WO2023004905A1 - 变速一体机及其井场设备 - Google Patents

变速一体机及其井场设备 Download PDF

Info

Publication number
WO2023004905A1
WO2023004905A1 PCT/CN2021/113988 CN2021113988W WO2023004905A1 WO 2023004905 A1 WO2023004905 A1 WO 2023004905A1 CN 2021113988 W CN2021113988 W CN 2021113988W WO 2023004905 A1 WO2023004905 A1 WO 2023004905A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
inverter
assembly
cooling channel
housing
Prior art date
Application number
PCT/CN2021/113988
Other languages
English (en)
French (fr)
Inventor
崔树桢
常胜
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to CA3173692A priority Critical patent/CA3173692A1/en
Priority to US17/559,522 priority patent/US20220112892A1/en
Publication of WO2023004905A1 publication Critical patent/WO2023004905A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • Embodiments of the present disclosure relate to an integrated speed changer and wellsite equipment including the integrated speed changer.
  • the power drive methods adopted by high-power fracturing equipment mainly include diesel drive and electric drive.
  • the power source is a diesel engine
  • the transmission device is a gearbox and a drive shaft
  • the actuator is a plunger pump.
  • the power source is a motor
  • the transmission device is a drive shaft or coupling
  • the actuator is a plunger pump.
  • the first aspect of the present disclosure provides a variable speed integrated machine, including: a drive device, including a motor and a casing for accommodating the motor; an inverter device, arranged on the casing and electrically connected to the motor; an inverter The heat dissipation device is arranged on the side of the inverter device away from the casing and is configured to dissipate heat to the inverter device in the form of cooling liquid; the driving heat dissipation device is at least partially arranged on the casing and is configured to At least one of the cooling liquid heat dissipation method and the air cooling heat dissipation method dissipates heat to the drive device; wherein at least a part of the drive heat dissipation device and the inverter device are arranged on the same side of the housing.
  • the casing defines a cavity for accommodating the motor
  • the driving heat dissipation device includes: an air-cooled heat dissipation mechanism, the air-cooled heat dissipation mechanism includes an air outlet component communicated with the cavity, the The air outlet component and the inverter device are arranged on the same side of the housing.
  • the air cooling mechanism includes at least two air outlet assemblies, and the air outlet directions of the at least two air outlet assemblies are the same as or different from each other.
  • the air outlet assembly includes: a heat dissipation fan arranged on the casing; a fan volute arranged between the heat dissipation fan and the casing; and an air exhaust duct; wherein, the The first side of the fan volute communicates with the cooling fan, the second side of the fan volute communicates with the cavity, the third side of the fan volute communicates with the exhaust duct, and the motor including an output shaft, the first side and the second side are opposite to each other in a direction perpendicular to the output shaft; wherein the cooling fan is configured to suck the gas in the cavity into the fan and the gas is discharged through the exhaust channel.
  • the exhaust duct includes: an air outlet, the air outlet faces away from the housing; and an air outlet cover, the air outlet cover is rotatably connected to the air outlet and configured to cover the air outlet.
  • the motor includes an output shaft extending from the housing, the housing including a first side and a second side opposite to each other in a direction perpendicular to the output shaft,
  • the air outlet assembly and the inverter device are arranged on the first side of the housing;
  • the air cooling mechanism further includes: an air inlet assembly, and the air inlet assembly includes The air inlet is configured to communicate with the cavity so that the gas entering the cavity from the air inlet passes through the motor and is discharged from the air outlet assembly.
  • the air inlet assembly further includes: a groove disposed on the second side of the casing, the air inlet is disposed in the groove; and a protective net covering the air inlet; wherein The plane where the protection net is located is not coplanar with the outer surface of the second side of the housing, and the plane where the protection net is located is closer to the motor than the outer surface of the second side of the housing.
  • the driving heat dissipation device includes: a coolant heat dissipation mechanism, and the coolant heat dissipation mechanism includes: a first cooling assembly, disposed in a cavity defined by the housing to accommodate the motor; a first fan assembly , disposed on the casing; and a first cooling liquid storage assembly, disposed between the first fan assembly and the casing, the first cooling liquid storage assembly communicates with the first cooling assembly and is configured to providing cooling liquid to the first cooling assembly, the first fan assembly configured to dissipate heat from the cooling liquid in the first cooling liquid storage assembly; wherein the first cooling liquid storage assembly, the first cooling liquid storage assembly A fan assembly and the inverter device are both arranged on the same side of the casing.
  • the inverter cooling device and the drive cooling device share the first coolant storage assembly and the first fan assembly;
  • the inverter cooling device includes a The inverter cooling plate on the side away from the casing, the shared first fan assembly is arranged on the side of the inverter cooling plate away from the casing, and the shared first cooling liquid storage assembly is arranged on between the shared first fan assembly and the inverter cooling plate.
  • the motor includes an output shaft extending from the housing, the housing including a first side and a second side opposite to each other in a direction perpendicular to the output shaft;
  • the shared first coolant storage assembly, the shared first fan assembly, the inverter device, and the inverter cooling plate are all disposed on a first side of the housing, the inverter device covering Part or all of the outer surface of the first side of the housing.
  • the inverter cooling device includes: an inverter cooling channel, which is arranged in the inverter cooling plate and includes an inlet of the inverter cooling channel and an outlet of the inverter cooling channel.
  • the first cooling assembly includes: a first cooling channel, at least a part of which is disposed in the electric motor and which includes a first cooling channel inlet and a first cooling channel outlet.
  • the first cooling liquid storage assembly includes: a cooling liquid storage chamber, the cooling liquid storage chamber includes: an output end, outputting the cooling liquid to the inverter cooling channel and the first cooling channel; an input end, receiving The cooling liquid flowing back from the inverter cooling channel and the first cooling channel; wherein, the inlet of the inverter cooling channel and the inlet of the first cooling channel are respectively connected to the output end, and the inverter The outlet of the cooling channel and the outlet of the first cooling channel are respectively connected to the input end.
  • the inverter cooling device includes: an inverter cooling channel, which is arranged in the inverter cooling plate and includes an inlet of the inverter cooling channel and an outlet of the inverter cooling channel.
  • the first cooling assembly includes: a first cooling channel, at least a part of which is disposed in the electric motor and which includes a first cooling channel inlet and a first cooling channel outlet.
  • the first cooling liquid storage assembly includes: a cooling liquid storage chamber, the cooling liquid storage chamber includes: an output end, outputting the cooling liquid to the inverter cooling channel and the first cooling channel; an input end, receiving The coolant flowing back from the inverter cooling channel and the first cooling channel; wherein, the inlet of the inverter cooling channel is connected to the output end, and the outlet of the inverter cooling channel is connected to the first cooling channel The channel inlet is connected, and the outlet of the first cooling channel is connected with the input end.
  • the drive heat dissipation device includes an air-cooled heat dissipation mechanism and a coolant heat dissipation mechanism; at least a part of the air-cooled heat dissipation mechanism, at least a part of the coolant heat dissipation mechanism and the inverter device are all arranged on on the same side of the housing.
  • the casing defines a cavity for accommodating the motor; the air-cooled heat dissipation mechanism includes an air outlet component communicated with the cavity.
  • the coolant heat dissipation mechanism includes: a first cooling assembly, arranged in a cavity defined by the casing to accommodate the motor; a first fan assembly, arranged on the casing; and a first cooling liquid storage assembly, arranged in Between the first fan assembly and the housing, the first cooling liquid storage assembly communicates with the first cooling assembly and is configured to provide cooling liquid to the first cooling assembly, and the first fan assembly is configured In order to dissipate heat from the coolant in the first coolant storage assembly; the air outlet assembly, the first coolant storage assembly, the first fan assembly and the inverter device are all arranged in the on the same side of the enclosure.
  • the motor includes an output shaft, a stator, and a rotor, and the output shaft protrudes from the casing;
  • the first cooling assembly includes: a first cooling channel, at least a part of the first cooling channel It is arranged in the stator along a direction parallel to the output shaft;
  • the air-cooled heat dissipation mechanism further includes: an air inlet assembly, the air inlet assembly includes an air inlet arranged on the housing, and the air inlet is configured In order to communicate with the cavity, the gas entering the cavity from the air inlet is discharged from the air outlet assembly through the rotor.
  • the inverter cooling device includes: an inverter cooling channel, which is arranged in the inverter cooling plate and includes an inlet of the inverter cooling channel and an outlet of the inverter cooling channel.
  • the first cooling assembly includes: a first cooling channel, at least a part of which is disposed in the electric motor and which includes a first cooling channel inlet and a first cooling channel outlet.
  • the first cooling liquid storage assembly includes: a cooling liquid storage chamber, the cooling liquid storage chamber includes: an output end, outputting the cooling liquid to the inverter cooling channel and the first cooling channel; an input end, receiving The cooling liquid flowing back from the inverter cooling channel and the first cooling channel; wherein, the inlet of the inverter cooling channel and the inlet of the first cooling channel are respectively connected to the output end, and the inverter The outlet of the cooling channel and the outlet of the first cooling channel are respectively connected to the input end.
  • the inverter cooling device includes: an inverter cooling channel, which is arranged in the inverter cooling plate and includes an inlet of the inverter cooling channel and an outlet of the inverter cooling channel.
  • the first cooling assembly includes: a first cooling channel, at least a part of which is disposed in the electric motor and which includes a first cooling channel inlet and a first cooling channel outlet.
  • the first cooling liquid storage assembly includes: a cooling liquid storage chamber, the cooling liquid storage chamber includes: an output end, outputting the cooling liquid to the inverter cooling channel and the first cooling channel; an input end, receiving The coolant flowing back from the inverter cooling channel and the first cooling channel; wherein, the inlet of the inverter cooling channel is connected to the output end, and the outlet of the inverter cooling channel is connected to the first cooling channel The channel inlet is connected, and the outlet of the first cooling channel is connected with the input end.
  • the inverter cooling device and the drive cooling device share the first coolant storage assembly and the first fan assembly;
  • the inverter cooling device includes a The inverter cooling plate on the side away from the casing, the shared first fan assembly is arranged on the side of the inverter cooling plate away from the casing, and the shared first cooling liquid storage assembly is arranged on between the shared first fan assembly and the inverter cooling plate.
  • the motor includes a bottom and a top;
  • the housing includes: a bottom surface on the same side as the bottom of the motor, and a top surface on the same side as the top of the motor; wherein the drive dissipates heat At least a part of the device, the inverter device and the inverter heat sink are all disposed on the top surface of the housing.
  • the second aspect of the present disclosure provides wellsite equipment, including the above-mentioned integrated speed changer.
  • FIG. 1 is a three-dimensional schematic view of a transmission integrated machine according to an embodiment of the present disclosure at a first viewing angle.
  • FIG. 2 is a schematic structural view of the integrated speed changer shown in FIG. 1 .
  • FIG. 3 is a schematic perspective view of the all-in-one speed changer in FIG. 1 at a second viewing angle.
  • FIG. 4 is a structural schematic diagram of the driving device and the driving heat dissipation device in FIG. 1 .
  • FIG. 5 is a schematic structural diagram of the inverter cooling plate in FIG. 1 .
  • FIG. 6 is a schematic structural diagram of the inverter device and the inverter cooling device along FIG. 2 .
  • FIG. 7 is an enlarged schematic diagram of the bottom of the integrated transmission machine in FIG. 3 .
  • Fig. 8 is a schematic structural diagram of a transmission integrated machine according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic perspective view of a transmission integrated machine according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of the integrated speed changer shown in FIG. 9 .
  • Fig. 11 is a schematic cross-sectional view of a stator in a driving device according to an embodiment of the present disclosure.
  • Fig. 12 is a three-dimensional structural view of a transmission integrated machine according to yet another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural view of the integrated speed changer shown in FIG. 12 .
  • 20 and 21 schematically show connection block diagrams of examples of the first cooling channel and the inverter cooling channel connected in series.
  • Fig. 22 is a schematic perspective view of a transmission integrated machine according to yet another embodiment of the present disclosure.
  • Fig. 23 to Fig. 24 schematically show connection block diagrams of an example of the first cooling channel and the inverter cooling channel connected in parallel when air cooling and cooling liquid cooling are used to simultaneously dissipate heat from the motor.
  • Fig. 25 schematically shows a connection block diagram of an example of the first cooling channel and the inverter cooling channel connected in series when the air cooling method and the coolant cooling method are adopted to simultaneously dissipate heat from the motor.
  • Fig. 26 is a schematic structural diagram of an electrically driven fracturing device according to an embodiment of the present disclosure.
  • electric-driven fracturing equipment Compared with diesel-driven fracturing equipment, electric-driven fracturing equipment has the advantages of low noise and no exhaust pollution.
  • the frequency converter since the speed adjustment of the motor requires a special frequency converter, and the frequency converter includes a rectification unit (such as a rectifier transformer) and an inverter, the frequency converter on the electric-driven fracturing equipment It takes up a lot of space and is heavy, making it inconvenient to transport or move.
  • there are many connecting cables between the motor and the frequency converter and the operation is cumbersome.
  • variable speed integrated machine that is, the motor and the inverter adopt an integrated design.
  • the rectifier unit is not placed on the all-in-one speed changer, so that the rectifier unit is installed separately from the motor and inverter, and the speed regulation and drive can be realized by one all-in-one speed changer. It not only effectively reduces the space occupied by the motor and frequency converter on the electric drive fracturing equipment, but also reduces the weight of the electric drive fracturing equipment, making the transportation more convenient. In addition, it also provides more space for installing other equipment on the fracturing equipment More space guarantee.
  • variable speed integrated machine due to the high power of the motor and inverter, a large amount of heat will be generated, so it is necessary to install a cooling device to dissipate heat from the variable speed integrated machine to ensure that the motor and inverter are within the normal temperature range. continuously working.
  • At least one embodiment of the present disclosure provides a variable speed integrated machine, including: a driving device, which includes a motor and a casing for accommodating the motor; an inverter device, which is arranged on the casing and is electrically connected to the motor;
  • the inverter cooling device is arranged on the side of the inverter device away from the housing and is configured to dissipate heat to the inverter device in the form of cooling liquid;
  • the drive cooling device is at least partly arranged on the housing and It is configured to dissipate heat from the drive device in at least one of cooling liquid heat dissipation and air cooling; wherein at least a part of the drive heat dissipation device and the inverter device are disposed on the same side of the housing.
  • the inverter cooling device is used to dissipate heat from the inverter device, and the driving cooling device is used to dissipate heat to the driving device, effectively ensuring that the driving device and inverter device in the well site are at normal temperature continuous work.
  • the drive cooling device and the inverter device in the integrated speed changer are respectively arranged on different sides of the casing, the drive cooling device and the inverter device are dispersedly distributed on the surface of the casing, which may lead to an integrated speed change.
  • the structure of the machine is not compact, so that the overall volume increases.
  • a variable-speed integrated machine with a large overall volume is applied to well site equipment such as fracturing equipment or cementing equipment, it will result in a larger space occupied by the well site equipment.
  • additional devices need to be added to the wellsite equipment later, there is not enough installation space, which brings great difficulty to the follow-up work.
  • the transmission integrated machine provided by at least one embodiment of the present disclosure, by arranging at least a part of the driving heat dissipation device and the inverter device on the same side of the casing, the space occupied by the drive heat dissipation device and the inverter device on the transmission integrated machine is saved , so that the overall volume of the transmission integrated machine is reduced.
  • the variable speed integrated machine with a small overall volume is applied to the well site equipment, since the overall volume of the variable speed integrated machine is reduced, the space it occupies on the well site equipment is also reduced, so it can be used for the well site equipment Install other devices on it to provide more space protection.
  • a plurality of electric-driven fracturing vehicles are usually arranged to jointly perform the fracturing operation.
  • multiple electric drive fracturing vehicles are usually parked side by side, that is, parallel to each other and separated by a certain distance.
  • the driving heat dissipation device and the inverter device in the transmission integrated machine on each electric drive fracturing vehicle are respectively arranged on different sides of the casing (for example, the inverter device is arranged on the top surface of the casing, If at least a part of the driving cooling device is arranged on the side of the shell), then at least a part of the driving cooling device arranged on the side may be too small in distance from the adjacent electric driving fracturing vehicle, thus affecting the adjacent electric driving fracturing vehicle. The heat dissipation effect of the fracturing vehicle.
  • the transmission integrated machine provided by at least one embodiment of the present disclosure, by arranging at least a part of the driving heat dissipation device and the inverter device on the same side of the casing, it is possible to minimize or even eliminate The small distance between the fracturing vehicles will affect the heat dissipation effect of the driving device of the electric drive fracturing vehicle.
  • the driving cooling device and the inverter device are arranged on the top surface of the shell, since the top space of the electric drive fracturing vehicle is occupied, the side space is not affected by it, even if two electric drive voltage The horizontal distance between the fracturing trucks is small, and it does not affect the heat dissipation effect of the two electric drive fracturing trucks.
  • the heat dissipation method of the cooling liquid refers to using the cooling liquid to take away the heat generated by the device to be cooled, so as to achieve the purpose of heat dissipation.
  • the cooling liquid includes, for example, a liquid fluid, and the liquid fluid includes but not limited to at least one of water, organic matter or inorganic matter.
  • the air-cooled heat dissipation method is also called the air-cooled heat dissipation method, which means that the purpose of heat dissipation is achieved by passing air into the device to be cooled.
  • the air cooling heat dissipation method has a simple structure, small size, light weight, small thermal resistance, large heat exchange area, and is very convenient to use and install.
  • the same side of the housing refers to the same surface of the housing of the driving device, for example.
  • the casing of the driving device includes a plurality of surfaces, at least a part of the driving cooling device and the inverter device are disposed on the same surface of the plurality of surfaces of the casing.
  • “multiple" means two or more.
  • the driving heat dissipation device may dissipate heat to the driving device in at least one of cooling liquid heat dissipation and air cooling heat dissipation. That is, the driving heat dissipation device can only dissipate heat to the driving device in the form of cooling liquid; or, the driving heat dissipation device can only dissipate heat to the driving device in the form of air cooling; There are two ways of heat dissipation to dissipate heat from the drive unit. In all the embodiments of the present disclosure, the inverter cooling device adopts cooling liquid cooling method.
  • FIG. 1 is a three-dimensional schematic view of a transmission integrated machine according to an embodiment of the present disclosure at a first viewing angle.
  • FIG. 2 is a schematic structural view of the integrated speed changer shown in FIG. 1 .
  • At least one embodiment of the present disclosure provides an all-in-one transmission machine including a driving device 1 , a driving cooling device 2 , an inverter device 3 and an inverter cooling device 4 .
  • the driving device 1 includes a motor 10 and a casing 12 for accommodating the motor 10 .
  • the motor 10 (also referred to as a motor) refers to an electromagnetic device that converts or transmits electric energy according to the law of electromagnetic induction. Its main function is to generate driving torque as a power source for wellsite equipment.
  • the motor may comprise an AC motor or a DC motor.
  • the motor 10 adopts an AC motor, that is, converts direct current into alternating current.
  • housing 12 defines a cavity 13 that houses motor 10 . That is, the motor 10 is disposed inside the casing 12 .
  • the surface of the casing 12 facing the motor 10 is an inner surface, and the surface facing away from the motor 10 is an outer surface, for example, the outer surface includes a top surface, a bottom surface and a side surface.
  • the shape of the housing 12 is basically a cuboid.
  • the shape of the casing 12 can also be a columnar body such as a cube, a cylinder, etc., and the embodiments of the present disclosure do not limit the shape of the casing 12.
  • the shape of the casing 12 is a cuboid or a cube, it is beneficial to The inverter device 3 and the inverter heat sink device 4 are fixedly installed on the casing 12 to enhance the stability of the whole device.
  • FIG. 3 is a schematic perspective view of the all-in-one speed changer in FIG. 1 at a second viewing angle.
  • FIG. 4 is a structural schematic diagram of the driving device and the driving heat dissipation device in FIG. 1 .
  • the motor 10 includes an output shaft 14 , a stator 15 , a rotor 16 , an end cover 17 and a bearing cover 18 .
  • the stator 15 is a fixed part of the motor 10 whose function is to generate a magnetic field and serve as a mechanical support for the motor.
  • the stator 15 is, for example, the outermost cylinder. There are many windings wrapped around the inside of the cylinder. These windings are connected to an external AC power supply.
  • the entire cylinder is connected to the base and is fixed.
  • the stator 15 includes, for example, a stator core, a stator winding, and a frame.
  • the rotor 16 is a rotating part of the motor 10 , and the rotor 16 is disposed in the inner cavity of the stator 15 , connected with the power output shaft 14 of the motor 10 and rotates at the same speed.
  • the rotor 16 includes, for example, a rotor core and a rotor winding. There is no connection or contact between the stator 15 and the rotor 16 , but when the stator winding is connected to AC power, the rotor 16 will immediately start to rotate and output power through the power take-off shaft 14 .
  • the output shaft 14 protrudes from the end cap 17 of the housing 12 and extends in a first direction (eg, the x direction shown in FIG. 2 ).
  • the housing 12 includes a first side S1 and a second side S2 facing each other in a second direction perpendicular to the x direction (eg, the y direction shown in FIG. 2 ).
  • the first side S1 is the upper side shown in FIG. 2
  • the second side S2 is the lower side shown in FIG. 2 .
  • the case 12 has a top surface F1 and a bottom surface F2 corresponding to upper and lower sides, respectively.
  • the housing 12 further includes a third side S3 and a fourth side S4 opposite to each other in a third direction (for example, the z direction shown in FIG.
  • the inverter device 3 may be located on one of the first side S1 , the second side S2 , the third side S3 and the fourth side S4 of the housing 12 .
  • the inverter device 3 may be located on one of the top surface F1 , the bottom surface F2 , and the two side surfaces F3 of the housing 12 .
  • the inverter device 3 is, for example, located on the top surface F1 of the housing 12 , and the top surface F1 of the housing 12 acts as a fixed support for the inverter device 3 .
  • the inverter device 3 When the variable speed integrated machine is applied to wellsite equipment such as electric drive fracturing vehicles, the inverter device 3 is located on one of the first side S1, the third side S3 and the fourth side S4 of the casing 12, that is, the inverter The shifting device 3 is not located on the second side S2 of the casing 12, because the second side S2 as the bottom of the integrated speed changer may directly contact the electric drive fracturing vehicle when the integrated speed changer is placed or installed on the electric drive fracturing vehicle .
  • the embodiment of the present disclosure does not limit the connection method between the inverter device 3 and the casing 12, as long as the two can be fixedly installed together.
  • the casing 12 and the inverter device 3 can be fixedly installed by means of bolts, riveting or welding.
  • the inverter device 3 is an inverter, and the inverter is electrically connected to the motor 10 .
  • the inverter device 3 is connected to the motor 10 through a power supply line for supplying power to the motor 10.
  • the inverter converts the frequency of the AC power supply, it first converts the AC power into DC power, that is, "rectification”, and then converts the DC power into variable-frequency AC power, that is, "inversion".
  • the all-in-one speed change machine in the embodiment of the present disclosure integrates an inverter and a motor, and does not include a rectification unit. Therefore, only the inverter device 3 is provided on the driving device 1, which reduces the overall volume and weight of the all-in-one speed change machine.
  • the alternating current with variable frequency is output to the motor 10 through the inverter device 3 to adjust the rotation speed of the motor 10 .
  • the inverter cooling device 4 is disposed on a side of the inverter device 3 away from the housing 12 . That is, both the inverter device 3 and the inverter heat sink 4 are disposed on the same side of the casing 12 , and the inverter device 3 is located between the casing 12 and the inverter heat sink 4 .
  • the inverter device 3 and the inverter heat sink 4 are respectively arranged on different sides of the housing 12, the inverter device 3 and the inverter heat sink 4 are located on different surfaces of the housing 12. This arrangement will increase the speed of the integrated speed changer. overall volume.
  • the inverter cooling device 4 adopts cooling liquid to dissipate heat to the inverter device 3, when the two are located on different surfaces of the casing 12, the length of the cooling pipeline for providing the cooling liquid needs to be designed to be longer, which It will affect the cooling effect of the inverter device 4 on the inverter device 3 .
  • the inverter device 3 and the inverter heat sink 4 are arranged on the same side of the housing 12, not only the structure of the all-in-one speed changer is made more compact, but also the inverter heat sink can be ensured. 4.
  • the inverter cooling device 4 includes an inverter cooling plate 41 (also called a water cooling plate), an inverter cooling liquid storage assembly 42 and an inverter fan assembly 43 .
  • the inverter cooling plate 41 , the inverter cooling liquid storage assembly 42 and the inverter fan assembly 43 are sequentially disposed on the first side S1 of the casing 12 , for example, on the top surface F1 .
  • the inverter cooling plate 41 is arranged on the side of the inverter device 3 away from the casing 12
  • the inverter cooling liquid storage assembly 42 is arranged on the side of the inverter cooling plate 41 away from the casing 12
  • the inverter fan assembly 43 is disposed on the side of the inverter cooling liquid storage assembly 42 away from the housing 12 .
  • the inverter device 3 is located between the top surface F1 of the casing 12 and the inverter cooling plate 41 .
  • the inverter device 3 includes a first surface BM1 close to the housing 12 and a second surface BM2 away from the housing 12 . That is, the first surface BM1 and the second surface BM2 face each other in a direction perpendicular to the output shaft 14 (eg, the y direction shown in the figure), and the first surface BM1 is closer to the housing 12 than the second surface BM2.
  • the inverter cooling plate 41 is located on the second surface BM2 and is in direct contact with the second surface BM2.
  • the inverter cooling plate 41 and the inverter device 3 overlap each other in a direction perpendicular to the output shaft 14 (such as the y direction shown in the figure), and the overlap can be partially or completely overlapped.
  • the inverter cooling plate 41 and the inverter device 3 completely overlap in the y direction, that is, the inverter cooling plate 41 completely covers the second surface BM2 of the inverter device 3, which can increase the area of heat conduction and realize Better cooling effect.
  • FIG. 5 is a schematic structural diagram of the inverter cooling plate in FIG. 1 .
  • the inverter cooling plate 41 includes, for example, an inverter cooling channel 51 .
  • the inverter cooling channel 51 includes at least one inverter cooling pipe, an inverter cooling channel inlet 51i and an inverter cooling channel outlet 51o.
  • At least one inverter cooling pipe, the inverter cooling channel inlet 51i and the inverter cooling channel outlet 51o are arranged on the side of the inverter cooling plate 41 away from the inverter device 3, that is, the inverter cooling plate 41 shown in FIG. 2 upper side.
  • the inverter cooling channel inlet 51i communicates with the first end (such as the right end shown in the figure) of at least one inverter cooling pipe
  • the inverter cooling channel outlet 51o communicates with the second end (such as the right end shown in the figure) of at least one inverter cooling pipe. shown left end), wherein the second end is different from the first end, and the first end and the second end are opposite to each other in the z direction.
  • the inverter cooling liquid flows in at least one inverter cooling pipe of the inverter cooling plate 41 , it can exchange heat with the inverter device 3 below the inverter cooling plate 41 , so as to achieve the purpose of cooling the inverter device 3 .
  • the inverter cooling plate 41 is in direct contact with the inverter device 3 .
  • the inverter coolant includes water.
  • the inverter cooling channel 51 includes an inverter cooling pipe 51a and an inverter cooling pipe 51b.
  • the inverter cooling pipe 51a and the inverter cooling pipe 51b share the inverter cooling channel inlet 51i and the inverter cooling channel outlet 51o. That is, both the inverter cooling pipe 51a and the inverter cooling pipe 51b communicate with the inlet 51i of the inverter cooling passage, and both the inverter cooling pipe 51a and the inverter cooling pipe 51b communicate with the outlet 51o of the inverter cooling passage.
  • the inverter cooling liquid After the inverter cooling liquid enters from the inverter cooling channel inlet 51i, it flows into the inverter cooling pipe 51a and the inverter cooling pipe 51b respectively, and exchanges heat with the inverter device 3, and then, the inverter cooling liquid after heat exchange They meet and flow out at the outlet 51o of the inverter cooling channel.
  • inverter cooling pipes 51a, 51b, one shared inverter cooling channel inlet 51i and one shared inverter cooling channel outlet 51o not only the heat exchange area of the water-cooled plate can be increased, but the cooling effect can also be enhanced. , can also simplify the process of manufacturing the inverter cooling plate, and reduce the manufacturing cost.
  • the inverter cooling pipes 51a and the inverter cooling pipes 51b may have the same or different pipeline distributions. For example, as shown in Figure 5.
  • the inverter cooling pipe 51 a and the inverter cooling pipe 51 b are mirror-symmetrical to the center line O1O2 of the inverter cooling plate 41 . Since the inverter cooling pipe 51a and the inverter cooling pipe 51b have the same pipeline distribution, the manufacturing process of the inverter cooling plate can be further simplified.
  • Fig. 5 only schematically shows that the pipeline direction of the inverter cooling pipe 51a and the inverter cooling pipe 51b is S-shaped.
  • the inverter cooling pipe 51 a and the inverter cooling pipe 51 b may also have other pipeline distributions, such as zigzag, straight line, etc., which are not limited in this embodiment of the present disclosure.
  • FIG. 6 is a structural schematic diagram of the inverter device and the inverter cooling device in FIG. 2 .
  • the inverter cooling liquid storage assembly 42 is arranged on the side of the inverter cooling plate 41 away from the inverter device 3 , and includes an inverter cooling liquid storage chamber 52 communicating with the inverter cooling plate 41 , used to store the inverter cooling liquid and provide the inverter cooling plate 41 with the inverter cooling liquid.
  • the inverter cooling liquid refers to cooling liquid for cooling the inverter device 3 .
  • the first end of the inverter cooling liquid storage chamber 52 (such as the right end shown in the figure) is connected to the inverter cooling channel inlet 51i through the first connecting pipe 53, and the second end of the inverter cooling liquid storage chamber 52 (such as the right end shown in the figure)
  • the left end shown in is connected with the inverter cooling channel outlet 51o through the second connecting pipe 54, wherein the second end is different from the first end, and the first end and the second end are opposite to each other in the z direction.
  • the inverter cooling liquid flows into the inverter cooling plate 41 from the inverter cooling liquid storage chamber 52 through the first connecting pipe 53 , and flows back from the inverter cooling plate 41 to the inverter cooling liquid through the second connecting pipe 54
  • the storage chamber 52 thus achieves the purpose of recycling.
  • the inverter fan assembly 43 is disposed on a side of the inverter cooling liquid storage assembly 42 away from the inverter cooling plate 41 to dissipate heat from the inverter cooling liquid in the inverter cooling liquid storage chamber 52 .
  • the number of inverter fan assemblies 43 can be one or multiple, and those skilled in the art can determine the specific number of inverter fan assemblies 43 according to the area of the inverter cooling liquid storage assembly 42. No limit.
  • the inverter fan assembly 43 includes a first inverter fan assembly 43a and a second inverter fan assembly 43b.
  • the first inverter fan assembly 43a and the second inverter fan assembly 43b are arranged side by side on the inverter cooling liquid storage chamber 52 along the z direction.
  • the first inverter fan assembly 43 a includes a cooling fan 45 and a cooling motor 47 .
  • the cooling motor 47 is arranged on the inverter cooling liquid storage assembly 42, and the cooling fan 45 is located between the cooling motor 47 and the inverter cooling liquid storage assembly 42.
  • the heat dissipation motor 47 works, it can drive the impeller of the heat dissipation fan 45 to rotate, and use the wind generated by the rotation of the impeller to cool the inverter coolant in the inverter coolant storage assembly 42 (such as the inverter coolant storage chamber 52 ).
  • the second inverter fan assembly 43 b includes a cooling fan 46 and a cooling motor 48 .
  • the cooling motor 48 is arranged on the inverter cooling liquid storage assembly 42 , and the cooling fan 46 is located between the cooling motor 48 and the inverter cooling liquid storage assembly 42 .
  • the heat dissipation motor 48 works, it can drive the impeller of the heat dissipation fan 46 to rotate, and use the wind generated by the rotation of the impeller to cool the inverter coolant in the inverter coolant storage assembly 42 (such as the inverter coolant storage chamber 52 ).
  • the first inverter fan assembly 43a and the second inverter fan assembly 43b can simultaneously control the inverter cooling liquid storage chamber 52.
  • the cooling fluid cools down to enhance the cooling effect.
  • the inverter cooling liquid flows from the inverter cooling liquid storage chamber 52 through the inverter cooling channel inlet 51i and the first connecting pipe 53 into the inverter cooling channel 51, and then, along the The first direction of movement v1 flows in the inverter cooling channel 51 .
  • the inverter cooling liquid takes away the heat generated by the heat-generating components in the inverter device 3 through heat exchange, and cools the heat-generating components.
  • the inverter coolant in the embodiment of the present disclosure is electrically isolated from the electrical parts in the inverter device 3 .
  • the inverter cooling device 4 of the embodiment of the present disclosure by setting the inverter cooling plate 41, the inverter cooling liquid storage assembly 42 and the inverter fan assembly 43, not only the heat dissipation effect on the inverter device 3 is improved, but also the cooling effect of the inverter device 3 is reduced.
  • the overall volume of the all-in-one speed changer since the inverter cooling liquid is recyclable, not only the production cost is reduced, but also the discharge of waste water is reduced, and environmental pollution is avoided.
  • the driving heat dissipation device 2 only dissipates heat to the driving device 1 through air cooling, and in this case, the driving heat dissipation device 2 only includes an air cooling mechanism.
  • the air-cooled heat dissipation mechanism 2A includes an air outlet assembly 20 communicated with the cavity 13 of the casing 12 , and the air outlet assembly 20 , the headwind device 3 , and the headwind heat dissipation device 4 are arranged on the same side of the casing 12 .
  • side for example, the first side S1 shown in the figure.
  • the air outlet assembly 20 By arranging the air outlet assembly 20, the inverter device 3 and the headwind cooling device 4 on the same top surface F1 of the casing 12, the space occupied by the drive cooling device 2, the inverter device 3 and the inverter cooling device 4 on the speed change integrated machine is saved. space, so that the overall volume of the speed change machine is reduced.
  • the variable speed integrated machine with a small overall volume is applied to the well site equipment, since the overall volume of the variable speed integrated machine is reduced, the space it occupies on the well site equipment is also reduced, so it can be used for the well site equipment Install other devices on it to provide more space protection.
  • the driving device 1 includes a first end E1 and a second end E2 opposite to each other in the x direction, wherein the first end E1 is close to the output shaft 14 and is the shaft extension end of the driving device 1 .
  • the second end E2 is away from the output shaft 14 and is the non-shaft extension end of the driving device 2 .
  • the inverter device 3 and the inverter cooling device 4 are arranged in a laminated manner on a part of the top surface F1 of the casing 12 near the first end E1, and the air outlet assembly 20 is arranged on the other side of the casing 12 near the second end E2. part of the top surface F1.
  • the number of the air outlet assembly 20 may be one or more.
  • the air-cooling heat dissipation mechanism 2A includes multiple air outlet components, the multiple air outlet components are used to dissipate heat from the drive device 1 at the same time, which can enhance the heat dissipation effect on the drive device 1 .
  • the air-cooled heat dissipation mechanism 2A includes a first air outlet assembly 20 a and a second air outlet assembly 20 b.
  • the first air outlet assembly 20a and the second air outlet assembly 20b are arranged side by side along the z direction on the top surface F1.
  • the first air outlet assembly 20a, the second air outlet assembly 20b, the headwind device 3 and the headwind cooling device 4 are all disposed on the same side of the casing 12, for example, on the same top surface F1.
  • the drive heat dissipation device 2 By arranging the first air outlet assembly 20a, the second air outlet assembly 20b, the inverter device 3 and the headwind heat dissipation device 4 on the same top surface F1 of the casing 12, the drive heat dissipation device 2, the inverter device 3 and the inverter are further saved.
  • the space occupied by the variable heat sink 4 on the integrated speed changer reduces the overall volume of the integrated speed changer.
  • the heat dissipation effect of the driving heat dissipation device 2 on the driving device 1 is enhanced.
  • the first air outlet assembly 20a and the second air outlet assembly 20b may have the same structure or different structures.
  • the difficulty of designing the arrangement of the air outlet assemblies on the housing 12 can be reduced, and the manufacturing process can be simplified.
  • the first air outlet assembly 20a includes a heat dissipation fan 21a, an air discharge channel 22a and a fan volute 25a.
  • the cooling fan 21a is disposed on the top surface F1 of the housing 10, and the fan volute 25a is located between the cooling fan 21a and the top surface F1.
  • the first side 251 (such as the upper end shown in the figure) of the fan volute 25a communicates with the cooling fan 21a
  • the second side 252 (such as the lower side shown in the figure) communicates with the cavity 13 of the housing 12
  • the third side 253 ( For example, the left side as shown in the figure) communicates with the exhaust duct 22a.
  • first side 251 and the second side 252 are opposite to each other in the y direction
  • the third side 253 is located between the first side 251 and the second side 252 and is located on a side of the fan volute 25 a away from the inverter device 3 .
  • the exhaust duct 22a includes an air outlet 23a.
  • the air outlet 23 a faces away from the housing 12 , such as toward the top of the integrated transmission.
  • the air outlet 23a By arranging the air outlet 23a in a direction away from the casing 12, it is convenient for the gas with a higher temperature to be discharged from the exhaust channel 22a.
  • the gas is discharged toward the top of the all-in-one speed changer through the air outlet 23a, interference or influence on the inverter device 3 or the inverter heat sink 4 can be avoided, and the heat dissipation effect of the inverter heat sink 4 on the inverter device 3 can be further ensured. .
  • windy or rainy weather may be encountered, and if no shelter is provided on the air outlet 23a, windy sand or rainwater may fall into the air discharge channel 22a.
  • extreme bad weather such as sandstorms, a large amount of wind and sand fall into the air exhaust channel, which may cause blockage of the air exhaust channel 22a.
  • an air outlet cover 24a is provided at the air outlet 23a, and the air outlet cover 24a is rotatably connected to the air outlet 23a, so that the air outlet cover 24a covers the air outlet 23a.
  • the air outlet cover plate 24a can be simply rotated to cover the air outlet 23a, thereby preventing external sand or rainwater from falling into the air outlet 22a and preventing the air outlet from being blocked.
  • the area of the air outlet cover plate 24a is greater than or equal to the area of the air outlet 23a, which can achieve a better shielding effect.
  • the embodiment of the present disclosure does not limit the connection method between the air outlet cover plate 24a and the exhaust duct 22a, as long as the air outlet cover plate 24a can move relative to the air outlet 23a, for example, the two can be connected by hinges or screws.
  • Fig. 2 only schematically shows one air outlet cover plate 24a, and in other embodiments of the present disclosure, multiple air outlet cover plates may also be provided on the air outlet 23a.
  • the air outlet 23a can be covered; when the two air outlet cover plates are in the open state, the air outlet 23a is not covered with any air outlet cover plate, at this moment, the gas in the air discharge channel 22a can be discharged from the air outlet 23a.
  • the purpose of shielding the air outlet 23a can also be achieved by closing the two air outlet cover plates. Therefore, the embodiment of the present disclosure does not limit the number of air outlet cover plates 24a.
  • the first air outlet assembly 20a and the second air outlet assembly 20b have the same structure, and the first air outlet assembly 20a and the second air outlet assembly 20b have the same air outlet direction.
  • the second air outlet component 20b includes a heat dissipation fan 21b, an air discharge channel 22b and a fan volute 25b.
  • the cooling fan 21b is disposed on the top surface F1 of the casing 10, and the fan volute 25b is located between the cooling fan 21b and the top surface F1.
  • the first side of the fan volute 25b (not shown, can refer to the first side 251 of the fan volute 25a of the first fan assembly) communicates with the cooling fan 21b, and the second side (not shown, can refer to the first fan assembly
  • the first side 252 of the fan volute 25a) communicates with the cavity 13 of the casing 12
  • the third side (not shown, can refer to the first side 253 of the fan volute 25a of the first fan assembly) communicates with the exhaust duct 22b connected.
  • the first side and the second side are opposite to each other in the y direction
  • the third side is located between the first side and the second side of the fan volute 25b and is located on a side of the fan volute 25b away from the inverter device 3 .
  • the exhaust duct 22b includes an air outlet 23b and an air outlet cover 24b.
  • the air outlet 23b has the same direction as the air outlet 23a of the second air outlet assembly 20b, and also faces away from the housing 12, for example, toward the top of the integrated transmission.
  • the heat dissipation fans 21a, 21b are turned on. At this time, the heat dissipation fans 21a, 21b suck the gas in the cavity 13 to the into the fan volute 25a, 25b, and through the air outlets 23a, 23b of the exhaust duct 22a, 22b toward the top of the speed change machine (as shown by the black thick arrow in Figure 2), so that the flow of gas can achieve
  • the motor 10 has the function of heat dissipation and cooling.
  • a water outlet may be provided at the bottom of the exhaust duct.
  • the bottom of the exhaust duct 22a near the shell 13 is provided with a water outlet 26a
  • the bottom of the exhaust duct 22b near the housing 13 is provided with a water outlet 26b.
  • the water outlets 26a, 26b are configured to discharge liquid (for example, rainwater, etc.) that has flowed into the exhaust duct 22a.
  • guide pipes such as hoses or hard pipes, can also be connected to the water outlets 26a, 26b to guide the discharged liquid into collecting devices such as water collection buckets, so as to avoid damage to the water caused by the liquid directly dripping from the water outlets. The influence of the drive unit.
  • the air-cooled heat dissipation mechanism 2A also includes an air inlet assembly 30, and the air inlet assembly 30 is arranged on a side of the housing 13 other than the first side, for example, on the second side S2. .
  • the number of the air inlet assembly 30 may be one or more.
  • the air-cooled heat dissipation mechanism 2A includes a first air inlet assembly 30a and a second air inlet assembly 30b, and the first air inlet assembly 30a and the second air inlet assembly 30b are arranged side by side on the side of the housing 13 along the x direction. on the second side S2.
  • the first air inlet assembly 30a is close to the second end E2 of the housing 13 and away from the first end E1 of the housing 13; Two ends E2.
  • the first air inlet assembly 30a includes two air inlets 31a disposed on the second side S2 of the casing. Further, two air inlets 31 a are opened on the bottom surface F2 of the housing 12 side by side along the z direction, for example.
  • the number of the air inlet 31a may be one or multiple.
  • the first air inlet assembly 30a includes a plurality of air inlets 31a, the cooling effect on the driving device 1 can be enhanced.
  • the second air inlet assembly 30b includes two air inlets 31b disposed on the second side S2 of the housing. Further, two air inlets 31 b are opened side by side on the bottom surface F2 of the housing 12 along the z direction, for example.
  • the number of the air inlet 31b may be one or multiple.
  • the second air inlet assembly 30b includes a plurality of air inlets 31b, the heat dissipation effect on the driving device 1 can be enhanced.
  • the air-cooled heat dissipation mechanism 2A to dissipate heat from the driving device 1
  • the heat dissipation fans 21a and 21b are turned on
  • the outside air can pass through the two air inlets 31a on the bottom surface F2 of the casing 12 and two air inlets 31b are sucked in the cavity 13 (as shown by the black thick arrow in Figure 2)
  • the motor 10 arranged in the cavity 13 is cooled down, after that, through the suction effect of the heat dissipation fan 21a, 21b, and then The gas is exhausted from the exhaust ducts 22a, 22b.
  • the air sucked into the cavity 13 can pass through the inner cavity 150 of the stator 15 (see FIG. 11 ), so as to realize the cooling effect on the motor 10 .
  • the first wind inlet component 30a and the second wind inlet component 30b may have the same structure or different structures.
  • the manufacturing process can be simplified.
  • the first air inlet assembly 30a and the second air inlet assembly 30b have the same structure as an example for illustration, and the embodiment of the present disclosure only describes the first air inlet assembly 30a, and the second air inlet assembly 30b
  • the specific structure and arrangement please refer to the first air inlet assembly 30a, and details will not be repeated here.
  • FIG. 7 is an enlarged schematic diagram of the bottom of the integrated transmission machine in FIG. 3 .
  • the first air inlet assembly 30 a further includes two grooves 32 a defined on the second side S2 of the casing 12 .
  • Each groove 32 a is recessed inward toward the motor 10 .
  • the two grooves 32a correspond to the two air inlets 31a one by one, that is, each air inlet 31a is disposed in one groove 32a.
  • the first air inlet assembly 30a further includes two protective nets 33a corresponding to the two air inlets 31a, that is, each protective net 33a covers one air inlet 31a. If the air inlet 31a is not provided with a protective net, foreign debris may be sucked into the cavity. By arranging a protective net on the air inlet, it is possible to prevent foreign debris from being sucked into the cavity 13 of the casing 12, thereby avoiding affecting the heat dissipation effect.
  • the plane P1 where each protective net 33a is located is not coplanar with the outer part or all of the surface P of the casing 12, and the plane P1 where the protective net 33a is located is closer than the outer surface P of the outer casing 12. close to the motor 10. That is, the entire bottom surface of the housing 12 is not in the same plane.
  • the all-in-one speed changer is applied to wellsite equipment such as an electric-driven fracturing vehicle, the bottom of the driving device 1 needs to be placed on the electric-driven fracturing vehicle, that is, the bottom surface of the housing 12 will be in contact with the electric-driven fracturing vehicle.
  • FIG. 8 is a schematic structural diagram of a transmission integrated machine according to another embodiment of the present disclosure.
  • FIG. 8 is a left view of an integrated transmission machine according to another embodiment of the present disclosure, and the angle of view of the left view is the same as that of the left view of the integrated transmission machine in FIG. 1 .
  • the all-in-one speed change machine provided by at least one embodiment of the present disclosure includes a driving device 1 , a driving cooling device 2 , an inverter device 3 and an inverter cooling device 4 .
  • the air cooling heat dissipation mechanism 2B adopted by the heat dissipation device 2 is driven.
  • the air-cooled heat dissipation mechanism 2B includes a third air outlet assembly 20 c , a fourth air outlet assembly 20 d and an air inlet assembly 30 .
  • the air-cooled heat dissipation mechanism 2B in FIG. 8 includes a third air outlet assembly 20c and a fourth air outlet assembly 20d, both of which have the same structure but different air outlet directions.
  • the third air outlet component 20c includes a heat dissipation fan 21c, an air discharge channel 22c and a fan volute 25c.
  • the exhaust duct 22c includes an air outlet 23c and an air outlet cover 24c.
  • the fourth air outlet assembly 20d includes a cooling fan 21d, an air exhaust channel 22d and a fan volute 25d.
  • the exhaust duct 22d includes an air outlet 23d and an air outlet cover plate 24d.
  • the air outlet direction of the air outlet channel 22c of the third air outlet assembly 20c is different from the air outlet direction of the air outlet channel 22d of the second air outlet assembly 20d, that is, the air outlet 23c and the air outlet 23d have different orientations. For example, as shown by the black arrows at the air outlets 23c and 23d in FIG. 8 , the air outlet 23c faces upward to the left, and the air outlet 23d faces upward to the right.
  • the air outlets 23c and 23d have different orientations, since both of them are directed towards the head space of the variable speed integrated machine, when the variable speed integrated machine is applied to well site equipment such as electric drive fracturing vehicles, even if the two The horizontal distance between the electric drive fracturing vehicles is small, which does not affect the heat dissipation effect of the two electric drive fracturing vehicles.
  • the cooling fan 21c is disposed on the top surface F1 of the casing 10 , and the fan volute 25c is located between the cooling fan 21c and the top surface F1 .
  • the first side 261 (such as the upper side shown in the figure) of the fan volute 25c communicates with the cooling fan 21c
  • the second side 262 such as the lower side shown in the figure
  • the third side 263 (For example, the right side shown in the figure) is in communication with the exhaust duct 22c.
  • the first side 261 and the second side 262 are opposite to each other in the y direction, and the third side 263 is located between the first side 261 and the second side 262 and on the side of the fan volute 25c away from the fan volute 25d.
  • the fan volute 25c to the cooling fan 21c, the exhaust duct 22c and the cavity 13
  • the cooling fan 21d is disposed on the top surface F1 of the housing 10, and the fan volute 25d is located between the cooling fan 21d and the top surface F1.
  • the first side 271 (such as the upper side shown in the figure) of the fan volute 25d communicates with the cooling fan 21d
  • the second side 272 such as the lower side shown in the figure
  • the third side 273 (for example, the left side shown in the figure) is in communication with the exhaust duct 22d.
  • the first side 271 and the second side 272 are opposite to each other in the y direction, and the third side 273 is located between the first side 271 and the second side 272 and on the side of the fan volute 25d away from the fan volute 25c.
  • the fan volute 25d to the cooling fan 21d, the exhaust duct 22d and the cavity 13, it is beneficial for the gas in the cavity 13 to be discharged from the exhaust duct 22d when the cooling fan 21d is working. .
  • the heat dissipation fans 21c and 21d are turned on, and the outside air can pass through the air intake assembly arranged at the bottom of the drive device 1 30 is sucked into the cavity 13 to cool down the motor 10 disposed in the cavity 13 .
  • the air is discharged from the air outlet 23c of the air outlet channel 22c and the air outlet 23d of the air outlet channel 22d through the suction effect of the heat dissipation fans 21a and 21b, thereby achieving the cooling and heat dissipation effect on the motor 10 .
  • the third air outlet component 20 c , the fourth air outlet component 20 d , the upwind device and the upwind cooling device in FIG. 8 are all disposed on the same side of the casing 12 , for example, on the same top surface F1 .
  • the third air outlet assembly 20c, the fourth air outlet assembly 20d, the inverter device and the headwind heat dissipation device are arranged on the same side of the housing 12, further saving the driving heat dissipation device, inverter device and inverter device on the speed change integrated machine
  • the occupied space reduces the overall volume of the all-in-one speed changer.
  • FIG. 9 is a schematic perspective view of a transmission integrated machine according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of the integrated speed changer shown in FIG. 9 .
  • At least one embodiment of the present disclosure provides an all-in-one transmission machine including a drive device 1 , a drive cooling device 2 , an inverter device 3 and an inverter cooling device 4 .
  • the difference between the transmission integrated machine in Fig. 9 and Fig. 1 is that the driving heat dissipation device 2 in Fig. 9 dissipates heat to the driving device 1 in the form of cooling liquid.
  • the driving heat dissipation device 2 only includes the cooling liquid heat dissipation mechanism 2C.
  • both the inverter cooling device 4 and the drive cooling device 2 adopt cooling liquid cooling.
  • the cooling liquid cooling mechanism 2C includes a first cooling assembly, a first cooling liquid storage assembly 202 and a first fan assembly 203 .
  • the first coolant storage assembly 202, the first fan assembly 203, the headwind device 3, and the headwind cooling device 4 are arranged on the same side of the casing 12 (such as the first side S1 of the casing 12 shown in the figure), such as the same top surface F1 superior.
  • the driving heat dissipation device 2 By arranging the first coolant storage assembly 202, the first fan assembly 203, the inverter device 3 and the upwind heat dissipation device 4 on the same side of the casing 12, the driving heat dissipation device 2, the inverter device 3 and the inverter heat dissipation device are saved. 4.
  • the space occupied by the all-in-one speed changer reduces the overall volume of the all-in-one speed changer.
  • the first coolant storage assembly 202 and the first fan assembly 203 are sequentially disposed on the first side S1 of the housing 12 . That is, the first blower assembly 203 is disposed on a side of the first coolant storage assembly 202 away from the housing 12 .
  • the first cooling liquid storage assembly 202 includes a motor cooling liquid storage chamber 221 communicating with the first cooling assembly for storing cooling liquid and providing motor cooling liquid to the first cooling assembly.
  • the motor coolant refers to coolant for cooling the drive device 1 .
  • the motor coolant storage chamber 221 includes an input end 221i and an output end 221o.
  • the first cooling assembly is disposed in the housing 12 and includes a first cooling channel 201 .
  • the first cooling channel 201 includes a first cooling channel inlet and a first cooling channel outlet, the first cooling channel inlet is connected to the output end 221o of the motor coolant storage chamber 221, the first cooling channel outlet is connected to the input end 221i, and the first cooling channel
  • the channel 201 is used to deliver motor coolant to the motor 10 .
  • the first cooling passage 201 includes a first cooling pipe 211 , a second cooling pipe 212 , a third cooling pipe 213 , a first connecting sub-pipe 214 and a second connecting sub-pipe 215 .
  • Each of the first cooling pipe 211 , the second cooling pipe 212 , the third cooling pipe 213 , the first connecting sub-pipe 214 and the second connecting sub-pipe 215 is configured to convey motor cooling liquid.
  • the first cooling pipe 211 is connected to the output end 221o of the motor cooling liquid storage chamber 221 through the first connecting sub-pipe 214; the second cooling pipe 212 is connected to the input end 221i of the motor cooling liquid storage chamber 221 through the second connecting sub-pipe 215 connect.
  • the third cooling pipe 213 is located between the first cooling pipe 211 and the second cooling pipe 212 and is connected to both the first cooling pipe 211 and the second cooling pipe 212 .
  • the motor coolant in the motor coolant storage chamber 221 can flow back through the first connecting sub-pipe 214, the first cooling pipe 211, the third cooling pipe 213, the second cooling pipe 212 and the second connecting sub-pipe 215 in sequence. to the motor coolant storage chamber 221.
  • the heat generated by the motor 10 is taken away by means of heat exchange, thereby cooling the motor 10 .
  • the number of the third cooling pipe 213 can be one or more, and when multiple third cooling pipes 213 are provided, the cooling effect on the motor 10 can be enhanced.
  • FIG. 11 is a schematic cross-sectional view of a stator in a driving device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic cross-sectional view of the stator 15 of the motor 10 in FIG. 9 .
  • the motor includes an output shaft 14, a stator 15 and a rotor 16, the specific structure between the output shaft 14, the stator 15 and the rotor 16 and their arrangement in the driving device can refer to the description of the previous embodiment , which will not be repeated here.
  • the electric machine 10 includes a stator 15 including a body portion 151 and stator windings 152 , the stator 15 defining an interior cavity 150 .
  • the rotor 16 is arranged in the inner cavity 150 of the stator 15 .
  • the body portion 151 has, for example, a cylindrical shape and includes an inner side C1 and an outer side C2 close to the rotor 16 , and the inner side C1 and the outer side C2 are opposed to each other in the radial direction of the stator 15 .
  • the stator winding 152 is disposed on the inner side C1 of the body part 151
  • the plurality of third cooling pipes 213 is disposed on the outer side C2 of the body part 151 .
  • a plurality of third cooling pipes 213 are provided in part or all of a peripheral portion of the outer side C2 of the body part 151 .
  • a plurality of third cooling pipes 213 are arranged in all peripheral portions of the outer side C2 of the main body portion 151 , the heat exchange area of the motor cooling liquid can be increased, and the heat dissipation effect can be enhanced.
  • a plurality of third cooling pipes 213 are disposed in the entire peripheral portion of the body part 151 at equal or unequal intervals.
  • the plurality of third cooling pipes 213 are equidistantly arranged in all peripheral portions of the outer side C2 of the main body portion 151, the uniformity of heat dissipation can be improved, and the overall heat dissipation effect can be further ensured.
  • the first fan assembly 203 is disposed above the first coolant storage assembly 202 to dissipate heat from the motor coolant in the motor coolant storage chamber 221 .
  • the number of the first fan assembly 203 may be one or multiple, and those skilled in the art can determine the specific number of the first fan assembly 203 according to the area of the first cooling liquid storage assembly 202, the embodiment of the present disclosure is concerned No limit.
  • the first fan assembly 203 includes a first cooling fan 204 and a first cooling motor 205 .
  • the first heat dissipation motor 205 is disposed on a side of the motor coolant storage chamber 221 away from the housing 12 , and the first heat dissipation fan 204 is located between the first heat dissipation motor 205 and the motor coolant storage chamber 221 .
  • the first heat dissipation motor 205 works, it can drive the impeller of the first heat dissipation fan 204 to rotate, and the motor coolant in the motor coolant storage assembly 202 (such as the motor coolant storage chamber 221) is cooled by the wind generated by the rotation of the impeller. .
  • the motor coolant flows from the motor coolant storage chamber 221 to the first cooling pipe 211 through the first connecting sub-pipe 214 1.
  • the motor coolant takes away the heat generated by the motor 10 through heat exchange, so as to realize the cooling and heat dissipation of the motor 10 .
  • the temperature-increased motor coolant flows back into the motor coolant storage chamber 221 through the second connecting sub-pipe 215 . Since the cooling liquid of the motor is recyclable, not only the production cost is reduced, but also the discharge of waste water is reduced, and environmental pollution is avoided.
  • the driving device 1 adopts the cooling liquid heat dissipation method, compared with the air-cooled heat dissipation method, there is no need to provide an opening communicating with the exhaust pipe on the casing 12, so the casing 12 is basically closed, isolating The communication between the inside and outside of the enclosure.
  • the possibility of explosion of the motor 10 is reduced, thereby realizing the flameproof function of the motor.
  • the inverter device 3 adopts cooling liquid to dissipate heat, the inverter device 3 also realizes the explosion-proof function, further improving the overall explosion-proof effect of the frequency conversion integrated machine.
  • FIG. 12 is a three-dimensional structural view of a transmission integrated machine according to yet another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural view of the integrated speed changer shown in FIG. 12 .
  • At least one embodiment of the present disclosure provides an all-in-one speed changer including a driving device 1 , a driving cooling device, an inverter device 3 and an inverter cooling device.
  • both the inverter cooling device and the drive cooling device adopt the cooling liquid cooling method.
  • the difference between the all-in-one speed change machine in FIG. 12 and FIG. 9 is that the inverter cooling device and the driving cooling device in FIG. 12 share the first coolant storage assembly and the first fan assembly.
  • the driving device 1 includes a motor 10 and a housing 12 for accommodating the motor 10 .
  • the inverter device 3 is arranged on the first side S1 of the casing, for example, on the top surface F1 , and the inverter device 3 is electrically connected with the motor 10 .
  • the specific structure of the motor 10 and the housing 12 reference may be made to the description of the previous embodiments, which will not be repeated here.
  • the inverter device 3 may cover part of the top surface F1 or the entire top surface F1.
  • the heat dissipation area of the inverter heat sink device can be increased, and the heat dissipation efficiency can be improved.
  • the inverter device 3 covers part of the top surface F1 it is beneficial to install additional devices on the casing, such as adding an air-cooling heat dissipation mechanism (such as the embodiment shown in FIG. 22 below).
  • the inverter cooling device includes an inverter cooling plate 441 (also called a water cooling plate) disposed on a side of the inverter device 3 away from the housing 10 .
  • inverter cooling plate 441 includes inverter cooling channels 451 .
  • inverter cooling channels 451 For the specific structure of the inverter cooling plate 441 and the inverter cooling channel 451 , reference may be made to the description of the inverter cooling plate 41 and the inverter cooling channel 51 in the previous embodiments, and details are not repeated here.
  • the drive cooling device includes a first cooling channel 401 , a common first cooling liquid storage component C202 and a common first fan component C203 . At least a portion of the first cooling channel 401 is disposed in the cavity 13 defined by the housing 12 .
  • the first cooling passage 401 includes a first cooling pipe 411 , a second cooling pipe 412 and a third cooling pipe 413 , wherein there are one or more third cooling pipes 413 .
  • a plurality of third cooling pipes 413 are provided in the stator 15 of the motor 10 .
  • the third cooling pipe 413 reference may be made to the previous description of the third cooling pipe 213 , which will not be repeated here.
  • the common first coolant storage component C202 is disposed on a side of the inverter cooling plate 441 away from the casing 12 .
  • the common first cooling liquid storage assembly C202 includes a common first cooling liquid storage chamber C221 for storing cooling liquid and providing cooling liquid to the first cooling channel 401 and the inverter cooling plate 441 .
  • the common first coolant storage chamber C221 includes an input end C221i and an output end C221o.
  • One end of the first cooling channel 401 communicates with the output end C221o of the common first cooling liquid storage chamber C221, and the other end communicates with the input end C221i.
  • the cooling liquid flowing out from the output end C221o of the common first cooling liquid storage chamber C221 passes through the first cooling pipe 411, the third cooling pipe 413 and the second cooling pipe 412 in sequence, and finally flows back to the common first cooling liquid storage chamber through the input end C221i. Room C221.
  • one end of the inverter cooling passage 451 communicates with the output end C221o of the common first cooling liquid storage chamber C221, and the other end communicates with the input end C221i.
  • the cooling liquid flowing out from the output end C221o of the common first cooling liquid storage chamber C221 cools the inverter device 3 when passing through the inverter cooling passage 451, and finally flows back to the common first cooling liquid storage chamber C221 through the input end C221i .
  • the shared first fan assembly C203 is disposed on a side of the shared first coolant storage assembly C202 away from the housing 12 .
  • the shared first fan assembly C203 includes a shared first cooling fan C204 and a shared first cooling motor 205 .
  • the shared first heat dissipation motor C205 is arranged on the side of the common first cooling liquid storage chamber C221 away from the housing 12, and the shared first heat dissipation fan C204 is located between the shared first heat dissipation motor C205 and the shared first cooling liquid storage chamber C221 .
  • the common first heat dissipation motor C205 can drive the impeller of the common first heat dissipation fan C204 to rotate, and use the wind generated by the rotation of the impeller to cool the coolant in the common first coolant storage chamber C221.
  • FIG. 12 Only four shared first blower assemblies C203 are shown in FIG. 12 . It can be understood that the number of the shared first fan assembly C203 can be one or multiple, and those skilled in the art can determine the specific number of the shared first fan assembly C203 according to the area of the shared first cooling liquid storage chamber C221. The number is not limited in the embodiments of the present disclosure.
  • the inverter device 3 , the inverter cooling plate 441 , the common first coolant storage assembly C202 and the common first fan assembly C203 are all arranged on the same side of the housing 12 .
  • the space occupied by the drive cooling device, the inverter device and the inverter cooling device on the transmission integrated machine is saved, and the overall volume of the transmission integrated machine is reduced.
  • variable-speed all-in-one machine provided by the above embodiment, by setting the shared first coolant storage assembly C202 and the shared first fan assembly C203, the volume of the driving heat sink and the inverter heat sink can be reduced, making the two heat sinks more structurally It is compact and improves the overall explosion-proof function of the speed changer.
  • the first cooling channel 401 provided in the motor 10 and the inverter cooling channel 415 provided in the inverter cooling plate 441 may be connected in parallel or in series. Those skilled in the art can determine according to actual needs. The two connection modes are described below in conjunction with specific examples.
  • the first cooling channel 401 includes a first cooling channel inlet 401i and a first cooling channel outlet 401o, the first cooling channel inlet 401i is connected to the output end C221o of the common first cooling liquid storage chamber C221, The outlet 401o of the first cooling channel is connected to the input end C221i.
  • the cooling liquid flows out from the output end C221o of the common first cooling liquid storage chamber C221 and enters the first cooling channel 401 .
  • the motor 10 is cooled down.
  • the flow returns to the common first cooling liquid storage chamber C221 through the input port C221i.
  • the inverter cooling channel 451 includes an inverter cooling channel inlet 451i and an inverter cooling channel outlet 451o, and the inverter cooling channel inlet 451i is connected to the output end C221o of the common first coolant storage chamber C221,
  • the outlet 451o of the inverter cooling channel is connected to the input terminal C221i.
  • the cooling liquid flows out from the output end C221o of the common first cooling liquid storage chamber C221 and enters the inverter cooling channel 451 .
  • the inverter device 3 is cooled down. Finally, the flow returns to the common first cooling liquid storage chamber C221 through the input port C221i.
  • the common first fan assembly utilizes the wind generated by the rotation of the impeller to cool down the coolant that flows back into the common first coolant storage chamber C221 (as shown by the arrow of "wind path" in the figure ).
  • one or more water pump in order to improve the fluidity of the coolant in the inverter cooling channel and the first cooling channel, and enhance the effect of circulation backflow, one or more water pump.
  • a first water pump G1 and a second water pump G2 are respectively provided on the first cooling passage 401 and the inverter cooling passage 451 .
  • the first water pump G1 is located on the part of the first cooling passage 401 between the input end C221i and the motor 10 and upstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the second water pump G2 is located on the part of the inverter cooling channel 451 between the output end C221o and the inverter cooling plate 441 and upstream of the inverter cooling plate 441 to improve the fluidity of the coolant in the inverter cooling channel 451 .
  • a first water pump G1 and a second water pump G2 are respectively provided on the first cooling passage 401 and the inverter cooling passage 451 .
  • the first water pump G1 is located on the part of the first cooling passage 401 between the input end C221i and the motor 10 and upstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the second water pump G2 is located on the part of the inverter cooling channel 451 between the output end C221o and the inverter cooling plate 441 and downstream of the inverter cooling plate 441 to improve the fluidity of the cooling liquid in the inverter cooling channel 451 .
  • a first water pump G1 and a second water pump G2 are respectively provided on the first cooling passage 401 and the inverter cooling passage 451 .
  • the first water pump G1 is located on the part of the first cooling passage 401 between the input end C221i and the motor 10 and downstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the second water pump G2 is located on the part of the inverter cooling channel 451 between the output end C221o and the inverter cooling plate 441 and upstream of the inverter cooling plate 441 to improve the fluidity of the coolant in the inverter cooling channel 451 .
  • a first water pump G1 and a second water pump G2 are respectively provided on the first cooling channel 401 and the inverter cooling channel 451 .
  • the first water pump G1 is located on the part of the first cooling passage 401 between the input end C221i and the motor 10 and downstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the second water pump G2 is located on the part of the inverter cooling channel 451 between the output end C221o and the inverter cooling plate 441 and downstream of the inverter cooling plate 441 to improve the fluidity of the cooling liquid in the inverter cooling channel 451 .
  • only one first water pump G1 is provided on the first cooling channel 401 and the inverter cooling channel 451 .
  • the first water pump G1 is located on the part of the first cooling passage 401 between the input end C221i and the motor 10 and downstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the first water pump G1 is also located on the part of the inverter cooling channel 451 between the input end C221i and the inverter cooling plate 441 and on the downstream of the inverter cooling plate 441, so as to improve the flow of cooling liquid in the inverter cooling channel 451. liquidity.
  • only one first water pump G1 is provided on the first cooling passage 401 and the inverter cooling passage 451 .
  • the first water pump G1 is located on the part of the first cooling passage 401 between the output end C221o and the motor 10 and upstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the first water pump G1 is also located on the part of the inverter cooling channel 451 between the output end C221o and the inverter cooling plate 441 and on the upstream of the inverter cooling plate 441, so as to improve the flow of cooling liquid in the inverter cooling channel 451. liquidity.
  • FIGS. 18 and 19 Compared with the case of using two water pumps in FIGS. 14 to 17 , one water pump is used in FIGS. 18 and 19 , which can reduce the number of water pumps used and reduce the manufacturing cost.
  • 20 and 21 schematically show connection block diagrams of examples of the first cooling channel and the inverter cooling channel connected in series.
  • the first cooling channel 401 includes a first cooling channel inlet 401i and a first cooling channel outlet 401o.
  • the inverter cooling channel 451 includes an inverter cooling channel inlet 451i and an inverter cooling channel outlet 451o.
  • the inverter cooling channel inlet 451i is connected to the output terminal C221o of the common first cooling liquid storage chamber C221, the inverter cooling channel outlet 451o is connected to the first cooling channel inlet 401i, and the first cooling channel outlet 401o is connected to the input terminal C221i.
  • the coolant flows out from the output end C221o of the common first coolant storage chamber C221, it first enters the inverter cooling plate 441 through the inverter cooling channel 451 to cool the inverter device 3; then, it passes through the first cooling channel 401 Enter the motor 10, and cool the motor 10. Finally, the flow returns to the common first cooling liquid storage chamber C221 through the input port C221i.
  • the shared first fan assembly utilizes the wind generated by the rotation of the impeller to cool down the coolant that flows back into the shared first coolant storage chamber (the arrow of the "wind path" shown in the figure) .
  • the coolant first enters the inverter cooling channel 451 and then enters the first cooling channel 401 . It can be understood that in other embodiments, the order of the two can be interchanged. That is, the cooling liquid can enter the first cooling channel 401 first, and then enter the inverter cooling channel 451 .
  • the order in which the coolant flows can be determined according to the amount of heat generated by the heat-generating components. For example, heat-generating components that generate lower heat can be passed through the coolant first. If the heat-generating components that generate higher heat are fed into the coolant first, the temperature of the outflowing coolant will be higher, which may no longer be able to cool the heat-generating components that generate lower heat, thereby affecting their heat dissipation effect. For example, when the heat generated by the motor is greater than the heat generated by the inverter device, the cooling liquid first enters the inverter cooling channel 451, and then enters the first cooling channel 401, thereby avoiding the impact on the cooling system due to the high temperature of the cooling liquid. The heat dissipation effect of subsequent components.
  • Fig. 22 is a schematic perspective view of a transmission integrated machine according to yet another embodiment of the present disclosure.
  • the all-in-one speed change machine provided by at least one embodiment of the present disclosure includes a driving device 1 , a driving cooling device 2 , an inverter device 3 and an inverter cooling device 4 .
  • the difference between the all-in-one speed changer in Fig. 1 and Fig. 22 is that the driving heat dissipation device 2 in Fig. 22 dissipates heat to the driving device 1 in both air cooling and cooling liquid heat dissipation.
  • the driving heat dissipation device 2 includes air cooling and cooling. mechanism and coolant cooling mechanism.
  • the driving device 1 includes a motor 10 and a casing 12 for accommodating the motor 10 .
  • the inverter device 3 is arranged on the first side S1 of the casing, for example, on the top surface F1 , and the inverter device 3 is electrically connected with the motor 10 .
  • the specific structure of the motor 10 and the housing 12 reference may be made to the description of the previous embodiments, which will not be repeated here.
  • the inverter cooling device 4 is disposed on a side of the inverter device 3 away from the casing 12 .
  • the inverter cooling device 4 includes an inverter cooling plate 541 (also called a water cooling plate), an inverter cooling liquid storage assembly 542 and an inverter fan assembly 543 .
  • the inverter fan assembly 543 includes a cooling fan 545 and a cooling motor 547 .
  • the inverter cooling plate 541, the inverter coolant storage assembly 542, the inverter fan assembly 543, the cooling fan 545 and the cooling motor 547 please refer to the front inverter device 3, inverter Relevant descriptions of the variable cooling plate 41 , the inverter coolant storage assembly 42 , the inverter fan assembly 43 , the heat dissipation fan 45 and the heat dissipation motor 47 will not be repeated here.
  • the air-cooled heat dissipation mechanism includes an air outlet assembly 520 and an air inlet assembly 530 .
  • the air outlet assembly 520 communicates with the cavity 13 and is disposed on the first side S1 of the casing 12 .
  • the air outlet assembly 520 includes a cooling fan 521 , an air exhaust channel 522 and a fan volute 525 , wherein the air exhaust channel 522 includes an air outlet 523 and an air outlet cover 524 .
  • the air inlet component 530 is, for example, disposed on the second side S2 of the housing 12 .
  • the air cooling heat dissipation mechanism in FIG. 22 only uses one air outlet component 520 to reduce the area occupied by it on the top surface F1 of the housing 12 . It can be understood that the air outlet direction of the air outlet assembly 520 is not limited to the direction shown in the figure.
  • the cooling liquid cooling mechanism includes a first cooling assembly (not shown), a first cooling liquid storage assembly 502 and a first fan assembly 503 .
  • first cooling assembly (not shown), a first cooling liquid storage assembly 502 and a first fan assembly 503 .
  • first cooling liquid storage assembly 502 and the first fan assembly 503 please refer to the first cooling assembly, the first cooling liquid storage assembly 202 and the first fan assembly 203 in FIG. The related descriptions will not be repeated here.
  • the air outlet assembly 520 is set on the F1.
  • At least a part of the air-cooled heat dissipation mechanism, at least a part of the coolant heat dissipation mechanism and the inverter device are all arranged on the same side of the housing.
  • the air outlet assembly 520, the first coolant storage assembly 502, the first fan assembly 503 and the headwind device 3 are all arranged on the same side of the casing 12 (for example, the first side of the casing 12 shown in the figure). side S1).
  • the air outlet assembly 520, the first coolant storage assembly 502, the first fan assembly 503 and the headwind device 3 are saved.
  • the space occupied by the all-in-one speed changer reduces the overall volume of the all-in-one speed changer.
  • the heat dissipation effect on the motor is enhanced by adopting the air-cooled heat dissipation method and the coolant heat dissipation method to simultaneously dissipate heat from the motor 10 .
  • the heat dissipation effect on the motor is enhanced by adopting the air-cooled heat dissipation method and the coolant heat dissipation method to simultaneously dissipate heat from the motor 10 .
  • a large amount of heat will be generated during operation, and enhancing its heat dissipation effect will further ensure the normal operation of the all-in-one speed changer.
  • the motor 10 in FIG. 22 includes an output shaft, a stator and a rotor, and the output shaft protrudes from the housing 12 .
  • the specific structure between the output shaft, the stator and the rotor and their arrangement in the drive device reference may be made to the descriptions of the previous embodiments, and details are not repeated here.
  • the rotor when the motor 10 is dissipated by air cooling and cooling liquid at the same time, the rotor can be air cooled and the stator can be cooled by cooling liquid.
  • the cooling fan 521 when the cooling fan 521 is turned on, the outside air can be sucked into the cavity 13 through the air intake assembly 30 on the bottom surface F2 of the casing 12, and the air sucked into the cavity 13 can pass through the inner cavity of the stator 15 150 (see FIG. 11 ), so as to realize the cooling effect on the motor 10 . Afterwards, the air is discharged from the exhaust channel 522 through the suction effect of the cooling fan 521 .
  • the first cooling assembly of FIG. 22 may include a first cooling channel 201 as in FIGS. 10 and 11 , at least a portion of the first cooling channel 201 is disposed in the stator along a direction parallel to the output shaft. In this way, when the cooling liquid is passed into the first cooling passage, the cooling liquid flows through the stator body to realize the cooling effect on the stator.
  • the inverter heat dissipation device 4 and the drive heat dissipation device 3 can share the first coolant storage assembly 502 and the first fan assembly 503 .
  • the first cooling liquid storage assembly 502, the first fan assembly 503, the inverter device 3, and the inverter cooling device 4 in the common state please refer to the relevant descriptions in the foregoing Figures 12 to 13, here I won't repeat them here.
  • the first cooling passage provided in the motor 10 and the inverter cooling passage provided in the inverter cooling plate may be connected in parallel, A series connection is also possible.
  • the two connection modes are described below in conjunction with specific examples.
  • Fig. 23 to Fig. 24 schematically show connection block diagrams of an example of the first cooling channel and the inverter cooling channel connected in parallel when air cooling and cooling liquid cooling are used to simultaneously dissipate heat from the motor.
  • the first cooling channel 501 can be provided in the motor 10 of Figure 22, and the inverter cooling plate 541 of Figure 22 An inverter cooling channel 551 is set in the middle.
  • first cooling channel 501 and the inverter cooling channel 541 reference may be made to the previous description of the first cooling channel 401 and the inverter cooling channel 541 , which will not be repeated here.
  • the shared first coolant storage assembly includes a shared first coolant storage chamber, denoted by the symbol C521.
  • a shared first coolant storage chamber denoted by the symbol C521.
  • the specific structure of the shared first coolant storage chamber C521 and the shared first fan assembly please refer to the previous shared first cooling solution.
  • the related description of the liquid storage chamber C221 and the common first fan assembly C203 will not be repeated here.
  • the first cooling channel 501 includes a first cooling channel inlet 501i and a first cooling channel outlet 501o, the first cooling channel inlet 501i communicates with the output end C521o of the common first cooling liquid storage chamber C521, the second A cooling channel outlet 501o communicates with the input port C521i.
  • the cooling liquid flows out from the output end C521o of the common first cooling liquid storage chamber C521 and enters the first cooling channel 501 .
  • the stator 15 of the motor 10 is cooled down. Finally, the flow returns to the common first cooling liquid storage chamber C521 through the input port C521i.
  • the inverter cooling channel 551 includes an inverter cooling channel inlet 551i and an inverter cooling channel outlet 551o, and the inverter cooling channel inlet 551i communicates with the output end C521o of the common first cooling liquid storage chamber C521, reversely
  • the variable cooling channel outlet 551o communicates with the input end C521i.
  • the cooling liquid flows out from the output end C521o of the common first cooling liquid storage chamber C521 and enters the inverter cooling channel 551 .
  • the inverter device 3 is cooled down. Finally, the flow returns to the common first cooling liquid storage chamber C521 through the input port C521i.
  • the common first fan assembly utilizes the wind generated by the rotation of the impeller to cool down the coolant that flows back into the common first coolant storage chamber C521 (the "wind path” arrow passing through C521 in the figure) .
  • the outside air can be sucked into the motor 10, and flow out from the exhaust duct 522 through the rotor 16, thus realizing the cooling of the rotor of the motor 10.
  • the cooling of 16 drops in temperature (through " wind path " arrow of rotor 16 among the figure).
  • one or more water pump in order to improve the fluidity of the coolant in the inverter cooling channel and the first cooling channel, and enhance the effect of circulation backflow, one or more water pump.
  • a first water pump G1 and a second water pump G2 are respectively provided on the first cooling channel 501 and the inverter cooling channel 551 .
  • the first water pump G1 is located on the part of the first cooling passage 501 between the input end C521i and the motor 10 and upstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the second water pump G2 is located on the part of the inverter cooling channel 551 between the output end C521o and the inverter cooling plate 541 and upstream of the inverter cooling plate 541 to improve the fluidity of the cooling liquid in the inverter cooling channel 551 .
  • the first water pump G1 can also be arranged in the dotted line frame position marked G1 in FIG. 23
  • the second water pump G2 can also be set in the dotted line frame position marked G2 in FIG. 23 .
  • relevant descriptions in FIG. 15 to FIG. 17 which will not be repeated here.
  • only one first water pump G1 is provided on the first cooling channel 501 and the inverter cooling channel 551 .
  • the first water pump G1 is located on the part of the first cooling passage 501 between the input end C521i and the motor 10 and downstream of the motor 10 to improve the fluidity of the cooling liquid in the first cooling passage.
  • the first water pump G1 is also located on the part of the inverter cooling channel 551 between the input end C521i and the inverter cooling plate 541 and on the downstream of the inverter cooling plate 541, so as to improve the flow of cooling liquid in the inverter cooling channel 551. liquidity.
  • the use of one water pump can reduce the number of water pumps used and reduce the manufacturing cost.
  • the first water pump G1 can also be arranged at the position marked with a dotted line frame G1 in FIG. 24 .
  • the relevant description in FIG. 19 which will not be repeated here.
  • Fig. 25 schematically shows a connection block diagram of an example of the first cooling channel and the inverter cooling channel connected in series when the air cooling method and the coolant cooling method are adopted to simultaneously dissipate heat from the motor.
  • the first cooling channel 501 includes a first cooling channel inlet 501i and a first cooling channel outlet 501o.
  • the inverter cooling channel 551 includes an inverter cooling channel inlet 551i and an inverter cooling channel outlet 551o.
  • the inverter cooling channel inlet 551i communicates with the output end C521o of the common first cooling liquid storage chamber C521, the inverter cooling channel outlet 551o communicates with the first cooling channel inlet 501i, and the first cooling channel outlet 501o communicates with the input end C521i.
  • the coolant flows out from the output end C521o of the common first coolant storage chamber C521, it first enters the inverter cooling plate 541 through the inverter cooling channel 551 to cool the inverter device 3; then, it passes through the first cooling channel 501 Enter the stator 15 of the motor 10 to cool the stator 15 of the motor 10 . Finally, the flow returns to the common first cooling liquid storage chamber C521 through the input port C521i.
  • the coolant first enters the inverter cooling channel 551 and then enters the first cooling channel 501 .
  • the order of the two can be interchanged. That is, the coolant can first enter the first cooling channel 501 and then enter the inverter cooling channel 551 .
  • the specific sequence of the two can be determined according to the amount of heat generated by the heat-generating components, for details, please refer to the relevant description above.
  • the first water pump G1 can also be arranged at the position marked with a dotted line box G1 in FIG. 25 .
  • the relevant description in FIG. 20 which will not be repeated here.
  • At least one embodiment of the present disclosure further provides well site equipment, including the variable speed integrated machine in any of the foregoing embodiments, and the well site equipment includes at least one of electric drive fracturing equipment and electric drive cementing equipment.
  • Fig. 26 is a schematic structural diagram of an electrically driven fracturing device according to an embodiment of the present disclosure.
  • the electric-driven fracturing equipment provided by at least one embodiment of the present disclosure is an electric-driven fracturing semi-trailer
  • the electric-driven fracturing semi-trailer includes: a semi-trailer body 91, a radiator 92, and an integrated speed changer 93, plunger pump 94, junction box 95, local control box 96, transmission 97, high pressure system 98 and low pressure system 99.
  • the speed changer 93 is connected with the plunger pump 94 through the transmission device 97 , and the radiator 92 cools the lubricating oil of the plunger pump 94 .
  • variable speed integrated machine 93 described in any of the previous embodiments on the electric drive fracturing semi-trailer, not only the heat dissipation function of the motor and the inverter device is realized, but also The structure of the integrated speed changer 93 is made more compact, the space occupied by the integrated speed changer 93 on the semi-trailer is reduced, the weight of the vehicle is reduced, the form cost of the vehicle is reduced, the vehicle is more flexible in actual use, and the transportation is convenient.
  • the electric drive fracturing semi-trailer only needs a set of power cables and auxiliary cables connected to the power supply equipment to reach the working state. Easier and faster.
  • the power provided by the power supply equipment may be from high voltage power rectified by a rectifier transformer, or from a generator directly rectified.
  • the transmission device 97 may employ at least one or at least two of a transmission shaft, a coupling and a clutch.
  • the transmission device 97 can be directly connected to the plunger pump 94, or can be connected to the plunger pump through a gear box to realize a larger torque input, and the input torque of the plunger pump is increased to output a larger discharge pressure.
  • Gearboxes include, but are not limited to, reduction boxes, gearboxes, transfer cases, and the like.
  • the gearbox can be integrated with other equipment or set up separately.
  • the gearbox when applied to electrically driven fracturing equipment, the gearbox could be integrated into the plunger pump.
  • a multi-stage gearbox such as a two-stage gearbox, can be installed on the transmission device and the plunger pump, so that the torque can be increased through multi-stage transmission and reduced speed.
  • the axis of the coupling may or may not coincide with the axis of the plunger pump.
  • the coupling can be a flexible or elastic coupling.
  • the plunger pump 94 is a five-cylinder plunger pump whose power is above 5000hp. It provides a guarantee for the high-power output of the bicycle, and also improves the power density per unit area, providing a prerequisite for reducing the footprint of the entire well site.
  • the power of the transmission integrated machine 93 is above 3000KW.
  • the power of the speed-changing integrated machine 93 matches the power of the plunger pump 94 , so that the speed-regulating integrated machine 93 can normally drive the plunger pump 94 .
  • the junction box 95 is connected with the transmission integrated machine 93, and the junction box 95 may be at the side of the vehicle or at the rear of the vehicle.
  • the junction box 95 can be connected by a cable joint through bolts, or can be connected by a quick connector.
  • the electric drive fracturing semi-trailer only needs to connect a set of power cables and auxiliary cables to the power supply equipment to reach the working state, the wiring is simpler, and the wiring installation is faster.
  • the inverter cooling device is used to dissipate heat from the inverter device
  • the drive cooling device is used to dissipate heat from the driving device, effectively ensuring that the driving device and inverter device in the well site operate normally. Continuous operation at temperature.
  • variable speed integrated machine with a small overall volume is applied to the well site equipment, since the overall volume of the variable speed integrated machine is reduced, the space it occupies on the well site equipment is also reduced, so it can be used for the well site equipment Install other devices on it to provide more space protection.
  • the driving heat dissipation device and the inverter device are arranged on the top surface of the housing, since the top space of the well site equipment is occupied, the side space is not affected by it, even if the lateral space between two well site equipment The small spacing does not affect the heat dissipation effect of the two wellsite equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inverter Devices (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种变速一体机及其井场设备,所述变速一体机包括:驱动装置(1),包括电机(10)和用于容纳所述电机(10)的外壳(12);逆变装置(3),设置在所述外壳(12)上并且与所述电机(10)电连接;逆变散热装置(4),设置在所述逆变装置(3)的远离所述外壳(12)的一侧并且配置为以冷却液散热方式对所述逆变装置(3)散热;驱动散热装置(2),至少一部分设置在所述外壳(12)上并且配置为以冷却液散热方式和风冷散热方式中的至少一种对所述驱动装置(1)散热;其中,所述驱动散热装置(2)的至少一部分和所述逆变装置(3)设置在所述外壳(12)的同一侧上。

Description

变速一体机及其井场设备
相关申请的交叉引用
出于所有目的,本申请基于并且要求于2021年7月29日递交、名称为“变速一体机及其井场设备”的中国专利申请第202110864527.9的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开实施例涉及一种变速一体机及包括所述变速一体机的井场设备。
背景技术
在目前油气田压裂作业现场,通常需要多台压裂设备(例如10到30台)集中使用,占地面积比较大。为了减少设备数量,大功率压裂设备的应用越来越多。
大功率压裂设备采用的动力驱动方式主要包括柴驱和电驱两种驱动方式。例如,在柴驱压裂设备中,动力源是柴油发动机,传动装置是变速箱和传动轴,执行元件是柱塞泵。在电驱压裂设备中,动力源是电机,传动装置是传动轴或者联轴器,执行元件是柱塞泵。
发明内容
本公开第一方面提供了一种变速一体机,包括:驱动装置,包括电机和用于容纳所述电机的外壳;逆变装置,设置在所述外壳上并且与所述电机电连接;逆变散热装置,设置在所述逆变装置的远离所述外壳的一侧并且配置为以冷却液散热方式对所述逆变装置散热;驱动散热装置,至少一部分设置在所述外壳上并且配置为以冷却液散热方式和风冷散热方式中的至少一种对所述驱动装置散热;其中,所述驱动散热装置的至少一部分和所述逆变装置设置在所述外壳的同一侧上。
至少一些实施例中,所述外壳限定容纳所述电机的腔体,所述驱动散热装置包括:风冷散热机构,所述风冷散热机构包括与所述腔体连通的出风组 件,所述出风组件和所述逆变装置设置在所述外壳的同一侧上。
至少一些实施例中,所述风冷散热机构包括至少两个所述出风组件,所述至少两个出风组件的出风方向彼此相同或彼此不同。
至少一些实施例中,所述出风组件包括:散热风机,设置在的所述外壳上;风机蜗壳,设置在所述散热风机和所述外壳之间;和排风道;其中,所述风机蜗壳的第一侧与所述散热风机连通,所述风机蜗壳的第二侧与所述腔体连通,所述风机蜗壳的第三侧与所述排风道连通,所述电机包括输出轴,所述第一侧和所述第二侧在与所述输出轴相垂直的方向上彼此相对;其中,所述散热风机配置为将所述腔体内的气体抽吸到所述风机蜗壳中并且所述气体通过所述排风道排出。
至少一些实施例中,所述排风道包括:出风口,所述出风口朝向远离所述外壳的方向;和出风口盖板,所述出风口盖板可旋转地连接于所述出风口并且配置为覆盖所述出风口。
至少一些实施例中,所述电机包括输出轴,所述输出轴从所述外壳伸出,所述外壳包括在与所述输出轴相垂直的方向上彼此相对的第一侧和第二侧,所述出风组件和所述逆变装置设置在所述外壳的第一侧上;所述风冷散热机构还包括:入风组件,所述入风组件包括设置在所述外壳的第二侧上的入风口,所述入风口配置为与所述腔体连通以使从所述入风口进入所述腔体的气体经过所述电机后从所述出风组件中排出。
至少一些实施例中,所述入风组件还包括:凹槽,设置在所述外壳的第二侧,所述入风口设置于所述凹槽内;和防护网,覆盖所述入风口;其中所述防护网所在的平面与所述外壳的第二侧的外表面不共面,并且所述防护网所在的平面比所述外壳的第二侧的外表面更靠近所述电机。
至少一些实施例中,所述驱动散热装置包括:冷却液散热机构,所述冷却液散热机构包括:第一冷却组件,设置在所述外壳限定容纳所述电机的腔体中;第一风机组件,设置在所述外壳上;和第一冷却液储存组件,设置在所述第一风机组件和所述外壳之间,所述第一冷却液储存组件与所述第一冷却组件连通且配置为向所述第一冷却组件提供冷却液,所述第一风机组件配置为对所述第一冷却液储存组件中的所述冷却液散热;其中,所述第一冷却液储存组件、所述第一风机组件和所述逆变装置均设置在所述外壳的同一侧 上。
至少一些实施例中,所述逆变散热装置和所述驱动散热装置共用所述第一冷却液储存组件和所述第一风机组件;所述逆变散热装置包括设置在所述逆变装置的远离所述外壳的一侧的逆变冷却板,所述共用的第一风机组件设置在所述逆变冷却板的远离所述外壳的一侧,所述共用的第一冷却液储存组件设置在所述共用的第一风机组件和所述逆变冷却板之间。
至少一些实施例中,所述电机包括输出轴,所述输出轴从所述外壳伸出,所述外壳包括在与所述输出轴相垂直的方向上彼此相对的第一侧和第二侧;所述共用的第一冷却液储存组件、所述共用的第一风机组件、所述逆变装置和所述逆变冷却板均设置在所述外壳的第一侧上,所述逆变装置覆盖所述外壳的第一侧的部分或全部的外表面。
至少一些实施例中,所述逆变散热装置包括:逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口。所述第一冷却组件包括:第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口。所述第一冷却液储存组件包括:冷却液储存室,所述冷却液储存室包括:输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;其中,所述逆变冷却通道入口和所述第一冷却通道入口分别与所述输出端连接,所述逆变冷却通道出口和所述第一冷却通道出口分别与所述输入端连接。
至少一些实施例中,所述逆变散热装置包括:逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口。所述第一冷却组件包括:第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口。所述第一冷却液储存组件包括:冷却液储存室,所述冷却液储存室包括:输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;其中,所述逆变冷却通道入口与所述输出端连接,所述逆变冷却通道出口与所述第一冷却通道入口连接,所述第一冷却通道出口与所述输入端连接。
至少一些实施例中,所述驱动散热装置包括风冷散热机构和冷却液散热 机构;所述风冷散热机构的至少一部分、所述冷却液散热机构的至少一部分和所述逆变装置均设置在所述外壳的同一侧上。
至少一些实施例中,所述外壳限定容纳所述电机的腔体;所述风冷散热机构包括与所述腔体连通的出风组件。所述冷却液散热机构包括:第一冷却组件,设置在所述外壳限定容纳所述电机的腔体中;第一风机组件,设置在所述外壳上;和第一冷却液储存组件,设置在所述第一风机组件和所述外壳之间,所述第一冷却液储存组件与所述第一冷却组件连通且配置为向所述第一冷却组件提供冷却液,所述第一风机组件配置为对所述第一冷却液储存组件中的所述冷却液散热;所述出风组件、所述第一冷却液储存组件、所述第一风机组件和所述逆变装置均设置在所述外壳的同一侧上。
至少一些实施例中,所述电机包括输出轴、定子和转子,所述输出轴从所述外壳伸出;所述第一冷却组件包括:第一冷却通道,所述第一冷却通道的至少一部分沿平行于所述输出轴的方向设置在所述定子中;所述风冷散热机构还包括:入风组件,所述入风组件包括设置在所述外壳上的入风口,所述入风口配置为与所述腔体连通以使从所述入风口进入所述腔体的气体经所述转子从所述出风组件中排出。
至少一些实施例中,所述逆变散热装置包括:逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口。所述第一冷却组件包括:第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口。所述第一冷却液储存组件包括:冷却液储存室,所述冷却液储存室包括:输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;其中,所述逆变冷却通道入口和所述第一冷却通道入口分别与所述输出端连接,所述逆变冷却通道出口和所述第一冷却通道出口分别与所述输入端连接。
至少一些实施例中,所述逆变散热装置包括:逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口。所述第一冷却组件包括:第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口。所述第一冷却液储存组件包括:冷却液储存室,所述冷却液储存室包括:输出 端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;其中,所述逆变冷却通道入口与所述输出端连接,所述逆变冷却通道出口与所述第一冷却通道入口连接,所述第一冷却通道出口与所述输入端连接。
至少一些实施例中,所述逆变散热装置和所述驱动散热装置共用所述第一冷却液储存组件和所述第一风机组件;所述逆变散热装置包括设置在所述逆变装置的远离所述外壳的一侧的逆变冷却板,所述共用的第一风机组件设置在所述逆变冷却板的远离所述外壳的一侧,所述共用的第一冷却液储存组件设置在所述共用的第一风机组件和所述逆变冷却板之间。
至少一些实施例中,所述电机包括底部和顶部;所述外壳包括:与所述电机的底部同侧的底表面,和与所述电机的顶部同侧的顶表面;其中,所述驱动散热装置的至少一部分、所述逆变装置和所述逆变散热装置均设置在所述外壳的顶表面上。
本公开第二方面提供了一种井场设备,包括以上所述的变速一体机。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例的变速一体机在第一视角下的立体示意图。
图2为图1的变速一体机的结构示意图。
图3为图1的变速一体机在第二视角下的立体示意图。
图4为图1的驱动装置和驱动散热装置的结构示意图。
图5为图1的逆变冷却板的结构示意图。
图6为沿图2的逆变装置和逆变散热装置的结构示意图。
图7为图3的变速一体机的底部放大示意图。
图8为根据本公开另一实施例的变速一体机的结构示意图。
图9为根据本公开另一实施例的变速一体机的立体示意图。
图10为图9的变速一体机的结构示意图。
图11为根据本公开实施例的驱动装置中定子的截面示意图。
图12为根据本公开再一实施例的变速一体机的立体结构图。
图13为图12的变速一体机的结构示意图。
图14至图19示意性示出以并联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
图20和图21示意性示出以串联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
图22为根据本公开又一实施例的变速一体机的立体示意图。
图23至图24示意性示出当采用风冷散热方式和冷却液散热方式同时对电机散热时以并联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
图25示意性示出当采用风冷散热方式和冷却液散热方式同时对电机散热时以串联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
图26为根据本公开实施例提供的电驱压裂设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则所述相对位置关系也可能相应地改变。
与柴驱压裂设备相比,电驱压裂设备具有噪音小、无废气排放污染等优点。然而,现有的电驱压裂设备,由于电机的转速调整需要专门的变频器驱动,且变频器包括整流单元(例如整流变压器)和逆变器,导致变频器在电驱压裂设备上的占用空间较大、重量大,不方便运输或移动。而且,电机和变频器之间连接线缆多,操作上较繁琐。
为此,提出一种变速一体机,即电机和逆变器采用一体化设计。整流单元不放在变速一体机上,使整流单元独立于电机和逆变器而分开设置,一台变速一体机就可以实现调速和驱动。不仅有效缩减了电机与变频器在电驱压裂设备上所占的空间,而且降低了电驱压裂设备的重量,使运输更方便,另外,也为压裂设备上安装其他设备提供了更多的空间保障。
在变速一体机工作过程中,由于电机和逆变器的功率较大,会产生大量的热量,因此需要设置散热装置对变速一体机进行散热,以保证电机和逆变器在正常温度范围内的连续工作。
本公开至少一个实施例提供一种变速一体机,包括:驱动装置,其包括电机和用于容纳所述电机的外壳;逆变装置,其设置在所述外壳上并且与所述电机电连接;逆变散热装置,设置在所述逆变装置的远离所述外壳的一侧并且配置为以冷却液散热方式对所述逆变装置散热;驱动散热装置,其至少一部分设置在所述外壳上并且配置为以冷却液散热方式和风冷散热方式中的至少一种对所述驱动装置散热;其中,所述驱动散热装置的至少一部分和所述逆变装置设置在所述外壳的同一侧上。
在本公开至少一个实施例提供的变速一体机中,利用逆变散热装置对逆变装置散热,利用驱动散热装置对驱动装置散热,有效保证了井场中驱动装置和逆变装置在正常温度下的连续工作。
当变速一体机中的驱动散热装置的至少一部分和逆变装置分别设置在外壳的不同侧上时,驱动散热装置和逆变装置呈分散式分布于外壳的表面上,这将有可能导致变速一体机结构不紧凑,使其整体体积增大。当将具有较大整体体积的变速一体机应用到诸如压裂设备或固井设备等的井场设备上时,会导致其在井场设备上占用的空间也较大。当后续需要在井场设备上增加额外的装置时,没有足够的安装空间,因此给后续工作带来很大难度。
在本公开至少一个实施例提供的变速一体机中,通过将驱动散热装置的 至少一部分和逆变装置设置在外壳的同一侧上,节省了驱动散热装置和逆变装置在变速一体机上占用的空间,使变速一体机的整体体积减小。当将具有较小整体体积的变速一体机应用到井场设备上时,由于变速一体机的整体体积减小,其在井场设备上所占用的空间也减小,因此能为在井场设备上安装其他装置提供更多的空间保障。
再者,例如在压裂施工作业时,通常设置多个电驱压裂车(也称电驱压裂车组)共同执行压裂作业。为了减少电驱压裂车组在井场中的占地面积,多个电驱压裂车通常以并排方式停放,即彼此平行且间隔一定距离。在此情况下,如果每个电驱压裂车上的变速一体机中的驱动散热装置的至少一部分和逆变装置分别设置在外壳的不同侧上(例如逆变装置设置在外壳的顶面,驱动散热装置的至少一部分设置在外壳的侧面),那么设置在侧面的驱动散热装置的至少一部分可能会和与其相邻的电驱压裂车之间的间距过小,从而影响相邻的电驱压裂车的散热效果。
在本公开至少一个实施例提供的变速一体机中,通过将驱动散热装置的至少一部分和逆变装置设置在外壳的同一侧上,能够尽量减少甚至消除因驱动散热装置与相邻的电驱压裂车之间间距较小导致对电驱压裂车的驱动装置的散热效果的影响。尤其是在将驱动散热装置的至少一部分和逆变装置均设置在外壳的顶面上时,由于占用的是电驱压裂车的顶部空间,侧面空间不受其影响,即使两个电驱压裂车之间的横向间距较小,也不影响两个电驱压裂车的散热效果。
本公开实施例中,冷却液散热方式指的是利用冷却液把待冷却装置产生的热量带走,从而达到散热目的。冷却液例如包括液态流体,该液态流体包括但不限于水、有机物或无机物中的至少一种。
本公开实施例中,风冷散热方式也称空冷散热方式,指的是通过向待冷却装置通入空气达到散热目的。相比于冷却液散热方式,风冷散热方式的结构简单、体积小、重量轻、热阻小、换热面积大、使用和安装都很方便。
本公开实施例中,外壳的同一侧例如指的是驱动装置的外壳的同一表面。当驱动装置的外壳包括多个表面时,将驱动散热装置的至少一部分和逆变装置设置在外壳的多个表面中的同一个表面上。本公开实施例中,“多个”指的是两个或两个以上。
本公开实施例中,驱动散热装置可以以冷却液散热方式和风冷散热方式中的至少一种对驱动装置散热。也就是,驱动散热装置可以仅以冷却液散热方式对驱动装置散热;或者,驱动散热装置可以仅以风冷散热方式对驱动装置散热;或者,驱动散热装置同时以冷却液散热方式和风冷散热方式的两种散热方式对驱动装置散热。本公开所有实施例中,逆变散热装置都采用冷却液散热方式。
下面通过几个具体的实施例对本公开进行说明。为了保持本公开实施例以下的说明清楚且简明,可省略已知功能和已知部件的详细说明。当本公开实施例的任一部件在一个以上的附图中出现时,该部件在每个附图中可以由相同的参考标号表示。
图1为根据本公开实施例的变速一体机在第一视角下的立体示意图。图2为图1的变速一体机的结构示意图。
如图1至图2所示,本公开至少一个实施例提供的变速一体机包括驱动装置1、驱动散热装置2、逆变装置3和逆变散热装置4。
例如,驱动装置1包括电机10和用于容纳电机10的外壳12。电机10(也称马达)是指依据电磁感应定律实现电能转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为井场设备的动力源。电机可包括交流电机或直流电机。本公开实施例中,电机10采用交流电机,即将直流电转换为交流电。
例如,如图2所示,外壳12限定容纳电机10的腔体13。也就是,电机10设置在外壳12的内部。外壳12的面向电机10的表面为内表面,背向电机10的表面为外表面,例如外表面包括顶表面、底表面和侧表面。
如图1和图2所示,外壳12的形状基本上为长方体。至少一些实施例中,外壳12的形状还可以为诸如正方体、圆柱体等的柱状体,本公开实施例对外壳12的形状不做限定,当外壳12的形状为长方体或正方体时,有利于将逆变装置3和逆变散热装置4固定安装在外壳12上,增强整个设备的稳定性。
图3为图1的变速一体机在第二视角下的立体示意图。图4为图1的驱动装置和驱动散热装置的结构示意图。
如图1、图2和4所示,电机10包括输出轴14、定子15、转子16、端盖17和轴承盖18。
例如,如图4所示,定子15为电机10中的固定部分,其作用是用来产生磁场并且用作电机的机械支撑。定子15例如是最外面的圆筒,圆筒内侧缠有很多绕组,这些绕组与外部交流电源接通,整个圆筒与机座连接在一起,固定不动。定子15例如包括定子铁心、定子绕组和机座。
例如,转子16为电机10中的旋转部分,转子16设置在定子15的内部空腔中,其与电机10的动力输出轴14连接并且以相同速度旋转。转子16例如包括转子铁心和转子绕组。定子15和转子16之间没有任何连接或接触,但是当定子绕组接通交流电源时,转子16就会立刻开始旋转并通过动力输出轴14输出动力。
例如,如图1、图2和图4所示,输出轴14从外壳12的端盖17伸出,并且沿第一方向(例如图2中所示的x方向)延伸。外壳12包括在与x方向相垂直的第二方向(例如图2中所示的y方向)上彼此相对的第一侧S1和第二侧S2。例如,第一侧S1为图2所示的上侧,第二侧S2为图2所示的下侧。外壳12具有分别对应于上侧和下侧的顶表面F1和底表面F2。
例如,如图3所示,外壳12还包括在第三方向上(例如图2中所示的z方向)上彼此相对的第三侧S3和第四侧S4,相应地,外壳12具有分别对应于第三侧S3和第四侧S4的两个侧表面F3、F4。
至少一些实施例中,逆变装置3可位于外壳12的第一侧S1、第二侧S2、第三侧S3和第四侧S4中的一侧上。例如,逆变装置3可位于外壳12的顶表面F1、底表面F2和两个侧表面F3中的一个表面上。如图1和图2所示,逆变装置3例如位于外壳12的顶表面F1上,外壳12的顶表面F1对逆变装置3起到固定支撑作用。
当变速一体机应用到诸如电驱压裂车的井场设备上时,逆变装置3位于外壳12的第一侧S1、第三侧S3和第四侧S4中的一侧上,即,逆变装置3不位于外壳12的第二侧S2,因为第二侧S2作为变速一体机的底部可能会在变速一体机被放置或安装到电驱压裂车上时与电驱压裂车直接接触。
本公开实施例对逆变装置3和外壳12之间的连接方式不做限定,只要可将二者固定安装在一起即可。例如,外壳12和逆变装置3可通过螺栓、铆接或焊接等方式进行固定安装。
至少一些实施例中,逆变装置3为逆变器,逆变器与电机10电连接。例 如,逆变装置3通过供电线路与电机10连接,用于给电机10进行供电。通常,在变频器对交流电源进行频率转换时,先将交流电变换成直流电,也就是“整流”,然后再将直流电变换为可变频率的交流电,也就是“逆变”。
本公开实施例的变速一体机中集成有逆变器和电机,不包括整流单元,因此,在驱动装置1上仅设置有逆变装置3,降低了变速一体机的整体体积和重量。通过逆变装置3将可变频率的交流电输出到电机10中以调节电机10的转速。
如图1和图2所示,逆变散热装置4设置在逆变装置3的远离外壳12的一侧。也就是,逆变装置3和逆变散热装置4均设置在外壳12的同一侧上,且逆变装置3位于外壳12和逆变散热装置4之间。
当将逆变装置3和逆变散热装置4分别设置在外壳12的不同侧时,逆变装置3和逆变散热装置4位于外壳12的不同表面上,这种设置方式会增加变速一体机的整体体积。另外,由于逆变散热装置4采用冷却液散热方式对逆变装置3散热,当二者位于外壳12的不同表面上时,用于提供冷却液的冷却管路的长度需要设计得更长,这会影响到逆变散热装置4对逆变装置3的散热效果。
本公开至少一个实施例的变速一体机中,通过将逆变装置3和逆变散热装置4设置为位于外壳12的同一侧,不仅使变速一体机的结构更紧凑,也能保证逆变散热装置4对逆变装置3的散热效果。
例如,如图1所示,逆变散热装置4包括逆变冷却板41(也称水冷板)、逆变冷却液储存组件42和逆变风机组件43。逆变冷却板41、逆变冷却液储存组件42和逆变风机组件43依次设置在外壳12的第一侧S1,例如顶表面F1上。也就是,逆变冷却板41设置在逆变装置3的远离外壳12的一侧上,逆变冷却液储存组件42设置在逆变冷却板41的远离外壳12的一侧上,逆变风机组件43设置在逆变冷却液储存组件42的远离外壳12的一侧上。
例如,如图2所示,逆变装置3位于外壳12的顶表面F1和逆变冷却板41之间。逆变装置3包括靠近外壳12的第一表面BM1和远离外壳12的第二表面BM2。也就是,第一表面BM1和第二表面BM2在垂直于输出轴14的方向(例如图中所示y方向)彼此相对,并且第一表面BM1比第二表面BM2更靠近外壳12。逆变冷却板41位于第二表面BM2上且与第二表面BM2 直接接触。这样,当逆变冷却板41中通入冷却液时,由于逆变冷却板41与逆变装置3的第二表面BM2彼此接触,有利于实现热传导效应,因此能更有效地对逆变装置3进行冷却散热。
例如,逆变冷却板41和逆变装置3在垂直于输出轴14的方向(例如图中所示y方向)上彼此交叠,该交叠可以是部分交叠,也可以是完全交叠。如图2所示,逆变冷却板41和逆变装置3在y方向上完全交叠,即逆变冷却板41完全覆盖逆变装置3的第二表面BM2,这样可增加热传导的面积,实现更好的散热效果。
图5为图1的逆变冷却板的结构示意图。例如,如图5所示,逆变冷却板41例如包括逆变冷却通道51。逆变冷却通道51包括至少一个逆变冷却管、逆变冷却通道入口51i和逆变冷却通道出口51o。至少一个逆变冷却管、逆变冷却通道入口51i和逆变冷却通道出口51o设置在逆变冷却板41的远离逆变装置3的一侧,也就是图2所示的逆变冷却板41的上侧。
例如,逆变冷却通道入口51i与至少一个逆变冷却管的第一端(例如图中所示右端)连通,逆变冷却通道出口51o与至少一个逆变冷却管的第二端(例如图中所示左端)连通,其中第二端不同于第一端,并且第一端和第二端在z方向上彼此相对。
当逆变冷却液在逆变冷却板41的至少一个逆变冷却管中流动时,可以对位于逆变冷却板41下方的逆变装置3进行换热,从而达到冷却逆变装置3的目的。为了增强冷却效果,逆变冷却板41和逆变装置3之间为直接接触。在一个示例中,逆变冷却液包括水。
例如,逆变冷却通道51包括逆变冷却管51a和逆变冷却管51b。逆变冷却管51a和逆变冷却管51b共用逆变冷却通道入口51i和逆变冷却通道出口51o。也就是,逆变冷却管51a、逆变冷却管51b均与逆变冷却通道入口51i连通,逆变冷却管51a、逆变冷却管51b均与逆变冷却通道出口51o连通。当逆变冷却液从逆变冷却通道入口51i进入后,分别流入逆变冷却管51a和逆变冷却管51b中,与逆变装置3进行换热,然后,经过换热后的逆变冷却液在逆变冷却通道出口51o交汇并流出。
本公开实施例中,通过设置两个逆变冷却管51a、51b、一个共用逆变冷却通道入口51i和一个共用的逆变冷却通道出口51o,不仅可以增加水冷板 的换热面积,增强冷却效果,还可以简化制造逆变冷却板的工艺,降低制造成本。
至少一些实施例中,逆变冷却管51a和逆变冷却管51b可以具有相同或不同的管路走向分布。例如,如图5所示。逆变冷却管51a和逆变冷却管51b对于逆变冷却板41的中心线O1O2呈镜面对称。由于逆变冷却管51a和逆变冷却管51b具有相同的管路走向分布,可进一步简化逆变冷却板的制造工艺。
图5仅示意性示出了逆变冷却管51a和逆变冷却管51b的管路走向呈S形。在本公开其他实施例中,逆变冷却管51a和逆变冷却管51b还可具有其他管路走向分布,例如为锯齿状、直线状等,本公开实施例对此不做限定。
图6为图2的逆变装置和逆变散热装置的结构示意图。例如,如图6所示,逆变冷却液储存组件42设置在逆变冷却板41的远离逆变装置3的一侧,并且包括与逆变冷却板41相互连通的逆变冷却液储存室52,用于储存逆变冷却液并且向逆变冷却板41提供逆变冷却液。此处,逆变冷却液指的是用于冷却逆变装置3的冷却液。
例如,逆变冷却液储存室52的第一端(例如图中所示右端)与逆变冷却通道入口51i通过第一连接管53连接,逆变冷却液储存室52的第二端(例如图中所示左端)与逆变冷却通道出口51o通过第二连接管54连接,其中第二端不同于第一端,并且第一端和第二端在z方向上彼此相对。本公开实施例中,逆变冷却液通过第一连接管53从逆变冷却液储存室52流入逆变冷却板41,并且通过第二连接管54从逆变冷却板41回流到逆变冷却液储存室52,由此达到循环使用的目的。
例如,逆变风机组件43设置在逆变冷却液储存组件42的远离逆变冷却板41的一侧,对逆变冷却液储存室52中的逆变冷却液进行散热。逆变风机组件43的数量可以是一个,也可以是多个,本领域普通技术人员可以根据逆变冷却液储存组件42的面积来确定逆变风机组件43的具体数量,本公开实施例对此不做限定。
例如,逆变风机组件43包括第一逆变风机组件43a和第二逆变风机组件43b。第一逆变风机组件43a和第二逆变风机组件43b沿z方向并排设置在逆变冷却液储存室52之上。
例如,第一逆变风机组件43a包括散热风扇45和散热电机47。散热电 机47设置在逆变冷却液储存组件42上,散热风扇45位于散热电机47和逆变冷却液储存组件42之间。当散热电机47工作时,可带动散热风扇45的叶轮旋转,利用叶轮旋转产生的风对逆变冷却液储存组件42(例如逆变冷却液储存室52)中的逆变冷却液进行冷却降温。
例如,第二逆变风机组件43b包括散热风扇46和散热电机48。散热电机48设置在逆变冷却液储存组件42上,散热风扇46位于散热电机48和逆变冷却液储存组件42之间。当散热电机48工作时,可带动散热风扇46的叶轮旋转,利用叶轮旋转产生的风对逆变冷却液储存组件42(例如逆变冷却液储存室52)中的逆变冷却液进行冷却降温。
相比于在逆变冷却液储存室52上仅设置一个逆变风机组件,采用第一逆变风机组件43a和第二逆变风机组件43b可同时对逆变冷却液储存室52中的逆变冷却液进行冷却降温,从而增强冷却效果。
下面对逆变散热装置4的工作原理进行说明。如图6所示,在逆变散热装置4工作时,逆变冷却液从逆变冷却液储存室52经逆变冷却通道入口51i和第一连接管53流入逆变冷却通道51,之后,沿第一移动方向v1在逆变冷却通道51中流动。在流动过程中,逆变冷却液通过热交换的方式将逆变装置3中发热部件产生的热量带走,对发热部件进行冷却。当逆变冷却液对发热部件进行热交换后,温度升高的逆变冷却液经逆变冷却通道出口51o和第二连接管54回流到逆变冷却液储存室52中。接下来,回流到逆变冷却液储存室52中的逆变冷却液沿第二移动方向v2流动。与此同时,第一逆变风机组件43a和第二逆变风机组件43b对逆变冷却液进行冷却降温,这样,经过冷却降温后的逆变冷却液再流入逆变冷却板41中继续冷却逆变装置3。需要注意的是,为避免漏电现象发生,本公开实施例的逆变冷却液与逆变装置3中的电气部分电隔离。
在本公开实施例的逆变散热装置4中,通过设置逆变冷却板41、逆变冷却液储存组件42和逆变风机组件43,不仅提高了对逆变装置3的散热效果,而且降低了变速一体机的整体体积。另外,由于逆变冷却液为可循环使用,不仅降低了生产成本,而且减少了废水排放,避免了环境污染。
如图1至图4所示,例如,驱动散热装置2仅以风冷散热方式对驱动装置1散热,在此情况下,驱动散热装置2仅包括风冷散热机构。
至少一些实施例中,风冷散热机构的至少一部分与逆风装置3设置在外壳12的同一侧上。例如,如图1和图2所示,风冷散热机构2A包括与外壳12的腔体13连通的出风组件20,出风组件20、逆风装置3、逆风散热装置4设置在外壳12的同一侧上(例如图中所示第一侧S1)。通过将出风组件20、逆变装置3和逆风散热装置4设置在外壳12的同一顶表面F1上,节省了驱动散热装置2、逆变装置3和逆变散热装置4在变速一体机上占用的空间,使变速一体机的整体体积减小。当将具有较小整体体积的变速一体机应用到井场设备上时,由于变速一体机的整体体积减小,其在井场设备上所占用的空间也减小,因此能为在井场设备上安装其他装置提供更多的空间保障。
如图2所示,例如,驱动装置1包括在x方向上彼此相对的第一端部E1和第二端部E2,其中第一端部E1靠近输出轴14,为驱动装置1的轴伸端。第二端部E2远离输出轴14,为驱动装置2的非轴伸端。逆变装置3和逆变散热装置4以叠层方式设置在外壳12的靠近第一端部E1的部分顶表面F1上,而出风组件20设置在外壳12的靠近第二端部E2的另一部分顶表面F1上。通过将出风组件20和逆变装置3(以及逆变散热装置4)分别设置在第一端部E1和第二端部E2,不仅使外壳12的顶表面空间被充分利用,而且避免了驱动散热装置和逆变散热装置4在散热时的相互干扰。
至少一些实施例中,出风组件20的数量可以是一个,也可以是多个。当风冷散热机构2A包括多个出风组件时,同时利用多个出风组件对驱动装置1进行散热,能增强对驱动装置1的散热效果。
例如,如图1和图2所示,风冷散热机构2A包括第一出风组件20a和第二出风组件20b。第一出风组件20a、第二出风组件20b沿z方向并排设置在顶表面F1上。第一出风组件20a、第二出风组件20b、逆风装置3和逆风散热装置4均设置在外壳12的同一侧上,例如同一顶表面F1上。通过将第一出风组件20a、第二出风组件20b、逆变装置3和逆风散热装置4设置在外壳12的同一顶表面F1上,进一步节省了驱动散热装置2、逆变装置3和逆变散热装置4在变速一体机上占用的空间,使变速一体机的整体体积减小。另外,增强了驱动散热装置2对驱动装置1的散热效果。
至少一些实施例中,第一出风组件20a和第二出风组件20b可以具有相同结构,也可以具有不同结构。当第一出风组件20a和第二出风组件20b具 有相同结构时,可降低出风组件在外壳12上的排布设计难度,简化制造工艺。
例如,第一出风组件20a包括散热风机21a、排风道22a和风机蜗壳25a。散热风机21a设置在的外壳10的顶表面F1上,风机蜗壳25a位于散热风机21a和顶表面F1之间。风机蜗壳25a的第一侧251(例如图中所示上端)与散热风机21a连通,第二侧252(例如图中所示下侧)与外壳12的腔体13连通,第三侧253(例如图中所示左侧)与排风道22a连通。例如,第一侧251和第二侧252在y方向上彼此相对,第三侧253位于第一侧251和第二侧252之间且位于风机蜗壳25a的远离逆变装置3的一侧。通过将风机蜗壳25a分别连通于散热风机21a、排风道22a和腔体13,有利于在散热风机21a工作时将腔体13中的气体抽出到排风道22a中排出。
例如,排风道22a包括出风口23a。例如,出风口23a朝向远离外壳12的方向,例如朝向变速一体机的顶部。通过将出风口23a设置为朝向远离外壳12的方向,便于温度较高的气体从排风道22a中排出。而且,当气体经过出风口23a朝变速一体机的顶部排出时,可避免对逆变装置3或逆变散热装置4的干扰或影响,进一步保证逆变散热装置4对逆变装置3的散热效果。
在实际井场中,可能会遇到刮风或下雨的天气,如果出风口23a上不设置遮蔽物,将有可能造成风沙或雨水落入排风道22a中。尤其是当遇到沙尘暴等极端恶劣天气时,由于大量风沙落入排风道中,有可能造成排风道22a堵塞。
例如,在出风口23a处设置出风口盖板24a,出风口盖板24a例如可旋转地连接于出风口23a,以使出风口盖板24a覆盖于出风口23a。这样,当需要遮蔽出风口23a时,可通过简单地旋转操使出风口盖板24a覆盖于出风口23a,从而防止外界的风沙或雨水落入排风道22a中,避免排风道出现堵塞。例如,出风口盖板24a的面积大于或等于出风口23a的面积,可以达到更好的遮蔽效果。
本公开实施例对出风口盖板24a和排风道22a的连接方式不做限定,只要出风口盖板24a可相对出风口23a移动即可,例如二者可以采用铰接、螺钉连接等方式。
图2仅示意性示出一个出风口盖板24a,在本公开其他实施例中,还可在出风口23a上设置多个出风口盖板。例如,在出风口23a上安装两个相对 设置的出风口盖板,当两个出风口盖板处于闭合状态时,可覆盖出风口23a;当两个出风口盖板处于打开状态时,出风口23a上不覆盖任何出风口盖板,此时,排风道22a内的气体可从出风口23a中排出。由此,通过将两个出风口盖板的闭合起来同样可实现遮蔽出风口23a的目的。因此,本公开实施例对出风口盖板24a的数量不做限定。
例如,如图1所示,第一出风组件20a和第二出风组件20b具有相同的结构,并且第一出风组件20a和第二出风组件20b具有相同的出风方向。
例如,第二出风组件20b包括散热风机21b、排风道22b和风机蜗壳25b。散热风机21b设置在的外壳10的顶表面F1上,风机蜗壳25b位于散热风机21b和顶表面F1之间。风机蜗壳25b的第一侧(未示出,可参考第一风机组件的风机蜗壳25a的第一侧251)与散热风机21b连通,第二侧(未示出,可参考第一风机组件的风机蜗壳25a的第一侧252)与外壳12的腔体13连通,第三侧(未示出,可参考第一风机组件的风机蜗壳25a的第一侧253)与排风道22b连通。例如,第一侧和第二侧在y方向上彼此相对,第三侧位于风机蜗壳25b的第一侧和第二侧之间且位于风机蜗壳25b的远离逆变装置3的一侧。本公开实施例中,通过将风机蜗壳25b分别连通于散热风机21b、排风道22b和腔体13,有利于在散热风机21b工作时,腔体13中的气体从排风道22b中排出。
例如,排风道22b包括出风口23b和出风口盖板24b。例如,出风口23b具有与第二出风组件20b的出风口23a相同的朝向,也朝向远离外壳12的方向,例如朝向变速一体机的顶部。通过将出风口23b设置为与第二出风组件20b的出风口23a相同的朝向,可避免对逆变装置3或逆变散热装置4的干扰或影响,进一步保证了逆变散热装置4对逆变装置3的散热效果。
上述实施例提供的变速一体机中,在利用风冷散热机构2A对驱动装置1散热过程中,开启散热风机21a、21b,此时,散热风机21a、21b将腔体13内的气体抽吸到风机蜗壳25a、25b中,并且通过排风道22a、22b的出风口23a、23b朝变速一体机的顶部排出(如图2中黑色粗箭头所示),由此可通过气体的流动达到对电机10散热降温的作用。
至少一些实施例中,在排风道的底部可设置放水口。例如,如图3所示,排风道22a的靠近外壳13的底部设置有放水口26a,排风道22b的靠近外壳 13的底部设置有放水口26b。放水口26a、26b配置为排出流入到排风道22a中的液体(例如雨水等)。进一步地,例如,放水口26a、26b上还可以连接有导向管,例如软管或硬管等,将排出的液体引导到诸如集水桶等收集装置中,避免因液体直接从放水口滴下时对驱动装置的影响。
在遇到暴雨天气时,有可能有雨水渗入到排风道22a、22b中并且在排风道22a、22b的底部积水。如果时间过长,积水有可能反流到风机涡轮中,影响风机散热机构对驱动装置的散热效果。本公开实施例中,通过在排风道22a、22b的底部设置放水口26a、26b,能排出排风道22a、22b中的积水,从而降低甚至消除积水对散热效果的影响。
例如,如图2、图3和图7所示,风冷散热机构2A还包括入风组件30,入风组件30设置在外壳13的不同于第一侧的其他侧,例如第二侧S2上。本公开实施例中,入风组件30的数量可以是一个,也可以是多个。当风冷散热机构2A包括多个入风组件时,可以增加吸入驱动装置1中的气体的总量,提高散热效率。
例如,如图2所示,风冷散热机构2A包括第一入风组件30a和第二入风组件30b,第一入风组件30a和第二入风组件30b沿x方向并排设置在外壳13的第二侧S2上。例如,第一入风组件30a靠近外壳13的第二端部E2并且远离外壳13的第一端部E1;第二入风组件30b靠近外壳13的第一端部E1并且远离于外壳13的第二端部E2。通过将第一入风组件30a和第二入风组件30b分别设置在外壳13的第一端部E1和第二端部E2,可充分更充分且合理地利用外壳底部的空间,达到更好地散热效果。
例如,如图3所示,第一入风组件30a包括设置在外壳的第二侧S2上的两个入风口31a。进一步地,两个入风口31a例如沿z方向并排开设在外壳12的底表面F2上。本公开实施例中,入风口31a的数量可以是一个,也可以是多个。当第一入风组件30a包括多个入风口31a时,能增强对驱动装置1的散热效果。
例如,如图3所示,第二入风组件30b包括设置在外壳的第二侧S2上的两个入风口31b。进一步地,两个入风口31b例如沿z方向并排开设在外壳12的底表面F2上。本公开实施例中,入风口31b的数量可以是一个,也可以是多个。当第二入风组件30b包括多个入风口31b时,能增强对驱动装 置1的散热效果。
上述实施例提供的变速一体机中,在利用风冷散热机构2A对驱动装置1散热过程中,当开启散热风机21a、21b时,外界空气可通过外壳12底表面F2上的两个入风口31a和两个入风口31b吸入腔体13中(如图2中黑色粗箭头所示),对设置在腔体13中的电机10进行降温,之后,通过散热风机21a、21b的抽吸作用,再将气体从排风道22a、22b排出。需要说明的是,被吸入腔体13的空气可经过定子15的内部空腔150(见图11),从而实现对电机10的散热效果。
至少一些实施例中,第一入风组件30a和第二入风组件30b可以具有相同结构,也可以具有不同结构。当第一入风组件30a和第二入风组件30b具有相同结构时,可简化制造工艺。
本公开实施例以第一入风组件30a和第二入风组件30b具有相同结构为例进行说明,并且,本公开实施例仅对第一入风组件30a进行说明,第二入风组件30b的具体结构和设置方式可参考第一入风组件30a,此处不再赘述。
图7为图3的变速一体机的底部放大示意图。如图7所示,例如,第一入风组件30a还包括开设在外壳12的第二侧S2的两个凹槽32a。每个凹槽32a朝电机10的方向向内凹陷。两个凹槽32a与两个入风口31a一一对应,即每个入风口31a设置于一个凹槽32a内。
例如,如图7所示,第一入风组件30a还包括两个防护网33a,两个防护网33a与两个入风口31a一一对应,即每个防护网33a覆盖一个入风口31a。如果入风口31a不设置防护网,将有可能导致外界杂物被吸入腔体中。通过在入风口上设置防护网,可防止外界杂物被吸入外壳12的腔体13中,从而避免影响散热效果。
例如,如图2和图7所示,每个防护网33a所在的平面P1与外壳12的外部分或全部表面P不共面,并且防护网33a所在的平面P1比外壳12的外表面P更靠近电机10。即,外壳12的整个底表面并没有处于同一平面内。当变速一体机应用到诸如电驱压裂车的井场设备上时,驱动装置1的底部需要放置在电驱压裂车上,即外壳12底表面会与电驱压裂车接触。通过使防护网33a所在的平面P1设置为比外壳12的外表面P更靠近电机10,有利于外界空气从驱动装置1的底部更顺利地经入风口31a中流入腔体13中,从而保 证了在散热过程中有更多的空气被吸入腔体13中。
图8为根据本公开另一实施例的变速一体机的结构示意图。例如,图8为本公开另一实施例的变速一体机的左视图,该左视图的视角与图1的变速一体机的左视图的视角相同。
如图8所示,本公开至少一个实施例提供的变速一体机包括驱动装置1、驱动散热装置2、逆变装置3和逆变散热装置4。其中,驱动散热装置2采用的风冷散热机构2B。风冷散热机构2B包括第三出风组件20c、第四出风组件20d和入风组件30。
图8中,有关驱动装置1、逆变装置3、逆变散热装置4、入风组件30的具体结构和设置方式可参考前面实施例的描述,此处不再赘述。
图8和图1的变速一体机的区别在于,图8的风冷散热机构2B包括第三出风组件20c和第四出风组件20d,二者结构相同但出风方向不同。
如图8所示,第三出风组件20c包括散热风机21c、排风道22c和风机蜗壳25c。排风道22c包括出风口23c和出风口盖板24c。第四出风组件20d包括散热风机21d、排风道22d和风机蜗壳25d。排风道22d包括出风口23d和出风口盖板24d。第三出风组件20c的排风道22c的出风方向不同于第二出风组件20d的排风道22d的出风方向,即出风口23c与出风口23d具有不同朝向。例如,如图8中出风口23c和23d处黑色箭头所示,出风口23c例如朝向左上方向,出风口23d例如朝向右上方向。
虽然出风口23c、23d具有不同的朝向,但由于二者均朝向变速一体机的顶部空间出风,当将变速一体机应用到诸如电驱压裂车的井场设备上上时,即使两个电驱压裂车之间的横向间距较小,也不影响两个电驱压裂车的散热效果。
如图8所示,散热风机21c设置在的外壳10的顶表面F1上,风机蜗壳25c位于散热风机21c和顶表面F1之间。风机蜗壳25c的第一侧261(例如图中所示上侧)与散热风机21c连通,第二侧262(例如图中所示下侧)与外壳12的腔体13连通,第三侧263(例如图中所示右侧)与排风道22c连通。例如,第一侧261和第二侧262在y方向上彼此相对,第三侧263位于第一侧261和第二侧262之间且位于风机蜗壳25c的远离风机蜗壳25d的一侧。本公开实施例中,通过将风机蜗壳25c分别连通于散热风机21c、排风 道22c和腔体13,有利于在散热风机21c工作时,腔体13中的气体从排风道22c中排出。
如图8所示,散热风机21d设置在的外壳10的顶表面F1上,风机蜗壳25d位于散热风机21d和顶表面F1之间。风机蜗壳25d的第一侧271(例如图中所示上侧)与散热风机21d连通,第二侧272(例如图中所示下侧)与外壳12的腔体13连通,第三侧273(例如图中所示左侧)与排风道22d连通。例如,第一侧271和第二侧272在y方向上彼此相对,第三侧273位于第一侧271和第二侧272之间且位于风机蜗壳25d的远离风机蜗壳25c的一侧。本公开实施例中,通过将风机蜗壳25d分别连通于散热风机21d、排风道22d和腔体13,有利于在散热风机21d工作时,腔体13中的气体从排风道22d中排出。
上述实施例提供的变速一体机中,在利用图8所示的风冷散热机构2B对驱动装置散热过程中,开启散热风机21c、21d,外界空气可通过设置在驱动装置1底部的入风组件30被吸入腔体13中,对设置在腔体13中的电机10进行降温。之后,通过散热风机21a、21b的抽吸作用,再将空气从排风道22c的出风口23c和排风道22d的出风口23d排出,由此达到对电机10的冷却散热效果。
与图1相似,图8的第三出风组件20c、第四出风组件20d、逆风装置和逆风散热装置均设置在外壳12的同一侧上,例如同一顶表面F1上。通过将第三出风组件20c、第四出风组件20d、逆变装置和逆风散热装置设置在外壳12的同一侧上,进一步节省了驱动散热装置、逆变装置和逆变装置在变速一体机上占用的空间,使变速一体机的整体体积减小。
图9为根据本公开另一实施例的变速一体机的立体示意图。图10为图9的变速一体机的结构示意图。
如图9和图10所示,本公开至少一个实施例提供的变速一体机包括驱动装置1、驱动散热装置2、逆变装置3和逆变散热装置4。
图9中,有关驱动装置1、逆变装置3、逆变散热装置4的具体结构和设置方式可参考前面实施例的描述,此处不再赘述。
图9和图1的变速一体机的区别在于,图9的驱动散热装置2以冷却液散热方式对驱动装置1散热,在此情况下,驱动散热装置2仅包括冷却液散 热机构2C。图9的变速一体机中,逆变散热装置4和驱动散热装置2均采用冷却液散热方式。
至少一些实施例中,冷却液散热机构2C的至少一部分与逆风装置3设置在驱动装置1的外壳12的同一侧上。例如,如图9和图10所示,冷却液散热机构2C包括第一冷却组件、第一冷却液储存组件202和第一风机组件203。第一冷却液储存组件202、第一风机组件203、逆风装置3、逆风散热装置4设置在外壳12的同一侧上(例如图中所示外壳12的第一侧S1),例如同一顶表面F1上。通过将第一冷却液储存组件202、第一风机组件203、逆变装置3和逆风散热装置4设置在外壳12的同一侧上,节省了驱动散热装置2、逆变装置3和逆变散热装置4在变速一体机上占用的空间,使变速一体机的整体体积减小。
例如,如图9所示,第一冷却液储存组件202和第一风机组件203依次设置在外壳12的第一侧S1。也就是,第一风机组件203设置在第一冷却液储存组件202的远离外壳12的一侧上。第一冷却液储存组件202包括与第一冷却组件连通的电机冷却液储存室221,用于储存冷却液并且向第一冷却组件提供电机冷却液。此处,电机冷却液指的是用于冷却驱动装置1的冷却液。
例如,如图10所示,电机冷却液储存室221包括输入端221i和输出端221o。第一冷却组件设置在外壳12中且包括第一冷却通道201。第一冷却通道201包括第一冷却通道入口和第一冷却通道出口,第一冷却通道入口与电机冷却液储存室221的输出端221o连接,第一冷却通道出口和输入端221i连接,第一冷却通道201用于向电机10输送电机冷却液。
例如,第一冷却通道201包括第一冷却管211、第二冷却管212、第三冷却管213、第一连接子管214和第二连接子管215。第一冷却管211、第二冷却管212、第三冷却管213、第一连接子管214和第二连接子管215的每个配置为输送电机冷却液。
例如,第一冷却管211通过第一连接子管214与电机冷却液储存室221的输出端221o连接;第二冷却管212通过第二连接子管215与电机冷却液储存室221的输入端221i连接。第三冷却管213位于第一冷却管211和第二冷却管212之间并且与第一冷却管211、第二冷却管212均连接。这样,电机冷却液储存室221中的电机冷却液可依次经第一连接子管214、第一冷却管 211、第三冷却管213、第二冷却管212和第二连接子管215后,回流到电机冷却液储存室221中。电机冷却液在第一冷却通道201的流动过程中,通过热交换的方式将电机10产生的热量带走,从而对电机10进行冷却。
至少一些实施例中,第三冷却管213的数量可以是一个也可以是多个,当设置为多个第三冷却管213时,可增强对电机10的冷却效果。
图11为根据本公开实施例的驱动装置中定子的截面示意图。例如,图11为图9的电机10的定子15的截面示意图。图9至图11中,电机包括输出轴14、定子15和转子16,有关输出轴14、定子15和转子16之间的具体结构以及它们在驱动装置中的设置方式可参考前面实施例的描述,此处不再赘述。
例如,电机10包括定子15,定子15包括本体部151和定子绕组152,定子15限定内部空腔150。转子16设置在定子15的内部空腔150中。本体部151具有例如圆筒状并且包括靠近转子16的内侧C1和外侧C2,内侧C1和外侧C2在定子15的径向方向上彼此相对。定子绕组152设置在本体部151的内侧C1上,多个第三冷却管213设置在本体部151的外侧C2上。
例如,多个第三冷却管213设置在本体部151的外侧C2的部分或全部周边部分中。当多个第三冷却管213设置在本体部151的外侧C2的全部周边部分中时,可提高电机冷却液的热交换面积,增强散热效果。
例如,多个第三冷却管213以等间距或不等间距方式设置在本体部151的全部周边部分中。当多个第三冷却管213等间距地设置在本体部151的外侧C2的全部周边部分中时,可提高散热的均匀性,进一步保证整体散热效果。
例如,如图9和图10所示,第一风机组件203设置在第一冷却液储存组件202之上,对电机冷却液储存室221中的电机冷却液进行散热。第一风机组件203的数量可以是一个,也可以是多个,本领域普通技术人员可以根据第一冷却液储存组件202的面积来确定第一风机组件203的具体数量,本公开实施例对此不做限定。
例如,第一风机组件203包括第一散热风扇204和第一散热电机205。第一散热电机205设置在电机冷却液储存室221的远离外壳12的一侧,第一散热风扇204位于第一散热电机205和电机冷却液储存室221之间。当第一 散热电机205工作时,可带动第一散热风扇204的叶轮旋转,利用叶轮旋转产生的风对电机冷却液储存组件202(例如电机冷却液储存室221)中的电机冷却液进行冷却降温。
上述实施例提供的变速一体机中,在利用风冷散热机构2C对驱动装置1进行散热过程中,电机冷却液从电机冷却液储存室221经第一连接子管214流入到第一冷却管211、第三冷却管213和第二冷却管212中,在流动过程中,电机冷却液通过热交换的方式将电机10产生的热量带走,实现对电机10的冷却散热。当电机冷却液对电机10进行热交换后,温度升高的电机冷却液经第二连接子管215再回流到电机冷却液储存室221中。由于电机冷却液为可循环使用,不仅降低了生产成本,而且减少了废水排放,避免了环境污染。
至少一些实施例中,由于驱动装置1采用冷却液散热方式,相比于风冷散热方式,外壳12上无需设置与排风管连通的开孔,因此,外壳12基本上为封闭式,隔离了外壳的内、外部之间的连通。当驱动装置1的外部出现爆炸等情况时,降低了电机10发生爆炸的可能性,由此实现了电机的隔爆功能。由于逆变装置3采用冷却液散热方式,使逆变装置3也实现隔爆功能,进一步提高了变频一体机的整体防爆效果。
图12为根据本公开再一实施例的变速一体机的立体结构图。图13为图12的变速一体机的结构示意图。
如图12和图13所示,本公开至少一个实施例提供的变速一体机包括驱动装置1、驱动散热装置、逆变装置3和逆变散热装置。其中,逆变散热装置和驱动散热装置均采用冷却液散热方式。
图12和图9的变速一体机的区别在于,图12的逆变散热装置和驱动散热装置共用第一冷却液储存组件和第一风机组件。
例如,如图12和图13所示,驱动装置1包括电机10和用于容纳电机10的外壳12。逆变装置3设置在外壳的第一侧S1,例如顶表面F1上,该逆变装置3与电机10电连接。有关电机10、外壳12的具体结构可参考前面实施例的描述,此处不再赘述。
例如,逆变装置3可覆盖部分顶表面F1或全部顶表面F1。当逆变装置3覆盖全部顶表面F1时,可提高逆变散热装置的散热面积,提高散热效率。 当逆变装置3覆盖部分顶表面F1时,有利于在外壳上安装额外的装置,例如增加风冷散热机构(例如下面图22所示的实施例)。
例如,逆变散热装置包括设置在逆变装置3的远离外壳10的一侧的逆变冷却板441(也称水冷板)。例如,逆变冷却板441包括逆变冷却通道451。有关逆变冷却板441和逆变冷却通道451的具体结构可参考前面实施例中对逆变冷却板41和逆变冷却通道51的描述,此处不再赘述。
例如,如图13所示,驱动散热装置包括第一冷却通道401、共用第一冷却液储存组件C202和共用第一风机组件C203。第一冷却通道401的至少一部分设置在外壳12限定的腔体13中。例如,第一冷却通道401包括第一冷却管411、第二冷却管412和第三冷却管413,其中第三冷却管413为一个或多个。例如,多个第三冷却管413设置在电机10的定子15中。有关第三冷却管413的具体结构和设置方式可参考前面对第三冷却管213的相关描述,此处不再赘述。
例如,共用第一冷却液储存组件C202设置在逆变冷却板441的远离外壳12的一侧。共用第一冷却液储存组件C202包括共用第一冷却液储存室C221,其用于储存冷却液并且向第一冷却通道401和逆变冷却板441提供冷却液。
例如,共用第一冷却液储存室C221包括输入端C221i和输出端C221o。第一冷却通道401的一端与共用第一冷却液储存室C221的输出端C221o连通,另一端与输入端C221i连通。从共用第一冷却液储存室C221的输出端C221o流出的冷却液依次经过第一冷却管411、第三冷却管413和第二冷却管412,最终经过输入端C221i回流到共用第一冷却液储存室C221。
例如,逆变冷却通道451的一端与共用第一冷却液储存室C221的输出端C221o连通,另一端与输入端C221i连通。从共用第一冷却液储存室C221的输出端C221o流出的冷却液,在经过逆变冷却通道451时对逆变装置3进行冷却降温,最终经过输入端C221i回流到共用第一冷却液储存室C221。
需要说明的是,本公开所有附图中所示的冷却液的流动方向仅为示意性的,在实际生产中,可以具有相反的流动方向,本公开实施例对此不做限定。
例如,共用第一风机组件C203设置在共用第一冷却液储存组件C202的远离外壳12的一侧。共用第一风机组件C203包括共用第一散热风扇C204 和共用第一散热电机205。
例如,共用第一散热电机C205设置在共用第一冷却液储存室C221的远离外壳12的一侧,共用第一散热风扇C204位于共用第一散热电机C205和共用第一冷却液储存室C221之间。当共用第一散热电机C205工作时,可带动共用第一散热风扇C204的叶轮旋转,利用叶轮旋转产生的风对共用第一冷却液储存室C221中的冷却液进行冷却降温。
图12中仅示出了四个共用第一风机组件C203。可以理解的是,共用第一风机组件C203的数量可以是一个,也可以是多个,本领域普通技术人员可以根据共用第一冷却液储存室C221的面积来确定共用第一风机组件C203的具体数量,本公开实施例对此不做限定。
上述实施例提供的变速一体机中,逆变装置3、逆变冷却板441、共用第一冷却液储存组件C202和共用第一风机组件C203均设置在外壳12的同一侧上。通过上述设置方式,节省了驱动散热装置、逆变装置和逆变散热装置在变速一体机上占用的空间,使变速一体机的整体体积减小。
上述实施例提供的变速一体机中,通过设置共用第一冷却液储存组件C202和共用第一风机组件C203,可降低驱动散热装置和逆变散热装置的体积,使两个散热装置在结构上更紧凑,而且提高变速一体机的整体防爆功能。
至少一些实施例中,设置在电机10中的第一冷却通道401和设置在逆变冷却板441中的逆变冷却通道415可以是并联连接,也可以是串联连接。本领域技术人员可以根据实际需要来确定。下面结合具体示例分别对这两种连接方式进行说明。
图14至图19示意性示出以并联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
如图14至图19所示,第一冷却通道401包括第一冷却通道入口401i和第一冷却通道出口401o,第一冷却通道入口401i与共用第一冷却液储存室C221的输出端C221o连接,第一冷却通道出口401o与输入端C221i连接。冷却液从共用第一冷却液储存室C221的输出端C221o流出,进入第一冷却通道401。在经过电机10时,对电机10进行冷却降温。最终,经输入端C221i回流到共用第一冷却液储存室C221。
如图14至图19所示,逆变冷却通道451包括逆变冷却通道入口451i 和逆变冷却通道出口451o,逆变冷却通道入口451i与共用第一冷却液储存室C221的输出端C221o连接,逆变冷却通道出口451o与输入端C221i连接。冷却液从共用第一冷却液储存室C221的输出端C221o流出,进入逆变冷却通道451。在经过逆变冷却板441时,对逆变装置3进行冷却降温。最终,经输入端C221i回流到共用第一冷却液储存室C221。
如图14至图19所示,共用第一风机组件利用叶轮旋转产生的风对回流到共用第一冷却液储存室C221中的冷却液进行冷却降温(如图中所示“风路”的箭头)。
上述实施例提供的变速一体机中,通过将第一冷却通道401和逆变冷却通道451设置为并联连接,当其中一个冷却通道损坏时,不影响对另一冷却通道的正常工作,也便于维修或更换。
至少一些实施例中,为了提高冷却液在逆变冷却通道和第一冷却通道中的流动性,增强循环回流的效果,可在第一冷却通道401和逆变冷却通道451上设置一个或多个水泵。
如图14所示,例如,在第一冷却通道401和逆变冷却通道451上分别设置第一水泵G1和第二水泵G2。第一水泵G1位于第一冷却通道401在输入端C221i和电机10之间的部分上且位于电机10的上游,以提高冷却液在第一冷却通道中的流动性。第二水泵G2位于逆变冷却通道451在输出端C221o和逆变冷却板441之间的部分上且位于逆变冷却板441的上游,以提高冷却液在逆变冷却通道451中的流动性。
如图15所示,例如,在第一冷却通道401和逆变冷却通道451上分别设置第一水泵G1和第二水泵G2。第一水泵G1位于第一冷却通道401在输入端C221i和电机10之间的部分上且位于电机10的上游,以提高冷却液在第一冷却通道中的流动性。第二水泵G2位于逆变冷却通道451在输出端C221o和逆变冷却板441之间的部分上且位于逆变冷却板441的下游,以提高冷却液在逆变冷却通道451中的流动性。
如图16所示,例如,在第一冷却通道401和逆变冷却通道451上分别设置第一水泵G1和第二水泵G2。第一水泵G1位于第一冷却通道401在输入端C221i和电机10之间的部分上且位于电机10的下游,以提高冷却液在第一冷却通道中的流动性。第二水泵G2位于逆变冷却通道451在输出端C221o 和逆变冷却板441之间的部分上且位于逆变冷却板441的上游,以提高冷却液在逆变冷却通道451中的流动性。
如图17所示,例如,在第一冷却通道401和逆变冷却通道451上分别设置第一水泵G1和第二水泵G2。第一水泵G1位于第一冷却通道401在输入端C221i和电机10之间的部分上且位于电机10的下游,以提高冷却液在第一冷却通道中的流动性。第二水泵G2位于逆变冷却通道451在输出端C221o和逆变冷却板441之间的部分上且位于逆变冷却板441的下游,以提高冷却液在逆变冷却通道451中的流动性。
如图18所示,例如,在第一冷却通道401和逆变冷却通道451上仅设置一个第一水泵G1。第一水泵G1位于第一冷却通道401在输入端C221i和电机10之间的部分上且位于电机10的下游,以提高冷却液在第一冷却通道中的流动性。同时,该第一水泵G1也位于逆变冷却通道451在输入端C221i和逆变冷却板441之间的部分上且位于逆变冷却板441的下游,以提高冷却液在逆变冷却通道451中的流动性。
如图19所示,例如,在第一冷却通道401和逆变冷却通道451上仅设置一个第一水泵G1。第一水泵G1位于第一冷却通道401在输出端C221o和电机10之间的部分上且位于电机10的上游,以提高冷却液在第一冷却通道中的流动性。同时,该第一水泵G1也位于逆变冷却通道451在输出端C221o和逆变冷却板441之间的部分上且位于逆变冷却板441的上游,以提高冷却液在逆变冷却通道451中的流动性。
相比于图14至图17中使用两个水泵的情况,图18、19中采用一个水泵,能够减少水泵的使用数量,降低制造成本。
图20和图21示意性示出以串联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
如图20和图21所示,第一冷却通道401包括第一冷却通道入口401i和第一冷却通道出口401o。逆变冷却通道451包括逆变冷却通道入口451i和逆变冷却通道出口451o。逆变冷却通道入口451i与共用第一冷却液储存室C221的输出端C221o连接,逆变冷却通道出口451o与第一冷却通道入口401i连接,第一冷却通道出口401o与输入端C221i连接。
当冷却液从共用第一冷却液储存室C221的输出端C221o流出时,先经 逆变冷却通道451进入逆变冷却板441,对逆变装置3进行冷却降温;然后,经第一冷却通道401进入电机10,对电机10进行冷却降温。最终,经输入端C221i回流到共用第一冷却液储存室C221。
如图20和图21所示,共用第一风机组件利用叶轮旋转产生的风对回流到共用第一冷却液储存室中的冷却液进行冷却降温(如图中所示“风路”的箭头)。
在图20和图21中,冷却液先进入逆变冷却通道451,再进入第一冷却通道401,可以理解的是,在其他实施例中,二者在顺序上可以互换。也就是,冷却液可先进入第一冷却通道401,再进入逆变冷却通道451。
实际生产时,可根据发热部件所产生的热量的大小来确定冷却液流过的顺序。例如,可以使产生较低热量的发热部件先通入冷却液。如果将产生较高热量的发热部件先通入冷却液,那么流出的冷却液温度较高,有可能无法再对产生较低热量的发热部件进行冷却,从而影响其散热效果。例如,在电机产生的热量大于逆变装置产生的热量的情况下,使冷却液先进入逆变冷却通道451,再进入第一冷却通道401,由此避免因先冷却液温度过高而影响对后续部件的散热效果。
图22为根据本公开又一实施例的变速一体机的立体示意图。如图22所示,本公开至少一个实施例提供的变速一体机包括驱动装置1、驱动散热装置2、逆变装置3和逆变散热装置4。
图1和图22的变速一体机的区别在于,图22的驱动散热装置2同时以风冷散热方式和冷却液散热方式对驱动装置1散热,在此情况下,驱动散热装置2包括风冷散热机构和冷却液散热机构。
例如,驱动装置1包括电机10和用于容纳电机10的外壳12。逆变装置3设置在外壳的第一侧S1,例如顶表面F1上,该逆变装置3与电机10电连接。有关电机10、外壳12的具体结构可参考前面实施例的描述,此处不再赘述。
例如,逆变散热装置4设置在逆变装置3的远离外壳12的一侧。逆变散热装置4包括逆变冷却板541(也称水冷板)、逆变冷却液储存组件542和逆变风机组件543。逆变风机组件543包括散热风扇545和散热电机547。有关逆变装置3、逆变冷却板541、逆变冷却液储存组件542、逆变风机组件543、 散热风扇545和散热电机547的具体结构和设置方式可参考前面对逆变装置3、逆变冷却板41、逆变冷却液储存组件42、逆变风机组件43、散热风扇45和散热电机47的相关描述,此处不再赘述。
例如,风冷散热机构包括出风组件520和入风组件530。例如,出风组件520与腔体13连通并且设置在外壳12的第一侧S1。出风组件520包括散热风机521、排风道522和风机蜗壳525,其中排风道522包括出风口523和出风口盖板524。入风组件530例如设置在外壳12的第二侧S2。有关出风组件520和入风组件530的具体结构和设置方式可参考前面图1中对出风组件20和入风组件30的相关描述,此处不再赘述。
需要说明的是,为了给冷却液散热机构留出空间,图22中的风冷散热机构仅采用一个出风组件520,以减小其在外壳12的顶表面F1上占用的面积。可以理解的是,该出风组件520的出风方向也不限于图中所示的方向。
例如,冷却液散热机构包括第一冷却组件(未示出)、第一冷却液储存组件502和第一风机组件503。有关第一冷却组件、第一冷却液储存组件502和第一风机组件503的具体结构和设置方式可参考前面图9中对第一冷却组件、第一冷却液储存组件202和第一风机组件203的相关描述,此处不再赘述。
需要说明的是,相比于图9的第一冷却液储存组件202,图22中第一冷却液储存组件502在外壳12的顶表面F1上所占用的空间较小,这样有利于在顶表面F1上同时设置出风组件520。
至少一些实施例中,风冷散热机构的至少一部分、冷却液散热机构的至少一部分和逆变装置均设置在外壳的同一侧上。例如,如图22所示,出风组件520、第一冷却液储存组件502、第一风机组件503和逆风装置3均设置在外壳12的同一侧上(例如图中所示外壳12的第一侧S1)。通过将出风组件520、第一冷却液储存组件502、第一风机组件503和逆风装置3均设置在外壳12的同一侧上,节省了驱动散热装置、逆变装置3和逆变散热装置4在变速一体机上占用的空间,使变速一体机的整体体积减小。
上述实施例提供的变速一体机中,通过采用风冷散热方式和冷却液散热方式同时对电机10进行散热,增强了对电机的散热效果。尤其对于像电机这种大功率设备,在工作时会产生大量的热量,增强其散热效果,将进一步保 证变速一体机的正常工作。
例如,图22中的电机10包括输出轴、定子和转子,输出轴从外壳12伸出。有关输出轴、定子和转子之间的具体结构以及它们在驱动装置中的设置方式可参考前面实施例的描述,此处不再赘述。
例如,当采用风冷散热方式和冷却液散热方式同时对电机10进行散热时,可以对转子采用风冷散热方式,对定子采用冷却液散热方式。
例如,图22中,当开启散热风机521时,外界空气可通过外壳12底表面F2上的入风组件30被吸入腔体13中,被吸入腔体13的空气可经过定子15的内部空腔150(见图11),从而实现对电机10的散热效果。之后,通过散热风机521的抽吸作用,再将空气从排风道522排出。
例如,图22的第一冷却组件可以包括如图10和图11中的第一冷却通道201,第一冷却通道201的至少一部分沿平行于输出轴的方向设置在定子中。这样,当第一冷却通道中通入冷却液时,通过使冷却液流过定子本体,实现对定子的散热效果。
至少一些实施例中,当采用风冷散热方式和冷却液散热方式同时对电机10进行散热时,逆变散热装置4和驱动散热装置3可以共用第一冷却液储存组件502和第一风机组件503。有关在共用状态下,第一冷却液储存组件502、第一风机组件503、逆变装置3、逆变散热装置4的具体结构和设置方式可参考前面图12至图13中的相关描述,此处不再赘述。
进一步地,在共用第一冷却液储存组件502和第一风机组件503的情况下,设置在电机10中的第一冷却通道和设置在逆变冷却板中的逆变冷却通道可以是并联连接,也可以是串联连接。本领域技术人员可以根据实际需要来确定。下面结合具体示例分别对这两种连接方式进行说明。
图23至图24示意性示出当采用风冷散热方式和冷却液散热方式同时对电机散热时以并联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
如图23和24所示,在共用第一冷却液储存组件和第一风机组件的情况下,可在图22的电机10中设置第一冷却通道501,并且在图22的逆变冷却板541中设置逆变冷却通道551。有关第一冷却通道501和逆变冷却通道541的具体结构和设置方式可参考前面对第一冷却通道401和逆变冷却通道541 的描述,此处不再赘述。
例如,共用第一冷却液储存组件包括共用第一冷却液储存室,以标号C521表示,有关共用第一冷却液储存室C521以及共用第一风机组件的具体结构可参考前面对共用第一冷却液储存室C221和共用第一风机组件C203的相关描述,此处不再赘述。
如图23和24所示,第一冷却通道501包括第一冷却通道入口501i和第一冷却通道出口501o,第一冷却通道入口501i与共用第一冷却液储存室C521的输出端C521o连通,第一冷却通道出口501o与输入端C521i连通。冷却液从共用第一冷却液储存室C521的输出端C521o流出,进入第一冷却通道501。在经过电机10的定子15时,对电机10的定子15进行冷却降温。最终,经输入端C521i回流到共用第一冷却液储存室C521。
如图23和24所示,逆变冷却通道551包括逆变冷却通道入口551i和逆变冷却通道出口551o,逆变冷却通道入口551i与共用第一冷却液储存室C521的输出端C521o连通,逆变冷却通道出口551o与输入端C521i连通。冷却液从共用第一冷却液储存室C521的输出端C521o流出,进入逆变冷却通道551。在经过逆变冷却板541时,对逆变装置3进行冷却降温。最终,经输入端C521i回流到共用第一冷却液储存室C521。
如图23和24所示,共用第一风机组件利用叶轮旋转产生的风对回流到共用第一冷却液储存室C521中的冷却液进行冷却降温(如图中经过C521的“风路”箭头)。与此同时,由于出风组件520中的散热风机521的抽吸作用,可以使外界空气被吸入电机10中,并且经过转子16从排风道522中流出,由此实现了对电机10的转子16的冷却降温(如图中经过转子16的“风路”箭头)。
至少一些实施例中,为了提高冷却液在逆变冷却通道和第一冷却通道中的流动性,增强循环回流的效果,可在第一冷却通道501和逆变冷却通道551上设置一个或多个水泵。
例如,如图23所示,在第一冷却通道501和逆变冷却通道551上分别设置第一水泵G1和第二水泵G2。第一水泵G1位于第一冷却通道501在输入端C521i和电机10之间的部分上且位于电机10的上游,以提高冷却液在第一冷却通道中的流动性。第二水泵G2位于逆变冷却通道551在输出端C521o 和逆变冷却板541之间的部分上且位于逆变冷却板541的上游,以提高冷却液在逆变冷却通道551中的流动性。
例如,第一水泵G1还可以设置在图23中标有G1的虚线框位置,第二水泵G2还可以设置在图23中标有G2的虚线框位置。具体位置可参考图15至图17中的相关描述,此处不再赘述。
例如,如图24所示,在第一冷却通道501和逆变冷却通道551上仅设置一个第一水泵G1。第一水泵G1位于第一冷却通道501在输入端C521i和电机10之间的部分上且位于电机10的下游,以提高冷却液在第一冷却通道中的流动性。同时,该第一水泵G1也位于逆变冷却通道551在输入端C521i和逆变冷却板541之间的部分上且位于逆变冷却板541的下游,以提高冷却液在逆变冷却通道551中的流动性。相比于使用两个水泵,采用一个水泵能够减少水泵的使用数量,降低制造成本。
例如,第一水泵G1还可以设置在图24中标有G1的虚线框位置。具体位置可参考图19中的相关描述,此处不再赘述。
图25示意性示出当采用风冷散热方式和冷却液散热方式同时对电机散热时以串联方式连接的第一冷却通道和逆变冷却通道的示例的连接框图。
如图25所示,第一冷却通道501包括第一冷却通道入口501i和第一冷却通道出口501o。逆变冷却通道551包括逆变冷却通道入口551i和逆变冷却通道出口551o。逆变冷却通道入口551i与共用第一冷却液储存室C521的输出端C521o连通,逆变冷却通道出口551o与第一冷却通道入口501i连通,第一冷却通道出口501o与输入端C521i连通。
当冷却液从共用第一冷却液储存室C521的输出端C521o流出时,先经逆变冷却通道551进入逆变冷却板541,对逆变装置3进行冷却降温;然后,经第一冷却通道501进入电机10的定子15,对电机10的定子15进行冷却降温。最终,经输入端C521i回流到共用第一冷却液储存室C521。
在图25的示例中,冷却液先进入逆变冷却通道551,再进入第一冷却通道501,可以理解的是,在其他实施例中,二者在顺序上可以互换。也就是,冷却液可先进入第一冷却通道501,再进入逆变冷却通道551。在实际生产中,二者的具体顺序可根据发热部件所产生的发热量大小来决定,具体可参见前面的相关描述。
例如,第一水泵G1还可以设置在图25中标有G1的虚线框位置。具体位置可参考图20中的相关描述,此处不再赘述。
本公开至少一实施例还提供一种井场设备,包括前面任一实施例的变速一体机,井场设备包括电驱压裂设备和电驱固井设备中的至少一种。
图26为根据本公开实施例提供的电驱压裂设备的结构示意图。如图26所示,例如,本公开至少一实施例提供的电驱压裂设备为电驱压裂半挂车,该电驱压裂半挂车包括:半挂车体91、散热器92、变速一体机93、柱塞泵94、接线箱95、本地控制箱96、传动装置97、高压系统98和低压系统99。变速一体机93通过传动装置97与柱塞泵94连接,散热器92对柱塞泵94的润滑油进行冷却。
上述实施例提供的电驱压裂设备中,通过在电驱压裂半挂车上使用采用前面任一实施例所描述的变速一体机93,不仅实现了对电机和逆变装置的散热功能,还使变速一体机93的结构更紧凑,减少了变速一体机93在半挂车上的占用空间,降低了车辆重量,降低车辆的形式成本,实际使用时更灵活,运输方便。
上述实施例提供的电驱压裂设备中,通过将电机和逆变器集成在一起,使电驱压裂半挂车只需一组动力电缆和辅助电缆接到供电设备便可达到工作状态,接线更简单、更快捷。例如,供电设备提供的电力可以采用来自于高压电通过整流变压器整流后的供电,也可以采用来自发电机直接整流后的供电。
例如,传动装置97可以采用传动轴、联轴器和离合器中的至少一种或至少两种。例如,传动装置97可以直接连接柱塞泵94,也可通过齿轮箱连接柱塞泵,实现更大扭矩的输入,柱塞泵输入扭矩增大,输出更大排出压力。齿轮箱包括但不限于减速箱、变速箱、分动箱等。
根据使用环境不同,齿轮箱可以与其他设备集成在一起,也可以单独设置。例如,当应用到电驱压裂设备上时,齿轮箱可以集成在柱塞泵中。当应用到电驱固井设备上时,可以在传动装置和柱塞泵设置多级齿轮箱,例如设置两级齿轮箱,由此通过多级传动、降低速度来提高扭矩。
例如,联轴器的轴线与柱塞泵的轴线可以重合或不重合。当二者轴线不重合时,联轴器可以采用挠性或弹性联轴器。
例如,柱塞泵94为五缸柱塞泵,其功率为5000hp以上。为单车大功率的输出提供了保障,也使得单位面积内的功率密度得以提升,为缩减整个井场的占地面积提供前提条件。
例如,变速一体机93的功率为3000KW以上。变速一体机93的功率与柱塞泵94的功率相匹配,使得调速一体机93能正常驱动柱塞泵94。
例如,接线箱95与变速一体机93相连接,接线箱95可以在车辆的侧面,或者车辆的尾部。接线箱95可以是电缆接头通过螺栓连接,也可以是快速连接器连接。本公开实施例中,电驱压裂半挂车只需一组动力电缆和辅助电缆接到供电设备便可达到工作状态,接线更简单,接线安装更快捷。
本公开实施例提供的变速一体机及其井场设备中,利用逆变散热装置对逆变装置散热,利用驱动散热装置对驱动装置散热,有效保证了井场中驱动装置和逆变装置在正常温度下的连续工作。通过将驱动散热装置的至少一部分和逆变装置设置在外壳的同一侧上,节省了驱动散热装置和逆变装置在变速一体机上占用的空间,使变速一体机的整体体积减小。当将具有较小整体体积的变速一体机应用到井场设备上时,由于变速一体机的整体体积减小,其在井场设备上所占用的空间也减小,因此能为在井场设备上安装其他装置提供更多的空间保障。当将驱动散热装置的至少一部分和逆变装置均设置在外壳的顶面上时,由于占用的是井场设备的顶部空间,侧面空间不受其影响,即使两个井场设备之间的横向间距较小,也不影响两个井场设备的散热效果。
本文中,有以下几点需要注意:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种变速一体机,包括:
    驱动装置,包括电机和用于容纳所述电机的外壳;
    逆变装置,设置在所述外壳上并且与所述电机电连接;
    逆变散热装置,设置在所述逆变装置的远离所述外壳的一侧并且配置为以冷却液散热方式对所述逆变装置散热;
    驱动散热装置,至少一部分设置在所述外壳上并且配置为以冷却液散热方式和风冷散热方式中的至少一种对所述驱动装置散热;
    其中,所述驱动散热装置的至少一部分和所述逆变装置设置在所述外壳的同一侧上。
  2. 根据权利要求1所述的变速一体机,其中所述外壳限定容纳所述电机的腔体,所述驱动散热装置包括:
    风冷散热机构,所述风冷散热机构包括与所述腔体连通的出风组件,所述出风组件和所述逆变装置设置在所述外壳的同一侧上。
  3. 根据权利要求2所述的变速一体机,其中所述风冷散热机构包括至少两个所述出风组件,所述至少两个出风组件的出风方向彼此相同或彼此不同。
  4. 根据权利要求2所述的变速一体机,其中所述出风组件包括:
    散热风机,设置在的所述外壳上;
    风机蜗壳,设置在所述散热风机和所述外壳之间;和
    排风道;
    其中,所述风机蜗壳的第一侧与所述散热风机连通,所述风机蜗壳的第二侧与所述腔体连通,所述风机蜗壳的第三侧与所述排风道连通,所述电机包括输出轴,所述第一侧和所述第二侧在与所述输出轴相垂直的方向上彼此相对;
    其中,所述散热风机配置为将所述腔体内的气体抽吸到所述风机蜗壳中并且所述气体通过所述排风道排出。
  5. 根据权利要求4所述的变速一体机,其中所述排风道包括:
    出风口,所述出风口朝向远离所述外壳的方向;和
    出风口盖板,所述出风口盖板可旋转地连接于所述出风口并且配置为覆 盖所述出风口。
  6. 根据权利要求2所述的变速一体机,其中:
    所述电机包括输出轴,所述输出轴从所述外壳伸出,所述外壳包括在与所述输出轴相垂直的方向上彼此相对的第一侧和第二侧,所述出风组件和所述逆变装置设置在所述外壳的第一侧上;
    所述风冷散热机构还包括:
    入风组件,所述入风组件包括设置在所述外壳的第二侧上的入风口,所述入风口配置为与所述腔体连通以使从所述入风口进入所述腔体的气体经过所述电机后从所述出风组件中排出。
  7. 根据权利要求6所述的变速一体机,其中所述入风组件还包括:
    凹槽,设置在所述外壳的第二侧,所述入风口设置于所述凹槽内;和
    防护网,覆盖所述入风口;
    其中所述防护网所在的平面与所述外壳的第二侧的外表面不共面,并且所述防护网所在的平面比所述外壳的第二侧的外表面更靠近所述电机。
  8. 根据权利要求1所述的变速一体机,其中所述驱动散热装置包括:
    冷却液散热机构,所述冷却液散热机构包括:
    第一冷却组件,设置在所述外壳限定容纳所述电机的腔体中;
    第一风机组件,设置在所述外壳上;和
    第一冷却液储存组件,设置在所述第一风机组件和所述外壳之间,所述第一冷却液储存组件与所述第一冷却组件连通且配置为向所述第一冷却组件提供冷却液,所述第一风机组件配置为对所述第一冷却液储存组件中的所述冷却液散热;
    其中,所述第一冷却液储存组件、所述第一风机组件和所述逆变装置均设置在所述外壳的同一侧上。
  9. 根据权利要求8所述的变速一体机,其中:
    所述逆变散热装置和所述驱动散热装置共用所述第一冷却液储存组件和所述第一风机组件;
    所述逆变散热装置包括设置在所述逆变装置的远离所述外壳的一侧的逆变冷却板,所述共用的第一风机组件设置在所述逆变冷却板的远离所述外壳的一侧,所述共用的第一冷却液储存组件设置在所述共用的第一风机组件和 所述逆变冷却板之间。
  10. 根据权利要求9所述的变速一体机,其中:
    所述电机包括输出轴,所述输出轴从所述外壳伸出,所述外壳包括在与所述输出轴相垂直的方向上彼此相对的第一侧和第二侧;
    所述共用的第一冷却液储存组件、所述共用的第一风机组件、所述逆变装置和所述逆变冷却板均设置在所述外壳的第一侧上,所述逆变装置覆盖所述外壳的第一侧的部分或全部的外表面。
  11. 根据权利要求9所述的变速一体机,其中:
    所述逆变散热装置包括:
    逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口;
    所述第一冷却组件包括:
    第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口;
    所述第一冷却液储存组件包括:
    冷却液储存室,所述冷却液储存室包括:
    输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;
    输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;
    其中,所述逆变冷却通道入口和所述第一冷却通道入口分别与所述输出端连接,所述逆变冷却通道出口和所述第一冷却通道出口分别与所述输入端连接。
  12. 根据权利要求9所述的变速一体机,其中:
    所述逆变散热装置包括:
    逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口;
    所述第一冷却组件包括:
    第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口;
    所述第一冷却液储存组件包括:
    冷却液储存室,所述冷却液储存室包括:
    输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;
    输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;
    其中,所述逆变冷却通道入口与所述输出端连接,所述逆变冷却通道出口与所述第一冷却通道入口连接,所述第一冷却通道出口与所述输入端连接。
  13. 根据权利要求1所述的变速一体机,其中:
    所述驱动散热装置包括风冷散热机构和冷却液散热机构;
    所述风冷散热机构的至少一部分、所述冷却液散热机构的至少一部分和所述逆变装置均设置在所述外壳的同一侧上。
  14. 根据权利要求13所述的变速一体机,其中:
    所述外壳限定容纳所述电机的腔体;
    所述风冷散热机构包括:与所述腔体连通的出风组件;
    所述冷却液散热机构包括:
    第一冷却组件,设置在所述外壳限定容纳所述电机的腔体中;
    第一风机组件,设置在所述外壳上;和
    第一冷却液储存组件,设置在所述第一风机组件和所述外壳之间,所述第一冷却液储存组件与所述第一冷却组件连通且配置为向所述第一冷却组件提供冷却液,所述第一风机组件配置为对所述第一冷却液储存组件中的所述冷却液散热;
    所述出风组件、所述第一冷却液储存组件、所述第一风机组件和所述逆变装置均设置在所述外壳的同一侧上。
  15. 根据权利要求14所述的变速一体机,其中:
    所述电机包括输出轴、定子和转子,所述输出轴从所述外壳伸出;
    所述第一冷却组件包括:第一冷却通道,所述第一冷却通道的至少一部分沿平行于所述输出轴的方向设置在所述定子中;
    所述风冷散热机构还包括:入风组件,所述入风组件包括设置在所述外壳上的入风口,所述入风口配置为与所述腔体连通以使从所述入风口进入所述腔体的气体经所述转子从所述出风组件中排出。
  16. 根据权利要求14所述的变速一体机,其中:
    所述逆变散热装置和所述驱动散热装置共用所述第一冷却液储存组件和所述第一风机组件;
    所述逆变散热装置包括设置在所述逆变装置的远离所述外壳的一侧的逆变冷却板,所述共用的第一风机组件设置在所述逆变冷却板的远离所述外壳的一侧,所述共用的第一冷却液储存组件设置在所述共用的第一风机组件和所述逆变冷却板之间。
  17. 根据权利要求16所述的变速一体机,其中:
    所述逆变散热装置包括:
    逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口;
    所述第一冷却组件包括:
    第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口;
    所述第一冷却液储存组件包括:
    冷却液储存室,所述冷却液储存室包括:
    输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;
    输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;
    其中,所述逆变冷却通道入口和所述第一冷却通道入口分别与所述输出端连接,所述逆变冷却通道出口和所述第一冷却通道出口分别与所述输入端连接。
  18. 根据权利要求16所述的变速一体机,其中:
    所述逆变散热装置包括:
    逆变冷却通道,设置在所述逆变冷却板中并且包括逆变冷却通道入口和逆变冷却通道出口;
    所述第一冷却组件包括:
    第一冷却通道,至少一部分所述第一冷却通道设置在所述电机中并且所述第一冷却通道包括第一冷却通道入口和第一冷却通道出口;
    所述第一冷却液储存组件包括:
    冷却液储存室,所述冷却液储存室包括:
    输出端,向所述逆变冷却通道和所述第一冷却通道输出所述冷却液;
    输入端,接收从所述逆变冷却通道和所述第一冷却通道回流的所述冷却液;
    其中,所述逆变冷却通道入口与所述输出端连接,所述逆变冷却通道出口与所述第一冷却通道入口连接,所述第一冷却通道出口与所述输入端连接。
  19. 根据权利要求1所述的变速一体机,其中:
    所述电机包括:底部和顶部;
    所述外壳包括:与所述电机的底部同侧的底表面,和与所述电机的顶部同侧的顶表面;
    其中,所述驱动散热装置的至少一部分、所述逆变装置和所述逆变散热装置均设置在所述外壳的顶表面上。
  20. 一种井场设备,包括权利要求1所述的变速一体机。
PCT/CN2021/113988 2019-10-30 2021-08-23 变速一体机及其井场设备 WO2023004905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3173692A CA3173692A1 (en) 2021-07-29 2021-08-23 Variable-speed integrated machine and wellsite apparatus
US17/559,522 US20220112892A1 (en) 2019-10-30 2021-12-22 Variable-speed integrated machine and wellsite apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110864527.9 2021-07-29
CN202110864527.9A CN113513462A (zh) 2021-07-29 2021-07-29 变速一体机及其井场设备

Publications (1)

Publication Number Publication Date
WO2023004905A1 true WO2023004905A1 (zh) 2023-02-02

Family

ID=78067833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113988 WO2023004905A1 (zh) 2019-10-30 2021-08-23 变速一体机及其井场设备

Country Status (2)

Country Link
CN (2) CN115405484A (zh)
WO (1) WO2023004905A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114109335B (zh) * 2021-10-14 2023-09-19 烟台杰瑞石油装备技术有限公司 由变频调速一体机驱动的压裂设备及井场布局
CA3179258A1 (en) 2021-10-14 2023-04-14 Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. A fracturing device driven by a variable-frequency adjustable-speed integrated machine and a well site layout
CN114142676A (zh) * 2021-11-18 2022-03-04 佳木斯电机股份有限公司 一种降低电机轴承温度的自循环式结构
CN114180003A (zh) * 2021-11-29 2022-03-15 江苏丞工科技有限公司 一种充气救生船

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201549965U (zh) * 2009-12-03 2010-08-11 宁夏三一西北骏马电机制造股份有限公司 变频电动机接线盒水冷底板
US20180159403A1 (en) * 2015-05-20 2018-06-07 Nissan Motor Co., Ltd. Drive device
CN111525736A (zh) * 2020-05-25 2020-08-11 青岛中加特电气股份有限公司 一种用于驱动泥浆泵的水冷变频一体机和泥浆循环系统
CN211530941U (zh) * 2020-03-27 2020-09-18 大连创为电机有限公司 一种页岩油气电驱压裂泵用高功率密度变频电机
CN112311297A (zh) * 2020-10-14 2021-02-02 青岛中加特电气股份有限公司 变频一体机
CN212649313U (zh) * 2020-08-14 2021-03-02 青岛中加特电气股份有限公司 电动压裂车泵用一体机
CN112467899A (zh) * 2020-11-17 2021-03-09 青岛中加特电气股份有限公司 电机、变频一体机和固井装置
CN215292784U (zh) * 2021-07-29 2021-12-24 烟台杰瑞石油装备技术有限公司 变速一体机及其井场设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201549965U (zh) * 2009-12-03 2010-08-11 宁夏三一西北骏马电机制造股份有限公司 变频电动机接线盒水冷底板
US20180159403A1 (en) * 2015-05-20 2018-06-07 Nissan Motor Co., Ltd. Drive device
CN211530941U (zh) * 2020-03-27 2020-09-18 大连创为电机有限公司 一种页岩油气电驱压裂泵用高功率密度变频电机
CN111525736A (zh) * 2020-05-25 2020-08-11 青岛中加特电气股份有限公司 一种用于驱动泥浆泵的水冷变频一体机和泥浆循环系统
CN212649313U (zh) * 2020-08-14 2021-03-02 青岛中加特电气股份有限公司 电动压裂车泵用一体机
CN112311297A (zh) * 2020-10-14 2021-02-02 青岛中加特电气股份有限公司 变频一体机
CN112467899A (zh) * 2020-11-17 2021-03-09 青岛中加特电气股份有限公司 电机、变频一体机和固井装置
CN215292784U (zh) * 2021-07-29 2021-12-24 烟台杰瑞石油装备技术有限公司 变速一体机及其井场设备

Also Published As

Publication number Publication date
CN115405484A (zh) 2022-11-29
CN113513462A (zh) 2021-10-19

Similar Documents

Publication Publication Date Title
US20220112892A1 (en) Variable-speed integrated machine and wellsite apparatus
WO2023004905A1 (zh) 变速一体机及其井场设备
CN215292784U (zh) 变速一体机及其井场设备
CN103918164B (zh) 旋转电机
KR102057794B1 (ko) 풍력 발전기 유닛용 타워 저부 냉각 디바이스, 및 제어 방법
JP2022528250A (ja) ステータコア、ハウジング、電気車両のモーター冷却システム、および電気車両
CN101728895B (zh) 可设置在电动机上的仪器
CN206602729U (zh) 纯电动物流车用的电机控制器箱体
KR20200050978A (ko) 전기 구동 시스템
WO2023060945A1 (zh) 由变频调速一体机驱动的压裂设备及井场布局
CN113794332B (zh) 集成电驱系统
CN111823853A (zh) 双驱动力系统及车辆
WO2020220834A1 (zh) 冷却系统、电机及风力发电机组
CN102900629A (zh) 一种独立于机舱外的风电机组散热装置
CA3173692A1 (en) Variable-speed integrated machine and wellsite apparatus
WO2020220835A1 (zh) 冷却系统、电机及风力发电机组
EP3816508B1 (en) Internal-circulating heat dissipation system for stage light
CN202768294U (zh) 一种独立于机舱外的风电机组散热装置
CN114844273A (zh) 一种撬装型泥浆泵用防爆型风水冷一体设备
CN215897524U (zh) 风冷变频调速一体机
CN216672798U (zh) 一种泥浆泵水冷变频调速一体机
RU2812074C1 (ru) Электроприводное устройство и его канал охлаждения
CN2770288Y (zh) 管式热交换器
CN220043158U (zh) 直驱电机装置
JP3279536B2 (ja) インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE