WO2021038867A1 - Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner - Google Patents

Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner Download PDF

Info

Publication number
WO2021038867A1
WO2021038867A1 PCT/JP2019/034261 JP2019034261W WO2021038867A1 WO 2021038867 A1 WO2021038867 A1 WO 2021038867A1 JP 2019034261 W JP2019034261 W JP 2019034261W WO 2021038867 A1 WO2021038867 A1 WO 2021038867A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
switching element
switching
short
Prior art date
Application number
PCT/JP2019/034261
Other languages
French (fr)
Japanese (ja)
Inventor
和徳 畠山
啓介 植村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/034261 priority Critical patent/WO2021038867A1/en
Priority to JP2021541951A priority patent/JP7162746B2/en
Publication of WO2021038867A1 publication Critical patent/WO2021038867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention includes a DC power supply device that converts an AC voltage output from an AC power supply into a DC voltage and applies it to a load, a motor drive device that drives a motor that is a load, a blower and a compressor equipped with a motor drive device, and , With respect to an air conditioner equipped with a blower or compressor.
  • Patent Document 1 describes a connection point between a first diode and a second diode, and a connection between a first metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET) and a second MOSFET.
  • a DC power supply device is disclosed in which an AC power supply is connected via a reactor and the AC voltage of the AC power supply is converted into a DC voltage by switching between the first MOSFET and the first MOSFET.
  • the first diode and the first MOSFET are elements connected to the positive electrode side of the smoothing capacitor, and the second diode and the second MOSFET are elements connected to the negative electrode side of the smoothing capacitor.
  • the first and second diodes and the first and second MOSFETs are bridge-connected to form a rectifier.
  • the first MOSFET is turned on at the timing when the current flows through the parasitic diode of the first MOSFET, and the second MOSFET is operated at the timing when the current flows through the parasitic diode of the second MOSFET.
  • This technique is called synchronous rectification.
  • the DC power supply is controlled with high efficiency by synchronous rectification.
  • Patent Document 1 discloses a configuration in which a short-circuit circuit is provided on the input side of the rectifier, which is connected in parallel to the rectifier and for short-circuiting the output of the AC power supply via the reactor.
  • a short-circuit switching element is connected to the short-circuit circuit, and when the short-circuit switching element is turned on, the output of the AC power supply is short-circuited by the short-circuit circuit.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a DC power supply device capable of achieving both efficiency improvement by synchronous rectification, power factor improvement, and power supply harmonic suppression.
  • the DC power supply device includes a reactor and four unidirectional elements connected by a bridge, and is connected to an AC power supply via the reactor to be connected to an AC power supply. It includes a converter that converts a power supply voltage, which is an AC voltage output from, into a DC voltage and applies it to a load. Further, the DC power supply device includes a short-circuit circuit having a short-circuit switching element and connected between the input terminals of the converter to perform a power short-circuit operation of short-circuiting the power supply voltage via a reactor by turning on the short-circuit switching element.
  • the DC power supply unit includes a smoothing capacitor connected between the output terminals of the converter, a first physical quantity detector for detecting a first physical quantity indicating an operating state on the output side of the converter, and an operation on the input side of the converter. It includes a second physical quantity detecting unit that detects a second physical quantity that represents a state, and a control unit that inputs the first and second physical quantities and controls the operation of the converter.
  • Two of the four unidirectional elements in the converter are connected in series to form the first leg, and the remaining two unidirectional elements are connected in series to form the second leg. At least two unidirectional elements in the first and second legs connected to the positive side of the smoothing capacitor, or two in the first and second legs connected to the negative side of the smoothing capacitor.
  • a switching element is connected in parallel to each of the unidirectional element, the two unidirectional elements in the first leg, or the two unidirectional elements in the second leg.
  • the control unit further has a plurality of operation modes in which the conduction of the switching element and the continuity of the short-circuit switching element are combined to operate the converter in different operation modes.
  • the DC power supply device According to the DC power supply device according to the present invention, it is possible to achieve both efficiency improvement by synchronous rectification, power factor improvement and power supply harmonic suppression.
  • FIG. 3 shows a path of a current flowing through the converter according to the first embodiment.
  • FIG. 4 shows a path of a current flowing through a converter according to the first embodiment.
  • the figure which shows the 3rd example of the operation waveform at the time of operating in the operation mode shown in FIG. The figure which shows the loss characteristic of the MOSFET used in the DC power supply device which concerns on Embodiment 1.
  • Flow chart used to explain the operation of the main part in the first embodiment A block diagram showing an example of a hardware configuration that embodies the function of the control unit according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration example of a motor drive device 100 including a DC power supply device 50 according to the first embodiment.
  • the DC power supply device 50 according to the first embodiment is a power supply device that converts a power supply voltage, which is an AC voltage output from a single-phase AC power supply 1, into a DC voltage and applies it to a load 12.
  • the motor drive device 100 according to the first embodiment is a drive device that converts the DC power output from the DC power supply device 50 into AC power and supplies the converted AC power to the motor 500 to drive the motor 500. is there.
  • the motor drive device 100 includes a DC power supply device 50, a control unit 10, and a load 12 as main components.
  • the DC power supply device 50 includes a reactor 2, a converter 3, a gate drive circuit 15 which is a first drive circuit, a smoothing capacitor 4, a voltage detection unit 5, a current detection unit 6, a voltage detection unit 7, and the like.
  • a power supply circuit 14 which is a control power supply and a short-circuit circuit 330 are provided.
  • One end of the reactor 2 is connected to the AC power supply 1, and the other end of the reactor 2 is connected to the converter 3.
  • the reactor 2 temporarily stores the electric power supplied from the AC power source 1.
  • the converter 3 converts the AC voltage output from the AC power supply 1 into a DC voltage and outputs the AC voltage to the DC bus 16a and 16b.
  • the DC bus lines 16a and 16b are electrical wirings that connect the converter 3 and the load 12. The voltage between the DC bus 16a and the DC bus 16b is called the "bus voltage".
  • the short circuit 330 is arranged between the reactor 2 and the converter 3. Further, the short circuit circuit 330 is connected between the input terminals of the converter 3.
  • the short-circuit circuit 330 includes a short-circuit switching element 331 and a diode bridge 332 connected in parallel to the short-circuit switching element 331.
  • the short-circuit switching element 331 includes a transistor 331a and a diode 331b connected in parallel to the transistor 331a. There is no operational problem even if the diode 331b is not mounted.
  • An example of the transistor 331a is an insulated gate bipolar transistor (IGBT) (indicated Gate Bipolar Transistor: IGBT) (not shown). MOSFETs may be used instead of the IGBTs. When the transistor 331a is a MOSFET, the parasitic diode of the MOSFET may be used as the diode 331b.
  • IGBT insulated gate bipolar transistor
  • the short-circuit circuit 330 performs a power supply short-circuit operation that short-circuits the AC voltage applied via the reactor 2 by turning on the short-circuit switching element 331.
  • the load 12 includes a gate drive circuit 17, which is a second drive circuit, an inverter 18, a current detection unit 9, and a motor 500.
  • the gate drive circuit 17, the inverter 18, and the current detection unit 9, excluding the motor 500 are the components of the motor drive device 100.
  • the inverter 18 converts the DC voltage output from the DC power supply device 50 into an AC voltage applied to the motor 500 and outputs the AC voltage. Examples of equipment on which the motor 500 is mounted are blowers, compressors or air conditioners.
  • FIG. 1 shows an example in which the device connected to the inverter 18 is the motor 500, but the present invention is not limited to this.
  • the device connected to the inverter 18 may be any device to which AC power is input, and may be a device other than the motor 500.
  • the converter 3 includes a first leg 31 and a second leg 32.
  • the first leg 31 and the second leg 32 are connected in parallel.
  • the first upper arm element 311 and the first lower arm element 312 are connected in series.
  • the second upper arm element 321 and the second lower arm element 322 are connected in series.
  • the other end of the reactor 2 is connected to a connection point 3a between the first upper arm element 311 and the first lower arm element 312 in the first leg 31.
  • the connection point 3b between the second upper arm element 321 and the second lower arm element 322 is connected to the other end of the AC power supply 1.
  • the connection points 3a and 3b form an AC terminal.
  • the reactor 2 is connected between one end of the AC power supply 1 and the connection point 3a, but is connected between another end of the AC power supply 1 and the connection point 3b. May be good.
  • the side where the connection points 3a and 3b are located is called the "AC side"
  • the AC voltage output from the AC power supply 1 is called the “power supply voltage”
  • the cycle of the power supply voltage is called the “power supply cycle”.
  • the first upper arm element 311 includes a switching element Q1 and a diode D1 connected in parallel to the switching element Q1.
  • the first lower arm element 312 includes a switching element Q2 and a diode D2 connected in parallel to the switching element Q2.
  • the second upper arm element 321 includes a switching element Q3 and a diode D3 connected in parallel to the switching element Q3.
  • the second lower arm element 322 includes a switching element Q4 and a diode D4 connected in parallel to the switching element Q4.
  • the diodes D1 and D4 are unidirectional so that forward current flows when the polarity of the power supply voltage is positive, that is, the side connected to the reactor 2 has a higher potential than the side not connected to the reactor 2. It is an element.
  • the diodes D2 and D3 are unidirectional so that a forward current flows when the polarity of the power supply voltage is negative, that is, the side not connected to the reactor 2 has a higher potential than the side connected to the reactor 2. It is an element.
  • FIG. 1 discloses a configuration in which switching elements Q1, Q2, Q3, and Q4 are connected in parallel to each of the diodes D1, D2, D3, and D4, but the present invention is not limited to this.
  • Switching elements may be connected to each of the two diodes connected to the positive side of the smoothing capacitor 4, that is, the diode D1 in the first leg 31 and the diode D3 in the second leg 32.
  • switching elements may be connected to each of the two diodes connected to the negative side of the smoothing capacitor 4, that is, the diode D2 in the first leg 31 and the diode D4 in the second leg 32.
  • a switching element may be connected to each of the two diodes in the first leg 31, that is, the diodes D1 and D2.
  • a switching element may be connected to each of the two diodes in the second leg 32, that is, the diodes D3 and D4.
  • MOSFETs are illustrated for each of the switching elements Q1, Q2, Q3, and Q4, but the limitation is not limited to MOSFETs.
  • the MOSFET is a switching element capable of passing a current in both directions between the drain and the source. Any switching element may be used as long as it is a switching element capable of bidirectionally flowing a current between the first terminal corresponding to the drain and the second terminal corresponding to the source, that is, a bidirectional element.
  • parallel here means that the first terminal corresponding to the drain of the MOSFET and the cathode of the diode are connected, and the second terminal corresponding to the source of the MOSFET and the anode of the diode are connected.
  • a parasitic diode that the MOSFET itself has inside may be used. Parasitic diodes are also called body diodes.
  • the switching elements Q1, Q2, Q3 and Q4 are not limited to MOSFETs formed of silicon-based materials, and are wide-band such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3) or diamond. It may be a MOSFET formed of a bandgap (Wide Band Gap) semiconductor.
  • WBG semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the switching elements Q1, Q2, Q3, and Q4, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element is miniaturized. it can.
  • a MOSFET having a Super Junction (SJ) structure may be used instead of the WBG semiconductor.
  • SJ-MOSFET Super Junction
  • the positive side of the smoothing capacitor 4 is connected to the DC bus 16a on the high potential side.
  • the DC bus 16a is drawn from the connection point 3c between the first upper arm element 311 in the first leg 31 and the second upper arm element 321 in the second leg 32.
  • the negative side of the smoothing capacitor 4 is connected to the DC bus 16b on the low potential side.
  • the DC bus 16b is drawn from the connection point 3d between the first lower arm element 312 in the first leg 31 and the second lower arm element 322 in the second leg 32.
  • the connection points 3c and 3d form a DC terminal.
  • the side where the connection points 3c and 3d are located may be referred to as the "DC side".
  • the output voltage of the converter 3 is applied to both ends of the smoothing capacitor 4.
  • the smoothing capacitor 4 is connected to the DC bus lines 16a and 16b.
  • the smoothing capacitor 4 smoothes the output voltage of the converter 3.
  • the voltage smoothed by the smoothing capacitor 4 is applied to the inverter 18.
  • the voltage detection unit 5 detects the power supply voltage and outputs the detected value Vs of the power supply voltage to the control unit 10.
  • the power supply voltage is an absolute value of the instantaneous voltage of the AC power supply 1.
  • the effective value of the instantaneous voltage may be used as the power supply voltage.
  • the current detection unit 6 detects the power supply current, which is the AC current flowing between the AC power supply 1 and the converter 3, and outputs the detected value Is of the power supply current to the control unit 10.
  • An example of a current detector used in the current detection unit 6 is an AC current transformer (Alternating Current Current Transformer: ACCT).
  • the voltage detection unit 7 detects the bus voltage and outputs the detected value Vdc of the bus voltage to the control unit 10.
  • the bus voltage is a physical quantity that represents the operating state of the DC side, that is, the output side of the converter 3.
  • the power supply voltage is a physical quantity representing the operating state of the AC side, that is, the input side of the converter 3.
  • the bus voltage may be referred to as a "first physical quantity” and the power supply voltage may be referred to as a "second physical quantity”.
  • the voltage detection unit 7 that detects the bus voltage may be called a "first physical quantity detection unit”
  • the voltage detection unit 5 that detects the power supply voltage may be called a "second physical quantity detection unit”.
  • the power supply circuit 14 is connected to both ends of the smoothing capacitor 4.
  • the power supply circuit 14 uses the voltage of the smoothing capacitor 4 to generate low-voltage DC voltages such as 5V, 12V, 15V, and 24V.
  • the low-voltage DC voltage is generated by utilizing the electric charge accumulated in the smoothing capacitor 4.
  • a low-voltage DC voltage is applied to each part of the supply destination as an operating voltage.
  • the power supply circuit 14 outputs, for example, a DC voltage of 5 V to the control unit 10, the current detection unit 6, and the like. In the control unit 10, a DC voltage of 5 V is applied to a processor (not shown) in FIG.
  • the inverter 18 includes a leg 18A in which the upper arm element 18UP and the lower arm element 18UN are connected in series, a leg 18B in which the upper arm element 18VP and the lower arm element 18VN are connected in series, and the upper arm element 18WP and the lower. It includes a leg 18C in which an arm element 18WN is connected in series.
  • the legs 18A, 18B and 18C are connected in parallel to each other.
  • FIG. 1 illustrates a case where the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are IGBTs, but the present invention is not limited to this.
  • a MOSFET or an integrated gate commutated thyristor (IGCT) may be used.
  • the upper arm element 18UP includes a transistor 18a and a diode 18b connected in parallel to the transistor 18a.
  • the other upper arm elements 18VP and 18WP and the lower arm elements 18UN, 18VN and 18WN have the same configuration.
  • the term "parallel" as used herein means that the anode side of the diode is connected to the first terminal corresponding to the emitter of the IGBT, and the cathode side of the diode is connected to the second terminal corresponding to the collector of the IGBT.
  • FIG. 1 has a configuration including three legs in which the upper arm element and the lower arm element are connected in series, but the configuration is not limited to this. The number of legs may be four or more.
  • the circuit configuration shown in FIG. 1 is adapted to the motor 500, which is a three-phase motor.
  • the motor 500 is a single-phase motor
  • the inverter 18 is also configured to correspond to the single-phase motor.
  • the configuration is provided with two legs in which the upper arm element and the lower arm element are connected in series.
  • one leg may be composed of a plurality of pairs of upper and lower arm elements.
  • the transistor 18a of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN is a MOSFET
  • the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are silicon carbide, gallium nitride. It may be formed of a system material or a WBG semiconductor such as diamond. If a MOSFET formed of a WBG semiconductor is used, the effects of withstand voltage and heat resistance can be enjoyed.
  • connection point 26a between the upper arm element 18UP and the lower arm element 18UN is connected to the first phase (for example, U phase) of the motor 500
  • the connection point 26b between the upper arm element 18VP and the lower arm element 18VN is the first phase of the motor 500. It is connected to the second phase (for example, V phase)
  • the connection point 26c between the upper arm element 18WP and the lower arm element 18WN is connected to the third phase (for example, W phase) of the motor 500.
  • the connection points 26a, 26b, and 26c form an AC terminal.
  • the current detection unit 9 detects the motor current flowing between the inverter 18 and the motor 500, and outputs the detected value Iuvw of the motor current to the control unit 10.
  • the control unit 10 controls each switching element in the converter 3 based on the detection value Vs of the voltage detection unit 5, the detection value Is of the current detection unit 6, and the detection value Vdc of the voltage detection unit 7.
  • S311 to S322 and a short-circuit control signal S331 for controlling the short-circuit switching element 331 of the short-circuit circuit 330 are generated.
  • the control signal S311 is a control signal for controlling the switching element Q1
  • the control signal S322 is a control signal for controlling the switching element Q4.
  • the switching elements Q2 and Q3 are also controlled by the control signal from the control unit 10.
  • the control signals S311 to S322 generated by the control unit 10 are input to the gate drive circuit 15.
  • switching operation the operation of each arm element according to the control signals S311 to S322 is appropriately referred to as “switching operation”. Further, the operation of the short-circuit switching element 331 according to the short-circuit control signal S331 is appropriately referred to as “short-circuit switching operation”.
  • control unit 10 is provided with each switching element in the inverter 18 so that the motor 500 rotates at a desired rotation speed based on the detection value Vdc of the voltage detection unit 7 and the detection value Iuvw of the current detection unit 9.
  • Control signals S1 to S6 for controlling the above are generated.
  • the inverter 18 has a three-phase circuit configuration, and has six switching elements corresponding to the three-phase circuit configuration. Further, six control signals S1 to S6 are generated corresponding to the six switching elements.
  • the control signals S1 to S6 generated by the control unit 10 are input to the gate drive circuit 17.
  • the gate drive circuit 15 generates drive pulses G311 to G322 for driving each switching element in the converter 3 based on the control signals S311 to S322.
  • the drive pulse G311 is a drive pulse for driving the switching element Q1
  • the drive pulse G322 is a drive pulse for driving the switching element Q4.
  • the switching elements Q2 and Q3 are also driven by the drive pulse from the gate drive circuit 15.
  • the gate drive circuit 17 generates drive pulses G1 to G6 for driving each switching element in the inverter 18 based on the control signals S1 to S6.
  • control unit 10 is provided inside the motor drive device 100 as a common control unit for controlling the short-circuit circuit 330, the DC power supply device 50, and the load 12, but the configuration is not limited to this.
  • Individual control units that control each of the DC power supply device 50 and the load 12 may be configured, and each control unit may be provided inside each of the DC power supply device 50 and the load 12.
  • the control unit that controls the short-circuit circuit 330 is generally provided in the control unit that controls the DC power supply device 50.
  • the first upper arm element 311 and the first lower arm element 312 operate so as to be complementary or not turned on at the same time. That is, when one of the first upper arm element 311 and the first lower arm element 312 is on, the other is off.
  • the first upper arm element 311 and the first lower arm element 312 are controlled by the control signals S311 and S312 generated by the control unit 10.
  • An example of the control signals S311 and S312 is a pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • Capacitor short circuit is a state in which the energy stored in the smoothing capacitor 4 is released and the current is regenerated in the AC power supply 1.
  • the second upper arm element 321 and the second lower arm element 322 constituting the second leg 32 are controlled by the control signals S321 and S322 generated by the control unit 10.
  • the second upper arm element 321 and the second lower arm element 322 are basically turned on or off depending on the polarity of the power supply voltage, which is the polarity of the power supply voltage. Specifically, when the power supply voltage polarity is positive, the second lower arm element 322 is on and the second upper arm element 321 is off. When the power supply voltage polarity is negative, the second upper arm element 321 is on and the second lower arm element 322 is off.
  • each arm element of the converter 3 is a MOSFET
  • the diode of each arm element is a parasitic diode that the MOSFET itself has inside.
  • FIG. 2 is a schematic cross-sectional view showing a schematic structure of a MOSFET used in the converter 3 of the first embodiment.
  • FIG. 2 illustrates an n-type MOSFET.
  • a p-type semiconductor substrate 600 is used, as shown in FIG.
  • a source electrode S, a drain electrode D, and a gate electrode G are formed on the semiconductor substrate 600.
  • High-concentration impurities are ion-implanted into the portions in contact with the source electrode S and the drain electrode D to form an n-type region 601.
  • an oxide insulating film 602 is formed between the portion where the n-type region 601 is not formed and the gate electrode G. That is, an oxide insulating film 602 is interposed between the gate electrode G and the p-type region 603 of the semiconductor substrate 600.
  • Channel 604 is an n-type channel in the example of FIG.
  • FIG. 3 is a first diagram showing a path of a current flowing through the converter 3 in the first embodiment.
  • FIG. 3 shows a state in which the power supply voltage polarity is positive and the absolute value of the detected value Is of the power supply current is larger than the current threshold value.
  • the first upper arm element 311 and the second lower arm element 322 are on, and the first lower arm element 312, the second upper arm element 321 and the short-circuit switching element 331 are off.
  • the current flows in the order of the AC power supply 1, the reactor 2, the switching element Q1, the smoothing capacitor 4, the switching element Q4, and the AC power supply 1.
  • the switching elements Q1 and Q4 corresponding to the diodes D1 and D4 are turned on at the timing when the current flows through the diodes D1 and D4 instead of passing the current through the diodes D1 and D4.
  • the MOSFETs that are turned on are indicated by circles. The same applies to the following figures. The details of the operation mode will be described later.
  • FIG. 4 is a second diagram showing the path of the current flowing through the converter 3 in the first embodiment.
  • FIG. 4 shows a state in which the power supply voltage polarity is negative and the absolute value of the detected value Is of the power supply current is larger than the current threshold value.
  • the first lower arm element 312 and the second upper arm element 321 are on, and the first upper arm element 311 and the second lower arm element 322 and the short-circuit switching element 331 are off.
  • the current flows in the order of the AC power supply 1, the switching element Q3, the smoothing capacitor 4, the switching element Q2, the reactor 2, and the AC power supply 1.
  • the synchronous rectification operation in which the current is passed through each channel of the switching elements Q3 and Q2 may be performed instead of passing the current through the diodes D3 and D2.
  • FIG. 5 is a third diagram showing the path of the current flowing through the converter 3 in the first embodiment.
  • FIG. 5 shows a state in which the power supply voltage polarity is positive and the absolute value of the detected value Is of the power supply current is larger than the current threshold value.
  • the short-circuit switching element 331 is on, and the first upper arm element 311, the first lower arm element 312, the second upper arm element 321 and the second lower arm element 322 are off.
  • the current flows in the order of the AC power supply 1, the reactor 2, the diode bridge 332, the short-circuit switching element 331, the diode bridge 332, and the AC power supply 1.
  • a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed.
  • the first embodiment provides a mode in which a power short-circuit path is formed by passing a current through the short-circuit switching element 331 and the diode bridge 332 without passing a current through each arm element.
  • FIG. 6 is a fourth diagram showing the path of the current flowing through the converter 3 in the first embodiment.
  • FIG. 6 shows a state in which the power supply voltage polarity is negative and the absolute value of the detected value Is of the power supply current is larger than the current threshold value.
  • the short-circuit switching element 331 is on, and the first upper arm element 311, the first lower arm element 312, the second upper arm element 321 and the second lower arm element 322 are off.
  • the current flows in the order of the AC power supply 1, the diode bridge 332, the short-circuit switching element 331, the diode bridge 332, the reactor 2, and the AC power supply 1.
  • a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed.
  • the first embodiment provides a mode in which a power short-circuit path is formed by passing a current through the short-circuit switching element 331 and the diode bridge 332 without passing a current through each arm element.
  • the control unit 10 can control the values of the power supply current and the bus voltage by controlling the switching of the current path described above.
  • the motor drive device 100 continuously switches between the operation shown in FIG. 3 and the operation shown in FIG.
  • the power supply voltage polarity is negative
  • the motor drive device 100 continuously switches between the operation shown in FIG. 4 and the operation shown in FIG.
  • FIG. 7 is a diagram illustrating the characteristics of the operation mode according to the first embodiment.
  • FIG. 8 is a diagram showing a first example of an operation waveform when operated in the operation mode shown in FIG. 7.
  • FIG. 7 shows four operation modes: (a) rectification mode, (b) synchronous rectification mode, (c) low-speed switching mode, and (d) high-speed switching mode.
  • Each operation mode is classified according to the combination of whether or not two controls, synchronous rectification and short-circuit switching operation, are performed. Synchronous rectification is as described above and is performed to improve operating efficiency.
  • the short-circuit switching operation is performed to control the bus voltage, improve the force factor of the current flowing in and out of the converter 3, and suppress harmonics.
  • the low-speed switching mode may be referred to as a "first switching mode”
  • the high-speed switching mode may be referred to as a "second switching mode".
  • the operation in the rectification mode may be called “diode rectification operation”, and the operation in the synchronous rectification mode may be called “synchronous rectification operation”.
  • the operation in the first switching mode may be referred to as “first switching operation”
  • the operation in the second switching mode may be referred to as "second switching operation”.
  • the DC power supply device 50 has a rectification mode, and further has at least one operation mode of a synchronous rectification mode, a low-speed switching mode, and a high-speed switching mode.
  • a low-speed switching mode in applications or products that do not require boosting operation, it may not be necessary to have a low-speed switching mode and a high-speed switching mode.
  • FIG. 8A shows an operating waveform when operated in the rectified mode. Specifically, from the upper side, the waveforms of the power supply voltage, the power supply current, and the control signals S311 to S322 that control each of the switching elements Q1 to Q4 are shown. The same applies to other operation modes.
  • the rectification mode since it is not necessary to control the switching elements Q1 to Q4 and the short-circuit switching element 331, there is an advantage that the consumption of the drive power supply for operating the gate drive circuit 15 and the drive power supply for operating the short-circuit switching element 331 can be suppressed. is there. Further, since it is not necessary to control the switching elements Q1 to Q4 and the short-circuit switching element 331, there is an advantage that the control is easy.
  • FIG. 8B shows an operation waveform when operated in the synchronous rectification mode.
  • the synchronous rectification mode is an operation mode in which the corresponding switching element is turned on at the timing of flowing through the parasitic diode and is passed through to the channel side of the switching element.
  • the switching elements Q1 and Q4 or the switching elements Q2 and Q3 are turned on at the timing of flowing through the parasitic diode.
  • the passing element is simply replaced with a switching element from the parasitic diode. Therefore, current control and bus voltage control are not performed.
  • FIG. 8C shows the operation waveform when operated in the low-speed switching mode.
  • the low-speed switching mode is an operation mode in which the power supply voltage is short-circuited via the reactor 2 at least once in a half cycle of the power supply cycle, in other words, an operation mode in which the power supply short circuit is locally performed within the half cycle of the power supply cycle.
  • the short-circuit switching element 331 performs two short-circuit operations every half cycle of the power supply voltage.
  • energy is stored in the reactor 2.
  • the short-circuit operation is released after the energy is stored, the energy stored in the reactor 2 is transferred to the smoothing capacitor 4 and stored.
  • the voltage of the smoothing capacitor 4 that is, the bus voltage can be boosted.
  • the boost amount of the bus voltage is adjusted by the bus voltage control.
  • a proportional integration controller or the like is used for bus voltage control.
  • the operation of the converter 3 is controlled so that the detected value Vdc of the bus voltage approaches the target voltage.
  • the short-circuit time when the power supply voltage is short-circuited via the reactor 2 is controlled.
  • the response time of the proportional integration controller it is possible to suppress an excessive increase in the bus voltage that may occur due to the occurrence of load fluctuation.
  • a short-circuit current can be passed by short-circuit operation.
  • the power factor can be improved and the harmonic current can be suppressed by expanding the flow width of the power supply current.
  • the timing for performing the short-circuit operation may be determined in advance with reference to the zero crossing point of the power supply voltage, and may be referred to according to the load.
  • the power supply current may be detected and the short circuit time may be controlled so that the detected current waveform approaches a sine wave.
  • the short-circuit operation time since the short-circuit operation time is short, it is possible to suppress the generation of harmonic noise.
  • FIG. 8D shows an operation waveform when operated in the high-speed switching mode.
  • the high-speed switching mode is an operation mode in which the power supply short-circuit operation described above is performed over the entire range of one cycle of the power supply voltage.
  • the significance of the power short-circuit operation is the same as that of the low-speed switching mode. That is, energy is stored in the reactor 2 by performing the power supply short-circuit operation, and the energy stored in the reactor 2 is transferred to the smoothing capacitor 4 by releasing the short-circuit operation after the energy is stored. This makes it possible to boost the bus voltage.
  • the control of the boost amount of the bus voltage can also be realized by the same control as in the low speed switching mode.
  • the short-circuit operation is performed over the entire range of one cycle of the power supply voltage, so that the current flow width is wider than in the low-speed switching mode.
  • the power factor can be controlled to a value close to 1.
  • the load can be driven to the limit of the breaker capacity, especially on the high load side, and the power of the device can be increased.
  • FIG. 9 is a diagram showing a configuration example of the gate drive circuit 15 according to the first embodiment.
  • the gate drive circuit 15 includes drive circuits 51 and 52 and a bootstrap circuit 54.
  • the drive circuit 51 is a drive circuit used when driving the first upper arm element 311 of the first leg 31.
  • the drive circuit 52 is a drive circuit used when driving the first lower arm element 312 of the first leg 31.
  • the second upper arm element 321 and the second lower arm element 322 of the second leg 32 are also driven by two similar drive circuits.
  • the bootstrap circuit 54 includes a resistor 54a, a diode 54b, and a capacitor 54c which is a bootstrap capacitor.
  • a drive voltage is applied to the capacitor 54c from the drive power supply 55 via a series circuit of the resistor 54a and the diode 54b.
  • the charging voltage of the capacitor 54c is a gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm.
  • the gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm turns on the switching elements Q2 and Q4 of the lower arm. Obtained by letting.
  • the switching elements Q2 and Q4 which are the lower arm elements, are alternately turned on for half a cycle of the power supply voltage. Be controlled.
  • the capacitor 54c of the bootstrap circuit 54 is charged as described above. Therefore, if the control signals S311 to S322 as shown in FIG. 8 are used, it is possible to reliably generate a gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm.
  • FIG. 10 is a diagram showing a second example of the operation waveform when operated in the operation mode shown in FIG. 7.
  • 10 (b) shows the control signals S311 and S322 and the short-circuit control signal S331 shown in FIG. 8 (b) as they are, and the control signal S312 and the control signal S321 are replaced. Even if they are replaced in this way, sufficient time is given for the switching elements Q2 and Q4 of the lower arm to operate on. As a result, it is possible to reliably generate a gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm.
  • FIG. 11 is a diagram showing a third example of the operation waveform when operated in the operation mode shown in FIG. 7.
  • FIGS. 11 (b) to 11 (d) at least the operations of the switching elements Q1 and Q2 are stopped over the entire range of one cycle of the power supply cycle. Even if the operations of the switching elements Q1 and Q2 are stopped over the entire range of one cycle of the power supply cycle, synchronous rectification is not performed, and there is no problem in the rectification operation.
  • the operations of FIGS. 8, 10 or 11 may be appropriately replaced depending on the degree of temperature rise of the switching element.
  • a power short circuit is realized by using only the short circuit switching element 331 without using the power short circuit operation by the switching elements Q1 to Q4. It can. The effect of this control will be described below.
  • the switching elements Q1 and Q3 are turned on to perform a power short-circuit operation
  • the switching element Q4 is turned on, a capacitor short-circuit occurs at the route of the smoothing capacitor 4, the switching element Q3, and the switching element Q4. Therefore, when the switching element Q3 is in the on state, the switching element Q4 needs to be in the off state. After that, when performing synchronous rectification, it is necessary to control the switching element Q3 to the off state and then turn on the switching element Q4, which complicates the control.
  • the power supply short circuit is realized by operating the short circuit switching element 331 of the short circuit circuit 330, the power supply short circuit operation and the synchronous rectification operation can be compatible with each other without operating the switching elements Q3 and Q4 in a complementary manner. .. Specifically, the short-circuit switching element 331 may be turned off, and then the switching elements Q1 to Q4 may be controlled to be turned on. When the short-circuit switching element 331 is controlled to be turned on a plurality of times, the switching elements Q1 to Q4 may be turned on at the timing when the short-circuit switching element 331 is turned off. In either case, the effect of synchronous rectification can be obtained.
  • the dead time is a short-circuit prevention time for preventing the switching elements Q1 and Q2 and the switching elements Q3 and Q4 from being turned on at the same time. There is no need to provide. If the control does not provide a dead time, the consistency between the command value by the control and the actual command value is improved. This makes it possible to improve efficiency while improving controllability and control stability.
  • the switching elements Q1 and Q3 of the upper arm are in the off operation over the entire range of one cycle of the power supply voltage.
  • the power consumption of the drive circuit 51 that drives the switching elements Q1 and Q3 of the upper arm can be suppressed. Since the power consumption of the drive circuit 51 increases in proportion to the number of switchings, it is effective to reduce the power consumption and improve the efficiency by performing the second switching operation in which the number of switchings is large. Further, since the switching elements Q1 and Q2 and the switching elements Q3 and Q4 are not complementarily operated, the controllability and control stability can be improved.
  • each switching element of one of the first leg 31 and the second leg 32 is turned on. It is a switching pattern that does not work.
  • FIG. 10D when the short-circuit switching element 331 is in the second switching operation, each switching element of one of the first leg 31 and the second leg 32 is turned on. It is a switching pattern that does not work. Therefore, if any of these switching patterns is used, simple switching control can be performed, and controllability and control stability can be improved.
  • the switching elements Q1 to Q4 and the short-circuit switching element 331 are operated in an arbitrary operation mode by arbitrarily combining the diode rectification operation, the synchronous rectification operation, the first switching operation, and the second switching operation shown in these figures. be able to.
  • FIG. 12 is a diagram showing the loss characteristics of the MOSFET used in the DC power supply device 50 of the first embodiment.
  • the horizontal axis shows the current flowing through the MOSFET in the on state and the current flowing through the parasitic diode.
  • the vertical axis shows the voltage required to pass a current through the switching element in the on state and the voltage required to pass a current through the parasitic diode.
  • the solid line represents the forward voltage of the parasitic diode.
  • the parasitic diode forward voltage is an example of a current-voltage characteristic that represents the loss that occurs in a parasitic diode.
  • a diode requires a large voltage because the loss is large when the current value is small, but when the current value is larger than a certain value, the rate of change of the loss is improved and the slope of the current-voltage characteristic is relaxed. .. This characteristic appears in the waveform shown by the solid line in FIG.
  • the broken line represents the MOSFET drain-source voltage, which is the voltage between the MOSFET drain and the source.
  • the MOSFET drain-source voltage is an example of a current-voltage characteristic that represents a current flowing through a carrier of a switching element and a loss caused by the on-resistance of the switching element due to the current flowing.
  • a switching element such as a MOSFET
  • the voltage required to pass a current increases in a quadratic curve with respect to the current value. This characteristic appears in the waveform shown by the broken line in FIG.
  • the current flowing through the parasitic diode and the voltage required to flow the current are equal to the current flowing through the MOSFET and the voltage required to flow the current. It is a point.
  • the current value at the cross point where the two current-voltage characteristics of the parasitic diode and the switching element intersect is defined as the “second current threshold”.
  • the above-mentioned current threshold value that is, the current threshold value used when comparing the absolute value of the detected value Is of the power supply current is referred to as a "first current threshold value”.
  • the second current threshold value is represented by “Ith2”.
  • the second current threshold is a value larger than the first current threshold.
  • FIG. 13 is a diagram showing the timing at which the control unit 10 turns on the switching element in the DC power supply device 50 according to the first embodiment.
  • the horizontal axis is time.
  • the waveforms of the power supply voltage and the power supply current are shown in the upper part of FIG.
  • switching elements Q1 and Q2 are current-synchronized switching elements whose on / off is controlled according to the polarity of the power supply current, and switching elements Q3 and Q4 are turned on / off according to the polarity of the power supply voltage.
  • FIG. 13 shows the values of the first current threshold value Is1 and the second current threshold value Is2 together with the waveform of the power supply current.
  • FIG. 13 shows one cycle of the AC power output from the AC power supply 1, the control unit 10 shall perform the same control as the control shown in FIG. 13 in the other cycles.
  • the control unit 10 When the power supply voltage polarity is positive, the control unit 10 turns on the switching element Q4 and turns off the switching element Q3. Further, when the power supply voltage polarity is negative, the control unit 10 turns on the switching element Q3 and turns off the switching element Q4.
  • the timing at which the switching element Q4 is turned from on to off and the timing at which the switching element Q3 is turned from off to on are the same timing, but the timing is not limited to this.
  • the control unit 10 may provide a dead time during which the switching elements Q3 and Q4 are both turned off between the timing at which the switching element Q4 is turned from on to off and the timing at which the switching element Q3 is turned from off to on.
  • the control unit 10 provides a dead time during which the switching elements Q3 and Q4 are both turned off between the timing at which the switching element Q3 is turned from on to off and the timing at which the switching element Q4 is turned from off to on. May be good.
  • the control unit 10 When the power supply voltage polarity is positive, the control unit 10 turns on the switching element Q1 when the absolute value of the power supply current becomes equal to or higher than the first current threshold value Is1. Further, when the absolute value of the power supply current exceeds the second current threshold value Is2, the switching element Q1 is turned off. After that, the control unit 10 turns on the switching element Q1 when the absolute value of the power supply current becomes small and the absolute value of the power supply current becomes equal to or less than the second current threshold value Is2. Further, when the absolute value of the power supply current becomes smaller than the first current threshold value Is1, the switching element Q1 is turned off.
  • the control unit 10 turns on the switching element Q2 when the absolute value of the power supply current becomes equal to or higher than the first current threshold value Is1. Further, when the absolute value of the power supply current exceeds the second current threshold value Is2, the switching element Q2 is turned off. After that, the control unit 10 turns on the switching element Q2 when the absolute value of the power supply current becomes small and the absolute value of the power supply current becomes equal to or less than the second current threshold value Is2. Further, when the absolute value of the power supply current becomes smaller than the first current threshold value Is1, the switching element Q2 is turned off.
  • the control unit 10 controls so that the switching elements Q1 and Q3 do not turn on at the same time, and controls the switching elements Q2 and Q4 not to turn on at the same time. .. As a result, the control unit 10 can prevent a capacitor short circuit in the motor drive device 100.
  • the motor drive device 100 can realize synchronous rectification by the switching elements Q1 and Q2 of the first leg 31. Specifically, when the absolute value of the power supply current is equal to or greater than the first current threshold value Is1 and equal to or less than the second current threshold value Is2, the control unit 10 supplies a current to the switching element Q1 or the switching element Q2 having a small loss in this range. Shed. Further, when the absolute value of the power supply current is larger than the second current threshold value Is2, the control unit 10 causes a current to flow through the diode D1 or the diode D2 having a small loss in this range. As a result, the motor drive device 100 can pass a current through an element having a small loss according to the current value, so that a decrease in efficiency can be suppressed and a highly efficient device with reduced loss can be obtained.
  • control unit 10 may perform a boosting operation by performing switching control in which the switching elements Q1 and Q2 are complementarily turned on and off during the period in which the switching element Q1 is turned on.
  • control unit 10 may perform a boosting operation by performing switching control in which the switching elements Q1 and Q2 are complementarily turned on and off during the period in which the switching element Q2 is turned on.
  • the control unit 10 when the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2, the control unit 10 has the first leg 31 and the second leg according to the polarity of the power supply current.
  • the switching element of one of the switching elements Q1 and Q2 constituting the first leg 31 of one of the 32 is allowed to be turned on.
  • the control unit 10 when the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the control unit 10 is the same one switching element as the above-mentioned switching elements Q1 and Q2. Prohibit turning on.
  • the control unit 10 turns on the switching element Q1. Allow. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the switching element Q1 is prohibited from being turned on. When the polarity of the power supply current is positive and the absolute value of the power supply current is equal to or greater than the first current threshold value Is1 and equal to or less than the second current threshold value Is2, the control unit 10 switches the switching element Q1 during the off period. Turn on Q2. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, turning on the switching element Q2 is also prohibited.
  • control unit 10 permits the switching element Q2 to be turned on when the polarity of the power supply current is negative and the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2. .. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the switching element Q2 is prohibited from being turned on. Further, when the polarity of the power supply current is negative and the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2, the control unit 10 is in the period when the switching element Q2 is off. The switching element Q1 is turned on. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the switching element Q1 is also prohibited from being turned on.
  • control unit 10 allows the switching element to be turned on in a region where the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and the loss of the switching element is smaller than the loss of the parasitic diode. Further, the control unit 10 prohibits the switching element from being turned on in a region where the loss of the switching element is larger than the loss of the parasitic diode.
  • control unit 10 controls the on / off of the switching elements Q3 and Q4 according to the polarity of the power supply voltage, and controls the on / off of the switching elements Q1 and Q2 according to the polarity of the power supply current.
  • the control unit 10 may control the on / off of the switching elements Q1 and Q2 according to the polarity of the power supply voltage, and may control the on / off of the switching elements Q3 and Q4 according to the polarity of the power supply current.
  • the second current threshold value Is2 is, as described above, a current value when the voltage required for passing the current through the parasitic diode and the switching element becomes the same value, but is not limited to this.
  • the second current threshold value Is2 may be a value determined according to the characteristics of the voltage required to pass a current through the parasitic diode and the characteristics of the voltage required to pass a current through the switching element.
  • the second current threshold value Is2 is set to be larger than the current value when the voltage required to pass the current through the parasitic diode and the switching element becomes the same value according to the switching loss generated in the switching element. It may be a value. Thereby, it is possible to determine the second current threshold value Is2 in consideration of the switching element generated when the switching element is switched from on to off. In this case, the control unit 10 keeps the switching element on when the loss cannot be reduced by turning off the switching element even if the absolute value of the power supply current becomes larger while the switching element is on. To. As a result, the motor drive device 100 can further suppress a decrease in efficiency.
  • the second current threshold value Is2 may be a value obtained by adding or subtracting a specified value with respect to the current value when the voltage required for passing the current through the parasitic diode and the switching element becomes the same value. ..
  • the second current threshold value Is2 can be determined in consideration of the difference in characteristics due to the variation in the components of each element.
  • the control unit 10 improves the reduction of loss as compared with the case where the second current threshold value Is2 is the current value when the voltage required for passing the current through the parasitic diode and the switching element becomes the same value. It may not be possible. However, the control unit 10 can reduce the loss as compared with the case where the switching element is continuously turned on even if the absolute value of the power supply current is further increased while the switching element is turned on.
  • FIG. 14 is a flowchart used for explaining the operation of the main part in the first embodiment.
  • FIG. 14 shows a processing flow in which the control unit 10 of the motor drive device 100 controls the switching elements Q1 and Q2 on and off.
  • the control unit 10 of the motor drive device 100 controls the switching elements Q1 and Q2 on and off.
  • the control unit 10 compares the absolute value
  • step S23 When the absolute value
  • step S21 described above the case where the absolute value
  • one of the methods for increasing the switching speed of the switching element is a method for reducing the gate resistance of the switching element. As the gate resistance becomes smaller, the charge / discharge time to the gate input capacitance becomes shorter, and the turn-on period and the turn-off period become shorter, so that the switching speed becomes faster.
  • the switching element is composed of a WBG semiconductor such as GaN or SiC.
  • a WBG semiconductor for the switching element By using a WBG semiconductor for the switching element, the loss per switching can be further suppressed, the efficiency is further improved, and high frequency switching becomes possible. Further, by enabling high-frequency switching, the reactor 2 can be miniaturized, and the motor drive device 100 can be miniaturized and lightened. Further, by using the WBG semiconductor for the switching element, the switching speed is improved and the switching loss is suppressed. This makes it possible to simplify heat dissipation measures so that the switching element can continue to operate normally. Further, by using a WBG semiconductor for the switching element, the switching frequency can be set to a sufficiently high value, for example, 16 kHz or more. As a result, noise caused by switching can be suppressed.
  • the audible range frequency is in the range of 16 kHz to 20 kHz, that is, in the range of 266 to 400 times the frequency of the commercial power supply.
  • GaN semiconductors are suitable for switching at frequencies higher than this audible frequency.
  • the switching elements Q1 to Q4 made of the GaN semiconductor have a very small switching loss even when driven at a switching frequency of several tens of kHz or more, specifically, a switching frequency higher than 20 kHz. Therefore, heat dissipation measures are not required, or the size of the heat dissipation member used for heat dissipation measures can be reduced, and the motor drive device 100 can be made smaller and lighter. Further, since high frequency switching is possible, the reactor 2 can be miniaturized.
  • the switching frequency is preferably 150 kHz or less in order to prevent the primary component of the switching frequency from entering the measurement range of the noise terminal voltage standard.
  • the WBG semiconductor since the WBG semiconductor has a smaller capacitance than the Si semiconductor, the generation of recovery current due to switching is small, and the generation of loss and noise due to recovery current can be suppressed. Therefore, the WBG semiconductor is suitable for high frequency switching.
  • the on-resistance of SiC semiconductors is smaller than that of GaN semiconductors. Therefore, the first upper arm element 311 and the first lower arm element 312 of the first leg 31 having a larger number of switching times than the second leg 32 are made of a GaN semiconductor, and the second leg element 312 has a smaller number of switching times.
  • the second upper arm element 321 and the second lower arm element 322 of the leg 32 may be made of a SiC semiconductor. As a result, the characteristics of the SiC semiconductor and the GaN semiconductor can be fully utilized.
  • the SiC semiconductor for the second upper arm element 321 and the second lower arm element 322 of the second leg 32 which has fewer switching times than the first leg 31, the second upper arm Of the losses of the element 321 and the second lower arm element 322, the conduction loss accounts for a large proportion, and the turn-on loss and the turn-off loss become small. Therefore, the increase in heat generation due to the switching of the second upper arm element 321 and the second lower arm element 322 is suppressed, and the second upper arm element 321 and the second lower arm element constituting the second leg 32 are suppressed.
  • the chip area of 322 can be made relatively small. This makes it possible to effectively utilize a SiC semiconductor having a low yield at the time of chip manufacturing.
  • an SJ-MOSFET having a super junction structure may be used for the second upper arm element 321 and the second lower arm element 322 of the second leg 32 having a small number of switchings.
  • SJ-MOSFET it is possible to suppress the demerit that the capacitance is high and recovery is likely to occur while taking advantage of the low on-resistance which is the merit of SJ-MOSFET.
  • the manufacturing cost of the second leg 32 can be reduced as compared with the case of using the WBG semiconductor.
  • WBG semiconductors have higher heat resistance than Si semiconductors and can operate even at high junction temperatures. Therefore, by using the WBG semiconductor, the first leg 31 and the second leg 32 can be configured by a small chip having a large thermal resistance.
  • SiC semiconductors which have a low yield during chip manufacturing, can be used for small chips to reduce costs.
  • the WBG semiconductor suppresses the increase in the loss generated in the switching element even when driven at a high frequency of about 100 kHz, the loss reduction effect due to the miniaturization of the reactor 2 becomes large, and a wide output band, that is, a wide load Under the conditions, a highly efficient converter can be realized.
  • the WBG semiconductor has higher heat resistance than the Si semiconductor and has a high heat generation allowable level for switching due to the bias of the loss between the arms, so that it is suitable for the first leg 31 in which the switching loss due to high frequency driving occurs.
  • the voltage detection unit 7 which is the first physical quantity detection unit detects the bus voltage which is the first physical quantity which represents the operating state of the output side of the converter 3.
  • the first and second physical quantities are input to the control unit 10.
  • the control unit 10 controls the continuity of each switching element of the converter 3 based on the first and second physical quantities, and combines the continuity of the switching elements Q1 to Q4 with the continuity of the short-circuit switching element 331 to form the converter 3. It has a plurality of operation modes for operating in different operation modes. As a result, it is possible to achieve both efficiency improvement, power factor improvement, and power supply harmonic suppression by synchronous rectification.
  • the control unit 10 when the short-circuit switching element 331 is in the second switching operation, the control unit 10 turns off all the switching elements Q1 to Q4 in the converter 3. As a result, controllability and control stability can be improved, and capacitor short circuits can be reliably prevented.
  • the control unit 10 when the short-circuit switching element 331 is in the first switching operation, the control unit 10 receives one of the first leg 31 and the second leg 32 in the converter 3. The switching element of the leg is turned off. As a result, simple switching control can be performed, and controllability and control stability can be improved.
  • the gate drive circuit 15 which is a drive circuit for driving the converter 3 is a drive power source for driving the switching elements Q1 and Q3 of the upper arm connected to the positive side of the smoothing capacitor 4.
  • the bootstrap circuit 54 is provided.
  • the control unit 10 turns off the switching elements Q1 and Q3 of the upper arm in the converter 3.
  • the power consumption of the bootstrap circuit 54 can be suppressed.
  • controllability and control stability can be improved.
  • FIG. 15 is a block diagram showing an example of a hardware configuration that embodies the function of the control unit 10 according to the first embodiment.
  • FIG. 16 is a block diagram showing another example of a hardware configuration that embodies the function of the control unit 10 according to the first embodiment.
  • the processor 300 that performs the calculation
  • the memory 302 that stores the program read by the processor 300
  • the input / output of the signal are input / output. It can be configured to include the interface 304 to be performed.
  • the processor 300 may be an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital entirely Disc).
  • the memory 302 stores a program that executes the function of the control unit 10 according to the first embodiment.
  • the processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-described processing. It can be carried out.
  • the calculation result by the processor 300 can be stored in the memory 302.
  • the processing circuit 305 shown in FIG. 16 can also be used.
  • the processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the information input to the processing circuit 305 and the information output from the processing circuit 305 can be obtained via the interface 306. Even in the configuration using the processing circuit 305, some processing in the control unit 10 may be performed by the processor 300 having the configuration shown in FIG.
  • Embodiment 2 an application example of the motor drive device 100 described in the first embodiment will be described.
  • FIG. 17 is a diagram showing the configuration of the air conditioner 400 according to the second embodiment.
  • the motor drive device 100 described in the first embodiment can be applied to products such as a blower, a compressor, and an air conditioner.
  • an example in which the motor drive device 100 is applied to the air conditioner 400 will be described.
  • a motor 500 is connected to the output side of the motor drive device 100, and the motor 500 is connected to the compression element 504.
  • the compressor 505 includes a motor 500 and a compression element 504.
  • the refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
  • the flow path of the refrigerant circulating inside the air conditioner 400 is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. Therefore, it is configured to return to the compression element 504.
  • the motor drive device 100 receives AC power from the AC power source 1 and rotates the motor 500.
  • the compression element 504 executes a compression operation of the refrigerant by rotating the motor 500, and the refrigerant can be circulated inside the refrigeration cycle unit 506.
  • the operation under the intermediate condition where the output is less than half of the rated output, that is, the low output condition is dominant throughout the year, so that the contribution to the annual power consumption under the intermediate condition is high.
  • the rotation speed of the motor 500 tends to be low, and the bus voltage required to drive the motor 500 tends to be low. Therefore, it is effective from the viewpoint of system efficiency that the switching element used in the air conditioner 400 is operated in a passive state. Therefore, the motor drive device 100 capable of reducing the loss in a wide range of operation modes from the passive state to the high frequency switching state is useful for the air conditioner 400.
  • the motor drive device also has a method called an interleave method, which is different from the method of the first embodiment.
  • the reactor 2 can be miniaturized by the interleave method, it is not necessary to miniaturize the reactor 2 because the air conditioner 400 is often operated under intermediate conditions.
  • the method of the first embodiment is more effective. Therefore, the motor drive device 100 according to the first embodiment is particularly useful in an air conditioner.
  • the motor drive device 100 according to the first embodiment can suppress the switching loss, the temperature rise of the motor drive device 100 is suppressed, and even if the size of the outdoor unit blower (not shown) is reduced, the motor drive device 100 It is possible to secure the cooling capacity of the substrate mounted on the. Therefore, the motor drive device 100 according to the first embodiment is suitable for an air conditioner 400 having high efficiency and a high output of 4.0 kW or more.
  • the motor drive device 100 by using the motor drive device 100 according to the first embodiment, the bias of heat generation between the legs is reduced. As a result, the reactor 2 can be downsized by driving the switching elements Q1 to Q4 at high frequencies, and an increase in the weight of the air conditioner 400 can be suppressed. Further, according to the motor drive device 100 according to the first embodiment, the switching loss is reduced, the energy consumption rate is low, and the highly efficient air conditioner 400 can be realized by high-frequency driving of the switching elements Q1 to Q4.
  • the air conditioner 400 when a momentary power failure occurs, the operation of the converter 3 is stopped first, then the rotation of the compressor 500 is stopped, and finally the rotation of the fan is stopped. To operate. Generally, the driving energy of the fan is small, and the amount of heat generated by the fan is small. Therefore, the circuit components of the converter 3 and the inverter 18 can be cooled by the wind of the fan by finally stopping the rotation of the fan. In particular, when the temperature of the smoothing capacitor 4, which is a component of the converter 3, becomes high, the capacity decreases. Therefore, it is possible to extend the life of the smoothing capacitor 4 by appropriately cooling it even in the event of a momentary power failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

This direct-current power supply device (50) is provided with: a reactor (2); a converter (3) which is connected to an alternating-current power supply (1) via the reactor (2); a short circuit (330) that has a short-circuiting switching element (331), that is connected between input terminals of the converter (3), and that short-circuits power supply voltage via the reactor (2); a smoothing capacitor (4) which is connected between output terminals of the converter (3); and a control unit (10) which controls the operation of the converter (3) on the basis of bus voltage and the power supply voltage. Further, the control unit (10) has a plurality of operational modes in which the converter (3) is caused to operate in different modes through combinations of conduction of switching elements (Q1-Q4) and conduction of the short-circuiting switching element (331).

Description

直流電源装置、モータ駆動装置、送風機、圧縮機及び空気調和機DC power supply, motor drive, blower, compressor and air conditioner
 本発明は、交流電源から出力される交流電圧を直流電圧に変換して負荷に印加する直流電源装置、負荷であるモータを駆動するモータ駆動装置、モータ駆動装置を備えた送風機及び圧縮機、並びに、送風機又は圧縮機を備えた空気調和機に関する。 The present invention includes a DC power supply device that converts an AC voltage output from an AC power supply into a DC voltage and applies it to a load, a motor drive device that drives a motor that is a load, a blower and a compressor equipped with a motor drive device, and , With respect to an air conditioner equipped with a blower or compressor.
 下記特許文献1には、第1のダイオードと第2のダイオードとの接続点と、第1の金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)と第2のMOSFETとの接続点とに、リアクトルを介して交流電源が接続され、第1のMOSFET及び第1のMOSFETのスイッチングにより、交流電源の交流電圧を直流電圧に変換する直流電源装置が開示されている。第1のダイオード及び第1のMOSFETは平滑コンデンサの正極側に接続される素子であり、第2のダイオード及び第2のMOSFETは平滑コンデンサの負極側に接続される素子である。第1及び第2のダイオードと第1及び第2のMOSFETは、ブリッジ接続されて整流器を構成する。 The following Patent Document 1 describes a connection point between a first diode and a second diode, and a connection between a first metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET) and a second MOSFET. A DC power supply device is disclosed in which an AC power supply is connected via a reactor and the AC voltage of the AC power supply is converted into a DC voltage by switching between the first MOSFET and the first MOSFET. The first diode and the first MOSFET are elements connected to the positive electrode side of the smoothing capacitor, and the second diode and the second MOSFET are elements connected to the negative electrode side of the smoothing capacitor. The first and second diodes and the first and second MOSFETs are bridge-connected to form a rectifier.
 特許文献1に記載の直流電源装置は、第1のMOSFETの寄生ダイオードに電流が流れるタイミングで第1のMOSFETをオン動作させ、第2のMOSFETの寄生ダイオードに電流が流れるタイミングで第2のMOSFETをオン動作させる。この技術は、同期整流と呼ばれる。同期整流によって、直流電源装置は高効率に制御される。 In the DC power supply device described in Patent Document 1, the first MOSFET is turned on at the timing when the current flows through the parasitic diode of the first MOSFET, and the second MOSFET is operated at the timing when the current flows through the parasitic diode of the second MOSFET. To operate. This technique is called synchronous rectification. The DC power supply is controlled with high efficiency by synchronous rectification.
 また、特許文献1には、整流器の入力側において、整流器に並列に接続され、交流電源の出力を、リアクトルを介して短絡するための短絡回路を備える構成が開示されている。短絡回路には短絡スイッチング素子が接続され、短絡スイッチング素子がオン動作すると短絡回路によって交流電源の出力が短絡される。 Further, Patent Document 1 discloses a configuration in which a short-circuit circuit is provided on the input side of the rectifier, which is connected in parallel to the rectifier and for short-circuiting the output of the AC power supply via the reactor. A short-circuit switching element is connected to the short-circuit circuit, and when the short-circuit switching element is turned on, the output of the AC power supply is short-circuited by the short-circuit circuit.
特開2011-151984号公報Japanese Unexamined Patent Publication No. 2011-151984
 特許文献1に記載の直流電源装置では、短絡回路を動作させることにより、力率改善及び高調波電流低減を実現する同期整流動作が可能である旨、記載されている。しかしながら、特許文献1では、短絡回路を動作させるのは半周期に1回のみであり、力率の改善、及び電源高調波の抑制が十分であるとは言い難い。 It is described that in the DC power supply device described in Patent Document 1, synchronous rectification operation that realizes improvement of power factor and reduction of harmonic current is possible by operating a short circuit. However, in Patent Document 1, the short-circuit circuit is operated only once every half cycle, and it cannot be said that the improvement of the power factor and the suppression of the power supply harmonics are sufficient.
 本発明は、上記に鑑みてなされたものであって、同期整流による効率改善と、力率改善及び電源高調波抑制とを両立できる直流電源装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a DC power supply device capable of achieving both efficiency improvement by synchronous rectification, power factor improvement, and power supply harmonic suppression.
 上述した課題を解決し、目的を達成するため、本発明に係る直流電源装置は、リアクトルと、ブリッジ接続される4つの一方向性素子を備え、リアクトルを介して交流電源に接続され、交流電源から出力される交流電圧である電源電圧を直流電圧に変換して負荷に印加するコンバータと、を備える。また、直流電源装置は、短絡スイッチング素子を有してコンバータの入力端子間に接続され、短絡スイッチング素子のオン動作により、リアクトルを介して電源電圧を短絡させる電源短絡動作を行う短絡回路を備える。更に、直流電源装置は、コンバータの出力端子間に接続される平滑コンデンサと、コンバータの出力側の動作状態を表す第1の物理量を検出する第1の物理量検出部と、コンバータの入力側の動作状態を表す第2の物理量を検出する第2の物理量検出部と、第1及び第2の物理量が入力され、コンバータの動作を制御する制御部と、を備える。コンバータにおける、4つの一方向性素子のうちの2つの一方向性素子は直列に接続されて第1のレグを構成し、残りの2つの一方向性素子は直列に接続されて第2のレグを構成し、少なくとも、平滑コンデンサの正側に接続される第1及び第2のレグにおける2つの一方向性素子、又は平滑コンデンサの負側に接続される第1及び第2のレグにおける2つの一方向性素子、又は、第1のレグにおける2つの一方向性素子、又は第2のレグにおける2つの一方向性素子のそれぞれにはスイッチング素子が並列に接続される。制御部は、更にスイッチング素子の導通と短絡スイッチング素子の導通とを組み合わせて、コンバータを異なる動作態様で動作させる動作モードを複数有する。 In order to solve the above-mentioned problems and achieve the object, the DC power supply device according to the present invention includes a reactor and four unidirectional elements connected by a bridge, and is connected to an AC power supply via the reactor to be connected to an AC power supply. It includes a converter that converts a power supply voltage, which is an AC voltage output from, into a DC voltage and applies it to a load. Further, the DC power supply device includes a short-circuit circuit having a short-circuit switching element and connected between the input terminals of the converter to perform a power short-circuit operation of short-circuiting the power supply voltage via a reactor by turning on the short-circuit switching element. Further, the DC power supply unit includes a smoothing capacitor connected between the output terminals of the converter, a first physical quantity detector for detecting a first physical quantity indicating an operating state on the output side of the converter, and an operation on the input side of the converter. It includes a second physical quantity detecting unit that detects a second physical quantity that represents a state, and a control unit that inputs the first and second physical quantities and controls the operation of the converter. Two of the four unidirectional elements in the converter are connected in series to form the first leg, and the remaining two unidirectional elements are connected in series to form the second leg. At least two unidirectional elements in the first and second legs connected to the positive side of the smoothing capacitor, or two in the first and second legs connected to the negative side of the smoothing capacitor. A switching element is connected in parallel to each of the unidirectional element, the two unidirectional elements in the first leg, or the two unidirectional elements in the second leg. The control unit further has a plurality of operation modes in which the conduction of the switching element and the continuity of the short-circuit switching element are combined to operate the converter in different operation modes.
 本発明に係る直流電源装置によれば、同期整流による効率改善と、力率改善及び電源高調波抑制とを両立できるという効果を奏する。 According to the DC power supply device according to the present invention, it is possible to achieve both efficiency improvement by synchronous rectification, power factor improvement and power supply harmonic suppression.
実施の形態1に係る直流電源装置を含むモータ駆動装置の構成例を示す図The figure which shows the structural example of the motor drive device which includes the DC power supply device which concerns on Embodiment 1. 実施の形態1のコンバータに用いられるMOSFETの概略構造を示す模式的断面図Schematic cross-sectional view showing a schematic structure of a MOSFET used in the converter of the first embodiment. 実施の形態1におけるコンバータに流れる電流の経路を示す第1の図The first figure which shows the path of the electric current flowing through the converter in Embodiment 1. 実施の形態1におけるコンバータに流れる電流の経路を示す第2の図The second figure which shows the path of the current flowing through the converter in Embodiment 1. 実施の形態1におけるコンバータに流れる電流の経路を示す第3の図FIG. 3 shows a path of a current flowing through the converter according to the first embodiment. 実施の形態1におけるコンバータに流れる電流の経路を示す第4の図FIG. 4 shows a path of a current flowing through a converter according to the first embodiment. 実施の形態1における動作モードの特徴を説明する図The figure explaining the feature of the operation mode in Embodiment 1. 図7に示す動作モードで動作させたときの動作波形の第1の例を示す図The figure which shows the 1st example of the operation waveform at the time of operating in the operation mode shown in FIG. 実施の形態1におけるゲート駆動回路の構成例を示す図The figure which shows the structural example of the gate drive circuit in Embodiment 1. 図7に示す動作モードで動作させたときの動作波形の第2の例を示す図The figure which shows the 2nd example of the operation waveform at the time of operating in the operation mode shown in FIG. 図7に示す動作モードで動作させたときの動作波形の第3の例を示す図The figure which shows the 3rd example of the operation waveform at the time of operating in the operation mode shown in FIG. 実施の形態1に係る直流電源装置で使用されるMOSFETの損失特性を示す図The figure which shows the loss characteristic of the MOSFET used in the DC power supply device which concerns on Embodiment 1. 実施の形態1に係る直流電源装置において制御部がスイッチング素子をオンするタイミングを示す図The figure which shows the timing which the control part turns on a switching element in the DC power supply device which concerns on Embodiment 1. 実施の形態1における要部の動作説明に使用するフローチャートFlow chart used to explain the operation of the main part in the first embodiment 実施の形態1における制御部の機能を具現するハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration that embodies the function of the control unit according to the first embodiment. 実施の形態1における制御部の機能を具現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of a hardware configuration that embodies the function of the control unit according to the first embodiment. 実施の形態2に係る空気調和機の構成を示す図The figure which shows the structure of the air conditioner which concerns on Embodiment 2.
 以下に添付図面を参照し、本発明の実施の形態に係る直流電源装置、モータ駆動装置、送風機、圧縮機及び空気調和機について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。また、以下では、電気的な接続を単に「接続」と称して説明する。 The DC power supply device, motor drive device, blower, compressor, and air conditioner according to the embodiment of the present invention will be described below with reference to the accompanying drawings. The present invention is not limited to the embodiments shown below. Further, in the following, the electrical connection will be described simply as "connection".
実施の形態1.
 図1は、実施の形態1に係る直流電源装置50を含むモータ駆動装置100の構成例を示す図である。実施の形態1に係る直流電源装置50は、単相の交流電源1から出力される交流電圧である電源電圧を直流電圧に変換して負荷12に印加する電源装置である。また、実施の形態1に係るモータ駆動装置100は、直流電源装置50から出力される直流電力を交流電力に変換し、変換した交流電力をモータ500に供給してモータ500を駆動する駆動装置である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a motor drive device 100 including a DC power supply device 50 according to the first embodiment. The DC power supply device 50 according to the first embodiment is a power supply device that converts a power supply voltage, which is an AC voltage output from a single-phase AC power supply 1, into a DC voltage and applies it to a load 12. Further, the motor drive device 100 according to the first embodiment is a drive device that converts the DC power output from the DC power supply device 50 into AC power and supplies the converted AC power to the motor 500 to drive the motor 500. is there.
 実施の形態1に係るモータ駆動装置100は、図1に示すように、主たる構成部として、直流電源装置50と、制御部10と、負荷12とを備える。 As shown in FIG. 1, the motor drive device 100 according to the first embodiment includes a DC power supply device 50, a control unit 10, and a load 12 as main components.
 直流電源装置50は、リアクトル2と、コンバータ3と、第1の駆動回路であるゲート駆動回路15と、平滑コンデンサ4と、電圧検出部5と、電流検出部6と、電圧検出部7と、制御電源である電源回路14と、短絡回路330とを備える。リアクトル2の一端は、交流電源1に接続され、リアクトル2の他端は、コンバータ3に接続される。リアクトル2は、交流電源1から供給される電力を一時的に蓄積する。コンバータ3は、交流電源1から出力される交流電圧を直流電圧に変換して直流母線16a,16bに出力する。直流母線16a,16bは、コンバータ3と負荷12とを接続する電気配線である。直流母線16aと直流母線16bとの間の電圧は「母線電圧」と呼ばれる。 The DC power supply device 50 includes a reactor 2, a converter 3, a gate drive circuit 15 which is a first drive circuit, a smoothing capacitor 4, a voltage detection unit 5, a current detection unit 6, a voltage detection unit 7, and the like. A power supply circuit 14 which is a control power supply and a short-circuit circuit 330 are provided. One end of the reactor 2 is connected to the AC power supply 1, and the other end of the reactor 2 is connected to the converter 3. The reactor 2 temporarily stores the electric power supplied from the AC power source 1. The converter 3 converts the AC voltage output from the AC power supply 1 into a DC voltage and outputs the AC voltage to the DC bus 16a and 16b. The DC bus lines 16a and 16b are electrical wirings that connect the converter 3 and the load 12. The voltage between the DC bus 16a and the DC bus 16b is called the "bus voltage".
 短絡回路330は、リアクトル2とコンバータ3との間に配置される。また、短絡回路330は、コンバータ3の入力端子間に接続される。短絡回路330は、短絡スイッチング素子331と、短絡スイッチング素子331に並列に接続されるダイオードブリッジ332とを備える。短絡スイッチング素子331は、トランジスタ331aと、トランジスタ331aに並列に接続されるダイオード331bとを備える。なお、ダイオード331bは実装しなくても動作上の問題はない。トランジスタ331aの一例は、不図示の絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)である。IGBTに代えて、MOSFETを用いてもよい。トランジスタ331aがMOSFETである場合、MOSFETの寄生ダイオードを、ダイオード331bとして用いてもよい。 The short circuit 330 is arranged between the reactor 2 and the converter 3. Further, the short circuit circuit 330 is connected between the input terminals of the converter 3. The short-circuit circuit 330 includes a short-circuit switching element 331 and a diode bridge 332 connected in parallel to the short-circuit switching element 331. The short-circuit switching element 331 includes a transistor 331a and a diode 331b connected in parallel to the transistor 331a. There is no operational problem even if the diode 331b is not mounted. An example of the transistor 331a is an insulated gate bipolar transistor (IGBT) (indicated Gate Bipolar Transistor: IGBT) (not shown). MOSFETs may be used instead of the IGBTs. When the transistor 331a is a MOSFET, the parasitic diode of the MOSFET may be used as the diode 331b.
 短絡回路330は、短絡スイッチング素子331のオン動作により、リアクトル2を介して印加される交流電圧を短絡させる電源短絡動作を行う。 The short-circuit circuit 330 performs a power supply short-circuit operation that short-circuits the AC voltage applied via the reactor 2 by turning on the short-circuit switching element 331.
 負荷12は、第2の駆動回路であるゲート駆動回路17と、インバータ18と、電流検出部9と、モータ500と、を備える。負荷12の構成要素のうち、モータ500を除く、ゲート駆動回路17、インバータ18及び電流検出部9がモータ駆動装置100の構成要素である。インバータ18は、直流電源装置50から出力される直流電圧をモータ500に印加する交流電圧に変換して出力する。モータ500が搭載される機器の例は、送風機、圧縮機又は空気調和機である。 The load 12 includes a gate drive circuit 17, which is a second drive circuit, an inverter 18, a current detection unit 9, and a motor 500. Among the components of the load 12, the gate drive circuit 17, the inverter 18, and the current detection unit 9, excluding the motor 500, are the components of the motor drive device 100. The inverter 18 converts the DC voltage output from the DC power supply device 50 into an AC voltage applied to the motor 500 and outputs the AC voltage. Examples of equipment on which the motor 500 is mounted are blowers, compressors or air conditioners.
 なお、図1では、インバータ18に接続される機器がモータ500である例を示したが、これに限定されない。インバータ18に接続される機器は、交流電力が入力される機器であればよく、モータ500以外の機器でもよい。 Note that FIG. 1 shows an example in which the device connected to the inverter 18 is the motor 500, but the present invention is not limited to this. The device connected to the inverter 18 may be any device to which AC power is input, and may be a device other than the motor 500.
 コンバータ3は、第1のレグ31と、第2のレグ32とを備える。第1のレグ31と第2のレグ32とは、並列に接続されている。第1のレグ31では、第1の上アーム素子311と、第1の下アーム素子312とが直列に接続されている。第2のレグ32では、第2の上アーム素子321と、第2の下アーム素子322とが直列に接続されている。リアクトル2の他端は、第1のレグ31における第1の上アーム素子311と第1の下アーム素子312との接続点3aに接続されている。第2の上アーム素子321と第2の下アーム素子322との接続点3bは、交流電源1の他端に接続されている。コンバータ3において、接続点3a,3bは、交流端子を構成する。 The converter 3 includes a first leg 31 and a second leg 32. The first leg 31 and the second leg 32 are connected in parallel. In the first leg 31, the first upper arm element 311 and the first lower arm element 312 are connected in series. In the second leg 32, the second upper arm element 321 and the second lower arm element 322 are connected in series. The other end of the reactor 2 is connected to a connection point 3a between the first upper arm element 311 and the first lower arm element 312 in the first leg 31. The connection point 3b between the second upper arm element 321 and the second lower arm element 322 is connected to the other end of the AC power supply 1. In the converter 3, the connection points 3a and 3b form an AC terminal.
 なお、図1において、リアクトル2は、交流電源1の一端と、接続点3aとの間に接続されているが、交流電源1の別の一端と、接続点3bとの間に接続されていてもよい。 In FIG. 1, the reactor 2 is connected between one end of the AC power supply 1 and the connection point 3a, but is connected between another end of the AC power supply 1 and the connection point 3b. May be good.
 コンバータ3において、接続点3a,3bがある側を「交流側」と呼び、交流電源1から出力される交流電圧を「電源電圧」と呼び、電源電圧の周期を「電源周期」と呼ぶ場合がある。 In the converter 3, the side where the connection points 3a and 3b are located is called the "AC side", the AC voltage output from the AC power supply 1 is called the "power supply voltage", and the cycle of the power supply voltage is called the "power supply cycle". is there.
 第1の上アーム素子311は、スイッチング素子Q1と、スイッチング素子Q1に並列に接続されるダイオードD1とを含む。第1の下アーム素子312は、スイッチング素子Q2と、スイッチング素子Q2に並列に接続されるダイオードD2とを含む。第2の上アーム素子321は、スイッチング素子Q3と、スイッチング素子Q3に並列に接続されるダイオードD3とを含む。第2の下アーム素子322は、スイッチング素子Q4と、スイッチング素子Q4に並列に接続されるダイオードD4とを含む。 The first upper arm element 311 includes a switching element Q1 and a diode D1 connected in parallel to the switching element Q1. The first lower arm element 312 includes a switching element Q2 and a diode D2 connected in parallel to the switching element Q2. The second upper arm element 321 includes a switching element Q3 and a diode D3 connected in parallel to the switching element Q3. The second lower arm element 322 includes a switching element Q4 and a diode D4 connected in parallel to the switching element Q4.
 ダイオードD1,D4は、電源電圧の極性が正、即ちリアクトル2に接続される側がリアクトル2に接続されない側よりも高電位であるときに、順方向の電流が流れるように配置された一方向性素子である。ダイオードD2,D3は、電源電圧の極性が負、即ちリアクトル2に接続されない側がリアクトル2に接続される側よりも高電位であるときに、順方向の電流が流れるように配置された一方向性素子である。 The diodes D1 and D4 are unidirectional so that forward current flows when the polarity of the power supply voltage is positive, that is, the side connected to the reactor 2 has a higher potential than the side not connected to the reactor 2. It is an element. The diodes D2 and D3 are unidirectional so that a forward current flows when the polarity of the power supply voltage is negative, that is, the side not connected to the reactor 2 has a higher potential than the side connected to the reactor 2. It is an element.
 なお、図1では、ダイオードD1,D2,D3,D4のそれぞれにスイッチング素子Q1,Q2,Q3,Q4が並列に接続される構成を開示しているが、これに限定されない。平滑コンデンサ4の正側に接続される2つのダイオード、即ち第1のレグ31におけるダイオードD1及び第2のレグ32におけるダイオードD3のそれぞれにスイッチング素子が接続されていればよい。或いは、平滑コンデンサ4の負側に接続される2つのダイオード、即ち第1のレグ31におけるダイオードD2及び第2のレグ32におけるダイオードD4のそれぞれにスイッチング素子が接続されていればよい。或いは、第1のレグ31における2つのダイオード、即ちダイオードD1,D2のそれぞれにスイッチング素子が接続されていればよい。或いは、第2のレグ32における2つのダイオード、即ちダイオードD3,D4のそれぞれにスイッチング素子が接続されていればよい。 Note that FIG. 1 discloses a configuration in which switching elements Q1, Q2, Q3, and Q4 are connected in parallel to each of the diodes D1, D2, D3, and D4, but the present invention is not limited to this. Switching elements may be connected to each of the two diodes connected to the positive side of the smoothing capacitor 4, that is, the diode D1 in the first leg 31 and the diode D3 in the second leg 32. Alternatively, switching elements may be connected to each of the two diodes connected to the negative side of the smoothing capacitor 4, that is, the diode D2 in the first leg 31 and the diode D4 in the second leg 32. Alternatively, a switching element may be connected to each of the two diodes in the first leg 31, that is, the diodes D1 and D2. Alternatively, a switching element may be connected to each of the two diodes in the second leg 32, that is, the diodes D3 and D4.
 また、図1では、スイッチング素子Q1,Q2,Q3,Q4のそれぞれにMOSFETを例示しているが、MOSFETに限定されない。MOSFETは、ドレインとソースとの間で双方向に電流を流すことができるスイッチング素子である。ドレインに相当する第1端子とソースに相当する第2端子との間で双方向に電流を流すことができるスイッチング素子、即ち双方向素子であれば、どのようなスイッチング素子でもよい。 Further, in FIG. 1, MOSFETs are illustrated for each of the switching elements Q1, Q2, Q3, and Q4, but the limitation is not limited to MOSFETs. The MOSFET is a switching element capable of passing a current in both directions between the drain and the source. Any switching element may be used as long as it is a switching element capable of bidirectionally flowing a current between the first terminal corresponding to the drain and the second terminal corresponding to the source, that is, a bidirectional element.
 また、ここで言う「並列」とは、MOSFETのドレインに相当する第1端子とダイオードのカソードとが接続され、MOSFETのソースに相当する第2端子とダイオードのアノードとが接続されることを意味する。なお、ダイオードは、MOSFET自身が内部に有する寄生ダイオードを用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。 Further, "parallel" here means that the first terminal corresponding to the drain of the MOSFET and the cathode of the diode are connected, and the second terminal corresponding to the source of the MOSFET and the anode of the diode are connected. To do. As the diode, a parasitic diode that the MOSFET itself has inside may be used. Parasitic diodes are also called body diodes.
 また、スイッチング素子Q1,Q2,Q3,Q4は、シリコン系材料により形成されたMOSFETに限定されず、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)又はダイヤモンドといったワイドバンドギャップ(Wide Band Gap:WBG)半導体により形成されたMOSFETでもよい。 Further, the switching elements Q1, Q2, Q3 and Q4 are not limited to MOSFETs formed of silicon-based materials, and are wide-band such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3) or diamond. It may be a MOSFET formed of a bandgap (Wide Band Gap) semiconductor.
 一般的にWBG半導体は、シリコン半導体に比べて耐電圧及び耐熱性が高い。このため、スイッチング素子Q1,Q2,Q3,Q4のうちの少なくとも1つにWBG半導体を用いることにより、スイッチング素子の耐電圧性及び許容電流密度が高くなり、スイッチング素子を組み込んだ半導体モジュールを小型化できる。 In general, WBG semiconductors have higher withstand voltage and heat resistance than silicon semiconductors. Therefore, by using a WBG semiconductor for at least one of the switching elements Q1, Q2, Q3, and Q4, the withstand voltage resistance and the allowable current density of the switching element are increased, and the semiconductor module incorporating the switching element is miniaturized. it can.
 また、スイッチング素子Q1,Q2,Q3,Q4は、WBG半導体に代えて、スーパージャンクション(Super Junction:SJ)構造のMOSFETを用いてもよい。SJ-MOSFETを用いることにより、SJ-MOSFETのメリットである低オン抵抗を生かしつつ、静電容量が高くリカバリが発生しやすいというWBG半導体のデメリットを抑制できる。 Further, as the switching elements Q1, Q2, Q3, and Q4, a MOSFET having a Super Junction (SJ) structure may be used instead of the WBG semiconductor. By using the SJ-MOSFET, it is possible to suppress the demerit of the WBG semiconductor that the capacitance is high and recovery is likely to occur while taking advantage of the low on-resistance which is the merit of the SJ-MOSFET.
 図1の説明に戻る。平滑コンデンサ4の正側は、高電位側の直流母線16aに接続されている。直流母線16aは、第1のレグ31における第1の上アーム素子311と、第2のレグ32における第2の上アーム素子321との接続点3cから引き出されている。平滑コンデンサ4の負側は、低電位側の直流母線16bに接続されている。直流母線16bは、第1のレグ31における第1の下アーム素子312と、第2のレグ32における第2の下アーム素子322との接続点3dから引き出されている。コンバータ3において、接続点3c,3dは、直流端子を構成する。また、コンバータ3において、接続点3c,3dがある側を「直流側」と呼ぶ場合がある。 Return to the explanation in Fig. 1. The positive side of the smoothing capacitor 4 is connected to the DC bus 16a on the high potential side. The DC bus 16a is drawn from the connection point 3c between the first upper arm element 311 in the first leg 31 and the second upper arm element 321 in the second leg 32. The negative side of the smoothing capacitor 4 is connected to the DC bus 16b on the low potential side. The DC bus 16b is drawn from the connection point 3d between the first lower arm element 312 in the first leg 31 and the second lower arm element 322 in the second leg 32. In the converter 3, the connection points 3c and 3d form a DC terminal. Further, in the converter 3, the side where the connection points 3c and 3d are located may be referred to as the "DC side".
 コンバータ3の出力電圧は、平滑コンデンサ4の両端に印加される。平滑コンデンサ4は、直流母線16a,16bに接続されている。平滑コンデンサ4は、コンバータ3の出力電圧を平滑する。平滑コンデンサ4によって平滑された電圧は、インバータ18に印加される。 The output voltage of the converter 3 is applied to both ends of the smoothing capacitor 4. The smoothing capacitor 4 is connected to the DC bus lines 16a and 16b. The smoothing capacitor 4 smoothes the output voltage of the converter 3. The voltage smoothed by the smoothing capacitor 4 is applied to the inverter 18.
 電圧検出部5は、電源電圧を検出し、電源電圧の検出値Vsを制御部10に出力する。電源電圧は、交流電源1の瞬時電圧の絶対値である。なお、瞬時電圧の実効値を、電源電圧としてもよい。 The voltage detection unit 5 detects the power supply voltage and outputs the detected value Vs of the power supply voltage to the control unit 10. The power supply voltage is an absolute value of the instantaneous voltage of the AC power supply 1. The effective value of the instantaneous voltage may be used as the power supply voltage.
 電流検出部6は、交流電源1とコンバータ3との間に流れる交流電流である電源電流を検出し、電源電流の検出値Isを制御部10に出力する。電流検出部6に用いる電流検出器の一例は、交流変流器(Alternating Current Current Transformer:ACCT)である。電圧検出部7は、母線電圧を検出し、母線電圧の検出値Vdcを制御部10に出力する。 The current detection unit 6 detects the power supply current, which is the AC current flowing between the AC power supply 1 and the converter 3, and outputs the detected value Is of the power supply current to the control unit 10. An example of a current detector used in the current detection unit 6 is an AC current transformer (Alternating Current Current Transformer: ACCT). The voltage detection unit 7 detects the bus voltage and outputs the detected value Vdc of the bus voltage to the control unit 10.
 母線電圧は、コンバータ3の直流側、即ち出力側の動作状態を表す物理量である。また、電源電圧は、コンバータ3の交流側、即ち入力側の動作状態を表す物理量である。なお、これらの2つの物理量を区別するため、母線電圧を「第1の物理量」と呼び、電源電圧を「第2の物理量」と呼ぶ場合がある。また、母線電圧を検出する電圧検出部7を「第1の物理量検出部」と呼び、電源電圧を検出する電圧検出部5を「第2の物理量検出部」と呼ぶ場合がある。 The bus voltage is a physical quantity that represents the operating state of the DC side, that is, the output side of the converter 3. The power supply voltage is a physical quantity representing the operating state of the AC side, that is, the input side of the converter 3. In order to distinguish between these two physical quantities, the bus voltage may be referred to as a "first physical quantity" and the power supply voltage may be referred to as a "second physical quantity". Further, the voltage detection unit 7 that detects the bus voltage may be called a "first physical quantity detection unit", and the voltage detection unit 5 that detects the power supply voltage may be called a "second physical quantity detection unit".
 電源回路14は、平滑コンデンサ4の両端に接続される。電源回路14は、平滑コンデンサ4の電圧を利用して、5V、12V、15V、24Vといった低圧の直流電圧を生成する。低圧の直流電圧は、平滑コンデンサ4に蓄積された電荷を利用して生成される。低圧の直流電圧は、動作電圧として供給先の各部に付与される。電源回路14は、例えば5Vの直流電圧を制御部10、電流検出部6などに出力する。制御部10において、5Vの直流電圧は、図1では不図示のプロセッサに印加される。 The power supply circuit 14 is connected to both ends of the smoothing capacitor 4. The power supply circuit 14 uses the voltage of the smoothing capacitor 4 to generate low-voltage DC voltages such as 5V, 12V, 15V, and 24V. The low-voltage DC voltage is generated by utilizing the electric charge accumulated in the smoothing capacitor 4. A low-voltage DC voltage is applied to each part of the supply destination as an operating voltage. The power supply circuit 14 outputs, for example, a DC voltage of 5 V to the control unit 10, the current detection unit 6, and the like. In the control unit 10, a DC voltage of 5 V is applied to a processor (not shown) in FIG.
 インバータ18は、上アーム素子18UPと下アーム素子18UNとが直列に接続されたレグ18Aと、上アーム素子18VPと下アーム素子18VNとが直列に接続されたレグ18Bと、上アーム素子18WPと下アーム素子18WNとが直列に接続されたレグ18Cと、を備える。レグ18A、レグ18B及びレグ18Cは、互いに並列に接続されている。 The inverter 18 includes a leg 18A in which the upper arm element 18UP and the lower arm element 18UN are connected in series, a leg 18B in which the upper arm element 18VP and the lower arm element 18VN are connected in series, and the upper arm element 18WP and the lower. It includes a leg 18C in which an arm element 18WN is connected in series. The legs 18A, 18B and 18C are connected in parallel to each other.
 図1では、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNがIGBTである場合を例示しているが、これに限定されない。IGBTに代えて、MOSFET、又は集積化ゲート転流型サイリスタ(Integrated Gate Commutated Thyristor:IGCT)を用いてもよい。 FIG. 1 illustrates a case where the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are IGBTs, but the present invention is not limited to this. Instead of the IGBT, a MOSFET or an integrated gate commutated thyristor (IGCT) may be used.
 上アーム素子18UPは、トランジスタ18aと、トランジスタ18aに並列に接続されるダイオード18bとを含む。他の上アーム素子18VP,18WP、及び下アーム素子18UN,18VN,18WNについても同様の構成である。ここで言う「並列」とは、IGBTのエミッタに相当する第1端子にダイオードのアノード側が接続され、IGBTのコレクタに相当する第2端子にダイオードのカソード側が接続されることを意味する。 The upper arm element 18UP includes a transistor 18a and a diode 18b connected in parallel to the transistor 18a. The other upper arm elements 18VP and 18WP and the lower arm elements 18UN, 18VN and 18WN have the same configuration. The term "parallel" as used herein means that the anode side of the diode is connected to the first terminal corresponding to the emitter of the IGBT, and the cathode side of the diode is connected to the second terminal corresponding to the collector of the IGBT.
 なお、図1は、上アーム素子と下アーム素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。また、図1に示す回路構成は、三相モータであるモータ500に合わせたものである。モータ500が単相モータの場合、インバータ18も単相モータに対応した構成とされる。具体的には、上アーム素子と下アーム素子とが直列に接続されるレグを2つ備える構成となる。なお、モータ500が単相モータ及び三相モータの何れの場合も、1つのレグが複数対の上下アーム素子で構成されていてもよい。 Note that FIG. 1 has a configuration including three legs in which the upper arm element and the lower arm element are connected in series, but the configuration is not limited to this. The number of legs may be four or more. Further, the circuit configuration shown in FIG. 1 is adapted to the motor 500, which is a three-phase motor. When the motor 500 is a single-phase motor, the inverter 18 is also configured to correspond to the single-phase motor. Specifically, the configuration is provided with two legs in which the upper arm element and the lower arm element are connected in series. When the motor 500 is either a single-phase motor or a three-phase motor, one leg may be composed of a plurality of pairs of upper and lower arm elements.
 上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNのトランジスタ18aがMOSFETである場合、上アーム素子18UP,18VP,18WP及び下アーム素子18UN,18VN,18WNは、炭化珪素、窒化ガリウム系材料又はダイヤモンドといったWBG半導体により形成されていてもよい。WBG半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。 When the transistor 18a of the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN is a MOSFET, the upper arm elements 18UP, 18VP, 18WP and the lower arm elements 18UN, 18VN, 18WN are silicon carbide, gallium nitride. It may be formed of a system material or a WBG semiconductor such as diamond. If a MOSFET formed of a WBG semiconductor is used, the effects of withstand voltage and heat resistance can be enjoyed.
 上アーム素子18UPと下アーム素子18UNとの接続点26aはモータ500の第1の相(例えばU相)に接続され、上アーム素子18VPと下アーム素子18VNとの接続点26bはモータ500の第2の相(例えばV相)に接続され、上アーム素子18WPと下アーム素子18WNとの接続点26cはモータ500の第3の相(例えばW相)に接続されている。インバータ18において、接続点26a,26b,26cは、交流端子を構成する。 The connection point 26a between the upper arm element 18UP and the lower arm element 18UN is connected to the first phase (for example, U phase) of the motor 500, and the connection point 26b between the upper arm element 18VP and the lower arm element 18VN is the first phase of the motor 500. It is connected to the second phase (for example, V phase), and the connection point 26c between the upper arm element 18WP and the lower arm element 18WN is connected to the third phase (for example, W phase) of the motor 500. In the inverter 18, the connection points 26a, 26b, and 26c form an AC terminal.
 電流検出部9は、インバータ18とモータ500との間に流れるモータ電流を検出し、モータ電流の検出値Iuvwを制御部10に出力する。 The current detection unit 9 detects the motor current flowing between the inverter 18 and the motor 500, and outputs the detected value Iuvw of the motor current to the control unit 10.
 制御部10は、電圧検出部5の検出値Vs、電流検出部6の検出値Is、及び電圧検出部7の検出値Vdcに基づいて、コンバータ3内の各スイッチング素子を制御するための制御信号S311~S322と、短絡回路330の短絡スイッチング素子331を制御するための短絡制御信号S331とを生成する。 The control unit 10 controls each switching element in the converter 3 based on the detection value Vs of the voltage detection unit 5, the detection value Is of the current detection unit 6, and the detection value Vdc of the voltage detection unit 7. S311 to S322 and a short-circuit control signal S331 for controlling the short-circuit switching element 331 of the short-circuit circuit 330 are generated.
 制御信号S311は、スイッチング素子Q1を制御するための制御信号であり、制御信号S322は、スイッチング素子Q4を制御するための制御信号である。スイッチング素子Q2,Q3も制御部10からの制御信号によって制御される。制御部10によって生成された制御信号S311~S322は、ゲート駆動回路15に入力される。 The control signal S311 is a control signal for controlling the switching element Q1, and the control signal S322 is a control signal for controlling the switching element Q4. The switching elements Q2 and Q3 are also controlled by the control signal from the control unit 10. The control signals S311 to S322 generated by the control unit 10 are input to the gate drive circuit 15.
 なお、以下では、制御信号S311~S322に従った各アーム素子の動作を適宜「スイッチング動作」と呼ぶ。また、短絡制御信号S331に従った短絡スイッチング素子331の動作を適宜「短絡スイッチング動作」と呼ぶ。 In the following, the operation of each arm element according to the control signals S311 to S322 is appropriately referred to as "switching operation". Further, the operation of the short-circuit switching element 331 according to the short-circuit control signal S331 is appropriately referred to as "short-circuit switching operation".
 また、制御部10は、電圧検出部7の検出値Vdc及び電流検出部9の検出値Iuvwに基づいて、モータ500が所望の回転数で回転するように、インバータ18に具備される各スイッチング素子を制御するための制御信号S1~S6を生成する。インバータ18は三相の回路構成であり、三相の回路構成に対応して6つのスイッチング素子を有する。また、6つのスイッチング素子に対応して、6つの制御信号S1~S6が生成される。制御部10によって生成された制御信号S1~S6は、ゲート駆動回路17に入力される。 Further, the control unit 10 is provided with each switching element in the inverter 18 so that the motor 500 rotates at a desired rotation speed based on the detection value Vdc of the voltage detection unit 7 and the detection value Iuvw of the current detection unit 9. Control signals S1 to S6 for controlling the above are generated. The inverter 18 has a three-phase circuit configuration, and has six switching elements corresponding to the three-phase circuit configuration. Further, six control signals S1 to S6 are generated corresponding to the six switching elements. The control signals S1 to S6 generated by the control unit 10 are input to the gate drive circuit 17.
 ゲート駆動回路15は、制御信号S311~S322に基づいて、コンバータ3内の各スイッチング素子を駆動するための駆動パルスG311~G322を生成する。駆動パルスG311は、スイッチング素子Q1を駆動するための駆動パルスであり、駆動パルスG322は、スイッチング素子Q4を駆動するための駆動パルスである。スイッチング素子Q2,Q3もゲート駆動回路15からの駆動パルスによって駆動される。 The gate drive circuit 15 generates drive pulses G311 to G322 for driving each switching element in the converter 3 based on the control signals S311 to S322. The drive pulse G311 is a drive pulse for driving the switching element Q1, and the drive pulse G322 is a drive pulse for driving the switching element Q4. The switching elements Q2 and Q3 are also driven by the drive pulse from the gate drive circuit 15.
 ゲート駆動回路17は、制御信号S1~S6に基づいて、インバータ18内の各スイッチング素子を駆動するための駆動パルスG1~G6を生成する。 The gate drive circuit 17 generates drive pulses G1 to G6 for driving each switching element in the inverter 18 based on the control signals S1 to S6.
 なお、図1では、制御部10は、短絡回路330、直流電源装置50及び負荷12を制御する共通の制御部としてモータ駆動装置100の内部に設けられているが、この構成に限定されない。直流電源装置50及び負荷12のそれぞれを制御する個別の制御部を構成し、それぞれの制御部が、直流電源装置50及び負荷12のそれぞれの内部に設けられていてもよい。また、短絡回路330を制御する制御部は、直流電源装置50を制御する制御部内に設けられるのが一般的である。 Note that, in FIG. 1, the control unit 10 is provided inside the motor drive device 100 as a common control unit for controlling the short-circuit circuit 330, the DC power supply device 50, and the load 12, but the configuration is not limited to this. Individual control units that control each of the DC power supply device 50 and the load 12 may be configured, and each control unit may be provided inside each of the DC power supply device 50 and the load 12. Further, the control unit that controls the short-circuit circuit 330 is generally provided in the control unit that controls the DC power supply device 50.
 次に、実施の形態1に係るモータ駆動装置100の基本的な動作を説明する。まず、第1のレグ31では、第1の上アーム素子311及び第1の下アーム素子312は相補的、又は同時にオン状態とならないように動作する。即ち、第1の上アーム素子311及び第1の下アーム素子312のうち、一方がオンの場合には他方はオフである。前述したように、第1の上アーム素子311及び第1の下アーム素子312は、制御部10により生成される制御信号S311,S312により制御される。制御信号S311,S312の一例は、パルス幅変調(Pulse Width Modulation:PWM)信号である。 Next, the basic operation of the motor drive device 100 according to the first embodiment will be described. First, in the first leg 31, the first upper arm element 311 and the first lower arm element 312 operate so as to be complementary or not turned on at the same time. That is, when one of the first upper arm element 311 and the first lower arm element 312 is on, the other is off. As described above, the first upper arm element 311 and the first lower arm element 312 are controlled by the control signals S311 and S312 generated by the control unit 10. An example of the control signals S311 and S312 is a pulse width modulation (PWM) signal.
 交流電源1及びリアクトル2を介した平滑コンデンサ4の短絡を防ぐため、交流電源1から出力される電源電流の検出値Isの絶対値が電流閾値以下の場合には、第1の上アーム素子311及び第1の下アーム素子312は、共にオフとなる。以下では、平滑コンデンサ4の短絡を「コンデンサ短絡」と呼ぶ。コンデンサ短絡は、平滑コンデンサ4に蓄えられたエネルギーが放出され、交流電源1に電流が回生される状態である。 In order to prevent a short circuit of the smoothing capacitor 4 via the AC power supply 1 and the reactor 2, when the absolute value of the detected value Is of the power supply current output from the AC power supply 1 is equal to or less than the current threshold value, the first upper arm element 311 And the first lower arm element 312 are both turned off. Hereinafter, the short circuit of the smoothing capacitor 4 is referred to as a “capacitor short circuit”. Capacitor short circuit is a state in which the energy stored in the smoothing capacitor 4 is released and the current is regenerated in the AC power supply 1.
 前述したように、第2のレグ32を構成する第2の上アーム素子321及び第2の下アーム素子322は、制御部10により生成される制御信号S321,S322により制御される。第2の上アーム素子321及び第2の下アーム素子322は、基本的には、電源電圧の極性である電源電圧極性に応じてオン又はオフの状態となる。具体的には、電源電圧極性が正の場合、第2の下アーム素子322はオンであり、且つ、第2の上アーム素子321はオフである。また、電源電圧極性が負の場合、第2の上アーム素子321はオンであり、且つ、第2の下アーム素子322はオフである。 As described above, the second upper arm element 321 and the second lower arm element 322 constituting the second leg 32 are controlled by the control signals S321 and S322 generated by the control unit 10. The second upper arm element 321 and the second lower arm element 322 are basically turned on or off depending on the polarity of the power supply voltage, which is the polarity of the power supply voltage. Specifically, when the power supply voltage polarity is positive, the second lower arm element 322 is on and the second upper arm element 321 is off. When the power supply voltage polarity is negative, the second upper arm element 321 is on and the second lower arm element 322 is off.
 次に、実施の形態1におけるコンバータ3の各アーム素子の状態と実施の形態1に係るモータ駆動装置100に流れる電流の経路との関係を説明する。なお、以下の説明では、コンバータ3の各アーム素子はMOSFETであり、各アーム素子のダイオードは、MOSFET自身が内部に有する寄生ダイオードであるとする。 Next, the relationship between the state of each arm element of the converter 3 in the first embodiment and the path of the current flowing through the motor drive device 100 according to the first embodiment will be described. In the following description, it is assumed that each arm element of the converter 3 is a MOSFET, and the diode of each arm element is a parasitic diode that the MOSFET itself has inside.
 まず、MOSFETの構造について、図2を参照して説明する。図2は、実施の形態1のコンバータ3に用いられるMOSFETの概略構造を示す模式的断面図である。図2には、n型MOSFETが例示されている。 First, the structure of the MOSFET will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing a schematic structure of a MOSFET used in the converter 3 of the first embodiment. FIG. 2 illustrates an n-type MOSFET.
 n型MOSFETの場合、図2に示すように、p型の半導体基板600が用いられる。半導体基板600には、ソース電極S、ドレイン電極D及びゲート電極Gが形成される。ソース電極S及びドレイン電極Dと接する部位には、高濃度の不純物がイオン注入されてn型の領域601が形成される。また、半導体基板600において、n型の領域601が形成されない部位とゲート電極Gとの間には、酸化絶縁膜602が形成される。即ち、ゲート電極Gと、半導体基板600におけるp型の領域603との間には、酸化絶縁膜602が介在している。 In the case of an n-type MOSFET, a p-type semiconductor substrate 600 is used, as shown in FIG. A source electrode S, a drain electrode D, and a gate electrode G are formed on the semiconductor substrate 600. High-concentration impurities are ion-implanted into the portions in contact with the source electrode S and the drain electrode D to form an n-type region 601. Further, in the semiconductor substrate 600, an oxide insulating film 602 is formed between the portion where the n-type region 601 is not formed and the gate electrode G. That is, an oxide insulating film 602 is interposed between the gate electrode G and the p-type region 603 of the semiconductor substrate 600.
 ゲート電極Gに正電圧が印加されると、半導体基板600におけるp型の領域603と酸化絶縁膜602との間の境界面に電子が引き寄せられ、当該境界面が負に帯電する。電子が集まった所は、電子の密度がホール密度よりも高くなりn型化する。このn型化した部分は電流の通り道となりチャネル604と呼ばれる。チャネル604は、図2の例では、n型チャネルである。MOSFETがオンに制御されることにより、通流する電流は、p型の領域603に形成される寄生ダイオードよりも、チャネル604に多く流れる。 When a positive voltage is applied to the gate electrode G, electrons are attracted to the boundary surface between the p-shaped region 603 and the oxide insulating film 602 in the semiconductor substrate 600, and the boundary surface is negatively charged. Where the electrons are gathered, the density of the electrons becomes higher than the hole density and the electron is formed into an n-type. This n-shaped portion serves as a current path and is called a channel 604. Channel 604 is an n-type channel in the example of FIG. By controlling the MOSFET on, the flowing current flows through channel 604 more than the parasitic diode formed in the p-type region 603.
 図3は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第1の図である。図3には、電源電圧極性が正であり、且つ、電源電流の検出値Isの絶対値が電流閾値よりも大きい状態が示されている。この状態では、第1の上アーム素子311及び第2の下アーム素子322はオンであり、第1の下アーム素子312、第2の上アーム素子321及び短絡スイッチング素子331はオフである。このとき、交流電源1、リアクトル2、スイッチング素子Q1、平滑コンデンサ4、スイッチング素子Q4、交流電源1の順序で電流が流れる。このように、実施の形態1では、ダイオードD1,D4に電流を流すのではなく、ダイオードD1,D4に電流が流れるタイミングで、ダイオードD1,D4に対応するスイッチング素子Q1,Q4をオン動作させて、それぞれのチャネルに電流を流す動作モードを有している。この動作は「同期整流動作」もしくは「同期整流」と呼ばれる。なお、図3では、オンしているMOSFETを丸印で示している。以降の図においても同様である。動作モードの詳細については、後述する。 FIG. 3 is a first diagram showing a path of a current flowing through the converter 3 in the first embodiment. FIG. 3 shows a state in which the power supply voltage polarity is positive and the absolute value of the detected value Is of the power supply current is larger than the current threshold value. In this state, the first upper arm element 311 and the second lower arm element 322 are on, and the first lower arm element 312, the second upper arm element 321 and the short-circuit switching element 331 are off. At this time, the current flows in the order of the AC power supply 1, the reactor 2, the switching element Q1, the smoothing capacitor 4, the switching element Q4, and the AC power supply 1. As described above, in the first embodiment, the switching elements Q1 and Q4 corresponding to the diodes D1 and D4 are turned on at the timing when the current flows through the diodes D1 and D4 instead of passing the current through the diodes D1 and D4. , Has an operation mode in which a current flows through each channel. This operation is called "synchronous rectification operation" or "synchronous rectification". In FIG. 3, the MOSFETs that are turned on are indicated by circles. The same applies to the following figures. The details of the operation mode will be described later.
 図4は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第2の図である。図4には、電源電圧極性が負であり、且つ、電源電流の検出値Isの絶対値が電流閾値よりも大きい状態が示されている。この状態では、第1の下アーム素子312及び第2の上アーム素子321はオンであり、第1の上アーム素子311、第2の下アーム素子322及び短絡スイッチング素子331はオフである。このとき、交流電源1、スイッチング素子Q3、平滑コンデンサ4、スイッチング素子Q2、リアクトル2、交流電源1の順序で電流が流れる。このように、実施の形態1では、ダイオードD3,D2に電流を流すのではなく、スイッチング素子Q3,Q2のそれぞれのチャネルに電流を流す同期整流動作が行われる場合がある。 FIG. 4 is a second diagram showing the path of the current flowing through the converter 3 in the first embodiment. FIG. 4 shows a state in which the power supply voltage polarity is negative and the absolute value of the detected value Is of the power supply current is larger than the current threshold value. In this state, the first lower arm element 312 and the second upper arm element 321 are on, and the first upper arm element 311 and the second lower arm element 322 and the short-circuit switching element 331 are off. At this time, the current flows in the order of the AC power supply 1, the switching element Q3, the smoothing capacitor 4, the switching element Q2, the reactor 2, and the AC power supply 1. As described above, in the first embodiment, the synchronous rectification operation in which the current is passed through each channel of the switching elements Q3 and Q2 may be performed instead of passing the current through the diodes D3 and D2.
 図5は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第3の図である。図5には、電源電圧極性が正であり、且つ、電源電流の検出値Isの絶対値が電流閾値より大きい状態が示されている。この状態では、短絡スイッチング素子331はオンであり、第1の上アーム素子311、第1の下アーム素子312、第2の上アーム素子321及び第2の下アーム素子322はオフである。このとき、交流電源1、リアクトル2、ダイオードブリッジ332、短絡スイッチング素子331、ダイオードブリッジ332、交流電源1の順序で電流が流れる。これにより、平滑コンデンサ4を経由しない電源短絡経路が形成される。この例のように、実施の形態1では、各アーム素子に電流を流すことなく、短絡スイッチング素子331及びダイオードブリッジ332に電流を流すことで電源短絡経路を形成するモードを用意している。 FIG. 5 is a third diagram showing the path of the current flowing through the converter 3 in the first embodiment. FIG. 5 shows a state in which the power supply voltage polarity is positive and the absolute value of the detected value Is of the power supply current is larger than the current threshold value. In this state, the short-circuit switching element 331 is on, and the first upper arm element 311, the first lower arm element 312, the second upper arm element 321 and the second lower arm element 322 are off. At this time, the current flows in the order of the AC power supply 1, the reactor 2, the diode bridge 332, the short-circuit switching element 331, the diode bridge 332, and the AC power supply 1. As a result, a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed. As in this example, the first embodiment provides a mode in which a power short-circuit path is formed by passing a current through the short-circuit switching element 331 and the diode bridge 332 without passing a current through each arm element.
 図6は、実施の形態1におけるコンバータ3に流れる電流の経路を示す第4の図である。図6には、電源電圧極性が負であり、且つ、電源電流の検出値Isの絶対値が電流閾値より大きい状態が示されている。この状態では、短絡スイッチング素子331はオンであり、第1の上アーム素子311、第1の下アーム素子312、第2の上アーム素子321及び第2の下アーム素子322はオフである。このとき、交流電源1、ダイオードブリッジ332、短絡スイッチング素子331、ダイオードブリッジ332、リアクトル2、交流電源1の順序で電流が流れる。これにより、平滑コンデンサ4を経由しない電源短絡経路が形成される。この例のように、実施の形態1では、各アーム素子に電流を流すことなく、短絡スイッチング素子331及びダイオードブリッジ332に電流を流すことで電源短絡経路を形成するモードを用意している。 FIG. 6 is a fourth diagram showing the path of the current flowing through the converter 3 in the first embodiment. FIG. 6 shows a state in which the power supply voltage polarity is negative and the absolute value of the detected value Is of the power supply current is larger than the current threshold value. In this state, the short-circuit switching element 331 is on, and the first upper arm element 311, the first lower arm element 312, the second upper arm element 321 and the second lower arm element 322 are off. At this time, the current flows in the order of the AC power supply 1, the diode bridge 332, the short-circuit switching element 331, the diode bridge 332, the reactor 2, and the AC power supply 1. As a result, a power supply short-circuit path that does not pass through the smoothing capacitor 4 is formed. As in this example, the first embodiment provides a mode in which a power short-circuit path is formed by passing a current through the short-circuit switching element 331 and the diode bridge 332 without passing a current through each arm element.
 制御部10は、以上に述べた電流経路の切り替えを制御することで、電源電流及び母線電圧の値を制御できる。モータ駆動装置100は、電源電圧極性が正のときは、図3に示す動作と図5に示す動作とを連続的に切り替える。また、モータ駆動装置100は、電源電圧極性が負のときは、図4に示す動作と図6に示す動作とを連続的に切り替える。これにより、母線電圧を上昇させ、又は母線電圧の上昇を抑制する母線電圧制御、力率及び電源高調波を改善するための電流制御、並びに運転効率を改善するための同期整流を実現することができる。 The control unit 10 can control the values of the power supply current and the bus voltage by controlling the switching of the current path described above. When the power supply voltage polarity is positive, the motor drive device 100 continuously switches between the operation shown in FIG. 3 and the operation shown in FIG. Further, when the power supply voltage polarity is negative, the motor drive device 100 continuously switches between the operation shown in FIG. 4 and the operation shown in FIG. As a result, it is possible to realize bus voltage control for increasing the bus voltage or suppressing the increase of the bus voltage, current control for improving the power factor and power supply harmonics, and synchronous rectification for improving the operating efficiency. it can.
 次に、図7及び図8を参照して、実施の形態1の直流電源装置50において使用する動作モードについて説明する。図7は、実施の形態1における動作モードの特徴を説明する図である。図8は、図7に示す動作モードで動作させたときの動作波形の第1の例を示す図である。 Next, the operation mode used in the DC power supply device 50 of the first embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram illustrating the characteristics of the operation mode according to the first embodiment. FIG. 8 is a diagram showing a first example of an operation waveform when operated in the operation mode shown in FIG. 7.
 図7には、(a)整流モード、(b)同期整流モード、(c)低速スイッチングモード、(d)高速スイッチングモードという4つの動作モードが記載されている。それぞれの動作モードは、同期整流、及び短絡スイッチング動作という2つの制御の実施の有無の組合せで区分される。同期整流は、前述した通りであり、運転効率改善のために行う。短絡スイッチング動作は、母線電圧の制御、コンバータ3に流出入する電流の力率改善及び高調波抑制のために行う。なお、低速スイッチングモードを「第1のスイッチングモード」と呼び、高速スイッチングモードを「第2のスイッチングモード」と呼ぶ場合がある。また、整流モードによる動作を「ダイオード整流動作」と呼び、同期整流モードによる動作を「同期整流動作」と呼ぶ場合がある。また、第1のスイッチングモードによる動作を「第1のスイッチング動作」と呼び、第2のスイッチングモードによる動作を「第2のスイッチング動作」と呼ぶ場合がある。 FIG. 7 shows four operation modes: (a) rectification mode, (b) synchronous rectification mode, (c) low-speed switching mode, and (d) high-speed switching mode. Each operation mode is classified according to the combination of whether or not two controls, synchronous rectification and short-circuit switching operation, are performed. Synchronous rectification is as described above and is performed to improve operating efficiency. The short-circuit switching operation is performed to control the bus voltage, improve the force factor of the current flowing in and out of the converter 3, and suppress harmonics. The low-speed switching mode may be referred to as a "first switching mode", and the high-speed switching mode may be referred to as a "second switching mode". Further, the operation in the rectification mode may be called "diode rectification operation", and the operation in the synchronous rectification mode may be called "synchronous rectification operation". Further, the operation in the first switching mode may be referred to as "first switching operation", and the operation in the second switching mode may be referred to as "second switching operation".
 実施の形態1における直流電源装置50は、整流モードを有し、更に、同期整流モード、低速スイッチングモード及び高速スイッチングモードのうちの少なくとも1つの動作モードを有する。なお、昇圧動作が必要とされない用途又は製品では、低速スイッチングモード及び高速スイッチングモードを有していなくてもよい場合がある。 The DC power supply device 50 according to the first embodiment has a rectification mode, and further has at least one operation mode of a synchronous rectification mode, a low-speed switching mode, and a high-speed switching mode. In addition, in applications or products that do not require boosting operation, it may not be necessary to have a low-speed switching mode and a high-speed switching mode.
 図8(a)には、整流モードで動作させたときの動作波形が示されている。具体的には、上部側から、電源電圧、電源電流、及びスイッチング素子Q1~Q4のそれぞれを制御する制御信号S311~S322の波形が示されている。他の動作モードも同様である。整流モードにおいては、スイッチング素子Q1~Q4及び短絡スイッチング素子331を制御する必要がないため、ゲート駆動回路15を動作させる駆動電源及び短絡スイッチング素子331を動作させる駆動電源の消費が抑えられるという利点がある。また、スイッチング素子Q1~Q4及び短絡スイッチング素子331を制御する必要がないため、制御が容易であるという利点がある。 FIG. 8A shows an operating waveform when operated in the rectified mode. Specifically, from the upper side, the waveforms of the power supply voltage, the power supply current, and the control signals S311 to S322 that control each of the switching elements Q1 to Q4 are shown. The same applies to other operation modes. In the rectification mode, since it is not necessary to control the switching elements Q1 to Q4 and the short-circuit switching element 331, there is an advantage that the consumption of the drive power supply for operating the gate drive circuit 15 and the drive power supply for operating the short-circuit switching element 331 can be suppressed. is there. Further, since it is not necessary to control the switching elements Q1 to Q4 and the short-circuit switching element 331, there is an advantage that the control is easy.
 図8(b)には、同期整流モードで動作させたときの動作波形が示されている。同期整流モードにおいては、寄生ダイオードに通流するタイミングで対応するスイッチング素子をオン状態として、スイッチング素子のチャネル側に通流させる動作モードである。図8(b)の例では、寄生ダイオードに通流するタイミングでスイッチング素子Q1,Q4、又はスイッチング素子Q2,Q3をオンに制御している。同期整流モードを使用すると、特に流れる電流が小さい場合に、高効率化を図ることが可能である。なお、同期整流モードは、通流する素子を寄生ダイオードからスイッチング素子に置き換えただけである。このため、電流制御及び母線電圧制御は実施されない。 FIG. 8B shows an operation waveform when operated in the synchronous rectification mode. The synchronous rectification mode is an operation mode in which the corresponding switching element is turned on at the timing of flowing through the parasitic diode and is passed through to the channel side of the switching element. In the example of FIG. 8B, the switching elements Q1 and Q4 or the switching elements Q2 and Q3 are turned on at the timing of flowing through the parasitic diode. When the synchronous rectification mode is used, it is possible to improve the efficiency especially when the flowing current is small. In the synchronous rectification mode, the passing element is simply replaced with a switching element from the parasitic diode. Therefore, current control and bus voltage control are not performed.
 図8(c)には、低速スイッチングモードで動作させたときの動作波形が示されている。低速スイッチングモードは、電源周期の半周期に1回以上、リアクトル2を介して電源電圧を短絡させる動作モード、言い替えると電源周期の半周期内に局所的に電源短絡を行わせる動作モードである。図8(c)の例では、電源電圧の半周期ごとに、短絡スイッチング素子331によって、2回の短絡動作が行われている。短絡動作を行うことで、リアクトル2にエネルギーが蓄積される。エネルギーの蓄積後に短絡動作を解除すると、リアクトル2に蓄積されたエネルギーが平滑コンデンサ4に移送されて蓄積される。これにより、平滑コンデンサ4の電圧、即ち母線電圧の昇圧が可能となる。 FIG. 8C shows the operation waveform when operated in the low-speed switching mode. The low-speed switching mode is an operation mode in which the power supply voltage is short-circuited via the reactor 2 at least once in a half cycle of the power supply cycle, in other words, an operation mode in which the power supply short circuit is locally performed within the half cycle of the power supply cycle. In the example of FIG. 8C, the short-circuit switching element 331 performs two short-circuit operations every half cycle of the power supply voltage. By performing the short-circuit operation, energy is stored in the reactor 2. When the short-circuit operation is released after the energy is stored, the energy stored in the reactor 2 is transferred to the smoothing capacitor 4 and stored. As a result, the voltage of the smoothing capacitor 4, that is, the bus voltage can be boosted.
 母線電圧の昇圧量については、母線電圧制御によって調整される。母線電圧制御には、比例積分制御器などが用いられる。母線電圧制御では、母線電圧の検出値Vdcが目標電圧に近づくようにコンバータ3の動作が制御される。また、母線電圧制御では、リアクトル2を介して電源電圧を短絡させるときの短絡時間が制御される。また、母線電圧制御では、比例積分制御器の応答時間を変化させることにより、負荷変動の発生に起因して生じ得る母線電圧の過大な上昇を抑制することができる。 The boost amount of the bus voltage is adjusted by the bus voltage control. A proportional integration controller or the like is used for bus voltage control. In the bus voltage control, the operation of the converter 3 is controlled so that the detected value Vdc of the bus voltage approaches the target voltage. Further, in the bus voltage control, the short-circuit time when the power supply voltage is short-circuited via the reactor 2 is controlled. Further, in the bus voltage control, by changing the response time of the proportional integration controller, it is possible to suppress an excessive increase in the bus voltage that may occur due to the occurrence of load fluctuation.
 低速スイッチングモードでは、短絡動作によって短絡電流を流すことができる。これにより、電源電流の通流幅の拡大によって、力率の改善及び高調波電流の抑制を図ることができる。電流波形の改善に関しては、電源電圧のゼロクロス点を基準にして短絡動作を行わせるタイミングを予め決めておき、負荷に応じて参照する形をとってもよい。或いは、電源電流を検出し、検出した電流波形が正弦波に近づくように短絡時間を制御してもよい。なお、低速スイッチングモードにおいては短絡動作させる動作時間が短いため、高調波ノイズの発生を抑制することが可能である。 In the low-speed switching mode, a short-circuit current can be passed by short-circuit operation. As a result, the power factor can be improved and the harmonic current can be suppressed by expanding the flow width of the power supply current. Regarding the improvement of the current waveform, the timing for performing the short-circuit operation may be determined in advance with reference to the zero crossing point of the power supply voltage, and may be referred to according to the load. Alternatively, the power supply current may be detected and the short circuit time may be controlled so that the detected current waveform approaches a sine wave. In the low-speed switching mode, since the short-circuit operation time is short, it is possible to suppress the generation of harmonic noise.
 図8(d)には、高速スイッチングモードで動作させたときの動作波形が示されている。高速スイッチングモードは、電源電圧の1周期の全域に亘って、前述した電源短絡動作を行わせる動作モードである。電源短絡動作の意義は、低速スイッチングモードと同じである。即ち、電源短絡動作を行うことでリアクトル2にエネルギーを蓄積し、エネルギーの蓄積後に短絡動作を解除することで、リアクトル2に蓄積されたエネルギーを平滑コンデンサ4に移送する。これにより、母線電圧の昇圧が可能である。母線電圧の昇圧量の制御についても、低速スイッチングモードと同様な制御で実現することができる。 FIG. 8D shows an operation waveform when operated in the high-speed switching mode. The high-speed switching mode is an operation mode in which the power supply short-circuit operation described above is performed over the entire range of one cycle of the power supply voltage. The significance of the power short-circuit operation is the same as that of the low-speed switching mode. That is, energy is stored in the reactor 2 by performing the power supply short-circuit operation, and the energy stored in the reactor 2 is transferred to the smoothing capacitor 4 by releasing the short-circuit operation after the energy is stored. This makes it possible to boost the bus voltage. The control of the boost amount of the bus voltage can also be realized by the same control as in the low speed switching mode.
 前述したように、高速スイッチングモードでは、電源電圧の1周期の全域に亘って短絡動作が行われるので、低速スイッチングモードよりも電流の通流幅が拡大する。これにより、低速スイッチングモードに比して、更なる力率改善及び高調波電流の抑制を図ることができる。また、高速スイッチングモードにおいては、力率を1近くの値に制御可能である。これにより、特に高負荷側において、ブレーカ容量の限界まで負荷を駆動することができ、装置のハイパワー化を図ることができる。 As described above, in the high-speed switching mode, the short-circuit operation is performed over the entire range of one cycle of the power supply voltage, so that the current flow width is wider than in the low-speed switching mode. As a result, it is possible to further improve the power factor and suppress the harmonic current as compared with the low-speed switching mode. Further, in the high-speed switching mode, the power factor can be controlled to a value close to 1. As a result, the load can be driven to the limit of the breaker capacity, especially on the high load side, and the power of the device can be increased.
 次に、図1に示すゲート駆動回路15がブートストラップ回路を備える構成である場合の効果について説明する。ここでは、まず、ブートストラップ回路について、図9を参照して説明する。図9は、実施の形態1におけるゲート駆動回路15の構成例を示す図である。 Next, the effect when the gate drive circuit 15 shown in FIG. 1 is configured to include a bootstrap circuit will be described. Here, first, the bootstrap circuit will be described with reference to FIG. FIG. 9 is a diagram showing a configuration example of the gate drive circuit 15 according to the first embodiment.
 図9において、ゲート駆動回路15は、駆動回路51,52と、ブートストラップ回路54とを備える。駆動回路51は、第1のレグ31の第1の上アーム素子311を駆動する際に用いられる駆動回路である。駆動回路52は、第1のレグ31の第1の下アーム素子312を駆動する際に用いられる駆動回路である。第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322も同様な2つの駆動回路で駆動される。 In FIG. 9, the gate drive circuit 15 includes drive circuits 51 and 52 and a bootstrap circuit 54. The drive circuit 51 is a drive circuit used when driving the first upper arm element 311 of the first leg 31. The drive circuit 52 is a drive circuit used when driving the first lower arm element 312 of the first leg 31. The second upper arm element 321 and the second lower arm element 322 of the second leg 32 are also driven by two similar drive circuits.
 ブートストラップ回路54は、抵抗54aと、ダイオード54bと、ブートストラップコンデンサであるコンデンサ54cとを備えている。コンデンサ54cには、抵抗54aとダイオード54bとによる直列回路を介して駆動電源55から駆動電圧が印加される。このように構成されたブートストラップ回路54において、下アームのスイッチング素子Q2,Q4がオン動作すると、抵抗54a、ダイオード54b、コンデンサ54c、下アームのスイッチング素子Q2,Q4によって電流が流れ、コンデンサ54cが充電される。コンデンサ54cの充電電圧は、上アームのスイッチング素子Q1,Q3を駆動するためのゲート駆動電圧となる。 The bootstrap circuit 54 includes a resistor 54a, a diode 54b, and a capacitor 54c which is a bootstrap capacitor. A drive voltage is applied to the capacitor 54c from the drive power supply 55 via a series circuit of the resistor 54a and the diode 54b. In the bootstrap circuit 54 configured in this way, when the lower arm switching elements Q2 and Q4 are turned on, a current flows through the resistor 54a, the diode 54b, the capacitor 54c, and the lower arm switching elements Q2 and Q4, and the capacitor 54c becomes It will be charged. The charging voltage of the capacitor 54c is a gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm.
 図9の例のように、ブートストラップ回路54を備えたゲート駆動回路15では、上アームのスイッチング素子Q1,Q3を駆動するためのゲート駆動電圧は、下アームのスイッチング素子Q2,Q4をオン動作させることで得られる。 As in the example of FIG. 9, in the gate drive circuit 15 provided with the bootstrap circuit 54, the gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm turns on the switching elements Q2 and Q4 of the lower arm. Obtained by letting.
 図8(b)~(d)のスイッチングパターンによれば、スイッチング素子Q1~Q4のうち、下アーム素子であるスイッチング素子Q2,Q4は、電源電圧の半周期の間交互にオン動作するように制御される。下アームのスイッチング素子Q2,Q4が動作すると、前述のようにブートストラップ回路54のコンデンサ54cが充電される。このため、図8のような制御信号S311~S322とすれば、上アームのスイッチング素子Q1,Q3を駆動するためのゲート駆動電圧を確実に生成することが可能となる。 According to the switching patterns of FIGS. 8 (b) to 8 (d), among the switching elements Q1 to Q4, the switching elements Q2 and Q4, which are the lower arm elements, are alternately turned on for half a cycle of the power supply voltage. Be controlled. When the switching elements Q2 and Q4 of the lower arm operate, the capacitor 54c of the bootstrap circuit 54 is charged as described above. Therefore, if the control signals S311 to S322 as shown in FIG. 8 are used, it is possible to reliably generate a gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm.
 また、図10は、図7に示す動作モードで動作させたときの動作波形の第2の例を示す図である。図10(b)は、図8(b)に示す制御信号S311,S322及び短絡制御信号S331はそのままで、制御信号S312と制御信号S321とを入れ替えたものである。このように入れ替えても、下アームのスイッチング素子Q2,Q4がオン動作する時間は充分に与えられている。これにより、上アームのスイッチング素子Q1,Q3を駆動するためのゲート駆動電圧を確実に生成することが可能となる。 Further, FIG. 10 is a diagram showing a second example of the operation waveform when operated in the operation mode shown in FIG. 7. 10 (b) shows the control signals S311 and S322 and the short-circuit control signal S331 shown in FIG. 8 (b) as they are, and the control signal S312 and the control signal S321 are replaced. Even if they are replaced in this way, sufficient time is given for the switching elements Q2 and Q4 of the lower arm to operate on. As a result, it is possible to reliably generate a gate drive voltage for driving the switching elements Q1 and Q3 of the upper arm.
 また、図11は、図7に示す動作モードで動作させたときの動作波形の第3の例を示す図である。図11(b)~(d)では、少なくともスイッチング素子Q1,Q2の動作を電源周期の1周期の全域に亘って停止させている。スイッチング素子Q1,Q2の動作を電源周期の1周期の全域に亘って停止させても同期整流が行われないだけであり、整流動作としては問題ない。また、詳細は後述するが、各アーム素子に流れる電流が大きい場合には、MOSFETのチャネルを通流させるよりも、寄生ダイオード又は並列に接続されたダイオードを通流させることにより損失が改善する場合がある。従って、スイッチング素子の温度上昇の度合いによって、図8、図10又は図11の動作を適宜入れ替えてもよい。 Further, FIG. 11 is a diagram showing a third example of the operation waveform when operated in the operation mode shown in FIG. 7. In FIGS. 11 (b) to 11 (d), at least the operations of the switching elements Q1 and Q2 are stopped over the entire range of one cycle of the power supply cycle. Even if the operations of the switching elements Q1 and Q2 are stopped over the entire range of one cycle of the power supply cycle, synchronous rectification is not performed, and there is no problem in the rectification operation. Further, as will be described in detail later, when the current flowing through each arm element is large, the loss is improved by passing a parasitic diode or a diode connected in parallel rather than passing through the channel of the MOSFET. There is. Therefore, the operations of FIGS. 8, 10 or 11 may be appropriately replaced depending on the degree of temperature rise of the switching element.
 また、図11(b)~(d)のスイッチングパターンでは、同時に2つ以上のスイッチング素子がオンすることはない。このため、ダイオードD1~D4のうちの少なくとも1つのダイオードにより電流がブロックされるので、コンデンサ短絡を確実に防止することができる。 Further, in the switching patterns of FIGS. 11B to 11D, two or more switching elements are not turned on at the same time. Therefore, since the current is blocked by at least one of the diodes D1 to D4, it is possible to reliably prevent a capacitor short circuit.
 また、図8、図10及び図11の各(c),(d)のスイッチングパターンでは、スイッチング素子Q1~Q4による電源短絡動作を用いずに、短絡スイッチング素子331のみを用いて電源短絡を実現できる。以下、この制御による効果について説明する。 Further, in the switching patterns of FIGS. 8, 10 and 11 (c) and 11 (d), a power short circuit is realized by using only the short circuit switching element 331 without using the power short circuit operation by the switching elements Q1 to Q4. it can. The effect of this control will be described below.
 例えばスイッチング素子Q1,Q3をオン動作させて電源短絡動作を行う場合、スイッチング素子Q4をオン状態とすると、平滑コンデンサ4、スイッチング素子Q3、スイッチング素子Q4のルートでコンデンサ短絡が生じてしまう。このため、スイッチング素子Q3がオン状態の場合には、スイッチング素子Q4はオフ状態とする必要がある。その後、同期整流を行う場合には、スイッチング素子Q3をオフ状態に制御した上で、スイッチング素子Q4をオン動作させる必要があり、制御が煩雑となる。一方、短絡回路330の短絡スイッチング素子331を動作させることで電源短絡を実現すれば、スイッチング素子Q3,Q4を相補的に動作させることなく、電源短絡動作と同期整流動作とを両立することができる。具体的には、短絡スイッチング素子331をオフ状態にしてから、スイッチング素子Q1~Q4をオン状態に制御すればよい。また、短絡スイッチング素子331が複数回オン状態に制御される場合には、短絡スイッチング素子331がオフするタイミングで、スイッチング素子Q1~Q4をオン状態とすればよい。何れの場合も、同期整流の効果を得ることができる。 For example, when the switching elements Q1 and Q3 are turned on to perform a power short-circuit operation, if the switching element Q4 is turned on, a capacitor short-circuit occurs at the route of the smoothing capacitor 4, the switching element Q3, and the switching element Q4. Therefore, when the switching element Q3 is in the on state, the switching element Q4 needs to be in the off state. After that, when performing synchronous rectification, it is necessary to control the switching element Q3 to the off state and then turn on the switching element Q4, which complicates the control. On the other hand, if the power supply short circuit is realized by operating the short circuit switching element 331 of the short circuit circuit 330, the power supply short circuit operation and the synchronous rectification operation can be compatible with each other without operating the switching elements Q3 and Q4 in a complementary manner. .. Specifically, the short-circuit switching element 331 may be turned off, and then the switching elements Q1 to Q4 may be controlled to be turned on. When the short-circuit switching element 331 is controlled to be turned on a plurality of times, the switching elements Q1 to Q4 may be turned on at the timing when the short-circuit switching element 331 is turned off. In either case, the effect of synchronous rectification can be obtained.
 また、スイッチング素子Q1,Q2及びスイッチング素子Q3,Q4の相補動作が行われない場合、スイッチング素子Q1,Q2及びスイッチング素子Q3,Q4が同時にオン状態となることを防止する短絡防止時間であるデッドタイムを設ける必要がなくなる。デッドタイムを設けない制御とすれば、制御による指令値と実際の指令値とが一致する一致性が高められる。これにより、制御性及び制御安定性を向上させつつ、効率を高めることができる。 Further, when the complementary operations of the switching elements Q1 and Q2 and the switching elements Q3 and Q4 are not performed, the dead time is a short-circuit prevention time for preventing the switching elements Q1 and Q2 and the switching elements Q3 and Q4 from being turned on at the same time. There is no need to provide. If the control does not provide a dead time, the consistency between the command value by the control and the actual command value is improved. This makes it possible to improve efficiency while improving controllability and control stability.
 特に、図11(d)のスイッチングパターンでは、電源電圧の1周期の全域に亘って、コンバータ3における全てのスイッチング素子Q1~Q4がオフ動作である。これにより、制御性及び制御安定性を向上することができる。また、スイッチング素子がオン動作しないので、コンデンサ短絡を確実に防止することができる。 In particular, in the switching pattern of FIG. 11D, all the switching elements Q1 to Q4 in the converter 3 are off-operated over the entire range of one cycle of the power supply voltage. Thereby, controllability and control stability can be improved. Moreover, since the switching element does not operate on, it is possible to reliably prevent a capacitor short circuit.
 また、図8及び図11の各(d)のスイッチングパターンでは、電源電圧の1周期の全域に亘って、上アームのスイッチング素子Q1,Q3がオフ動作である。これにより、上アームのスイッチング素子Q1,Q3を駆動する駆動回路51の消費電力を抑制することができる。駆動回路51の消費電力は、スイッチング回数に比例して増加するので、スイッチング回数の多い第2のスイッチング動作時に実施するのは、消費電力低減及び効率改善に有効である。更に、スイッチング素子Q1,Q2及びスイッチング素子Q3,Q4の相補動作が行われないので、制御性及び制御安定性を向上させることができる。 Further, in the switching pattern of each (d) of FIGS. 8 and 11, the switching elements Q1 and Q3 of the upper arm are in the off operation over the entire range of one cycle of the power supply voltage. As a result, the power consumption of the drive circuit 51 that drives the switching elements Q1 and Q3 of the upper arm can be suppressed. Since the power consumption of the drive circuit 51 increases in proportion to the number of switchings, it is effective to reduce the power consumption and improve the efficiency by performing the second switching operation in which the number of switchings is large. Further, since the switching elements Q1 and Q2 and the switching elements Q3 and Q4 are not complementarily operated, the controllability and control stability can be improved.
 また、図11(c)は、短絡スイッチング素子331が第1のスイッチング動作しているときは、第1のレグ31及び第2のレグ32のうちの何れか一方のレグの各スイッチング素子はオン動作しないスイッチングパターンである。また、図10(d)は、短絡スイッチング素子331が第2のスイッチング動作しているときは、第1のレグ31及び第2のレグ32のうちの何れか一方のレグの各スイッチング素子はオン動作しないスイッチングパターンである。従って、これらのうちの何れかのスイッチングパターンを用いれば、簡易なスイッチング制御とすることができ、制御性及び制御安定性を向上させることができる。 Further, in FIG. 11C, when the short-circuit switching element 331 is in the first switching operation, each switching element of one of the first leg 31 and the second leg 32 is turned on. It is a switching pattern that does not work. Further, in FIG. 10D, when the short-circuit switching element 331 is in the second switching operation, each switching element of one of the first leg 31 and the second leg 32 is turned on. It is a switching pattern that does not work. Therefore, if any of these switching patterns is used, simple switching control can be performed, and controllability and control stability can be improved.
 なお、図8、図10及び図11に示すスイッチングパターンは一例であり、これらの例に限定されない。これらの図に示される、ダイオード整流動作、同期整流動作、第1のスイッチング動作及び第2のスイッチング動作を任意に組み合わせて、任意の動作モードでスイッチング素子Q1~Q4及び短絡スイッチング素子331を動作させることができる。 Note that the switching patterns shown in FIGS. 8, 10 and 11 are examples, and are not limited to these examples. The switching elements Q1 to Q4 and the short-circuit switching element 331 are operated in an arbitrary operation mode by arbitrarily combining the diode rectification operation, the synchronous rectification operation, the first switching operation, and the second switching operation shown in these figures. be able to.
 次に、モータ駆動装置100で使用されるMOSFETの損失特性について説明する。図12は、実施の形態1の直流電源装置50で使用されるMOSFETの損失特性を示す図である。図12において、横軸はオン状態のMOSFETに流れる電流、及び寄生ダイオードに流れる電流を示している。また、縦軸はオン状態のスイッチング素子に電流を流すために必要な電圧、及び寄生ダイオードに電流を流すために必要な電圧を示している。 Next, the loss characteristics of the MOSFET used in the motor drive device 100 will be described. FIG. 12 is a diagram showing the loss characteristics of the MOSFET used in the DC power supply device 50 of the first embodiment. In FIG. 12, the horizontal axis shows the current flowing through the MOSFET in the on state and the current flowing through the parasitic diode. The vertical axis shows the voltage required to pass a current through the switching element in the on state and the voltage required to pass a current through the parasitic diode.
 図12において、実線は寄生ダイオード順方向電圧を表している。寄生ダイオード順方向電圧は、寄生ダイオードで生じる損失を表す電流電圧特性の例である。一般的に、ダイオードは、電流値が小さいときは損失が大きいため大きな電圧が必要であるが、電流値がある値より大きくなると損失の変化率が改善されて電流電圧特性の傾きが緩和される。図12の実線で示される波形には、この特性が現れている。 In FIG. 12, the solid line represents the forward voltage of the parasitic diode. The parasitic diode forward voltage is an example of a current-voltage characteristic that represents the loss that occurs in a parasitic diode. Generally, a diode requires a large voltage because the loss is large when the current value is small, but when the current value is larger than a certain value, the rate of change of the loss is improved and the slope of the current-voltage characteristic is relaxed. .. This characteristic appears in the waveform shown by the solid line in FIG.
 また、破線は、MOSFETのドレインとソースとの間の電圧であるMOSFETドレイン-ソース電圧を表している。MOSFETドレイン-ソース電圧は、スイッチング素子のキャリアに流れる電流と、当該電流が流れることによりスイッチング素子のオン抵抗に起因して生じる損失を表す電流電圧特性の例である。MOSFETなどのスイッチング素子は、電流を流すために必要な電圧は、電流値に対して2次曲線的に増加する。図12の破線で示される波形には、この特性が現れている。 The broken line represents the MOSFET drain-source voltage, which is the voltage between the MOSFET drain and the source. The MOSFET drain-source voltage is an example of a current-voltage characteristic that represents a current flowing through a carrier of a switching element and a loss caused by the on-resistance of the switching element due to the current flowing. In a switching element such as a MOSFET, the voltage required to pass a current increases in a quadratic curve with respect to the current value. This characteristic appears in the waveform shown by the broken line in FIG.
 図12において、実線と破線とが交差するクロスポイントは、寄生ダイオードに流れる電流及び当該電流を流すために必要な電圧と、MOSFETに流れる電流及び当該電流を流すために必要な電圧と、が等しくなるポイントである。実施の形態1では、寄生ダイオード及びスイッチング素子の2つの電流電圧特性が交差するクロスポイントにおける電流値を「第2の電流閾値」とする。なお、前述した電流閾値、即ち電源電流の検出値Isの絶対値を比較する際に用いる電流閾値を「第1の電流閾値」と呼ぶ。図12では、第2の電流閾値を「Ith2」で表している。第2の電流閾値は、第1の電流閾値よりも大きい値である。 In FIG. 12, at the cross point where the solid line and the broken line intersect, the current flowing through the parasitic diode and the voltage required to flow the current are equal to the current flowing through the MOSFET and the voltage required to flow the current. It is a point. In the first embodiment, the current value at the cross point where the two current-voltage characteristics of the parasitic diode and the switching element intersect is defined as the “second current threshold”. The above-mentioned current threshold value, that is, the current threshold value used when comparing the absolute value of the detected value Is of the power supply current is referred to as a "first current threshold value". In FIG. 12, the second current threshold value is represented by “Ith2”. The second current threshold is a value larger than the first current threshold.
 次に、制御部10が、同期整流モードにおいて、第1の電流閾値及び第2の電流閾値を用いてスイッチング素子をオンオフするタイミングについて説明する。図13は、実施の形態1に係る直流電源装置50において制御部10がスイッチング素子をオンするタイミングを示す図である。図13において、横軸は時間である。図13の上段部には、電源電圧及び電源電流の波形が示されている。図13の下段部には、スイッチング素子Q1,Q2が電源電流の極性に応じてオンオフが制御される電流同期のスイッチング素子であること、及びスイッチング素子Q3,Q4が電源電圧の極性に応じてオンオフが制御される電圧同期のスイッチング素子であることが示されている。また、図13には、電源電流の波形と共に、第1の電流閾値Ith1及び第2の電流閾値Ith2の値が示されている。なお、図13では交流電源1から出力される交流電力の1周期を示しているが、制御部10は、他の周期においても図13に示す制御と同様の制御を行うものとする。 Next, the timing at which the control unit 10 turns on / off the switching element using the first current threshold value and the second current threshold value in the synchronous rectification mode will be described. FIG. 13 is a diagram showing the timing at which the control unit 10 turns on the switching element in the DC power supply device 50 according to the first embodiment. In FIG. 13, the horizontal axis is time. The waveforms of the power supply voltage and the power supply current are shown in the upper part of FIG. In the lower part of FIG. 13, switching elements Q1 and Q2 are current-synchronized switching elements whose on / off is controlled according to the polarity of the power supply current, and switching elements Q3 and Q4 are turned on / off according to the polarity of the power supply voltage. Is shown to be a controlled voltage-synchronized switching element. Further, FIG. 13 shows the values of the first current threshold value Is1 and the second current threshold value Is2 together with the waveform of the power supply current. Although FIG. 13 shows one cycle of the AC power output from the AC power supply 1, the control unit 10 shall perform the same control as the control shown in FIG. 13 in the other cycles.
 制御部10は、電源電圧極性が正の場合、スイッチング素子Q4をオンし、スイッチング素子Q3をオフする。また、制御部10は、電源電圧極性が負の場合、スイッチング素子Q3をオンし、スイッチング素子Q4をオフする。なお、図13では、スイッチング素子Q4がオンからオフになるタイミングと、スイッチング素子Q3がオフからオンになるタイミングとが同じタイミングであるが、これに限定されない。制御部10は、スイッチング素子Q4がオンからオフになるタイミングと、スイッチング素子Q3がオフからオンになるタイミングとの間に、スイッチング素子Q3,Q4がともにオフになるデッドタイムを設けてもよい。同様に、制御部10は、スイッチング素子Q3がオンからオフになるタイミングと、スイッチング素子Q4がオフからオンになるタイミングとの間に、スイッチング素子Q3,Q4がともにオフになるデッドタイムを設けてもよい。 When the power supply voltage polarity is positive, the control unit 10 turns on the switching element Q4 and turns off the switching element Q3. Further, when the power supply voltage polarity is negative, the control unit 10 turns on the switching element Q3 and turns off the switching element Q4. In FIG. 13, the timing at which the switching element Q4 is turned from on to off and the timing at which the switching element Q3 is turned from off to on are the same timing, but the timing is not limited to this. The control unit 10 may provide a dead time during which the switching elements Q3 and Q4 are both turned off between the timing at which the switching element Q4 is turned from on to off and the timing at which the switching element Q3 is turned from off to on. Similarly, the control unit 10 provides a dead time during which the switching elements Q3 and Q4 are both turned off between the timing at which the switching element Q3 is turned from on to off and the timing at which the switching element Q4 is turned from off to on. May be good.
 制御部10は、電源電圧極性が正の場合、電源電流の絶対値が第1の電流閾値Ith1以上になると、スイッチング素子Q1をオンする。更に、電源電流の絶対値が第2の電流閾値Ith2を超えると、スイッチング素子Q1をオフする。その後、制御部10は、電源電流の絶対値が小さくなり、電源電流の絶対値が第2の電流閾値Ith2以下になると、スイッチング素子Q1をオンする。更に、電源電流の絶対値が第1の電流閾値Ith1より小さくなると、スイッチング素子Q1をオフする。また、制御部10は、電源電圧極性が負の場合、電源電流の絶対値が第1の電流閾値Ith1以上になると、スイッチング素子Q2をオンする。更に、電源電流の絶対値が第2の電流閾値Ith2を超えると、スイッチング素子Q2をオフする。その後、制御部10は、電源電流の絶対値が小さくなり、電源電流の絶対値が第2の電流閾値Ith2以下になると、スイッチング素子Q2をオンする。更に、電源電流の絶対値が第1の電流閾値Ith1より小さくなると、スイッチング素子Q2をオフする。 When the power supply voltage polarity is positive, the control unit 10 turns on the switching element Q1 when the absolute value of the power supply current becomes equal to or higher than the first current threshold value Is1. Further, when the absolute value of the power supply current exceeds the second current threshold value Is2, the switching element Q1 is turned off. After that, the control unit 10 turns on the switching element Q1 when the absolute value of the power supply current becomes small and the absolute value of the power supply current becomes equal to or less than the second current threshold value Is2. Further, when the absolute value of the power supply current becomes smaller than the first current threshold value Is1, the switching element Q1 is turned off. Further, when the power supply voltage polarity is negative, the control unit 10 turns on the switching element Q2 when the absolute value of the power supply current becomes equal to or higher than the first current threshold value Is1. Further, when the absolute value of the power supply current exceeds the second current threshold value Is2, the switching element Q2 is turned off. After that, the control unit 10 turns on the switching element Q2 when the absolute value of the power supply current becomes small and the absolute value of the power supply current becomes equal to or less than the second current threshold value Is2. Further, when the absolute value of the power supply current becomes smaller than the first current threshold value Is1, the switching element Q2 is turned off.
 制御部10は、電源電流の絶対値が第1の電流閾値Ith1以下の場合には、スイッチング素子Q1,Q3が同時にオンしないように制御し、スイッチング素子Q2,Q4が同時にオンしないように制御する。これにより、制御部10は、モータ駆動装置100においてコンデンサ短絡を防止できる。 When the absolute value of the power supply current is equal to or less than the first current threshold value Is1, the control unit 10 controls so that the switching elements Q1 and Q3 do not turn on at the same time, and controls the switching elements Q2 and Q4 not to turn on at the same time. .. As a result, the control unit 10 can prevent a capacitor short circuit in the motor drive device 100.
 以上の制御部10の制御によって、モータ駆動装置100は、第1のレグ31のスイッチング素子Q1,Q2による同期整流を実現できる。具体的には、制御部10は、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、この範囲で損失の小さいスイッチング素子Q1又はスイッチング素子Q2に電流を流す。また、制御部10は、電源電流の絶対値が第2の電流閾値Ith2より大きい場合、この範囲で損失の小さいダイオードD1又はダイオードD2に電流を流す。これにより、モータ駆動装置100は、電流値に応じて損失の小さい素子に電流を流すことができるので、効率の低下を抑制し、損失を低減した高効率な装置とすることができる。 By controlling the control unit 10 as described above, the motor drive device 100 can realize synchronous rectification by the switching elements Q1 and Q2 of the first leg 31. Specifically, when the absolute value of the power supply current is equal to or greater than the first current threshold value Is1 and equal to or less than the second current threshold value Is2, the control unit 10 supplies a current to the switching element Q1 or the switching element Q2 having a small loss in this range. Shed. Further, when the absolute value of the power supply current is larger than the second current threshold value Is2, the control unit 10 causes a current to flow through the diode D1 or the diode D2 having a small loss in this range. As a result, the motor drive device 100 can pass a current through an element having a small loss according to the current value, so that a decrease in efficiency can be suppressed and a highly efficient device with reduced loss can be obtained.
 なお、制御部10は、スイッチング素子Q1をオンする期間において、相補的にスイッチング素子Q1,Q2をオンオフするスイッチング制御をして昇圧動作を行ってもよい。同様に、制御部10は、スイッチング素子Q2をオンする期間において、相補的にスイッチング素子Q1,Q2をオンオフするスイッチング制御をして昇圧動作を行ってもよい。 Note that the control unit 10 may perform a boosting operation by performing switching control in which the switching elements Q1 and Q2 are complementarily turned on and off during the period in which the switching element Q1 is turned on. Similarly, the control unit 10 may perform a boosting operation by performing switching control in which the switching elements Q1 and Q2 are complementarily turned on and off during the period in which the switching element Q2 is turned on.
 即ち、制御部10は、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、電源電流の極性に応じて、第1のレグ31及び第2のレグ32のうちの一方の第1のレグ31を構成するスイッチング素子Q1,Q2のうちの1つのスイッチング素子のオンを許可する。また、制御部10は、電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q1,Q2のうちの前述のものと同じ1つのスイッチング素子のオンを禁止する。 That is, when the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2, the control unit 10 has the first leg 31 and the second leg according to the polarity of the power supply current. The switching element of one of the switching elements Q1 and Q2 constituting the first leg 31 of one of the 32 is allowed to be turned on. Further, when the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the control unit 10 is the same one switching element as the above-mentioned switching elements Q1 and Q2. Prohibit turning on.
 具体的には、制御部10は、電源電流の極性が正であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q1のオンを許可する。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q1のオンを禁止する。制御部10は、電源電流の極性が正であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q1がオフの期間でスイッチング素子Q2をオンする。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q2のオンも禁止する。 Specifically, when the polarity of the power supply current is positive and the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2, the control unit 10 turns on the switching element Q1. Allow. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the switching element Q1 is prohibited from being turned on. When the polarity of the power supply current is positive and the absolute value of the power supply current is equal to or greater than the first current threshold value Is1 and equal to or less than the second current threshold value Is2, the control unit 10 switches the switching element Q1 during the off period. Turn on Q2. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, turning on the switching element Q2 is also prohibited.
 また、制御部10は、電源電流の極性が負であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q2のオンを許可する。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q2のオンを禁止する。また、制御部10は、電源電流の極性が負であって、電源電流の絶対値が第1の電流閾値Ith1以上、且つ第2の電流閾値Ith2以下の場合、スイッチング素子Q2がオフの期間でスイッチング素子Q1をオンする。電源電流の絶対値が第1の電流閾値Ith1より小さい、又は第2の電流閾値Ith2より大きい場合、スイッチング素子Q1のオンも禁止する。 Further, the control unit 10 permits the switching element Q2 to be turned on when the polarity of the power supply current is negative and the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2. .. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the switching element Q2 is prohibited from being turned on. Further, when the polarity of the power supply current is negative and the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and equal to or lower than the second current threshold value Is2, the control unit 10 is in the period when the switching element Q2 is off. The switching element Q1 is turned on. When the absolute value of the power supply current is smaller than the first current threshold value Is1 or larger than the second current threshold value Is2, the switching element Q1 is also prohibited from being turned on.
 このように、制御部10は、電源電流の絶対値が第1の電流閾値Ith1以上であって、スイッチング素子の損失が寄生ダイオードの損失よりも小さい領域でスイッチング素子のオンを許可する。また、制御部10は、スイッチング素子の損失が寄生ダイオードの損失よりも大きい領域でスイッチング素子のオンを禁止する。 In this way, the control unit 10 allows the switching element to be turned on in a region where the absolute value of the power supply current is equal to or higher than the first current threshold value Is1 and the loss of the switching element is smaller than the loss of the parasitic diode. Further, the control unit 10 prohibits the switching element from being turned on in a region where the loss of the switching element is larger than the loss of the parasitic diode.
 なお、図13の例では、制御部10は、電源電圧の極性に応じてスイッチング素子Q3,Q4のオンオフを制御し、電源電流の極性に応じてスイッチング素子Q1,Q2のオンオフを制御していたが、これに限定されない。制御部10は、電源電圧の極性に応じてスイッチング素子Q1,Q2のオンオフを制御し、電源電流の極性に応じてスイッチング素子Q3,Q4のオンオフを制御してもよい。 In the example of FIG. 13, the control unit 10 controls the on / off of the switching elements Q3 and Q4 according to the polarity of the power supply voltage, and controls the on / off of the switching elements Q1 and Q2 according to the polarity of the power supply current. However, it is not limited to this. The control unit 10 may control the on / off of the switching elements Q1 and Q2 according to the polarity of the power supply voltage, and may control the on / off of the switching elements Q3 and Q4 according to the polarity of the power supply current.
 また、第2の電流閾値Ith2は、前述のように、寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値であるが、これに限定されない。第2の電流閾値Ith2は、寄生ダイオードに電流を流すために必要な電圧の特性と、スイッチング素子に電流を流すために必要な電圧の特性とに応じて決定された値であってもよい。 Further, the second current threshold value Is2 is, as described above, a current value when the voltage required for passing the current through the parasitic diode and the switching element becomes the same value, but is not limited to this. The second current threshold value Is2 may be a value determined according to the characteristics of the voltage required to pass a current through the parasitic diode and the characteristics of the voltage required to pass a current through the switching element.
 例えば、第2の電流閾値Ith2を、寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値より、スイッチング素子で発生するスイッチング損失分に応じて値を大きくした値にしてもよい。これにより、スイッチング素子をオンからオフに切り替える際に発生するスイッチング素子を考慮した第2の電流閾値Ith2を決定することができる。この場合、制御部10は、スイッチング素子をオンしている状態でさらに電源電流の絶対値が大きくなっても、スイッチング素子をオフすることで損失の低減が見込めないときはスイッチング素子をオンのままにする。これにより、モータ駆動装置100は、更に、効率の低下を抑制することができる。 For example, the second current threshold value Is2 is set to be larger than the current value when the voltage required to pass the current through the parasitic diode and the switching element becomes the same value according to the switching loss generated in the switching element. It may be a value. Thereby, it is possible to determine the second current threshold value Is2 in consideration of the switching element generated when the switching element is switched from on to off. In this case, the control unit 10 keeps the switching element on when the loss cannot be reduced by turning off the switching element even if the absolute value of the power supply current becomes larger while the switching element is on. To. As a result, the motor drive device 100 can further suppress a decrease in efficiency.
 また、第2の電流閾値Ith2を、寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値に対して規定された値を加算又は減算した値にしてもよい。これにより、各素子の部品のばらつきによる特性の違いを考慮した第2の電流閾値Ith2を決定することができる。この場合、制御部10は、第2の電流閾値Ith2が寄生ダイオード及びスイッチング素子に電流を流すために必要な電圧が同じ値になるときの電流値の場合と比較して、損失の低減を改善できない可能性はある。しかしながら、制御部10は、スイッチング素子をオンしている状態でさらに電源電流の絶対値が大きくなってもスイッチング素子をオンし続ける場合よりも、損失を低減することができる。 Further, the second current threshold value Is2 may be a value obtained by adding or subtracting a specified value with respect to the current value when the voltage required for passing the current through the parasitic diode and the switching element becomes the same value. .. As a result, the second current threshold value Is2 can be determined in consideration of the difference in characteristics due to the variation in the components of each element. In this case, the control unit 10 improves the reduction of loss as compared with the case where the second current threshold value Is2 is the current value when the voltage required for passing the current through the parasitic diode and the switching element becomes the same value. It may not be possible. However, the control unit 10 can reduce the loss as compared with the case where the switching element is continuously turned on even if the absolute value of the power supply current is further increased while the switching element is turned on.
 図14は、実施の形態1における要部の動作説明に使用するフローチャートである。図14には、モータ駆動装置100の制御部10がスイッチング素子Q1,Q2をオンオフ制御する処理フローが示されている。なお、ここでは一例として、電源電流の極性が正の場合について説明する。 FIG. 14 is a flowchart used for explaining the operation of the main part in the first embodiment. FIG. 14 shows a processing flow in which the control unit 10 of the motor drive device 100 controls the switching elements Q1 and Q2 on and off. Here, as an example, a case where the polarity of the power supply current is positive will be described.
 制御部10は、電源電流の検出値Isの絶対値|Is|と、第1の電流閾値とを比較する(ステップS21)。制御部10は、絶対値|Is|が第1の電流閾値より小さい場合(ステップS21,No)、スイッチング素子Q1のオンを禁止する(ステップS22)。制御部10は、絶対値|Is|が第1の電流閾値以上の場合(ステップS21,Yes)、絶対値|Is|と第2の電流閾値とを比較する(ステップS23)。制御部10は、絶対値|Is|が第2の電流閾値以下の場合(ステップS23,No)、スイッチング素子Q1のオンを許可する(ステップS24)。制御部10は、絶対値|Is|が第2の電流閾値より大きい場合(ステップS23,Yes)、スイッチング素子Q1のオンを禁止する(ステップS22)。制御部10は、ステップS22又はステップS24の後、ステップS21に戻って上記処理を繰り返し行う。制御部10は、電源電流の極性が負の場合、スイッチング素子Q2を対象にして、上記同様の処理を行う。 The control unit 10 compares the absolute value | Is | of the detected value Is of the power supply current with the first current threshold value (step S21). When the absolute value | Is | is smaller than the first current threshold value (steps S21, No), the control unit 10 prohibits the switching element Q1 from being turned on (step S22). When the absolute value | Is | is equal to or greater than the first current threshold value (step S21, Yes), the control unit 10 compares the absolute value | Is | with the second current threshold value (step S23). When the absolute value | Is | is equal to or less than the second current threshold value (steps S23, No), the control unit 10 permits the switching element Q1 to be turned on (step S24). When the absolute value | Is | is larger than the second current threshold value (step S23, Yes), the control unit 10 prohibits the switching element Q1 from being turned on (step S22). After step S22 or step S24, the control unit 10 returns to step S21 and repeats the above process. When the polarity of the power supply current is negative, the control unit 10 performs the same processing as described above for the switching element Q2.
 なお、上記のステップS21では、絶対値|Is|と第1の電流閾値とが等しい場合を“Yes”で判定しているが、“No”で判定してもよい。即ち、絶対値|Is|と第1の電流閾値とが等しい場合を“Yes”、又は“No”の何れで判定してもよい。また、上記のステップS23では、絶対値|Is|と第2の電流閾値とが等しい場合を“No”で判定しているが、“Yes”で判定してもよい。即ち、絶対値|Is|と第2の電流閾値とが等しい場合を“Yes”、又は“No”の何れで判定してもよい。 In step S21 described above, the case where the absolute value | Is | and the first current threshold value are equal is determined by "Yes", but it may be determined by "No". That is, the case where the absolute value | Is | and the first current threshold value are equal may be determined by either "Yes" or "No". Further, in step S23 described above, the case where the absolute value | Is | and the second current threshold value are equal is determined by "No", but it may be determined by "Yes". That is, the case where the absolute value | Is | and the second current threshold value are equal may be determined by either "Yes" or "No".
 次に、スイッチング素子の構成について説明する。モータ駆動装置100において、スイッチング素子のスイッチング速度を速くする方法の1つに、スイッチング素子のゲート抵抗を小さくする方法が挙げられる。ゲート抵抗が小さくなる程、ゲート入力容量への充放電時間が短くなり、ターンオン期間及びターンオフ期間が短くなるため、スイッチング速度が速くなる。 Next, the configuration of the switching element will be described. In the motor drive device 100, one of the methods for increasing the switching speed of the switching element is a method for reducing the gate resistance of the switching element. As the gate resistance becomes smaller, the charge / discharge time to the gate input capacitance becomes shorter, and the turn-on period and the turn-off period become shorter, so that the switching speed becomes faster.
 しかしながら、ゲート抵抗を小さくすることでスイッチング損失を低減するには限界がある。そこで、スイッチング素子を、GaN又はSiCといったWBG半導体で構成することを例示する。スイッチング素子にWBG半導体を用いることにより、1回のスイッチング当りの損失を更に抑制することができ、より一層効率が向上し、且つ高周波スイッチングが可能となる。また、高周波スイッチングが可能となることで、リアクトル2の小型化が可能となり、モータ駆動装置100の小型化及び軽量化が可能となる。また、スイッチング素子にWBG半導体を用いることにより、スイッチング速度が向上して、スイッチング損失が抑制される。これにより、スイッチング素子が正常な動作を継続できるような放熱対策を簡素化できる。また、スイッチング素子にWBG半導体を用いることにより、スイッチング周波数を十分に高い値、例えば16kHz以上にすることができる。これにより、スイッチングに起因する騒音を抑制できる。 However, there is a limit to reducing switching loss by reducing the gate resistance. Therefore, it is illustrated that the switching element is composed of a WBG semiconductor such as GaN or SiC. By using a WBG semiconductor for the switching element, the loss per switching can be further suppressed, the efficiency is further improved, and high frequency switching becomes possible. Further, by enabling high-frequency switching, the reactor 2 can be miniaturized, and the motor drive device 100 can be miniaturized and lightened. Further, by using the WBG semiconductor for the switching element, the switching speed is improved and the switching loss is suppressed. This makes it possible to simplify heat dissipation measures so that the switching element can continue to operate normally. Further, by using a WBG semiconductor for the switching element, the switching frequency can be set to a sufficiently high value, for example, 16 kHz or more. As a result, noise caused by switching can be suppressed.
 また、GaN半導体は、GaN層と窒化アルミニウムガリウム層との界面に2次元電子ガスが生じ、この2次元電子ガスにより、キャリアの移動度が高い。このため、GaN半導体を用いたスイッチング素子は、高速スイッチングを実現可能である。ここで、交流電源1が、50Hz又は60Hzの商用電源である場合、可聴域周波数は、16kHzから20kHzまでの範囲、即ち商用電源の周波数の266倍から400倍までの範囲となる。GaN半導体は、この可聴域周波数より高い周波数でスイッチングする場合に好適である。半導体材料として主流である珪素(Si)で構成されたスイッチング素子Q1~Q4を、数十kHz以上のスイッチング周波数で駆動した場合、スイッチング損失の比率が大きくなり、放熱対策が必須となる。これに対して、GaN半導体で構成されたスイッチング素子Q1~Q4は、数十kHz以上のスイッチング周波数、具体的には20kHzより高いスイッチング周波数で駆動した場合でも、スイッチング損失が非常に小さい。このため、放熱対策が不要になり、又は放熱対策のために利用される放熱部材のサイズを小型化でき、モータ駆動装置100の小型化及び軽量化が可能となる。また、高周波スイッチングが可能となることで、リアクトル2の小型化が可能になる。なお、雑音端子電圧規格の測定範囲にスイッチング周波数の1次成分が入らないようにするため、スイッチング周波数は、150kHz以下とすることが好ましい。 Further, in a GaN semiconductor, two-dimensional electron gas is generated at the interface between the GaN layer and the aluminum gallium nitride layer, and the mobility of carriers is high due to this two-dimensional electron gas. Therefore, a switching element using a GaN semiconductor can realize high-speed switching. Here, when the AC power supply 1 is a commercial power supply of 50 Hz or 60 Hz, the audible range frequency is in the range of 16 kHz to 20 kHz, that is, in the range of 266 to 400 times the frequency of the commercial power supply. GaN semiconductors are suitable for switching at frequencies higher than this audible frequency. When switching elements Q1 to Q4 made of silicon (Si), which is the mainstream as a semiconductor material, are driven at a switching frequency of several tens of kHz or more, the ratio of switching loss becomes large, and heat dissipation measures are indispensable. On the other hand, the switching elements Q1 to Q4 made of the GaN semiconductor have a very small switching loss even when driven at a switching frequency of several tens of kHz or more, specifically, a switching frequency higher than 20 kHz. Therefore, heat dissipation measures are not required, or the size of the heat dissipation member used for heat dissipation measures can be reduced, and the motor drive device 100 can be made smaller and lighter. Further, since high frequency switching is possible, the reactor 2 can be miniaturized. The switching frequency is preferably 150 kHz or less in order to prevent the primary component of the switching frequency from entering the measurement range of the noise terminal voltage standard.
 また、WBG半導体は、Si半導体に比べて静電容量が小さいため、スイッチングに起因するリカバリ電流の発生が少なく、リカバリ電流に起因する損失及びノイズの発生を抑制できる。このため、WBG半導体は、高周波スイッチングに適している。 Further, since the WBG semiconductor has a smaller capacitance than the Si semiconductor, the generation of recovery current due to switching is small, and the generation of loss and noise due to recovery current can be suppressed. Therefore, the WBG semiconductor is suitable for high frequency switching.
 なお、SiC半導体はGaN半導体に比べてオン抵抗が小さい。このため、第2のレグ32よりもスイッチング回数が多い第1のレグ31の第1の上アーム素子311及び第1の下アーム素子312は、GaN半導体で構成し、スイッチング回数が少ない第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322は、SiC半導体で構成してもよい。これにより、SiC半導体及びGaN半導体のそれぞれの特性を最大限に生かすことができる。また、SiC半導体を、第1のレグ31よりも、スイッチング回数が少ない第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322に利用することで、第2の上アーム素子321及び第2の下アーム素子322の損失のうち、導通損失が占める割合が多くなり、ターンオン損失及びターンオフ損失が小さくなる。従って、第2の上アーム素子321及び第2の下アーム素子322のスイッチングに伴う発熱の上昇が抑制され、第2のレグ32を構成する第2の上アーム素子321及び第2の下アーム素子322のチップ面積を相対的に小さくできる。これにより、チップ製造時の歩留まりが低いSiC半導体を有効に活用できる。 Note that the on-resistance of SiC semiconductors is smaller than that of GaN semiconductors. Therefore, the first upper arm element 311 and the first lower arm element 312 of the first leg 31 having a larger number of switching times than the second leg 32 are made of a GaN semiconductor, and the second leg element 312 has a smaller number of switching times. The second upper arm element 321 and the second lower arm element 322 of the leg 32 may be made of a SiC semiconductor. As a result, the characteristics of the SiC semiconductor and the GaN semiconductor can be fully utilized. Further, by using the SiC semiconductor for the second upper arm element 321 and the second lower arm element 322 of the second leg 32, which has fewer switching times than the first leg 31, the second upper arm Of the losses of the element 321 and the second lower arm element 322, the conduction loss accounts for a large proportion, and the turn-on loss and the turn-off loss become small. Therefore, the increase in heat generation due to the switching of the second upper arm element 321 and the second lower arm element 322 is suppressed, and the second upper arm element 321 and the second lower arm element constituting the second leg 32 are suppressed. The chip area of 322 can be made relatively small. This makes it possible to effectively utilize a SiC semiconductor having a low yield at the time of chip manufacturing.
 また、スイッチング回数が少ない第2のレグ32の第2の上アーム素子321及び第2の下アーム素子322には、スーパージャンクション構造のSJ-MOSFETを用いてもよい。SJ-MOSFETを用いることにより、SJ-MOSFETのメリットである低オン抵抗を生かしつつ、静電容量が高くリカバリが発生しやすいというデメリットを抑制できる。また、SJ-MOSFETを用いることにより、WBG半導体を用いる場合に比べて、第2のレグ32の製造コストを低減できる。 Further, an SJ-MOSFET having a super junction structure may be used for the second upper arm element 321 and the second lower arm element 322 of the second leg 32 having a small number of switchings. By using SJ-MOSFET, it is possible to suppress the demerit that the capacitance is high and recovery is likely to occur while taking advantage of the low on-resistance which is the merit of SJ-MOSFET. Further, by using the SJ-MOSFET, the manufacturing cost of the second leg 32 can be reduced as compared with the case of using the WBG semiconductor.
 また、WBG半導体は、Si半導体に比べて耐熱性が高く、ジャンクション温度が高温でも動作が可能である。このため、WBG半導体を用いることにより、第1のレグ31及び第2のレグ32を、熱抵抗が大きい小型のチップでも構成できる。特に、チップ製造時の歩留まりが低いSiC半導体は、小型のチップに利用した方が低コスト化を実現できる。 In addition, WBG semiconductors have higher heat resistance than Si semiconductors and can operate even at high junction temperatures. Therefore, by using the WBG semiconductor, the first leg 31 and the second leg 32 can be configured by a small chip having a large thermal resistance. In particular, SiC semiconductors, which have a low yield during chip manufacturing, can be used for small chips to reduce costs.
 また、WBG半導体は、100kHz程度の高周波で駆動した場合でも、スイッチング素子で発生する損失の増加が抑制されるため、リアクトル2の小型化による損失低減効果が大きくなり、広い出力帯域、即ち広い負荷条件において、高効率なコンバータを実現できる。 Further, since the WBG semiconductor suppresses the increase in the loss generated in the switching element even when driven at a high frequency of about 100 kHz, the loss reduction effect due to the miniaturization of the reactor 2 becomes large, and a wide output band, that is, a wide load Under the conditions, a highly efficient converter can be realized.
 また、WBG半導体は、Si半導体に比べて耐熱性が高く、アーム間の損失の偏りによるスイッチングの発熱許容レベルが高いため、高周波駆動によるスイッチング損失が発生する第1のレグ31に好適である。 Further, the WBG semiconductor has higher heat resistance than the Si semiconductor and has a high heat generation allowable level for switching due to the bias of the loss between the arms, so that it is suitable for the first leg 31 in which the switching loss due to high frequency driving occurs.
 以上説明したように、実施の形態1によれば、第1の物理量検出部である電圧検出部7は、コンバータ3の出力側の動作状態を表す第1の物理量である母線電圧を検出し、第2の物理量検出部である電圧検出部5は、コンバータ3の入力側の動作状態を表す第2の物理量である電源電圧を検出する。第1及び第2の物理量は、制御部10に入力される。制御部10は、第1及び第2の物理量に基づいてコンバータ3の各スイッチング素子の導通を制御すると共に、スイッチング素子Q1~Q4の導通と短絡スイッチング素子331の導通とを組み合わせて、コンバータ3を異なる動作態様で動作させる動作モードを複数有する。これにより、同期整流により効率改善と、力率改善及び電源高調波抑制とを両立させることができる。 As described above, according to the first embodiment, the voltage detection unit 7 which is the first physical quantity detection unit detects the bus voltage which is the first physical quantity which represents the operating state of the output side of the converter 3. The voltage detection unit 5, which is the second physical quantity detection unit, detects the power supply voltage, which is the second physical quantity indicating the operating state of the input side of the converter 3. The first and second physical quantities are input to the control unit 10. The control unit 10 controls the continuity of each switching element of the converter 3 based on the first and second physical quantities, and combines the continuity of the switching elements Q1 to Q4 with the continuity of the short-circuit switching element 331 to form the converter 3. It has a plurality of operation modes for operating in different operation modes. As a result, it is possible to achieve both efficiency improvement, power factor improvement, and power supply harmonic suppression by synchronous rectification.
 また、実施の形態1によれば、短絡スイッチング素子331が第2のスイッチング動作しているとき、制御部10は、コンバータ3における全てのスイッチング素子Q1~Q4をオフ動作とする。これにより、制御性及び制御安定性を向上することができ、コンデンサ短絡を確実に防止することができる。 Further, according to the first embodiment, when the short-circuit switching element 331 is in the second switching operation, the control unit 10 turns off all the switching elements Q1 to Q4 in the converter 3. As a result, controllability and control stability can be improved, and capacitor short circuits can be reliably prevented.
 また、実施の形態1によれば、短絡スイッチング素子331が第1のスイッチング動作しているとき、制御部10は、コンバータ3における第1のレグ31及び第2のレグ32のうちの何れか一方のレグのスイッチング素子をオフ動作とする。これにより、簡易なスイッチング制御とすることができ、制御性及び制御安定性を向上させることができる。 Further, according to the first embodiment, when the short-circuit switching element 331 is in the first switching operation, the control unit 10 receives one of the first leg 31 and the second leg 32 in the converter 3. The switching element of the leg is turned off. As a result, simple switching control can be performed, and controllability and control stability can be improved.
 また、実施の形態1によれば、コンバータ3を駆動する駆動回路であるゲート駆動回路15は、平滑コンデンサ4の正側に接続される上アームのスイッチング素子Q1,Q3を駆動するための駆動電源であるブートストラップ回路54を備える。短絡スイッチング素子331が第2のスイッチング動作しているとき、制御部10は、コンバータ3における上アームのスイッチング素子Q1,Q3をオフ動作とする。これにより、ブートストラップ回路54の消費電力を抑制することができる。また、スイッチング素子Q1,Q2及びスイッチング素子Q3,Q4の相補動作を行わなくてよいので、制御性及び制御安定性を向上させることができる。 Further, according to the first embodiment, the gate drive circuit 15 which is a drive circuit for driving the converter 3 is a drive power source for driving the switching elements Q1 and Q3 of the upper arm connected to the positive side of the smoothing capacitor 4. The bootstrap circuit 54 is provided. When the short-circuit switching element 331 is in the second switching operation, the control unit 10 turns off the switching elements Q1 and Q3 of the upper arm in the converter 3. As a result, the power consumption of the bootstrap circuit 54 can be suppressed. Further, since it is not necessary to perform complementary operations of the switching elements Q1 and Q2 and the switching elements Q3 and Q4, controllability and control stability can be improved.
 次に、実施の形態1における制御部10の機能を実現するためのハードウェア構成について、図15及び図16の図面を参照して説明する。図15は、実施の形態1における制御部10の機能を具現するハードウェア構成の一例を示すブロック図である。図16は、実施の形態1における制御部10の機能を具現するハードウェア構成の他の例を示すブロック図である。 Next, the hardware configuration for realizing the function of the control unit 10 in the first embodiment will be described with reference to the drawings of FIGS. 15 and 16. FIG. 15 is a block diagram showing an example of a hardware configuration that embodies the function of the control unit 10 according to the first embodiment. FIG. 16 is a block diagram showing another example of a hardware configuration that embodies the function of the control unit 10 according to the first embodiment.
 実施の形態1における制御部10の機能を実現する場合には、図15に示すように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When the function of the control unit 10 according to the first embodiment is realized, as shown in FIG. 15, the processor 300 that performs the calculation, the memory 302 that stores the program read by the processor 300, and the input / output of the signal are input / output. It can be configured to include the interface 304 to be performed.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Further, the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versailles Disc).
 メモリ302には、実施の形態1における制御部10の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes the function of the control unit 10 according to the first embodiment. The processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-described processing. It can be carried out. The calculation result by the processor 300 can be stored in the memory 302.
 また、実施の形態1における制御部10の機能を実現する場合には、図16に示す処理回路305を用いることもできる。処理回路305は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路305に入力する情報、及び処理回路305から出力する情報は、インタフェース306を介して入手することができる。なお、処理回路305を用いる構成でも、制御部10における一部の処理は、図15に示す構成のプロセッサ300で実施してもよい。 Further, when the function of the control unit 10 in the first embodiment is realized, the processing circuit 305 shown in FIG. 16 can also be used. The processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. The information input to the processing circuit 305 and the information output from the processing circuit 305 can be obtained via the interface 306. Even in the configuration using the processing circuit 305, some processing in the control unit 10 may be performed by the processor 300 having the configuration shown in FIG.
実施の形態2.
 実施の形態2では、実施の形態1で説明したモータ駆動装置100の応用例について説明する。図17は、実施の形態2に係る空気調和機400の構成を示す図である。実施の形態1で説明したモータ駆動装置100は、送風機、圧縮機及び空気調和機といった製品に適用することが可能である。実施の形態2では、実施の形態1に係るモータ駆動装置100の応用例として、モータ駆動装置100を空気調和機400に適用した例について説明する。
Embodiment 2.
In the second embodiment, an application example of the motor drive device 100 described in the first embodiment will be described. FIG. 17 is a diagram showing the configuration of the air conditioner 400 according to the second embodiment. The motor drive device 100 described in the first embodiment can be applied to products such as a blower, a compressor, and an air conditioner. In the second embodiment, as an application example of the motor drive device 100 according to the first embodiment, an example in which the motor drive device 100 is applied to the air conditioner 400 will be described.
 図17において、モータ駆動装置100の出力側には、モータ500が接続されており、モータ500は、圧縮要素504に連結されている。圧縮機505は、モータ500と圧縮要素504とを備える。冷凍サイクル部506は、四方弁506a、室内熱交換器506b、膨張弁506c及び室外熱交換器506dを含む態様で構成されている。 In FIG. 17, a motor 500 is connected to the output side of the motor drive device 100, and the motor 500 is connected to the compression element 504. The compressor 505 includes a motor 500 and a compression element 504. The refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
 空気調和機400の内部を循環する冷媒の流路は、圧縮要素504から、四方弁506a、室内熱交換器506b、膨張弁506c、室外熱交換器506dを経由し、再び四方弁506aを経由して、圧縮要素504へ戻る態様で構成されている。モータ駆動装置100は、交流電源1より交流電力の供給を受け、モータ500を回転させる。圧縮要素504は、モータ500が回転することによって、冷媒の圧縮動作を実行し、冷媒を冷凍サイクル部506の内部で循環させることができる。 The flow path of the refrigerant circulating inside the air conditioner 400 is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. Therefore, it is configured to return to the compression element 504. The motor drive device 100 receives AC power from the AC power source 1 and rotates the motor 500. The compression element 504 executes a compression operation of the refrigerant by rotating the motor 500, and the refrigerant can be circulated inside the refrigeration cycle unit 506.
 また、空気調和機400では、出力が定格出力の半分以下である中間条件、即ち低出力条件での運転が年間を通じて支配的であるため、中間条件での年間の消費電力への寄与度が高くなる。また、空気調和機400では、モータ500の回転数が低く、モータ500の駆動に必要な母線電圧は低い傾向にある。このため、空気調和機400に用いられるスイッチング素子は、パッシブな状態で動作させることがシステム効率の面から有効である。従って、パッシブな状態から高周波スイッチング状態までの幅広い運転モードで損失の低減が可能なモータ駆動装置100は、空気調和機400にとって有用である。なお、モータ駆動装置には、実施の形態1の方式とは異なるインタリーブ方式と呼ばれる方式もある。インタリーブ方式ではリアクトル2を小型化できるが、空気調和機400では、中間条件での運転が多いため、リアクトル2を小型化する必要がない。一方、高調波の抑制及び電源力率の観点では、実施の形態1の方式の方が有効である。よって、実施の形態1に係るモータ駆動装置100は、特に空気調和機において有用である。 Further, in the air conditioner 400, the operation under the intermediate condition where the output is less than half of the rated output, that is, the low output condition is dominant throughout the year, so that the contribution to the annual power consumption under the intermediate condition is high. Become. Further, in the air conditioner 400, the rotation speed of the motor 500 tends to be low, and the bus voltage required to drive the motor 500 tends to be low. Therefore, it is effective from the viewpoint of system efficiency that the switching element used in the air conditioner 400 is operated in a passive state. Therefore, the motor drive device 100 capable of reducing the loss in a wide range of operation modes from the passive state to the high frequency switching state is useful for the air conditioner 400. The motor drive device also has a method called an interleave method, which is different from the method of the first embodiment. Although the reactor 2 can be miniaturized by the interleave method, it is not necessary to miniaturize the reactor 2 because the air conditioner 400 is often operated under intermediate conditions. On the other hand, from the viewpoint of harmonic suppression and power factor, the method of the first embodiment is more effective. Therefore, the motor drive device 100 according to the first embodiment is particularly useful in an air conditioner.
 また、実施の形態1に係るモータ駆動装置100は、スイッチング損失を抑制できるため、モータ駆動装置100の温度上昇が抑制され、不図示の室外機送風機のサイズを小型化しても、モータ駆動装置100に搭載される基板の冷却能力を確保できる。従って、実施の形態1に係るモータ駆動装置100は、高効率であると共に4.0kW以上の高出力の空気調和機400に好適である。 Further, since the motor drive device 100 according to the first embodiment can suppress the switching loss, the temperature rise of the motor drive device 100 is suppressed, and even if the size of the outdoor unit blower (not shown) is reduced, the motor drive device 100 It is possible to secure the cooling capacity of the substrate mounted on the. Therefore, the motor drive device 100 according to the first embodiment is suitable for an air conditioner 400 having high efficiency and a high output of 4.0 kW or more.
 また、実施の形態1に係るモータ駆動装置100を用いることにより、レグ間の発熱の偏りが低減される。これにより、スイッチング素子Q1~Q4の高周波駆動によるリアクトル2の小型化を実現でき、空気調和機400の重量の増加を抑制できる。また、実施の形態1に係るモータ駆動装置100によれば、スイッチング素子Q1~Q4の高周波駆動により、スイッチング損失が低減され、エネルギー消費率が低く、高効率の空気調和機400を実現できる。 Further, by using the motor drive device 100 according to the first embodiment, the bias of heat generation between the legs is reduced. As a result, the reactor 2 can be downsized by driving the switching elements Q1 to Q4 at high frequencies, and an increase in the weight of the air conditioner 400 can be suppressed. Further, according to the motor drive device 100 according to the first embodiment, the switching loss is reduced, the energy consumption rate is low, and the highly efficient air conditioner 400 can be realized by high-frequency driving of the switching elements Q1 to Q4.
 なお、空気調和機400において、瞬時停電が発生した場合は、最初にコンバータ3の動作を停止し、その後に圧縮機駆動用のモータ500の回転を停止し、最後にファンの回転を停止するように動作させる。一般的にファンの駆動エネルギーは小さく、ファンの発熱量は小さい。このため、最後にファンの回転を停止するよう動作させることにより、コンバータ3及びインバータ18の回路部品をファンの風により冷却させることが可能となる。特に、コンバータ3の構成部品である平滑コンデンサ4の温度は高温になると容量低下を招くため、瞬時停電においても適切に冷却できるようにすることで長寿命化を図ることが可能となる。 In the air conditioner 400, when a momentary power failure occurs, the operation of the converter 3 is stopped first, then the rotation of the compressor 500 is stopped, and finally the rotation of the fan is stopped. To operate. Generally, the driving energy of the fan is small, and the amount of heat generated by the fan is small. Therefore, the circuit components of the converter 3 and the inverter 18 can be cooled by the wind of the fan by finally stopping the rotation of the fan. In particular, when the temperature of the smoothing capacitor 4, which is a component of the converter 3, becomes high, the capacity decreases. Therefore, it is possible to extend the life of the smoothing capacitor 4 by appropriately cooling it even in the event of a momentary power failure.
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is configured without departing from the gist of the present invention. It is also possible to omit or change a part of.
 1 交流電源、2 リアクトル、3 コンバータ、3a,3b,3c,3d,26a,26b,26c 接続点、4 平滑コンデンサ、5,7 電圧検出部、6,9 電流検出部、10 制御部、12 負荷、14 電源回路、15,17 ゲート駆動回路、16a,16b 直流母線、18 インバータ、18A,18B,18C レグ、18a,331a トランジスタ、18b,54b,331b,D1,D2,D3,D4 ダイオード、18UN,18VN,18WN 下アーム素子、18UP,18VP,18WP 上アーム素子、31 第1のレグ、32 第2のレグ、50 直流電源装置、51,52 駆動回路、54 ブートストラップ回路、54a 抵抗、54c コンデンサ、55 駆動電源、100 モータ駆動装置、300 プロセッサ、302 メモリ、304,306 インタフェース、305 処理回路、311 第1の上アーム素子、312 第1の下アーム素子、321 第2の上アーム素子、322 第2の下アーム素子、330 短絡回路、331 短絡スイッチング素子、332 ダイオードブリッジ、400 空気調和機、500 モータ、504 圧縮要素、505 圧縮機、506 冷凍サイクル部、506a 四方弁、506b 室内熱交換器、506c 膨張弁、506d 室外熱交換器、600 半導体基板、601,603 領域、602 酸化絶縁膜、604 チャネル、D ドレイン電極、Q1,Q2,Q3,Q4 スイッチング素子、S ソース電極。 1 AC power supply, 2 reactor, 3 converter, 3a, 3b, 3c, 3d, 26a, 26b, 26c connection point, 4 smoothing capacitor, 5,7 voltage detector, 6,9 current detector, 10 control unit, 12 load , 14 power supply circuit, 15, 17 gate drive circuit, 16a, 16b DC bus, 18 inverter, 18A, 18B, 18C leg, 18a, 331a transistor, 18b, 54b, 331b, D1, D2, D3, D4 diode, 18UN, 18VN, 18WN lower arm element, 18UP, 18VP, 18WP upper arm element, 31 first leg, 32 second leg, 50 DC power supply, 51, 52 drive circuit, 54 bootstrap circuit, 54a resistor, 54c capacitor, 55 drive power supply, 100 motor drive device, 300 processor, 302 memory, 304, 306 interface, 305 processing circuit, 311 first upper arm element, 312 first lower arm element, 321 second upper arm element, 322nd 2 lower arm element, 330 short circuit, 331 short switching element, 332 diode bridge, 400 air conditioner, 500 motor, 504 compression element, 505 compressor, 506 refrigeration cycle part, 506a four-way valve, 506b indoor heat exchanger, 506c expansion valve, 506d outdoor heat exchanger, 600 semiconductor substrate, 601,603 region, 602 oxide insulating film, 604 channel, D drain electrode, Q1, Q2, Q3, Q4 switching element, S source electrode.

Claims (14)

  1.  リアクトルと、
     ブリッジ接続される4つの一方向性素子を備え、前記リアクトルを介して交流電源に接続され、前記交流電源から出力される交流電圧である電源電圧を直流電圧に変換して負荷に印加するコンバータと、
     短絡スイッチング素子を有して前記コンバータの入力端子間に接続され、前記短絡スイッチング素子のオン動作により、前記リアクトルを介して前記電源電圧を短絡させる電源短絡動作を行う短絡回路と、
     前記コンバータの出力端子間に接続される平滑コンデンサと、
     前記コンバータの出力側の動作状態を表す第1の物理量を検出する第1の物理量検出部と、
     前記コンバータの入力側の動作状態を表す第2の物理量を検出する第2の物理量検出部と、
     前記第1及び第2の物理量が入力され、前記コンバータの動作を制御する制御部と、
     を備え、
     前記コンバータにおける、4つの前記一方向性素子のうちの2つの前記一方向性素子は直列に接続されて第1のレグを構成し、残りの2つの前記一方向性素子は直列に接続されて第2のレグを構成し、
     少なくとも、前記平滑コンデンサの正側に接続される前記第1及び第2のレグにおける2つの前記一方向性素子、又は前記平滑コンデンサの負側に接続される前記第1及び第2のレグにおける2つの前記一方向性素子、又は、前記第1のレグにおける2つの前記一方向性素子、又は前記第2のレグにおける2つの前記一方向性素子のそれぞれにはスイッチング素子が並列に接続され、
     前記制御部は、更に前記スイッチング素子の導通と前記短絡スイッチング素子の導通とを組み合わせて前記コンバータを異なる動作態様で動作させる動作モードを複数有する
     直流電源装置。
    With the reactor
    A converter that has four unidirectional elements that are bridge-connected, is connected to an AC power supply via the reactor, converts the power supply voltage, which is the AC voltage output from the AC power supply, into a DC voltage, and applies it to the load. ,
    A short-circuit circuit having a short-circuit switching element, which is connected between the input terminals of the converter and performs a power short-circuit operation of short-circuiting the power supply voltage via the reactor by turning on the short-circuit switching element.
    A smoothing capacitor connected between the output terminals of the converter,
    A first physical quantity detection unit that detects a first physical quantity that represents the operating state of the output side of the converter, and
    A second physical quantity detector that detects a second physical quantity that represents the operating state of the input side of the converter, and
    A control unit to which the first and second physical quantities are input and controls the operation of the converter,
    With
    Two of the four unidirectional elements in the converter are connected in series to form a first leg, and the remaining two unidirectional elements are connected in series. Make up the second leg,
    At least two of the one-way elements in the first and second legs connected to the positive side of the smoothing capacitor, or two in the first and second legs connected to the negative side of the smoothing capacitor. Switching elements are connected in parallel to each of the one-way element, the two one-way elements in the first leg, or the two one-way elements in the second leg.
    The control unit is a DC power supply device having a plurality of operation modes in which the continuity of the switching element and the continuity of the short-circuit switching element are combined to operate the converter in different operation modes.
  2.  4つの前記一方向性素子に電流を通流させるダイオード整流動作、前記一方向性素子に電流が流れるタイミングで前記一方向性素子に対応するスイッチング素子をオン動作させる同期整流動作、前記電源電圧の1周期である電源周期の半周期内に局所的に前記電源短絡動作を行わせる第1のスイッチング動作、及び前記電源周期の1周期の全域に亘って前記電源短絡動作を行わせる第2のスイッチング動作のうちの少なくとも1つの動作と、
     を組み合わせることで前記コンバータを異なる動作態様で動作させる
     請求項1に記載の直流電源装置。
    A diode rectification operation in which a current is passed through the four unidirectional elements, a synchronous rectification operation in which a switching element corresponding to the unidirectional element is turned on at a timing when a current flows through the unidirectional element, and a power supply voltage. A first switching operation in which the power supply short-circuit operation is locally performed within half a cycle of the power supply cycle, which is one cycle, and a second switching operation in which the power supply short-circuit operation is performed over the entire range of one cycle of the power supply cycle. At least one of the actions and
    The DC power supply device according to claim 1, wherein the converter is operated in a different operation mode by combining the above.
  3.  前記短絡スイッチング素子が前記第2のスイッチング動作しているときは、全ての前記スイッチング素子はオン動作しない
     請求項2に記載の直流電源装置。
    The DC power supply device according to claim 2, wherein when the short-circuit switching element is in the second switching operation, all the switching elements are not turned on.
  4.  前記短絡スイッチング素子が前記第1のスイッチング動作又は前記第2のスイッチング動作しているときは、前記第1及び第2のレグのうちの何れか一方のレグのスイッチング素子はオン動作しない
     請求項2又は3に記載の直流電源装置。
    2. When the short-circuit switching element is in the first switching operation or the second switching operation, the switching element of one of the first and second legs does not operate on. Or the DC power supply according to 3.
  5.  前記制御部から出力される制御信号に基づいて前記コンバータを駆動する駆動回路を備え、
     前記駆動回路は、前記平滑コンデンサの正側に接続される前記スイッチング素子を駆動するための駆動電源であるブートストラップ回路を備え、
     前記短絡スイッチング素子が前記第2のスイッチング動作しているときは、前記ブートストラップ回路に接続されたスイッチング素子はオン動作しない
     請求項2に記載の直流電源装置。
    A drive circuit for driving the converter based on a control signal output from the control unit is provided.
    The drive circuit includes a bootstrap circuit that is a drive power source for driving the switching element connected to the positive side of the smoothing capacitor.
    The DC power supply device according to claim 2, wherein the switching element connected to the bootstrap circuit does not operate when the short-circuit switching element is in the second switching operation.
  6.  前記スイッチング素子は、ワイドバンドギャップ半導体により形成された金属酸化物半導体電界効果トランジスタである
     請求項1から5の何れか1項に記載の直流電源装置。
    The DC power supply device according to any one of claims 1 to 5, wherein the switching element is a metal oxide semiconductor field effect transistor formed of a wide bandgap semiconductor.
  7.  前記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドである
     請求項6に記載の直流電源装置。
    The DC power supply device according to claim 6, wherein the wide bandgap semiconductor is silicon carbide, gallium nitride, gallium oxide, or diamond.
  8.  前記スイッチング素子は、スーパージャンクション構造の金属酸化物半導体電界効果トランジスタである
     請求項1から5の何れか1項に記載の直流電源装置。
    The DC power supply device according to any one of claims 1 to 5, wherein the switching element is a metal oxide semiconductor field effect transistor having a superjunction structure.
  9.  前記一方向性素子は、前記金属酸化物半導体電界効果トランジスタの寄生ダイオードである
     請求項6から8の何れか1項に記載の直流電源装置。
    The DC power supply device according to any one of claims 6 to 8, wherein the unidirectional element is a parasitic diode of the metal oxide semiconductor field effect transistor.
  10.  前記一方向性素子は、ダイオードである
     請求項1から9の何れか1項に記載の直流電源装置。
    The DC power supply device according to any one of claims 1 to 9, wherein the unidirectional element is a diode.
  11.  請求項1から10の何れか1項に記載の直流電源装置と、
     前記直流電源装置の出力電圧を交流電圧に変換して前記負荷に備えられるモータに印加するインバータと、
     を備えたモータ駆動装置。
    The DC power supply device according to any one of claims 1 to 10.
    An inverter that converts the output voltage of the DC power supply device into an AC voltage and applies it to the motor provided in the load.
    Motor drive device equipped with.
  12.  請求項11に記載のモータ駆動装置を備える
     送風機。
    A blower including the motor driving device according to claim 11.
  13.  請求項11に記載のモータ駆動装置を備える
     圧縮機。
    A compressor including the motor driving device according to claim 11.
  14.  請求項12に記載の送風機及び請求項13に記載の圧縮機の少なくとも一方を備える
     空気調和機。
    An air conditioner including at least one of the blower according to claim 12 and the compressor according to claim 13.
PCT/JP2019/034261 2019-08-30 2019-08-30 Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner WO2021038867A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/034261 WO2021038867A1 (en) 2019-08-30 2019-08-30 Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner
JP2021541951A JP7162746B2 (en) 2019-08-30 2019-08-30 DC power supplies, motor drives, blowers, compressors and air conditioners

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034261 WO2021038867A1 (en) 2019-08-30 2019-08-30 Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner

Publications (1)

Publication Number Publication Date
WO2021038867A1 true WO2021038867A1 (en) 2021-03-04

Family

ID=74684020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034261 WO2021038867A1 (en) 2019-08-30 2019-08-30 Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner

Country Status (2)

Country Link
JP (1) JP7162746B2 (en)
WO (1) WO2021038867A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174477A (en) * 1996-12-06 1998-06-26 Hitachi Ltd Motor drive and air-conditioner employing it
JP2003153543A (en) * 2001-11-07 2003-05-23 Mitsubishi Electric Corp Power feeder, motor driver, and method of controlling power feeder
JP2015012640A (en) * 2013-06-27 2015-01-19 株式会社デンソー Power conversion device
JP2016220378A (en) * 2015-05-19 2016-12-22 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply device and air conditioner using the same
JP2017055475A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply unit and air conditioner
JP2017055581A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド DC power supply device and air conditioner
JP2018007329A (en) * 2016-06-28 2018-01-11 日立ジョンソンコントロールズ空調株式会社 Dc power supply and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174477A (en) * 1996-12-06 1998-06-26 Hitachi Ltd Motor drive and air-conditioner employing it
JP2003153543A (en) * 2001-11-07 2003-05-23 Mitsubishi Electric Corp Power feeder, motor driver, and method of controlling power feeder
JP2015012640A (en) * 2013-06-27 2015-01-19 株式会社デンソー Power conversion device
JP2016220378A (en) * 2015-05-19 2016-12-22 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply device and air conditioner using the same
JP2017055475A (en) * 2015-09-07 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Dc power supply unit and air conditioner
JP2017055581A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド DC power supply device and air conditioner
JP2018007329A (en) * 2016-06-28 2018-01-11 日立ジョンソンコントロールズ空調株式会社 Dc power supply and air conditioner

Also Published As

Publication number Publication date
JPWO2021038867A1 (en) 2021-03-04
JP7162746B2 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
CN110915119B (en) Power conversion device, motor drive device, and air conditioner
JP7080381B2 (en) Power converter, motor drive and air conditioner
US11909299B2 (en) Power converting apparatus, motor driving apparatus, and air conditioner
WO2020066033A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
JP7118284B2 (en) DC power supplies, motor drives, blowers, compressors and air conditioners
WO2021038867A1 (en) Direct-current power supply device, motor drive device, air blower, compressor, and air conditioner
JP7072729B2 (en) Power converter, motor drive and air conditioner
WO2021038868A1 (en) Dc power supply device, motor drive device, blower, compressor, and air conditioner
JP7101898B2 (en) Motor drive, blower, compressor and air conditioner
JP7325516B2 (en) Power conversion device, motor drive device and air conditioner
WO2020066035A1 (en) Power conversion device, motor drive device, and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943247

Country of ref document: EP

Kind code of ref document: A1