WO2023004874A1 - 畴壁存储器的制备方法以及畴壁存储器 - Google Patents

畴壁存储器的制备方法以及畴壁存储器 Download PDF

Info

Publication number
WO2023004874A1
WO2023004874A1 PCT/CN2021/111182 CN2021111182W WO2023004874A1 WO 2023004874 A1 WO2023004874 A1 WO 2023004874A1 CN 2021111182 W CN2021111182 W CN 2021111182W WO 2023004874 A1 WO2023004874 A1 WO 2023004874A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
domain wall
ferroelectric
comb
electrode
Prior art date
Application number
PCT/CN2021/111182
Other languages
English (en)
French (fr)
Inventor
胡来归
蔡依辰
詹义强
秦亚杰
Original Assignee
光华临港工程应用技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光华临港工程应用技术研发(上海)有限公司 filed Critical 光华临港工程应用技术研发(上海)有限公司
Publication of WO2023004874A1 publication Critical patent/WO2023004874A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/671Organic radiation-sensitive molecular electronic devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the invention relates to the field of semiconductor devices, in particular to a preparation method of an organic ferroelectric domain wall memory and the domain wall memory.
  • Non-volatile memory represented by floating-gate transistors is the basis of future high-performance and low-power computing, but the injection and extraction of charges make the switching speed slow and the operating voltage high.
  • the advantages of non-volatile memory based on inorganic ferroelectric materials are fast switching speed, low operating voltage, and long working life. However, it contains many toxic elements, and the preparation process is complicated and has low compatibility.
  • Ferroelectric polymers represented by PVDF and its copolymers have attracted extensive attention in the wearable field due to their flexibility and flexible preparation.
  • the two-terminal storage inorganic device based on ferroelectric domain wall conduction brings new opportunities for the application of ferroelectric materials in new types of memory.
  • the technical problem to be solved by the present invention is to provide a method for preparing an organic ferroelectric domain wall memory which is non-destructive, non-volatile, easy to prepare and controllable, and the domain wall memory.
  • the present invention provides a method for preparing an organic ferroelectric domain wall memory, comprising the following steps: providing a substrate; making opposite metal comb electrodes on the substrate; The surface is subjected to hydrophilic and hydrophobic treatment; a molecular ferroelectric functional layer is formed on the surface of the substrate by a selective growth method; and a domain wall memory is obtained after annealing.
  • the material of the molecular ferroelectric functional layer is diisopropylammonium bromide salt crystal.
  • the substrate is selected from one of silicon, silicon oxide, glass, PI, PET or PDMS.
  • the comb electrodes have a first tooth pitch and a second tooth pitch.
  • the comb-shaped electrode is a square saw-toothed comb-shaped counter electrode, and the comb-shaped teeth of the two electrodes are arranged facing each other to form a characteristic functional channel pattern with periodic width changes; the patterning method is selected from photolithography , laser direct writing, imprinting, and one of electron beam exposure.
  • the preparation process of the comb electrode may be one of vacuum resistance thermal evaporation deposition, electron beam deposition and magnetron sputtering.
  • the thickness of the comb electrodes is 50nm-150nm
  • the electrode spacing is 1 ⁇ m-30 ⁇ m
  • the period of the rectangular sawtooth is 5 ⁇ m-50 ⁇ m
  • the side length of a single sawtooth is 2 ⁇ m-30 ⁇ m.
  • hydrophilic and hydrophobic treatment is performed on the surface of the substrate, and hydrophilic treatment is performed on the channel region where materials need to grow, and oxygen plasma cleaning is selected.
  • Hydrophobic treatment is performed on the surface of the electrode that does not require material growth, and one of mercaptan treatment and octadecyltrichlorosilane treatment is selected.
  • the preparation method of the molecular ferroelectric functional layer is surface tension induced inter-electrode solution method selected area growth.
  • the present invention provides an organic ferroelectric domain wall memory, comprising: a substrate; opposing comb electrodes on the surface of the substrate; and a molecular ferroelectric functional layer between the opposing comb electrodes.
  • the above technical solution realizes the formation of a domain wall conductive channel based on the multi-level length channel of the comb-shaped counter electrode and the partial polarization of the organic ferroelectric layer.
  • the traditional ferroelectric memory which uses polarization inversion and displacement current to write and read, it has the advantages of non-destructive reading, large current signal, and long life.
  • the invention can be used in the fields of novel storage arrays, flexible integrated ferroelectric chips and the like.
  • Figure 4 is an optical microscopic characterization photo of the enlarged channel region of the device manufactured in this specific embodiment.
  • step S10 providing a substrate
  • step S11 making opposite metal comb-shaped electrodes on the substrate
  • the surface is subjected to hydrophilic and hydrophobic treatment
  • step S13 forming a molecular ferroelectric functional layer on the surface of the substrate by a selective growth method
  • step S14 obtaining a domain wall memory after annealing.
  • the organic molecular ferroelectric material diisopropylamine bromide (represented by DIPAB) is used as the ferroelectric control layer, and the structural formula is as follows:
  • a substrate 20 is provided.
  • the substrate 20 is selected from one of silicon, silicon oxide, glass, PI, PET or PDMS, and is a silicon oxide substrate in this embodiment.
  • opposite metal comb electrodes 21 are formed on the substrate 20 .
  • the preparation process of the comb electrode can be one of vacuum resistance thermal evaporation deposition, electron beam deposition and magnetron sputtering.
  • the comb-shaped electrode has a first tooth pitch and a second tooth pitch
  • the comb-shaped electrode 21 is a square zigzag comb-shaped counter electrode, and the comb-shaped teeth of the two electrodes face each other arrangement to form a characteristic functional channel pattern with periodic width changes; the patterning method is selected from one of photolithography, laser direct writing, embossing, and electron beam exposure.
  • a comb-shaped counter electrode photolithography mask that meets the function is designed, and the electrode is prepared on a clean silicon oxide surface by using deep ultraviolet lithography and vacuum thermal evaporation resistance deposition.
  • the thickness of the comb-shaped electrode is 50nm-150nm, the electrode spacing is 1 ⁇ m-30 ⁇ m, the period of the rectangular sawtooth is 5 ⁇ m-50 ⁇ m, and the side length of a single sawtooth is 2 ⁇ m-30 ⁇ m.
  • the prepared electrode substrates were respectively submerged in acetone, isopropanol and deionized water for 1 minute with low-frequency ultrasound, and the residual liquid was blown off with a nitrogen gun, and dried on a hot plate at 100°C for later use.
  • Step S12 performing hydrophilic and hydrophobic treatment on the surface of the substrate.
  • Hydrophilic treatment is performed on the channel area where material growth is required, and oxygen plasma cleaning can be used.
  • Hydrophobic treatment is performed on the electrode surface that does not require material growth, and one of thiol treatment and octadecyltrichlorosilane treatment can be selected.
  • a molecular ferroelectric functional layer 22 is formed on the surface of the substrate 20 by a selective growth method, and a domain wall memory is obtained after annealing.
  • DIPAB diisopropylamine bromide
  • DIPAB methanol solution with a concentration of 5 mg/ml
  • weigh 10 mg of DIPAB powder with an electronic balance and use a syringe to absorb 2 ml of anhydrous methanol solvent, put them into sealed bottles, and ultrasonically dissolve them for 5 minutes.
  • preheat the substrate with gold electrode patterns on a hot plate at 60°C for 5 minutes, quickly drop 20 microliters of solution on the surface of the substrate with a pipette gun, and prepare the selected area growth by low tension drop coating method.
  • the molecular ferroelectric functional layer after the film is formed, it is dried and annealed at 100°C for half an hour.
  • the domain wall memory obtained after the above steps include: a substrate 20 ; opposing comb electrodes 21 on the surface of the substrate 20 ; and a molecular ferroelectric functional layer 22 between the opposing comb electrodes.
  • the molecular ferroelectric domain wall storage device prepared by the selective area growth method is prepared by using the low-tension drop coating method, and the functional molecular material film only exists in the channel region between the electrodes.
  • Optical microscopic characterization of the device shows that there is no material coverage on the surface of the gold electrode, but there is a continuous and smooth ferroelectric film in the channel region.
  • Zooming in on the channel area as shown in Figure 4, the thin film material has good shape retention and presents a complex channel shape.
  • the detailed size of the channel is shown in the figure, and the shortest part of the channel is 5 ⁇ m.
  • the organic molecular ferroelectric material can realize ferroelectric polarization reversal in the plane, and has high-performance in-plane ferroelectric properties.
  • the domain wall memory utilizes voltage polarization to process the material of the narrow channel region, and maintains the ferroelectric material that does not affect the wide channel region, so that the domain wall between the narrow/wide region is generated or disappeared, and non-volatile

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供了一种有机铁电畴壁存储器的制备方法,包括如下步骤:提供一衬底;在所述衬底上制作对置的金属梳状电极;对所述衬底表面进行亲疏水性处理;在所述衬底表面采用选区生长法形成分子铁电功能层;退火后获得畴壁存储器。上述技术方案实现了基于梳状对电极的多级长度沟道以及有机铁电层部分极化形成畴壁导电通道。利用低张力滴涂选区法,降低成本与复杂度的同时引导极化轴可控生长。与传统利用极化翻转与位移电流写入与读取的铁电存储器相比,具有非破坏性读取、电流信号大、寿命长等优势。本发明可用于新型存储阵列、柔性集成铁电芯片等领域。

Description

畴壁存储器的制备方法以及畴壁存储器 技术领域
本发明涉及半导体器件领域,尤其涉及一种有机铁电畴壁存储器的制备方法以及畴壁存储器。
背景技术
随着信息技术的迅速发展,存储器作为计算机系统的记忆设备面临着越发严峻的压力。以浮栅晶体管为代表的非易失性存储器是未来高性能低功耗计算的基础,然而电荷的注入和抽取使开关速度慢、操作电压高。以无机铁电材料为基础的非易失性存储器优势在于开关速度快、操作电压小、工作寿命长,然而其多含毒害元素,制备工艺复杂兼容性低。以PVDF及其共聚物为代表的铁电聚合物因其柔性和制备灵活的特点,在可穿戴领域中获得广泛关注。然而铁电聚合物矫顽场E c过大,自发极化较小制约着其实际应用。近年来分子铁电材料取得了突破性进展,二异丙胺溴盐(DIPAB)晶体自发极化达到了23μC/cm 2,其E c仅为~5kV/cm。其接近无机铁电体的优秀性能以及灵活的制备工艺,为新型分子铁电器件提供了新的可能性。并且传统铁电非易失性存储器的写入与读取都伴随着极化的翻转,影响了器件的性能与寿命。同时铁电材料界面电导增强的现象,作为一种特殊可控的电导调制原理,具有极大的应用潜力。基于铁电畴壁导电的二端存储无机器件作为非易失性非破坏性的电流型存储器件,为铁电材料在新型存储器中的应用带来新的机遇。
发明内容
本发明所要解决的技术问题是,提供一种非破坏性读取、非易失性、制备简便可控的有机铁电畴壁存储器的制备方法以及畴壁存储器。
为了解决如上问题,本发明提供了一种有机铁电畴壁存储器的制备方法, 包括如下步骤:提供一衬底;在所述衬底上制作对置的金属梳状电极;对所述衬底表面进行亲疏水性处理;在所述衬底表面采用选区生长法形成分子铁电功能层;退火后获得畴壁存储器。
可选的,分子铁电功能层的材料是二异丙胺溴盐晶体。
可选的,所述的衬底选自于硅、氧化硅、玻璃、PI、PET或PDMS中的一种。
可选的,所述梳状电极具有第一齿距和第二齿距。
可选的,所述梳状电极为方形锯齿梳状对电极,两个电极的梳状齿正面相对排列,形成具有周期性宽窄变化的特征功能性沟道图案;图案化方法选自于光刻、激光直写、压印、以及电子束曝光中的一种。
可选的,所述梳状电极制备工艺可以真空电阻热蒸发沉积、电子束沉积和磁控溅射中的一种。
可选的,所述梳状电极厚度为50nm-150nm,电极间距为1μm-30μm,矩形锯齿的周期为5μm-50μm,单个锯齿的边长为2μm-30μm。
可选的,对所述衬底表面进行亲疏水性处理,对需要材料生长沟道区域进行亲水性处理,选用氧等离子清洗。对不需材料生长的电极表面进行疏水性处理,选硫醇处理、十八烷基三氯硅烷处理中的一种。
可选的,所述分子铁电功能层制备方法为表面张力诱导的电极间溶液法选区生长。
为了解决如上问题,本发明提供了一种有机铁电畴壁存储器,包括:衬底;所述衬底表面的对置梳状电极;以及对置梳状电极之间的分子铁电功能层。
上述技术方案实现了基于梳状对电极的多级长度沟道以及有机铁电层部分极化形成畴壁导电通道。利用低张力滴涂选区法,降低成本与复杂度的同时 引导极化轴可控生长。与传统利用极化翻转与位移电流写入与读取的铁电存储器相比,具有非破坏性读取、电流信号大、寿命长等优势。本发明可用于新型存储阵列、柔性集成铁电芯片等领域。
附图说明
附图1所示是本发明一具体实施方式的步骤示意图。
附图2A至附图2C所示是本发明一具体实施方式的工艺流程图。
附图3所示是本具体实施方式制作的器件的光学显微表征照片。
附图4所示是本具体实施方式制作的器件放大沟道区域的光学显微表征照片。
具体实施方式
下面结合附图对本发明提供的畴壁存储器的制备方法以及畴壁存储器的具体实施方式做详细说明。
附图1所示是本具体实施方式的步骤示意图,包括:步骤S10,提供一衬底;步骤S11,在所述衬底上制作对置的金属梳状电极;步骤S12,对所述衬底表面进行亲疏水性处理;步骤S13,在所述衬底表面采用选区生长法形成分子铁电功能层;步骤S14,退火后获得畴壁存储器。
本实施例以有机分子铁电材料二异丙胺溴盐(以DIPAB表示)为铁电调控层,结构式如下:
Figure PCTCN2021111182-appb-000001
附图2A至附图2C所示是本具体实施方式的工艺流程图。
附图2A所示,参考步骤S10,提供一衬底20。所述的衬底20选自于硅、 氧化硅、玻璃、PI、PET或PDMS中的一种,在本具体实施方式中为氧化硅衬底。
附图2B所示,参考步骤S11,在所述衬底20上制作对置的金属梳状电极21。所述梳状电极制备工艺可以真空电阻热蒸发沉积、电子束沉积和磁控溅射中的一种。为了提高器件性能,本具体实施方式中,所述梳状电极具有第一齿距和第二齿距,所述梳状电极21为方形锯齿梳状对电极,两个电极的梳状齿正面相对排列,形成具有周期性宽窄变化的特征功能性沟道图案;图案化方法选自于光刻、激光直写、压印、以及电子束曝光中的一种。具体的说,首先根据器件性能需求设计符合功能的梳状对电极光刻掩膜版,使用深紫外光刻与真空热蒸发电阻沉积在洁净的氧化硅表面制备电极,所述梳状电极厚度为50nm-150nm,电极间距为1μm-30μm,矩形锯齿的周期为5μm-50μm,单个锯齿的边长为2μm-30μm。将制备好电极的衬底分别依次浸没于丙酮、异丙醇和去离子水中低频率超声1分钟,用氮气枪吹去残余液体,在100℃热板上烘干备用。
步骤S12,对所述衬底表面进行亲疏水性处理。对需要材料生长沟道区域进行亲水性处理,可选用氧等离子清洗。对不需材料生长的电极表面进行疏水性处理,可选硫醇处理、十八烷基三氯硅烷处理中的一种。
附图2C所示,参考步骤S13以及步骤S14,在所述衬底20表面采用选区生长法形成分子铁电功能层22,退火后获得畴壁存储器。本具体实施方式以分子铁电功能层的材料是二异丙胺溴盐(DIPAB)晶体进行叙述,所述分子铁电功能层制备方法为表面张力诱导的电极间溶液法选区生长。具体的说,先配置5mg/ml浓度的DIPAB甲醇溶液,用电子天平称量DIPAB粉末10mg,并使用注射器吸取2ml无水甲醇溶剂,分别置入密封瓶中,超声5分钟充分溶解。然后在温度为60℃的热板上将制备了金电极图案的衬底预加热5分钟,用移液 枪向衬底表面迅速滴上20微升溶液,用低张力滴涂法制备选区生长分子铁电功能层,待成膜后再在100℃下烘干退火半小时。
上述步骤实施完毕后获得的畴壁存储器包括:衬底20;所述衬底20表面的对置梳状电极21;以及对置梳状电极之间的分子铁电功能层22。
利用低张力滴涂法制备选区生长方法制备得的分子铁电畴壁存储器件,其功能性分子材料薄膜只存在于电极间的沟道区域。对该器件进行光学显微表征,如图3,金电极表面没有材料覆盖,而沟道区域存在连续平滑的铁电薄膜。放大沟道区域观察,如图4,薄膜材料的保形性较好,呈现复杂的沟道形状,沟道细节尺寸如图所示,沟道最短处为5μm。所述的有机分子铁电材料可在面内实现铁电极化翻转,具有高性能的面内铁电特性。所述的畴壁存储器利用电压极化处理窄沟道区材料,并保持不影响宽沟道区的铁电材料,使窄/宽区之间畴壁产生或消失,实现非易失性存储。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种有机铁电畴壁存储器的制备方法,包括如下步骤:
    提供一衬底;
    在所述衬底上制作对置的金属梳状电极;
    对所述衬底表面进行亲疏水性处理;
    在所述衬底表面采用选区生长法形成分子铁电功能层;
    退火后获得畴壁存储器。
  2. 根据权利要求1所述的方法,其中,分子铁电功能层的材料是二异丙胺溴盐晶体。
  3. 根据权利要求1所述的方法,其中,所述的衬底选自于硅、氧化硅、玻璃、PI、PET或PDMS中的一种。
  4. 根据权利要求1所述的方法,其中,所述梳状电极具有第一齿距和第二齿距。
  5. 根据权利要求4所述的方法,其中,所述梳状电极为方形锯齿梳状对电极,两个电极的梳状齿正面相对排列,形成具有周期性宽窄变化的特征功能性沟道图案;图案化方法选自于光刻、激光直写、压印、以及电子束曝光中的一种。
  6. 根据权利要求1所述的方法,其中,所述梳状电极制备工艺可以真空电阻热蒸发沉积、电子束沉积和磁控溅射中的一种。
  7. 根据权利要求1所述的方法,其中,所述梳状电极厚度为50nm-150nm,电极间距为1μm-30μm,矩形锯齿的周期为5μm-50μm,单个锯齿的边长为2μm-30μm。
  8. 根据权利要求1所述的方法,其中,对所述衬底表面进行亲疏水性处理的步骤中,对需要材料生长沟道区域进行亲水性处理,选用氧等离子清洗。 对不需材料生长的电极表面进行疏水性处理,选硫醇处理、十八烷基三氯硅烷处理中的一种。
  9. 根据权利要求1所述的方法,其中,所述分子铁电功能层制备方法为表面张力诱导的电极间溶液法选区生长。
  10. 一种有机铁电畴壁存储器,包括:衬底;所述衬底表面的对置梳状电极;以及对置梳状电极之间的分子铁电功能层。
PCT/CN2021/111182 2021-07-27 2021-08-06 畴壁存储器的制备方法以及畴壁存储器 WO2023004874A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110851591.3 2021-07-27
CN202110851591.3A CN113659076A (zh) 2021-07-27 2021-07-27 畴壁存储器的制备方法以及畴壁存储器

Publications (1)

Publication Number Publication Date
WO2023004874A1 true WO2023004874A1 (zh) 2023-02-02

Family

ID=78478769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111182 WO2023004874A1 (zh) 2021-07-27 2021-08-06 畴壁存储器的制备方法以及畴壁存储器

Country Status (2)

Country Link
CN (1) CN113659076A (zh)
WO (1) WO2023004874A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290021A1 (en) * 2005-06-21 2006-12-28 Seiko Epson Corporation Micro-embossing fabrication of electronic devices
CN101034667A (zh) * 2006-03-10 2007-09-12 精工爱普生株式会社 通过将材料喷墨印刷到堤坝结构中的器件制造和压印设备
CN103848997A (zh) * 2014-01-17 2014-06-11 中国科学院上海技术物理研究所 一种pvdf基有机铁电聚合物超晶格制备方法
CN108389962A (zh) * 2018-02-28 2018-08-10 复旦大学 面内读写的铁电阻变存储器及其增强读/写信号的方法
CN110416216A (zh) * 2019-06-30 2019-11-05 上海浦睿信息科技有限公司 一种实现多位数据存储的非挥发铁电存储器
CN113140676A (zh) * 2020-01-20 2021-07-20 复旦大学 一种基于液滴的有机分子薄膜及其微纳器件阵列的制备方法
CN113161494A (zh) * 2021-04-23 2021-07-23 光华临港工程应用技术研发(上海)有限公司 光电人工突触的制备方法以及光电人工突触

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304014A (ja) * 2002-04-08 2003-10-24 Mitsubishi Chemicals Corp 有機電子デバイス及びその作製方法
JP2008033284A (ja) * 2006-07-04 2008-02-14 Semiconductor Energy Lab Co Ltd 表示装置の作製方法
KR20100071283A (ko) * 2008-12-19 2010-06-29 연세대학교 산학협력단 단결정 TIPS-PEN을 활성층으로 하는 FeFET 및FeFET형 비휘발성 메모리
CN104637948B (zh) * 2015-01-24 2017-11-17 复旦大学 非破坏性读出铁电存储器及其制备方法和读/写操作方法
CN107230676B (zh) * 2017-05-22 2020-05-26 复旦大学 高读出电流的非挥发铁电存储器及其操作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060290021A1 (en) * 2005-06-21 2006-12-28 Seiko Epson Corporation Micro-embossing fabrication of electronic devices
CN101034667A (zh) * 2006-03-10 2007-09-12 精工爱普生株式会社 通过将材料喷墨印刷到堤坝结构中的器件制造和压印设备
CN103848997A (zh) * 2014-01-17 2014-06-11 中国科学院上海技术物理研究所 一种pvdf基有机铁电聚合物超晶格制备方法
CN108389962A (zh) * 2018-02-28 2018-08-10 复旦大学 面内读写的铁电阻变存储器及其增强读/写信号的方法
CN110416216A (zh) * 2019-06-30 2019-11-05 上海浦睿信息科技有限公司 一种实现多位数据存储的非挥发铁电存储器
CN113140676A (zh) * 2020-01-20 2021-07-20 复旦大学 一种基于液滴的有机分子薄膜及其微纳器件阵列的制备方法
CN113161494A (zh) * 2021-04-23 2021-07-23 光华临港工程应用技术研发(上海)有限公司 光电人工突触的制备方法以及光电人工突触

Also Published As

Publication number Publication date
CN113659076A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
KR101583685B1 (ko) 그라핀 메모리 셀 및 그것의 제조 방법
JP3246189B2 (ja) 半導体表示装置
KR100606999B1 (ko) 불휘발성 메모리
CN104617099B (zh) 有机铁电栅石墨烯柔性存储器件及其制造方法
US20230010658A1 (en) Electronic switching device
Hwang et al. Ferroelectric polymer-gated graphene memory with high speed conductivity modulation
Hou et al. 2D atomic crystals: a promising solution for next‐generation data storage
WO2022222308A1 (zh) 光电人工突触的制备方法以及光电人工突触
US20090278117A1 (en) Organic thin film transistor, method of manufacturing the same, and biosensor using the transistor
CN102394242A (zh) 非晶氧化铟锌/碳纳米管复合薄膜晶体管及其制备方法
CN103337462B (zh) 一种薄膜晶体管的制备方法
US10985320B2 (en) Organic transistor and manufacturing method thereof, array substrate, display device
Liu et al. Self-assembled VO2 mesh film-based resistance switches with high transparency and abrupt ON/OFF ratio
WO2022222307A1 (zh) 有机铁电晶体材料的制备方法以及有机铁电晶体材料
WO2023004874A1 (zh) 畴壁存储器的制备方法以及畴壁存储器
KR100631965B1 (ko) 비휘발성 고분자 쌍안정성 기억소자
KR20070056182A (ko) 나노 패턴 형성 방법과 그를 이용한 박막트랜지스터 및액정표시장치의 제조 방법
CN113140676B (zh) 基于液滴的有机分子薄膜及其微纳器件阵列的制备方法
US11715744B2 (en) Array substrate, preparation method thereof, and display panel
JP2003029001A (ja) 液晶レンズ素子
CN114899312B (zh) 一种基于叠层结构的氧化石墨烯忆阻器及其制备方法
Wu et al. Solution processed nonvolatile polymer transistor memory with discrete distributing molecular semiconductor microdomains as the charge trapping sites
WO2020235591A1 (ja) 可変抵抗デバイスおよびその製造方法
CN109036487B (zh) 一种基于短沟道有机晶体管的多级光存储器及其制备方法
KR20080095692A (ko) 전도성 고분자 유기물내 나노크리스탈층이 장착된 비휘발성메모리 소자 및 이의 제조 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE