WO2023002576A1 - 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム - Google Patents

無線通信システム、無線通信制御方法、制御装置、及び制御プログラム Download PDF

Info

Publication number
WO2023002576A1
WO2023002576A1 PCT/JP2021/027182 JP2021027182W WO2023002576A1 WO 2023002576 A1 WO2023002576 A1 WO 2023002576A1 JP 2021027182 W JP2021027182 W JP 2021027182W WO 2023002576 A1 WO2023002576 A1 WO 2023002576A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
network interface
nic
wireless terminal
base station
Prior art date
Application number
PCT/JP2021/027182
Other languages
English (en)
French (fr)
Inventor
笑子 篠原
裕介 淺井
泰司 鷹取
純一 岩谷
知之 山田
芳孝 清水
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023536268A priority Critical patent/JPWO2023002576A1/ja
Priority to PCT/JP2021/027182 priority patent/WO2023002576A1/ja
Priority to US18/580,157 priority patent/US20240334417A1/en
Publication of WO2023002576A1 publication Critical patent/WO2023002576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to technology for controlling a wireless communication system that performs wireless communication by switching multiple channels.
  • a wireless communication system composed of base stations and wireless terminals is known.
  • a typical example of a wireless communication system is a wireless LAN (Local Area Network) for public use.
  • a wireless LAN for public use for example, a use case is assumed in which data is transmitted from a base station to a wireless terminal such as a computer terminal or a smartphone terminal.
  • IoT Internet of Things
  • the use of the unlicensed Sub-1 GHz band has been institutionalized in countries around the world (see Non-Patent Document 1 and Non-Patent Document 2).
  • the 920 MHz band is allocated as the frequency band for electronic tag systems.
  • LPWA (Low Power Wide Area) wireless communication systems such as LoRa (registered trademark) and WiSUN (registered trademark) are known as active electronic tag systems.
  • IEEE 802.11ah which is one of the wireless LAN standards, is being considered.
  • a wireless communication system is a plurality of wireless communication devices forming a wireless communication network; and one or more controllers for controlling a plurality of wireless communication devices.
  • the multiple wireless communication devices include a base station, a first wireless terminal, and a second wireless terminal.
  • Each of the base station and the first wireless terminal includes N (N is an integer equal to or greater than 2) network interface controllers that perform wireless communication on different, non-overlapping channels.
  • the second wireless terminal comprises M (M is an integer less than N) network interface controllers that perform wireless communication on different channels that do not overlap each other.
  • One or more controllers perform a channel switching process to switch usage states of the N network interface controllers in each of the base station and the first wireless terminal.
  • the one or more controllers control the base station and the first wireless terminal to use the same channel's network interface controller for the same period of time. During a period in which none of the M network interface controllers of the second wireless terminal support the same channel, the one or more controllers do not request all downlink frames or downlink frames other than response frames from the base station. to control the second wireless terminal.
  • a second aspect relates to a wireless communication control method for controlling a plurality of wireless communication devices forming a wireless communication network.
  • the multiple wireless communication devices include a base station, a first wireless terminal, and a second wireless terminal.
  • Each of the base station and the first wireless terminal includes N (N is an integer equal to or greater than 2) network interface controllers that perform wireless communication on different, non-overlapping channels.
  • the second wireless terminal comprises M (M is an integer less than N) network interface controllers that perform wireless communication on different channels that do not overlap each other.
  • the wireless communication control method is a channel switching process for switching usage states of the N network interface controllers in each of the base station and the first wireless terminal; a process of controlling the base station and the first wireless terminal to use the same channel network interface controller for the same period; The second wireless terminal is controlled so as not to request all downlink frames or downlink frames other than response frames from the base station during a period in which none of the M network interface controllers of the second wireless terminal support the same channel. Including processing and .
  • a third aspect relates to a control device that controls a plurality of wireless communication devices forming a wireless communication network.
  • the multiple wireless communication devices include a base station, a first wireless terminal, and a second wireless terminal.
  • Each of the base station and the first wireless terminal includes N (N is an integer equal to or greater than 2) network interface controllers that perform wireless communication on different, non-overlapping channels.
  • the second wireless terminal comprises M (M is an integer less than N) network interface controllers that perform wireless communication on different channels that do not overlap each other.
  • the controller comprises a processor.
  • the processor performs channel switching processing to switch usage states of the N network interface controllers in each of the base station and the first wireless terminal.
  • the processor controls the base station and the first wireless terminal to use the same channel's network interface controller for the same period of time.
  • the processor prevents the second wireless terminal from requesting the base station for all downlink frames or downlink frames other than response frames. to control.
  • a fourth aspect relates to a control program executed by a computer.
  • the control program causes the computer to execute the wireless communication control method according to the second aspect.
  • the control program causes a computer to implement the control device according to the third aspect.
  • wireless communication can be performed by switching a plurality of channels without restarting the wireless communication device. Since there is no need to restart the wireless communication device, the time required for channel switching, that is, the time until communication is resumed, is shortened. This reduces packet loss and communication interruption time and increases throughput. Also, deterioration of service quality is prevented. Furthermore, according to the present disclosure, it is possible to realize a mixed environment in which the first wireless terminal and the second wireless terminal having different network interface controller environments coexist.
  • FIG. 1 is a block diagram schematically showing a configuration example of a radio communication system according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a conceptual diagram for explaining an example of channel switching processing (NIC switching processing) in the wireless communication system according to the embodiment of the present disclosure
  • 1 is a block diagram showing a configuration example of a wireless communication device according to an embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a configuration example of a control device according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart for explaining a first example of channel switching processing (NIC switching processing) according to an embodiment of the present disclosure
  • 6 is a flowchart for explaining a first example of channel switching processing (NIC switching processing) according to an embodiment of the present disclosure
  • FIG. 9 is a flowchart for explaining a second example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. FIG. 9 is a flowchart for explaining a second example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. FIG. 11 is a flowchart for explaining a third example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. 11 is a flowchart for explaining a third example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. FIG. 14 is a flowchart for explaining a fourth example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. 14 is a flowchart for explaining a fourth example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. FIG. 15 is a flowchart for explaining a fifth example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. FIG. 15 is a flowchart for explaining a fifth example of channel switching processing (NIC switching processing) according to the embodiment of the present disclosure
  • FIG. 6 is a flow chart showing an example of connection information sharing processing in the wireless communication system according to the embodiment of the present disclosure
  • 4 is a flowchart showing general connection processing
  • 6 is a flowchart illustrating an example of connection processing according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram schematically showing another configuration example of a radio communication system according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a conceptual diagram for explaining an example of channel switching processing (NIC switching processing) and limited communication processing in the wireless communication system according to the embodiment of the present disclosure
  • 6 is a flowchart for explaining limited communication processing according to the embodiment of the present disclosure
  • FIG. 1 is a block diagram schematically showing a configuration example of a radio communication system 1 according to this embodiment.
  • a radio communication system 1 includes a plurality of radio communication devices 10 forming a radio communication network.
  • the multiple wireless communication devices 10 include a base station (master device) and one or more wireless terminals.
  • a base station and one or more wireless terminals configure a wireless communication network and perform wireless communication with each other.
  • the wireless communication system 1 is a wireless LAN system, and the base stations are wireless LAN access points.
  • a cell composed of an access point and one or more wireless terminals is called a BSS (Basic Service Set).
  • BSS Base Service Set
  • the wireless communication system 1 performs wireless communication using, for example, the unlicensed Sub-1 GHz band.
  • the radio communication system 1 performs radio communication using the 920 MHz band.
  • the wireless communication system 1 can perform wireless communication by switching between a plurality of channels (frequency channels). That is, the wireless communication device 10 can perform wireless communication by switching between a plurality of channels.
  • the process of switching the channel used in the wireless communication device 10 is hereinafter referred to as "channel switching process".
  • NIC network interface controller
  • a branch number such as "NIC-i” is used to distinguish a plurality of NICs.
  • each wireless communication device 10 has a plurality of NIC-1 to NIC-N.
  • N is an integer of 2 or more.
  • N is two.
  • a plurality of NIC-1 to NIC-N are set to perform wireless communication on different channels CH-1 to CH-N that do not overlap each other. Therefore, by switching the use states of the plurality of NIC-1 to NIC-N, the channel used for wireless communication can be switched. In other words, the channel used for wireless communication can be switched by switching the NIC to be used among the plurality of NIC-1 to NIC-N.
  • a NIC that is selectively used among the plurality of NIC-1 to NIC-N is hereinafter referred to as a "selected NIC".
  • "Selected NIC" can also be translated as "used NIC", “active NIC", and the like.
  • Channel switching processing can also be said to be “NIC switching processing” for switching the selected NIC among a plurality of NIC-1 to NIC-N.
  • the radio communication system 1 further includes one or a plurality of control devices 100 that control a plurality of radio communication devices 10 (AP, STA).
  • control devices 100 manage and control the channel switching process (NIC switching process).
  • a plurality of control devices 100 are connected to each of the plurality of wireless communication devices 10 .
  • the plurality of control devices 100 control each of the plurality of wireless communication devices 10 in synchronization with each other.
  • a single control device 100 can control the plurality of wireless communication devices 10 as a whole.
  • a control device 100 connected to the AP may control the AP and each STA.
  • the control device 100 does not necessarily have to be connected to the outside of the wireless communication device 10.
  • the functions of the control device 100 may be included within each wireless communication device 10 .
  • the functions of the control device 100 are realized by each wireless communication device 10 executing a control program.
  • the wireless communication device 10 that executes the control program corresponds to the control device 100 .
  • control device 100 one or more control devices 100 and control programs that manage and control channel switching processing are collectively referred to as “control device 100" or "control function”.
  • the control device 100 executes channel switching processing for switching the usage states of the plurality of NIC-1 to NIC-N in each of the plurality of wireless communication devices 10.
  • FIG. the control device 100 (control function) executes channel switching processing for switching the selected NIC in each of the plurality of wireless communication devices 10 among the plurality of NIC-1 to NIC-N.
  • the control device 100 collectively controls the plurality of wireless communication devices 10 so that the plurality of wireless communication devices 10 use the selected NIC of the same channel in the same period. By collectively controlling a plurality of wireless communication devices 10, it is possible to efficiently execute channel switching processing.
  • FIG. 2 is a conceptual diagram for explaining an example of channel switching processing (NIC switching processing) according to the present embodiment.
  • the AP has a NIC-1 that performs wireless communication on a first channel CH-1 and a NIC-2 that performs wireless communication on a second channel CH-2 different from the first channel CH-1.
  • the STA has a NIC-1 that performs wireless communication on the first channel CH-1 and a NIC-2 that performs wireless communication on the second channel CH-2 different from the first channel CH-1.
  • the control device 100 sets the first mode. Specifically, the control device 100 sets the NIC-1 as the selected NIC in each of the AP and the STA. AP and STA configure BSS-1 and perform wireless communication together using NIC-1. In principle, the control device 100 prohibits data transmission using the NIC-2 other than the selected NIC (NIC-1) in each of the AP and the STA. That is, for NIC-2 other than the selected NIC, the first period from time t1s to time t1e is a "transmission prohibited period". During the transmission prohibited period, data reception is possible, but data transmission is prohibited. As a modification, only transmission of a specific radio frame (eg, an acknowledgment frame (ACK) responding to reception of an upstream frame) may be permitted even during the transmission prohibited period.
  • a specific radio frame eg, an acknowledgment frame (ACK) responding to reception of an upstream frame
  • the control device 100 sets the second mode. Specifically, the control device 100 sets the NIC-2 as the selected NIC in each of the AP and the STA. AP and STA constitute BSS-2 and both use NIC-2 to perform wireless communication. In principle, the control device 100 prohibits data transmission using the NIC-1 other than the selected NIC (NIC-2) in each of the AP and the STA. That is, for NIC-1 other than the selected NIC, the second period from time t2s to time t2e is a "transmission prohibited period". During the transmission prohibited period, data reception is possible, but data transmission is prohibited. As a modification, only transmission of a specific radio frame (eg, an acknowledgment frame (ACK) responding to reception of an upstream frame) may be permitted even during the transmission prohibited period.
  • a specific radio frame eg, an acknowledgment frame (ACK) responding to reception of an upstream frame
  • the control device 100 alternately sets the first mode and the second mode, thereby switching the selected NIC (used channel). In other words, the control device 100 switches between the NIC-1 and the NIC-2 so that the data transmission times do not overlap. It can also be said that the control device 100 switches between BSS-1 and BSS-2 so that data transmission times do not overlap.
  • each of the plurality of wireless communication devices 10 includes a plurality of NIC-1 to NIC-N that perform wireless communication on different channels that do not overlap each other.
  • the control device 100 executes channel switching processing for switching the selected NIC in each wireless communication device 10 among a plurality of NIC-1 to NIC-N. Furthermore, the control device 100 controls the plurality of wireless communication devices 10 to use the selected NIC of the same channel during the same period.
  • wireless communication device 10 It is not necessary to restart the wireless communication device 10 to switch the NIC. Therefore, wireless communication can be performed by switching a plurality of channels without restarting the wireless communication device 10 . Since the wireless communication device 10 does not need to be restarted, the time required for channel switching, that is, the time required for resuming communication is shortened. This reduces packet loss and communication interruption time and increases throughput. Also, deterioration of service quality is prevented.
  • FIG. 3 is a block diagram showing a configuration example of the radio communication apparatus 10 (AP, STA) according to the present embodiment.
  • the wireless communication device 10 includes one or more processors 11, one or more storage devices 12, a wired NIC, and a plurality of wireless NICs (NIC-1 to NIC-N).
  • the processor 11 performs various types of information processing.
  • the processor 11 includes a CPU (Central Processing Unit).
  • the storage device 12 stores various information necessary for processing by the processor 11 . Examples of the storage device 12 include volatile memory, nonvolatile memory, HDD (Hard Disk Drive), SSD (Solid State Drive), and the like.
  • the control program 13 is a computer program executed by the processor 11 (computer).
  • the functions of the wireless communication device 10 are realized by the processor 11 executing the control program 13 .
  • the control program 13 is stored in the storage device 12 .
  • the control program 13 may be recorded on a computer-readable recording medium.
  • the control program 13 may be provided to the wireless communication device 10 via a network. Note that the processor 11 that executes the control program 13 corresponds to the control device 100 that controls the wireless communication device 10 .
  • the management information 14 includes at least information used for management and control of the channel switching process described above.
  • the management information 14 includes a network identifier (BSSID), channel, switching timing, etc. for each NIC.
  • the management information 14 may contain the total transmission time for each NIC.
  • Management information 14 is stored in the storage device 12 .
  • the wireless communication device 10 may have an interface 15 for external operation.
  • the interface 15 is connected with an external control device 100 .
  • Interface 15 may include a user interface.
  • the wireless communication device 10 may include a timer 16 for managing the timing of channel switching (NIC switching).
  • NIC switching channel switching
  • FIG. 4 is a block diagram showing a configuration example of the control device 100 according to this embodiment.
  • the control device 100 comprises one or more processors 110 and one or more storage devices 120 .
  • the processor 110 performs various types of information processing.
  • processor 110 includes a CPU.
  • the storage device 120 stores various information necessary for processing by the processor 110 .
  • Examples of the storage device 120 include volatile memory, nonvolatile memory, HDD, SSD, and the like.
  • the control program 130 is a computer program executed by the processor 110 (computer). The functions of the control device 100 are implemented by the processor 110 executing the control program 130 .
  • the control program 130 is stored in the storage device 120 .
  • the control program 130 may be recorded on a computer-readable recording medium.
  • the control program 130 may be provided to the control device 100 via a network.
  • the management information 140 includes information used for managing and controlling the channel switching process described above.
  • the management information 140 includes network identifiers (BSSIDs), channels, switching timings, etc. for each NIC of each wireless communication device 10 .
  • Management information 140 may include the total transmission time for each NIC.
  • Management information 140 is stored in the storage device 120 .
  • control device 100 may have an interface 150 .
  • interface 150 is connected to wireless communication device 10 .
  • Interface 150 may include a user interface.
  • control device 100 may include a timer 160 for managing the timing of channel switching (NIC switching).
  • NIC switching channel switching
  • NIC switching processing Various examples of channel switching processing (NIC switching processing) according to the present embodiment will be described below.
  • the control device 100 controls each wireless communication device 10 (AP, STA) to stop forwarding packets from the upper layer to NICs other than the selected NIC.
  • AP wireless communication device
  • STA wireless communication device
  • FIG. 5 shows a processing flow by the control device 100 (control function).
  • step S ⁇ b>110 the control device 100 (eg, AP-side control device 100 ) recognizes the NIC switching timing based on the management information 140 .
  • the control device 100 transmits a NIC switching instruction (channel switching instruction) to the AP and each STA.
  • the NIC switching instruction instructs at least to stop packet transfer to the "suspended NIC".
  • the pause target NIC is the selected NIC that was used before the NIC switching timing, and enters the transmission prohibited period after the NIC switching timing.
  • step S111 the control device 100 determines whether or not a response to the NIC switching instruction has been received from all the wireless communication devices 10. In step S112, the control device 100 retransmits the NIC switching instruction to the wireless communication device 10 that has not yet received a response.
  • the NIC switching instruction may be issued in advance, taking into account the time required to complete instructions (notifications) to all STAs.
  • the NIC switching timing may be determined in advance, and the NIC switching timing may be notified in advance when the BSS is started up.
  • FIG. 6 shows a processing flow by each wireless communication device 10 (AP, STA).
  • step S ⁇ b>10 the wireless communication device 10 receives a NIC switching instruction from the control device 100 .
  • the wireless communication device 10 stops forwarding packets from the upper layer to the sleep target NIC.
  • the upper layer is a layer higher than the NIC, and examples thereof include a transport layer and an application layer. By controlling the destination from such higher layers, it is possible to stop the packet forwarding to the dormant target NIC.
  • the function of controlling Time Fairness provided in the wireless LAN controller may be applied to limit the packets assigned to the sleep target NIC.
  • step S11 the AP stops transmission of beacon frames from the hibernation target NIC.
  • Beacon frames are normally sent even when there is no packet transfer from higher layers.
  • the transmission of such beacon frames is also stopped during the transmission prohibited period.
  • the set value of the beacon transmission interval is set to a sufficiently large value.
  • step S ⁇ b>12 the wireless communication device 10 returns a response to the control device 100 .
  • step S13 the wireless communication device 10 waits for the set time in order to transmit the packets remaining in the transmission queue of the wireless module of the NIC to be suspended. For example, if the transmission queue has a capacity of 200 packets and the transmission time for one packet is 10 ms, the wait time is set to 2 seconds. If the remaining packet volume is less than the transmission queue capacity, the wait time may be set to a shorter time.
  • the wireless communication device 10 discards the remaining packets in the transmission queue of the NIC to be suspended (step S14).
  • step S15 the wireless communication device 10 starts packet transfer from the upper layer to the selected NIC to be used next. Then, the wireless communication device 10 starts communication using the selected NIC.
  • the STA maintains the state in which it was initially associated with the AP.
  • the STA sets BSSMaxIdlePeriod (the period of time during which the connection relationship is not timed out due to the absence of the BSS) to a time sufficiently longer than the transmission prohibition period. For example, if the NIC switching occurs once every 30 minutes, a long enough time is several hours. As a result, even if there is no communication in the BSS for a long time, the connection relationship with the AP can be maintained. If channel switching is not periodic, BSSMaxIdlePeriod may be set to a long period (eg, several years). IEEE 802.11ah has a USF (Unified Scaling Factor), and it is possible to maintain a long-term (up to several years) connection relationship.
  • USF Unified Scaling Factor
  • the control device 100 controls each wireless communication device 10 (AP, STA) to stop the operation of NICs other than the selected NIC.
  • AP wireless communication device
  • STA wireless communication device
  • FIG. 7 shows a processing flow by the control device 100 (control function).
  • step S ⁇ b>120 the control device 100 (eg, AP-side control device 100 ) recognizes the NIC switching timing based on the management information 140 . At the NIC switching timing, the control device 100 transmits a NIC switching instruction (channel switching instruction) to the AP and each STA.
  • This step S120 is the same as step S110 in the first example.
  • step S ⁇ b>121 the control device 100 determines whether or not a response to the NIC switching instruction has been received from all the wireless communication devices 10 .
  • step S122 the control device 100 retransmits the NIC switching instruction to the wireless communication device 10 that has not yet received a response.
  • FIG. 8 shows a processing flow by each wireless communication device 10 (AP, STA).
  • step S ⁇ b>20 the wireless communication device 10 receives a NIC switching instruction from the control device 100 .
  • the wireless communication device 10 stops forwarding packets from the upper layer to the sleep target NIC.
  • This step S20 is the same as step S10 in the first example.
  • step S21 the wireless communication device 10 returns a response to the control device 100.
  • step S22 the wireless communication device 10 waits for the set time in order to transmit the packets remaining in the transmission queue of the wireless module of the NIC to be suspended.
  • This step S22 is the same as step S13 in the first example.
  • the wireless communication device 10 stops the operation of the NIC to be suspended (step S23).
  • the halt state may be a temporary sleep state or a complete OFF state.
  • step S24 the wireless communication device 10 activates the NIC to be used next.
  • the activated NIC is the selected NIC.
  • step S25 the AP and STA perform connection processing with each other on the new channel. Then, the AP and STA start packet transfer from the upper layer to the selected NIC and start communication using the selected NIC.
  • Third Example A third example of the channel switching process is a modification of the above second example. In the third example, the connection timing to the next channel is specified explicitly. A third example of the channel switching process will be described below with reference to FIGS. 9 and 10. FIG.
  • FIG. 9 shows a processing flow by the control device 100 (control function).
  • step S130 the control device 100 (eg, the control device 100 on the AP side) recognizes the NIC switching timing based on the management information 140. At the NIC switching timing, the control device 100 transmits a NIC switching instruction (channel switching instruction) to the AP and each STA. Furthermore, the control device 100 notifies the AP and each STA of the schedule of connection timing to the next channel.
  • NIC switching instruction channel switching instruction
  • step S ⁇ b>131 the control device 100 determines whether or not a response to the NIC switching instruction has been received from all the wireless communication devices 10 .
  • step S132 the control device 100 retransmits the NIC switching instruction to the wireless communication device 10 that has not yet received a response.
  • FIG. 10 shows a processing flow by each wireless communication device 10 (AP, STA).
  • step S ⁇ b>30 the wireless communication device 10 receives a NIC switching instruction from the control device 100 .
  • the wireless communication device 10 stops forwarding packets from the upper layer to the sleep target NIC.
  • This step S20 is the same as step S10 in the first example.
  • step S ⁇ b>31 the wireless communication device 10 returns a response to the control device 100 .
  • step S32 the wireless communication device 10 waits for the set time in order to transmit packets remaining in the transmission queue of the wireless module of the NIC to be suspended.
  • This step S32 is the same as step S13 in the first example.
  • the wireless communication device 10 stops the operation of the NIC to be suspended (step S33).
  • the halt state may be a temporary sleep state or a complete OFF state.
  • step S34 the wireless communication device 10 activates the NIC to be used next.
  • the activated NIC is the selected NIC.
  • the AP activates the NIC to be used next in stealth mode.
  • stealth mode the AP does not notify its neighbors of its BSSID in beacon frames. By using stealth mode, inter-frame collisions can be mitigated and connections from unscheduled STAs can be avoided.
  • step S35 the STA starts connection processing to the AP at the connection timing notified from the control device 100.
  • TWT Target Wake Time
  • Implicit TWT is a method with a predetermined schedule.
  • Explicit TWT is a method of notifying the schedule each time.
  • Implicit TWT is used. A fourth example of the channel switching process will be described below with reference to FIGS. 11 and 12.
  • FIG. 11 and 12 A fourth example of the channel switching process will be described below with reference to FIGS. 11 and 12.
  • FIG. 11 shows a processing flow by the control device 100 (control function).
  • the control device 100 determines the sleep period for the NIC of each channel based on a predetermined channel switching schedule (step S140). Then, the control device 100 notifies the AP of the determined sleep period of each NIC (step S141).
  • FIG. 12 shows a processing flow by each wireless communication device 10 (AP, STA).
  • step S40 the AP sets the Implicit TWT period based on the notification received from the control device 100 so that the transmission times of each channel (NIC) do not overlap. Also, the AP notifies each STA of the Implicit TWT period.
  • a method of notifying the TWT period (method of negotiation between AP and STA), there are a method of negotiation for each individual terminal and a method of negotiation by broadcast, and either method is used.
  • each STA sets an Implicit TWT period for the NIC of each channel based on the notification received from the AP.
  • step S42 the AP sets to stop transmission of beacon frames from the NIC that enters the sleep period.
  • the set value of the beacon transmission interval is set to a sufficiently large value.
  • step S43 the AP is set to return a rejection response when the STA erroneously sends a transmission request during the sleep period.
  • the available functions are not limited to TWT.
  • Other sleep functions and access restriction functions such as RAW (Restricted Access Window) may be used.
  • the control device 100 sets a transmission prohibition period for NICs other than the selected NIC based on the sleep function or access restriction function of the wireless communication system 1, so that each wireless communication device 10 (AP, STA) to control.
  • FIG. 13 shows a processing flow by the control device 100 (control function).
  • step S ⁇ b>150 the control device 100 (eg, AP-side control device 100 ) recognizes the NIC switching timing based on the management information 140 .
  • the control device 100 transmits a NIC switching instruction (channel switching instruction) to the AP and each STA. Further, the control device 100 determines the sleep period of the NIC to be hibernated and notifies the AP of the sleep period of the NIC to be hibernated.
  • step S ⁇ b>151 the control device 100 determines whether or not a response to the NIC switching instruction has been received from all the wireless communication devices 10 .
  • step S152 the control device 100 retransmits the NIC switching instruction to the wireless communication device 10 that has not yet received a response.
  • FIG. 14 shows a processing flow by each wireless communication device 10 (AP, STA).
  • step S ⁇ b>50 the wireless communication device 10 receives a NIC switching instruction from the control device 100 .
  • the wireless communication device 10 stops forwarding packets from the upper layer to the sleep target NIC.
  • This step S50 is the same as step S10 in the first example.
  • step S51 the wireless communication device 10 returns a response to the control device 100.
  • step S52 the AP sets the Explicit TWT period based on the notification received from the control device 100 so that the transmission times of each channel (NIC) do not overlap. Also, the AP notifies each STA of the Explicit TWT period.
  • a method of notifying the TWT period (method of negotiation between AP and STA), there are a method of negotiation for each individual terminal and a method of negotiation by broadcast, and either method is used.
  • each STA sets an Explicit TWT period for the NIC of each channel based on the notification received from the AP.
  • step S54 the AP sets to stop transmission of beacon frames from the NIC that enters the sleep period.
  • the set value of the beacon transmission interval is set to a sufficiently large value.
  • step S55 the AP is set to return a rejection response when the STA erroneously sends a transmission request during the sleep period.
  • the control device 100 controls the multiple wireless communication devices 10 to execute the "connection information sharing process". More specifically, the control device 100 controls the plurality of wireless communication devices 10 to share connection information regarding each of the plurality of NICs in advance. For example, connection information about each NIC includes switching timing of the NIC, network identifier (eg, BSSID), and assigned channel. Then, the plurality of wireless communication devices 10 execute connection processing for connecting to each other via the selected NIC based on the connection information acquired in advance.
  • connection information about each NIC includes switching timing of the NIC, network identifier (eg, BSSID), and assigned channel.
  • connection information about each NIC is shared before the channel switching process, so the time required for the connection process at the time of channel switching is shortened.
  • the time required for connection processing is shortened when a certain STA connects to an AP for the first time and then performs channel switching processing for the first time in that STA.
  • the time required for channel switching is shortened and service quality is improved.
  • FIG. 15 is a flowchart showing an example of connection information sharing processing.
  • a normal connection procedure is performed (step S60).
  • the NIC of the same channel as the selected NIC currently used by the AP is used as the selected NIC.
  • the AP After completing the connection process, the AP performs inquiry communication with the new STA. During this inquiry communication, the AP acquires information on the NIC environment of the new STA (step S61).
  • the NIC environment contains the number of NICs the STA has.
  • the NIC environment may include whether or not the STA supports channel switching processing according to this embodiment. For example, if the STA can use generic network commands such as embedded Linux (registered trademark), the NIC environment can be obtained by using commands such as ifconfig.
  • the new STA may create its own NIC environment information in response to an inquiry from the AP and return it to the AP.
  • step S62 the AP determines whether or not the number of NICs of the new STA is greater than or equal to the number of NICs of the AP. In other words, the AP determines whether the number of NICs of the new STA is insufficient with respect to the number of NICs of the AP. If the number of NICs of the new STA is greater than or equal to the number of NICs of the AP, that is, if the number of NICs of the new STA is not short of the number of NICs of the AP (step S62; Yes), the process proceeds to step S63. On the other hand, if the number of NICs of the new STA is insufficient for the number of NICs of the AP (step S62; No), the process proceeds to step S64.
  • connection information about each NIC includes switching timing of the NIC, network identifier (eg, BSSID), and assigned channel.
  • step S64 the AP transmits an error message indicating that there is a shortage to the control device 100.
  • steps S62 and S64 may be omitted.
  • FIG. 16 shows general connection processing as a comparative example.
  • the STA scans all channels until it detects a beacon containing the SSID of the connected AP (step S1). Thereafter, the AP and STA exchange Probe Request/Response frames (step S2), Association Request/Response frames (step S3), and Authentication Request/Response frames (step S4). Furthermore, for communication protection, the AP and STA exchange security information according to the Extensible Authentication Protocol (step S5). Thereafter, an IP address is assigned by DHCP (Dynamic Host Configuration Protocol) to enable communication (step S6).
  • DHCP Dynamic Host Configuration Protocol
  • FIG. 17 is a flowchart showing an example of connection processing according to the present embodiment. For example, if the connection information includes channel information of the NIC to be used next, channel scanning is unnecessary and step S1 can be omitted. Also, if the NICs are the same, there is no need to exchange probe information, and step S2 can be omitted. By exchanging security information in advance, step S5 can be omitted.
  • step S3 can be omitted and the connection process can be further accelerated.
  • the lowest rate is used as the transmission rate of the wireless frame.
  • connection information about each NIC is shared before channel switching processing, so the time required for connection processing during channel switching is shortened.
  • the time required for connection processing is shortened when a certain STA connects to an AP for the first time and then performs channel switching processing for the first time in that STA.
  • the time required for channel switching is shortened and service quality is improved.
  • NIC switching process Not all STAs can handle the channel switching process (NIC switching process) according to this embodiment. For example, if the number of NICs of a certain STA is insufficient for the number of NICs of the AP, the NICs cannot always follow the channel switching process.
  • a wireless terminal (first wireless terminal) that can completely handle the channel switching process according to the present embodiment is hereinafter referred to as "STA-X”.
  • a wireless terminal (second wireless terminal) that cannot necessarily handle the channel switching process according to the present embodiment is hereinafter referred to as "STA-Y”. Processing in the mixed environment where the wireless communication system 1 includes both STA-X and STA-Y will be described below.
  • FIG. 18 is a block diagram schematically showing a configuration example of the wireless communication system 1 in a mixed environment. Explanations that overlap with those of FIG. 1 already described will be omitted as appropriate.
  • a radio communication system 1 includes a plurality of radio communication devices 10 forming a radio communication network.
  • a plurality of wireless communication devices 10 includes an AP, one or more STA-X, and one or more STA-Y.
  • the AP and STA-X are equipped with NIC-1 through NIC-N.
  • N is an integer of 2 or more.
  • STA-Y has NIC-1 to NIC-M.
  • M is an integer less than N (M ⁇ N). For example, if N is 2 and M is 1, STA-X is a multi-channel wireless terminal and STA-Y is a single-channel wireless terminal.
  • FIG. 19 is a conceptual diagram for explaining an example of channel switching processing in a mixed environment. Descriptions overlapping those of FIG. 2 already described will be omitted as appropriate.
  • the AP and STA-X are provided with a NIC-1 that performs wireless communication on a first channel CH-1 and a NIC-2 that performs wireless communication on a second channel CH-2 different from the first channel CH-1.
  • STA-Y has NIC-1 for wireless communication on the first channel CH-1, but does not have NIC-2 for wireless communication on the second channel CH-2.
  • the control device 100 sets the first mode. Specifically, the control device 100 sets NIC-1 as the selected NIC in each of AP and STA-X. NIC-2 enters a transmission prohibited period.
  • the control device 100 sets the second mode. Specifically, the control device 100 sets the NIC-2 as the selected NIC in each of the AP and the STA-X. NIC-1 enters a transmission prohibited period.
  • ACK transmission may be allowed if the ACK transmission time is not included in the total transmission time limit.
  • STA-Y is as follows.
  • the control device 100 controls STA-Y to communicate with the AP using NIC-1.
  • the control device 100 sets NIC-1 as the selected NIC for STA-Y.
  • AP also uses NIC-1 as the selected NIC, so AP and STA-Y can communicate with each other on first channel CH-1.
  • the channel used for communication during the second period from time t2s to time t2e is the second channel CH-2. Since STA-Y does not have the NIC-2 of the second channel CH-2, it cannot communicate with the second channel CH-2. On the other hand, if the communication of STA-Y is completely stopped during the second period, the communication efficiency will decrease.
  • control device 100 controls STA-Y to execute "limited communication processing" in the second period. Specifically, the control device 100 controls STA-Y to continue data transmission using NIC-1 even in the second period. However, the second period corresponds to the transmission prohibited period of NIC-1 on the AP side. Therefore, the control device 100 controls STA-Y so as not to request all downlink frames from the AP in the second period. For example, STA-Y transmits upstream frames to the AP with a policy of "NO ACK".
  • control device 100 may control STA-Y so as to request ACK but not request downlink frames other than ACK from AP.
  • control device 100 causes STA-Y to execute the limited communication process. to control.
  • STA-Y does not request all downlink frames or downlink frames other than ACK from the AP.
  • FIG. 20 is a flowchart for explaining the limited communication process. It is assumed that the control device 100 transmits a NIC switching instruction to each STA including STA-Y (see Section 3, FIGS. 5, 7, 9, and 13). STA-Y receives the NIC switching instruction from the control device 100 (step S70). In the case of a switching instruction to a NIC that STA-Y does not support, STA-Y does not switch the NIC to be used. Instead, STA-Y sets not to request all downlink frames or downlink frames other than ACK from the AP (step S71). STA-Y then returns a response to the control device 100 (step S72).
  • Wireless communication system 10... Wireless communication device, 11... Processor, 12... Storage device, 13... Control program, 14... Management information, 15... Interface, 16... Timer, 100... Control device, 110... Processor, 120... Storage device, 130... control program, 140... management information, 150... interface, 160... timer, AP... base station, NIC... network interface controller, STA... wireless terminal, STA-X... first wireless terminal, STA-Y... Second wireless terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムは、無線通信ネットワークを構成する複数の無線通信装置と、複数の無線通信装置を制御する1又は複数の制御装置とを備える。複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含む。基地局と第1無線端末の各々はN個(Nは2以上の整数)のNIC(ネットワークインタフェースコントローラ)を備え、第2無線端末はM個(M<N)のNICを備える。制御装置は、基地局及び第1無線端末においてN個のNICの使用状態を切り替えるチャネル切替処理を実行する。制御装置は、基地局及び第1無線端末が同じチャネルのNICを同じ期間に使用するように制御する。第2無線端末のNICのいずれも当該同じチャネルに対応していない期間において、制御装置は、下りフレーム全般あるいは応答フレーム以外の下りフレームを基地局に要求しないように第2無線端末を制御する。

Description

無線通信システム、無線通信制御方法、制御装置、及び制御プログラム
 本開示は、複数のチャネルを切り替えて無線通信を行う無線通信システムを制御する技術に関する。
 基地局及び無線端末により構成される無線通信システムが知られている。無線通信システムの代表的な例として、公衆用途の無線LAN(Local Area Network)が挙げられる。公衆用途の無線LANでは、例えば、基地局からコンピュータ端末やスマートフォン端末といった無線端末にデータを送信するユースケースが想定される。更に、近年のIoT(Internet of Things)端末の普及に伴い、無線端末側から基地局にデータを送信するユースケースが増加している。
 IoT用の無線通信に関連して、アンライセンスのSub-1GHz帯の利用が世界各国で制度化されている(非特許文献1、非特許文献2参照)。日本では、920MHz帯が電子タグシステムの周波数帯として割り当てられている。例えば、アクティブ電子タグシステムとして、LoRa(登録商標)やWiSUN(登録商標)といったLPWA(Low Power Wide Area)の無線通信システムが知られている。また、無線LAN規格の一つであるIEEE 802.11ahの利用も検討されている。
 920MHz帯では周波数チャネルの数が限られているため、使用するチャネルを変更しながら無線通信を行うケースも考えられる。
 例えば、国内では、920MHz帯利用時の総送信時間に制限が設けられており、1時間あたりの総送信時間は360秒以内である必要がある。無線通信装置はこの総送信時間制限を順守するようにデータ送信を制限するため、スループットも制限される。但し、重複しない2つのチャネルを切り替えて使用する無線通信装置の筐体に対しては、1時間当たり各チャネル毎に360秒、合計で720秒までの総送信時間が許容されている。よって、スループットを向上させるために、無線通信装置の筐体が使用するチャネルを変更しながら無線通信を行うことが考えられる。
「920MHz帯テレメータ用、テレコントロール用及びデータ伝送用無線設備 標準規格」, 一般社団法人 電波産業会, ARIB STD-T108 1.3版, 2019年4月12日 "IEEE Standard for Information technology - Telecommunications and information exchange between systems Local and metropolitan area networks - Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 2: Sub 1 GHz License Exempt Operation," IEEE Computer Society, IEEE Std 802.11ah TM-2016, 7 December 2016.
 複数のチャネルを切り替えて無線通信を行う場合、チャネル切替時に無線通信装置の再起動が必要になることが多い。無線通信装置の再起動が行われる間のパケットロスや通信断は、サービス品質の低下を招く。
 本開示の1つの目的は、無線通信装置の再起動を行うことなく、複数のチャネルを切り替えて無線通信を行うことができる技術を提供することにある。
 本開示の他の目的は、ネットワークインタフェースコントローラ環境が異なる複数種類の無線端末が混在する混在環境を実現することができる技術を提供することにある。
 第1の観点は、無線通信システムに関連する。
 無線通信システムは、
 無線通信ネットワークを構成する複数の無線通信装置と、
 複数の無線通信装置を制御する1又は複数の制御装置と
 を備える。
 複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含む。
 基地局と第1無線端末の各々は、互いに重複しない異なるチャネルで無線通信を行うN個(Nは2以上の整数)のネットワークインタフェースコントローラを備える。
 第2無線端末は、互いに重複しない異なるチャネルで無線通信を行うM個(MはN未満の整数)のネットワークインタフェースコントローラを備える。
 1又は複数の制御装置は、基地局及び第1無線端末の各々においてN個のネットワークインタフェースコントローラの使用状態を切り替えるチャネル切替処理を実行する。
 1又は複数の制御装置は、基地局及び第1無線端末が同じチャネルのネットワークインタフェースコントローラを同じ期間に使用するように制御する。
 第2無線端末のM個のネットワークインタフェースコントローラのいずれも前記同じチャネルに対応していない期間において、1又は複数の制御装置は、下りフレーム全般あるいは応答フレーム以外の下りフレームを基地局に要求しないように第2無線端末を制御する。
 第2の観点は、無線通信ネットワークを構成する複数の無線通信装置を制御する無線通信制御方法に関連する。
 複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含む。
 基地局と第1無線端末の各々は、互いに重複しない異なるチャネルで無線通信を行うN個(Nは2以上の整数)のネットワークインタフェースコントローラを備える。
 第2無線端末は、互いに重複しない異なるチャネルで無線通信を行うM個(MはN未満の整数)のネットワークインタフェースコントローラを備える。
 無線通信制御方法は、
 基地局及び第1無線端末の各々においてN個のネットワークインタフェースコントローラの使用状態を切り替えるチャネル切替処理と、
 基地局及び第1無線端末が同じチャネルのネットワークインタフェースコントローラを同じ期間に使用するように制御する処理と、
 第2無線端末のM個のネットワークインタフェースコントローラのいずれも前記同じチャネルに対応していない期間において、下りフレーム全般あるいは応答フレーム以外の下りフレームを基地局に要求しないように第2無線端末を制御する処理と
 を含む。
 第3の観点は、無線通信ネットワークを構成する複数の無線通信装置を制御する制御装置に関連する。
 複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含む。
 基地局と第1無線端末の各々は、互いに重複しない異なるチャネルで無線通信を行うN個(Nは2以上の整数)のネットワークインタフェースコントローラを備える。
 第2無線端末は、互いに重複しない異なるチャネルで無線通信を行うM個(MはN未満の整数)のネットワークインタフェースコントローラを備える。
 制御装置は、プロセッサを備える。
 プロセッサは、基地局及び第1無線端末の各々においてN個のネットワークインタフェースコントローラの使用状態を切り替えるチャネル切替処理を実行する。
 プロセッサは、基地局及び第1無線端末が同じチャネルのネットワークインタフェースコントローラを同じ期間に使用するように制御する。
 第2無線端末のM個のネットワークインタフェースコントローラのいずれも前記同じチャネルに対応していない期間において、プロセッサは、下りフレーム全般あるいは応答フレーム以外の下りフレームを基地局に要求しないように第2無線端末を制御する。
 第4の観点は、コンピュータによって実行される制御プログラムに関連する。制御プログラムは、上記第2の観点に係る無線通信制御方法をコンピュータに実行させる。あるいは、制御プログラムは、上記第3の観点に係る制御装置をコンピュータに実現させる。
 本開示によれば、無線通信装置の再起動を行うことなく、複数のチャネルを切り替えて無線通信を行うことが可能となる。無線通信装置の再起動が不要であるため、チャネル切替に要する時間、すなわち、通信再開までの時間が短縮される。これにより、パケットロスや通信断時間が削減され、スループットが増加する。また、サービス品質の低下も防止される。
 更に、本開示によれば、ネットワークインタフェースコントローラ環境が異なる第1無線端末と第2無線端末が混在する混在環境を実現することが可能となる。
本開示の実施の形態に係る無線通信システムの構成例を概略的に示すブロック図である。 本開示の実施の形態に係る無線通信システムにおけるチャネル切替処理(NIC切替処理)の一例を説明するための概念図である。 本開示の実施の形態に係る無線通信装置の構成例を示すブロック図である。 本開示の実施の形態に係る制御装置の構成例を示すブロック図である。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第1の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第1の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第2の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第2の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第3の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第3の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第4の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第4の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第5の例を説明するためのフローチャートである。 本開示の実施の形態に係るチャネル切替処理(NIC切替処理)の第5の例を説明するためのフローチャートである。 本開示の実施の形態に係る無線通信システムにおける接続情報共有処理の一例を示すフローチャートである。 一般的な接続処理を示すフローチャートである。 本開示の実施の形態に係る接続処理の一例を示すフローチャートである。 本開示の実施の形態に係る無線通信システムの他の構成例を概略的に示すブロック図である。 本開示の実施の形態に係る無線通信システムにおけるチャネル切替処理(NIC切替処理)及び限定通信処理の一例を説明するための概念図である。 本開示の実施の形態に係る限定通信処理を説明するためのフローチャートである。
 添付図面を参照して、本開示の実施の形態を説明する。
 1.無線通信システムの概要
 図1は、本実施の形態に係る無線通信システム1の構成例を概略的に示すブロック図である。無線通信システム1は、無線通信ネットワークを構成する複数の無線通信装置10を含んでいる。
 例えば、複数の無線通信装置10は、基地局(親機)と1以上の無線端末を含んでいる。基地局と1以上の無線端末は、無線通信ネットワークを構成し、互いに無線通信を行う。例えば、無線通信システム1は無線LANシステムであり、基地局は無線LANのアクセスポイントである。アクセスポイントと1以上の無線端末とで構成されるセルは、BSS(Basic Service Set)と呼ばれる。尚、以下の説明では、簡単のため、基地局を「AP」と呼び、無線端末を「STA」と呼ぶ。
 無線通信システム1は、例えば、アンライセンスのSub-1GHz帯を利用して無線通信を行う。例えば、無線通信システム1は、920MHz帯を利用して無線通信を行う。
 本実施の形態に係る無線通信システム1は、複数のチャネル(周波数チャネル)を切り替えて無線通信を行うことができる。つまり、無線通信装置10は、複数のチャネルを切り替えて無線通信を行うことができる。無線通信装置10において使用するチャネルを切り替える処理を、以下、「チャネル切替処理」と呼ぶ。
 本実施の形態によれば、チャネル切替処理に、複数のネットワークインタフェースコントローラー(ネットワークインタフェースカード)が利用される。以下の説明では、簡単のため、ネットワークインタフェースコントローラを「NIC」と呼ぶ。複数のNICを区別するために、「NIC-i」といった枝番が用いられる。
 図1に示される例では、各無線通信装置10(AP、STA)が複数のNIC-1~NIC-Nを備えている。ここで、Nは、2以上の整数である。例えば、Nは2である。複数のNIC-1~NIC-Nは、互いに重複しない異なるチャネルCH-1~CH-Nで無線通信を行うように設定されている。よって、複数のNIC-1~NIC-Nの使用状態を切り替えることによって、無線通信に使用されるチャネルを切り替えることができる。言い換えれば、複数のNIC-1~NIC-Nのうち使用するNICを切り替えることによって、無線通信に使用されるチャネルを切り替えることができる。複数のNIC-1~NIC-Nのうち選択的に使用されるNICを、以下、「選択NIC」と呼ぶ。「選択NIC」を「使用NIC」、「アクティブNIC」、等と言い換えることもできる。チャネル切替処理は、複数のNIC-1~NIC-Nの間で選択NICを切り替える「NIC切替処理」であると言うこともできる。
 本実施の形態に係る無線通信システム1は、更に、複数の無線通信装置10(AP、STA)を制御する1又は複数の制御装置100を含んでいる。特に、1又は複数の制御装置100は、上記のチャネル切替処理(NIC切替処理)の管理及び制御を行う。
 図1に示される例では、複数の無線通信装置10のそれぞれに複数の制御装置100が接続されている。例えば、複数の制御装置100は、互いに同期して、複数の無線通信装置10のそれぞれを制御する。また、複数の制御装置100が複数の無線通信装置10のそれぞれを制御するだけでなく、単一の制御装置100が複数の無線通信装置10全体を制御することも可能である。例えば、APに接続された制御装置100が、APと各STAを制御してもよい。
 制御装置100は、必ずしも無線通信装置10の外部に接続されている必要はない。制御装置100の機能は、各無線通信装置10内に含まれていてもよい。例えば、各無線通信装置10が制御プログラムを実行することにより、制御装置100の機能が実現される。その場合は、制御プログラムを実行する無線通信装置10が制御装置100に相当する。
 以下の説明では、チャネル切替処理の管理及び制御を行う1又は複数の制御装置100や制御プログラムをまとめて「制御装置100」あるいは「制御機能」と呼ぶ。
 本実施の形態に係る制御装置100(制御機能)は、複数の無線通信装置10の各々において複数のNIC-1~NIC-Nの使用状態を切り替えるチャネル切替処理を実行する。言い換えれば、制御装置100(制御機能)は、複数の無線通信装置10の各々における選択NICを複数のNIC-1~NIC-Nの間で切り替えるチャネル切替処理を実行する。更に、制御装置100は、複数の無線通信装置10が同じチャネルの選択NICを同じ期間に使用するように、複数の無線通信装置10を一括して制御する。複数の無線通信装置10を一括して制御することにより、チャネル切替処理を効率的に実行することが可能である。
 図2は、本実施の形態に係るチャネル切替処理(NIC切替処理)の一例を説明するための概念図である。APは、第1チャネルCH-1で無線通信を行うNIC-1と、第1チャネルCH-1と異なる第2チャネルCH-2で無線通信を行うNIC-2を備えている。STAも同様に、第1チャネルCH-1で無線通信を行うNIC-1と、第1チャネルCH-1と異なる第2チャネルCH-2で無線通信を行うNIC-2を備えている。
 時刻t1s~時刻t1eの第1期間において、制御装置100は、第1モードの設定を行う。具体的には、制御装置100は、APとSTAの各々においてNIC-1を選択NICとして設定する。APとSTAは、BSS-1を構成し、共にNIC-1を用いて無線通信を行う。また、制御装置100は、APとSTAの各々において、選択NIC(NIC-1)以外のNIC-2を使用したデータ送信を原則的に禁止する。つまり、選択NIC以外のNIC-2にとって、時刻t1s~時刻t1eの第1期間は「送信禁止期間」となる。送信禁止期間では、データ受信は可能であるが、データ送信が禁止される。変形例として、送信禁止期間においても、特定の無線フレーム(例:上りフレームの受信に応答する応答フレーム(ACK))の送信だけは許容されてもよい。
 時刻t2s~時刻t2eの第2期間において、制御装置100は、第2モードの設定を行う。具体的には、制御装置100は、APとSTAの各々においてNIC-2を選択NICとして設定する。APとSTAは、BSS-2を構成し、共にNIC-2を用いて無線通信を行う。また、制御装置100は、APとSTAの各々において、選択NIC(NIC-2)以外のNIC-1を使用したデータ送信を原則的に禁止する。つまり、選択NIC以外のNIC-1にとって、時刻t2s~時刻t2eの第2期間は「送信禁止期間」となる。送信禁止期間では、データ受信は可能であるが、データ送信が禁止される。変形例として、送信禁止期間においても、特定の無線フレーム(例:上りフレームの受信に応答する応答フレーム(ACK))の送信だけは許容されてもよい。
 尚、第1モードと第2モードとの間の期間(時刻t1e~時刻t2s)では、モジュールスイッチイング等が行われる。
 制御装置100は、第1モードの設定と第2モードの設定を交互に行い、それにより選択NIC(使用チャネル)を切り替える。言い換えれば、制御装置100は、データ送信時間が重複しないようにNIC-1とNIC-2を切り替える。制御装置100は、データ送信時間が重複しないようにBSS-1とBSS-2を切り替えているということもできる。
 以上に説明されたように、本実施の形態によれば、複数の無線通信装置10の各々は、互いに重複しない異なるチャネルで無線通信を行う複数のNIC-1~NIC-Nを備える。制御装置100は、各無線通信装置10における選択NICを複数のNIC-1~NIC-Nの間で切り替えるチャネル切替処理を実行する。更に、制御装置100は、複数の無線通信装置10が同じチャネルの選択NICを同じ期間に使用するように制御する。
 NICの切り替えに、無線通信装置10の再起動は不要である。従って、無線通信装置10の再起動を行うことなく、複数のチャネルを切り替えて無線通信を行うことが可能となる。無線通信装置10の再起動が不要であるため、チャネル切替に要する時間、すなわち、通信再開までの時間が短縮される。これにより、パケットロスや通信断時間が削減され、スループットが増加する。また、サービス品質の低下も防止される。
 尚、上位レイヤ間の通信としては、例えば、マルチパスTCPのような複数通信路の仮想化技術を複数NICに適用することが考えられる。トランスポート層においてパケットロスの補完が可能であり、サービス品質を維持することが可能である。
 2.構成例
 図3は、本実施の形態に係る無線通信装置10(AP、STA)の構成例を示すブロック図である。無線通信装置10は、1又は複数のプロセッサ11、1又は複数の記憶装置12、有線NIC、及び複数の無線NIC(NIC-1~NIC-N)を備えている。
 プロセッサ11は、各種情報処理を行う。例えば、プロセッサ11は、CPU(Central Processing Unit)を含んでいる。記憶装置12は、プロセッサ11による処理に必要な各種情報を格納する。記憶装置12としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。
 制御プログラム13は、プロセッサ11(コンピュータ)によって実行されるコンピュータプログラムである。プロセッサ11が制御プログラム13を実行することにより、無線通信装置10の機能が実現される。制御プログラム13は、記憶装置12に格納される。制御プログラム13は、コンピュータ読み取り可能な記録媒体に記録されてもよい。制御プログラム13は、ネットワーク経由で無線通信装置10に提供されてもよい。尚、制御プログラム13を実行するプロセッサ11は、無線通信装置10を制御する制御装置100に相当する。
 管理情報14は、少なくとも、上述のチャネル切替処理の管理及び制御に用いられる情報を含む。例えば、管理情報14は、各NICに関する、ネットワーク識別子(BSSID)、チャネル、切替タイミング、等を含む。管理情報14は、NIC毎の総送信時間を含んでいてもよい。管理情報14は、記憶装置12に格納される。
 更に、無線通信装置10は、外部から操作するためのインタフェース15を備えていてもよい。例えば、インタフェース15は、外部の制御装置100と接続される。インタフェース15は、ユーザインタフェースを含んでいてもよい。
 更に、無線通信装置10は、チャネル切替(NIC切替)のタイミングを管理するためのタイマ16を備えていてもよい。
 図4は、本実施の形態に係る制御装置100の構成例を示すブロック図である。制御装置100は、1又は複数のプロセッサ110及び1又は複数の記憶装置120を備えている。
 プロセッサ110は、各種情報処理を行う。例えば、プロセッサ110は、CPUを含んでいる。記憶装置120は、プロセッサ110による処理に必要な各種情報を格納する。記憶装置120としては、揮発性メモリ、不揮発性メモリ、HDD、SSD、等が例示される。
 制御プログラム130は、プロセッサ110(コンピュータ)によって実行されるコンピュータプログラムである。プロセッサ110が制御プログラム130を実行することにより、制御装置100の機能が実現される。制御プログラム130は、記憶装置120に格納される。制御プログラム130は、コンピュータ読み取り可能な記録媒体に記録されてもよい。制御プログラム130は、ネットワーク経由で制御装置100に提供されてもよい。
 管理情報140は、上述のチャネル切替処理の管理及び制御に用いられる情報を含む。例えば、管理情報140は、各無線通信装置10の各NICに関する、ネットワーク識別子(BSSID)、チャネル、切替タイミング、等を含む。管理情報140は、NIC毎の総送信時間を含んでいてもよい。管理情報140は、記憶装置120に格納される。
 更に、制御装置100は、インタフェース150を備えていてもよい。例えば、インタフェース150は、無線通信装置10と接続される。インタフェース150は、ユーザインタフェースを含んでいてもよい。
 更に、制御装置100は、チャネル切替(NIC切替)のタイミングを管理するためのタイマ160を備えていてもよい。
 3.チャネル切替処理の様々な例
 以下、本実施の形態に係るチャネル切替処理(NIC切替処理)の様々な例について説明する。
 3-1.第1の例
 チャネル切替処理の第1の例では、制御装置100は、上位レイヤから選択NIC以外のNICへのパケット転送を停止するよう各無線通信装置10(AP,STA)を制御する。以下、図5及び図6を参照して、チャネル切替処理の第1の例を説明する。
 図5は、制御装置100(制御機能)による処理フローを示している。
 ステップS110において、制御装置100(例:AP側の制御装置100)は、管理情報140に基づいてNIC切替タイミングを認識する。NIC切替タイミングにおいて、制御装置100は、NIC切替指示(チャネル切替指示)をAP及び各STAに送信する。NIC切替指示は、少なくとも、「休止対象NIC」へのパケット転送を停止するよう指示する。ここで、休止対象NICは、NIC切替タイミングの前に使用されていた選択NICであり、NIC切替タイミング後には送信禁止期間に入る。
 ステップS111において、制御装置100は、NIC切替指示に対する応答を全ての無線通信装置10から受信したか否かを判定する。ステップS112において、制御装置100は、まだ応答を受信していない無線通信装置10に対してNIC切替指示を再度送信する。
 尚、STAの台数が非常に多い場合は、全てのSTAへの指示(通知)完了までの時間を考慮して、前もってNIC切替指示を発出してもよい。あるいは、STAの台数が非常に多い場合には、NIC切替タイミングを予め決めておき、BSSの立ち上げ時にNIC切替タイミングを予め通知してもよい。
 図6は、各無線通信装置10(AP,STA)による処理フローを示している。
 ステップS10において、無線通信装置10は、制御装置100からNIC切替指示を受信する。NIC切替指示に応答して、無線通信装置10は、上位レイヤから休止対象NICへのパケット転送を停止する。ここで、上位レイヤは、NICよりも上位のレイヤであり、トランスポート層やアプリケーション層が例示される。そのような上位レイヤからの宛先を制御することによって、休止対象NICへのパケット転送を停止することができる。他の例として、無線LANコントローラに備わっているTime Fairnessを制御する機能を応用して、休止対象NICに割り当てられるパケットを制限してもよい。
 ステップS11において、APは、休止対象NICからのビーコンフレームの送信を停止する。通常、ビーコンフレームは、上位レイヤからのパケット転送が無い場合にも送信される。本例では、送信禁止期間の間は、そのようなビーコンフレームの送信も停止させる。例えば、ビーコン送信間隔の設定値が十分に大きな値に設定される。
 ステップS12において、無線通信装置10は、制御装置100に応答を返す。
 ステップS13において、無線通信装置10は、休止対象NICの無線モジュールの送信キュー内に残っているパケットを送信するために、設定時間だけ待機する。例えば、送信キューが200パケット分の容量を有し、1パケットの送信時間が10msである場合、待機時間は2秒に設定される。残存パケット量が送信キュー容量未満である場合、待機時間はより短い時間に設定されてもよい。
 但し、一部のSTAのパケット通信のために全てのSTAが待機すると、全体の通信効率が低下する。また、送信キュー内の状況をリアルタイムで正確に把握することは困難である。よって、設定時間経過後、無線通信装置10は、休止対象NICの送信キュー内の残存パケットを破棄する(ステップS14)。
 ステップS15において、無線通信装置10は、上位レイヤから次に使用される選択NICへのパケット転送を開始する。そして、無線通信装置10は、選択NICを用いて通信を開始する。
 尚、STAは、最初にAPにassociationした状態を維持する。そのために、STAは、BSSMaxIdlePeriod(BSS不在により接続関係をタイムアウトしない時間)を、送信禁止期間よりも十分長い時間に設定する。例えば、30分に一回NIC切り替えが行われる場合、十分長い時間は数時間である。これにより、BSSでの通信が長時間なくても、APとの接続関係を維持することができる。定期的なチャネル切替ではない場合には、BSSMaxIdlePeriodを長期(例えば数年)に設定してもよい。IEEE 802.11ahではUSF(Unified Scaling Factor)が存在し、長期(最大数年)の接続関係維持が可能である。
 3-2.第2の例
 チャネル切替処理の第2の例では、制御装置100は、選択NIC以外のNICの動作を停止させるよう各無線通信装置10(AP,STA)を制御する。以下、図7及び図8を参照して、チャネル切替処理の第2の例を説明する。
 図7は、制御装置100(制御機能)による処理フローを示している。
 ステップS120において、制御装置100(例:AP側の制御装置100)は、管理情報140に基づいてNIC切替タイミングを認識する。NIC切替タイミングにおいて、制御装置100は、NIC切替指示(チャネル切替指示)をAP及び各STAに送信する。このステップS120は、第1の例におけるステップS110と同様である。
 ステップS121において、制御装置100は、NIC切替指示に対する応答を全ての無線通信装置10から受信したか否かを判定する。ステップS122において、制御装置100は、まだ応答を受信していない無線通信装置10に対してNIC切替指示を再度送信する。
 図8は、各無線通信装置10(AP,STA)による処理フローを示している。
 ステップS20において、無線通信装置10は、制御装置100からNIC切替指示を受信する。NIC切替指示に応答して、無線通信装置10は、上位レイヤから休止対象NICへのパケット転送を停止する。このステップS20は、第1の例におけるステップS10と同様である。
 ステップS21において、無線通信装置10は、制御装置100に応答を返す。
 ステップS22において、無線通信装置10は、休止対象NICの無線モジュールの送信キュー内に残っているパケットを送信するために、設定時間だけ待機する。このステップS22は、第1の例におけるステップS13と同様である。
 設定時間経過後、無線通信装置10は、休止対象NICの動作を停止させる(ステップS23)。停止状態は、一時的なスリープ状態でもよいし、完全なOFF状態でもよい。
 ステップS24において、無線通信装置10は、次に使用される予定のNICを起動する。起動されたNICが選択NICである。
 ステップS25において、AP及びSTAは、新しいチャネルで互いに接続処理を行う。そして、AP及びSTAは、上位レイヤから選択NICへのパケット転送を開始し、選択NICを用いて通信を開始する。
 3-3.第3の例
 チャネル切替処理の第3の例は、上記の第2の例の変形例である。第3の例では、次のチャネルへの接続タイミングが明示的に指定される。以下、図9及び図10を参照して、チャネル切替処理の第3の例を説明する。
 図9は、制御装置100(制御機能)による処理フローを示している。
 ステップS130において、制御装置100(例:AP側の制御装置100)は、管理情報140に基づいてNIC切替タイミングを認識する。NIC切替タイミングにおいて、制御装置100は、NIC切替指示(チャネル切替指示)をAP及び各STAに送信する。更に、制御装置100は、次のチャネルへの接続タイミングのスケジュールをAP及び各STAに通知する。
 ステップS131において、制御装置100は、NIC切替指示に対する応答を全ての無線通信装置10から受信したか否かを判定する。ステップS132において、制御装置100は、まだ応答を受信していない無線通信装置10に対してNIC切替指示を再度送信する。
 図10は、各無線通信装置10(AP,STA)による処理フローを示している。
 ステップS30において、無線通信装置10は、制御装置100からNIC切替指示を受信する。NIC切替指示に応答して、無線通信装置10は、上位レイヤから休止対象NICへのパケット転送を停止する。このステップS20は、第1の例におけるステップS10と同様である。
 ステップS31において、無線通信装置10は、制御装置100に応答を返す。
 ステップS32において、無線通信装置10は、休止対象NICの無線モジュールの送信キュー内に残っているパケットを送信するために、設定時間だけ待機する。このステップS32は、第1の例におけるステップS13と同様である。
 設定時間経過後、無線通信装置10は、休止対象NICの動作を停止させる(ステップS33)。停止状態は、一時的なスリープ状態でもよいし、完全なOFF状態でもよい。
 ステップS34において、無線通信装置10は、次に使用される予定のNICを起動する。起動されたNICが選択NICである。このとき、APは、次に使用される予定のNICをステルスモードで起動する。ステルスモードでは、APは自身のBSSIDをビーコンフレームで周辺に通知しない。ステルスモードを利用することによって、フレーム間衝突を軽減し、また、予定にないSTAからの接続を回避することができる。
 ステップS35において、STAは、制御装置100から通知された接続タイミングで、APに対する接続処理を開始する。
 全てのスケジュールされた接続処理が完了すると、APはステルスモードを解除する。そして、AP及びSTAは、上位レイヤから選択NICへのパケット転送を開始し、選択NICを用いて通信を開始する(ステップS36)。
 3-4.第4の例
 チャネル切替処理の第4の例では、TWT(Target Wake Time)が利用される。TWTは、APとSTAとの間でスリープ期間をあらかじめ交渉しておき、そのスリープ期間では通信を停止する技術であり、それにより省電力化やフレーム衝突回避が期待できる。制御装置100は、TWTに基づいて、選択NIC以外のNICに対してスリープ期間(送信禁止期間)を設定するよう各無線通信装置10(AP,STA)を制御することができる。
 TWTには、Implicit TWTとExplicit TWTの二種類がある。Implicit TWTは、スケジュールがあらかじめ決まっている方式である。一方、Explict TWTは、都度スケジュールを通知する方式である。第4の例では、Implicit TWTが利用される。以下、図11及び図12を参照して、チャネル切替処理の第4の例を説明する。
 図11は、制御装置100(制御機能)による処理フローを示している。
 AP起動時、制御装置100(例:AP側の制御装置100)は、予め決められたチャネル切替スケジュールに基づいて、各チャネルのNICに対するスリープ期間を決定する(ステップS140)。そして、制御装置100は、決定した各NICのスリープ期間をAPに通知する(ステップS141)。
 図12は、各無線通信装置10(AP,STA)による処理フローを示している。
 ステップS40において、APは、制御装置100から受信した通知に基づいて、各チャネル(NIC)の送信時間が重複しないようにImplicit TWT期間を設定する。また、APは、Implicit TWT期間を各STAに通知する。TWT期間の通知方法(AP-STA間の交渉方法)としては、個別の端末毎の交渉とブロードキャストで交渉する方法があり、いずれか対応可能な方法が用いられる。
 ステップS41において、各STAは、APから受信した通知に基づいて、各チャネルのNICに対してImplicit TWT期間を設定する。
 ステップS42において、APは、スリープ期間に入るNICからのビーコンフレームの送信を停止するよう設定する。例えば、ビーコン送信間隔の設定値が十分に大きな値に設定される。
 ステップS43において、APは、スリープ期間にSTAが誤って送信要求を送ってきた場合に拒否応答を返すよう設定する。
 尚、利用可能な機能はTWTに限られない。他のスリープ機能や、RAW(Restricted Access Window)等のアクセス制限機能が利用されてもよい。一般化すれば、制御装置100は、無線通信システム1のスリープ機能あるいはアクセス制限機能に基づいて、選択NIC以外のNICに対して送信禁止期間を設定するよう各無線通信装置10(AP,STA)を制御する。
 3-5.第5の例
 チャネル切替処理の第5の例では、Explicit TWTが利用される。以下、図13及び図14を参照して、チャネル切替処理の第5の例について説明する。
 図13は、制御装置100(制御機能)による処理フローを示している。
 ステップS150において、制御装置100(例:AP側の制御装置100)は、管理情報140に基づいてNIC切替タイミングを認識する。NIC切替タイミングにおいて、制御装置100は、NIC切替指示(チャネル切替指示)をAP及び各STAに送信する。更に、制御装置100は、休止対象NICのスリープ期間を決定し、休止対象NICのスリープ期間をAPに通知する。
 ステップS151において、制御装置100は、NIC切替指示に対する応答を全ての無線通信装置10から受信したか否かを判定する。ステップS152において、制御装置100は、まだ応答を受信していない無線通信装置10に対してNIC切替指示を再度送信する。
 図14は、各無線通信装置10(AP,STA)による処理フローを示している。
 ステップS50において、無線通信装置10は、制御装置100からNIC切替指示を受信する。NIC切替指示に応答して、無線通信装置10は、上位レイヤから休止対象NICへのパケット転送を停止する。このステップS50は、第1の例におけるステップS10と同様である。
 ステップS51において、無線通信装置10は、制御装置100に応答を返す。
 ステップS52において、APは、制御装置100から受信した通知に基づいて、各チャネル(NIC)の送信時間が重複しないようにExplicit TWT期間を設定する。また、APは、Explicit TWT期間を各STAに通知する。TWT期間の通知方法(AP-STA間の交渉方法)としては、個別の端末毎の交渉とブロードキャストで交渉する方法があり、いずれか対応可能な方法が用いられる。
 ステップS53において、各STAは、APから受信した通知に基づいて、各チャネルのNICに対してExplicit TWT期間を設定する。
 ステップS54において、APは、スリープ期間に入るNICからのビーコンフレームの送信を停止するよう設定する。例えば、ビーコン送信間隔の設定値が十分に大きな値に設定される。
 ステップS55において、APは、スリープ期間にSTAが誤って送信要求を送ってきた場合に拒否応答を返すよう設定する。
 4.チャネル切替処理に伴う接続処理時間の短縮
 以下、チャネル切替処理に伴う接続処理時間を短縮するための方法を説明する。
 チャネル切替処理の前に、制御装置100は、「接続情報共有処理」を実行するよう複数の無線通信装置10を制御する。より詳細には、制御装置100は、複数のNICの各々に関する接続情報を予め共有するよう複数の無線通信装置10を制御する。例えば、各NICに関する接続情報は、当該NICの切替タイミング、ネットワーク識別子(例:BSSID)、割り当てられているチャネルを含む。そして、複数の無線通信装置10は、予め取得した接続情報に基づいて、選択NICを介して互いに接続する接続処理を実行する。
 このように、各NICに関する接続情報がチャネル切替処理の前に共有されるため、チャネル切替時の接続処理に要する時間が短縮される。特に、あるSTAがAPに初めて接続した後、そのSTAにおいて初めてチャネル切替処理が行われる際の接続処理に要する時間が短縮される。その結果、チャネル切替に要する時間が短縮され、サービス品質が向上する。
 図15は、接続情報共有処理の一例を示すフローチャートである。
 APに初めて接続する新STAについて考える。APに初めて接続する新STAについては、まず、通常の接続手順が実施される(ステップS60)。このとき、APが現在使用している選択NICと同じチャネルのNICが選択NICとして使用される。
 接続処理の完了後、APは、新STAに問い合わせ通信を行う。この問い合わせ通信時、APは、新STAのNIC環境の情報を取得する(ステップS61)。NIC環境は、STAが備えているNICの数を含んでいる。NIC環境は、STAが本実施の形態に係るチャネル切替処理に対応しているか否かを含んでいてもよい。例えば、STAが組み込みLinux(登録商標)のような汎用ネットワークコマンドを使用可能な場合、ifconfigなどのコマンドを用いることによってNIC環境を取得することができる。他の例として、新STAが、APからの問い合わせに応答して、自身のNIC環境の情報を作成し、APに返してもよい。
 続くステップS62において、APは、新STAのNIC数がAPのNIC数以上か否かを判定する。言い換えれば、APは、新STAのNIC数がAPのNIC数に対して不足しているか否かを判定する。新STAのNIC数がAPのNIC数以上である場合、つまり、新STAのNIC数がAPのNIC数に対して不足していない場合(ステップS62;Yes)、処理は、ステップS63に進む。一方、新STAのNIC数がAPのNIC数に対して不足している場合(ステップS62;No)、処理は、ステップS64に進む。
 ステップS63において、APは、APが備える各NICに関する接続情報を新STAに通知する。例えば、各NICに関する接続情報は、当該NICの切替タイミング、ネットワーク識別子(例:BSSID)、割り当てられているチャネルを含む。
 ステップS64において、APは、不足がある旨を示すエラーメッセージを制御装置100に送信する。
 尚、ステップS62及びステップS64は省略されてもよい。
 図16は、比較例として、一般的な接続処理を示している。まず、STAは、接続先APのSSIDを含むビーコンを検出するまで、全てのチャネルをスキャンする(ステップS1)。その後、APとSTAは、Probe Request/Responseフレームを交換し(ステップS2)、Association Request/Responseフレームを交換し(ステップS3)、Authentication Request/Responseフレームを交換する(ステップS4)。更に、通信保護のため、APとSTAは、Extensible Authentication Protocolによりセキュリティ情報を交換する(ステップS5)。その後、DHCP(Dynamic Host Configuration Protocol)によりIPアドレスを割り当てて、通信可能な状態にする(ステップS6)。
 図17は、本実施の形態に係る接続処理の一例を示すフローチャートである。例えば、接続情報が次に使用されるNICのチャネル情報を含む場合、チャネルのスキャンは不要であり、ステップS1を省略することができる。また、NICが同じ場合、Probe情報の交換は不要であり、ステップS2を省略することができる。セキュリティ情報を予め交換することにより、ステップS5を省略することもできる。
 Association Request/Responseフレームの内容を予め交換することによって、ステップS3を省略し、接続処理を更に早めることもできる。
 また、図16で示された比較例の場合、接続処理の段階ではまだ伝送レートの調整ができないため、無線フレームの伝送速度としては最も低いレートが使用される。一方、本実施の形態によれば、最適なレートを予め通知することによって、接続処理における情報伝送時間を短縮することもできる。
 以上に説明されたように、本実施の形態によれば、各NICに関する接続情報がチャネル切替処理の前に共有されるため、チャネル切替時の接続処理に要する時間が短縮される。特に、あるSTAがAPに初めて接続した後、そのSTAにおいて初めてチャネル切替処理が行われる際の接続処理に要する時間が短縮される。その結果、チャネル切替に要する時間が短縮され、サービス品質が向上する。
 5.混在環境への対処
 全てのSTAが本実施の形態に係るチャネル切替処理(NIC切替処理)に対応できるとは限らない。例えば、あるSTAのNIC数がAPのNIC数に対して不足している場合、そのNICはチャネル切替処理に常に追従することができるとは限らない。
 本実施の形態に係るチャネル切替処理に完全に対応することができる無線端末(第1無線端末)を、以下、「STA-X」と呼ぶ。一方、本実施の形態に係るチャネル切替処理に必ずしも対応することができない無線端末(第2無線端末)を、以下、「STA-Y」と呼ぶ。以下、無線通信システム1がSTA-XとSTA-Yの両方を含む混在環境の場合の処理について説明する。
 図18は、混在環境の場合の無線通信システム1の構成例を概略的に示すブロック図である。既出の図1と重複する説明は適宜省略する。無線通信システム1は、無線通信ネットワークを構成する複数の無線通信装置10を含んでいる。複数の無線通信装置10は、AP、1以上のSTA-X、及び1以上のSTA-Yを含んでいる。AP及びSTA-Xは、NIC-1~NIC-Nを備えている。ここで、Nは、2以上の整数である。一方、STA-Yは、NIC-1~NIC-Mを備えている。ここで、Mは、N未満の整数である(M<N)。例えば、Nが2であり、Mが1である場合、STA-Xは複数チャネル無線端末であり、STA-Yは単一チャネル無線端末である。
 図19は、混在環境の場合のチャネル切替処理の一例を説明するための概念図である。既出の図2と重複する説明は適宜省略する。APとSTA-Xは、第1チャネルCH-1で無線通信を行うNIC-1と、第1チャネルCH-1と異なる第2チャネルCH-2で無線通信を行うNIC-2を備えている。一方、STA-Yは、第1チャネルCH-1で無線通信を行うNIC-1は備えているが、第2チャネルCH-2で無線通信を行うNIC-2を備えていない。
 APとSTA-Xに対しては、上述のチャネル切替処理(セクション1、セクション3参照)が実施される。
 時刻t1s~時刻t1eの第1期間において、制御装置100は、第1モードの設定を行う。具体的には、制御装置100は、APとSTA-Xの各々において、NIC-1を選択NICとして設定する。NIC-2は、送信禁止期間に入る。
 時刻t2s~時刻t2eの第2期間において、制御装置100は、第2モードの設定を行う。具体的には、制御装置100は、APとSTA-Xの各々において、NIC-2を選択NICとして設定する。NIC-1は、送信禁止期間に入る。
 尚、送信禁止期間では、データ受信は可能であるが、データ送信が禁止される。変形例として、送信禁止期間においても、特定の無線フレーム(例:上りフレームの受信に応答する応答フレーム(ACK))の送信だけは許容されてもよい。例えば、総送信時間の制限の中にACK送信時間が含まれない場合、ACKの送信が許容されてもよい。
 一方、STA-Yについては次の通りである。
 制御装置100は、STA-YがNIC-1を使用してAPと通信するよう制御する。言い換えれば、制御装置100は、NIC-1をSTA-Yの選択NICとして設定する。時刻t1s~時刻t1eの第1期間では、APもNIC-1を選択NICとして使用しているため、APとSTA-Yは第1チャネルCH-1で互いに通信を行うことができる。
 しかしながら、時刻t2s~時刻t2eの第2期間において通信に使用されるチャネルは、第2チャネルCH-2である。STA-Yは、第2チャネルCH-2のNIC-2を備えていないため、第2チャネルCH-2で通信を行うことができない。かといって、第2期間においてSTA-Yの通信を完全に停止させると、通信効率が低下する。
 そこで、本実施の形態によれば、制御装置100は、第2期間において「限定通信処理」を実行するようSTA-Yを制御する。具体的には、制御装置100は、第2期間においてもNIC-1を使用してデータ送信を継続するようSTA-Yを制御する。但し、第2期間は、AP側のNIC-1の送信禁止期間に相当する。よって、制御装置100は、第2期間においては下りフレーム全般をAPに要求しないようにSTA-Yを制御する。例えば、STA-Yは、“NO ACK”のポリシーで上りフレームをAPに送信する。
 あるいは、送信禁止期間においてもACKの送信が許容されている場合、制御装置100は、ACKは要求するがACK以外の下りフレームをAPに要求しないようにSTA-Yを制御してもよい。
 一般化すれば、STA-Yが備えるNIC-1~NIC-MのいずれもAPにおける選択NICと同じチャネルに対応していない期間において、制御装置100は、限定通信処理を実行するようSTA-Yを制御する。限定通信処理において、STA-Yは、下りフレーム全般あるいはACK以外の下りフレームをAPに要求しない。
 図20は、限定通信処理を説明するためのフローチャートである。制御装置100は、NIC切替指示をSTA-Yを含む各STAに送信するとする(セクション3、図5、図7、図9、図13参照)。STA-Yは、制御装置100からNIC切替指示を受信する(ステップS70)。STA-Yが対応していないNICへの切替指示の場合、STA-Yは、使用するNICを切り替えない。その代わり、STA-Yは、下りフレーム全般あるいはACK以外の下りフレームをAPに要求しないよう設定する(ステップS71)。そして、STA-Yは、制御装置100に応答を返す(ステップS72)。
 以上に説明されたように、本実施の形態によれば、STA-XとSTA-Yが混在する混在環境を実現することが可能となる。また、AP側のNICが送信禁止期間に入っていても、STA-Yに限定通信処理を実行させることによって、STA-Yの通信を継続し、通信効率を向上させることが可能となる。
 1…無線通信システム, 10…無線通信装置, 11…プロセッサ, 12…記憶装置, 13…制御プログラム, 14…管理情報, 15…インタフェース, 16…タイマ, 100…制御装置, 110…プロセッサ, 120…記憶装置, 130…制御プログラム, 140…管理情報, 150…インタフェース, 160…タイマ, AP…基地局, NIC…ネットワークインタフェースコントローラ, STA…無線端末, STA-X…第1無線端末, STA-Y…第2無線端末

Claims (8)

  1.  無線通信ネットワークを構成する複数の無線通信装置と、
     前記複数の無線通信装置を制御する1又は複数の制御装置と
     を備え、
     前記複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含み、
     前記基地局と前記第1無線端末の各々は、互いに重複しない異なるチャネルで無線通信を行うN個(Nは2以上の整数)のネットワークインタフェースコントローラを備え、
     前記第2無線端末は、互いに重複しない異なるチャネルで無線通信を行うM個(MはN未満の整数)のネットワークインタフェースコントローラを備え、
     前記1又は複数の制御装置は、前記基地局及び前記第1無線端末の各々において前記N個のネットワークインタフェースコントローラの使用状態を切り替えるチャネル切替処理を実行し、
     前記1又は複数の制御装置は、前記基地局及び前記第1無線端末が同じチャネルのネットワークインタフェースコントローラを同じ期間に使用するように制御し、
     前記第2無線端末の前記M個のネットワークインタフェースコントローラのいずれも前記同じチャネルに対応していない期間において、前記1又は複数の制御装置は、下りフレーム全般あるいは応答フレーム以外の下りフレームを前記基地局に要求しないように前記第2無線端末を制御する
     無線通信システム。
  2.  請求項1に記載の無線通信システムであって、
     前記N個のネットワークインタフェースコントローラは、第1チャネルで無線通信を行う第1ネットワークインタフェースコントローラと、前記第1チャネルと異なる第2チャネルで無線通信を行う第2ネットワークインタフェースコントローラとを含み、
     前記M個のネットワークインタフェースコントローラは、前記第1チャネルで無線通信を行う第1ネットワークインタフェースコントローラを含み、前記第2チャネルで無線通信を行う第2ネットワークインタフェースコントローラを含まず、
     前記1又は複数の制御装置は、前記基地局及び前記第1無線端末の各々において、前記第1ネットワークインタフェースコントローラを使用する第1モードと、前記第2ネットワークインタフェースコントローラを使用する第2モードを交互に行い、
     前記1又は複数の制御装置は、前記第2無線端末が前記第1ネットワークインタフェースコントローラを使用して前記基地局と通信するよう制御し、且つ、前記第2モードの期間においては前記下りフレーム全般あるいは前記応答フレーム以外の前記下りフレームを前記基地局に要求しないように前記第2無線端末を制御する
     無線通信システム。
  3.  請求項2に記載の無線通信システムであって、
     前記1又は複数の制御装置は、前記使用するネットワークインタフェースコントローラ以外のネットワークインタフェースコントローラからの信号送信を禁止し、
     前記1又は複数の制御装置は、前記第2モードの期間において前記下りフレーム全般を前記基地局に要求しないように前記第2無線端末を制御する
     無線通信システム。
  4.  請求項1乃至3のいずれか一項に記載の無線通信システムであって、
     前記1又は複数の制御装置は、前記使用するネットワークインタフェースコントローラ以外のネットワークインタフェースコントローラへのパケット転送を停止するよう前記基地局及び前記第1無線端末の各々を制御する
     無線通信システム。
  5.  請求項1乃至3のいずれか一項に記載の無線通信システムであって、
     前記1又は複数の制御装置は、スリープ機能あるいはアクセス制限機能に基づいて、前記使用するネットワークインタフェースコントローラ以外のネットワークインタフェースコントローラに対して送信禁止期間を設定するよう前記基地局及び前記第1無線端末の各々を制御する
     無線通信システム。
  6.  無線通信ネットワークを構成する複数の無線通信装置を制御する無線通信制御方法であって、
     前記複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含み、
     前記基地局と前記第1無線端末の各々は、互いに重複しない異なるチャネルで無線通信を行うN個(Nは2以上の整数)のネットワークインタフェースコントローラを備え、
     前記第2無線端末は、互いに重複しない異なるチャネルで無線通信を行うM個(MはN未満の整数)のネットワークインタフェースコントローラを備え、
     前記無線通信制御方法は、
      前記基地局及び前記第1無線端末の各々において前記N個のネットワークインタフェースコントローラの使用状態を切り替えるチャネル切替処理と、
      前記基地局及び前記第1無線端末が同じチャネルのネットワークインタフェースコントローラを同じ期間に使用するように制御する処理と、
      前記第2無線端末の前記M個のネットワークインタフェースコントローラのいずれも前記同じチャネルに対応していない期間において、下りフレーム全般あるいは応答フレーム以外の下りフレームを前記基地局に要求しないように前記第2無線端末を制御する処理と
     を含む
     無線通信制御方法。
  7.  無線通信ネットワークを構成する複数の無線通信装置を制御する制御装置であって、
     前記複数の無線通信装置は、基地局、第1無線端末、及び第2無線端末を含み、
     前記基地局と前記第1無線端末の各々は、互いに重複しない異なるチャネルで無線通信を行うN個(Nは2以上の整数)のネットワークインタフェースコントローラを備え、
     前記第2無線端末は、互いに重複しない異なるチャネルで無線通信を行うM個(MはN未満の整数)のネットワークインタフェースコントローラを備え、
     前記制御装置は、プロセッサを備え、
     前記プロセッサは、前記基地局及び前記第1無線端末の各々において前記N個のネットワークインタフェースコントローラの使用状態を切り替えるチャネル切替処理を実行し、
     前記プロセッサは、前記基地局及び前記第1無線端末が同じチャネルのネットワークインタフェースコントローラを同じ期間に使用するように制御し、
     前記第2無線端末の前記M個のネットワークインタフェースコントローラのいずれも前記同じチャネルに対応していない期間において、前記プロセッサは、下りフレーム全般あるいは応答フレーム以外の下りフレームを前記基地局に要求しないように前記第2無線端末を制御する
     制御装置。
  8.  コンピュータによって実行され、請求項7に記載の制御装置を前記コンピュータに実現させる制御プログラム。
PCT/JP2021/027182 2021-07-20 2021-07-20 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム WO2023002576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023536268A JPWO2023002576A1 (ja) 2021-07-20 2021-07-20
PCT/JP2021/027182 WO2023002576A1 (ja) 2021-07-20 2021-07-20 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム
US18/580,157 US20240334417A1 (en) 2021-07-20 2021-07-20 Wireless communication system, wireless communication control method, control device, and control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027182 WO2023002576A1 (ja) 2021-07-20 2021-07-20 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム

Publications (1)

Publication Number Publication Date
WO2023002576A1 true WO2023002576A1 (ja) 2023-01-26

Family

ID=84979006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027182 WO2023002576A1 (ja) 2021-07-20 2021-07-20 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム

Country Status (3)

Country Link
US (1) US20240334417A1 (ja)
JP (1) JPWO2023002576A1 (ja)
WO (1) WO2023002576A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536601A (ja) * 2003-06-30 2007-12-13 マイクロソフト コーポレーション 多重無線システムのための低消費エネルギー通信
JP2014011541A (ja) * 2012-06-28 2014-01-20 Nomura Research Institute Ltd 通信制御装置および通信制御システム
US20160255660A1 (en) * 2013-11-11 2016-09-01 Intellectual Discovery Co., Ltd. Station and wireless link configuration method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536601A (ja) * 2003-06-30 2007-12-13 マイクロソフト コーポレーション 多重無線システムのための低消費エネルギー通信
JP2014011541A (ja) * 2012-06-28 2014-01-20 Nomura Research Institute Ltd 通信制御装置および通信制御システム
US20160255660A1 (en) * 2013-11-11 2016-09-01 Intellectual Discovery Co., Ltd. Station and wireless link configuration method therefor

Also Published As

Publication number Publication date
JPWO2023002576A1 (ja) 2023-01-26
US20240334417A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
TWI844139B (zh) Ieee 802.11站及於其中使用的方法
US10912083B2 (en) Wireless router or residential gateway capable of distinguishing power-sensitive wireless sensors and providing separate treatment thereto
US20240349188A1 (en) Wireless communication method and wireless communication terminal using wake-up radio
US20180115922A1 (en) Supporting a large number of devices in wireless communications
WO2018082402A1 (zh) 一种控制信息的传输方法及装置
JP6700475B2 (ja) 端末状態の切り替え方法及び装置
RU2367120C2 (ru) Система и способ для управления режимом ожидания в системе связи беспроводного широкополосного доступа
JP2019537360A (ja) データ通信方法および装置
JP2008079045A (ja) 無線通信システムおよび無線通信装置
US20230239793A1 (en) Power saving enhacenment for sidelink (sl) communication
JP7185737B2 (ja) 通信装置、制御方法、及びプログラム
WO2020150903A1 (zh) 省电信号图案的使用方法、装置、设备及系统
CN115362752A (zh) 用于无线通信系统中的基于设备到设备通信的基站和用户装备之间的链路的drx的方法和装置
EP3577912B1 (en) Determining access slot for communications on radio interface
WO2018014698A1 (zh) 调度方法、接入点和站点
JP5237450B2 (ja) 通信装置
JP5866353B2 (ja) 地域無線ネットワークの効率的な自己共存のための方法及び装置
WO2023002576A1 (ja) 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム
WO2023002577A1 (ja) 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム
WO2023002578A1 (ja) 無線通信システム、無線通信制御方法、制御装置、及び制御プログラム
WO2023015507A1 (zh) 省电方法、装置、设备及可读存储介质
JP5997661B2 (ja) 中継器装置及び中継器のスリープ制御方法
WO2023240499A1 (zh) 一种通信状态的切换方法及装置、终端设备
WO2022259482A1 (ja) 無線通信システム、無線通信方法、アクセスポイント装置およびプログラム
WO2024164971A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023536268

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18580157

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950928

Country of ref document: EP

Kind code of ref document: A1