WO2023004851A1 - 一种高强耐腐蚀镁合金复合材料及其制备方法 - Google Patents

一种高强耐腐蚀镁合金复合材料及其制备方法 Download PDF

Info

Publication number
WO2023004851A1
WO2023004851A1 PCT/CN2021/110656 CN2021110656W WO2023004851A1 WO 2023004851 A1 WO2023004851 A1 WO 2023004851A1 CN 2021110656 W CN2021110656 W CN 2021110656W WO 2023004851 A1 WO2023004851 A1 WO 2023004851A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
composite material
strength corrosion
preparation
alloy composite
Prior art date
Application number
PCT/CN2021/110656
Other languages
English (en)
French (fr)
Inventor
陶诚
付晓
Original Assignee
广东铭利达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东铭利达科技有限公司 filed Critical 广东铭利达科技有限公司
Publication of WO2023004851A1 publication Critical patent/WO2023004851A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the invention relates to the technical field of composite materials, in particular to a high-strength corrosion-resistant magnesium alloy composite material and a preparation method thereof.
  • Magnesium alloy is currently the lightest structural material in engineering applications. It has the advantages of low density, high specific strength, and good electromagnetic shielding and damping performance. It has important application value and broad application prospects in the fields of automobiles, electronics, and transportation; Some magnesium alloys increase the strength of magnesium alloys by adding a large amount of rare earth elements in the formula, but also increase the cost of magnesium alloys; existing magnesium alloys have poor corrosion resistance and short service life; existing magnesium alloys are prepared The process only mixes raw materials before smelting, but lack of stirring during smelting, resulting in insufficient mixing of raw material melts.
  • the object of the present invention is to provide a high-strength corrosion-resistant magnesium alloy composite material and a preparation method thereof, so as to solve the problems raised in the above-mentioned background technology.
  • a high-strength corrosion-resistant magnesium alloy composite material the formula includes: Mg, Al, Sn, Mn, WC, La and Ca, and the mass percentage content of each component is: 90 -94% Mg, 0.5-1.4% Al, 4-7% Sn, 0.7-1.5% Mn, 0.5-1.3% WC, 0.1-0.6% La and 0.3-1% Ca.
  • the mass percentages of the components are: 91% Mg, 1% Al, 5% Sn, 1% Mn, 1% WC, 0.4% La and 0.6% Ca.
  • a preparation method of a high-strength corrosion-resistant magnesium alloy composite material comprising step 1, raw material weighing; step 2, raw material melting; step 3, ultrasonic stirring; step 4, melt casting; step 5, heat treatment;
  • step one according to the mass percentage content of each component is respectively: the Mg of 90-94%, the Al of 0.5-1.4%, the Sn of 4-7%, the Mn of 0.7-1.5%, 0.5-1.3%
  • the WC of 0.1-0.6% and the Ca of 0.3-1% are selected as raw materials, and weighed according to the sum of the mass percentages being 1;
  • the raw materials weighed in the step 1 are firstly mixed and stirred, then put into a smelting furnace, filled with a mixed gas of nitrogen and argon, and heated and melted in a vacuum environment to obtain an alloy melt;
  • step 3 start the ultrasonic agitator to stir the alloy melt prepared in the step 2, so that the components in the alloy melt are fully mixed;
  • step 4 the alloy melt mixed uniformly in the step 3 is poured into the molding mold, cast and molded, and the mold is opened after molding to obtain the magnesium alloy material;
  • the magnesium alloy material prepared in the step 4 is put into a heat treatment device, under vacuum condition, carry out homogenization treatment, after the homogenization treatment, keep warm for a period of time and carry out annealing treatment, the magnesium alloy material after heat treatment Put it into an ultrasonic cleaner for ultrasonic cleaning, and get the finished magnesium alloy material after cleaning.
  • the selected raw material is powder.
  • the volume ratio of nitrogen to argon is 1:1.
  • the melting temperature is 700°C
  • the heating rate is 200°C/30min.
  • the stirring frequency of the ultrasonic stirrer is 30KHz, and the stirring time is 30min.
  • the homogenization treatment temperature is 300-400° C.
  • the homogenization treatment time is 5-10 hours.
  • the holding time is 360° C., and the holding time is 1 h.
  • the frequency of ultrasonic cleaning is 15-40KHz, and the time of ultrasonic cleaning is 100-200s.
  • the beneficial effect of the present invention is: compared with the existing magnesium alloy, the present invention improves the composition ratio of the alloy, not only improves the strength of the magnesium alloy, but also makes it have good corrosion resistance , the present invention carries out raw material smelting in vacuum and protective gas, reduces the generation of impurity, and adopts ultrasonic stirring at the same time, can make raw material mix more evenly, thus ensures the quality of finished magnesium alloy.
  • Fig. 1 is a flow chart of the method of the present invention.
  • a high-strength corrosion-resistant magnesium alloy composite material the formula includes: Mg, Al, Sn, Mn, WC, La and Ca, and the mass percentages of each component are: 91% of Mg, 1% of Al, 5% of Sn, 1% Mn, 1% WC, 0.4% La and 0.6% Ca.
  • a preparation method of a high-strength corrosion-resistant magnesium alloy composite material comprising step 1, raw material weighing; step 2, raw material melting; step 3, ultrasonic stirring; step 4, melt casting; step 5, heat treatment;
  • each component is respectively: 91% of Mg, 1% of Al, 5% of Sn, 1% of Mn, 1% of WC, 0.4% of La and 0.6%
  • the Ca of Ca carries out raw material selection, and weighs according to the sum of mass percentage is 1, and the selected raw material is powder;
  • step two the raw materials weighed in the step one are firstly mixed and stirred, then put into a melting furnace, filled with a mixed gas of nitrogen and argon, and heated and melted in a vacuum environment to obtain an alloy melt, nitrogen and argon
  • the volume ratio of argon is 1:1, the melting temperature is 700°C, and the heating rate is 200°C/30min;
  • step 3 start ultrasonic stirrer, the alloy melt prepared in step 2 is stirred, make each composition in alloy melt fully mix, and the stirring frequency of ultrasonic stirrer is 30KHz, and stirring time is 30min;
  • step 4 the alloy melt mixed uniformly in the step 3 is poured into the molding mold, cast and molded, and the mold is opened after molding to obtain the magnesium alloy material;
  • step five the magnesium alloy material prepared in step four is put into a heat treatment device, and homogenization treatment is carried out under vacuum conditions. After chemical treatment, keep warm for a period of time for annealing. The holding time is 360°C, and the holding time is 1h. Put the heat-treated magnesium alloy material into an ultrasonic cleaner for ultrasonic cleaning. The frequency of ultrasonic cleaning is 20KHz, and the time of ultrasonic cleaning is 100s, after cleaning, the finished magnesium alloy material is obtained.
  • a high-strength corrosion-resistant magnesium alloy composite material the formula includes: Mg, Al, Sn, Mn, WC, La and Ca, and the mass percentages of each component are: 91% of Mg, 0.7% of Al, 4% of Sn, 1.5% of Mn, 1.3% of WC, 0.5% of La and 0.3% of Ca.
  • a preparation method of a high-strength corrosion-resistant magnesium alloy composite material comprising step 1, raw material weighing; step 2, raw material melting; step 3, ultrasonic stirring; step 4, melt casting; step 5, heat treatment;
  • step one according to the mass percentage content of each component is respectively: the Mg of 91%, the Al of 0.7%, the Sn of 4%, the Mn of 1.5%, the WC of 1.3%, the La of 0.5% and 0.3%
  • the Ca of Ca carries out raw material selection, and weighs according to the sum of mass percentage is 1, and the selected raw material is powder;
  • step two the raw materials weighed in the step one are firstly mixed and stirred, then put into a melting furnace, filled with a mixed gas of nitrogen and argon, and heated and melted in a vacuum environment to obtain an alloy melt, nitrogen and argon
  • the volume ratio of argon is 1:1, the melting temperature is 700°C, and the heating rate is 200°C/30min;
  • step 3 start ultrasonic stirrer, the alloy melt prepared in step 2 is stirred, make each composition in alloy melt fully mix, and the stirring frequency of ultrasonic stirrer is 30KHz, and stirring time is 30min;
  • step 4 the alloy melt mixed uniformly in the step 3 is poured into the molding mold, cast and molded, and the mold is opened after molding to obtain the magnesium alloy material;
  • step five the magnesium alloy material prepared in step four is put into a heat treatment device, and homogenization treatment is carried out under vacuum conditions. After chemical treatment, keep warm for a period of time for annealing. The holding time is 360°C, and the holding time is 1h. Put the heat-treated magnesium alloy material into an ultrasonic cleaner for ultrasonic cleaning. The frequency of ultrasonic cleaning is 30KHz, and the time of ultrasonic cleaning is After 150s, the finished magnesium alloy material is obtained after cleaning.
  • a high-strength corrosion-resistant magnesium alloy composite material the formula includes: Mg, Al, Sn, Mn, WC, La and Ca, and the mass percentages of each component are: 91% of Mg, 1.3% of Al, 6% of Sn, 0.7% Mn, 0.5% WC, 0.2% La and 0.3% Ca.
  • a preparation method of a high-strength corrosion-resistant magnesium alloy composite material comprising step 1, raw material weighing; step 2, raw material melting; step 3, ultrasonic stirring; step 4, melt casting; step 5, heat treatment;
  • step one according to the mass percentage content of each component is respectively: 91% of Mg, 1.3% of Al, 6% of Sn, 0.7% of Mn, 0.5% of WC, 0.2% of La and 0.3%
  • the Ca of Ca carries out raw material selection, and weighs according to the sum of mass percentage is 1, and the selected raw material is powder;
  • step two the raw materials weighed in the step one are firstly mixed and stirred, then put into a melting furnace, filled with a mixed gas of nitrogen and argon, and heated and melted in a vacuum environment to obtain an alloy melt, nitrogen and argon
  • the volume ratio of argon is 1:1, the melting temperature is 700°C, and the heating rate is 200°C/30min;
  • step 3 start ultrasonic stirrer, the alloy melt prepared in step 2 is stirred, make each composition in alloy melt fully mix, and the stirring frequency of ultrasonic stirrer is 30KHz, and stirring time is 30min;
  • step 4 the alloy melt mixed uniformly in the step 3 is poured into the molding mold, cast and molded, and the mold is opened after molding to obtain the magnesium alloy material;
  • step five the magnesium alloy material prepared in step four is put into a heat treatment device, and homogenization treatment is carried out under vacuum conditions. After chemical treatment, keep warm for a period of time for annealing. The holding time is 360°C, and the holding time is 1h. Put the heat-treated magnesium alloy material into an ultrasonic cleaner for ultrasonic cleaning. The frequency of ultrasonic cleaning is 40KHz, and the time of ultrasonic cleaning is 200s, after cleaning, the finished magnesium alloy material is obtained.
  • the present invention adds Mn and WC in the formula to improve the strength of the magnesium alloy.
  • the present invention is beneficial to grain refinement and improves the corrosion resistance of the magnesium alloy plate by adding Ca.
  • the cost is controlled while improving the strength of the magnesium alloy.
  • the invention smelts raw materials in vacuum and protective gas, which reduces the generation of impurities.
  • the alloy melt is stirred by ultrasonic to fully mix the raw materials, thereby improving the quality of the magnesium alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种高强耐腐蚀镁合金复合材料及其制备方法,配方包括:Mg、Al、Sn、Mn、WC、La和Ca,制备方法包括步骤一,原料称取;步骤二,原料熔化;步骤三,超声搅拌;步骤四,熔液浇铸;步骤五,热处理;所述步骤二中,氮气与氩气的体积比为1:1,所述步骤二中,熔炼温度为700℃,升温速率为200℃/30min,所述步骤五中,均匀化处理的温度为300-400℃,均匀化处理的时间为5-10h,相较于现有的镁合金,改善了合金的成分配比,不仅提高了镁合金的强度,而且使其具备良好的耐腐蚀性,在真空和保护气体中进行原料熔炼,减少了杂质的生成,同时采用超声波搅拌,可以使原料混合的更加均匀,以此确保了成品镁合金的品质。

Description

一种高强耐腐蚀镁合金复合材料及其制备方法 技术领域
本发明涉及复合材料技术领域,具体为一种高强耐腐蚀镁合金复合材料及其制备方法。
背景技术
镁合金是目前工程应用中最轻的结构材料,具有密度小、比强度高、电磁屏蔽和阻尼性能好等优点,在汽车、电子、交通等领域具有重要的应用价值和广阔的应用前景;现有的镁合金通过在配方中添加大量稀土元素以提高镁合金的强度,但是也提高了镁合金的成本;现有的镁合金的耐腐蚀性较差、使用寿命短;现有的镁合金制备工艺只在熔炼前进行原料混合,而在熔炼时缺少搅拌,导致原料熔液无法充分混合。
发明内容
本发明的目的在于提供一种高强耐腐蚀镁合金复合材料及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种高强耐腐蚀镁合金复合材料,配方包括:Mg、Al、Sn、Mn、WC、La和Ca,各组分的质量百分比含量分别是:90-94%的Mg、0.5-1.4%的Al、4-7%的Sn、0.7-1.5%的Mn、0.5-1.3%的WC、0.1-0.6%的La和0.3-1%的Ca。
优选的,所述各组分的质量百分比含量分别是:91%的Mg、1%的Al、5%的Sn、1%的Mn、1%的WC、0.4%的La和0.6%的Ca。
一种高强耐腐蚀镁合金复合材料的制备方法,包括步骤一,原料称取;步骤二,原料熔化;步骤三,超声搅拌;步骤四,熔液浇铸;步骤五,热处理;
其中上述步骤一中,按照各组分的质量百分含量分别是:90-94%的Mg、0.5-1.4%的Al、4-7%的Sn、0.7-1.5%的Mn、0.5-1.3%的WC、0.1-0.6%的La 和0.3-1%的Ca进行原料选取,并按照质量百分比之和为1进行称取;
其中上述步骤二中,首先将步骤一中所称取的原料混合搅拌,然后放入熔炼炉中,充入氮气和氩气的混合气体,在真空环境下加热熔化,得到合金熔液;
其中上述步骤三中,启动超声波搅拌器,对步骤二中所制备的合金熔液进行搅拌,使合金熔液中的各成分充分混合;
其中上述步骤四中,将步骤三中混合均匀的合金熔液倒入成型模具中,浇铸成型,成型后进行开模处理,得到镁合金材料;
其中上述步骤五中,将步骤四中所制备的镁合金材料放入热处理装置中,在真空条件下,进行均匀化处理,均匀化处理后保温一段时间进行退火处理,将热处理后的镁合金材料放入超声清洗器中进行超声清洗,清洗干净后得到成品镁合金材料。
优选的,所述步骤一中,所选取的原料为粉料。
优选的,所述步骤二中,氮气与氩气的体积比为1:1。
优选的,所述步骤二中,熔炼温度为700℃,升温速率为200℃/30min。
优选的,所述步骤三中,超声波搅拌器的搅拌频率为30KHz,搅拌时间为30min。
优选的,所述步骤五中,均匀化处理的温度为300-400℃,均匀化处理的时间为5-10h。
优选的,所述步骤五中,保温时间为360℃,保温时间为1h。
优选的,所述步骤五中,超声清洗的频率为15-40KHz,超声清洗的时间为100-200s。
与现有技术相比,本发明的有益效果是:本发明相较于现有的镁合金,改善了合金的成分配比,不仅提高了镁合金的强度,而且使其具备良好的耐腐蚀性,本发明在真空和保护气体中进行原料熔炼,减少了杂质的生成,同 时采用超声波搅拌,可以使原料混合的更加均匀,以此确保了成品镁合金的品质。
附图说明
图1为本发明的方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供的一种技术方案:
实施例1:
一种高强耐腐蚀镁合金复合材料,配方包括:Mg、Al、Sn、Mn、WC、La和Ca,各组分的质量百分比含量分别是:91%的Mg、1%的Al、5%的Sn、1%的Mn、1%的WC、0.4%的La和0.6%的Ca。
一种高强耐腐蚀镁合金复合材料的制备方法,包括步骤一,原料称取;步骤二,原料熔化;步骤三,超声搅拌;步骤四,熔液浇铸;步骤五,热处理;
其中上述步骤一中,按照各组分的质量百分含量分别是:91%的Mg、1%的Al、5%的Sn、1%的Mn、1%的WC、0.4%的La和0.6%的Ca进行原料选取,并按照质量百分比之和为1进行称取,所选取的原料为粉料;
其中上述步骤二中,首先将步骤一中所称取的原料混合搅拌,然后放入熔炼炉中,充入氮气和氩气的混合气体,在真空环境下加热熔化,得到合金熔液,氮气与氩气的体积比为1:1,熔炼温度为700℃,升温速率为200℃/30min;
其中上述步骤三中,启动超声波搅拌器,对步骤二中所制备的合金熔液 进行搅拌,使合金熔液中的各成分充分混合,超声波搅拌器的搅拌频率为30KHz,搅拌时间为30min;
其中上述步骤四中,将步骤三中混合均匀的合金熔液倒入成型模具中,浇铸成型,成型后进行开模处理,得到镁合金材料;
其中上述步骤五中,将步骤四中所制备的镁合金材料放入热处理装置中,在真空条件下,进行均匀化处理,均匀化处理的温度为300℃,均匀化处理的时间为5h,均匀化处理后保温一段时间进行退火处理,保温时间为360℃,保温时间为1h,将热处理后的镁合金材料放入超声清洗器中进行超声清洗,超声清洗的频率为20KHz,超声清洗的时间为100s,清洗干净后得到成品镁合金材料。
实施例2:
一种高强耐腐蚀镁合金复合材料,配方包括:Mg、Al、Sn、Mn、WC、La和Ca,各组分的质量百分比含量分别是:91%的Mg、0.7%的Al、4%的Sn、1.5%的Mn、1.3%的WC、0.5%的La和0.3%的Ca。
一种高强耐腐蚀镁合金复合材料的制备方法,包括步骤一,原料称取;步骤二,原料熔化;步骤三,超声搅拌;步骤四,熔液浇铸;步骤五,热处理;
其中上述步骤一中,按照各组分的质量百分含量分别是:91%的Mg、0.7%的Al、4%的Sn、1.5%的Mn、1.3%的WC、0.5%的La和0.3%的Ca进行原料选取,并按照质量百分比之和为1进行称取,所选取的原料为粉料;
其中上述步骤二中,首先将步骤一中所称取的原料混合搅拌,然后放入熔炼炉中,充入氮气和氩气的混合气体,在真空环境下加热熔化,得到合金熔液,氮气与氩气的体积比为1:1,熔炼温度为700℃,升温速率为200℃/30min;
其中上述步骤三中,启动超声波搅拌器,对步骤二中所制备的合金熔液 进行搅拌,使合金熔液中的各成分充分混合,超声波搅拌器的搅拌频率为30KHz,搅拌时间为30min;
其中上述步骤四中,将步骤三中混合均匀的合金熔液倒入成型模具中,浇铸成型,成型后进行开模处理,得到镁合金材料;
其中上述步骤五中,将步骤四中所制备的镁合金材料放入热处理装置中,在真空条件下,进行均匀化处理,均匀化处理的温度为350℃,均匀化处理的时间为7h,均匀化处理后保温一段时间进行退火处理,保温时间为360℃,保温时间为1h,将热处理后的镁合金材料放入超声清洗器中进行超声清洗,超声清洗的频率为30KHz,超声清洗的时间为150s,清洗干净后得到成品镁合金材料。
实施例3:
一种高强耐腐蚀镁合金复合材料,配方包括:Mg、Al、Sn、Mn、WC、La和Ca,各组分的质量百分比含量分别是:91%的Mg、1.3%的Al、6%的Sn、0.7%的Mn、0.5%的WC、0.2%的La和0.3%的Ca。
一种高强耐腐蚀镁合金复合材料的制备方法,包括步骤一,原料称取;步骤二,原料熔化;步骤三,超声搅拌;步骤四,熔液浇铸;步骤五,热处理;
其中上述步骤一中,按照各组分的质量百分含量分别是:91%的Mg、1.3%的Al、6%的Sn、0.7%的Mn、0.5%的WC、0.2%的La和0.3%的Ca进行原料选取,并按照质量百分比之和为1进行称取,所选取的原料为粉料;
其中上述步骤二中,首先将步骤一中所称取的原料混合搅拌,然后放入熔炼炉中,充入氮气和氩气的混合气体,在真空环境下加热熔化,得到合金熔液,氮气与氩气的体积比为1:1,熔炼温度为700℃,升温速率为200℃/30min;
其中上述步骤三中,启动超声波搅拌器,对步骤二中所制备的合金熔液 进行搅拌,使合金熔液中的各成分充分混合,超声波搅拌器的搅拌频率为30KHz,搅拌时间为30min;
其中上述步骤四中,将步骤三中混合均匀的合金熔液倒入成型模具中,浇铸成型,成型后进行开模处理,得到镁合金材料;
其中上述步骤五中,将步骤四中所制备的镁合金材料放入热处理装置中,在真空条件下,进行均匀化处理,均匀化处理的温度为400℃,均匀化处理的时间为10h,均匀化处理后保温一段时间进行退火处理,保温时间为360℃,保温时间为1h,将热处理后的镁合金材料放入超声清洗器中进行超声清洗,超声清洗的频率为40KHz,超声清洗的时间为200s,清洗干净后得到成品镁合金材料。
各实施例性质对比如下表:
Figure PCTCN2021110656-appb-000001
基于上述,本发明在配方中添加了Mn和WC,提高了镁合金的强度,本发明通过添加Ca,有利于晶粒细化,提高镁合金板材的耐腐蚀性,本发明通过添加La,在提高镁合金强度的同时控制成本,本发明在真空和保护气体中进行原料熔炼,减少了杂质的生成,通过对合金熔液采用超声搅拌,使原料充分混合,提高了镁合金的品质。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节, 而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (10)

  1. 一种高强耐腐蚀镁合金复合材料,配方包括:Mg、Al、Sn、Mn、WC、La和Ca,其特征在于:各组分的质量百分比含量分别是:90-94%的Mg、0.5-1.4%的Al、4-7%的Sn、0.7-1.5%的Mn、0.5-1.3%的WC、0.1-0.6%的La和0.3-1%的Ca。
  2. 根据权利要求1所述的一种高强耐腐蚀镁合金复合材料,其特征在于:所述各组分的质量百分比含量分别是:91%的Mg、1%的Al、5%的Sn、1%的Mn、1%的WC、0.4%的La和0.6%的Ca。
  3. 一种高强耐腐蚀镁合金复合材料的制备方法,包括步骤一,原料称取;步骤二,原料熔化;步骤三,超声搅拌;步骤四,熔液浇铸;步骤五,热处理;其特征在于:
    其中上述步骤一中,按照各组分的质量百分含量分别是:90-94%的Mg、0.5-1.4%的Al、4-7%的Sn、0.7-1.5%的Mn、0.5-1.3%的WC、0.1-0.6%的La和0.3-1%的Ca进行原料选取,并按照质量百分比之和为1进行称取;
    其中上述步骤二中,首先将步骤一中所称取的原料混合搅拌,然后放入熔炼炉中,充入氮气和氩气的混合气体,在真空环境下加热熔化,得到合金熔液;
    其中上述步骤三中,启动超声波搅拌器,对步骤二中所制备的合金熔液进行搅拌,使合金熔液中的各成分充分混合;
    其中上述步骤四中,将步骤三中混合均匀的合金熔液倒入成型模具中,浇铸成型,成型后进行开模处理,得到镁合金材料;
    其中上述步骤五中,将步骤四中所制备的镁合金材料放入热处理装置中,在真空条件下,进行均匀化处理,均匀化处理后保温一段时间进行退火处理,将热处理后的镁合金材料放入超声清洗器中进行超声清洗,清洗干净后得到成品镁合金材料。
  4. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法, 其特征在于:所述步骤一中,所选取的原料为粉料。
  5. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法,其特征在于:所述步骤二中,氮气与氩气的体积比为1:1。
  6. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法,其特征在于:所述步骤二中,熔炼温度为700℃,升温速率为200℃/30min。
  7. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法,其特征在于:所述步骤三中,超声波搅拌器的搅拌频率为30KHz,搅拌时间为30min。
  8. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法,其特征在于:所述步骤五中,均匀化处理的温度为300-400℃,均匀化处理的时间为5-10h。
  9. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法,其特征在于:所述步骤五中,保温时间为360℃,保温时间为1h。
  10. 根据权利要求3所述的一种高强耐腐蚀镁合金复合材料的制备方法,其特征在于:所述步骤五中,超声清洗的频率为15-40KHz,超声清洗的时间为100-200s。
PCT/CN2021/110656 2021-07-27 2021-08-04 一种高强耐腐蚀镁合金复合材料及其制备方法 WO2023004851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110852476.8A CN113604717A (zh) 2021-07-27 2021-07-27 一种高强耐腐蚀镁合金复合材料及其制备方法
CN202110852476.8 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023004851A1 true WO2023004851A1 (zh) 2023-02-02

Family

ID=78305637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110656 WO2023004851A1 (zh) 2021-07-27 2021-08-04 一种高强耐腐蚀镁合金复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113604717A (zh)
WO (1) WO2023004851A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596102A (en) * 1945-07-19 1947-12-29 Rupert Martin Bradbury A new magnesium base alloy
WO2015126054A1 (ko) * 2014-02-21 2015-08-27 서울대학교 산학협력단 마그네슘 합금 판재 및 이의 제조방법
CN107236884A (zh) * 2017-06-07 2017-10-10 四川理工学院 一种高强耐腐蚀变形镁合金及其制备方法
CN109972008A (zh) * 2018-12-03 2019-07-05 辽宁省交通高等专科学校 一种具有硬质骨架状相的耐热镁合金及其制备方法
CN110777288A (zh) * 2019-12-13 2020-02-11 陕西易莱德新材料科技有限公司 一种高强度耐腐蚀的镁合金及其制备方法
CN111519074A (zh) * 2020-05-21 2020-08-11 东北大学 一种含轻稀土元素镧的高强度Mg-Ca-Mn-Al-Zn系变形镁合金及其制备方法
CN112442620A (zh) * 2020-10-29 2021-03-05 航天材料及工艺研究所 一种300MPa级镁锂合金材料及其制备方法
CN112981202A (zh) * 2021-02-20 2021-06-18 维欧(天津)能源技术服务股份有限公司 一种高强度镁合金材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596102A (en) * 1945-07-19 1947-12-29 Rupert Martin Bradbury A new magnesium base alloy
WO2015126054A1 (ko) * 2014-02-21 2015-08-27 서울대학교 산학협력단 마그네슘 합금 판재 및 이의 제조방법
CN107236884A (zh) * 2017-06-07 2017-10-10 四川理工学院 一种高强耐腐蚀变形镁合金及其制备方法
CN109972008A (zh) * 2018-12-03 2019-07-05 辽宁省交通高等专科学校 一种具有硬质骨架状相的耐热镁合金及其制备方法
CN110777288A (zh) * 2019-12-13 2020-02-11 陕西易莱德新材料科技有限公司 一种高强度耐腐蚀的镁合金及其制备方法
CN111519074A (zh) * 2020-05-21 2020-08-11 东北大学 一种含轻稀土元素镧的高强度Mg-Ca-Mn-Al-Zn系变形镁合金及其制备方法
CN112442620A (zh) * 2020-10-29 2021-03-05 航天材料及工艺研究所 一种300MPa级镁锂合金材料及其制备方法
CN112981202A (zh) * 2021-02-20 2021-06-18 维欧(天津)能源技术服务股份有限公司 一种高强度镁合金材料及其制备方法

Also Published As

Publication number Publication date
CN113604717A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN105970016B (zh) 一种传输用高导电耐弯曲铜合金线及其制备方法
CN108118197B (zh) 一种高导热压铸铝合金材料的制备方法
CN101509088B (zh) 高强度、高韧性稀土铝合金材料及其制备方法
CN106834834B (zh) 一种电子产品用高强度铝合金及其制备方法
CN109022960A (zh) 一种导热铝合金及其制备方法和应用
CN107829001A (zh) 一种挤压铸造铝合金材料的制备方法
CN107815575A (zh) 一种镁铝合金铸锭
CN101696479B (zh) 一种铅钙合金的生产方法
CN109518040B (zh) 利用超声处理连续制备Al-Ti-B晶粒细化剂的方法
CN106967911B (zh) 一种可阳极氧化高强度铝合金及其制备方法
CN101591720A (zh) 一种铝锰铁合金的生产方法
CN112342416B (zh) 一种提高铸造Al-Si合金低温力学性能的方法
WO2023004851A1 (zh) 一种高强耐腐蚀镁合金复合材料及其制备方法
CN110387453A (zh) 一种铝铁球及其制备和应用方法
CN108866366A (zh) 一种铝合金材料的制备方法
CN107893181A (zh) 一种镁合金铸锭
CN109182819B (zh) 一种石墨烯增强铝镁合金的熔炼制备方法
CN106756352B (zh) 一种内生Cr2B和MgO双相颗粒增强镁基复合材料的制备方法
CN113502408B (zh) 一种含碲镍的高导铜合金及其制备方法
CN105803252B (zh) 一种电子线缆用高强度高导电铜合金线的制造方法
CN108384972A (zh) 一种联合细化变质剂的制造方法
CN106191485B (zh) Zl205a铝合金及其液态模锻成形过程组织性能均匀性控制方法
US3189444A (en) Metallic composition and method of making
CN112725672A (zh) 一种低膨胀系数的车用镁合金零件及其制备方法
CN107058769A (zh) 一种zl105a铝合金的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE