向运动,每个弧形板靠近基座的一端逐渐相互靠近,直至弧形板进入安装孔,此时弧形板靠近基座的一端相互紧贴形成密闭空间,通过设置滑块,弧形板靠近基座的一端在一号槽内运动带动滑块运动,滑块在T型槽内滑动,直至弧形板进入安装孔,复位弹簧受滑块向靠近一号孔方向运动而拉伸产生拉力,从而使得弧形板受滑块影响紧贴安装孔内壁,增加弧形板与安装孔之间的紧密程度,从而增加基座安装后的稳定性,进而增加压力检测准确程度,避免在将传感器通过螺栓扭入安装孔后,由于水泵振动带动管道振动,从而带动基座与管道之间形成振动,在长时间使用过程中,导致基座发生松动,造成检测准确程度受到影响;通过设置凸块,基体通过弧形板不断进入安装孔内,管道表面与凸块摩擦使得凸块运动,凸块运动带动转轴运动,直至转轴接触管道,此时凸块位于管道两侧,将基体通过螺栓安装在基座顶部,一号块滑动进入二号孔内,直至一号块接触凸块,使得一号块 对凸块产生限位作用,使得凸块锁定,从而使得管道锁定在相邻凸块之间,增加基座安装后的稳定性,进而增加压力检测准确程度,避免基座受振动影响逐渐松动,造成检测准确程度受到影响;通过弧形板和凸块之间的配合,在使用人员通过扳手即可对基座进行安装,且增加传感器的稳定程度,在基体长时间使用后需要更换时,仅需松开基座与基体之间的螺栓即可,避免将基座扭出安装孔,频繁扭动后对安装孔造成磨损,导致稳定程度降低;在进行检测时,液体进入弧形板组成的密闭空间和一号孔内对膜片顶推,膜片受力产生形变带动一号板运动,一号板带动磁芯运动,磁芯远离线圈运动,磁芯与线圈之间重合的部分的减少,改变线圈的磁导率,从而改变线圈的电感量,通过数据线将电感量输出至单片机内成为电信号,单片机通过计算得出当前管道中的压力值;通过螺钉调节二号管中复位弹簧的压力。
优选的,所述凸块截面为半圆状。
使用时,基座通过弧形板不断进入安装孔内,管道表面接触凸块,由于凸块截面为半圆状,基座继续向管道表面靠近,管道接触凸块后,凸块受弧形表面导向作用,使得管道弧形表面拨动凸块,增加凸块运动的流畅性,防止凸块接触管道后,凸块远离转轴的部分抵住管道表面,从而阻止凸块运动,导致基座运动受阻;凸块运动带动转轴运动,直至转轴接触管道,此时凸块位于管道两侧,将基体通过螺栓安装在基座顶部,一号块滑动进入二号孔内,直至一号块接触凸块,使得一号块对凸块产生限位作用,使得凸块锁定,从而将基座锁定在管道表面。
优选的,所述弧形板远离二号孔的一端为倾斜设置,且弧形板的外表面垂直状态时,弧形板的内表面倾斜朝向一号孔。
使用时,随着使用人员不断将基座旋转,弧形板受安装孔导向作用和圆环的限位作用,使得每个弧形板以圆环为中心向靠近一号孔方向运动,每个弧形板靠近基座的一端逐渐相互靠近,直至弧形板进入安装孔,此时弧形板靠近基座的一端相互紧贴形成密闭空间,由于弧形板远离二号孔的一端为倾斜设置,且弧形板的外表面垂直状态时,弧形板的内表面倾斜朝向一号孔,使得弧形板内表面组成的密闭空间靠近一号孔的部分孔径小,弧形板内表面组成的密闭空间远离一号孔的部分孔径大,液体通过弧形板内表面组成的密闭空间时流速增加,从而使得膜片受到液体压力增加,进而增加传感器的灵敏程度,避免膜片受液体流动影响小,导致膜片运动效果降低,从而降低传感器灵敏程度。
优选的,所述膜片截面为波纹状设置。
使用时,液体进入弧形板组成的密闭空间和一号孔内对膜片顶推,膜片受力产生形变 带动一号板运动,通过设置膜片截面为波纹状,膜片受力形变拱起,膜片中的褶皱部分伸展,增加膜片的伸展程度,从而增加膜片的运动效果,进而增加传感器的灵敏程度,避免膜片受自身弹性形变后产生的拉力影响,消耗一部分液体推动膜片的作用力,降低传感器的检测的准确性;一号板带动磁芯运动,磁芯远离线圈运动,磁芯与线圈之间重合的部分的减少,改变线圈的磁导率,从而改变线圈的电感量,通过数据线将电感量输出至单片机内成为电信号,单片机通过计算得出当前管道中的压力值。
优选的,所述弧形板位于相邻弧形板两侧均设置有防水胶条。
使用时,通过设置有防水胶条,弧形板外表面螺纹与安装孔接触进入安装孔,弧形板远离基座的一端进入安装孔后,随着使用人员不断将基座旋转,弧形板受安装孔导向作用和圆环的限位作用,使得每个弧形板以圆环为中心向靠近一号孔方向运动,每个弧形板靠近基座的一端逐渐相互靠近,弧形板带动防水胶条运动,相邻弧形板接触时,位于相邻弧形板之间的防水胶条受挤压产生形变,从而对相邻弧形板之间的空隙进行封闭,增加相邻弧形板之间的密封性,从而增加传感器检测的准确程度,避免相邻弧形板之间存在空隙,导致液体渗漏,造成检测精度降低。
优选的,所述一号块靠近二号孔的一端为圆弧状;所述一号板底部远离膜片位置均匀固连有一组减震弹簧。
使用时,通过设置一号块靠近二号孔的一端为圆弧状,一号块滑动进入二号孔时,一号块的圆弧部分接触位于远离管道的凸块表面,远离管道的凸块受一号块圆弧部分的限位作用,减少远离管道的凸块在一号块表面的晃动间隙,增加基座安装后的稳定性,进而增加压力检测准确程度,从而增加传感器的使用可靠性;通过设置减震弹簧,当管道内的压力受外界因素影响急剧增加时,膜片受力形变拱起带动一号板运动,一号板带动二号管运动,二号管内的复位弹簧受压急剧增加,在二号管内的复位弹簧伸展带动一号板进行复位时,减震弹簧接触基座表面,对一号板进行减震,增加传感器的使用可靠性,从而增加传感器的使用寿命,防止二号管内的复位弹簧带动一号板复位时,一号板与基座产生碰撞,导致一号板或者磁芯受损,甚至造成传感器损坏。
本发明的有益效果如下:
1.本发明所述的一种电感式水压传感器,通过设置凸块,基体通过弧形板不断进入安装孔内,管道表面与凸块摩擦使得凸块运动,凸块运动带动转轴运动,直至转轴接触管道,此时凸块位于管道两侧,将基体通过螺栓安装在基座顶部,一号块滑动进入二号孔内,直至一号块接触凸块,使得一号块对凸块产生限位作用,从而使得管道锁定在相邻凸块之间, 增加基座安装后的稳定性,进而增加压力检测准确程度。
2.本发明所述的一种电感式水压传感器,通过设置弧形板远离二号孔的一端为倾斜,且弧形板的外表面垂直状态时,弧形板的内表面倾斜朝向一号孔,使得弧形板内表面组成的密闭空间靠近一号孔的部分孔径小,弧形板内表面组成的密闭空间远离一号孔的部分孔径大,液体通过弧形板内表面组成的密闭空间时流速增加,从而使得膜片受到液体压力增加,进而增加传感器的灵敏程度。
附图说明
下面结合附图对本发明作进一步说明。
图1是本发明的立体图;
图2是本发明的一种结构示意图;
图3是本发明的另一种结构示意图;
图4是图2中A处的局部放大图;
图5是图2中B处的局部放大图;
图中:基座1、一号孔11、膜片12、一号槽13、T型槽14、滑块15、弧形板2、螺纹21、圆环22、二号孔3、转轴31、凸块32、基体4、线圈41、一号块42、螺钉43、一号管44、垫片45、二号管46、一号板5、磁芯51、防水胶条52、减震弹簧53。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如图1至图5所示,本发明所述的一种电感式水压传感器,包括基座1、基体4、线圈41和磁芯51;所述基座1中心位置开设有一号孔11,且基座1底部以一号孔11为圆心开设有环形的一号槽13,一号槽13内均匀开设有一组弧形的T型槽14;所述T型槽14内均套设有滑块15,且滑块15与T型槽14滑动连接,滑块15与T型槽14远离一号孔11的内壁通过复位弹簧连接,滑块15远离基座1的一端位于T型槽14外,滑块15远离T型槽14的一端固连有弧形板2,且弧形板2圆弧外表面设置有螺纹21,弧形板2远离基座1的一端套设有圆环22,弧形板2与圆环22转动连接,每个弧形板2远离基座1的一端通过圆环22串连;所述一号孔11远离弧形板2的一端固连有膜片12;所述基座1上均匀开设有一组二号孔3,且二号孔3远离一号孔11,二号孔3内靠近弧形板2的位置转动连接有转轴31,且转轴31上均匀固连有一组凸块32;所述基座1顶部安装有基体4,且 基体4与基座1通过螺栓连接;所述基体4对应二号孔3的位置均固连有一号块42,且一号块42与二号孔3滑动连接;所述基体4顶部中心位置设置有螺钉43,且螺钉43靠近基体4的一端位于基体4内,基体4内以螺钉43为圆心固连有一号管44,一号管44内滑动连接有垫片45,垫片45顶部与螺钉43底部贴合,一号管44外表面套设有二号管46,一号管44与二号管46滑动连接;所述二号管46远离一号管44的一端固连有一号板5,且一号板5与垫片45通过复位弹簧连接,一号板5顶部远离二号管46的位置固连有磁芯51;所述基体4内对应磁芯51的位置固连有线圈41,且线圈41通过数据线引出基体4内。
使用时,在本发明生产时,将线圈41通过数据线引出基体4内并与市场上的常规电感式压力传感器领域的单片机电性连接;电感式水压传感器安装在管道或者缸体所需检测位置时,首先将弧形板2远离基座1的一端对应安装孔通过扳手扭入,弧形板2外表面螺纹21与安装孔接触,弧形板2远离基座1的一端进入安装孔后,随着使用人员不断将基座1旋转,弧形板2受安装孔导向作用和圆环22的限位作用,使得每个弧形板2以圆环22为中心向靠近一号孔11方向运动,每个弧形板2靠近基座1的一端逐渐相互靠近,直至弧形板2进入安装孔,此时弧形板2靠近基座1的一端相互紧贴形成密闭空间,通过设置滑块15,弧形板2靠近基座1的一端在一号槽13内运动带动滑块15运动,滑块15在T型槽14内滑动,直至弧形板2进入安装孔,复位弹簧受滑块15向靠近一号孔11方向运动而拉伸产生拉力,从而使得弧形板2受滑块15影响紧贴安装孔内壁,增加弧形板2与安装孔之间的紧密程度,从而增加基座1安装后的稳定性,进而增加压力检测准确程度,避免在将传感器通过螺栓扭入安装孔后,由于水泵振动带动管道振动,从而带动基座1与管道之间形成振动,在长时间使用过程中,导致基座1发生松动,造成检测准确程度受到影响;通过设置凸块32,基体4通过弧形板2不断进入安装孔内,管道表面接触凸块32,此时基座1继续向管道表面靠近,管道表面与凸块32摩擦使得凸块32运动,凸块32运动带动转轴31运动,直至转轴31接触管道,此时凸块32位于管道两侧,将基体4通过螺栓安装在基座1顶部,一号块42滑动进入二号孔3内,直至一号块42接触凸块32,使得一号块42对凸块32产生限位作用,从而使得管道锁定在相邻凸块32之间,增加基座1安装后的稳定性,进而增加压力检测准确程度,避免基座1受振动影响逐渐松动,造成检测准确程度受到影响;通过弧形板2和凸块32之间的配合,在使用人员通过扳手即可对基座1进行安装,且增加传感器的稳定程度,在基体4长时间使用后需要更换时,仅需松开基座1与基体4之间的螺栓即可,避免将基座1扭出安装孔,频繁扭动后对安装孔造成磨损,导致稳定程度降低;在进行检测时,液体进入弧形板2组成的密闭空间和一号孔11 内对膜片12顶推,膜片12受力产生形变带动一号板5运动,一号板5带动磁芯51运动,磁芯51远离线圈41运动,磁芯51与线圈41之间重合的部分的减少,改变线圈41的磁导率,从而改变线圈41的电感量,通过数据线将电感量输出至单片机内成为电信号,单片机通过计算得出当前管道中的压力值;通过螺钉43调节二号管46中复位弹簧的压力。
作为本发明的一种实施方式,所述凸块32截面为半圆状。
使用时,基座1通过弧形板2不断进入安装孔内,管道表面接触凸块32,由于凸块32截面为半圆状,基座1继续向管道表面靠近,管道接触凸块32后,凸块32受弧形表面导向作用,使得管道弧形表面拨动凸块32,增加凸块32运动的流畅性,防止凸块32接触管道后,凸块32远离转轴31的部分抵住管道表面,从而阻止凸块32运动,导致基座1运动受阻;凸块32运动带动转轴31运动,直至转轴31接触管道,此时凸块32位于管道两侧,将基体4通过螺栓安装在基座1顶部,一号块42滑动进入二号孔3内,直至一号块42接触凸块32,使得一号块42对凸块32产生限位作用,使得凸块32锁定,从而将基座1锁定在管道表面。
作为本发明的一种实施方式,所述弧形板2远离二号孔3的一端为倾斜设置,且弧形板2的外表面垂直状态时,弧形板2的内表面倾斜朝向一号孔11。
使用时,随着使用人员不断将基座1旋转,弧形板2受安装孔导向作用和圆环22的限位作用,使得每个弧形板2以圆环22为中心向靠近一号孔11方向运动,每个弧形板2靠近基座1的一端逐渐相互靠近,直至弧形板2进入安装孔,此时弧形板2靠近基座1的一端相互紧贴形成密闭空间,由于弧形板2远离二号孔3的一端为倾斜设置,且弧形板2的外表面垂直状态时,弧形板2的内表面倾斜朝向一号孔11,使得弧形板2内表面组成的密闭空间靠近一号孔11的部分孔径小,弧形板2内表面组成的密闭空间远离一号孔11的部分孔径大,液体通过弧形板2内表面组成的密闭空间时流速增加,从而使得膜片12受到液体压力增加,进而增加传感器的灵敏程度,避免膜片12受液体流动影响小,导致膜片12运动效果降低,从而降低传感器灵敏程度。
作为本发明的一种实施方式,所述膜片12截面为波纹状设置。
使用时,液体进入弧形板2组成的密闭空间和一号孔11内对膜片12顶推,膜片12受力产生形变带动一号板5运动,通过设置膜片12截面为波纹状,膜片12受力形变拱起,膜片12中的褶皱部分伸展,增加膜片12的伸展程度,从而增加膜片12的运动效果,进而增加传感器的灵敏程度,避免膜片12受自身弹性形变后产生的拉力影响,消耗一部分液体推动膜片12的作用力,降低传感器的检测的准确性;一号板5带动磁芯51运动,磁 芯51远离线圈41运动,磁芯51与线圈41之间重合的部分的减少,改变线圈41的磁导率,从而改变线圈41的电感量,通过数据线将电感量输出至单片机内成为电信号,单片机通过计算得出当前管道中的压力值。
作为本发明的一种实施方式,所述弧形板2位于相邻弧形板2两侧均设置有防水胶条52。
使用时,通过设置有防水胶条52,弧形板2外表面螺纹21与安装孔接触进入安装孔,弧形板2远离基座1的一端进入安装孔后,随着使用人员不断将基座1旋转,弧形板2受安装孔导向作用和圆环22的限位作用,使得每个弧形板2以圆环22为中心向靠近一号孔11方向运动,每个弧形板2靠近基座1的一端逐渐相互靠近,弧形板2带动防水胶条52运动,相邻弧形板2接触时,位于相邻弧形板2之间的防水胶条52受挤压产生形变,从而对相邻弧形板2之间的空隙进行封闭,增加相邻弧形板2之间的密封性,从而增加传感器检测的准确程度,避免相邻弧形板2之间存在空隙,导致液体渗漏,造成检测精度降低。
作为本发明的一种实施方式,所述一号块42靠近二号孔3的一端为圆弧状;所述一号板5底部远离膜片12位置均匀固连有一组减震弹簧53。
使用时,通过设置一号块42靠近二号孔3的一端为圆弧状,一号块42滑动进入二号孔3时,一号块42的圆弧部分接触位于远离管道的凸块32表面,远离管道的凸块32受一号块42圆弧部分的限位作用,减少远离管道的凸块32在一号块42表面的晃动间隙,增加基座1安装后的稳定性,进而增加压力检测准确程度,从而增加传感器的使用可靠性;通过设置减震弹簧53,当管道内的压力受外界因素影响急剧增加时,膜片12受力形变拱起带动一号板5运动,一号板5带动二号管46运动,二号管46内的复位弹簧受压急剧增加,在二号管46内的复位弹簧伸展带动一号板5进行复位时,减震弹簧53接触基座1表面,对一号板5进行减震,增加传感器的使用可靠性,从而增加传感器的使用寿命,防止二号管46内的复位弹簧带动一号板5复位时,一号板5与基座1产生碰撞,导致一号板5或者磁芯51受损,甚至造成传感器损坏。
具体工作流程如下:
将弧形板2远离基座1的一端对应安装孔通过扳手扭入,弧形板2远离基座1的一端进入安装孔后,弧形板2受安装孔导向作用和圆环22的限位作用,使得每个弧形板2以圆环22为中心向靠近一号孔11方向运动,每个弧形板2靠近基座1的一端逐渐相互靠近,弧形板2带动滑块15运动,滑块15在T型槽14内滑动,直至弧形板2进入安装孔,此时弧形板2靠近基座1的一端相互紧贴形成密闭空间;基体4通过弧形板2不断进入安装 孔内,管道表面接触凸块32,管道表面与凸块32摩擦使得凸块32运动,凸块32运动带动转轴31运动,直至转轴31接触管道;将基体4通过螺栓安装在基座1顶部,一号块42滑动进入二号孔3内,直至一号块42接触凸块32;在进行检测时,液体进入弧形板2组成的密闭空间和一号孔11内对膜片12顶推,膜片12受力产生形变带动一号板5运动,一号板5带动磁芯51运动,磁芯51远离线圈41运动,磁芯51与线圈41之间重合的部分的减少,改变线圈41的磁导率,从而改变线圈41的电感量,通过数据线将电感量输出至单片机内成为电信号,单片机通过计算得出当前管道中的压力值;弧形板2的外表面垂直状态时,弧形板2的内表面倾斜朝向一号孔11,使得弧形板2内表面组成的密闭空间靠近一号孔11的部分孔径小,弧形板2内表面组成的密闭空间远离一号孔11的部分孔径大;膜片12受力形变拱起,膜片12中的褶皱部分伸展;弧形板2带动防水胶条52运动,相邻弧形板2接触时,位于相邻弧形板2之间的防水胶条52受挤压产生形变,从而对相邻弧形板2之间的空隙进行封闭;一号块42的圆弧部分接触位于远离管道的凸块32表面,远离管道的凸块32受一号块42圆弧部分的限位作用;当管道内的压力受外界因素影响急剧增加时,膜片12受力形变拱起带动一号板5运动,一号板5带动二号管46运动,二号管46内的复位弹簧受压急剧增加,在二号管46内的复位弹簧伸展带动一号板5进行复位时,减震弹簧53接触基座1表面,对一号板5进行减震。
上述前、后、左、右、上、下均以说明书附图中的图1为基准,按照人物观察视角为标准,装置面对观察者的一面定义为前,观察者左侧定义为左,依次类推。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

  1. 一种电感式水压传感器,其特征在于:包括基座(1)、基体(4)、线圈(41)和磁芯(51);所述基座(1)中心位置开设有一号孔(11),且基座(1)底部以一号孔(11)为圆心开设有环形的一号槽(13),一号槽(13)内均匀开设有一组弧形的T型槽(14);所述T型槽(14)内均套设有滑块(15),且滑块(15)与T型槽(14)滑动连接,滑块(15)与T型槽(14)远离一号孔(11)的内壁通过复位弹簧连接,滑块(15)远离基座(1)的一端位于T型槽(14)外,滑块(15)远离T型槽(14)的一端固连有弧形板(2),且弧形板(2)圆弧外表面设置有螺纹(21),弧形板(2)远离基座(1)的一端套设有圆环(22),弧形板(2)与圆环(22)转动连接,每个弧形板(2)远离基座(1)的一端通过圆环(22)串连;所述一号孔(11)远离弧形板(2)的一端固连有膜片(12);所述基座(1)上均匀开设有一组二号孔(3),且二号孔(3)远离一号孔(11),二号孔(3)内靠近弧形板(2)的位置转动连接有转轴(31),且转轴(31)上均匀固连有一组凸块(32);所述基座(1)顶部安装有基体(4),且基体(4)与基座(1)通过螺栓连接;所述基体(4)对应二号孔(3)的位置均固连有一号块(42),且一号块(42)与二号孔(3)滑动连接;所述基体(4)顶部中心位置设置有螺钉(43),且螺钉(43)靠近基体(4)的一端位于基体(4)内,基体(4)内以螺钉(43)为圆心固连有一号管(44),一号管(44)内滑动连接有垫片(45),垫片(45)顶部与螺钉(43)底部贴合,一号管(44)外表面套设有二号管(46),一号管(44)与二号管(46)滑动连接;所述二号管(46)远离一号管(44)的一端固连有一号板(5),且一号板(5)与垫片(45)通过复位弹簧连接,一号板(5)顶部远离二号管(46)的位置固连有磁芯(51);所述基体(4)内对应磁芯(51)的位置固连有线圈(41),且线圈(41)通过数据线引出基体(4)内。
  2. 根据权利要求1所述的一种电感式水压传感器,其特征在于:所述凸块(32)截面为半圆状。
  3. 根据权利要求2所述的一种电感式水压传感器,其特征在于:所述弧形板(2)远离二号孔(3)的一端为倾斜设置,且弧形板(2)的外表面垂直状态时,弧形板(2)的内表面倾斜朝向一号孔(11)。
  4. 根据权利要求3所述的一种电感式水压传感器,其特征在于:所述膜片(12)截面为波纹状设置。
  5. 根据权利要求4所述的一种电感式水压传感器,其特征在于:所述弧形板(2)位于相邻弧形板(2)两侧均设置有防水胶条(52)。
  6. 根据权利要求5所述的一种电感式水压传感器,其特征在于:所述一号块(42)靠近二号孔(3)的一端为圆弧状;所述一号板(5)底部远离膜片(12)位置均匀固连有一组减震弹簧(53)。
PCT/CN2021/115685 2021-07-27 2021-08-31 一种电感式水压传感器 WO2023004922A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110850728.3 2021-07-27
CN202110850728.3A CN113465812B (zh) 2021-07-27 2021-07-27 一种电感式水压传感器

Publications (1)

Publication Number Publication Date
WO2023004922A1 true WO2023004922A1 (zh) 2023-02-02

Family

ID=77882764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115685 WO2023004922A1 (zh) 2021-07-27 2021-08-31 一种电感式水压传感器

Country Status (2)

Country Link
CN (1) CN113465812B (zh)
WO (1) WO2023004922A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116591552A (zh) * 2023-05-17 2023-08-15 江苏日安电气有限公司 一种防触电电吸式电气柜门锁装置
CN116786542A (zh) * 2023-08-29 2023-09-22 山东省十里香芝麻制品股份有限公司 一种生产芝麻油用晃油机的清洗装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486060B (zh) * 2021-12-29 2023-11-03 浙江力夫传感技术有限公司 一种承重式阶段性自动记录压力传感器系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805466A (en) * 1954-04-15 1958-12-03 Kollsman Instr Corp Improvements in inductive transducers
CN103344376A (zh) * 2008-12-05 2013-10-09 伊利诺斯工具制品有限公司 用于检测以相对可活动的部件为特征的家用电器的运行参数的改进的压力传感器
CN110462359A (zh) * 2017-03-24 2019-11-15 Zf腓德烈斯哈芬股份公司 用于测量压力的装置
CN210487125U (zh) * 2019-10-29 2020-05-08 深圳华科力达科技有限公司 一种电感式压力传感器
CN211954196U (zh) * 2020-03-25 2020-11-17 芯动神州科技(天津)有限公司 一种磁芯位置可调式电感传感器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516716C2 (sv) * 1994-04-14 2002-02-19 Mks Instr Tryckgivare för mätning av trycket hos en fluid
ITTO20060236A1 (it) * 2005-03-31 2006-10-01 Seiko Epson Corp Contenitore con funzione di rilevamento di liquido e relativo sensore
JP6755463B2 (ja) * 2016-09-26 2020-09-16 日本電産トーソク株式会社 油圧センサ取付構造
CN107941383A (zh) * 2017-11-16 2018-04-20 佛山市川东磁电股份有限公司 一种压力传感器的固定安装座
CN109799029A (zh) * 2019-02-20 2019-05-24 嘉兴勤慎智能技术有限公司 一种液压传感器
CN211262565U (zh) * 2019-10-09 2020-08-14 西安华恒仪表制造有限公司 一种压力传感器的安装座装置
CN211344019U (zh) * 2019-12-25 2020-08-25 浙江大元泵业股份有限公司 一种具有双密封结构的压力传感器
CN211904532U (zh) * 2020-05-25 2020-11-10 浙江大元泵业股份有限公司 一种传感器的密封结构
CN212363540U (zh) * 2020-07-14 2021-01-15 无锡盛迈克传感技术有限公司 一种汽车机油压力传感器的防水装置
CN212844135U (zh) * 2020-09-29 2021-03-30 常州长荣电子有限公司 一种带有缓冲结构的压力传感器
CN112857660B (zh) * 2021-01-08 2022-08-05 上海梓砼科技有限公司 一种水压检测传感器的安装结构
CN112595452A (zh) * 2021-01-19 2021-04-02 广东和宇传感器有限公司 一种矿用压力变送器简型结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805466A (en) * 1954-04-15 1958-12-03 Kollsman Instr Corp Improvements in inductive transducers
CN103344376A (zh) * 2008-12-05 2013-10-09 伊利诺斯工具制品有限公司 用于检测以相对可活动的部件为特征的家用电器的运行参数的改进的压力传感器
CN110462359A (zh) * 2017-03-24 2019-11-15 Zf腓德烈斯哈芬股份公司 用于测量压力的装置
CN210487125U (zh) * 2019-10-29 2020-05-08 深圳华科力达科技有限公司 一种电感式压力传感器
CN211954196U (zh) * 2020-03-25 2020-11-17 芯动神州科技(天津)有限公司 一种磁芯位置可调式电感传感器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116591552A (zh) * 2023-05-17 2023-08-15 江苏日安电气有限公司 一种防触电电吸式电气柜门锁装置
CN116591552B (zh) * 2023-05-17 2023-10-24 江苏日安电气有限公司 一种防触电电吸式电气柜门锁装置
CN116786542A (zh) * 2023-08-29 2023-09-22 山东省十里香芝麻制品股份有限公司 一种生产芝麻油用晃油机的清洗装置
CN116786542B (zh) * 2023-08-29 2023-11-14 山东省十里香芝麻制品股份有限公司 一种生产芝麻油用晃油机的清洗装置

Also Published As

Publication number Publication date
CN113465812A (zh) 2021-10-01
CN113465812B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023004922A1 (zh) 一种电感式水压传感器
CN207763876U (zh) 一种具有新型测量方式和密封结构的压差信号器
CN210036850U (zh) 一种新型气体流量计温压补偿装置
CN205861336U (zh) 一种轴用密封件工况模拟用双工位测试模具
CN209229124U (zh) 一种耐腐蚀型高性能流量控制器
CN208091528U (zh) 一种可连续工作的气体收集与计量装置
CN105043638A (zh) 抗震压力表
CN206321303U (zh) 满管型涡街流量传感器
CN109373050A (zh) 一种耐腐蚀型高性能流量控制器
CN220706751U (zh) 一种特种设备检测用锅炉管道密封结构
CN210401084U (zh) 一种用于高压胶管的压力测试装置
US8146435B1 (en) Differential pressure gauge
CN203777759U (zh) 一种自动反冲洗过滤装置
CN208206371U (zh) 一种基于蓝宝石特性的测量冷媒压力的数显压力变送器
CN209621757U (zh) 一种新型的内置传感器装置
CN110068300B (zh) 粗糙度仪传动轴自适应限制机构
CN209621758U (zh) 一种液压缸的密封装置
CN202972144U (zh) 气动隔膜式减压器
CN220104129U (zh) 易于安装的仪表
WO2021228026A1 (zh) 用于护理机的水盒及护理机
CN215114680U (zh) 一种耐磨电极的电磁流量计
CN208688594U (zh) 温压补偿型流量计
CN214224415U (zh) 高精度高可靠天燃气压力表
CN206860934U (zh) 一种高稳定性的浮动球阀
CN109441847A (zh) 一种立式多级离心泵测试非接触式振动监测机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE