WO2023002559A1 - Dc power source device and refrigeration cycle apparatus - Google Patents

Dc power source device and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2023002559A1
WO2023002559A1 PCT/JP2021/027106 JP2021027106W WO2023002559A1 WO 2023002559 A1 WO2023002559 A1 WO 2023002559A1 JP 2021027106 W JP2021027106 W JP 2021027106W WO 2023002559 A1 WO2023002559 A1 WO 2023002559A1
Authority
WO
WIPO (PCT)
Prior art keywords
operation mode
power supply
switching element
capacitor
speed
Prior art date
Application number
PCT/JP2021/027106
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 清水
和徳 畠山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180100321.7A priority Critical patent/CN117616684A/en
Priority to PCT/JP2021/027106 priority patent/WO2023002559A1/en
Priority to JP2023536255A priority patent/JPWO2023002559A1/ja
Publication of WO2023002559A1 publication Critical patent/WO2023002559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a DC power supply that supplies DC power to a load having a motor, and a refrigeration cycle device including the same.
  • Patent Document 1 discloses a switching element having first and second switching elements connected in series and first and second capacitors connected in series between output terminals to a load, and output from an AC power supply.
  • a direct current power supply is disclosed that converts an alternating current voltage to a direct current voltage.
  • a full-wave rectification mode in which the first and second switching elements are always turned off, and the first and second switching elements are appropriately controlled to be turned on, so that the voltage across the two capacitors is and a boost mode for charging to a voltage equal to or higher than the peak value of the AC voltage.
  • the two capacitors connected between the output terminals to the load are connected in series.
  • a combined capacitance which is the capacitance of the two capacitors connected in series, is smaller than the capacitance of the two capacitors alone. For example, if two capacitors have the same capacitance, the combined capacitance of the two capacitors connected in series is half the capacitance of the single capacitor.
  • the capacitance of the capacitors is small, the voltage ripple of each capacitor increases when the load of the DC power supply increases, and there is a problem that the deterioration of the life of the capacitors accelerates.
  • the capacitance of the capacitor is small, there is a problem that an increase in power source harmonics and deterioration of the power factor are caused, and the efficiency of the DC power supply is deteriorated.
  • a capacitor with a large capacitance is used to solve these problems, another problem arises in that the cost of the device increases.
  • the present disclosure has been made in view of the above, and aims to obtain a DC power supply device that can contribute to higher efficiency, lower cost, and longer life.
  • the DC power supply according to the present disclosure is a DC power supply that converts AC power into DC power and supplies DC power to a load having a motor.
  • a DC power supply device includes a rectifier circuit, a reactor, a charge storage section, a charging section, and a control section.
  • the rectifier circuit rectifies an AC voltage, which is the voltage of AC power.
  • a reactor is connected to the input side or the output side of the rectifier circuit.
  • the charge storage section has first and second capacitors connected in series and is connected across the output terminals to the load.
  • the charging unit includes first and second switching elements connected in series, a first backflow prevention element that prevents backflow of charge in the first capacitor, and a second backflow prevention element that prevents backflow of charge in the second capacitor. and two backflow prevention elements to selectively charge one or both of the first and second capacitors.
  • the control unit controls the operation of the charging unit, if the rotation speed of the motor is equal to or higher than the first speed, the electrostatic capacity when the charge storage unit is viewed from the charging unit is the first or second value. Either one of the first and second capacitors is individually charged by controlling the first and second switching elements so as to have the capacitance of a single capacitor.
  • the DC power supply device has the effect of contributing to higher efficiency, lower cost, and longer life.
  • FIG. 1 is a circuit diagram showing a configuration example of a DC power supply device according to Embodiment 1; A diagram showing an example of a switching control state in the DC power supply device according to Embodiment 1.
  • FIG. 2 shows each operation mode in the DC power supply device according to Embodiment 1;
  • FIG. 4 shows a first example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1);
  • FIG. 4 shows a second example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1);
  • FIG. 2 is a table summarizing the characteristics of each operation mode in the DC power supply according to Embodiment 1.
  • FIG. Flowchart for explaining the operation of the DC power supply device according to Embodiment 1 FIG.
  • FIG. 3 is a block diagram showing a first example of a hardware configuration that implements the functions of the control unit according to Embodiment 1;
  • FIG. 4 is a block diagram showing a second example of a hardware configuration that implements the functions of the control unit according to Embodiment 1;
  • FIG. 11 shows an example of operation waveforms when the DC power supply according to Embodiment 2 operates in operation mode (2);
  • Flowchart for explaining the operation of the DC power supply device according to the third embodiment A diagram showing a configuration example of a refrigeration cycle device according to Embodiment 6
  • FIG. 1 is a circuit diagram showing a configuration example of a DC power supply device according to Embodiment 1.
  • FIG. A DC power supply device 100 shown in FIG. 1 is configured to convert AC power supplied from an AC power supply 1 into DC power and supply the converted DC power to a load 8 .
  • the AC power supply 1 may be a single-phase power supply.
  • the load 8 may be any load as long as it receives supply of DC power and consumes power. In this paper, the load 8 is assumed to be an inverter load that drives a motor of a compressor used in equipment to which a refrigeration cycle is applied.
  • Devices to which the refrigerating cycle is applied include, for example, air conditioners, refrigerators, washer/dryers, refrigerators, dehumidifiers, heat pump water heaters, and showcases.
  • the load 8 is not limited to the load of equipment to which the refrigeration cycle is applied, and may be a vacuum cleaner, a fan motor, a ventilation fan, a hand dryer, an induction heating electromagnetic cooker, or the like.
  • the DC power supply device 100 includes a rectifier circuit 2, a reactor 3, a charging section 4, a charge storage section 6, a first voltage detection section 7a, a second voltage detection section 7b, and a , a third voltage detection unit 7 c and a control unit 10 .
  • the rectifier circuit 2 is configured as a three-phase full-wave rectifier circuit in which six rectifier diodes are connected in a full bridge.
  • the rectifier circuit 2 rectifies a three-phase AC voltage, which is the voltage of the three-phase AC power supplied from the AC power supply 1 .
  • the rectifier circuit 2 is configured as a single-phase full-wave rectifier circuit in which four rectifier diodes are connected in a full bridge.
  • the charge storage unit 6 has a first capacitor 6a and a second capacitor 6b connected in series.
  • the first capacitor 6a is positioned on the higher potential side
  • the second capacitor 6b is positioned on the lower potential side.
  • the first capacitor 6 a and the second capacitor 6 b are charged by the charging section 4 and retain the charges supplied from the charging section 4 .
  • the charging section 4 has a first switching element 4a and a second switching element 4b connected in series, a first backflow prevention element 5a, and a second backflow prevention element 5b.
  • Charging unit 4 is connected to the output side of rectifier circuit 2 via reactor 3 .
  • a series circuit of the first capacitor 6 a and the second capacitor 6 b is connected between the output terminals to the load 8 between the charging section 4 and the load 8 .
  • the reactor 3 is connected to the output side of the rectifier circuit 2 in FIG. 1, the configuration is not limited to this.
  • the reactor 3 may be connected to the input side of the rectifier circuit 2 , that is, between the AC power supply 1 and the rectifier circuit 2 .
  • first switching element 4a and the second switching element 4b is the illustrated IGBT (Insulated Gate Bipolar Transistors), but is not limited to this.
  • a MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • Semiconductor elements other than IGBTs and MOSFETs may also be used.
  • Each of the first switching element 4a and the second switching element 4b may have a freewheeling diode connected in anti-parallel for the purpose of suppressing a surge voltage due to switching.
  • the first switching element 4a and the second switching element 4b are MOSFETs
  • parasitic diodes formed inside the MOSFETs may be used as free wheel diodes.
  • Materials forming the first switching element 4a and the second switching element 4b include not only silicon (Si) but also silicon carbide (SiC), which is a wide bandgap semiconductor, gallium nitride (GaN), gallium oxide ( Ga 2 O 3 ), diamond.
  • the midpoint of the series circuit composed of the first switching element 4a and the second switching element 4b is connected to the midpoint of the series circuit composed of the first capacitor 6a and the second capacitor 6b.
  • the anode of the first backflow prevention element 5a is connected to the collector of the first switching element 4a, and the cathode of the first backflow prevention element 5a is connected to the positive electrode side of the first capacitor 6a. That is, the first backflow prevention element 5a is connected in a direction that prevents the backflow of electric charges in the first capacitor 6a.
  • the cathode of the second backflow prevention element 5b is connected to the emitter of the second switching element 4b, and the anode of the second backflow prevention element 5b is connected to the negative electrode side of the second capacitor 6b.
  • the second backflow prevention element 5b is connected in a direction that prevents the backflow of electric charges in the second capacitor 6b. Moreover, with these configurations, the charging unit 4 selectively charges one or both of the first switching element 4a and the second switching element 4b.
  • the first voltage detection section 7a detects the capacitor voltage Vpc, which is the voltage of the first capacitor 6a
  • the second voltage detection section 7b detects the capacitor voltage Vnc, which is the voltage of the second capacitor 6b.
  • the third voltage detection section 7c detects an output voltage Vdc which is the voltage between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b.
  • the detected value of the capacitor voltage Vpc detected by the first voltage detector 7a, the detected value of the capacitor voltage Vnc detected by the second voltage detector 7b, and the output voltage detected by the third voltage detector 7c The detected value of Vdc is input to the control unit 10 .
  • FIG. 2 is a diagram showing an example of a switching control state in the DC power supply device according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing each operation mode in the DC power supply device according to Embodiment 1.
  • symbol of each component is abbreviate
  • State A in FIG. 2 shows a state in which both the first switching element 4a and the second switching element 4b are controlled to be off. In this state, the first capacitor 6a and the second capacitor 6b are charged.
  • State B in FIG. 2 shows a state in which the first switching element 4a is controlled to be ON and the second switching element 4b is controlled to be OFF. In this state, only the second capacitor 6b is charged.
  • State C in FIG. 2 shows a state in which the second switching element 4b is controlled to be ON and the first switching element 4a is controlled to be OFF. In this state, only the first capacitor 6a is charged.
  • State D in FIG. 2 shows a short-circuit state in which both the first switching element 4a and the second switching element 4b are on-controlled. In this state, neither the first capacitor 6a nor the second capacitor 6b are charged.
  • the DC voltage supplied to the load 8 is controlled while suppressing the rush current in which the current flowing from the AC power supply 1 sharply increases.
  • FIG. 3 shows each operation mode in the DC power supply device 100 according to the first embodiment.
  • the DC power supply device 100 according to Embodiment 1 has nine operation modes (1) to (9). Each operation mode will be described below.
  • a to D in FIG. 3 indicate each state in FIG.
  • the on-duty D1 used in the following description is the ratio of the time during which the first switching element 4a is in the ON state to the total time during which it is in the ON state and the OFF state.
  • the on-duty D2 is the ratio of the time during which the second switching element 4b is in the ON state to the total time during which it is in the ON state and the OFF state.
  • the operation mode (1) is a mode in which the first switching element 4a and the second switching element 4b are always controlled to be off.
  • the first capacitor 6a and the second capacitor 6b are each charged, and the magnitude of the output voltage Vdc becomes about ⁇ 2 times the effective value Vac of the AC voltage applied from the AC power supply 1.
  • the first capacitor 6a and the second capacitor 6b are electrically connected in series and charged. Therefore, the electrostatic capacity when the charge accumulating part 6 is viewed from the charging part 4 during charging is the combined electrostatic capacity, which is the total electrostatic capacity of the first capacitor 6a and the second capacitor 6b.
  • the combined capacitance is approximately half the capacitance of the first capacitor 6a or the second capacitor 6b alone.
  • the operation mode (2) is a mode in which the on-duty D1 of the first switching element 4a is in the range of 0% ⁇ D1 ⁇ 100%, and the second switching element 4b is always in the OFF control state. At this time, the second capacitor 6b is charged, and the magnitude of the output voltage Vdc becomes approximately ⁇ 2 times the effective value Vac of the AC voltage. In addition, since only the second capacitor 6b is charged, the capacitance of the second capacitor 6b when viewed from the charging unit 4 during charging is the value of the second capacitor 6b alone.
  • the operation mode (3) is a mode in which the first switching element 4a is always controlled to be off and the on-duty D2 of the second switching element 4b is in the range of 0% ⁇ D2 ⁇ 100%.
  • the first capacitor 6a is charged, and the magnitude of the output voltage Vdc becomes approximately ⁇ 2 times the effective value Vac of the AC voltage.
  • the capacitance of the first capacitor 6a when viewed from the charging unit 4 during charging is the value of the first capacitor 6a alone.
  • the phase difference between the signal Gp and the drive signal Gn for the second switching element 4b is 0 degrees.
  • energy is stored in the reactor 3 by short-circuiting between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b.
  • the energy stored in the reactor 3 charges the first capacitor 6a and the second capacitor 6b. Thereby, the magnitude of the output voltage Vdc can be made larger than in the operation modes (1) to (3).
  • the first capacitor 6a and the second capacitor 6b are charged while being electrically connected in series. Therefore, the electrostatic capacitance when the charge accumulating portion 6 is viewed from the charging portion 4 during charging is the combined electrostatic capacitance of the first capacitor 6a and the second capacitor 6b as a whole. 2 is about 1/2 of the capacitance of the single capacitor 6b. Since the phase difference between the drive signal Gp and the drive signal Gn is set to 0 degrees, the magnitude of the capacitor voltage Vpc and the magnitude of the capacitor voltage Vnc are approximately equal. Also, the phase difference does not necessarily have to be 0 degrees, but if there is a phase difference, the capacitor voltage Vpc and the capacitor voltage Vnc become unbalanced.
  • the operation mode (5) is a mode in which the on-duty D1 of the first switching element is in the range of 0% ⁇ D1 ⁇ 100%, and the second switching element 4b is always on.
  • the period of state D energy is stored in the reactor 3 by short-circuiting between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b.
  • the energy stored in the reactor 3 charges the first capacitor 6a.
  • the magnitude of the output voltage Vdc can be made larger than in the operation modes (1) to (3).
  • the capacitance of the first capacitor 6a when viewed from the charging unit 4 during charging is the value of the first capacitor 6a alone.
  • the operation mode (6) is a mode in which the first switching element 4a is always on-controlled and the on-duty D2 of the second switching element 4b is in the range of 0% ⁇ D2 ⁇ 100%.
  • the period of state D energy is stored in the reactor 3 by short-circuiting between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b.
  • the period of state B the energy stored in the reactor 3 charges the second capacitor 6b.
  • the magnitude of the output voltage Vdc can be made larger than in the operation modes (1) to (3).
  • the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the value of the second capacitor 6b alone.
  • the phase difference between the signal Gp and the drive signal Gn for the second switching element 4b is 180 degrees.
  • the second capacitor 6b is charged, and during state C, the first capacitor 6a is charged.
  • the magnitude of the output voltage Vdc has a relationship of Vac ⁇ 2 ⁇ Vdc ⁇ Vac ⁇ 2 ⁇ 2 with respect to the effective value Vac of the AC voltage. Note that the magnitude of the output voltage Vdc is proportional to the on-duties D1 and D2.
  • the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the same as that of the first capacitor 6a or the second capacitor 6b. is the value of the capacitor 6b alone.
  • the second capacitor 6b is charged, and during state C, the first capacitor 6a is charged.
  • the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the same as that of the first capacitor 6a or the second capacitor 6b. is the value of the capacitor 6b alone.
  • the phase difference between the signal Gp and the drive signal Gn for the second switching element 4b is 180 degrees.
  • energy is stored in the reactor 3 by short-circuiting the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b.
  • the energy stored in the reactor 3 charges the second capacitor 6b during the state B period, and charges the first capacitor 6a during the state C period.
  • the magnitude of the output voltage Vdc can have a relationship of Vdc>Vac ⁇ 2 ⁇ 2 with respect to the effective value Vac of the AC voltage.
  • the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the same as that of the first capacitor 6a or the second capacitor 6b. is the value of the capacitor 6b alone.
  • the direct current applied to the load 8 Voltage can be controlled.
  • FIG. 4 is a diagram showing a first example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1).
  • FIG. 5 is a diagram showing a second example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1).
  • FIG. 6 is a table summarizing the characteristics of each operation mode in the DC power supply according to the first embodiment.
  • 7 is a flowchart for explaining the operation of the DC power supply device according to Embodiment 1.
  • FIG. 4 is a diagram showing a first example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1).
  • FIG. 5 is a diagram showing a second example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1).
  • FIG. 6 is a table summarizing the characteristics of each operation mode in the DC power supply according to the first embodiment.
  • 7 is a flowchart for explaining the operation of the DC power supply device according to Embodi
  • the capacitance of the charge storage unit 6 when viewed from the charging unit 4 is about 1/1 of the capacitance of the first capacitor 6a or the second capacitor 6b alone.
  • 2 is the operation mode. 4 and 5 show operation waveforms when the DC power supply 100 operates in operation mode (1). In each figure, the waveforms of the input current to the rectifier circuit 2, the voltage detected by the third voltage detector 7c, and the voltages detected by the first and second voltage detectors 7a and 7b are shown in order from the top. ing. Moreover, the horizontal axis of each figure represents time. The difference between the two is that FIG. 4 is an example in which the load power is 15 kW, ie, a light load, whereas FIG.
  • the load power is 30 kW, ie, a medium load or heavy load.
  • the ripple of the output voltage Vdc is kept small.
  • the ripple of the output voltage Vdc becomes large.
  • state A continues as shown in FIGS.
  • Charging is performed in a state of about half the capacitance of the second capacitor 6b alone. Therefore, as shown in FIG. 5, when the load power increases, the ripples of the output voltage Vdc and the output current increase.
  • the life deterioration of the first capacitor 6a or the second capacitor 6b accelerates.
  • the capacitance of the first capacitor 6a or the second capacitor 6b is small, the efficiency of the DC power supply 100 may be deteriorated due to an increase in power source harmonics and deterioration of the power factor.
  • a capacitor with a large capacitance is used to solve these problems, another problem arises in that the cost of the device increases.
  • the drive frequency of the compressor motor is often increased in order to achieve higher refrigeration capacity.
  • the maximum output voltage of the inverter is determined by the output voltage of the DC power supply 100 . Therefore, in order to apply a higher voltage to load 8, the output voltage of DC power supply 100 must be increased.
  • the DC power supply 100 is required to output a voltage sufficient to drive the load 8, suppress power supply harmonics, and operate with a high power factor.
  • each embodiment of this paper uses different operation modes according to the operating conditions of the load.
  • an operation mode not to be used is determined.
  • the operation mode (4) is not used.
  • operation modes (1) to (3) are referred to as “first operation mode”, “second operation mode” and “third operation mode” respectively, and operation modes (5) to ( 9) are sometimes referred to as a "fourth mode of operation”, a "fifth mode of operation”, a “sixth mode of operation”, a “seventh mode of operation” and an “eighth mode of operation", respectively.
  • Embodiment 1 Next, the operation of the DC power supply device 100 according to Embodiment 1 will be described.
  • the load 8 is a compressor as an example
  • operation modes (1) to (3) and operation modes (5) to (9) are selectively used according to the rotation speed of the compressor motor. do.
  • FIG. 6 shows the magnitude of the output voltage Vdc in operation modes (1) to (9) and the combined capacitance corresponding to each operation mode. , the load torque and the rotation speed are shown.
  • the magnitude of the output voltage Vdc is determined by the magnitude of the reactor 3, the on-duty D1 of the first switching element 4a, and the on-duty D2 of the second switching element 4b.
  • the operation mode (9) can output the largest output voltage Vdc.
  • a voltage lower than the theoretical maximum voltage that can be output may be set as the maximum voltage for practical use in consideration of noise or heat dissipation.
  • the maximum voltage in actual use is assumed to be Vmax.
  • the output voltage Vdc is approximately the same as the induced voltage of the motor.
  • the maximum rotation speed that can be operated at the maximum voltage Vmax in practical use ie, the upper limit of the rotation speed of the motor, is defined as Nmax.
  • the magnitude of the output voltage Vdc is 2 ⁇ 2 times the effective value Vac of the AC voltage.
  • the maximum rotation speed Nmin may be called “first speed” and the maximum rotation speed Nmid may be called "second speed”.
  • the maximum rotation speed for each of these operation modes is used to determine the rotation speed region.
  • the rotation speed range of 0 to Nmin is defined as a low speed region
  • the rotation speed range of Nmin to Nmid is defined as a medium speed region
  • the rotation speed range of Nmid to Nmax is defined as a high speed region.
  • flux-weakening control is used to increase the rotational speed by supplying a current so as to lower the induced voltage of the motor. Therefore, the maximum rotational speeds Nmin, Nmid, and Nmax for each operation mode slightly change depending on the amount of current generated by the flux-weakening control.
  • each operation mode is switched according to the rotational speed range.
  • operation mode (4) is not used. A specific processing flow will be described below with reference to FIG.
  • control unit 10 determines whether or not the rotational speed is in the low speed range (step S11). If the rotation speed is in the low speed range (step S11, Yes), the control unit 10 selects one of the operation modes (1) to (3) (step S12), and the first operation is performed in the selected operation mode. The switching element 4a and the second switching element 4b are driven (step S13). Henceforth, it returns to step S11 and repeats the processing flow of FIG.
  • step S11 determines whether the rotation speed is in the medium speed range (step S14). If the rotation speed is in the middle speed range (step S14, Yes), the control unit 10 selects one of the operation modes (5) to (8) (step S15), and selects the first operation mode in the selected operation mode.
  • the switching element 4a and the second switching element 4b are driven (step S13). Henceforth, it returns to step S11 and repeats the processing flow of FIG.
  • step S16 determines whether the rotation speed is in the high speed range. It should be noted that although it is highly likely that the rotation speed is in the high-speed region by the determination processing of steps S11 and S14, the possibility that the rotation speed will change after the processing of step S14 is not zero, and the rotation speed is near the boundary of the region. In consideration of the case where the position is located at , the judgment processing of step S16 is provided. If the rotation speed is not in the high speed region (step S16, No), the process returns to step S11 and repeats the processing flow of FIG.
  • step S16 if the rotation speed is in the high speed region (step S16, Yes), the control unit 10 selects the operation mode (9) (step S17), and switches the first switching element 4a and the second switching element 4a in the selected operation mode. 2 switching element 4b is driven (step S13). Henceforth, it returns to step S11 and repeats the processing flow of FIG.
  • the motor rotation speed for determining each speed range is calculated based on the rotation speed command value, the actual rotation speed of the motor obtained from the speed sensor or the position sensor, and the current of the motor. An estimate of the rotational speed obtained can be used.
  • the DC power supply device selectively selects one or both of the charge storage unit having the first and second capacitors connected in series and the first and second capacitors. and a charging unit for charging the battery.
  • the controller controls the first and second switching elements so that the capacitance when the charge storage unit is viewed from the charging unit becomes a single capacitance. to individually charge either one of the first and second capacitors.
  • the capacitance of the charge storage unit viewed from the charging unit is the capacitance of the first or second capacitor alone, even when the load power increases, the output voltage and the ripple of the output current are reduced. increase can be suppressed.
  • the capacitance of the charge storage unit when viewed from the charging unit is 1/2 of the capacitance of the first or second capacitor alone. can also suppress an increase in ripples in the output voltage and output current. If it is possible to suppress the increase in ripples in the output voltage and output current, it is possible to slow down the deterioration of the life of the capacitor, thereby contributing to the extension of the life of the DC power supply.
  • the control method according to the first embodiment can suppress the increase in the ripples of the output voltage and the output current while suppressing the increase in the capacitance of the first and second capacitors. Therefore, by using the control method according to the first embodiment, it is possible to contribute to the efficiency improvement and cost reduction of the DC power supply.
  • FIG. 8 is a block diagram illustrating a first example of a hardware configuration that implements the functions of the control unit according to Embodiment 1.
  • FIG. 9 is a block diagram illustrating a second example of a hardware configuration that implements the functions of the control unit according to Embodiment 1.
  • the processor 300 may be arithmetic means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versatile Discs) can be exemplified.
  • the memory 302 stores a program for executing the functions of the control unit 10 according to the first embodiment.
  • Processor 300 performs the above-described processing by exchanging necessary information via interface 304, executing programs stored in memory 302, and referring to tables stored in memory 302 by processor 300. It can be carried out. Results of operations by processor 300 may be stored in memory 302 .
  • the processing circuit 303 shown in FIG. 9 can also be used.
  • the processing circuit 303 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • Information to be input to the processing circuit 303 and information to be output from the processing circuit 303 can be obtained via the interface 304 .
  • part of the processing in the control unit 10 may be performed by the processing circuit 303 and the processing not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302 .
  • Embodiment 2 Next, a DC power supply device according to Embodiment 2 will be described.
  • the load 8 is a compressor
  • the above-described operation modes are selectively used according to the load torque of the motor of the compressor and the rotational speed of the motor.
  • the operation mode (4) is not used as in the first embodiment. The same applies to other embodiments described below.
  • the operation mode (1) has the advantage of simple control because the first switching element 4a and the second switching element 4b may be kept in the off state at all times.
  • the capacitance of the charge accumulating portion 6 viewed from the charging portion 4 is approximately half the capacitance of the first capacitor 6a or the second capacitor 6b alone. Therefore, as shown in FIG. 5, when the load power increases, ripples in the output voltage Vdc and the output current increase, leading to an increase in power supply harmonics and a deterioration in the power factor.
  • an increase in load power may be considered synonymous with an increase in load torque.
  • step S21 the control unit 10 operates the DC power supply device 100 in operation mode (1) (step S21).
  • step S22 determines whether or not the load torque has increased during operation in operation mode (1) (step S22). If the load torque has not increased (step S22, No), the process returns to step S21 to repeat the process from step S21. On the other hand, if the load torque is increasing (step S22, Yes), it is determined whether or not the rotational speed of the motor has further increased (step S23). If the rotation speed has not increased (step S23, No), the control unit 10 selects either operation mode (2) or operation mode (3), and operates in the selected operation mode (step S24). , the processing flow of FIG. 10 ends. Further, when the rotational speed increases (step S23, Yes), the control unit 10 selects one of the operation modes (5) to (9), operates in the selected operation mode ( Step S25), the processing flow of FIG. 10 is terminated.
  • the determination process in step S22 may use a method of comparing the load torque increase amount with a threshold value, or a method of comparing the load torque increase ratio with a threshold value.
  • the rotation speed used in the determination process in step S23 may be a rotation speed command value, the actual rotation speed of the motor obtained from a speed sensor or a position sensor, and an estimated rotation speed calculated based on the current of the motor. can be done. Further, when the operation mode (1) is selected during operation in the operation mode selected in step S24 or step S25, the processing flow of FIG. 10 is called again.
  • the operation mode of the DC power supply 100 is changed from the operation mode (1) to the operation mode (2), the operation mode (3), or the operation mode (5).
  • the operation is switched to any one of (9).
  • the operation modes before and after switching are operation modes in which the capacitance when the charge storage unit 6 is viewed from the charging unit 4 is the value of the first capacitor 6a or the second capacitor 6b alone.
  • FIG. 11 is a diagram showing an example of operation waveforms when the DC power supply according to Embodiment 2 operates in operation mode (2).
  • the types and display positions of the operating waveforms in FIG. 11 are the same as in FIG.
  • the load power which is the load condition, is 30 kW, which is the same as in FIG.
  • the on-duty D1 of the first switching element 4a to be turned on is set to "10%".
  • the ripple of the output voltage Vdc is greatly improved as compared with FIG.
  • operation mode (2) and operation mode (3) are essentially the same in operation, but different in capacitors to be charged. Therefore, by controlling the operation time of the operation mode (2) and the operation time of the operation mode (3) to be approximately the same, the charge/discharge time of each capacitor can be equalized. As a result, the life of the charge accumulating section 6 as a whole can be extended as compared with the case where the charging and discharging times of the capacitors are not equalized.
  • operation mode (5) and operation mode (6) Therefore, by controlling the operation time of the operation mode (5) and the operation time of the operation mode (6) to be approximately the same, the charge/discharge time of each capacitor can be equalized.
  • the control unit during the operation in the first operation mode, anticipates an increase in the load torque of the motor and increases the rotation speed of the motor. is expected, control is performed to switch the operation mode to any one of the fourth to eighth operation modes.
  • the control unit changes the operation mode to the second operation mode when an increase in the rotation speed of the motor is not expected. or the third operation mode.
  • the operation modes before and after switching are operation modes in which the electrostatic capacitance when viewed from the charging unit is the value of the first or second capacitor alone.
  • the charge storage section can be charged in a state where the electrostatic capacity of the charge storage section when viewed from the charging section is large, it is possible to suppress power supply harmonics and perform operation with a high power factor.
  • Embodiment 3 Next, a DC power supply device according to Embodiment 3 will be described.
  • operation mode (1), operation mode (2) or operation mode (3), and operation mode (5) or operation mode In Embodiment 3, in the DC power supply devices according to Embodiments 1 and 2, operation mode (1), operation mode (2) or operation mode (3), and operation mode (5) or operation mode A preferred embodiment for transitioning to (6) will now be described.
  • the load 8 is a compressor is taken as an example.
  • FIG. 12 is a flowchart for explaining the operation of the DC power supply device according to Embodiment 3.
  • FIG. Note that the processing flow of FIG. 12 is called each time the compressor is started. In the processing flow of FIG. 12, it is assumed that the number of times the compressor has been started is stored in the memory 302 shown in FIG. 8 or the processing circuit 303 shown in FIG.
  • step S31 the control unit 10 controls the operation of the compressor.
  • step S31 If the number of times the compressor has been started is an odd number (step S31, Yes), the control unit 10 operates the DC power supply device 100 in operation mode (2) or operation mode (5) (step S32). If the compressor has been started an even number (step S31, No), the controller 10 causes the DC power supply 100 to operate in operation mode (3) or operation mode (6) (step S33).
  • step S31 of FIG. 12 Supplementary information about the processing flow in FIG. In step S31 of FIG. 12, "Yes” is determined when the number of times the compressor is started is an odd number, but "No” may be determined. In other words, the operation mode transition conditions may be reversed from those in the example of FIG. Even in this way, the charge/discharge time of each capacitor can be equalized.
  • step S31 of FIG. 12 the operation mode transition condition is switched based on the number of times the compressor is started. good. If the charge/discharge time is stored in the memory 302 or the processing circuit 303, the operation mode can be switched so that the charge/discharge time is approximately the same.
  • the control unit performs the second and third operations based on the number of times the load is started or the charging and discharging times of the first and second capacitors. Decide which of the modes of operation to select. This makes it possible to equalize the charging and discharging times of the capacitors, thereby extending the life of the entire charge storage section.
  • the control unit selects one of the fourth and fifth operation modes based on the number of times the load is started or the charging and discharging times of the first and second capacitors. Decide which operating mode to select. This makes it possible to equalize the charging and discharging times of the capacitors, thereby extending the life of the entire charge storage section.
  • Embodiment 4 Next, a DC power supply device according to Embodiment 4 will be described.
  • an operation mode suitable for starting the DC power supply will be described, taking as an example the case where the load 8 is a compressor.
  • the rotation speed command value of the motor of the compressor transitions to the speed increasing side or to the decelerating side depending on the tendency of temperature adjustment of the air conditioner. may be predictable.
  • the motor rotation speed command value is a value in the medium to high speed range. In such a case, starting the motor using operating mode (1) or operating mode (7) would be the preferred embodiment.
  • operation modes (5) to (7) have the same output voltage Vdc range.
  • operation mode (5) and operation mode (6) charge only one of the first capacitor 6a and second capacitor 6b
  • operation mode (1) and operation mode (7) to (9) are operation modes in which the first capacitor 6a and the second capacitor 6b are alternately charged.
  • operation mode (5) and operation mode (6) one capacitor is not charged. Therefore, in order to increase the rotation speed of the motor, when transitioning from operation mode (5) or operation mode (6) to operation mode (8) or operation mode (9) capable of outputting a higher voltage, , an inrush current may flow through an uncharged capacitor.
  • the DC power supply device 100 may operate the overcurrent protection function, etc., and stop the device. Moreover, when the overcurrent is large, there is a possibility that the first capacitor 6a and the second capacitor 6b are broken. This kind of rush current can be suppressed by switching the operation mode while gradually changing the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b. Therefore, although it is possible to switch the operation mode itself, there is a drawback that the control becomes somewhat complicated. Therefore, it can be said that it is desirable to use operation mode (1) or operation mode (7) under conditions in which the rotation speed of the motor tends to transition to the high speed side.
  • both the first capacitor 6a and the second capacitor 6b are charged.
  • the inrush current to the charge storage section 6 can be kept small. Thereby, the operation mode can be changed easily and safely.
  • the operation mode (1) or operation mode (7) is changed to operation mode (2) or operation mode ( 3)
  • the operating state is such that one of the first capacitor 6a and the second capacitor 6b is discharged. Therefore, by using the operation mode (1) and the operation mode (7), it is possible to avoid the occurrence of a rush current to the charge storage section 6 .
  • operation mode (1) and operation mode (7) it is possible to easily and safely transition to operation mode (2), operation mode (3), operation mode (5), or operation mode (6). Transition is possible. Therefore, it can be said that it is desirable to use the operation mode (1) or the operation mode (7) even if the motor rotation speed does not tend to transition to the high speed side. From the above, it is a desirable embodiment to use operation mode (1) or operation mode (7) when starting the motor.
  • the control unit starts up in the first operation mode or the sixth operation mode when starting up the DC power supply device. By doing so, it is possible to easily and safely transition to another operation mode while avoiding the occurrence of rush current to the charge storage section.
  • Embodiment 5 Next, a DC power supply device according to Embodiment 5 will be described.
  • the load 8 is a compressor is taken as an example, and operation modes (1) to (7) are selectively used according to the amount of circuit loss generated in the DC power supply.
  • the number of backflow prevention elements and switching elements present on the current path differs depending on the states A to D, as shown in FIG. Further, the range of Vdc that can be output is the same in each set of operation modes (1) to (3) and operation modes (5) to (7), but as shown in FIG. ⁇ D have different occurrence periods.
  • operation modes (5) and (6) have the same features as operation modes (2) and (3). As described above, the operation mode (4) is not used in each embodiment of this paper, but the features of the operation modes (5) and (6) will be explained in comparison with the operation mode (4).
  • operation mode (4) By comparing operation mode (4) with operation modes (5) and (6), it can be seen that state A is replaced by state B or state C, as shown in FIG. Therefore, as in the operation modes (1) to (3), in the case of a circuit configuration in which the conduction loss of the first switching element 4a is smaller than the conduction loss of the first backflow prevention element 5a, the operation mode ( Conduction loss can be reduced by using operation mode (6) instead of 4). Similarly, in the case of a circuit configuration in which the conduction loss of the second switching element 4b is smaller than the conduction loss of the second backflow prevention element 5b, the operation mode (5) is used instead of the operation mode (4). However, the conduction loss can be reduced.
  • the conduction losses of the first switching element 4a and the second switching element 4b, and the first backflow prevention element 5a and the second backflow prevention element 5b are known in terms of design. Therefore, by selecting operation modes (1) to (3), (5), and (6) so as to reduce the amount of conduction loss generated, a highly efficient DC power supply 100 can be realized. .
  • the corresponding The operation mode may be switched as appropriate so that the time integral value of the loss in the set of the switching element and the backflow prevention element becomes approximately the same.
  • the amount of heat generated by the pairs of corresponding switching elements and backflow prevention elements can be roughly uniformed, the concentration of load on some elements can be avoided, and the life of the device can be extended.
  • the DC power supply according to Embodiment 5 performs the following control.
  • the control unit operates in the second operation mode after starting in the first operation mode. Or switch to the fifth operating mode.
  • the amount of conduction loss generated can be reduced, so that a highly efficient DC power supply can be realized.
  • the operation mode may be switched to the third operation mode or the fourth operation mode. Even with such control, the amount of conduction loss generated can be reduced, and a highly efficient DC power supply can be realized.
  • Embodiment 6 refrigeration cycle equipment will be described as an application example of the DC power supply devices according to Embodiments 1 to 5.
  • FIG. FIG. 13 is a diagram illustrating a configuration example of a refrigeration cycle device according to Embodiment 6.
  • FIG. 13 shows a configuration example in which an inverter 30 is connected as the load 8 connected to the DC power supply device 100 of FIG.
  • the refrigerating cycle 200 has a compressor 31, a four-way valve 32, an internal heat exchanger 33, an expansion mechanism 34, and a heat exchanger 35, and these parts are sequentially connected via a refrigerant pipe 36, It constitutes a separate type refrigeration cycle device.
  • a compression mechanism 37 for compressing the refrigerant and a compressor motor 38 for operating the compression mechanism 37 are provided inside the compressor 31 .
  • Compressor motor 38 is driven by inverter 30 .

Abstract

A DC power source device (100) comprises: a rectification circuit (2); a reactor (3); a charging unit (4); a charge storage unit (6); and a control unit (10). The charge storage unit (6) has first and second capacitors (6a, 6b) that are connected in series. The charging unit (4) has first and second switching elements (4a, 4b) connected in series and first and second reverse flow prevention elements (5a, 5b), and selectively charges one or both of the first and second capacitors (6a, 6b). The control unit (10) controls, when the rotational speed of a motor provided to a load (8) is equal to or higher than a first speed during control of an operation of the charging unit (4), the first and second switching elements (4a, 4b) so that an electrical capacitance obtained when the charge storage unit (6) is viewed from the charging unit (4) becomes equal to an electrical capacitance of the first or second capacitor (6a, 6b) alone, and individually charges either one of the first and second capacitors (6a, 6b).

Description

直流電源装置及び冷凍サイクル機器DC power supply and refrigeration cycle equipment
 本開示は、モータを具備する負荷に直流電力を供給する直流電源装置及びそれを備えた冷凍サイクル機器に関する。 The present disclosure relates to a DC power supply that supplies DC power to a load having a motor, and a refrigeration cycle device including the same.
 下記特許文献1には、直列に接続された第1及び第2のスイッチング素子と、負荷への出力端子間に直列に接続された第1及び第2のコンデンサとを有し、交流電源から出力される交流電圧を直流電圧に変換する直流電源装置が開示されている。この特許文献1では、第1及び第2のスイッチング素子を常時オフ状態とする全波整流モードと、第1及び第2のスイッチング素子を適宜にオン状態に制御して、2つのコンデンサの両端電圧を交流電圧のピーク値以上の電圧に充電するための昇圧モードとを有することが記載されている。 Patent Document 1 below discloses a switching element having first and second switching elements connected in series and first and second capacitors connected in series between output terminals to a load, and output from an AC power supply. A direct current power supply is disclosed that converts an alternating current voltage to a direct current voltage. In this patent document 1, a full-wave rectification mode in which the first and second switching elements are always turned off, and the first and second switching elements are appropriately controlled to be turned on, so that the voltage across the two capacitors is and a boost mode for charging to a voltage equal to or higher than the peak value of the AC voltage.
国際公開第2015/033437号WO2015/033437
 前述したように、特許文献1に記載の直流電源装置では、負荷への出力端子間に接続される2つのコンデンサは、直列に接続されている。直列に接続された2つのコンデンサ全体の静電容量である合成静電容量は、2つのコンデンサ単体の静電容量よりも小さくなる。例えば、2つのコンデンサの静電容量がそれぞれ同じである場合、直列接続された2つのコンデンサの合成静電容量は、コンデンサ単体の静電容量の1/2となる。 As described above, in the DC power supply device described in Patent Document 1, the two capacitors connected between the output terminals to the load are connected in series. A combined capacitance, which is the capacitance of the two capacitors connected in series, is smaller than the capacitance of the two capacitors alone. For example, if two capacitors have the same capacitance, the combined capacitance of the two capacitors connected in series is half the capacitance of the single capacitor.
 コンデンサの静電容量が小さいと、直流電源装置の負荷が増大した場合に各々のコンデンサの電圧リプルが増加し、コンデンサの寿命劣化の進行が速くなるという問題がある。また、コンデンサの静電容量が小さい場合、電源高調波の増加及び力率の悪化を招き、直流電源装置の効率が悪化するといった課題がある。また、これらの課題の解決のために静電容量の大きいコンデンサを用いると、装置のコスト増を招くという別な課題が生ずる。 If the capacitance of the capacitors is small, the voltage ripple of each capacitor increases when the load of the DC power supply increases, and there is a problem that the deterioration of the life of the capacitors accelerates. In addition, when the capacitance of the capacitor is small, there is a problem that an increase in power source harmonics and deterioration of the power factor are caused, and the efficiency of the DC power supply is deteriorated. Moreover, if a capacitor with a large capacitance is used to solve these problems, another problem arises in that the cost of the device increases.
 本開示は、上記に鑑みてなされたものであって、高効率化、低コスト化、及び長寿命化に寄与できる直流電源装置を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to obtain a DC power supply device that can contribute to higher efficiency, lower cost, and longer life.
 上述した課題を解決し、目的を達成するため、本開示に係る直流電源装置は、交流電力を直流電力に変換し、モータを具備する負荷に直流電力を供給する直流電源装置である。直流電源装置は、整流回路、リアクトル、電荷蓄積部、充電部及び制御部を備える。整流回路は、交流電力の電圧である交流電圧を整流する。リアクトルは、整流回路の入力側又は出力側に接続される。電荷蓄積部は、直列に接続された第1及び第2のコンデンサを有し、負荷への出力端子間に接続される。充電部は、直列に接続された第1及び第2のスイッチング素子と、第1のコンデンサの電荷の逆流を防止する第1の逆流防止素子と、第2のコンデンサの電荷の逆流を防止する第2の逆流防止素子とを有し、第1及び第2のコンデンサの一方又は両方を選択的に充電する。制御部は、充電部の動作を制御する際、モータの回転速度が第1の速度以上である場合には、充電部から電荷蓄積部を見たときの静電容量が第1又は第2のコンデンサ単体の静電容量となるように第1及び第2のスイッチング素子を制御して、第1及び第2のコンデンサのうちの何れか一方を個別に充電する。 In order to solve the above-described problems and achieve the object, the DC power supply according to the present disclosure is a DC power supply that converts AC power into DC power and supplies DC power to a load having a motor. A DC power supply device includes a rectifier circuit, a reactor, a charge storage section, a charging section, and a control section. The rectifier circuit rectifies an AC voltage, which is the voltage of AC power. A reactor is connected to the input side or the output side of the rectifier circuit. The charge storage section has first and second capacitors connected in series and is connected across the output terminals to the load. The charging unit includes first and second switching elements connected in series, a first backflow prevention element that prevents backflow of charge in the first capacitor, and a second backflow prevention element that prevents backflow of charge in the second capacitor. and two backflow prevention elements to selectively charge one or both of the first and second capacitors. When the control unit controls the operation of the charging unit, if the rotation speed of the motor is equal to or higher than the first speed, the electrostatic capacity when the charge storage unit is viewed from the charging unit is the first or second value. Either one of the first and second capacitors is individually charged by controlling the first and second switching elements so as to have the capacitance of a single capacitor.
 本開示に係る直流電源装置によれば、高効率化、低コスト化、及び長寿命化に寄与できるという効果を奏する。 The DC power supply device according to the present disclosure has the effect of contributing to higher efficiency, lower cost, and longer life.
実施の形態1に係る直流電源装置の構成例を示す回路図1 is a circuit diagram showing a configuration example of a DC power supply device according to Embodiment 1; 実施の形態1に係る直流電源装置におけるスイッチング制御状態の一例を示す図A diagram showing an example of a switching control state in the DC power supply device according to Embodiment 1. 実施の形態1に係る直流電源装置における各動作モードを示す図FIG. 2 shows each operation mode in the DC power supply device according to Embodiment 1; 実施の形態1に係る直流電源装置が動作モード(1)で動作したときの動作波形の第1の例を示す図FIG. 4 shows a first example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1); 実施の形態1に係る直流電源装置が動作モード(1)で動作したときの動作波形の第2の例を示す図FIG. 4 shows a second example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1); 実施の形態1に係る直流電源装置における各動作モードの特徴を表形式に纏めた図FIG. 2 is a table summarizing the characteristics of each operation mode in the DC power supply according to Embodiment 1. FIG. 実施の形態1に係る直流電源装置の動作説明に供するフローチャートFlowchart for explaining the operation of the DC power supply device according to Embodiment 1 実施の形態1における制御部の機能を実現するハードウェア構成の第1の例を示すブロック図FIG. 3 is a block diagram showing a first example of a hardware configuration that implements the functions of the control unit according to Embodiment 1; 実施の形態1における制御部の機能を実現するハードウェア構成の第2の例を示すブロック図FIG. 4 is a block diagram showing a second example of a hardware configuration that implements the functions of the control unit according to Embodiment 1; 実施の形態2に係る直流電源装置の動作説明に供するフローチャートFlowchart for explaining the operation of the DC power supply device according to the second embodiment 実施の形態2に係る直流電源装置が動作モード(2)で動作したときの動作波形の例を示す図FIG. 11 shows an example of operation waveforms when the DC power supply according to Embodiment 2 operates in operation mode (2); 実施の形態3に係る直流電源装置の動作説明に供するフローチャートFlowchart for explaining the operation of the DC power supply device according to the third embodiment 実施の形態6に係る冷凍サイクル機器の構成例を示す図A diagram showing a configuration example of a refrigeration cycle device according to Embodiment 6
 以下に添付図面を参照し、本開示の実施の形態に係る直流電源装置及び冷凍サイクル機器について詳細に説明する。なお、以下に説明する実施の形態は例示であって、以下の実施の形態によって本開示の範囲が限定されるものではない。 A DC power supply device and a refrigeration cycle device according to an embodiment of the present disclosure will be described below in detail with reference to the accompanying drawings. It should be noted that the embodiments described below are examples, and the scope of the present disclosure is not limited by the following embodiments.
実施の形態1.
 図1は、実施の形態1に係る直流電源装置の構成例を示す回路図である。図1に示す直流電源装置100は、交流電源1から供給される交流電力を直流電力に変換し、変換した直流電力を負荷8に供給するように構成されている。なお、図1では、交流電源1として三相電源を例示しているが、この例に限定されない。交流電源1は、単相電源であってもよい。また、負荷8は、直流電力の供給を受けて電力消費を行う負荷であれば、どのようなものであってもよい。本稿では、負荷8として、冷凍サイクルを適用する機器に用いられる圧縮機のモータを駆動するインバータ負荷を想定している。冷凍サイクルを適用する機器としては、例えば、空気調和機、冷凍機、洗濯乾燥機、冷蔵庫、除湿器、ヒートポンプ式給湯機、ショーケースなどがある。なお、負荷8は、冷凍サイクルを適用する機器の負荷に限らず、掃除機、ファンモータ、換気扇、手乾燥機、誘導加熱電磁調理器などであってもよい。
Embodiment 1.
FIG. 1 is a circuit diagram showing a configuration example of a DC power supply device according to Embodiment 1. FIG. A DC power supply device 100 shown in FIG. 1 is configured to convert AC power supplied from an AC power supply 1 into DC power and supply the converted DC power to a load 8 . Although a three-phase power supply is illustrated as the AC power supply 1 in FIG. 1, it is not limited to this example. The AC power supply 1 may be a single-phase power supply. Moreover, the load 8 may be any load as long as it receives supply of DC power and consumes power. In this paper, the load 8 is assumed to be an inverter load that drives a motor of a compressor used in equipment to which a refrigeration cycle is applied. Devices to which the refrigerating cycle is applied include, for example, air conditioners, refrigerators, washer/dryers, refrigerators, dehumidifiers, heat pump water heaters, and showcases. Note that the load 8 is not limited to the load of equipment to which the refrigeration cycle is applied, and may be a vacuum cleaner, a fan motor, a ventilation fan, a hand dryer, an induction heating electromagnetic cooker, or the like.
 直流電源装置100は、図1に示すように、整流回路2と、リアクトル3と、充電部4と、電荷蓄積部6と、第1の電圧検出部7aと、第2の電圧検出部7bと、第3の電圧検出部7cと、制御部10とを備える。 As shown in FIG. 1, the DC power supply device 100 includes a rectifier circuit 2, a reactor 3, a charging section 4, a charge storage section 6, a first voltage detection section 7a, a second voltage detection section 7b, and a , a third voltage detection unit 7 c and a control unit 10 .
 整流回路2は、6つの整流ダイオードがフルブリッジ接続された三相全波整流回路として構成されている。整流回路2は、交流電源1から供給される三相交流電力の電圧である三相交流電圧を整流する。交流電源1が単相電源である場合、整流回路2は、4つの整流ダイオードがフルブリッジ接続された単相全波整流回路として構成される。 The rectifier circuit 2 is configured as a three-phase full-wave rectifier circuit in which six rectifier diodes are connected in a full bridge. The rectifier circuit 2 rectifies a three-phase AC voltage, which is the voltage of the three-phase AC power supplied from the AC power supply 1 . When the AC power supply 1 is a single-phase power supply, the rectifier circuit 2 is configured as a single-phase full-wave rectifier circuit in which four rectifier diodes are connected in a full bridge.
 電荷蓄積部6は、直列に接続された第1のコンデンサ6a及び第2のコンデンサ6bを有する。第1のコンデンサ6aは上位電位側に位置し、第2のコンデンサ6bは下位電位側に位置する。第1のコンデンサ6a及び第2のコンデンサ6bは充電部4によって充電され、充電部4から供給される電荷を保持する。 The charge storage unit 6 has a first capacitor 6a and a second capacitor 6b connected in series. The first capacitor 6a is positioned on the higher potential side, and the second capacitor 6b is positioned on the lower potential side. The first capacitor 6 a and the second capacitor 6 b are charged by the charging section 4 and retain the charges supplied from the charging section 4 .
 充電部4は、直列に接続された第1のスイッチング素子4a及び第2のスイッチング素子4bと、第1の逆流防止素子5aと、第2の逆流防止素子5bとを有する。充電部4は、リアクトル3を介して整流回路2の出力側に接続される。第1のコンデンサ6a及び第2のコンデンサ6bによる直列回路は、充電部4と負荷8との間において、負荷8への出力端子間に接続される。なお、図1において、リアクトル3は整流回路2の出力側に接続されているが、この構成に限定されない。リアクトル3は整流回路2の入力側、即ち交流電源1と整流回路2との間に接続されていてもよい。 The charging section 4 has a first switching element 4a and a second switching element 4b connected in series, a first backflow prevention element 5a, and a second backflow prevention element 5b. Charging unit 4 is connected to the output side of rectifier circuit 2 via reactor 3 . A series circuit of the first capacitor 6 a and the second capacitor 6 b is connected between the output terminals to the load 8 between the charging section 4 and the load 8 . Although the reactor 3 is connected to the output side of the rectifier circuit 2 in FIG. 1, the configuration is not limited to this. The reactor 3 may be connected to the input side of the rectifier circuit 2 , that is, between the AC power supply 1 and the rectifier circuit 2 .
 第1のスイッチング素子4a及び第2のスイッチング素子4bの一例は、図示のIGBT(Insulated Gate Bipolar Transistors)であるが、これに限定されない。IGBTに代えて、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いてもよい。また、IGBT及びMOSFET以外の半導体素子を用いてもよい。 An example of the first switching element 4a and the second switching element 4b is the illustrated IGBT (Insulated Gate Bipolar Transistors), but is not limited to this. A MOSFET (Metal Oxide Semiconductor Field Effect Transistor) may be used instead of the IGBT. Semiconductor elements other than IGBTs and MOSFETs may also be used.
 第1のスイッチング素子4a及び第2のスイッチング素子4bの各々は、スイッチングによるサージ電圧を抑制する目的で、逆並列に接続される還流ダイオードを備える構成としてもよい。なお、第1のスイッチング素子4a及び第2のスイッチング素子4bがMOSFETである場合、MOSFET内部に形成される寄生ダイオードを還流ダイオードとして用いてもよい。また、第1のスイッチング素子4a及び第2のスイッチング素子4bを形成する材料は、ケイ素(Si)だけでなく、ワイドバンドギャップ半導体である炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドであってもよい。ワイドバンドギャップ半導体によって形成された半導体素子を用いれば、低損失化、高速スイッチング化を実現できる。 Each of the first switching element 4a and the second switching element 4b may have a freewheeling diode connected in anti-parallel for the purpose of suppressing a surge voltage due to switching. When the first switching element 4a and the second switching element 4b are MOSFETs, parasitic diodes formed inside the MOSFETs may be used as free wheel diodes. Materials forming the first switching element 4a and the second switching element 4b include not only silicon (Si) but also silicon carbide (SiC), which is a wide bandgap semiconductor, gallium nitride (GaN), gallium oxide ( Ga 2 O 3 ), diamond. By using a semiconductor element made of a wide bandgap semiconductor, low loss and high speed switching can be realized.
 第1のスイッチング素子4a及び第2のスイッチング素子4bからなる直列回路の中点は、第1のコンデンサ6a及び第2のコンデンサ6bからなる直列回路の中点に接続される。第1の逆流防止素子5aのアノードは第1のスイッチング素子4aのコレクタに接続され、第1の逆流防止素子5aのカソードは第1のコンデンサ6aの正極側に接続される。即ち、第1の逆流防止素子5aは、第1のコンデンサ6aの電荷の逆流を防止する向きに接続される。また、第2の逆流防止素子5bのカソードは第2のスイッチング素子4bのエミッタに接続され、第2の逆流防止素子5bのアノードは第2のコンデンサ6bの負極側に接続される。即ち、第2の逆流防止素子5bは、第2のコンデンサ6bの電荷の逆流を防止する向きに接続される。また、これらの構成により、充電部4は、第1のスイッチング素子4a及び第2のスイッチング素子4bの一方又は両方を選択的に充電する。 The midpoint of the series circuit composed of the first switching element 4a and the second switching element 4b is connected to the midpoint of the series circuit composed of the first capacitor 6a and the second capacitor 6b. The anode of the first backflow prevention element 5a is connected to the collector of the first switching element 4a, and the cathode of the first backflow prevention element 5a is connected to the positive electrode side of the first capacitor 6a. That is, the first backflow prevention element 5a is connected in a direction that prevents the backflow of electric charges in the first capacitor 6a. The cathode of the second backflow prevention element 5b is connected to the emitter of the second switching element 4b, and the anode of the second backflow prevention element 5b is connected to the negative electrode side of the second capacitor 6b. That is, the second backflow prevention element 5b is connected in a direction that prevents the backflow of electric charges in the second capacitor 6b. Moreover, with these configurations, the charging unit 4 selectively charges one or both of the first switching element 4a and the second switching element 4b.
 第1の電圧検出部7aは第1のコンデンサ6aの電圧であるコンデンサ電圧Vpcを検出し、第2の電圧検出部7bは第2のコンデンサ6bの電圧であるコンデンサ電圧Vncを検出する。また、第3の電圧検出部7cは、第1のコンデンサ6aの正極と第2のコンデンサ6bの負極との間の電圧である出力電圧Vdcを検出する。第1の電圧検出部7aによって検出されたコンデンサ電圧Vpcの検出値、第2の電圧検出部7bによって検出されたコンデンサ電圧Vncの検出値、及び第3の電圧検出部7cによって検出された出力電圧Vdcの検出値は、制御部10に入力される。制御部10は、これらのコンデンサ電圧Vpc,Vnc及び出力電圧Vdcの検出値に基づいて、充電部4の動作を制御する。具体的に、制御部10は、第1のスイッチング素子4a及び第2のスイッチング素子4bをオンオフ制御することにより、負荷8に印加する直流電圧を制御する。なお、コンデンサ電圧Vpc,Vnc及び出力電圧Vdcの間には、Vdc=Vpc+Vncの関係があるので、第1の電圧検出部7a、第2の電圧検出部7b及び第3の電圧検出部7cの全てを備える必要はない。これらの電圧検出部のうちの何れか2つを備え、2つの電圧検出部から取得した電圧情報を用いて残り1つの電圧を推定してもよい。 The first voltage detection section 7a detects the capacitor voltage Vpc, which is the voltage of the first capacitor 6a, and the second voltage detection section 7b detects the capacitor voltage Vnc, which is the voltage of the second capacitor 6b. Further, the third voltage detection section 7c detects an output voltage Vdc which is the voltage between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b. The detected value of the capacitor voltage Vpc detected by the first voltage detector 7a, the detected value of the capacitor voltage Vnc detected by the second voltage detector 7b, and the output voltage detected by the third voltage detector 7c The detected value of Vdc is input to the control unit 10 . The control unit 10 controls the operation of the charging unit 4 based on the detected values of the capacitor voltages Vpc and Vnc and the output voltage Vdc. Specifically, the control unit 10 controls the DC voltage applied to the load 8 by on/off controlling the first switching element 4a and the second switching element 4b. Since there is a relationship of Vdc=Vpc+Vnc between the capacitor voltages Vpc and Vnc and the output voltage Vdc, all of the first voltage detector 7a, the second voltage detector 7b and the third voltage detector 7c need not be provided. Any two of these voltage detection units may be provided, and voltage information acquired from the two voltage detection units may be used to estimate the remaining one voltage.
 次に、制御部10による第1のスイッチング素子4a及び第2のスイッチング素子4bのスイッチング制御について、図1~図3の図面を参照して説明する。図2は、実施の形態1に係る直流電源装置におけるスイッチング制御状態の一例を示す図である。図3は、実施の形態1に係る直流電源装置における各動作モードを示す図である。なお、図2では、図の簡略化のため、各構成要素の符号を省略している。 Next, switching control of the first switching element 4a and the second switching element 4b by the control section 10 will be described with reference to FIGS. 1 to 3. FIG. FIG. 2 is a diagram showing an example of a switching control state in the DC power supply device according to Embodiment 1. FIG. FIG. 3 is a diagram showing each operation mode in the DC power supply device according to Embodiment 1. FIG. In addition, in FIG. 2, the code|symbol of each component is abbreviate|omitted for the simplification of a figure.
 図2の状態Aは、第1のスイッチング素子4a及び第2のスイッチング素子4bが双方共にオフ制御されている状態を示している。この状態では、第1のコンデンサ6a及び第2のコンデンサ6bの充電が行われる。 State A in FIG. 2 shows a state in which both the first switching element 4a and the second switching element 4b are controlled to be off. In this state, the first capacitor 6a and the second capacitor 6b are charged.
 図2の状態Bは、第1のスイッチング素子4aがオン制御され、第2のスイッチング素子4bがオフ制御されている状態を示している。この状態では、第2のコンデンサ6bのみ充電が行われる。 State B in FIG. 2 shows a state in which the first switching element 4a is controlled to be ON and the second switching element 4b is controlled to be OFF. In this state, only the second capacitor 6b is charged.
 図2の状態Cは、第2のスイッチング素子4bがオン制御され、第1のスイッチング素子4aがオフ制御されている状態を示している。この状態では、第1のコンデンサ6aのみ充電が行われる。 State C in FIG. 2 shows a state in which the second switching element 4b is controlled to be ON and the first switching element 4a is controlled to be OFF. In this state, only the first capacitor 6a is charged.
 図2の状態Dは、第1のスイッチング素子4a及び第2のスイッチング素子4bが双方共にオン制御されている短絡状態を示している。この状態では、第1のコンデンサ6aおよび第2のコンデンサ6bの双方の充電が行われない。 State D in FIG. 2 shows a short-circuit state in which both the first switching element 4a and the second switching element 4b are on-controlled. In this state, neither the first capacitor 6a nor the second capacitor 6b are charged.
 実施の形態1では、図2に示す各状態を切り替えることにより、負荷8に供給する直流電圧を制御しつつ、交流電源1から流れる電流が急峻に大きくなる突入電流を抑制する。 In the first embodiment, by switching between the states shown in FIG. 2, the DC voltage supplied to the load 8 is controlled while suppressing the rush current in which the current flowing from the AC power supply 1 sharply increases.
 図3には、実施の形態1に係る直流電源装置100における各動作モードが示されている。図3に示されるように、実施の形態1に係る直流電源装置100は、動作モード(1)~(9)までの9つの動作モードを有している。以下、各動作モードについて説明する。なお、図3中のA~Dは、図2の各状態を示している。また、以下の説明中で使用するオンデューティD1は、第1のスイッチング素子4aがオン状態及びオフ状態である全体時間に対するオン状態である時間の比率である。同様に、オンデューティD2は、第2のスイッチング素子4bがオン状態及びオフ状態である全体時間に対するオン状態である時間の比率である。 FIG. 3 shows each operation mode in the DC power supply device 100 according to the first embodiment. As shown in FIG. 3, the DC power supply device 100 according to Embodiment 1 has nine operation modes (1) to (9). Each operation mode will be described below. Note that A to D in FIG. 3 indicate each state in FIG. Also, the on-duty D1 used in the following description is the ratio of the time during which the first switching element 4a is in the ON state to the total time during which it is in the ON state and the OFF state. Similarly, the on-duty D2 is the ratio of the time during which the second switching element 4b is in the ON state to the total time during which it is in the ON state and the OFF state.
 動作モード(1)は、第1のスイッチング素子4a及び第2のスイッチング素子4bを常時オフ制御状態としたモードである。このとき、第1のコンデンサ6a及び第2のコンデンサ6bのそれぞれが充電され、出力電圧Vdcの大きさは、交流電源1から印加される交流電圧の実効値Vacの約√2倍となる。また、第1のコンデンサ6a及び第2のコンデンサ6bは、電気的に直列接続された状態で充電される。このため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a及び第2のコンデンサ6b全体の静電容量である合成静電容量になる。合成静電容量は、第1のコンデンサ6a又は第2のコンデンサ6b単体の静電容量の約1/2である。 The operation mode (1) is a mode in which the first switching element 4a and the second switching element 4b are always controlled to be off. At this time, the first capacitor 6a and the second capacitor 6b are each charged, and the magnitude of the output voltage Vdc becomes about √2 times the effective value Vac of the AC voltage applied from the AC power supply 1. Also, the first capacitor 6a and the second capacitor 6b are electrically connected in series and charged. Therefore, the electrostatic capacity when the charge accumulating part 6 is viewed from the charging part 4 during charging is the combined electrostatic capacity, which is the total electrostatic capacity of the first capacitor 6a and the second capacitor 6b. The combined capacitance is approximately half the capacitance of the first capacitor 6a or the second capacitor 6b alone.
 動作モード(2)は、第1のスイッチング素子4aのオンデューティD1を0%<D1≦100%の範囲とし、第2のスイッチング素子4bを常時オフ制御状態としたモードである。このとき、第2のコンデンサ6bが充電され、出力電圧Vdcの大きさは交流電圧の実効値Vacの約√2倍となる。また、第2のコンデンサ6bのみに充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第2のコンデンサ6b単体の値となる。 The operation mode (2) is a mode in which the on-duty D1 of the first switching element 4a is in the range of 0%<D1≦100%, and the second switching element 4b is always in the OFF control state. At this time, the second capacitor 6b is charged, and the magnitude of the output voltage Vdc becomes approximately √2 times the effective value Vac of the AC voltage. In addition, since only the second capacitor 6b is charged, the capacitance of the second capacitor 6b when viewed from the charging unit 4 during charging is the value of the second capacitor 6b alone.
 動作モード(3)は、第1のスイッチング素子4aを常時オフ制御状態とし、第2のスイッチング素子4bのオンデューティD2を0%<D2≦100%の範囲としたモードである。このとき、第1のコンデンサ6aが充電され、出力電圧Vdcの大きさは交流電圧の実効値Vacの約√2倍となる。また、第1のコンデンサ6aのみに充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a単体の値となる。 The operation mode (3) is a mode in which the first switching element 4a is always controlled to be off and the on-duty D2 of the second switching element 4b is in the range of 0%<D2≦100%. At this time, the first capacitor 6a is charged, and the magnitude of the output voltage Vdc becomes approximately √2 times the effective value Vac of the AC voltage. In addition, since only the first capacitor 6a is charged, the capacitance of the first capacitor 6a when viewed from the charging unit 4 during charging is the value of the first capacitor 6a alone.
 動作モード(4)は、第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2を0%<D1=D2<100%の範囲とし、第1のスイッチング素子4aの駆動信号Gpと第2のスイッチング素子4bの駆動信号Gnとの間の位相差を0度としたモードである。状態Dの期間では、第1のコンデンサ6aの正極と第2のコンデンサ6bの負極との間が短絡することで、リアクトル3にエネルギーが蓄えられる。状態Aの期間では、リアクトル3に蓄えられたエネルギーにより第1のコンデンサ6a及び第2のコンデンサ6bが充電される。これにより、出力電圧Vdcの大きさを動作モード(1)~(3)の場合よりも大きくすることができる。また、第1のコンデンサ6a及び第2のコンデンサ6bが電気的に直列接続された状態で充電される。このため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a及び第2のコンデンサ6b全体の合成静電容量となり、第1のコンデンサ6a又は第2のコンデンサ6b単体の静電容量の約1/2になる。なお、駆動信号Gpと駆動信号Gnとの間の位相差を0度としているため、コンデンサ電圧Vpcの大きさと、コンデンサ電圧Vncの大きさとは概ね等しくなる。また、位相差は必ずしも0度である必要はないが、位相差があるとコンデンサ電圧Vpcとコンデンサ電圧Vncとがアンバランスとなる。 In operation mode (4), the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b are in the range of 0%<D1=D2<100%, and the first switching element 4a is driven. In this mode, the phase difference between the signal Gp and the drive signal Gn for the second switching element 4b is 0 degrees. During the period of state D, energy is stored in the reactor 3 by short-circuiting between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b. During the period of state A, the energy stored in the reactor 3 charges the first capacitor 6a and the second capacitor 6b. Thereby, the magnitude of the output voltage Vdc can be made larger than in the operation modes (1) to (3). Also, the first capacitor 6a and the second capacitor 6b are charged while being electrically connected in series. Therefore, the electrostatic capacitance when the charge accumulating portion 6 is viewed from the charging portion 4 during charging is the combined electrostatic capacitance of the first capacitor 6a and the second capacitor 6b as a whole. 2 is about 1/2 of the capacitance of the single capacitor 6b. Since the phase difference between the drive signal Gp and the drive signal Gn is set to 0 degrees, the magnitude of the capacitor voltage Vpc and the magnitude of the capacitor voltage Vnc are approximately equal. Also, the phase difference does not necessarily have to be 0 degrees, but if there is a phase difference, the capacitor voltage Vpc and the capacitor voltage Vnc become unbalanced.
 動作モード(5)は、第1のスイッチング素子のオンデューティD1を0%<D1<100%の範囲とし、第2のスイッチング素子4bを常時オン制御状態としたモードである。状態Dの期間では、第1のコンデンサ6aの正極と第2のコンデンサ6bの負極との間が短絡することで、リアクトル3にエネルギーが蓄えられる。状態Cの期間では、リアクトル3に蓄えられたエネルギーにより第1のコンデンサ6aが充電される。これにより、出力電圧Vdcの大きさを動作モード(1)~(3)の場合よりも大きくすることができる。また、第1のコンデンサ6aのみに充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a単体の値となる。 The operation mode (5) is a mode in which the on-duty D1 of the first switching element is in the range of 0%<D1<100%, and the second switching element 4b is always on. During the period of state D, energy is stored in the reactor 3 by short-circuiting between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b. During the period of state C, the energy stored in the reactor 3 charges the first capacitor 6a. Thereby, the magnitude of the output voltage Vdc can be made larger than in the operation modes (1) to (3). In addition, since only the first capacitor 6a is charged, the capacitance of the first capacitor 6a when viewed from the charging unit 4 during charging is the value of the first capacitor 6a alone.
 動作モード(6)は、第1のスイッチング素子4aを常時オン制御状態とし、第2のスイッチング素子4bのオンデューティD2を0%<D2<100%の範囲としたモードである。状態Dの期間では、第1のコンデンサ6aの正極と第2のコンデンサ6bの負極との間が短絡することで、リアクトル3にエネルギーが蓄えられる。状態Bの期間では、リアクトル3に蓄えられたエネルギーにより第2のコンデンサ6bが充電される。これにより、出力電圧Vdcの大きさを動作モード(1)~(3)の場合よりも大きくすることができる。また、第2のコンデンサ6bのみに充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は第2のコンデンサ6b単体の値となる。 The operation mode (6) is a mode in which the first switching element 4a is always on-controlled and the on-duty D2 of the second switching element 4b is in the range of 0%<D2<100%. During the period of state D, energy is stored in the reactor 3 by short-circuiting between the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b. During the period of state B, the energy stored in the reactor 3 charges the second capacitor 6b. Thereby, the magnitude of the output voltage Vdc can be made larger than in the operation modes (1) to (3). In addition, since only the second capacitor 6b is charged, the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the value of the second capacitor 6b alone.
 動作モード(7)は、第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2を0%<D1=D2<50%の範囲とし、第1のスイッチング素子4aの駆動信号Gpと第2のスイッチング素子4bの駆動信号Gnとの間の位相差を180度としたモードである。状態Bの期間では第2のコンデンサ6bが充電され、状態Cの期間では第1のコンデンサ6aが充電される。これにより、出力電圧Vdcの大きさは、交流電圧の実効値Vacに対して、Vac×√2<Vdc<Vac×2×√2の関係となる。なお、出力電圧Vdcの大きさはオンデューティD1,D2に比例する。また、第1のコンデンサ6a及び第2のコンデンサ6bは交互に充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a又は第2のコンデンサ6b単体の値となる。 In operation mode (7), the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b are in the range of 0%<D1=D2<50%, and the first switching element 4a is driven. In this mode, the phase difference between the signal Gp and the drive signal Gn for the second switching element 4b is 180 degrees. During state B, the second capacitor 6b is charged, and during state C, the first capacitor 6a is charged. As a result, the magnitude of the output voltage Vdc has a relationship of Vac×√2<Vdc<Vac×2×√2 with respect to the effective value Vac of the AC voltage. Note that the magnitude of the output voltage Vdc is proportional to the on-duties D1 and D2. In addition, since the first capacitor 6a and the second capacitor 6b are charged alternately, the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the same as that of the first capacitor 6a or the second capacitor 6b. is the value of the capacitor 6b alone.
 動作モード(8)は、第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2をD1=D2=50%の範囲とし、第1のスイッチング素子4aの駆動信号Gpと第2のスイッチング素子4bの駆動信号Gnとの間の位相差を180度としたモードである。状態Bの期間では第2のコンデンサ6bが充電され、状態Cの期間では第1のコンデンサ6aが充電される。これにより、出力電圧Vdcの大きさは、Vdc=Vac×2×√2となる。また、第1のコンデンサ6a及び第2のコンデンサ6bは交互に充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a又は第2のコンデンサ6b単体の値となる。 In operation mode (8), the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b are in the range of D1=D2=50%, and the drive signal Gp of the first switching element 4a and In this mode, the phase difference with the drive signal Gn for the second switching element 4b is 180 degrees. During state B, the second capacitor 6b is charged, and during state C, the first capacitor 6a is charged. As a result, the magnitude of the output voltage Vdc is Vdc=Vac×2×√2. In addition, since the first capacitor 6a and the second capacitor 6b are charged alternately, the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the same as that of the first capacitor 6a or the second capacitor 6b. is the value of the capacitor 6b alone.
 動作モード(9)は、第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2を50%<D1=D2<100%の範囲とし、第1のスイッチング素子4aの駆動信号Gpと第2のスイッチング素子4bの駆動信号Gnとの間の位相差を180度としたモードである。状態Dの期間では第1のコンデンサ6aの正極と第2のコンデンサ6bの負極との間が短絡することで、リアクトル3にエネルギーが蓄えられる。リアクトル3に蓄えられたエネルギーにより、状態Bの期間では第2のコンデンサ6bが充電され、状態Cの期間では第1のコンデンサ6aが充電される。これにより、出力電圧Vdcの大きさは、交流電圧の実効値Vacに対して、Vdc>Vac×2×√2の関係とすることができる。また、第1のコンデンサ6a及び第2のコンデンサ6bは交互に充電されるため、充電時における充電部4から電荷蓄積部6を見たときの静電容量は、第1のコンデンサ6a又は第2のコンデンサ6b単体の値となる。 In operation mode (9), the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b are in the range of 50%<D1=D2<100%, and the first switching element 4a is driven. In this mode, the phase difference between the signal Gp and the drive signal Gn for the second switching element 4b is 180 degrees. During the period of state D, energy is stored in the reactor 3 by short-circuiting the positive electrode of the first capacitor 6a and the negative electrode of the second capacitor 6b. The energy stored in the reactor 3 charges the second capacitor 6b during the state B period, and charges the first capacitor 6a during the state C period. As a result, the magnitude of the output voltage Vdc can have a relationship of Vdc>Vac×2×√2 with respect to the effective value Vac of the AC voltage. In addition, since the first capacitor 6a and the second capacitor 6b are charged alternately, the capacitance when the charge storage unit 6 is viewed from the charging unit 4 during charging is the same as that of the first capacitor 6a or the second capacitor 6b. is the value of the capacitor 6b alone.
 以上のように、実施の形態1に係る直流電源装置100では、第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2を変化させることにより、負荷8に印加する直流電圧を制御することができる。 As described above, in the DC power supply device 100 according to Embodiment 1, by changing the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b, the direct current applied to the load 8 Voltage can be controlled.
 次に、実施の形態1に係る直流電源装置100の要点について、図4から図7の図面を参照して説明する。図4は、実施の形態1に係る直流電源装置が動作モード(1)で動作したときの動作波形の第1の例を示す図である。図5は、実施の形態1に係る直流電源装置が動作モード(1)で動作したときの動作波形の第2の例を示す図である。図6は、実施の形態1に係る直流電源装置における各動作モードの特徴を表形式に纏めた図である。図7は、実施の形態1に係る直流電源装置の動作説明に供するフローチャートである。 Next, the gist of the DC power supply device 100 according to Embodiment 1 will be described with reference to FIGS. 4 to 7. FIG. FIG. 4 is a diagram showing a first example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1). FIG. 5 is a diagram showing a second example of operation waveforms when the DC power supply according to Embodiment 1 operates in operation mode (1). FIG. 6 is a table summarizing the characteristics of each operation mode in the DC power supply according to the first embodiment. 7 is a flowchart for explaining the operation of the DC power supply device according to Embodiment 1. FIG.
 前述したように、動作モード(1)は、充電部4から電荷蓄積部6を見たときの静電容量が、第1のコンデンサ6a又は第2のコンデンサ6b単体の静電容量の約1/2になる動作モードである。図4及び図5には、直流電源装置100が動作モード(1)で動作したときの動作波形が示されている。各図では、上側から順に、整流回路2への入力電流、第3の電圧検出部7cでの検出電圧、並びに第1及び第2の電圧検出部7a,7bでの検出電圧の波形が示されている。また、各図の横軸は時間を表している。両者の違いは、図4は、負荷電力が15kW、即ち軽負荷の場合の例であるのに対し、図5は、負荷電力が30kW、即ち中負荷もしくは重負荷の場合の例である。図4に示されるように、負荷電力が比較的小さい場合には、動作モード(1)であっても、出力電圧Vdcのリプルが小さい状態で推移する。これに対し、図5に示されるように、負荷電力が比較的大きい場合には、出力電圧Vdcのリプルが大きくなる。 As described above, in operation mode (1), the capacitance of the charge storage unit 6 when viewed from the charging unit 4 is about 1/1 of the capacitance of the first capacitor 6a or the second capacitor 6b alone. 2 is the operation mode. 4 and 5 show operation waveforms when the DC power supply 100 operates in operation mode (1). In each figure, the waveforms of the input current to the rectifier circuit 2, the voltage detected by the third voltage detector 7c, and the voltages detected by the first and second voltage detectors 7a and 7b are shown in order from the top. ing. Moreover, the horizontal axis of each figure represents time. The difference between the two is that FIG. 4 is an example in which the load power is 15 kW, ie, a light load, whereas FIG. 5 is an example in which the load power is 30 kW, ie, a medium load or heavy load. As shown in FIG. 4, when the load power is relatively small, even in the operation mode (1), the ripple of the output voltage Vdc is kept small. On the other hand, as shown in FIG. 5, when the load power is relatively large, the ripple of the output voltage Vdc becomes large.
 動作モード(1)の場合、図2及び図3に示すように、状態Aが継続するので、充電部4から電荷蓄積部6を見たときの静電容量が、常に第1のコンデンサ6a又は第2のコンデンサ6b単体の静電容量の約1/2の状態で充電が行われることとなる。従って、図5に示されるように、負荷電力が増大した場合には、出力電圧Vdc及び出力電流のリプルが増加する。これにより、[発明が解決しようとする課題]の項で説明したように、第1のコンデンサ6a又は第2のコンデンサ6bの寿命劣化の進行が速くなるという課題が生ずる。また、第1のコンデンサ6a又は第2のコンデンサ6bの静電容量が小さい場合、電源高調波の増加及び力率の悪化を招いて、直流電源装置100の効率を悪化させるおそれもある。また、これらの課題の解決のために静電容量の大きいコンデンサを用いると、装置のコスト増を招くという別な課題が生ずる。 In the case of operation mode (1), state A continues as shown in FIGS. Charging is performed in a state of about half the capacitance of the second capacitor 6b alone. Therefore, as shown in FIG. 5, when the load power increases, the ripples of the output voltage Vdc and the output current increase. As a result, as described in the section [Problems to be Solved by the Invention], the life deterioration of the first capacitor 6a or the second capacitor 6b accelerates. Further, if the capacitance of the first capacitor 6a or the second capacitor 6b is small, the efficiency of the DC power supply 100 may be deteriorated due to an increase in power source harmonics and deterioration of the power factor. Moreover, if a capacitor with a large capacitance is used to solve these problems, another problem arises in that the cost of the device increases.
 更に、負荷8が冷凍サイクル機器に用いられる圧縮機である場合、より高い冷凍能力を出すために圧縮機モータの駆動周波数を上げる場合が多い。この場合、圧縮機モータの誘起電圧の増加に伴い、より高い電圧を圧縮機モータに印加する必要がある。また、インバータの最大出力電圧は、直流電源装置100の出力電圧によって決まる。このため、負荷8により高い電圧を印加するには、直流電源装置100の出力電圧を大きくする必要がある。以上のことから、直流電源装置100には、負荷8を駆動するのに十分な電圧を出力しつつ、電源高調波を抑え、高力率な運転を行うことが要請される。 Furthermore, when the load 8 is a compressor used in refrigeration cycle equipment, the drive frequency of the compressor motor is often increased in order to achieve higher refrigeration capacity. In this case, as the induced voltage of the compressor motor increases, it is necessary to apply a higher voltage to the compressor motor. Also, the maximum output voltage of the inverter is determined by the output voltage of the DC power supply 100 . Therefore, in order to apply a higher voltage to load 8, the output voltage of DC power supply 100 must be increased. In view of the above, the DC power supply 100 is required to output a voltage sufficient to drive the load 8, suppress power supply harmonics, and operate with a high power factor.
 以上の点を踏まえ、本稿の各実施の形態では、負荷の運転条件に応じて、動作モードを使い分ける。また、上述した充電時の合成静電容量の観点から、使用しない動作モードを決定する。具体的に、本稿の各実施の形態では、動作モード(4)を非使用とする。なお、本稿では、動作モード(1)~(3)を、それぞれ「第1の動作モード」、「第2の動作モード」及び「第3の動作モード」と呼び、動作モード(5)~(9)を、それぞれ「第4の動作モード」、「第5の動作モード」、「第6の動作モード」、「第7の動作モード」及び「第8の動作モード」と呼ぶ場合がある。 Based on the above points, each embodiment of this paper uses different operation modes according to the operating conditions of the load. In addition, from the viewpoint of the combined capacitance during charging described above, an operation mode not to be used is determined. Specifically, in each embodiment of this paper, the operation mode (4) is not used. In this paper, operation modes (1) to (3) are referred to as "first operation mode", "second operation mode" and "third operation mode" respectively, and operation modes (5) to ( 9) are sometimes referred to as a "fourth mode of operation", a "fifth mode of operation", a "sixth mode of operation", a "seventh mode of operation" and an "eighth mode of operation", respectively.
 次に、実施の形態1に係る直流電源装置100の動作について説明する。ここでは、負荷8が圧縮機である場合を例にとり、動作モード(1)~(3)、動作モード(5)~(9)を圧縮機のモータの回転速度に応じて使い分ける実施例について説明する。 Next, the operation of the DC power supply device 100 according to Embodiment 1 will be described. Here, taking the case where the load 8 is a compressor as an example, an embodiment will be described in which operation modes (1) to (3) and operation modes (5) to (9) are selectively used according to the rotation speed of the compressor motor. do.
 図6には、動作モード(1)~(9)における出力電圧Vdcの大きさ、及び各動作モードに対応する合成静電容量が示されると共に、各動作モードが好適となるモータの運転条件として、負荷トルク及び回転速度が示されている。 FIG. 6 shows the magnitude of the output voltage Vdc in operation modes (1) to (9) and the combined capacitance corresponding to each operation mode. , the load torque and the rotation speed are shown.
 前述したように、出力電圧Vdcの大きさは、リアクトル3の大きさ、並びに第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2によって決定される。動作モード(1)~(9)の中で最も大きな出力電圧Vdcを出力できるのは動作モード(9)である。動作モード(9)の使用においては、ノイズ又は放熱量を考慮して、出力可能な理論上の最大電圧よりも低い電圧を実使用上の最大電圧とする場合がある。本実施例では、実使用上の最大電圧をVmaxとして説明する。 As described above, the magnitude of the output voltage Vdc is determined by the magnitude of the reactor 3, the on-duty D1 of the first switching element 4a, and the on-duty D2 of the second switching element 4b. Among the operation modes (1) to (9), the operation mode (9) can output the largest output voltage Vdc. When operating mode (9) is used, a voltage lower than the theoretical maximum voltage that can be output may be set as the maximum voltage for practical use in consideration of noise or heat dissipation. In this embodiment, the maximum voltage in actual use is assumed to be Vmax.
 まず、モータの回転速度とモータの誘起電圧とは比例関係にあるので、出力電圧Vdcは、おおよそモータの誘起電圧と同程度の大きさとなる。ここでは、実使用上の最大電圧Vmaxで運転できる最大回転速度、即ちモータの回転速度の上限値をNmaxとする。また、動作モード(8)では出力電圧Vdcの大きさは交流電圧の実効値Vacの2×√2倍となる。ここでは、この出力電圧Vdc=2√2・Vacで運転できる最大回転速度をNmidとする。また、動作モード(4)~(7)における出力電圧Vdcの大きさは√2・Vac<Vdc<2√2・Vacの範囲となり、動作モード(1)~(3)における出力電圧Vdcの大きさはVdc=√2・Vacとなる。ここでは、この出力電圧Vdc=√2・Vacで運転できる最大回転速度をNminとする。なお、本稿では、最大回転速度Nminを「第1の速度」と呼び、最大回転速度Nmidを「第2の速度」と呼ぶ場合がある。 First, since the rotational speed of the motor and the induced voltage of the motor are in a proportional relationship, the output voltage Vdc is approximately the same as the induced voltage of the motor. Here, the maximum rotation speed that can be operated at the maximum voltage Vmax in practical use, ie, the upper limit of the rotation speed of the motor, is defined as Nmax. In the operation mode (8), the magnitude of the output voltage Vdc is 2×√2 times the effective value Vac of the AC voltage. Here, the maximum rotation speed that can be operated with this output voltage Vdc=2√2·Vac is assumed to be Nmid. Further, the magnitude of the output voltage Vdc in the operation modes (4) to (7) is in the range of √2·Vac<Vdc<2√2·Vac, and the magnitude of the output voltage Vdc in the operation modes (1) to (3) is The height is Vdc=√2·Vac. Here, the maximum rotational speed that can be operated with this output voltage Vdc=√2·Vac is defined as Nmin. In this paper, the maximum rotation speed Nmin may be called "first speed" and the maximum rotation speed Nmid may be called "second speed".
 本実施例では、これらの各動作モードごとの最大回転速度を用いて回転速度の領域を定める。具体的に、回転速度が0~Nminの範囲を低速領域とし、回転速度がNmin~Nmidの範囲を中速領域とし、回転速度がNmid~Nmaxの範囲を高速領域と定義する。なお、モータ制御においては、モータの誘起電圧を下げるように電流を流すことで回転速度を増加させる弱め磁束制御が用いられる場合がある。そのため、各動作モードごとの最大回転速度Nmin,Nmid,Nmaxは、弱め磁束制御による電流量によって多少変化する。 In this embodiment, the maximum rotation speed for each of these operation modes is used to determine the rotation speed region. Specifically, the rotation speed range of 0 to Nmin is defined as a low speed region, the rotation speed range of Nmin to Nmid is defined as a medium speed region, and the rotation speed range of Nmid to Nmax is defined as a high speed region. In motor control, there are cases where flux-weakening control is used to increase the rotational speed by supplying a current so as to lower the induced voltage of the motor. Therefore, the maximum rotational speeds Nmin, Nmid, and Nmax for each operation mode slightly change depending on the amount of current generated by the flux-weakening control.
 本実施例では、図6及び図7に示すように、回転速度の領域に応じて、各動作モードが切り替えられる。但し、前述の通り、動作モード(4)は使用しない。以下、図7に従って、具体的な処理フローを説明する。 In this embodiment, as shown in FIGS. 6 and 7, each operation mode is switched according to the rotational speed range. However, as described above, operation mode (4) is not used. A specific processing flow will be described below with reference to FIG.
 まず、制御部10は、回転速度が低速領域であるか否かを判定する(ステップS11)。回転速度が低速領域である場合(ステップS11,Yes)、制御部10は、動作モード(1)~(3)の何れかを選択し(ステップS12)、選択された動作モードにて第1のスイッチング素子4a及び第2のスイッチング素子4bを駆動する(ステップS13)。以降、ステップS11に戻って、図7の処理フローを繰り返す。 First, the control unit 10 determines whether or not the rotational speed is in the low speed range (step S11). If the rotation speed is in the low speed range (step S11, Yes), the control unit 10 selects one of the operation modes (1) to (3) (step S12), and the first operation is performed in the selected operation mode. The switching element 4a and the second switching element 4b are driven (step S13). Henceforth, it returns to step S11 and repeats the processing flow of FIG.
 回転速度が低速領域ではない場合(ステップS11,No)、制御部10は、回転速度が中速領域であるか否かを判定する(ステップS14)。回転速度が中速領域である場合(ステップS14,Yes)、制御部10は、動作モード(5)~(8)の何れかを選択し(ステップS15)、選択された動作モードにて第1のスイッチング素子4a及び第2のスイッチング素子4bを駆動する(ステップS13)。以降、ステップS11に戻って、図7の処理フローを繰り返す。 If the rotation speed is not in the low speed range (step S11, No), the control unit 10 determines whether the rotation speed is in the medium speed range (step S14). If the rotation speed is in the middle speed range (step S14, Yes), the control unit 10 selects one of the operation modes (5) to (8) (step S15), and selects the first operation mode in the selected operation mode. The switching element 4a and the second switching element 4b are driven (step S13). Henceforth, it returns to step S11 and repeats the processing flow of FIG.
 回転速度が中速領域ではない場合(ステップS14,No)、制御部10は、回転速度が高速領域であるか否かを判定する(ステップS16)。なお、ステップS11,S14の判定処理により、回転速度が高速領域である可能性は高いが、ステップS14の処理後に回転速度が変化する可能性もゼロではなく、また、回転速度が領域の境界付近に位置する場合も考慮して、ステップS16の判定処理を設けている。回転速度が高速領域ではない場合(ステップS16,No)、ステップS11に戻って、図7の処理フローを繰り返す。一方、回転速度が高速領域である場合(ステップS16,Yes)、制御部10は、動作モード(9)を選択し(ステップS17)、選択された動作モードにて第1のスイッチング素子4a及び第2のスイッチング素子4bを駆動する(ステップS13)。以降、ステップS11に戻って、図7の処理フローを繰り返す。 If the rotation speed is not in the middle speed range (step S14, No), the control unit 10 determines whether the rotation speed is in the high speed range (step S16). It should be noted that although it is highly likely that the rotation speed is in the high-speed region by the determination processing of steps S11 and S14, the possibility that the rotation speed will change after the processing of step S14 is not zero, and the rotation speed is near the boundary of the region. In consideration of the case where the position is located at , the judgment processing of step S16 is provided. If the rotation speed is not in the high speed region (step S16, No), the process returns to step S11 and repeats the processing flow of FIG. On the other hand, if the rotation speed is in the high speed region (step S16, Yes), the control unit 10 selects the operation mode (9) (step S17), and switches the first switching element 4a and the second switching element 4a in the selected operation mode. 2 switching element 4b is driven (step S13). Henceforth, it returns to step S11 and repeats the processing flow of FIG.
 以上の処理により、モータの回転速度に対して適切な電圧を出力でき、モータを高効率且つ安定に運転できる。なお、動作モードの切り替えに際し、各速度領域を判定するためのモータの回転速度には、回転速度の指令値、速度センサ又は位置センサから得たモータの実回転速度、モータの電流に基づいて計算された回転速度の推定値を用いることができる。 With the above processing, an appropriate voltage can be output for the rotation speed of the motor, and the motor can be operated efficiently and stably. When switching the operation mode, the motor rotation speed for determining each speed range is calculated based on the rotation speed command value, the actual rotation speed of the motor obtained from the speed sensor or the position sensor, and the current of the motor. An estimate of the rotational speed obtained can be used.
 以上説明したように、実施の形態1に係る直流電源装置は、直列に接続された第1及び第2のコンデンサを有する電荷蓄積部と、第1及び第2のコンデンサの一方又は両方を選択的に充電する充電部と、を備える。制御部は、モータの回転速度が第1の速度以上である場合、充電部から電荷蓄積部を見たときの静電容量が単体の静電容量となるように第1及び第2のスイッチング素子を制御して、第1及び第2のコンデンサのうちの何れか一方を個別に充電する。充電部から電荷蓄積部を見たときの静電容量が第1又は第2のコンデンサ単体の静電容量である場合、負荷電力が増大した場合であっても、出力電圧及び出力電流のリプルの増加を抑制することができる。なお、モータの回転速度が第1の速度未満であれば、充電部から電荷蓄積部を見たときの静電容量が第1又は第2のコンデンサ単体の静電容量の1/2になっても、出力電圧及び出力電流のリプルの増加を抑制することができる。出力電圧及び出力電流のリプルの増加を抑制できれば、コンデンサの寿命劣化の進行を遅くすることができるので、直流電源装置の長寿命化に寄与することが可能となる。 As described above, the DC power supply device according to the first embodiment selectively selects one or both of the charge storage unit having the first and second capacitors connected in series and the first and second capacitors. and a charging unit for charging the battery. When the rotation speed of the motor is equal to or higher than the first speed, the controller controls the first and second switching elements so that the capacitance when the charge storage unit is viewed from the charging unit becomes a single capacitance. to individually charge either one of the first and second capacitors. When the capacitance of the charge storage unit viewed from the charging unit is the capacitance of the first or second capacitor alone, even when the load power increases, the output voltage and the ripple of the output current are reduced. increase can be suppressed. If the rotation speed of the motor is less than the first speed, the capacitance of the charge storage unit when viewed from the charging unit is 1/2 of the capacitance of the first or second capacitor alone. can also suppress an increase in ripples in the output voltage and output current. If it is possible to suppress the increase in ripples in the output voltage and output current, it is possible to slow down the deterioration of the life of the capacitor, thereby contributing to the extension of the life of the DC power supply.
 なお、第1及び第2のコンデンサの静電容量が小さい場合、電源高調波の増加及び力率の悪化を招き、直流電源装置の効率が悪化するという課題がある。また、この課題の解決のために静電容量の大きいコンデンサを用いると、装置のコスト増を招くという別な課題が生ずる。これらの課題に対し、実施の形態1に係る制御手法は、第1及び第2のコンデンサの静電容量の増加を抑制しつつ、出力電圧及び出力電流のリプルの増加を抑制することができる。従って、実施の形態1に係る制御手法を用いれば、直流電源装置の高効率化及び低コスト化に寄与することが可能となる。 In addition, when the capacitance of the first and second capacitors is small, there is a problem that an increase in power supply harmonics and deterioration of the power factor are caused, and the efficiency of the DC power supply is deteriorated. Moreover, if a capacitor with a large capacitance is used to solve this problem, another problem arises in that the cost of the device increases. To solve these problems, the control method according to the first embodiment can suppress the increase in the ripples of the output voltage and the output current while suppressing the increase in the capacitance of the first and second capacitors. Therefore, by using the control method according to the first embodiment, it is possible to contribute to the efficiency improvement and cost reduction of the DC power supply.
 次に、実施の形態1における制御部の機能を実現するためのハードウェア構成について、図8及び図9の図面を参照して説明する。図8は、実施の形態1における制御部の機能を実現するハードウェア構成の第1の例を示すブロック図である。図9は、実施の形態1における制御部の機能を実現するハードウェア構成の第2の例を示すブロック図である。 Next, a hardware configuration for realizing the functions of the control unit in Embodiment 1 will be described with reference to FIGS. 8 and 9. FIG. 8 is a block diagram illustrating a first example of a hardware configuration that implements the functions of the control unit according to Embodiment 1. FIG. 9 is a block diagram illustrating a second example of a hardware configuration that implements the functions of the control unit according to Embodiment 1. FIG.
 実施の形態1における制御部10の機能の一部又は全部を実現する場合には、図8に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When realizing part or all of the functions of the control unit 10 in Embodiment 1, as shown in FIG. and an interface 304 for inputting and outputting signals.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be arithmetic means such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). The memory 302 includes nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), Magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versatile Discs) can be exemplified.
 メモリ302には、実施の形態1における制御部10の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program for executing the functions of the control unit 10 according to the first embodiment. Processor 300 performs the above-described processing by exchanging necessary information via interface 304, executing programs stored in memory 302, and referring to tables stored in memory 302 by processor 300. It can be carried out. Results of operations by processor 300 may be stored in memory 302 .
 また、実施の形態1における制御部10の機能の一部を実現する場合には、図9に示す処理回路303を用いることもできる。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して入手することができる。 Also, when implementing part of the functions of the control unit 10 in Embodiment 1, the processing circuit 303 shown in FIG. 9 can also be used. The processing circuit 303 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Information to be input to the processing circuit 303 and information to be output from the processing circuit 303 can be obtained via the interface 304 .
 なお、制御部10における一部の処理を処理回路303で実施し、処理回路303で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。 Note that part of the processing in the control unit 10 may be performed by the processing circuit 303 and the processing not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302 .
実施の形態2.
 次に、実施の形態2に係る直流電源装置について説明する。実施の形態2では、負荷8が圧縮機である場合を例にとり、上述した動作モードを圧縮機のモータの負荷トルク及びモータの回転速度に応じて使い分ける実施例について説明する。なお、実施の形態2では、実施の形態1と同様に動作モード(4)は非使用とする。以降の他の実施の形態でも同様である。
Embodiment 2.
Next, a DC power supply device according to Embodiment 2 will be described. In the second embodiment, an example in which the load 8 is a compressor is taken as an example, and the above-described operation modes are selectively used according to the load torque of the motor of the compressor and the rotational speed of the motor. Note that, in the second embodiment, the operation mode (4) is not used as in the first embodiment. The same applies to other embodiments described below.
 動作モード(1)は、第1のスイッチング素子4a及び第2のスイッチング素子4bを常にオフ状態としておけばよいため、制御が簡便であるというメリットがある。一方、動作モード(1)では、充電部4から電荷蓄積部6を見たときの静電容量が第1のコンデンサ6a又は第2のコンデンサ6b単体の静電容量の約1/2となる。このため、図5に示したように、負荷電力が大きくなると、出力電圧Vdc及び出力電流のリプルが増大し、電源高調波の増加及び力率の悪化を招く。なお、動作モード(1)で動作している場合において、負荷電力が大きくなることは、負荷トルクが大きくなることと同義と考えてよい。以上の点を踏まえ、実施の形態2における具体的な処理フローについて、図10を参照して説明する。図10は、実施の形態2に係る直流電源装置の動作説明に供するフローチャートである。 The operation mode (1) has the advantage of simple control because the first switching element 4a and the second switching element 4b may be kept in the off state at all times. On the other hand, in the operation mode (1), the capacitance of the charge accumulating portion 6 viewed from the charging portion 4 is approximately half the capacitance of the first capacitor 6a or the second capacitor 6b alone. Therefore, as shown in FIG. 5, when the load power increases, ripples in the output voltage Vdc and the output current increase, leading to an increase in power supply harmonics and a deterioration in the power factor. It should be noted that when operating in operation mode (1), an increase in load power may be considered synonymous with an increase in load torque. Based on the above points, a specific processing flow in the second embodiment will be described with reference to FIG. 10 is a flowchart for explaining the operation of the DC power supply device according to Embodiment 2. FIG.
 まず、制御部10は、直流電源装置100を動作モード(1)で動作させる(ステップS21)。次に、制御部10は、動作モード(1)での動作中において、負荷トルクが増大したか否かを判定する(ステップS22)。負荷トルクが増大していない場合(ステップS22,No)、ステップS21に戻って、ステップS21からの処理を繰り返す。一方、負荷トルクが増大している場合(ステップS22,Yes)、更にモータの回転速度が増大したか否かを判定する(ステップS23)。回転速度が増大していない場合(ステップS23,No)、制御部10は、動作モード(2)又は動作モード(3)の何れかを選択し、選択した動作モードで動作させて(ステップS24)、図10の処理フローを終了する。また、回転速度が増大した場合(ステップS23,Yes)、制御部10は、動作モード(5)~(9)のうちの何れかの動作モードを選択し、選択した動作モードで動作させて(ステップS25)、図10の処理フローを終了する。 First, the control unit 10 operates the DC power supply device 100 in operation mode (1) (step S21). Next, the control unit 10 determines whether or not the load torque has increased during operation in operation mode (1) (step S22). If the load torque has not increased (step S22, No), the process returns to step S21 to repeat the process from step S21. On the other hand, if the load torque is increasing (step S22, Yes), it is determined whether or not the rotational speed of the motor has further increased (step S23). If the rotation speed has not increased (step S23, No), the control unit 10 selects either operation mode (2) or operation mode (3), and operates in the selected operation mode (step S24). , the processing flow of FIG. 10 ends. Further, when the rotational speed increases (step S23, Yes), the control unit 10 selects one of the operation modes (5) to (9), operates in the selected operation mode ( Step S25), the processing flow of FIG. 10 is terminated.
 なお、ステップS22の判定処理は、負荷トルクの増加量を閾値と比較するような手法を用いてもよいし、負荷トルクの増加比を閾値と比較するような手法を用いてもよい。また、ステップS23の判定処理で用いる回転速度は、回転速度の指令値、速度センサ又は位置センサから得たモータの実回転速度、モータの電流に基づいて計算された回転速度の推定値を用いることができる。また、ステップS24又はステップS25で選択された動作モードでの動作中において、動作モード(1)が選択された場合には、図10の処理フローが再度呼び出される。 It should be noted that the determination process in step S22 may use a method of comparing the load torque increase amount with a threshold value, or a method of comparing the load torque increase ratio with a threshold value. The rotation speed used in the determination process in step S23 may be a rotation speed command value, the actual rotation speed of the motor obtained from a speed sensor or a position sensor, and an estimated rotation speed calculated based on the current of the motor. can be done. Further, when the operation mode (1) is selected during operation in the operation mode selected in step S24 or step S25, the processing flow of FIG. 10 is called again.
 図10の処理によれば、負荷トルクが増大した場合に、直流電源装置100の動作モードを、動作モード(1)から、動作モード(2)又は動作モード(3)、或いは動作モード(5)~(9)のうちの何れかに切り替えた運転が行われる。切り替えの前後における動作モードは、何れも充電部4から電荷蓄積部6を見たときの静電容量が、第1のコンデンサ6a又は第2のコンデンサ6b単体の値となる動作モードである。これにより、負荷トルクが増大した場合であっても、出力電圧及び出力電流のリプルの増加を抑制することができる。また、充電部4から電荷蓄積部6を見たときの静電容量が大きい状態で電荷蓄積部6を充電できるので、電源高調波を抑え、高力率な運転を行うことができる。 According to the process of FIG. 10, when the load torque increases, the operation mode of the DC power supply 100 is changed from the operation mode (1) to the operation mode (2), the operation mode (3), or the operation mode (5). The operation is switched to any one of (9). The operation modes before and after switching are operation modes in which the capacitance when the charge storage unit 6 is viewed from the charging unit 4 is the value of the first capacitor 6a or the second capacitor 6b alone. As a result, even when the load torque increases, it is possible to suppress an increase in ripples in the output voltage and output current. In addition, since the charge storage section 6 can be charged in a state where the electrostatic capacity of the charge storage section 6 when viewed from the charging section 4 is large, power supply harmonics can be suppressed and operation with a high power factor can be performed.
 図11は、実施の形態2に係る直流電源装置が動作モード(2)で動作したときの動作波形の例を示す図である。図11における動作波形の種類及び表示位置は図5と同じである。また、負荷条件である負荷電力は30kWであり、図5と同じである。なお、オン動作せる第1のスイッチング素子4aのオンデューティD1は“10%”としている。図5と図11との比較から明らかなように、出力電圧Vdcのリプルが図5に比べて大幅に改善していることが分かる。 FIG. 11 is a diagram showing an example of operation waveforms when the DC power supply according to Embodiment 2 operates in operation mode (2). The types and display positions of the operating waveforms in FIG. 11 are the same as in FIG. Also, the load power, which is the load condition, is 30 kW, which is the same as in FIG. The on-duty D1 of the first switching element 4a to be turned on is set to "10%". As is clear from the comparison between FIG. 5 and FIG. 11, the ripple of the output voltage Vdc is greatly improved as compared with FIG.
 次に、図10に示す処理フローを実施する上での着意事項について説明する。まず、動作モード(2)及び動作モード(3)は、本質的な動作は同じであるが、充電するコンデンサは異なる。このため、動作モード(2)の動作時間と動作モード(3)の動作時間とがおおよそ同じになるように制御すれば、各コンデンサの充放電時間を均等化することができる。これにより、各コンデンサの充放電時間を均等化しない場合に比べて、電荷蓄積部6全体の寿命を延ばすことができる。なお、動作モード(5)及び動作モード(6)についても同様な関係である。従って、動作モード(5)の動作時間と動作モード(6)の動作時間とがおおよそ同じになるように制御することで、各コンデンサの充放電時間を均等化することができる。 Next, the considerations for implementing the processing flow shown in FIG. 10 will be described. First, operation mode (2) and operation mode (3) are essentially the same in operation, but different in capacitors to be charged. Therefore, by controlling the operation time of the operation mode (2) and the operation time of the operation mode (3) to be approximately the same, the charge/discharge time of each capacitor can be equalized. As a result, the life of the charge accumulating section 6 as a whole can be extended as compared with the case where the charging and discharging times of the capacitors are not equalized. The same relationship applies to operation mode (5) and operation mode (6). Therefore, by controlling the operation time of the operation mode (5) and the operation time of the operation mode (6) to be approximately the same, the charge/discharge time of each capacitor can be equalized.
 以上説明したように、実施の形態2に係る直流電源装置によれば、制御部は、第1の動作モードの動作中において、モータの負荷トルクの増大が見込まれ、且つモータの回転速度の増大が見込まれる場合には、動作モードを第4から第8の動作モードのうちの何れかに切り替える制御を行う。また、制御部は、第1の動作モードの動作中において、モータの負荷トルクの増大が見込まれる場合であっても、モータの回転速度の増大が見込まれない場合には、動作モードを第2の動作モード又は第3の動作モードのうちの何れかに切り替える制御を行う。これらの制御において、切り替えの前後における動作モードは、何れも充電部から電荷蓄積部を見たときの静電容量が、第1又は第2のコンデンサ単体の値となる動作モードである。これにより、負荷トルクが増大した場合であっても、出力電圧及び出力電流のリプルの増加を抑制することが可能となる。また、充電部から電荷蓄積部を見たときの静電容量が大きい状態で電荷蓄積部を充電できるので、電源高調波を抑え、高力率な運転を行うことが可能となる。 As described above, according to the DC power supply device according to the second embodiment, the control unit, during the operation in the first operation mode, anticipates an increase in the load torque of the motor and increases the rotation speed of the motor. is expected, control is performed to switch the operation mode to any one of the fourth to eighth operation modes. In addition, even if an increase in the load torque of the motor is expected during operation in the first operation mode, the control unit changes the operation mode to the second operation mode when an increase in the rotation speed of the motor is not expected. or the third operation mode. In these controls, the operation modes before and after switching are operation modes in which the electrostatic capacitance when viewed from the charging unit is the value of the first or second capacitor alone. As a result, even when the load torque increases, it is possible to suppress an increase in ripples in the output voltage and output current. In addition, since the charge storage section can be charged in a state where the electrostatic capacity of the charge storage section when viewed from the charging section is large, it is possible to suppress power supply harmonics and perform operation with a high power factor.
実施の形態3.
 次に、実施の形態3に係る直流電源装置について説明する。実施の形態3では、実施の形態1及び実施の形態2に係る直流電源装置において、動作モード(1)から、動作モード(2)又は動作モード(3)、及び動作モード(5)又は動作モード(6)に遷移させる場合の望ましい実施例について説明する。なお、以下の説明は、実施の形態2と同様に、負荷8が圧縮機である場合を例とする。
Embodiment 3.
Next, a DC power supply device according to Embodiment 3 will be described. In Embodiment 3, in the DC power supply devices according to Embodiments 1 and 2, operation mode (1), operation mode (2) or operation mode (3), and operation mode (5) or operation mode A preferred embodiment for transitioning to (6) will now be described. In the following description, as in the second embodiment, the case where the load 8 is a compressor is taken as an example.
 図12は、実施の形態3に係る直流電源装置の動作説明に供するフローチャートである。なお、図12の処理フローは、圧縮機を起動するごとに呼び出される。また、図12の処理フローにおいて、圧縮機の起動回数は、図8に示したメモリ302又は図9に示した処理回路303に記憶されているものとする。 FIG. 12 is a flowchart for explaining the operation of the DC power supply device according to Embodiment 3. FIG. Note that the processing flow of FIG. 12 is called each time the compressor is started. In the processing flow of FIG. 12, it is assumed that the number of times the compressor has been started is stored in the memory 302 shown in FIG. 8 or the processing circuit 303 shown in FIG.
 制御部10は、動作モード(1)の動作中において、動作モード(2)又は動作モード(3)、及び動作モード(5)又は動作モード(6)への遷移が発生した場合、圧縮機の起動回数を確認する(ステップS31)。圧縮機の起動回数が奇数である場合(ステップS31,Yes)、制御部10は、直流電源装置100を動作モード(2)又は動作モード(5)で動作させる(ステップS32)。また、圧縮機の起動回数が偶数である場合(ステップS31,No)、制御部10は、直流電源装置100を動作モード(3)又は動作モード(6)で動作させる(ステップS33)。 During operation in operation mode (1), when a transition to operation mode (2) or operation mode (3) and operation mode (5) or operation mode (6) occurs, the control unit 10 controls the operation of the compressor. The number of activations is confirmed (step S31). If the number of times the compressor has been started is an odd number (step S31, Yes), the control unit 10 operates the DC power supply device 100 in operation mode (2) or operation mode (5) (step S32). If the compressor has been started an even number (step S31, No), the controller 10 causes the DC power supply 100 to operate in operation mode (3) or operation mode (6) (step S33).
 図12の処理フローによれば、動作モード(2)の動作時間と動作モード(3)の動作時間とがおおよそ同じになるように制御することができる。同様に、動作モード(5)の動作時間と動作モード(6)の動作時間とがおおよそ同じになるように制御することができる。これにより、各コンデンサの充放電時間を均等化することができる。その結果、各コンデンサの充放電時間を均等化しない場合に比べて、電荷蓄積部6全体の寿命を延ばすことができる。 According to the processing flow of FIG. 12, it is possible to control the operation time of operation mode (2) and the operation time of operation mode (3) to be approximately the same. Similarly, the operation time of operation mode (5) and the operation time of operation mode (6) can be controlled to be approximately the same. Thereby, the charging and discharging time of each capacitor can be equalized. As a result, the life of the entire charge accumulating section 6 can be extended as compared with the case where the charging and discharging times of the capacitors are not equalized.
 図12の処理フローについて補足する。図12のステップS31では、圧縮機の起動回数が奇数の場合を“Yes”と判定しているが、“No”と判定してもよい。つまり、動作モードの遷移条件を図12の例とは逆にしてもよい。このようにしても、各コンデンサの充放電時間の均等化を図ることができる。 Supplementary information about the processing flow in FIG. In step S31 of FIG. 12, "Yes" is determined when the number of times the compressor is started is an odd number, but "No" may be determined. In other words, the operation mode transition conditions may be reversed from those in the example of FIG. Even in this way, the charge/discharge time of each capacitor can be equalized.
 また、図12のステップS31では、圧縮機の起動回数に基づいて、動作モードの遷移条件を切り替えているが、各コンデンサの充放電時間に基づいて、動作モードの遷移条件を切り替えるようにしてもよい。充放電時間をメモリ302又は処理回路303に記憶しておけば、当該充放電時間が同程度になるように動作モードを切り替えることができる。 In step S31 of FIG. 12, the operation mode transition condition is switched based on the number of times the compressor is started. good. If the charge/discharge time is stored in the memory 302 or the processing circuit 303, the operation mode can be switched so that the charge/discharge time is approximately the same.
 以上説明したように、実施の形態3に係る直流電源装置によれば、制御部は、負荷の起動回数又は第1及び第2のコンデンサの充放電時間に基づいて、第2及び第3の動作モードのうちの何れの動作モードを選択するのかを決定する。これにより、各コンデンサの充放電時間を均等化することができるので、電荷蓄積部全体の寿命を延ばすことが可能となる。 As described above, according to the DC power supply device according to Embodiment 3, the control unit performs the second and third operations based on the number of times the load is started or the charging and discharging times of the first and second capacitors. Decide which of the modes of operation to select. This makes it possible to equalize the charging and discharging times of the capacitors, thereby extending the life of the entire charge storage section.
 また、実施の形態3に係る直流電源装置によれば、制御部は、負荷の起動回数又は第1及び第2のコンデンサの充放電時間に基づいて、第4及び第5の動作モードのうちの何れの動作モードを選択するのかを決定する。これにより、各コンデンサの充放電時間を均等化することができるので、電荷蓄積部全体の寿命を延ばすことが可能となる。 Further, according to the DC power supply device according to the third embodiment, the control unit selects one of the fourth and fifth operation modes based on the number of times the load is started or the charging and discharging times of the first and second capacitors. Decide which operating mode to select. This makes it possible to equalize the charging and discharging times of the capacitors, thereby extending the life of the entire charge storage section.
実施の形態4.
 次に、実施の形態4に係る直流電源装置について説明する。実施の形態4では、負荷8が圧縮機である場合を例にとり、直流電源装置の起動時に適した動作モードについて説明する。
Embodiment 4.
Next, a DC power supply device according to Embodiment 4 will be described. In the fourth embodiment, an operation mode suitable for starting the DC power supply will be described, taking as an example the case where the load 8 is a compressor.
 圧縮機が、例えば空調機などの冷凍サイクルに用いられている場合では、空調機の温度調整の傾向により、圧縮機のモータの回転速度指令値が増速側に遷移するか、減速側に遷移するかを予測できる場合がある。例えば、現在温度と目標温度との乖離が大きい場合、大きな冷凍能力が求められるため、モータの回転速度指令値は中速~高速領域範囲の値になる。このような場合には、動作モード(1)又は動作モード(7)を用いてモータを起動することが望ましい実施例となる。 When the compressor is used in the refrigeration cycle of an air conditioner, for example, the rotation speed command value of the motor of the compressor transitions to the speed increasing side or to the decelerating side depending on the tendency of temperature adjustment of the air conditioner. may be predictable. For example, when the difference between the current temperature and the target temperature is large, a large refrigerating capacity is required, so the motor rotation speed command value is a value in the medium to high speed range. In such a case, starting the motor using operating mode (1) or operating mode (7) would be the preferred embodiment.
 また、図6にも示されるように、動作モード(5)~(7)は、出力電圧Vdcの範囲は同じである。その一方で、動作モード(5)及び動作モード(6)は、第1のコンデンサ6a及び第2のコンデンサ6bのうちの何れか一方のみを充電するのに対し、動作モード(1)及び動作モード(7)~(9)は、第1のコンデンサ6a及び第2のコンデンサ6bを交互に充電する動作モードである。動作モード(5)及び動作モード(6)の状態では、一方のコンデンサが充電されていない状態である。このため、モータの回転速度をより高速にするために、動作モード(5)又は動作モード(6)から、より高い電圧が出力できる動作モード(8)又は動作モード(9)に遷移する際に、充電されていないコンデンサに突入電流が流れることがある。 Also, as shown in FIG. 6, operation modes (5) to (7) have the same output voltage Vdc range. On the other hand, operation mode (5) and operation mode (6) charge only one of the first capacitor 6a and second capacitor 6b, whereas operation mode (1) and operation mode (7) to (9) are operation modes in which the first capacitor 6a and the second capacitor 6b are alternately charged. In operation mode (5) and operation mode (6), one capacitor is not charged. Therefore, in order to increase the rotation speed of the motor, when transitioning from operation mode (5) or operation mode (6) to operation mode (8) or operation mode (9) capable of outputting a higher voltage, , an inrush current may flow through an uncharged capacitor.
 電荷蓄積部6への突入電流が大きい場合、直流電源装置100において、過電流保護機能などが動作し、装置を停止させてしまう可能性がある。また、過電流が大きい場合には、第1のコンデンサ6a及び第2のコンデンサ6bを故障させてしまう可能性がある。なお、第1のスイッチング素子4aのオンデューティD1及び第2のスイッチング素子4bのオンデューティD2を徐々に変化させながら動作モードを切り替えれば、この種の突入電流を抑制することは可能である。従って、動作モードの切り替え自体は可能であるが、制御がやや複雑化するという欠点がある。そこで、モータの回転速度が高速側に遷移しやすい条件では、動作モード(1)又は動作モード(7)を用いることが望ましいと言える。 When the inrush current to the charge storage unit 6 is large, the DC power supply device 100 may operate the overcurrent protection function, etc., and stop the device. Moreover, when the overcurrent is large, there is a possibility that the first capacitor 6a and the second capacitor 6b are broken. This kind of rush current can be suppressed by switching the operation mode while gradually changing the on-duty D1 of the first switching element 4a and the on-duty D2 of the second switching element 4b. Therefore, although it is possible to switch the operation mode itself, there is a drawback that the control becomes somewhat complicated. Therefore, it can be said that it is desirable to use operation mode (1) or operation mode (7) under conditions in which the rotation speed of the motor tends to transition to the high speed side.
 動作モード(1)及び動作モード(7)を用いれば、第1のコンデンサ6a及び第2のコンデンサ6bの両方が充電されるので、動作モード(8)又は動作モード(9)に遷移する際に電荷蓄積部6への突入電流が小さく抑えられる。これにより、簡便且つ安全に動作モードを遷移させることができる。また、モータの回転速度が低速領域に遷移することになった場合、又は負荷トルクが大きくなった場合において、動作モード(1)又は動作モード(7)から、動作モード(2)、動作モード(3)、動作モード(5)又は動作モード(6)に遷移する際には、第1のコンデンサ6a及び第2のコンデンサ6bのうちの何れか一方を放電させる動作状態となる。このため、動作モード(1)及び動作モード(7)を用いれば、電荷蓄積部6への突入電流の発生を回避できる。つまり、動作モード(1)及び動作モード(7)を用いれば、動作モード(2)、動作モード(3)、動作モード(5)又は動作モード(6)への遷移においても、簡便且つ安全な遷移が可能となる。従って、モータ回転速度が高速側に遷移しやすい条件でなくとも、動作モード(1)又は動作モード(7)を用いることが望ましいと言える。以上のことから、モータの起動時においては、動作モード(1)又は動作モード(7)を用いるのが望ましい実施例となる。 When the operation mode (1) and the operation mode (7) are used, both the first capacitor 6a and the second capacitor 6b are charged. The inrush current to the charge storage section 6 can be kept small. Thereby, the operation mode can be changed easily and safely. In addition, when the rotation speed of the motor changes to a low speed region or when the load torque increases, the operation mode (1) or operation mode (7) is changed to operation mode (2) or operation mode ( 3) When transitioning to operation mode (5) or operation mode (6), the operating state is such that one of the first capacitor 6a and the second capacitor 6b is discharged. Therefore, by using the operation mode (1) and the operation mode (7), it is possible to avoid the occurrence of a rush current to the charge storage section 6 . That is, by using operation mode (1) and operation mode (7), it is possible to easily and safely transition to operation mode (2), operation mode (3), operation mode (5), or operation mode (6). Transition is possible. Therefore, it can be said that it is desirable to use the operation mode (1) or the operation mode (7) even if the motor rotation speed does not tend to transition to the high speed side. From the above, it is a desirable embodiment to use operation mode (1) or operation mode (7) when starting the motor.
 以上説明したように、実施の形態4に係る直流電源装置によれば、制御部は、直流電源装置を起動する際には、第1の動作モード又は第6の動作モードで起動する。このようにすれば、電荷蓄積部への突入電流の発生を回避しつつ、他の動作モードへの遷移においても、簡便且つ安全な遷移が可能となる。 As described above, according to the DC power supply device according to Embodiment 4, the control unit starts up in the first operation mode or the sixth operation mode when starting up the DC power supply device. By doing so, it is possible to easily and safely transition to another operation mode while avoiding the occurrence of rush current to the charge storage section.
実施の形態5.
 次に、実施の形態5に係る直流電源装置について説明する。実施の形態5では、負荷8が圧縮機である場合を例にとり、動作モード(1)~(7)を直流電源装置の回路損失の発生量に応じて使い分ける実施例について説明する。
Embodiment 5.
Next, a DC power supply device according to Embodiment 5 will be described. In the fifth embodiment, an example in which the load 8 is a compressor is taken as an example, and operation modes (1) to (7) are selectively used according to the amount of circuit loss generated in the DC power supply.
 充電部4に電流が流れるとき、図2に示すように、電流経路上に存在する逆流防止素子及びスイッチング素子の数は、状態A~Dによって異なっている。また、動作モード(1)~(3)、及び動作モード(5)~(7)は、それぞれの組において、出力可能なVdcの範囲は同じであるが、図3に示すように、状態A~Dの発生期間が異なっている。 When the current flows through the charging section 4, the number of backflow prevention elements and switching elements present on the current path differs depending on the states A to D, as shown in FIG. Further, the range of Vdc that can be output is the same in each set of operation modes (1) to (3) and operation modes (5) to (7), but as shown in FIG. ~D have different occurrence periods.
 ここで、例えば、第1の逆流防止素子5aの導通損失よりも第1のスイッチング素子4aの導通損失が小さい回路構成の場合、動作モード(1)よりも動作モード(2)で運転したほうが、回路損失を小さくすることができる。具体的には、動作モード(1)の場合、図3に示すように第1のスイッチング素子4a及び第2のスイッチング素子4bが両方とも常時オフ制御状態となる。このため、動作モード(1)の場合、図2に示すように電流は常時、第1の逆流防止素子5a及び第2の逆流防止素子5bを通り、それぞれの逆流防止素子で導通損失が発生する。これに対して、動作モード(2)の場合、図3に示すように状態Bの期間が発生する。状態Bの期間では、図2に示すように、電流は第1の逆流防止素子5aの代わりに第1のスイッチング素子4aを通る。このため、第1の逆流防止素子5aの導通損失よりも第1のスイッチング素子4aの導通損失が小さい回路構成の場合、導通損失は動作モード(2)のほうが小さくなる。また、図2及び図3より、動作モード(3)は動作モード(1)に対して、第2の逆流防止素子5bの代わりに第2のスイッチング素子4b側に電流が流れる。このため、第2の逆流防止素子5bの導通損失よりも第2のスイッチング素子4bの導通損失が小さい回路構成の場合、導通損失は動作モード(1)よりも動作モード(3)のほうが小さくなる。 Here, for example, in the case of a circuit configuration in which the conduction loss of the first switching element 4a is smaller than the conduction loss of the first backflow prevention element 5a, it is better to operate in operation mode (2) than in operation mode (1). Circuit loss can be reduced. Specifically, in the case of operation mode (1), both the first switching element 4a and the second switching element 4b are always in the OFF control state as shown in FIG. Therefore, in the case of operation mode (1), as shown in FIG. 2, the current always passes through the first backflow prevention element 5a and the second backflow prevention element 5b, and conduction loss occurs in each backflow prevention element. . On the other hand, in the case of operation mode (2), a period of state B occurs as shown in FIG. During state B, the current flows through the first switching element 4a instead of the first backflow prevention element 5a, as shown in FIG. Therefore, in the circuit configuration in which the conduction loss of the first switching element 4a is smaller than the conduction loss of the first backflow prevention element 5a, the conduction loss is smaller in the operation mode (2). 2 and 3, in operation mode (3), current flows through the second switching element 4b instead of the second backflow prevention element 5b, as compared with operation mode (1). Therefore, in the circuit configuration in which the conduction loss of the second switching element 4b is smaller than the conduction loss of the second backflow prevention element 5b, the conduction loss is smaller in the operation mode (3) than in the operation mode (1). .
 また、動作モード(5)、(6)も、動作モード(2)、(3)と同様な特徴を有している。前述の通り、本稿の各実施の形態では動作モード(4)を使用しないが、動作モード(5)、(6)の特徴を動作モード(4)との比較で説明する。 Also, operation modes (5) and (6) have the same features as operation modes (2) and (3). As described above, the operation mode (4) is not used in each embodiment of this paper, but the features of the operation modes (5) and (6) will be explained in comparison with the operation mode (4).
 動作モード(4)と動作モード(5)、(6)とを比較すると、図3に示すように、状態Aの部分が、状態B又は状態Cに代わっていることが分かる。従って、動作モード(1)~(3)の場合と同様に、第1の逆流防止素子5aの導通損失よりも第1のスイッチング素子4aの導通損失が小さい回路構成の場合には、動作モード(4)に代えて動作モード(6)を使用した方が、導通損失を小さくすることができる。同様に、第2の逆流防止素子5bの導通損失よりも第2のスイッチング素子4bの導通損失が小さい回路構成の場合には、動作モード(4)に代えて動作モード(5)を使用した方が、導通損失を小さくすることができる。 By comparing operation mode (4) with operation modes (5) and (6), it can be seen that state A is replaced by state B or state C, as shown in FIG. Therefore, as in the operation modes (1) to (3), in the case of a circuit configuration in which the conduction loss of the first switching element 4a is smaller than the conduction loss of the first backflow prevention element 5a, the operation mode ( Conduction loss can be reduced by using operation mode (6) instead of 4). Similarly, in the case of a circuit configuration in which the conduction loss of the second switching element 4b is smaller than the conduction loss of the second backflow prevention element 5b, the operation mode (5) is used instead of the operation mode (4). However, the conduction loss can be reduced.
 第1のスイッチング素子4a及び第2のスイッチング素子4b、並びに第1の逆流防止素子5a及び第2の逆流防止素子5bの導通損失は、設計上において既知である。このため、導通損失の発生量が小さくなるように、動作モード(1)~(3)、(5)、(6)を選択することで、高効率な直流電源装置100を実現することができる。 The conduction losses of the first switching element 4a and the second switching element 4b, and the first backflow prevention element 5a and the second backflow prevention element 5b are known in terms of design. Therefore, by selecting operation modes (1) to (3), (5), and (6) so as to reduce the amount of conduction loss generated, a highly efficient DC power supply 100 can be realized. .
 また、直流電源装置100の信頼性を向上させるという観点で見れば、それぞれが同様の出力電圧範囲をもつ動作モード(1)~(3)又は動作モード(5)~(7)において、対応するスイッチング素子及び逆流防止素子の組の損失の時間積分値が同程度になるように、適宜動作モードを切り替えてもよい。これにより、対応するスイッチング素子及び逆流防止素子の組の発生熱量をおおよそ均一化でき、一部の素子に負荷が集中することを避け、装置の寿命を延ばすことが可能となる。 In addition, from the viewpoint of improving the reliability of the DC power supply 100, in the operation modes (1) to (3) or the operation modes (5) to (7) having the same output voltage range, the corresponding The operation mode may be switched as appropriate so that the time integral value of the loss in the set of the switching element and the backflow prevention element becomes approximately the same. As a result, the amount of heat generated by the pairs of corresponding switching elements and backflow prevention elements can be roughly uniformed, the concentration of load on some elements can be avoided, and the life of the device can be extended.
 上記の観点を踏まえ、実施の形態5に係る直流電源装置では、以下の制御を行う。まず、充電部の回路構成が、第1の逆流防止素子の導通損失よりも第1のスイッチング素子の導通損失が小さい場合、制御部は、第1の動作モードで起動した後に第2の動作モード又は第5の動作モードに切り替える。このように制御すれば、導通損失の発生量をより小さくできるので、高効率な直流電源装置を実現することができる。また、第1の動作モードで起動した後に第3の動作モード又は第4の動作モードに切り替えてもよい。このように制御しても、導通損失の発生量をより小さくでき、高効率な直流電源装置を実現することができる。 Based on the above viewpoints, the DC power supply according to Embodiment 5 performs the following control. First, when the circuit configuration of the charging unit is such that the conduction loss of the first switching element is smaller than the conduction loss of the first backflow prevention element, the control unit operates in the second operation mode after starting in the first operation mode. Or switch to the fifth operating mode. By controlling in this way, the amount of conduction loss generated can be reduced, so that a highly efficient DC power supply can be realized. Also, after starting in the first operation mode, the operation mode may be switched to the third operation mode or the fourth operation mode. Even with such control, the amount of conduction loss generated can be reduced, and a highly efficient DC power supply can be realized.
実施の形態6.
 実施の形態6では、実施の形態1~5に係る直流電源装置の応用例として、冷凍サイクル機器について説明する。図13は、実施の形態6に係る冷凍サイクル機器の構成例を示す図である。
Embodiment 6.
In Embodiment 6, refrigeration cycle equipment will be described as an application example of the DC power supply devices according to Embodiments 1 to 5. FIG. FIG. 13 is a diagram illustrating a configuration example of a refrigeration cycle device according to Embodiment 6. FIG.
 図13には、図1の直流電源装置100に接続される負荷8として、インバータ30を接続した構成例が示されている。冷凍サイクル200は、圧縮機31と、四方弁32と、内部熱交換器33と、膨張機構34と、熱交換器35とを有し、これらの各部が冷媒配管36を介して順次接続され、セパレート形の冷凍サイクル機器を構成している。 FIG. 13 shows a configuration example in which an inverter 30 is connected as the load 8 connected to the DC power supply device 100 of FIG. The refrigerating cycle 200 has a compressor 31, a four-way valve 32, an internal heat exchanger 33, an expansion mechanism 34, and a heat exchanger 35, and these parts are sequentially connected via a refrigerant pipe 36, It constitutes a separate type refrigeration cycle device.
 圧縮機31の内部には、冷媒を圧縮する圧縮機構37と、この圧縮機構37を動作させる圧縮機モータ38とが設けられている。圧縮機モータ38は、インバータ30により駆動される。 A compression mechanism 37 for compressing the refrigerant and a compressor motor 38 for operating the compression mechanism 37 are provided inside the compressor 31 . Compressor motor 38 is driven by inverter 30 .
 次に、図13に示す冷凍サイクル機器を空調機に適用した場合の動作の一例について説明する。冷凍サイクル200の消費電力が大きい場合には、図3の動作モード(5)~(9)を用いて冷凍サイクル200を駆動する。これにより、冷凍サイクル200への出力電圧を高めることができる。また、冷凍サイクル200の消費電力が小さい場合には、動作モード(1)~(3)を用いて冷凍サイクル200を駆動する。これにより、高力率且つ高効率で機器を運転できる。また、各動作モードの切り替えに関しては、上述した実施の形態1~5に係る手法を使用する。これにより、上述した各実施の形態の効果を享受することができる。 Next, an example of operation when the refrigeration cycle device shown in FIG. 13 is applied to an air conditioner will be described. When the power consumption of the refrigerating cycle 200 is large, the refrigerating cycle 200 is driven using operation modes (5) to (9) in FIG. Thereby, the output voltage to the refrigerating cycle 200 can be increased. Further, when the power consumption of the refrigerating cycle 200 is small, the refrigerating cycle 200 is driven using operation modes (1) to (3). As a result, the equipment can be operated with a high power factor and high efficiency. Moreover, the methods according to the first to fifth embodiments described above are used for switching between operation modes. Thereby, the effect of each embodiment mentioned above can be received.
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 It should be noted that the configurations shown in the above embodiments are merely examples, and can be combined with another known technique, or can be combined with other embodiments, or deviate from the gist of the invention. It is also possible to omit or change part of the configuration as long as it is not necessary.
 1 交流電源、2 整流回路、3 リアクトル、4 充電部、4a 第1のスイッチング素子、4b 第2のスイッチング素子、5a 第1の逆流防止素子、5b 第2の逆流防止素子、6 電荷蓄積部、6a 第1のコンデンサ、6b 第2のコンデンサ、7a 第1の電圧検出部、7b 第2の電圧検出部、7c 第3の電圧検出部、8 負荷、10 制御部、30 インバータ、31 圧縮機、32 四方弁、33 内部熱交換器、34 膨張機構、35 熱交換器、36 冷媒配管、37 圧縮機構、38 圧縮機モータ、100 直流電源装置、200 冷凍サイクル、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース。 1 AC power supply, 2 rectifier circuit, 3 reactor, 4 charging section, 4a first switching element, 4b second switching element, 5a first backflow prevention element, 5b second backflow prevention element, 6 charge storage section, 6a first capacitor, 6b second capacitor, 7a first voltage detection unit, 7b second voltage detection unit, 7c third voltage detection unit, 8 load, 10 control unit, 30 inverter, 31 compressor, 32 four-way valve, 33 internal heat exchanger, 34 expansion mechanism, 35 heat exchanger, 36 refrigerant pipe, 37 compression mechanism, 38 compressor motor, 100 DC power supply, 200 refrigeration cycle, 300 processor, 302 memory, 303 processing circuit , 304 interfaces.

Claims (13)

  1.  交流電力を直流電力に変換し、モータを具備する負荷に前記直流電力を供給する直流電源装置であって、
     前記交流電力の電圧である交流電圧を整流する整流回路と、
     前記整流回路の入力側又は出力側に接続されたリアクトルと、
     直列に接続された第1及び第2のコンデンサを有し、前記負荷への出力端子間に接続された電荷蓄積部と、
     直列に接続された第1及び第2のスイッチング素子と、前記第1のコンデンサの電荷の逆流を防止する第1の逆流防止素子と、前記第2のコンデンサの電荷の逆流を防止する第2の逆流防止素子とを有し、前記第1及び第2のコンデンサの一方又は両方を選択的に充電する充電部と、
     前記充電部の動作を制御する制御部と、
     を備え、
     前記制御部は、前記モータの回転速度が第1の速度以上である場合、前記充電部から前記電荷蓄積部を見たときの静電容量が前記第1又は第2のコンデンサ単体の静電容量となるように前記第1及び第2のスイッチング素子を制御して前記第1及び第2のコンデンサのうちの何れか一方を個別に充電する
     直流電源装置。
    A DC power supply that converts AC power into DC power and supplies the DC power to a load having a motor,
    a rectifier circuit that rectifies an AC voltage that is the voltage of the AC power;
    a reactor connected to the input side or the output side of the rectifier circuit;
    a charge storage section having first and second capacitors connected in series and connected between output terminals to the load;
    First and second switching elements connected in series, a first backflow prevention element for preventing backflow of charge in the first capacitor, and a second backflow prevention element for preventing backflow of charge in the second capacitor. a charging unit that selectively charges one or both of the first and second capacitors, and has a backflow prevention element;
    a control unit that controls the operation of the charging unit;
    with
    When the rotation speed of the motor is equal to or higher than a first speed, the controller controls the capacitance of the first or second capacitor when viewed from the charging unit. A direct-current power supply that controls the first and second switching elements so as to individually charge one of the first and second capacitors.
  2.  前記第1のスイッチング素子のオンデューティをD1とし、前記第2のスイッチング素子のオンデューティをD2とするとき、
     前記第1及び第2のスイッチング素子を常時オフ制御状態とした第1の動作モードと、
     前記第1のスイッチング素子のオンデューティD1を0%<D1≦100%の範囲とし、且つ前記第2のスイッチング素子を常時オフ制御状態とした第2の動作モード、及び前記第1のスイッチング素子を常時オフ制御状態とし、且つ前記第2のスイッチング素子のオンデューティD2を0%<D2≦100%の範囲とした第3の動作モードのうちの少なくとも1つの動作モードと、
     前記オンデューティD1を0%<D1<100%の範囲とし、且つ前記第2のスイッチング素子を常時オン制御状態とした第4の動作モード、前記第1のスイッチング素子を常時オン制御状態とし、且つ前記オンデューティD2を0%<D2<100%の範囲とした第5の動作モード、前記オンデューティD1を0%<D1=D2<50%の範囲とし、且つ前記オンデューティD2を0%<D2<50%の範囲とし、且つ前記第1のスイッチング素子の駆動信号と前記第2のスイッチング素子の駆動信号との間の位相差を180度とした第6の動作モード、及び前記オンデューティD1をD1=50%の範囲とし、且つ前記オンデューティD2をD2=50%の範囲とし、且つ前記第1のスイッチング素子の駆動信号と前記第2のスイッチング素子の駆動信号との間の位相差を180度とした第7の動作モードのうちの少なくとも1つの動作モードと、
     前記オンデューティD1を0%<D1<100%の範囲とし、且つ前記オンデューティD2を0%<D2<100%の範囲とし、且つ前記第1のスイッチング素子の駆動信号と前記第2のスイッチング素子の駆動信号との間の位相差を180度とした第8の動作モードと、
     を有する請求項1に記載の直流電源装置。
    When the on-duty of the first switching element is D1 and the on-duty of the second switching element is D2,
    a first operation mode in which the first and second switching elements are in a constantly off controlled state;
    a second operation mode in which the on-duty D1 of the first switching element is in the range of 0% < D1 ≤ 100% and the second switching element is in a constantly off controlled state; and the first switching element at least one operation mode out of a third operation mode in which the always-off control state is set and the on-duty D2 of the second switching element is in the range of 0%<D2≦100%;
    a fourth operation mode in which the on-duty D1 is in the range of 0%<D1<100% and the second switching element is in a constantly ON controlled state; the first switching element is in a constantly ON controlled state; A fifth operation mode in which the on-duty D2 is in the range of 0%<D2<100%, the on-duty D1 is in the range of 0%<D1=D2<50%, and the on-duty D2 is in the range of 0%<D2 <50% range, and a sixth operation mode in which the phase difference between the drive signal for the first switching element and the drive signal for the second switching element is 180 degrees, and the on-duty D1 D1 is in the range of 50%, the on-duty D2 is in the range of D2=50%, and the phase difference between the drive signal for the first switching element and the drive signal for the second switching element is 180 at least one operating mode of a seventh operating mode;
    The on-duty D1 is set in the range of 0%<D1<100%, the on-duty D2 is set in the range of 0%<D2<100%, and the drive signal for the first switching element and the second switching element an eighth operation mode in which the phase difference between the drive signal of
    The DC power supply device according to claim 1, comprising:
  3.  前記直流電源装置を起動する際には、前記第1の動作モード又は前記第6の動作モードで起動する
     請求項2に記載の直流電源装置。
    The DC power supply according to claim 2, wherein when starting up the DC power supply, the DC power supply is started in the first operation mode or the sixth operation mode.
  4.  前記モータの回転速度が前記第1の速度未満である低速領域の場合には、前記第1から第3の動作モードのうちの何れかで動作し、
     前記モータの回転速度が前記第1の速度以上であり、且つ前記第1の速度よりも速い第2の速度未満である中速領域の場合には、前記第4から第7の動作モードのうちの何れかで動作し、
     前記モータの回転速度が前記第2の速度以上である高速領域の場合には、前記第8の動作モードで動作する
     請求項2に記載の直流電源装置。
    operating in any one of the first to third operation modes when the rotational speed of the motor is in a low-speed region below the first speed;
    In the middle speed range in which the rotational speed of the motor is equal to or higher than the first speed and lower than the second speed higher than the first speed, one of the fourth to seventh operation modes works with either
    The direct-current power supply device according to claim 2, wherein in a high-speed region in which the rotation speed of the motor is equal to or higher than the second speed, the operation mode is the eighth operation mode.
  5.  前記第1の速度は、前記交流電圧の実効値の√2倍で運転可能な回転速度であり、
     前記第2の速度は、前記交流電圧の実効値の2×√2倍で運転可能な回転速度である
     請求項4に記載の直流電源装置。
    The first speed is a rotational speed that can be operated at √2 times the effective value of the AC voltage,
    5. The DC power supply device according to claim 4, wherein the second speed is a rotation speed that can be operated at 2×√2 times the effective value of the AC voltage.
  6.  前記制御部は、前記第1の動作モードの動作中において、前記モータの負荷トルクの増大が見込まれ、且つ前記モータの前記回転速度の増大が見込まれる場合には、前記動作モードを前記第4から第8の動作モードのうちの何れかに切り替える
     請求項4又は5に記載の直流電源装置。
    When the load torque of the motor is expected to increase and the rotational speed of the motor is expected to increase during operation in the first operation mode, the control unit changes the operation mode to the fourth operation mode. 6. The direct current power supply according to claim 4 or 5, wherein the operation mode is switched from one of the eighth operating modes.
  7.  前記制御部は、前記第1の動作モードの動作中において、前記モータの負荷トルクの増大が見込まれる場合であっても、前記モータの前記回転速度の増大が見込まれない場合には、前記動作モードを前記第2の動作モード又は前記第3の動作モードのうちの何れかに切り替える
     請求項4又は5に記載の直流電源装置。
    Even if an increase in the load torque of the motor is expected during operation in the first operation mode, the control unit controls the operation when the rotation speed of the motor is not expected to increase. 6. The direct-current power supply device according to claim 4, wherein the mode is switched to either the second operation mode or the third operation mode.
  8.  前記充電部の回路構成が、前記第1の逆流防止素子の導通損失よりも前記第1のスイッチング素子の導通損失が小さい場合、
     前記制御部は、前記第1の動作モードで起動した後に前記第2の動作モード又は前記第5の動作モードに切り替える
     請求項4から7の何れか1項に記載の直流電源装置。
    When the circuit configuration of the charging unit is such that the conduction loss of the first switching element is smaller than the conduction loss of the first backflow prevention element,
    The DC power supply device according to any one of claims 4 to 7, wherein the control unit switches to the second operation mode or the fifth operation mode after starting in the first operation mode.
  9.  前記充電部の回路構成が、前記第2の逆流防止素子の導通損失よりも前記第2のスイッチング素子の導通損失が小さい場合、
     前記制御部は、前記第1の動作モードで起動した後に前記第3の動作モード又は前記第4の動作モードに切り替える
     請求項4から7の何れか1項に記載の直流電源装置。
    When the circuit configuration of the charging unit is such that the conduction loss of the second switching element is smaller than the conduction loss of the second backflow prevention element,
    The DC power supply device according to any one of claims 4 to 7, wherein the control unit switches to the third operation mode or the fourth operation mode after starting in the first operation mode.
  10.  前記制御部は、前記負荷の起動回数又は前記第1及び第2のコンデンサの充放電時間に基づいて、前記第2及び第3の動作モードのうちの何れの動作モードを選択するのかを決定する
     請求項2から9の何れか1項に記載の直流電源装置。
    The control unit determines which one of the second and third operation modes is to be selected based on the number of times the load is activated or the charging and discharging times of the first and second capacitors. The DC power supply device according to any one of claims 2 to 9.
  11.  前記制御部は、前記負荷の起動回数又は前記第1及び第2のコンデンサの充放電時間に基づいて、前記第4及び第5の動作モードのうちの何れの動作モードを選択するのかを決定する
     請求項2から9の何れか1項に記載の直流電源装置。
    The control unit determines which one of the fourth and fifth operation modes is to be selected based on the number of times the load is activated or the charging and discharging times of the first and second capacitors. The DC power supply device according to any one of claims 2 to 9.
  12.  請求項1から11の何れか1項に記載の直流電源装置を備える冷凍サイクル機器。 Refrigeration cycle equipment comprising the DC power supply device according to any one of claims 1 to 11.
  13.  前記負荷として、前記モータを駆動するインバータを備える請求項12に記載の冷凍サイクル機器。 The refrigeration cycle equipment according to claim 12, comprising an inverter for driving the motor as the load.
PCT/JP2021/027106 2021-07-20 2021-07-20 Dc power source device and refrigeration cycle apparatus WO2023002559A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100321.7A CN117616684A (en) 2021-07-20 2021-07-20 DC power supply device and refrigeration cycle apparatus
PCT/JP2021/027106 WO2023002559A1 (en) 2021-07-20 2021-07-20 Dc power source device and refrigeration cycle apparatus
JP2023536255A JPWO2023002559A1 (en) 2021-07-20 2021-07-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027106 WO2023002559A1 (en) 2021-07-20 2021-07-20 Dc power source device and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2023002559A1 true WO2023002559A1 (en) 2023-01-26

Family

ID=84979209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027106 WO2023002559A1 (en) 2021-07-20 2021-07-20 Dc power source device and refrigeration cycle apparatus

Country Status (3)

Country Link
JP (1) JPWO2023002559A1 (en)
CN (1) CN117616684A (en)
WO (1) WO2023002559A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207870A (en) * 1982-05-26 1983-12-03 Nec Corp Double voltage rectifying chopper circuit
JP2000278955A (en) * 1999-01-19 2000-10-06 Matsushita Electric Ind Co Ltd Power unit and air conditioner using the same
WO2015063869A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Dc power supply device and refrigeration cycle device
JP2019088047A (en) * 2017-11-02 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Rectification device, power supply device, motor device and air conditioner
WO2021117090A1 (en) * 2019-12-09 2021-06-17 三菱電機株式会社 Motor drive device and air-conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207870A (en) * 1982-05-26 1983-12-03 Nec Corp Double voltage rectifying chopper circuit
JP2000278955A (en) * 1999-01-19 2000-10-06 Matsushita Electric Ind Co Ltd Power unit and air conditioner using the same
WO2015063869A1 (en) * 2013-10-29 2015-05-07 三菱電機株式会社 Dc power supply device and refrigeration cycle device
JP2019088047A (en) * 2017-11-02 2019-06-06 三星電子株式会社Samsung Electronics Co.,Ltd. Rectification device, power supply device, motor device and air conditioner
WO2021117090A1 (en) * 2019-12-09 2021-06-17 三菱電機株式会社 Motor drive device and air-conditioning device

Also Published As

Publication number Publication date
CN117616684A (en) 2024-02-27
JPWO2023002559A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US10171022B2 (en) Motor driving device, an air conditioner including same and a control method therefor
KR101566598B1 (en) Backflow preventing means, power conversion apparatus, and freezing air conditioning apparatus
KR101850226B1 (en) Dc power source device, electric motor drive device, air conditioner, and refrigerator
JP5674959B2 (en) DC power supply device and motor drive device
JP4509936B2 (en) Three-phase power converter and power converter
US10056826B2 (en) Direct-current power supply device for controlling at frequency being 3N times frequency of three-phase alternating current and refrigeration-cycle applied device including the same
WO2005067131A1 (en) Driving method and driver of brushless dc motor
JP5058314B2 (en) Harmonic suppression device
JP7312189B2 (en) Motor drive device and air conditioner
WO2023002559A1 (en) Dc power source device and refrigeration cycle apparatus
JP5521405B2 (en) Motor drive device and electric apparatus using the same
CN116897498A (en) Power conversion device, motor drive device, and air conditioner
JP7183472B2 (en) Motor drives, air conditioners and refrigerators
JP7337232B2 (en) Motor drive device and air conditioner
JP7335258B2 (en) Motor drive device and air conditioner
WO2022176065A1 (en) Dc power supply device, motor drive device, and refrigeration cycle application apparatus
WO2022185374A1 (en) Ac-dc conversion device, electric motor drive device, and refrigeration cycle device
JP7166449B2 (en) Motor drives, blowers, compressors and air conditioners
WO2021038867A1 (en) Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner
WO2021038868A1 (en) Dc power supply device, motor drive device, blower, compressor, and air conditioner
JP5916830B2 (en) DC power supply device and motor drive device
WO2021038865A1 (en) Motor drive device, blower, compressor, and air conditioner
JP2013143796A (en) Inverter control circuit and air conditioner using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023536255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE