WO2023001867A1 - Strukturelement für ein batteriegehäuse eines elektrisch antreibbaren kraftwagens - Google Patents

Strukturelement für ein batteriegehäuse eines elektrisch antreibbaren kraftwagens Download PDF

Info

Publication number
WO2023001867A1
WO2023001867A1 PCT/EP2022/070293 EP2022070293W WO2023001867A1 WO 2023001867 A1 WO2023001867 A1 WO 2023001867A1 EP 2022070293 W EP2022070293 W EP 2022070293W WO 2023001867 A1 WO2023001867 A1 WO 2023001867A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
structural element
wall
battery housing
running
Prior art date
Application number
PCT/EP2022/070293
Other languages
English (en)
French (fr)
Inventor
Peter Rösch
Ahmed EL-SAWY
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN202280042123.4A priority Critical patent/CN117480679A/zh
Publication of WO2023001867A1 publication Critical patent/WO2023001867A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains

Definitions

  • the invention relates to a structural element for a battery housing of an electrically driven motor vehicle according to the preamble of patent claim 1.
  • a battery housing for underfloor attachment to a passenger car is already known, for example, from DE 102017 111 021 A1.
  • the respective structural elements of the battery housing are arranged on its lateral long sides and on the front and rear.
  • the object of the present invention is therefore to create a structural element of the type mentioned, by means of which the accident properties of the battery housing can be improved.
  • the structural element according to the invention is arranged in the longitudinal direction of the vehicle on a front or rear end region of the battery housing—at least essentially horizontally and extending in the transverse direction of the vehicle.
  • the invention provides that the structural element has at least one deformation area for targeted deformation and energy absorption, which has at least two wall areas that run in the vertical direction and in the transverse direction of the vehicle and are at least indirectly connected to one another, between which a free space is formed.
  • the at least two wall regions running in the vertical direction of the vehicle and in the transverse direction of the vehicle delimit the respective free space at the front and rear respectively.
  • the at least indirectly connected wall areas running in the vertical direction and in the transverse direction of the vehicle can thus specifically adjust the deformation area so that it can be used for deformation and energy absorption in the event of an accident-related force application. If a force is introduced as a result of an accident, the two wall areas are thus pushed against one another or toward one another, with deformation and energy absorption of the corresponding deformation area, in order to absorb the energy introduced.
  • the structural element according to the invention thus creates the possibility of absorbing forces or energy introduced into the structural element as a result of an accident in such a way or the structural element can be deformed in such a way that, if possible, there is no intrusion into the battery housing, which is arranged in an underfloor arrangement below the body of the passenger car. can come. In this way, in particular, a thermal event in the energy store can be avoided.
  • Such an introduction of accident forces occurs, for example and in particular, when the motor vehicle has a frontal collision with a small width overlap with the other party or a barrier, so that, for example, respective struts, which connect the structural element arranged at the front end area of the battery housing with a front axle support, so in the longitudinal direction of the vehicle be moved behind that a corresponding application of force occurs on the structural element. Due to its deformation area, it is thus possible, in particular according to the invention, to avoid excessive intrusion into the battery housing of the motor vehicle.
  • the present structural element can not only be arranged at the front of the battery housing and provided to mitigate a frontal collision, but that it would also be conceivable to provide such a structural element at the rear end of the battery housing to protect against a rear-end collision.
  • a further advantageous embodiment of the invention provides that the free space is designed to be open towards an underside or an upper side of the structural element.
  • This has the advantage, in particular, that additional energy absorption structures, for example ribs or the like, can be provided within the free space, which can be produced in a simple manner.
  • a further advantageous embodiment of the invention provides that the two wall regions running in the vertical direction of the vehicle and in the transverse direction of the vehicle are connected to one another via a connecting wall region to form a wall region which is essentially U-shaped in cross section.
  • the connecting wall area also serves to deform and absorb energy in the deformation area of the structural element.
  • a further advantageous embodiment of the invention provides that at least one further wall region running in the vehicle vertical direction and in the vehicle transverse direction is provided, which forms a respective, further free space with the adjacent one of the two wall regions running in the vehicle vertical direction and in the vehicle transverse direction.
  • the at least one additional wall area running in the vertical direction and in the transverse direction of the vehicle is connected to the adjacent wall area of the two wall areas running in the vertical direction and in the transverse direction of the vehicle via a further connecting wall area to form a wall assembly that is essentially U-shaped in cross section connected is.
  • Current U-shaped wall composites have proven to be particularly favorable in terms of deformation and energy absorption.
  • the wall regions running in the vertical direction of the vehicle and in the transverse direction of the vehicle extend at least approximately over the entire width of the structural element. This not only enables a particularly favorable free position of the structural element or the deformation area, but also a favorable energy absorption capacity of the structural element over at least approximately the entire width of the battery housing.
  • a particularly simple and yet highly effective structural element can be formed by being made of a metal casting, for example a metal die-casting.
  • a further advantageous embodiment of the invention provides that the structural element has respective connection points for an axle carrier and/or a shell element of the motor vehicle body in the longitudinal direction of the vehicle on the outside of the free space.
  • the structural element or the battery housing can therefore be connected in the area of the connection points not only to an axle carrier in the manner described above, but also, for example, to body shell elements such as cross members or longitudinal members of the motor vehicle body, which are arranged in particular on the top side of the battery housing or the structural element.
  • FIG. 1 shows a top view of a lower housing part of a battery housing of an electric drive of a passenger vehicle with a structural element according to the invention arranged at the front end region of the battery housing,
  • FIG. 2 shows a plan view of the structural element according to the invention at the front end area of the battery housing according to FIG. 1,
  • FIG. 3 shows a perspective sectional view through the structural element according to FIG. 2,
  • FIGS. 2 and 3 shows a sectional view through the structural element according to FIGS. 2 and 3, and
  • FIG. 5 shows a perspective and sectioned view from below of the structural element according to FIGS. 2 to 5.
  • a lower housing part 1 of a battery housing for an electric drive of a motor vehicle, in particular a passenger car can be seen in a plan view.
  • the lower housing part 1 is connected, for example, in the usual way to an upper housing part, which cannot be seen, in order to form the at least essentially closed battery housing.
  • the lower housing part 1 and the upper housing part of the battery housing are divided from one another along a substantially horizontal sectional plane running in the vehicle transverse direction and vehicle longitudinal direction and are connected to one another, for example, by suitable sealing and connection technology.
  • the lower housing part 1 comprises a frame structure 2 with respective cross members 3 and longitudinal members 4.
  • the longitudinal members 4 comprise respective structural elements 5, which are used, for example, to fasten corresponding side skirts on the underside and are designed either in one piece or in multiple parts with the corresponding longitudinal members 4.
  • a respective structural element 6 , 7 is provided as a cross member 3 at the front or rear end region of the lower housing part 1 and thus also of the battery housing. Accordingly, these structural elements 6, 7 also form part of the frame structure 2 or of the lower housing part 1 of the battery housing.
  • an arrow 8 indicates a forward direction of travel of the motor vehicle, so that it can be seen that the structural element 6 is arranged on the front end area 1 of the battery housing.
  • This structural element 6 is shown separately and enlarged in Fig. 2, with the respective connection points 9, 10 being shown in particular, by means of which the structural element 6 and thus the lower housing part 1 or the battery housing are connected on the one hand to the respective longitudinal or cross members of the floor structure of the motor vehicle body arranged above connected, in particular screwed, and by means of which, on the other hand, the structural element 6 or the lower housing part 1 and the battery housing are connected to a front axle carrier of a front axle of the passenger vehicle via struts that cannot be seen.
  • a plurality of cell modules 11 of the high-voltage storage device are accommodated in FIG. 2 in a transverse arrangement within the lower housing part 1 within the battery housing.
  • the structural element 6 has a deformation region 12, which will be explained below in synopsis 5.
  • Fig. 3 which shows the structural element 6 in a perspective sectional view along a sectional plane running in the vehicle center plane in the longitudinal direction of the vehicle and in the vertical direction of the vehicle
  • the deformation region 12 is provided, which is initially two in the vehicle vertical direction and in the vehicle transverse direction over almost the entire width of the structural element 1 extending wall areas 14, 15 that run together are connected to one another indirectly via a connecting wall area 16, so that overall a wall assembly 17 with a substantially U-shaped cross section is formed, which delimits a free space 18.
  • this free space 18 is designed to be open towards an upper side 19 of the structural element 6, which at the same time forms the parting plane of the lower housing part 1 with the upper housing part (not shown). Accordingly, the free space 18 according to FIGS. 2 and 3 can be seen as a ditch that is open from above.
  • a plurality of ribs 19 or similar supporting elements are arranged within the free space 18 and are connected to the wall areas 14, 15 and the connecting wall area 16. Accordingly, these ribs 19 serve in particular to support the wall regions 14 running in the vehicle vertical direction and in the vehicle transverse direction,
  • the structural element 6 is designed as a cast metal component, for example as an aluminum die-cast component or as a cast steel component. Accordingly, in the present case, the ribs 19 are proportionally connected to the wall areas 14 and 15 or the connecting wall area 16 . The open design of the free space 18 consequently results in a particularly favorable demolding of the ribs 19.
  • each wall region 14, 15 which each extend in the vehicle transverse direction and in the vehicle vertical direction
  • the respective connecting wall areas 22, 23, like the connecting wall area 16, run at least essentially horizontally and in the transverse direction of the vehicle.
  • the respective wall regions 20, 21 in connection with the respective adjoining wall regions 14 and 15, which also run in the vertical direction of the vehicle or in the longitudinal direction of the vehicle, thus create two further free spaces 24, 25 which adjoin the free space 18 at the front or rear and, in contrast to this are not open to the upper side 26 of the structural element 6, but rather to its underside 27.
  • FIG. 5 which shows the structural element 6 in a further perspective sectional view compared to FIG between the respective wall regions 20, 21 running at least essentially in the vertical direction of the vehicle and in the transverse direction of the vehicle and upwards to the respective connecting wall region 22, 23.
  • the deformation capacity and energy absorption capacity of the deformation region 12 of the structural element 6 can be adjusted by a suitable shape and number or design of the respective ribs 28 , 29 .
  • the free spaces 24, 25 extend in the transverse direction of the vehicle at least essentially over the entire width of the structural element 6 or the battery housing. It is clear that not all of the spaces 18, 24, 25 increasingly need to have ribs 19.
  • the deformation area 12 therefore extends between the frontmost area running in the longitudinal direction of the vehicle or in the vertical direction of the vehicle Wall area 20 and the rearmost wall area 21 running in the vertical direction of the vehicle or in the transverse direction of the vehicle. This is symbolized in FIG. 4 by a corresponding bracket.
  • a further wall area 30 of the structural element 6 adjoins the foremost wall area 20 or wall area 22 at the front, which in the present case is used, for example, for the attachment of the upper part of the housing.
  • the rearmost wall area 21 running in the vehicle vertical direction or in the vehicle transverse direction is adjoined by a rear wall area 31 in the vehicle transverse direction, which is adjoined by a cover element of the lower housing part 1, which fills the respective compartments of the frame structure 2 or closes off at the bottom.
  • the wall area 31 and the connecting wall area 21 form a boundary on which the foremost cell module 11 adjoins. Accordingly, the deformation area 12 is arranged on the front side of the foremost cell module 11 and thus serves to protect this cell module 11 in particular as well as the other cell modules 11 which form the Flochvolt Mrs within the battery housing.
  • connection points 9, 10 of the structural element for the front axle support or for connecting the battery housing to structural elements on the body shell are arranged on the front side of the deformation region 12 of the structural element 6. Forces introduced into the structural element 6 according to the arrows F are accordingly introduced in an optimal manner into the deformation region 12 and are absorbed there by corresponding deformation and energy absorption.
  • the energy dissipation takes place here in the same cast component/structural element 6, which also contains the connection points 9, 10 to the body shell in the front (and thus the front crash structure).
  • the energy is realized through a targeted deformation of the cast component 6 via predetermined buckling points in the area of the respective U-shaped wall assembly 17 . This interrupts the direct load path and no separate components or installation space are required.

Abstract

Die Erfindung betrifft ein Strukturelement (6) für ein Batteriegehäuse eines Kraftwagens, welches in Fahrzeuglängsrichtung an einem Endbereich des Batteriegehäuses angeordnet ist. Zur Verbesserung der Unfalleigenschaften des Batteriegehäuses weist das Strukturelement (6) wenigstens einen Deformationsbereich (12) zur gezielten Deformation und Energieabsorption auf, welcher wenigstens zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufende, miteinander verbundende Wandbereiche (14, 15) aufweist, zwischen welchen ein Freiraum (18) ausgebildet ist.

Description

Strukturelement für ein Batteriegehäuse eines elektrisch antreibbaren Kraftwagens
Die Erfindung betrifft ein Strukturelement für ein Batteriegehäuse eines elektrisch antreibbaren Kraftwagens gemäß dem Oberbegriff des Patentanspruchs 1.
Ein Batteriegehäuse zur Unterflur-Befestigung an einem Personenkraftwagen ist beispielsweise bereits aus der DE 102017 111 021 A1 bekannt. Hierbei sind jeweilige Strukturelemente des Batteriegehäuses an seinen seitlichen Längsseiten sowie vorderseitig und rückseitig angeordnet.
Gerade bei einer Frontalkollision des Kraftwagens mit geringer Breitenüberdeckung mit einem Unfallpartner oder einer Barriere (Offset-Crash) besteht oftmals die Problematik, dass das in Fahrzeuglängsrichtung am vorderen Endbereich des Batteriegehäuses angeordnete Strukturelement mit erheblichen Kräften beaufschlagt wird. Diese Kräfte rühren beispielsweise von jeweiligen Anbindungsstreben, über welche das Strukturelement und somit das Batteriegehäuse mit einem Vorderachsträger verbunden sind. Gerade bei einem derartigen, beschriebenen Frontalaufprall wir das Strukturelement aufgrund unfallbedingten der Rückverlagerung der Streben, welche zu Verbindung des Vorderachsträgers mit dem Batteriegehäuses dienen, unter Umständen mit einer erheblichen Kraft beaufschlagt, sodass es im Bereich der Anbindungsstellen der jeweiligen Streben an das Strukturelement zu Intrusionen in das Batteriegehäuse kommen kann. Im schlimmsten Fall kann es hierbei zu einem thermischen Ereignis innerhalb des im Batteriegehäuse angeordneten Energiespeichers kommen.
Aufgabe der vorliegenden Erfindung ist es daher, ein Strukturelement der genannten Art zu schaffen, mittels welchem sich die Unfalleigenschaften des Batteriegehäuses verbessern lassen.
Diese Aufgabe wird erfindungsgemäß durch ein Strukturelement mit den Merkmalen des Patentanspruchs 1 gelöst. Günstige Weiterbildungen sind Gegenstand der abhängigen Patentansprüche. Das erfindungsgemäße Strukturelement ist in Fahrzeuglängsrichtung an einem vorderen oder hinteren Endbereich des Batteriegehäuses - sich zumindest im Wesentlichen horizontal und in Fahrzeugquerrichtung erstreckend - angeordnet. Zur Verbesserung der Unfalleigenschaften des Batteriegehäuses ist es hierbei erfindungsgemäß vorgesehen, dass das Strukturelement wenigstens einen Deformationsbereich zur gezielten Deformation und Energieabsorption aufweist, welcher wenigstens zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufende, zumindest mittelbar miteinander verbundene Wandbereiche aufweist, zwischen welchen ein Freiraum ausgebildet ist. Demzufolge begrenzen die zumindest zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche den jeweiligen Freiraum vorder beziehungsweise rückseitig. Durch die zumindest mittelbar verbundene, in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufende Wandbereiche kann somit gezielt der Deformationsbereich so abgestimmt werden, dass dieser bei einer unfallbedingten Kraftbeaufschlagung zur Deformation und Energieabsorption herangezogen werden kann. Bei einer unfallbedingten Krafteinleitung werden somit die beiden Wandbereiche unter Deformation und Energieabsorption des entsprechenden Deformationsbereichs gegeneinander beziehungsweise aufeinander zu geschoben, um die eingeleitete Energie zu absorbieren.
Durch das erfindungsgemäße Strukturelement ist somit die Möglichkeit geschaffen, unfallbedingt in das Strukturelement eingeleitete Kräfte beziehungsweise Energie derart absorbiert beziehungsweise das Strukturelement so deformiert werden kann, dass es möglichst zu keiner Intrusion in das Batteriegehäuse, welches in einer Unterfluranordnung unterhalb der Karosserie des Personenkraftwagens angeordnet ist, kommen kann. Hierdurch kann insbesondere ein thermisches Ereignis im Energiespeicher vermieden werden.
Eine derartige Einleitung von Unfallkräften kommt beispielsweise und insbesondere vor, wenn der Kraftwagen eine Frontalkollision mit geringer Breitenüberdeckung mit dem Unfallgegner oder einer Barriere hat, sodass beispielsweise jeweilige Streben, welche das am vorderen Endbereich des Batteriegehäuses angeordnete Strukturelement mit einem Vorderachsträger verbinden, so in Fahrzeuglängsrichtung nach hinten verschoben werden, dass eine entsprechende Kraftbeaufschlagung auf das Strukturelement eintritt. Durch dessen Deformationsbereich ist somit insbesondere erfindungsgemäß zu vermeiden, dass eine übermäßige Intrusion in das Batteriegehäuse des Kraftwagens entsteht. An dieser Stelle sei angemerkt, dass das vorliegende Strukturelement nicht nur vorderseitig des Batteriegehäuses angeordnet und zur Abmilderung einer Frontalkollision vorgesehen sein kann, sondern dass es ebenfalls denkbar wäre, ein derartiges Strukturelement am hinteren Ende des Batteriegehäuses zum Schutz vor einer Heckkollision vorzusehen.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass der Freiraum zu einer Unterseite oder einer Oberseite des Strukturelements hin offen ausgebildet ist. Dies hat insbesondere den Vorteil, dass innerhalb des Freiraums zusätzliche Energieabsorptionsstrukturen, beispielsweise Rippen oder dergleichen, vorgesehen sein können, welche in einfacher Weise herstellbar sind.
In diesem Zusammenhang hat es sich als weiter vorteilhaft gezeigt, wenn in dem Freiraum eine Mehrzahl von Rippen oder dergleichen Stützelemente vorgesehen sind, durch welche die zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden, miteinander verbundenen Wandbereiche in Fahrzeuglängsrichtung abgestützt sind. Durch die jeweiligen Rippen oder dergleichen Stützelemente kann somit das Deformations- und Energieabsorptionsvermögen des Deformationsbereichs des Strukturelements in vorteilhafter Weise eingestellt werden.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass die zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche über einen Verbindungswandbereich zu einem im Querschnitt im Wesentlichen U-förmigen Wandbereich miteinander verbunden sind. Hierdurch dient der Verbindungswandbereich zusätzlich zur Deformation und Energieabsorption des Deformationsbereichs des Strukturelements.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass zumindest ein weiterer, in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufender Wandbereich vorgesehen ist, welcher mit dem benachbarten der zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche einen jeweiligen, weiteren Freiraum ausbildet. Im Ergebnis können somit im Deformationsbereich eine Mehrzahl von durch jeweilige Wandbereiche voneinander unterteilte Freiräume geschaffen werden, um die Deformation- und Energieabsorption im Bereich des Deformationsbereichs einzustellen. In diesem Zusammenhang hat es sich als weiter vorteilhaft gezeigt, wenn der zumindest eine weitere, in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufender Wandbereich mit dem benachbarten der zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereich über einen weiteren Verbindungswandbereich zu einem im Querschnitt im Wesentlichen U-förmigen Wandverbund verbunden ist. Derzeitige, U-förmige Wandverbunde haben sich hinsichtlich der Deformation und Energieabsorption als besonders günstig gezeigt.
In einer weiteren Ausgestaltung der Erfindung erstrecken sich die in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche zumindest annähernd über die gesamte Breite des Strukturelements. Dies ermöglicht nicht nur eine besonders günstige Fierstellung des Strukturelements beziehungsweise des Deformationsbereichs, sondern überdies ein günstiges Energieabsorptionsvermögen des Strukturelements über die zumindest annähernd gesamte Breite des Batteriegehäuses.
Ein besonders einfach und dennoch hochwirksam funktionierendes Strukturelement kann gebildet werden, indem dieses aus einem Metallguss, beispielsweise einem Metalldruckguss, hergestellt wird.
Eine weitere vorteilhafte Ausführungsform der Erfindung sieht vor, dass das Strukturelement in Fahrzeuglängsrichtung außenseitig des Freiraums jeweilige Anbindungsstellen für einen Achsträger und/oder ein Rohbauelement der Kraftwagenkarosserie aufweist. Das Strukturelement beziehungsweise das Batteriegehäuse kann demzufolge im Bereich der Anbindungsstellen nicht nur mit einem Achsträger auf die vorbeschriebene Weise verbunden sein, sondern beispielsweise auch mit insbesondere oberseitig des Batteriegehäuses beziehungsweise des Strukturelements angeordneten Rohbauelementen wie Querträgern oder Längsträgern der Kraftwagenkarosserie verbunden sein.
Schließlich hat es sich als vorteilhaft gezeigt, wenn das Strukturelement an einer Vorderseite des Batteriegehäuses angeordnet ist, da gerade bei Frontalkollisionen, insbesondere mit geringer Breitenüberdeckung des Fahrzeugs mit einem Unfallpartner oder einem Hindernis, die Gefahr von erheblichen Kraftbeaufschlagungen des Strukturelements beziehungsweise des Batteriegehäuses besonders hoch sind.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen: Fig. 1 eine Draufsicht auf ein unteres Gehäuseteil eines Batteriegehäuses eines elektrischen Antriebs eines Personenkraftwagens mit einem am vorderen Endbereich des Batteriegehäuses angeordneten erfindungsgemäßen Strukturelement,
Fig. 2 eine Draufsicht auf das erfindungsgemäße Strukturelement am vorderen Endbereich des Batteriegehäuses gemäß Fig. 1,
Fig. 3 eine perspektivische Schnittansicht durch das Strukturelement gemäß Fig. 2,
Fig. 4 eine Schnittansicht durch das Strukturelement gemäß den Fig. 2 und 3, und
Fig. 5 eine perspektivische und geschnittene Unteransicht auf das Strukturelement gemäß den Fig. 2 bis 5. ln Fig. 1 ist in einer Draufsicht ein unteres Gehäuseteil 1 eines Batteriegehäuses für einen elektrischen Antrieb eines Kraftwagens, insbesondere eines Personenkraftwagens, erkennbar. Das untere Gehäuseteil 1 wird dabei beispielsweise in üblicher Weise mit einem nicht erkennbaren oberen Gehäuseteil verbunden, um das zumindest im Wesentlichen geschlossene Batteriegehäuse zu bilden. Natürlich wäre es in diesem Zusammenhang auch denkbar, das untere Gehäuseteil 1 unterseitig des Fahrzeugbodens zu befestigen, wobei diese beziehungsweise der Fahrzeugboden das obere Gehäuseteil des Batteriegehäuses bildet. Im vorliegenden Fall sind das untere Gehäuseteil 1 und das obere Gehäuseteil des Batteriegehäuses entlang einer im Wesentlichen horizontalen, in Fahrzeugquerrichtung und Fahrzeuglängsrichtung verlaufenden Schnittebene voneinander unterteilt und beispielsweise durch geeignete Dichtungs- und Verbindungstechnologie miteinander verbunden.
Das untere Gehäuseteil 1 umfasst vorliegend eine Rahmenstruktur 2 mit jeweiligen Querträgern 3 und Längsträgern 4. Die Längsträger 4 umfassen dabei jeweilige Strukturelemente 5, welche beispielsweise zur Befestigung unterseitig jeweils seitlich korrespondierender Seitenschweller dienen und entweder einteilig oder mehrteilig mit den korrespondieren Längsträgern 4 ausgebildet sind. Am vorderen beziehungsweise hinteren Endbereich des unteren Gehäuseteils 1 und somit auch des Batteriegehäuses ist als Querträger 3 ein jeweiliges Strukturelement 6, 7 vorgesehen. Diese Strukturelemente 6, 7 bilden demzufolge ebenfalls einen Teil der Rahmenstruktur 2 beziehungsweise des unteren Gehäuseteils 1 des Batteriegehäuses.
Mit einem Pfeil 8 ist vorliegend eine Vorwärtsfahrtrichtung des Kraftwagens angedeutet, sodass erkennbar ist, dass das Strukturelement 6 am vorderen Endbereich 1 des Batteriegehäuses angeordnet ist.
Dieses Strukturelement 6 ist in Fig. 2 separat und vergrößert dargestellt, wobei insbesondere jeweilige Anbindungsstellen 9, 10 dargestellt sind, mittels welchen das Strukturelement 6 und somit das untere Gehäuseteil 1 beziehungsweise das Batteriegehäuse einerseits mit jeweiligen Längs- oder Querträgern der oberhalb angeordneten Bodenstruktur der Kraftwagenkarosserie verbunden, insbesondere verschraubt, sind, und mittels welchen andererseits das Strukturelement 6 beziehungsweise das untere Gehäuseteil 1 und das Batteriegehäuse über nicht erkennbar Streben mit einem Vorderachsträger einer Vorderachse des Personenkraftwagens verbunden sind.
Kommt es dabei beispielsweise zu einer Frontalkollision des Kraftwagens mit einem Unfallpartner oder einem Hindernis mit geringer Breitenüberdeckung, einem sogenannten Offset-Crash, so werden an diesen Anbindungsstellen 9, 10 in erheblicher Weise unfallbedingte Kräften eingeleitet, beispielsweise über die Anbindungsstreben des Vorderachsträgers oder auch über die Anbindungsstellen zur Kraftwagenkarosserie. Dies ist insbesondere dem Umstand geschuldet, dass bei einer derartigen Frontalkollision mit geringer Breitenüberdeckung die jeweiligen Achsglieder des Vorderachsträgers mit erheblichen Kräften beaufschlagt werden, sodass über die Verbindungsstreben des Strukturelements 6 zum Vorderachsträger die erheblichen Kräfte auf das Strukturelement 6 übertragen werden. Pfeile F symbolisieren in Fig. 1 dabei die Einleitung der jeweiligen Kräfte in das Strukturelement 6 des unteren Gehäuseteils 1 beziehungsweise des Batteriegehäuses des Hochvoltspeichers bei einem derartigen, skizzierten Frontalcrash.
Von dem Hochvoltspeicher sind in Fig.2 eine Mehrzahl von Zellmodulen 11 eines in Queranordnung innerhalb des unteren Gehäuseteils 1 innerhalb des Batteriegehäuses aufgenommen. Um hierbei ein thermisches Ereignis in Folge einer übermäßigen Intrusion in das Batteriegehäuse zu vermeiden, weist das Strukturelement 6 einen Deformationsbereich 12 auf, welcher im Weiteren in Zusammenschau 5 erläutert werden wird.
Wie insbesondere aus Fig. 3, welche das Strukturelement 6 in einer perspektivischen Schnittansicht entlang einer in der Fahrzeugmittelebene in Fahrzeuglängsrichtung und in Fahrzeughochrichtung verlaufenden Schnittebene zeigt, ist der Deformationsbereich 12 vorgesehen, welcher zunächst zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung über die annähernd gesamte Breite des Strukturelements 1 verlaufende, miteinander verlaufende Wandbereiche 14, 15 umfasst, mittelbar über einen Verbindungswandbereich 16 miteinander verbunden sind, sodass insgesamt ein im Querschnitt im Wesentlichen U-förmiger Wandverbund 17 gebildet ist, welcher einen Freiraum 18 begrenzt. Dieser Freiraum 18 ist - wie dies aus den Fig. 2 und 3 erkennbar ist - zu einer Oberseite 19 des Strukturelements 6 hin, welches gleichzeitig die Trennebene des unteren Gehäuseteils 1 mit dem nicht gezeigten oberen Gehäuseteil bildet, offen ausgebildet ist. Demzufolge ist der Freiraum 18 gemäß den Fig. 2 und 3 als von oben hin offener Graben erkennbar.
Weiterhin ist aus den Fig. 2 und 3 erkennbar, dass innerhalb des Freiraums 18 eine Mehrzahl von Rippen 19 oder dergleichen Stützelemente angeordnet wird, welche mit den Wandbereichen 14, 15 sowie dem Verbindungswandbereich 16 verbunden sind, vorgesehen sind. Diese Rippen 19 dienen demzufolge insbesondere zur Abstützung der in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche 14,
15, wobei durch diese Rippen 19 insbesondere das Deformations- und Energieabsorptionsverhalten des Deformationsbereichs 12 des Strukturelements 6 eingestellt werden kann.
Im vorliegenden Ausführungsbeispiel ist das Strukturelement 6 als Metallgussbauteil, beispielsweise als Aluminium-Druckgussbauteil oder als Stahlgussbauteil ausgebildet. Demzufolge sind vorliegend die Rippen 19 anteilig mit den Wandbereichen 14 und 15 beziehungsweise dem Verbindungswandbereich 16 verbunden. Durch die offene Ausgestaltung des Freiraums 18 ergibt sich demzufolge auch eine besonders günstige Entformung der Rippen 19.
Bezogen auf die beiden Wandbereiche 14, 15, welche sich jeweils in Fahrzeugquerrichtung und in Fahrzeughochrichtung erstrecken, sind zwei weitere, sich in Fahrzeughochrichtung und in Fahrzeugquerrichtung erstreckende Wandbereiche 20, 21 vorgesehen, welche über einen jeweiligen Verbindungswandbereich 22 beziehungsweise 23 miteinander verbunden sind. Die jeweiligen Verbindungswandbereiche 22, 23 verlaufen dabei ebenso wie der Verbindungswandbereich 16 zumindest im Wesentlichen horizontal und in Fahrzeugquerrichtung. Durch die jeweiligen Wandbereiche 20, 21 in Verbindung mit dem jeweils angrenzenden, ebenfalls in Fahrzeughochrichtung beziehungsweise in Fahrzeuglängsrichtung verlaufenden jeweiligen Wandbereich 14 und 15 sind somit zwei weitere Freiräume 24, 25 geschaffen, welche sich vorderseitig beziehungsweise rückseitig an den Freiraum 18 anschließen und im Unterschied zu diesem nicht zur Oberseite 26 des Strukturelements 6 hin offen sind, sondern vielmehr zu dessen Unterseite 27.
Eine in Zusammenschau mit Fig. 5, welche das Strukturelement 6 in einerweiteren perspektivischen Schnittansicht gegenüber Fig. 3 geänderten Blickwinkel von schräg unten zeigt, wird insbesondere erkennbar, dass auch innerhalb der jeweiligen Freiräume 24, 25 jeweilige Rippen 28, 29 vorgesehen sind, welche sich zwischen den jeweiligen, zumindest im Wesentlichen in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereichen 20, 21 sowie nach oben hin bis zum jeweiligen Verbindungswandbereich 22, 23 erstrecken. Auch hier kann durch eine geeignete Form und Anzahl beziehungsweise Ausgestaltung der jeweiligen Rippen 28, 29 das Deformationsvermögen und Energieabsorptionsvermögen des Deformationsbereichs 12 des Strukturelements 6 eingestellt werden. Auch hier ist erkennbar, dass sich die Freiräume 24, 25 in Fahrzeugquerrichtung zumindest im Wesentlichen über die gesamte Breite des Strukturelements 6 beziehungsweise des Batteriegehäuses erstrecken. Es ist klar, dass nicht jeder der Freiräume 18, 24, 25 zunehmender Maßen über Rippen 19 verfügen muss. Je nach Ausgestaltung des Deformationsbereichs 12 des Strukturelements 6 können auch nur einige der Freiräume 18, 24, 25 mit entsprechenden Rippen 19 ausgestattet sein. Ebenfalls ist es denkbar, dass sich die jeweilige Rippe 19, 28, 29 nur zu jeweils einem Wandbereich 14, 15, 20, 21 hin abstützt.
Fig. 4 zeigt in einer Schnittansicht entlang einer in Fahrzeughochrichtung und in Fahrzeuglängsrichtung verlaufenden Schnittebene nochmal den Querschnitt des Strukturelements 6. Hierbei wird insbesondere die mäanderförmige Gestalt der Wandbereiche 14, 15, 16 sowie 20, 21 , 22, 23 deutlich, welche die drei Freiräume 25 bilden, welche zur jeweiligen Oberseite 26 beziehungsweise Unterseite 27 des Strukturelements 6 hin offen ausgebildet sind. Im vorliegenden Fall erstreckt sich demzufolge der Deformationsbereich 12 zwischen dem vordersten, in Fahrzeuglängsrichtung beziehungsweise in Fahrzeughochrichtung verlaufenden Wandbereich 20 und dem hintersten, in Fahrzeughochrichtung beziehungsweise in Fahrzeugquerrichtung verlaufenden Wandbereich 21. Dies ist in Fig. 4 durch eine entsprechende Klammer symbolisiert.
An den vordersten Wandbereich 20 beziehungsweise Wandbereich 22 schließt sich nach vorne hin ein weiterer Wandbereich 30 des Strukturelements 6 an, welcher vorliegend beispielsweise zur Anlage des Gehäuseoberteils dient. An den hintersten, in Fahrzeughochrichtung beziehungsweise in Fahrzeugquerrichtung verlaufenden Wandbereich 21 schließt sich ein in Fahrzeugquerrichtung hinterer Wandbereich 31 an, an welchen sich ein Deckelelement des unteren Gehäuseteils 1 anschließt, welches die jeweiligen Fächer der Rahmenstruktur 2 ausfüllt beziehungsweise nach unten hin abschließt.
In Zusammenschau der Fig. 1 , 2 und 3 ist außerdem erkennbar, dass der Wandbereich 31 und der Verbindungswandbereich 21 eine Begrenzung bilden, an der das vorderste Zellmodul 11 angrenzt. Demzufolge ist der Deformationsbereich 12 vorderseitig des vordersten Zellmoduls 11 angeordnet und dient somit zum Schutz insbesondere dieses Zellmoduls 11 wie auch der übrigen Zellmodule 11 , welche den Flochvoltspeicher innerhalb des Batteriegehäuses bilden.
Außerdem ist insbesondere aus den Fig. 2 und 3 besonders gut erkennbar, dass die jeweiligen Anbindungsstellen 9, 10 des Strukturelements für den Vorderachsträger beziehungsweise zur Anbindung des Batteriegehäuses an rohbauseitigen Strukturelementen vorderseitig des Deformationsbereichs 12 des Strukturelements 6 angeordnet sind. Gemäß den Pfeilen F in das Strukturelement 6 eingeleitete Kräfte werden demzufolge in optimaler Weise in den Deformationsbereich 12 eingetragen und dort durch entsprechende Deformation und Energieabsorption aufgenommen.
Insgesamt wird somit deutlich, dass durch den gezielten Energieabbau im integralen Gussbauteil Lasten aus dem Frontcrash nicht auf die Zellmodule 11 weitergeleitet werden.
Der Energieabbau findet hier in demselben Gussbauteil/Strukturelement 6 statt, welches auch die Anbindungspunkte 9, 10 zur Rohkarosserie in der Front (und somit der Frontcrash-Struktur) beinhaltet. Die Energie wird durch eine gezielte Deformation des Gussbauteils 6 über Sollknickstellen im Bereich des jeweiligen U-förmigen Wandverbunds 17 realisiert. So wird der direkte Lastpfad unterbrochen und es sind keine separaten Bauteile oder Bauraum notwendig. Bezugszeichenliste
Gehäuseteil
Rahmenstruktur
Querträger
Längsträger
Strukturelement
Strukturelement
Strukturelement
Pfeil
Anbindungsstelle
Anbindungsstelle
Zellmodul
Deformationsbereich
Wandbereich
Wandbereich
Verbindungswandbereich
Wandverbund
Freiraum
Oberseite / Rippe
Wandbereich
Wandbereich
Verbindungswandbereich
Verbindungswandbereich
Freiraum
Freiraum
Oberseite
Unterseite
Rippe
Rippe
Wandbereich
Wandbereich

Claims

Patentansprüche
1. Strukturelement (6) für ein Batteriegehäuse eines Kraftwagens, welches in Fahrzeuglängsrichtung an einem Endbereich des Batteriegehäuses angeordnet ist, dadurch gekennzeichnet, dass das Strukturelement (6) wenigstens einen Deformationsbereich (12) zur gezielten Deformation und Energieabsorption aufweist, welcher wenigstens zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufende, miteinander verbundende Wandbereiche (14, 15) aufweist, zwischen welchen ein Freiraum (18) ausgebildet ist.
2. Strukturelement (6) nach Anspruch 1 , dadurch gekennzeichnet, dass der Freiraum (18) zu einer Unterseite (27) oder einer Oberseite (27) des Strukturelements (6) hin offen ausgebildet ist.
3. Strukturelement (6) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem Freiraum (18) eine Mehrzahl von Rippen (19) oder dergleichen Stützelemente vorgesehen sind, durch welche die zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden, miteinander verbundenden Wandbereiche (14, 15) in Fahrzeuglängsrichtung abgestützt sind.
4. Strukturelement (6) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche (14, 15) über einen Verbindungswandbereich (16) zu einem im Querschnitt im Wesentlichen U-förmigen Wandverbund (17) miteinander verbunden sind.
5. Strukturelement (6) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein weiterer, in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufender Wandbereich (20, 21) vorgesehen ist, welcher mit dem benachbarten der zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche (14, 15) einen jeweiligen weiteren Freiraum (24, 25) ausbildet.
6. Strukturelement (6) nach Anspruch 5, dadurch gekennzeichnet, dass der zumindest eine weitere, in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufende Wandbereich (20, 21) mit dem benachbarten der zwei in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche (14, 15) über einen Verbindungswandbereich (22, 23) zu einem im Querschnitt im Wesentlichen U-förmigen Wandverbund verbunden ist.
7. Strukturelement (6) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die in Fahrzeughochrichtung und in Fahrzeugquerrichtung verlaufenden Wandbereiche (14, 15, 20, 21 ) über die gesamte Breite des Strukturelements erstrecken.
8. Strukturelement (6) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Strukturelement (6) als Metallgussbauteil ausgebildet ist.
PCT/EP2022/070293 2021-07-23 2022-07-20 Strukturelement für ein batteriegehäuse eines elektrisch antreibbaren kraftwagens WO2023001867A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280042123.4A CN117480679A (zh) 2021-07-23 2022-07-20 用于可电驱动的机动车的电池壳体的结构元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021119157.2 2021-07-23
DE102021119157.2A DE102021119157A1 (de) 2021-07-23 2021-07-23 Strukturelement für ein Batteriegehäuse eines elektrisch antreibbaren Kraftwagens

Publications (1)

Publication Number Publication Date
WO2023001867A1 true WO2023001867A1 (de) 2023-01-26

Family

ID=82943290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/070293 WO2023001867A1 (de) 2021-07-23 2022-07-20 Strukturelement für ein batteriegehäuse eines elektrisch antreibbaren kraftwagens

Country Status (3)

Country Link
CN (1) CN117480679A (de)
DE (1) DE102021119157A1 (de)
WO (1) WO2023001867A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018729A1 (de) * 2010-04-29 2011-11-03 Bayerische Motoren Werke Aktiengesellschaft Zusatzstruktur für eine Knautschzone einer Personenkraftwagen-Karosserie
DE102016004577A1 (de) * 2016-04-14 2017-10-19 Daimler Ag Tragrahmenstruktur zum Befestigen wenigstens eines Energiespeichers an einem Kraftfahrzeugrohbau
DE102017111021A1 (de) 2017-05-19 2018-11-22 Nemak, S.A.B. De C.V. Verfahren und Vorrichtung zur durch Druckgießen erfolgenden Herstellung eines Rahmens für ein Batteriegehäuse für ein elektrisch angetriebenes Fahrzeug
US20200152929A1 (en) * 2018-11-13 2020-05-14 Rivian Ip Holdings, Llc Battery module frame configuration

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048102A1 (de) 2010-10-09 2012-04-12 Audi Ag Fahrzeug mit einer Crashenergie absorbierbaren Traktionsbatterie
JP5403290B2 (ja) 2011-03-31 2014-01-29 三菱自動車工業株式会社 電気自動車のバッテリ搭載構造
DE102013006702A1 (de) 2013-04-18 2014-10-23 Volkswagen Aktiengesellschaft Batterieanordnung in einem zweispurigen Fahrzeug
DE102016110787A1 (de) 2016-06-13 2017-12-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriegehäuse einer Traktionsbatterie eines Kraftfahrzeugs
US10160492B2 (en) 2016-10-14 2018-12-25 Inevit Llc Battery junction box housing configured to direct crash forces in an electric vehicle
DE102017101572A1 (de) 2017-01-26 2018-07-26 Benteler Automobiltechnik Gmbh Batterieträger für ein Elektrokraftfahrzeug
DE102017211365A1 (de) 2017-07-04 2019-01-10 Audi Ag Energiespeichereinrichtung für ein Kraftfahrzeug und Kraftfahrzeug
DE102018122854A1 (de) 2018-09-18 2020-03-19 Hörmann Automotive GmbH Chassis für ein Straßenfahrzeug mit elektrischem Energiespeicher
DE102019207451B4 (de) 2019-05-21 2021-02-11 Volkswagen Aktiengesellschaft Batteriebaugruppe
JP7181165B2 (ja) 2019-08-01 2022-11-30 株式会社神戸製鋼所 車体構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018729A1 (de) * 2010-04-29 2011-11-03 Bayerische Motoren Werke Aktiengesellschaft Zusatzstruktur für eine Knautschzone einer Personenkraftwagen-Karosserie
DE102016004577A1 (de) * 2016-04-14 2017-10-19 Daimler Ag Tragrahmenstruktur zum Befestigen wenigstens eines Energiespeichers an einem Kraftfahrzeugrohbau
DE102017111021A1 (de) 2017-05-19 2018-11-22 Nemak, S.A.B. De C.V. Verfahren und Vorrichtung zur durch Druckgießen erfolgenden Herstellung eines Rahmens für ein Batteriegehäuse für ein elektrisch angetriebenes Fahrzeug
US20200152929A1 (en) * 2018-11-13 2020-05-14 Rivian Ip Holdings, Llc Battery module frame configuration

Also Published As

Publication number Publication date
DE102021119157A1 (de) 2023-01-26
CN117480679A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
DE112014000472B4 (de) Struktur eines vorderen Fahrzeugkarosserieabschnitts
DE102012217180B4 (de) Fahrzeugkarosserieheckstruktur
DE102019116377B4 (de) Fahrzeugvorderteilaufbau
DE102016203209B4 (de) Zumindest teilweise elektrisch betreibbares Kraftfahrzeug
EP3668777B1 (de) Fahrzeuglängsträgeranordnung
DE102017130708B4 (de) Fahrzeugrahmenaufbau
DE102006013226B4 (de) Fahrzeugchassis-Frontaufbau
EP1451041A1 (de) Frontstruktur eines kraftfahrzeuges
EP1897761A2 (de) Kraftfahrzeug mit einer Überrollbügelanordnung
DE102007061210A1 (de) Karosserie eines Personenkraftwagens
DE102016212297A1 (de) Kraftfahrzeug
DE102018215954A1 (de) Kraftfahrzeug und Batterie
DE102016005264B4 (de) Rohbau eines Kraftfahrzeugs
DE602004013204T2 (de) Anordnung für fahrzeugkabinen
DE102013223654A1 (de) Fahrzeugheckstruktur
DE102018200354A1 (de) Baugruppe für ein Kraftfahrzeug
DE102017211339A1 (de) Bremskraftverstärkereinrichtung mit einem verformbaren Aktuator
DE102021129280A1 (de) Anhängerkupplungsanordnung für ein Kraftfahrzeug
DE102019203046A1 (de) Batteriegehäuse mit Abgleitkante für ein Hybridkraftfahrzeug
DE102013001585A1 (de) Stoßfängeranordnung
EP3737601B1 (de) Karosseriestruktur und karosserie für einen personenkraftwagen
EP3668776B1 (de) Vorbaustrukturanordnung für einen kraftwagenrohbau sowie aggregateträger für eine derartige vorbaustrukturanordnung
DE10119131A1 (de) Fahrzeugtür mit einer Crashabstützung
DE102011113912B4 (de) Schutzeinrichtung für eine Energiespeichereinrichtung eines Personenkraftwagens
WO2023001867A1 (de) Strukturelement für ein batteriegehäuse eines elektrisch antreibbaren kraftwagens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22757213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022757213

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022757213

Country of ref document: EP

Effective date: 20240223