WO2023001117A1 - 充电方法、装置、设备及存储介质 - Google Patents

充电方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023001117A1
WO2023001117A1 PCT/CN2022/106322 CN2022106322W WO2023001117A1 WO 2023001117 A1 WO2023001117 A1 WO 2023001117A1 CN 2022106322 W CN2022106322 W CN 2022106322W WO 2023001117 A1 WO2023001117 A1 WO 2023001117A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
lithium battery
negative electrode
potential
lithium
Prior art date
Application number
PCT/CN2022/106322
Other languages
English (en)
French (fr)
Inventor
谢红斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023001117A1 publication Critical patent/WO2023001117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of charging, in particular to a charging method, device, equipment and storage medium.
  • lithium batteries are becoming more and more common in people's daily life as a rechargeable battery.
  • the lithium ions in the lithium battery will deintercalate from the positive electrode of the lithium battery, diffuse to the negative electrode of the lithium battery, and intercalate into the negative electrode of the lithium battery.
  • lithium ions may not be able to intercalate normally in the negative electrode of the lithium battery.
  • lithium ions may capture electrons in the negative electrode of the lithium battery to form a single substance of lithium and precipitate out of the negative electrode of the lithium battery. This phenomenon is called precipitation.
  • Lithium lithium analysis will accelerate the aging of lithium batteries.
  • the potential of the negative electrode of the lithium battery it is possible to control the potential of the negative electrode of the lithium battery to remain above the critical potential of lithium analysis (generally 0V) during the charging process, so as to ensure that lithium ions cannot capture electrons at the negative electrode of the lithium battery, thereby preventing lithium analysis from the source. the emergence of the phenomenon.
  • the critical potential of lithium analysis generally 0V
  • the embodiments of the present application provide a charging method, device, equipment and storage medium, which can improve the charging efficiency of the lithium battery on the premise of avoiding the phenomenon of lithium precipitation in the lithium battery.
  • a charging method comprising:
  • the charging operation includes:
  • the potential of the negative electrode of the lithium battery is less than or equal to the critical potential of lithium evolution.
  • a charging method comprising:
  • the lithium battery In the constant current charging stage, the lithium battery is charged with a first charging current for a first charging period, and at the end of the first charging period, the potential of the negative electrode of the lithium battery is less than or equal to the critical potential for lithium analysis;
  • the lithium battery is charged with a second charging current.
  • a charging device which includes:
  • the charging module is used to perform multiple charging operations on the lithium battery cycle until the charging cut-off condition is met;
  • the charging module includes:
  • a charging unit configured to use a first charging current to charge the lithium battery in the first stage
  • a processing unit configured to raise the potential of the negative electrode of the lithium battery after the first stage of charging is completed
  • the potential of the negative electrode of the lithium battery is less than or equal to the critical potential of lithium evolution.
  • a charging device which includes:
  • the charging module is used to charge the lithium battery with a first charging current for a first charging period during the constant current charging stage, and when the first charging period ends, the potential of the negative electrode of the lithium battery is less than or equal to the critical potential for lithium analysis;
  • the charging module is further configured to charge the lithium battery with a second charging current after the first charging period is over.
  • an electronic device including a memory and a processor, the memory stores a computer program, and when the computer program is executed by the processor, the charging method as described in the first aspect or the second aspect is implemented.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the charging method as described in the above-mentioned first aspect or the above-mentioned second aspect is implemented.
  • a lithium battery can be provided with a negative electrode that converts the precipitated lithium element into lithium ions and inserts it into the lithium battery. environment to eliminate the lithium element precipitated during the first stage of charging of the lithium battery.
  • the lithium element can be eliminated after the first stage of charging, it is not necessary to consider whether the first stage of charging will precipitate lithium, and then A higher first charging current can be used for the first-stage charging, so as to improve the charging efficiency under the premise of avoiding the phenomenon of lithium precipitation.
  • FIG. 1 is a flowchart of a charging method provided in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a negative electrode potential change provided in an embodiment of the present application.
  • Figure 3 is a schematic diagram of a negative electrode potential change provided by the embodiment of the present application.
  • FIG. 4 is a flow chart of a charging method provided in an embodiment of the present application.
  • FIG. 5 is a flow chart of a charging method provided by an embodiment of the present application.
  • FIG. 6 is a flow chart of a charging method provided by an embodiment of the present application.
  • FIG. 7 is a flow chart of a charging method provided by an embodiment of the present application.
  • FIG. 8 is a flow chart of a charging method provided by an embodiment of the present application.
  • FIG. 9 is a flow chart of another charging method provided by the embodiment of the present application.
  • FIG. 10 is a flow chart of another charging method provided by the embodiment of the present application.
  • Fig. 11 is a flow chart of another charging method provided by the embodiment of the present application.
  • Fig. 12 is a flow chart of another charging method provided by the embodiment of the present application.
  • FIG. 13 is a block diagram of a charging device provided in an embodiment of the present application.
  • Fig. 14 is a block diagram of another charging device provided by the embodiment of the present application.
  • Fig. 15 is a block diagram of an electronic device provided by an embodiment of the present application.
  • lithium ions in the lithium battery will deintercalate from the positive electrode of the lithium battery, diffuse to the negative electrode of the lithium battery, and intercalate into the negative electrode of the lithium battery.
  • lithium ions may not be able to intercalate normally in the negative electrode of the lithium battery.
  • lithium ions may capture electrons in the negative electrode of the lithium battery to form a single substance of lithium and precipitate out of the negative electrode of the lithium battery. This phenomenon is called precipitation.
  • Lithium wherein, the chemical expression of lithium analysis phenomenon is:
  • the phenomenon of lithium analysis usually occurs in scenarios such as fast charging process, low temperature charging process, and battery aging.
  • the reason for lithium analysis phenomenon in the fast charging process is: the speed at which lithium ions are inserted into the negative electrode of the lithium battery during the fast charging process The rate is lower than the rated rate, which may lead to the enrichment of lithium ions on the surface of the negative electrode of the lithium battery; the phenomenon of lithium precipitation occurs during low-temperature charging because: the low temperature leads to a decrease in the diffusion activity of lithium ions, which slows down the insertion of lithium ions into the negative electrode of the lithium battery.
  • Lithium precipitation will lead to a reduction in the content of lithium ions in the lithium battery, resulting in a decrease in the capacity of the lithium battery.
  • the lithium element is generally precipitated in the form of lithium dendrites, and lithium dendrites may pierce the separator in the lithium battery, resulting in Lithium battery overheating even brings the risk of positive and negative short circuit to lithium battery.
  • the potential of the negative electrode of the lithium battery can be controlled to remain above the critical potential of lithium analysis during the charging process, so as to ensure that lithium ions cannot capture electrons at the negative electrode of the lithium battery, thereby preventing the occurrence of lithium analysis from the source.
  • the embodiments of the present application provide a charging method, device, equipment, and storage medium, which can improve the charging efficiency of the lithium battery on the premise of avoiding the phenomenon of lithium precipitation in the lithium battery.
  • the charging method provided by the embodiment of the present application may be executed by a charging device, and the charging device may be implemented as part or all of an electronic device through software, hardware, or a combination of software and hardware.
  • the electronic device is provided with a lithium battery, and the electronic device may be a smart phone, a tablet computer, a wearable device, a vehicle-mounted device, an e-book reader, an MP3 player or an MP4 player, etc. Specific types of equipment are qualified.
  • the electronic device may also be provided with a charging control chip, and the charging method provided in the embodiment of the present application may be specifically executed by the charging control chip in the electronic device.
  • FIG. 1 shows a flowchart of a charging method provided by an embodiment of the present application, and the charging method may be applied to the above-mentioned electronic devices.
  • the charging method may include the following technical processes:
  • the electronic device performs multiple charging operations on the lithium battery cycle until the charging cut-off condition is met.
  • the electronic device can monitor the battery status of the lithium battery during the cyclic charging operation, and when the monitored battery status meets the charging cut-off condition, the electronic device can stop executing the charging operation. Charging operation.
  • the electronic device may also perform a subsequent charging process on the lithium battery until the lithium battery is fully charged.
  • the battery status monitored during the cyclic charging operation may include: the temperature of the lithium battery, the battery voltage of the lithium battery, etc., which are not specifically limited in this embodiment of the present application.
  • the electronic device may record the number of cycle executions of the charging operation during the cycle execution of the charging operation. When the number of cycle executions reaches a certain number threshold, it can be considered that the charging deadline is satisfied. condition, at this time, the electronic device can stop performing the charging operation. Optionally, after stopping the charging operation, the electronic device may also perform a subsequent charging process on the lithium battery until the lithium battery is fully charged.
  • the electronic device may record the duration of the charging operation during the charging cycle, and if the duration reaches a certain duration threshold, it can be considered that the charging cut-off condition is met. At this time, the electronic device may stop performing the charging operation. Optionally, after stopping the charging operation, the electronic device may also perform a subsequent charging process on the lithium battery until the lithium battery is fully charged.
  • the electronic device can perform multiple charging operations on the lithium battery cycle during the constant current charging phase, and when it is detected that the lithium battery meets the switching conditions for switching from the constant current charging phase to the constant voltage charging phase , that is, it is considered that the charging cut-off condition is satisfied, and at this time, the electronic device may stop performing the charging operation.
  • the electronic device may also perform a subsequent charging process on the lithium battery until the lithium battery is fully charged.
  • the subsequent charging process may be a constant voltage charging process.
  • the switching condition for switching from the constant current charging stage to the constant voltage charging stage mentioned above may be: the battery voltage reaches the charging cut-off voltage of the constant current charging stage, wherein the charging cut-off voltage may be the rated cut-off voltage of the battery, or It may be greater than the rated cut-off voltage of the battery, for example, the charging cut-off voltage may be the sum of the rated cut-off voltage of the potential and a fixed value, wherein the fixed value may be 0.05V.
  • the switching condition for switching from the constant current charging stage to the constant voltage charging stage mentioned above may be: the charging voltage reaches a preset charging voltage value, or the charging duration of the constant current charging stage reaches a preset charging duration value, etc.
  • the charging process of a lithium battery generally includes a constant current charging stage and a constant voltage charging stage.
  • a relatively constant charging current can be used to charge the lithium battery.
  • the battery voltage of the lithium battery gradually rises. High, when the battery voltage of the lithium battery reaches a certain voltage threshold, it can be considered that the lithium battery meets the switching conditions for switching from the constant current charging stage to the constant voltage charging stage. At this time, it can enter the constant voltage charging stage.
  • a relatively constant charging voltage can be used to charge the lithium battery.
  • the charging current continues to drop until the charging current drops to a small value and stops charging.
  • the embodiment of the present application will briefly describe the technical process of a charging operation performed by the electronic device with reference to FIG. 1 .
  • the technical process includes step 101 and step 102 .
  • Step 101 the electronic device uses the first charging current to charge the lithium battery in the first stage, wherein, at the end of the first stage charging, the potential of the negative electrode of the lithium battery is less than or equal to the critical potential of lithium formation.
  • the first charging current may be greater than or equal to a critical current value for lithium separation.
  • the negative electrode potential of the lithium battery is less than or equal to the lithium analysis critical potential during the first stage of charging, wherein the lithium analysis critical potential can be 0V.
  • first charging current greater than or equal to the lithium analysis critical current value
  • the negative electrode potential of the lithium battery will cause the negative electrode potential of the lithium battery to be less than or equal to the lithium analysis critical potential.
  • lithium ions may capture electrons at the negative electrode of lithium battery to form lithium element, that is, the phenomenon of lithium precipitation may occur.
  • using a larger first charging current to charge lithium battery can improve Charging efficiency of lithium batteries.
  • the electronic device may determine the first charging current according to a preset first negative electrode potential, wherein the first negative electrode potential may be less than or equal to the critical potential for lithium evolution.
  • the first negative electrode potential may be a potential value preset locally in the electronic device, or a potential value obtained by the electronic device according to the battery state of the lithium battery, or a value obtained by the electronic device The negative electrode potential value of the lithium battery charged in the first stage during the historical charging operation.
  • the technical process for the electronic device to acquire the first negative electrode potential correspondingly according to the battery state of the lithium battery may be: the electronic device queries the negative electrode potential database preset locally in the electronic device according to the battery state of the lithium battery, wherein the negative electrode potential database stores There are multiple correspondences between the battery state of the lithium battery and the potential of the negative electrode, and the electronic device can use the queried negative electrode potential as the first negative electrode potential.
  • the technical process for the electronic device to obtain the first negative electrode potential according to the battery state of the lithium battery can also be: the electronic device sends the battery state of the lithium battery to the server, so that the server can query the negative electrode potential database according to the battery state of the lithium battery, wherein, the negative electrode potential database stores multiple correspondences between the battery state of the lithium battery and the negative electrode potential, the server can send the queried negative electrode potential to the electronic device, and the electronic device can use the negative electrode potential sent by the server as the first negative electrode potential. electric potential.
  • the battery state of the lithium battery mentioned here may include: the temperature of the lithium battery, the battery voltage of the lithium battery, etc., which are not specifically limited in this embodiment of the present application.
  • the manner of obtaining the first negative electrode potential according to the battery state of the lithium battery can fully consider various conditions such as the aging of the lithium battery, so that the obtained first negative electrode potential is more accurate.
  • the inventors of the present application found that the lithium ions embedded in the negative electrode of the lithium battery will gradually increase during the cyclic charging operation. Due to the same-sex repulsion, the difficulty of lithium ions intercalating into the negative electrode of the lithium battery during the cyclic charging operation will increase. Therefore, in the process of cyclically performing the charging operation, the phenomenon of lithium precipitation will be more likely to occur as the number of cycles increases.
  • the potentials of the first negative electrode corresponding to each charging operation may be different.
  • the first charging current corresponding to each charging operation in the multiple charging operations performed in a cycle can be negatively correlated with the execution order of each charging operation in the cycle process, and correspondingly, each charging current in the multiple charging operations performed in a cycle can be negatively correlated.
  • the potential of the first negative electrode corresponding to the operation is positively related to the order in which the charging operations are performed during the cycle.
  • the charging operation performed later in the cycle can have a smaller corresponding first charging current and a higher potential of the first negative electrode (that is, the closer to the critical potential of lithium analysis), for example, the 100th time
  • the first negative potential corresponding to the charging operation is greater than the first negative potential corresponding to the 99th charging operation, and the first charging current corresponding to the 100th charging operation is smaller than the first charging current corresponding to the 99th charging operation. recharging current.
  • the first charging current is kept constant, and correspondingly, the potential of the negative electrode of the lithium battery is also kept constant during the first stage of charging.
  • the first stage During the charging process the potential of the negative electrode of the lithium battery can keep the above-mentioned first negative electrode potential unchanged.
  • keeping constant refers to always being equal to a certain value, or always fluctuating around a certain value. Ensuring that the first charging current remains constant during the first-stage charging process can reduce the control complexity of the first-stage charging and reduce the calculation amount of the electronic device during the first-stage charging process.
  • the first charging current is reduced during the first stage of charging.
  • the first charging current can be reduced from the first current value to the second current value.
  • the potential of the negative electrode of the lithium battery can be increased from the third potential to the fourth potential, wherein both the third potential and the fourth potential can be less than or equal to the critical potential for lithium analysis, wherein the third potential can be as described above The first negative potential of .
  • the first charging current may be linearly reduced from the first current value to the second current value, or may be non-linearly reduced from the first current value to the second current value, that is, Yes, during the charging process of the first stage, the rate of change of the first charging current may remain constant or may change, for example, the rate of change of the first charging current may gradually decrease or gradually increase. This is not specifically limited.
  • the potential of the negative electrode of the lithium battery can be increased linearly from the third potential to the fourth potential, or can be increased nonlinearly from the third potential to the fourth potential, that is, in the first stage
  • the rate of change of the potential of the negative electrode of the lithium battery may remain unchanged or may change.
  • the rate of change of the potential of the negative electrode of the lithium battery may gradually decrease or gradually increase, which is not specifically limited in the embodiments of the present application. .
  • the first charging current gradually decrease during the first stage charging process, and the negative electrode potential of the lithium battery gradually increase during the first stage charging process, so that the lithium ionization degree of the lithium battery can be gradually reduced during the first stage charging process,
  • Step 102 after the first stage of charging is completed, the electronic device raises the potential of the negative electrode of the lithium battery.
  • the potential of the negative electrode after the elevated treatment may be greater than or equal to the critical potential of lithium evolution.
  • Raising the potential of the negative electrode of the lithium battery can provide an environment for the lithium battery to convert the precipitated lithium element into lithium ions embedded in the negative electrode of the lithium battery, so that the lithium element precipitated in the first charging stage of the lithium battery can be converted into Lithium ions are intercalated in the negative electrode of the lithium battery.
  • the inventors of the present application have found that slight lithium precipitation is generally reversible, that is, the lithium element precipitated by the relatively mild lithium precipitation phenomenon can generally be reconverted into lithium ions intercalated into the negative electrode of the lithium battery. Based on this principle, after the end of the first stage of charging, the electronic device can increase the potential of the negative electrode of the lithium battery to convert the lithium element precipitated in the first charging stage of the lithium battery into lithium ions embedded in the negative electrode of the lithium battery, thereby Avoid lithium precipitation during charging.
  • the electronic device increases the potential of the negative electrode of the lithium battery, and controls the potential of the negative electrode of the lithium battery to remain constant.
  • the electronic device can increase the potential of the negative electrode of the lithium battery and control the negative electrode potential of the lithium battery.
  • the potential of the negative electrode remains constant.
  • the potential of the negative electrode of the lithium battery can keep the fifth potential unchanged, wherein the fifth potential can be a potential value preset locally in the electronic device, or it can be obtained by the electronic device according to the battery state of the lithium battery.
  • the potential value of the lithium battery can also be the negative electrode potential value of the lithium battery after the negative electrode potential is raised during the historical charging operation process obtained by the electronic device.
  • the technical process for the electronic device to obtain the fifth potential according to the battery state of the lithium battery is the same as the technical process for the electronic device to obtain the first negative electrode potential according to the battery state of the lithium battery, and the embodiments of the present application will not repeat them here.
  • the manner of obtaining the fifth potential according to the battery state of the lithium battery can fully consider various conditions such as the aging of the lithium battery, so that the obtained fifth potential is more accurate.
  • the electronic device increases the potential of the negative electrode of the lithium battery, and controls the potential of the negative electrode of the lithium battery to decrease from the first potential to the second potential.
  • the electronic device Normally, if the first charging current decreases from the first current value to the second current value during the charging process of the first stage, and the negative electrode potential of the lithium battery rises from the third potential to the fourth potential, then correspondingly, the electronic device The potential of the negative electrode of the lithium battery can be raised, and the potential of the negative electrode of the lithium battery can be controlled to decrease from the first potential to the second potential.
  • the potential of the negative electrode of the lithium battery can be decreased linearly from the first potential to the second potential, or can be decreased nonlinearly from the first potential to the second potential, that is, in the After the negative electrode potential of the lithium battery is raised, the rate of change of the negative electrode potential of the lithium battery may remain unchanged or may change.
  • the rate of change of the negative electrode potential of the lithium battery may gradually decrease or gradually increase. The embodiment does not specifically limit this.
  • the first potential and the second potential can be the potential values preset locally in the electronic device, or they can be obtained by the electronic device according to the battery status of the lithium battery.
  • the potential value may also be the negative electrode potential of the lithium battery after the negative electrode potential is raised during the historical charging operation process obtained by the electronic device.
  • the technical process for the electronic device to obtain the first potential and the second potential according to the battery state of the lithium battery is the same as the technical process for the electronic device to obtain the first negative electrode potential according to the battery state of the lithium battery. Let me repeat.
  • the method of obtaining the first potential and the second potential according to the battery state of the lithium battery can fully take into account various conditions such as the aging of the lithium battery, so that the acquired first potential and the second potential are more accurate. precise.
  • Figure 2 shows that the negative electrode potential (V1) of the lithium battery remains unchanged during the first stage of charging, the negative electrode potential of the lithium battery is raised and the negative electrode potential of the lithium battery is controlled.
  • the potential (V2) remains constant, the schematic diagram of the change of the negative electrode potential of the lithium battery during the cycle of charging operation
  • Figure 3 shows the gradual increase of the negative electrode potential (V1) of the lithium battery during the first stage of charging , when the negative electrode potential of the lithium battery is raised and the negative electrode potential (V2) of the lithium battery is controlled to gradually decrease, the schematic diagram of the change of the negative electrode potential of the lithium battery during the cycle of charging operation.
  • the process of raising the potential of the negative electrode of the lithium battery may include one of the following treatments: using the second charging current to charge the lithium battery in the second stage, and performing static treatment on the lithium battery Alternatively, the lithium battery is discharged, wherein the second charging current is smaller than the above-mentioned first charging current.
  • charging the lithium battery in the second stage can increase the charging time of the lithium battery during the charging operation, and further improve the charging efficiency of the lithium battery.
  • Discharging the lithium battery can speed up the conversion of the lithium element precipitated in the first charging stage of the lithium battery into lithium ions embedded in the negative electrode of the lithium battery, thereby reducing the execution time of the process of raising the negative electrode potential of the lithium battery, which in turn can increase The proportion of the charging time in the first stage during the charging operation, so as to ensure the charging efficiency of the lithium battery.
  • the temperature of the lithium battery will increase significantly during the first stage of charging, and the lithium battery should be left to stand to reduce the temperature of the lithium battery, avoid accelerated aging of the lithium battery, and improve Safety during charging.
  • the above-mentioned second charging current can be less than or equal to the lithium analysis critical current, because the second charging current is less than or equal to the lithium analysis critical current value, therefore, it can be ensured that the negative electrode potential of the lithium battery in the second stage charging process is greater than or equal to It is equal to the critical potential of lithium analysis.
  • the electronic device may determine the second charging current according to a preset second negative electrode potential, wherein the second negative electrode potential may be greater than or equal to the critical potential for lithium evolution.
  • the potential of the second negative electrode may be a potential value preset locally on the electronic device, or it may be a potential value obtained by the electronic device according to the battery state of the lithium battery, or it may be a value obtained by the electronic device The potential value of the negative electrode of the lithium battery charged in the second stage during the historical charging operation.
  • the technical process of the electronic device correspondingly obtaining the second negative electrode potential according to the battery state of the lithium battery is the same as the technical process of the electronic device correspondingly obtaining the first negative electrode potential according to the battery state of the lithium battery, and the embodiments of the present application will not repeat them here.
  • the manner of obtaining the second negative electrode potential according to the battery state of the lithium battery can fully take into account various conditions such as the aging of the lithium battery, so that the acquired second negative electrode potential is more accurate.
  • the second negative electrode potential corresponding to each charging operation can be correspondingly different.
  • the negative electrode potentials are different, wherein the second negative electrode potential corresponding to each charging operation in the multiple charging operations performed in a cycle is negatively related to the execution sequence of each charging operation in the cycle process.
  • the later the charging operation is performed in the cycle the smaller the second negative electrode potential (that is, the closer to the lithium analysis critical potential), for example, the second negative electrode potential corresponding to the 100th charging operation performed less than the second negative electrode potential corresponding to the charging operation performed for the 99th time.
  • the second charging current is kept constant during the charging process of the second stage, and correspondingly, the potential of the negative electrode of the lithium battery is also kept constant during the charging process of the second stage.
  • Ensuring that the second charging current remains constant during the second-stage charging process can reduce the control complexity of the second-stage charging, and reduce the calculation amount of the electronic device during the second-stage charging process.
  • the second charging current is increased, wherein the second charging current can be increased from the third current value to the fourth current value during the charging process of the second stage
  • the potential of the negative electrode of the lithium battery can be reduced from the first potential to the second potential during the second stage of charging.
  • the second charging current may increase linearly from the third current value to the fourth current value, or may increase nonlinearly from the third current value to the fourth current value, that is, Yes, during the charging process of the second stage, the rate of change of the second charging current may remain constant or may change, for example, the rate of change of the second charging current may gradually decrease or increase gradually. This is not specifically limited.
  • the potential of the negative electrode of the lithium battery in the charging process of the second stage, can be decreased linearly from the first potential to the second potential, or can be decreased nonlinearly from the first potential to the second potential, that is, at the During the two-stage charging process, the rate of change of the potential of the negative electrode of the lithium battery may remain unchanged or may change. For example, the rate of change of the potential of the negative electrode of the lithium battery may gradually decrease or gradually increase, which is not discussed in the embodiments of the present application. Specific limits.
  • FIG. 4 shows an exemplary flow chart for determining the first charging current provided by the embodiment of the present application.
  • the technical process includes the following steps:
  • Step 401 the electronic device charges the lithium battery based on the first initial charging current.
  • the magnitude of the first initial charging current may be preset in the electronic device.
  • Step 402 during the charging process, the electronic device detects the potential of the negative electrode of the lithium battery.
  • the electronic device may detect the potential of the negative electrode of the lithium battery.
  • the embodiment of the present application will exemplarily provide three ways of detecting the potential of the negative electrode of the lithium battery:
  • the inside of the lithium battery can be provided with a reference electrode, for example, the reference electrode can be a lithium-plated copper wire, and the electronic device can detect the voltage between the negative electrode of the lithium battery and the reference electrode, and the detected The voltage is used as the negative electrode potential of the lithium battery.
  • the reference electrode can be a lithium-plated copper wire
  • the electronic device can detect the voltage between the negative electrode of the lithium battery and the reference electrode, and the detected The voltage is used as the negative electrode potential of the lithium battery.
  • the electronic device can use the charging current and charging time for a period of time to calculate the increase in the battery capacity of the lithium battery, and measure the increase in the battery voltage of the lithium battery during the period of time.
  • the electronic device can calculate the increase in battery capacity based on the battery capacity
  • the increase and the increase of the battery voltage calculate the negative electrode potential of the lithium battery.
  • the electronic device can obtain the battery model of the lithium battery established in advance, and measure the battery voltage of the lithium battery, the temperature of the lithium battery and the charging current, and then, the electronic device can obtain the battery voltage of the lithium battery measured, the lithium battery The temperature and charging current are substituted into the battery model to calculate the negative electrode potential of the lithium battery.
  • Step 403 the electronic device adjusts the first initial charging current according to the difference between the first negative electrode potential and the detected negative electrode potential of the lithium battery, to obtain the first charging current.
  • the electronic device can detect the negative electrode potential of the lithium battery in real time or periodically during the charging process, and after detecting the negative electrode potential of the lithium battery, determine the first negative electrode potential and the detected lithium battery potential. Then adjust the first initial charging current according to the gap until the detected negative electrode potential of the lithium battery is consistent with the first negative electrode potential. At this time, the first charging current can be obtained.
  • FIG. 5 shows a flow chart of an exemplary technical process for charging a lithium battery in the first stage provided by an embodiment of the present application.
  • the technical process includes the following steps:
  • Step 501 the electronic device acquires a preset first charging duration.
  • the first charging duration can be preset in the electronic device.
  • the corresponding relationship between the charging duration and the negative electrode potential can be preset in the electronic device, and the electronic device can be charged according to the first stage The corresponding negative electrode potential is queried for the corresponding relationship, and the first charging duration is obtained according to the queried result.
  • the preset first charging time can be determined according to the first negative electrode potential and the preset lithium precipitation conditions, wherein the preset lithium precipitation conditions include that the lithium element precipitated by the lithium battery can be discharged after the lithium battery is discharged according to the preset discharge rate. All are converted into lithium ions and returned to the positive electrode of the lithium battery.
  • the preset discharge rate may be the maximum discharge rate of the lithium battery.
  • the method of judging whether the lithium element is completely converted into lithium ions may include: dismantling the lithium battery in an inert atmosphere, and then observing whether there are streaks or lithium metal on the surface of the negative electrode through a scanning electron microscope.
  • Step 502 the electronic device charges the lithium battery in the first stage according to the first charging duration.
  • FIG. 6 shows a flowchart of an exemplary technical process for charging a lithium battery in the second stage provided by the embodiment of the present application.
  • the technical process includes the following steps:
  • Step 601 the electronic device charges the lithium battery based on the second initial charging current.
  • the magnitude of the second initial charging current may be preset in the electronic device.
  • Step 602 during the charging process, the electronic device detects the potential of the negative electrode of the lithium battery.
  • Step 603 the electronic device adjusts the second initial charging current according to the difference between the second negative electrode potential and the detected negative electrode potential of the lithium battery to obtain a second charging current.
  • the electronic device can detect the negative electrode potential of the lithium battery in real time or periodically during the charging process, and after detecting the negative electrode potential of the lithium battery, determine the second The gap between the negative electrode potential and the detected negative electrode potential of the lithium battery, and then adjust the second initial charging current according to the gap until the detected negative electrode potential of the lithium battery is consistent with the second negative electrode potential. At this time, you can to obtain the second charging current.
  • FIG. 7 shows a flow chart of an exemplary technical process for charging a lithium battery in the second stage provided by the embodiment of the present application.
  • the technical process includes the following steps:
  • step 701 the electronic device acquires a preset second charging duration.
  • the second charging duration can be preset in the electronic device.
  • the corresponding relationship between the charging duration and the negative electrode potential can be preset in the electronic device, and the electronic device can be charged according to the second stage. The corresponding negative electrode potential is queried for the corresponding relationship, and the second charging duration is obtained according to the queried result.
  • the second charging duration is determined according to the second negative electrode potential, the first negative electrode potential, the first charging duration of the first stage charging, and the preset lithium element elimination conditions, which include the first stage charging and precipitation
  • the lithium elemental substance is all converted into lithium ions and inserted into the negative electrode of the lithium battery.
  • the method of judging whether all lithium elements are converted into lithium ions may include: dismantling the lithium battery in an inert atmosphere, and then observing whether there are streaks or lithium metal on the surface of the negative electrode through a scanning electron microscope.
  • the value obtained by integrating the negative electrode potential corresponding to the second stage of charging based on the second charging time length needs to be greater than The value obtained by integrating the negative electrode potential corresponding to the first stage of charging based on the first charging duration.
  • Step 702 the electronic device charges the lithium battery in the second stage according to the second charging duration.
  • FIG. 8 shows a flow chart of an exemplary technical process of charging operation provided by this embodiment.
  • the charging operation includes the following steps:
  • Step 801 the electronic device charges the lithium battery based on the first initial charging current.
  • Step 802 during the charging process, the electronic device detects the potential of the negative electrode of the lithium battery.
  • Step 803 the electronic device adjusts the first initial charging current according to the difference between the preset first negative electrode potential and the detected negative electrode potential of the lithium battery until the detected negative electrode potential of the lithium battery is consistent with the first negative electrode potential , to get the first charging current.
  • the potential of the first negative electrode may be less than or equal to the critical potential of lithium evolution, and the potential of the first negative electrode is positively related to the execution sequence of the charging operation currently performed in the cycle process.
  • the first charging current may be greater than or equal to the critical current for lithium extraction, and the first charging current is negatively related to the execution order of the current charging operation in the cycle process.
  • Step 804 the electronic device acquires a preset first charging duration.
  • the first charging time is determined according to the first negative electrode potential and the preset lithium precipitation condition, the preset lithium precipitation condition includes that the lithium element precipitated by the lithium battery can be completely converted to The lithium ions return to the positive electrode of the lithium battery.
  • Step 805 the electronic device charges the lithium battery for the first charging time based on the first charging current, so as to complete the first stage charging.
  • the first charging current remains unchanged during the first-stage charging process; or, the first charging current decreases from a first current value to a second current value during the first-stage charging process.
  • Step 806 the electronic device charges the lithium battery based on the second initial charging current.
  • Step 807 the electronic device detects the potential of the negative electrode of the lithium battery.
  • Step 808 the electronic device adjusts the second initial charging current according to the difference between the preset second negative electrode potential and the detected negative electrode potential of the lithium battery until the detected negative electrode potential of the lithium battery is consistent with the second negative electrode potential So far, the second charging current is obtained.
  • the potential of the second negative electrode may be greater than or equal to the critical potential of lithium evolution, and the potential of the second negative electrode is negatively related to the execution order of the charging operation currently performed in the cycle process.
  • the second charging current may be less than or equal to the critical current for lithium extraction, and the second charging current is positively related to the execution order of the current charging operation in the cycle process.
  • Step 809 the electronic device acquires a preset second charging duration.
  • the second charging duration is determined according to the second negative electrode potential, the first negative electrode potential, the first charging duration, and the preset lithium element elimination conditions. Lithium ions are intercalated in the negative electrode of the lithium battery.
  • Step 810 the electronic device charges the lithium battery for a second charging time based on the second charging current to complete the second stage of charging, and then the electronic device returns to execute 801 until the charging cut-off condition is satisfied.
  • the second charging current remains unchanged during the charging process of the second stage; or, the second charging current increases from the third current value to the fourth current value during the charging process of the second stage.
  • FIG. 9 shows a flow chart of another charging method provided by an embodiment of the present application.
  • the charging method can be applied to the above-mentioned electronic device.
  • the charging method may include the following technical processes:
  • Step 901. In the constant current charging stage, use the first charging current to charge the lithium battery for the first charging time. When the first charging time ends, the potential of the negative electrode of the lithium battery is less than or equal to the critical potential for lithium formation.
  • the charging process of a lithium battery generally includes a constant current charging stage and a constant voltage charging stage.
  • a relatively constant charging current can be used to charge the lithium battery.
  • the battery voltage of the lithium battery gradually increases.
  • the battery voltage of the lithium battery reaches a certain voltage threshold, it can be considered that the lithium battery meets the switching conditions for switching from the constant current charging stage to the constant voltage charging stage.
  • it can enter the constant voltage charging stage.
  • the charging current continues to drop until the charging current drops to a small value and stops charging.
  • the electronic device may use a first charging current to charge the lithium battery.
  • the first charging current may be greater than or equal to a critical current value for lithium analysis.
  • the negative electrode potential of the lithium battery is less than or equal to the lithium analysis critical potential, wherein the lithium analysis critical The potential may be 0V.
  • first charging current greater than or equal to the lithium analysis critical current value
  • lithium ions may capture electrons at the negative electrode of the lithium battery to form a lithium element, that is, there may be a phenomenon of lithium precipitation.
  • using a larger first charging current to charge the lithium battery can improve the lithium battery. Charging efficiency.
  • the inventors of the present application have found that the lithium ions embedded in the negative electrode of the lithium battery will gradually increase during the charging process. Due to the repulsion of the same sex, the difficulty of inserting lithium ions in the negative electrode of the lithium battery in the lithium battery will gradually increase as time goes by. Therefore, , the phenomenon of lithium precipitation will be more likely to occur as time goes by.
  • the first charging current can be reduced during the first charging time.
  • the difficulty of the phenomenon of lithium analysis can be gradually increased, thereby counteracting the phenomenon that the phenomenon of lithium analysis will become more likely to occur over time status.
  • the first charging current may be finally reduced to be equal to the critical current for lithium separation.
  • the first charging current may decrease linearly or non-linearly, that is, during the first charging duration, the rate of change of the first charging current may maintain It may not change, but may also change.
  • the rate of change of the first charging current may gradually decrease or increase gradually, which is not specifically limited in this embodiment of the present application.
  • the first charging current constant during the first charging period of charging the lithium battery with the first charging current, so as to ensure that the first charging current remains constant.
  • the concept of keeping constant should be broadly understood, that is, keeping constant refers to always being equal to a certain value, or always fluctuating around a certain value.
  • Step 902 after the first charging time period is over, use the second charging current to charge the lithium battery.
  • the above-mentioned second charging current can be less than or equal to the lithium analysis critical current, because the second charging current is less than or equal to the lithium analysis critical current value, therefore, it can be ensured that after the lithium battery is charged with the second charging current, the lithium The potential of the negative electrode of the battery is greater than or equal to the critical potential of lithium analysis. In this way, an environment can be provided for the lithium battery to convert the lithium element precipitated during the first charging period into lithium ions and intercalate into the negative electrode of the lithium battery.
  • the inventors of the present application have found that slight lithium precipitation is generally reversible, that is, the lithium element precipitated by the relatively mild lithium precipitation phenomenon can generally be reconverted into lithium ions intercalated into the negative electrode of the lithium battery.
  • the electronic device can use the second charging current to charge the lithium battery to increase the negative electrode potential of the lithium battery, thereby converting the lithium element precipitated in the lithium battery during the first charging period Intercalation of lithium ions into the negative electrode of the lithium battery, thereby avoiding the phenomenon of lithium precipitation during charging.
  • the lithium battery can be charged while keeping the second charging current constant, and correspondingly, the potential of the negative electrode of the lithium battery also remains constant. Ensuring that the second charging current remains constant can reduce the complexity of charging control and reduce the calculation amount of electronic equipment.
  • the second charging current may be increased to charge the lithium battery, and correspondingly, the potential of the negative electrode of the lithium battery may decrease.
  • the second charging current may increase linearly or non-linearly, that is, the rate of change of the second charging current may remain unchanged or may change, for example, the second The rate of change of the charging current may gradually decrease or increase gradually, which is not specifically limited in this embodiment of the present application.
  • FIG. 10 shows an exemplary flow chart for determining the first charging current provided by the embodiment of the present application.
  • the technical process includes the following steps:
  • Step 1001 the electronic device charges the lithium battery based on the first initial charging current.
  • the magnitude of the first initial charging current may be preset in the electronic device.
  • Step 1002 during the charging process, the electronic device detects the potential of the negative electrode of the lithium battery.
  • the electronic device may detect the potential of the negative electrode of the lithium battery.
  • the embodiment of the present application will exemplarily provide three ways of detecting the potential of the negative electrode of the lithium battery:
  • the inside of the lithium battery can be provided with a reference electrode, for example, the reference electrode can be a lithium-plated copper wire, and the electronic device can detect the voltage between the negative electrode of the lithium battery and the reference electrode, and the detected The voltage is used as the negative electrode potential of the lithium battery.
  • the reference electrode can be a lithium-plated copper wire
  • the electronic device can detect the voltage between the negative electrode of the lithium battery and the reference electrode, and the detected The voltage is used as the negative electrode potential of the lithium battery.
  • the electronic device can use the charging current and charging time for a period of time to calculate the increase in the battery capacity of the lithium battery, and measure the increase in the battery voltage of the lithium battery during the period of time.
  • the electronic device can calculate the increase in battery capacity based on the battery capacity
  • the increase and the increase of the battery voltage calculate the negative electrode potential of the lithium battery.
  • the electronic device can obtain the battery model of the lithium battery established in advance, and measure the battery voltage of the lithium battery, the temperature of the lithium battery and the charging current, and then, the electronic device can obtain the battery voltage of the lithium battery measured, the lithium battery The temperature and charging current are substituted into the battery model to calculate the negative electrode potential of the lithium battery.
  • Step 1003 the electronic device adjusts the first initial charging current according to the difference between the preset first negative electrode potential and the detected negative electrode potential of the lithium battery to obtain the first charging current.
  • the electronic device can detect the negative electrode potential of the lithium battery in real time or periodically during the charging process, and after detecting the negative electrode potential of the lithium battery, determine the first negative electrode potential and the detected lithium battery potential. Then adjust the first initial charging current according to the gap until the detected negative electrode potential of the lithium battery is consistent with the first negative electrode potential. At this time, the first charging current can be obtained.
  • the first charging duration is determined according to the above-mentioned first negative electrode potential and the preset lithium precipitation condition, wherein the preset lithium precipitation condition may include that the lithium element precipitated by the lithium battery can be charged in the lithium battery according to After discharging at the preset discharge rate, all of them are converted into lithium ions and return to the positive electrode of the lithium battery.
  • the preset discharge rate may be the maximum discharge rate of the lithium battery.
  • the method of judging whether the lithium element is completely converted into lithium ions may include: disassembling the lithium battery in an inert atmosphere, and then observing whether there are streaks or lithium metal on the surface of the negative electrode through a scanning electron microscope.
  • FIG. 11 shows an exemplary flow chart for determining the second charging current provided by the embodiment of the present application.
  • the technical process includes the following steps:
  • Step 1101 the electronic device charges the lithium battery based on the second initial charging current.
  • the magnitude of the second initial charging current may be preset in the electronic device.
  • Step 1102 during the charging process, the electronic device detects the potential of the negative electrode of the lithium battery.
  • Step 1103 the electronic device adjusts the second initial charging current according to the difference between the preset second negative electrode potential and the detected negative electrode potential of the lithium battery to obtain a second charging current.
  • the electronic device can detect the negative electrode potential of the lithium battery in real time or periodically during the charging process, and after detecting the negative electrode potential of the lithium battery, determine the second The gap between the negative electrode potential and the detected negative electrode potential of the lithium battery, and then adjust the second initial charging current according to the gap until the detected negative electrode potential of the lithium battery is consistent with the second negative electrode potential. At this time, you can to obtain the second charging current.
  • FIG. 12 shows a flow chart of an exemplary technical process for charging a lithium battery with a second charging current provided by an embodiment of the present application.
  • the technical process includes the following steps:
  • Step 1201 the electronic device acquires a second charging duration.
  • the second charging duration is determined according to the second negative electrode potential, the first negative electrode potential, the first charging duration, and the preset lithium element elimination condition, which includes the complete conversion of lithium element precipitated during the first stage of charging. It is the negative electrode of lithium ion intercalation lithium battery.
  • the method of judging whether all lithium elements are converted into lithium ions may include: dismantling the lithium battery in an inert atmosphere, and then observing whether there are streaks or lithium metal on the surface of the negative electrode through a scanning electron microscope.
  • the value obtained by integrating the negative electrode potential of the lithium battery within the second charging period based on the second charging period needs to be greater than the value obtained by integrating the negative electrode potential of the lithium battery within the first charging duration based on the first charging duration.
  • Step 1202 the electronic device charges the lithium battery according to the second charging duration and the second charging current.
  • FIG. 13 shows a block diagram of a charging device 1300 provided by an embodiment of the present application.
  • the charging device 1300 can be configured in the electronic device mentioned above.
  • the charging device 1300 may include: a charging module 1301 .
  • the charging module 1301 is used for repeatedly performing charging operations on the lithium battery until the charging cut-off condition is met.
  • the charging module 1301 includes:
  • the charging unit 13011 is used to charge the lithium battery at the first stage with the first charging current.
  • the processing unit 13012 is used to raise the potential of the negative electrode of the lithium battery after the first stage of charging is completed. When the first stage of charging is completed, the potential of the negative electrode of the lithium battery is less than or equal to the critical potential for lithium analysis.
  • the first charging current is kept unchanged; or, during the first-stage charging process, the first charging current is reduced.
  • the charging unit 13011 is specifically configured to: charge the lithium battery based on the first initial charging current; detect the negative electrode potential of the lithium battery during charging; adjusting the first initial charging current to obtain the first charging current.
  • the first negative electrode potentials corresponding to each charging operation are different.
  • the charging unit 13011 is specifically configured to: use the first charging current to charge the lithium battery at the first stage according to a preset first charging duration, wherein the first A charging duration is determined according to the first negative electrode potential and preset lithium precipitation conditions.
  • the processing unit 13012 is specifically configured to: raise the negative electrode potential of the lithium battery, and control the negative electrode potential of the lithium battery to remain constant; or, The potential of the negative electrode of the lithium battery is raised, and the potential of the negative electrode of the lithium battery is controlled to be reduced from the first potential to the second potential
  • the processing unit 13012 is specifically configured to: use a second charging current to charge the lithium battery in the second stage, where the second charging current is smaller than the first charging current; or, The lithium battery is subjected to static treatment; or, the lithium battery is discharged
  • the second charging current is kept constant; or,
  • the second charging current is increased.
  • the processing unit 13012 is specifically configured to: charge the lithium battery based on the second initial charging current; detect the negative electrode potential of the lithium battery during the charging process; The difference between the second negative potential of the lithium battery and the detected negative potential of the lithium battery is used to adjust the second initial charging current to obtain the second charging current.
  • the potentials of the second negative electrode corresponding to each charging operation are different.
  • the processing unit 13012 is specifically configured to: use the second charging current to charge the lithium battery at the second stage according to a preset second charging duration, wherein the first The second charging duration is determined according to the second negative electrode potential, the negative electrode potential of the lithium battery in the first stage charging, the first charging duration of the first stage charging and the preset lithium element elimination condition.
  • the charge cut-off condition includes: the battery voltage reaches the charge cut-off voltage of the constant current charging stage.
  • the charging device provided in the embodiment of the present application can implement the method embodiment described above, and its implementation principle and technical effect are similar, and will not be repeated here.
  • Each module in the above-mentioned charging device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the electronic device in the form of hardware, and can also be stored in the memory of the electronic device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • FIG. 14 shows a block diagram of a charging device 1400 provided by an embodiment of the present application, and the charging device 1400 may be configured in the electronic device mentioned above.
  • the charging device 1400 may include: a charging module 1401 .
  • the charging module 1401 is used to charge the lithium battery with the first charging current during the constant current charging stage for the first charging time.
  • the potential of the negative electrode of the lithium battery is less than or equal to the critical potential of lithium analysis.
  • the charging module 1401 is also used to charge the lithium battery with the second charging current after the first charging period ends.
  • the charging module 1401 is specifically configured to keep the first charging current constant during the first charging time period for charging the lithium battery with the first charging current; During the first charging current to charge the lithium battery for the first charging time, the first charging current is reduced.
  • the charging module 1401 is specifically used to charge the lithium battery based on the first initial charging current; during the charging process, detect the negative electrode potential of the lithium battery; The difference between the potential and the detected potential of the negative electrode of the lithium battery is adjusted to obtain the first initial charging current by adjusting the first initial charging current.
  • the first charging duration is determined according to the first negative electrode potential and preset lithium precipitation conditions.
  • the charging module 1401 is specifically used to charge the lithium battery based on the second initial charging current; during the charging process, detect the negative electrode potential of the lithium battery; The difference between the potential of the negative electrode and the detected potential of the negative electrode of the lithium battery is adjusted to obtain the second initial charging current by adjusting the second initial charging current.
  • the charging module 1401 is specifically used to keep the second charging current constant during the process of charging the lithium battery with the second charging current; or, when using the second charging current During the process of charging the lithium battery, the second charging current is increased.
  • the charging module 1401 is specifically configured to charge the lithium battery with a second charging current according to a preset second charging time, wherein the second charging time is based on the second negative electrode Potential, the potential of the first negative electrode, the first charging time, and the preset conditions for the elimination of lithium single substance are determined.
  • the critical potential for lithium evolution is less than or equal to 0V.
  • Each module in the above-mentioned charging device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the electronic device in the form of hardware, and can also be stored in the memory of the electronic device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • Fig. 15 is a schematic diagram of the internal structure of an electronic device in one embodiment.
  • the electronic device includes a processor and a memory connected through a system bus.
  • the processor is used to provide computing and control capabilities to support the operation of the entire electronic device.
  • the memory may include non-volatile storage media and internal memory. Nonvolatile storage media store operating systems and computer programs.
  • the computer program can be executed by a processor, so as to realize a charging method provided by each of the above embodiments.
  • the internal memory provides a cached operating environment for the operating system and computer programs in the non-volatile storage medium.
  • FIG. 15 is only a block diagram of a part of the structure related to the solution of this application, and does not constitute a limitation on the electronic equipment to which the solution of this application is applied.
  • the specific electronic equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.
  • an electronic device in one embodiment, the electronic device includes a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the charging operation includes:
  • the negative electrode potential of the lithium battery is raised.
  • the negative electrode potential of the lithium battery is less than or It is equal to the critical potential of lithium analysis.
  • the first charging current is kept unchanged; or, during the charging process of the first stage, the first charging current is reduced.
  • the processor when the processor executes the computer program, the following steps are also implemented: charging the lithium battery based on the first initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; adjusting the first initial charging current to obtain the first charging current.
  • the potentials of the first negative electrode corresponding to each charging operation are different.
  • the following steps are also implemented: according to the preset first charging time length, the lithium battery is charged in the first stage with the first charging current, wherein the first A charging duration is determined according to the first negative electrode potential and preset lithium precipitation conditions.
  • the following steps are also implemented: raising the negative electrode potential of the lithium battery, and controlling the negative electrode potential of the lithium battery to remain constant; or, The potential of the negative electrode of the lithium battery is raised, and the potential of the negative electrode of the lithium battery is controlled to be reduced from the first potential to the second potential.
  • the processor when the processor executes the computer program, it also implements the following steps: use the second charging current to charge the lithium battery in the second stage, and the second charging current is smaller than the first charging current; The lithium battery is subjected to static treatment; or, the lithium battery is discharged.
  • the second charging current is kept unchanged; or, during the charging process of the second stage, the second charging current is increased.
  • the processor when the processor executes the computer program, the following steps are also implemented: charging the lithium battery based on the second initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; The difference between the second negative potential of the lithium battery and the detected negative potential of the lithium battery is used to adjust the second initial charging current to obtain the second charging current.
  • the potentials of the second negative electrode corresponding to each charging operation are different.
  • the following steps are also implemented: according to the preset second charging time length, the lithium battery is charged in the second stage with the second charging current, wherein the first The second charging duration is determined according to the second negative electrode potential, the negative electrode potential of the lithium battery in the first stage charging, the first charging duration of the first stage charging, and the preset lithium element elimination condition.
  • the charge cut-off condition includes: the battery voltage reaches the charge cut-off voltage of the constant current charging stage.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the charging operation includes:
  • the negative electrode potential of the lithium battery is raised.
  • the negative electrode potential of the lithium battery is less than or It is equal to the critical potential of lithium analysis.
  • the first charging current is kept unchanged; or, during the charging process of the first stage, the first charging current is reduced.
  • the following steps are also implemented: charging the lithium battery based on the first initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; The difference between the first negative electrode potential and the detected negative electrode potential of the lithium battery is set, and the first initial charging current is adjusted to obtain the first charging current.
  • the potentials of the first negative electrode corresponding to each charging operation are different.
  • the following steps are further implemented: according to the preset first charging time length, the lithium battery is charged in the first stage with the first charging current, wherein the The first charging duration is determined according to the first negative electrode potential and preset lithium precipitation conditions.
  • the following steps are also implemented: raising the negative electrode potential of the lithium battery, and controlling the negative electrode potential of the lithium battery to remain constant; or, The potential of the negative electrode of the battery is raised, and the potential of the negative electrode of the lithium battery is controlled to decrease from the first potential to the second potential.
  • the following steps are further implemented: using a second charging current to charge the lithium battery in the second stage, the second charging current being smaller than the first charging current; or, The lithium battery is left to stand; or, the lithium battery is discharged.
  • the second charging current is kept unchanged; or, during the charging process of the second stage, the second charging current is increased.
  • the following steps are also implemented: charging the lithium battery based on the second initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; The difference between the set second negative electrode potential and the detected negative electrode potential of the lithium battery is adjusted to obtain the second initial charging current by adjusting the second initial charging current.
  • the potentials of the second negative electrode corresponding to each charging operation are different.
  • the following steps are further implemented: according to the preset second charging duration, the lithium battery is charged in the second stage with the second charging current, wherein the The second charging duration is determined according to the second negative electrode potential, the negative electrode potential of the lithium battery in the first-stage charging, the first charging duration of the first-stage charging, and preset lithium element elimination conditions.
  • the charge cut-off condition includes: the battery voltage reaches the charge cut-off voltage of the constant current charging stage.
  • an electronic device in one embodiment, the electronic device includes a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the first charging current is used to charge the lithium battery for the first charging period, and when the first charging period ends, the negative electrode potential of the lithium battery is less than or equal to the critical lithium potential; during the first charging period After finishing, use the second charging current to charge the lithium battery.
  • the processor executes the computer program, the following steps are further implemented: during the process of using the first charging current to charge the lithium battery for the first charging time, the first charging current is kept constant; or , during the process of charging the lithium battery with the first charging current for a first charging period, the first charging current is reduced.
  • the processor when the processor executes the computer program, the following steps are also implemented: charging the lithium battery based on the first initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; The difference between the first negative electrode potential and the detected negative electrode potential of the lithium battery is adjusted to obtain the first initial charging current by adjusting the first initial charging current.
  • the first charging duration is determined according to the first negative electrode potential and preset lithium precipitation conditions.
  • the processor when the processor executes the computer program, the following steps are also implemented: charging the lithium battery based on the second initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; The difference between the second negative potential of the lithium battery and the detected negative potential of the lithium battery is used to adjust the second initial charging current to obtain the second charging current.
  • the processor executes the computer program, the following steps are also implemented: during the process of charging the lithium battery with the second charging current, keep the second charging current unchanged; or, when using the second charging current During the process of charging the lithium battery with the second charging current, the second charging current is increased.
  • the processor when the processor executes the computer program, the following steps are also implemented: charging the lithium battery with the second charging current according to a preset second charging duration, wherein the second charging duration is It is determined according to the second negative electrode potential, the first negative electrode potential, the first charging duration and the preset lithium element elimination condition.
  • the critical potential for lithium evolution is less than or equal to 0V.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the first charging current is used to charge the lithium battery for the first charging period, and when the first charging period ends, the negative electrode potential of the lithium battery is less than or equal to the critical lithium potential; during the first charging period After finishing, use the second charging current to charge the lithium battery.
  • the following steps are further implemented: during the process of charging the lithium battery with the first charging current for the first charging time period, keeping the first charging current constant; Or, during the process of charging the lithium battery with the first charging current for a first charging period, the first charging current is reduced.
  • the following steps are also implemented: charging the lithium battery based on the first initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; adjusting the first initial charging current to obtain the first charging current.
  • the first charging duration is determined according to the first negative electrode potential and preset lithium precipitation conditions.
  • the following steps are also implemented: charging the lithium battery based on the second initial charging current; during the charging process, detecting the negative electrode potential of the lithium battery; The difference between the set second negative electrode potential and the detected negative electrode potential of the lithium battery is adjusted to obtain the second initial charging current by adjusting the second initial charging current.
  • the following steps are also implemented: during the process of using the second charging current to charge the lithium battery, keep the second charging current unchanged; During the process of charging the lithium battery with the second charging current, the second charging current is increased.
  • the following steps are further implemented: charging the lithium battery with the second charging current according to a preset second charging duration, wherein the second charging duration is It is determined according to the second negative electrode potential, the first negative electrode potential, the first charging duration and the preset lithium element elimination conditions.
  • the critical potential for lithium evolution is less than or equal to 0V.
  • Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in M forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Road (SyMchliMk) DRAM (SLDRAM), memory bus (RaMbus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDRSDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • RaMbus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请公开了一种充电方法、装置、设备及存储介质,属于充电技术领域。所述方法包括:对锂电池循环执行多次充电操作;其中,该充电操作包括:利用第一充电电流对锂电池进行第一阶段充电,而后,对锂电池的负极电势进行升高处理。本申请实施例提供的技术方案可以在避免出现析锂现象的前提下提高充电效率。

Description

充电方法、装置、设备及存储介质
本申请要求于2021年7月21日申请的,申请号为2021108342613、名称为“充电方法、装置、设备及存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及充电技术领域,特别是涉及一种充电方法、装置、设备及存储介质。
背景技术
当前,锂电池作为一种可充电电池在人们的日常生活中已经越来越常见了。在对锂电池充电的过程中,锂电池中的锂离子会从锂电池的正极脱嵌,向锂电池的负极扩散,并嵌入至锂电池的负极。在一些情况下,锂离子有可能无法正常嵌入锂电池的负极,此时,锂离子就有可能在锂电池的负极捕获电子从而形成锂单质析出于锂电池的负极,这种现象被称为析锂,析锂会加速锂电池的老化。
相关技术中,可以控制锂电池的负极电势在充电过程中一直保持在析锂临界电势(一般为0V)之上,以保证锂离子无法在锂电池的负极捕获电子,从而从源头上杜绝析锂现象的出现。
然而,为了控制锂电池的负极电势在充电过程中一直保持在析锂临界电势之上,就需要保证充电电流一直维持在较低的水平,由于充电电流的大小直接影响锂电池的充电效率,因此,保证充电电流一直维持在较低的水平会导致锂电池的充电效率较低。
发明内容
基于此,本申请实施例提供了一种充电方法、装置、设备及存储介质,可以在避免锂电池出现析锂现象的前提下提高锂电池的充电效率。
第一方面,提供了一种充电方法,该方法包括:
对锂电池循环执行多次充电操作,直至满足充电截止条件为止;
其中,所述充电操作包括:
利用第一充电电流对所述锂电池进行第一阶段充电,在所述第一阶段充电结束之后,对所述锂电池的负极电势进行升高处理;
所述第一阶段充电结束时,所述锂电池的负极电势小于或等于析锂临界电势。
第二方面,提供了一种充电方法,该方法包括:
在恒流充电阶段,利用第一充电电流对所述锂电池进行充电第一充电时长,所述第一充电时长结束时,所述锂电池的负极电势小于或等于析锂临界电势;
在所述第一充电时长结束后,利用第二充电电流对所述锂电池进行充电。
第三方面,提供了一种充电装置,该装置包括:
充电模块,用于对锂电池循环执行多次充电操作,直至满足充电截止条件为止;
其中,所述充电模块包括:
充电单元,用于利用第一充电电流对所述锂电池进行第一阶段充电;
处理单元,用于在所述第一阶段充电结束之后,对所述锂电池的负极电势进行升高处理;
所述第一阶段充电结束时,所述锂电池的负极电势小于或等于析锂临界电势。
第四方面,提供了一种充电装置,该装置包括:
充电模块,用于在恒流充电阶段,利用第一充电电流对锂电池进行充电第一充电时长,所述第一充电时长结束时,所述锂电池的负极电势小于或等于析锂临界电势;
所述充电模块还用于在所述第一充电时长结束后,利用第二充电电流对所述锂电池进行充电。
第五方面,提供了一种电子设备,包括存储器和处理器,该存储器存储有计算机程序,该计算机程序被该处理器执行时实现如上述第一方面或者上述第二方面所述的充电方法。
第六方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述第一方面或者上述第二方面所述的充电方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
通过对锂电池循环执行多次充电操作,直至满足充电截止条件为止,其中,充电操作包括利用第一充电电流对锂电池进行第一阶段充电,在第一阶段充电结束之后,对锂电池的负极电势进行升高处理,由于在第一阶段充电结束之后,对锂电池的负极电势进行了升高处理,因此,可以为锂电池提供一种将析出的锂单质转换为锂离子嵌入锂电池的负极的环境,以消除锂电池在第一阶段充电过程中析出的锂单质,由于在第一阶段充电结束之后,锂单质能够被消除,因此,可以不考虑第一阶段充电是否会析锂,继而就可以使用较高的第一充电电流进行第一阶段充电,从而可以起到在避免析锂现象的出现的前提下,提高充电效率的效果。
附图说明
图1为本申请实施例提供的一种充电方法的流程图;
图2为本申请实施例提供的一种负极电势变化的示意图;
图3为本申请实施例提供的一种负极电势变化的示意图
图4为本申请实施例提供的一种充电方法的流程图;
图5为本申请实施例提供的一种充电方法的流程图;
图6为本申请实施例提供的一种充电方法的流程图;
图7为本申请实施例提供的一种充电方法的流程图;
图8为本申请实施例提供的一种充电方法的流程图;
图9为本申请实施例提供的另一种充电方法的流程图;
图10为本申请实施例提供的另一种充电方法的流程图;
图11为本申请实施例提供的另一种充电方法的流程图;
图12为本申请实施例提供的另一种充电方法的流程图;
图13为本申请实施例提供的一种充电装置的框图;
图14为本申请实施例提供的另一种充电装置的框图;
图15为本申请实施例提供的一种电子设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
实际应用中,在对锂电池充电的过程中,锂电池中的锂离子会从锂电池的正极脱嵌,向锂电池的负极扩散,并嵌入至锂电池的负极。在一些情况下,锂离子有可能无法正常嵌入锂电池的负极,此时,锂离子就有可能在锂电池的负极捕获电子从而形成锂单质析出于锂电池的负极,这种现象被称为析锂,其中,析锂现象的化学表达式为:
Li ++e -—Li。
一般来说,析锂现象通常会在快充过程、低温充电过程以及电池老化等场景中出现,析锂现象在快充过程中出现是因为:在快充过程中锂离子嵌入锂电池负极的速度低于额定倍率,导致锂离子可能在锂电池负极表面富集;析锂现象在低温充电过程中出现是因为:低温导致锂离子扩散活性降低,从而使锂离子嵌入锂电池负极的速度变慢,继而导致锂离子在锂电池负极表面富集;析锂现象在电池老化的场景中出现是因为:老化电池中因电池副反应生成的固体电解质界面膜(英文:SolidElectrolyte Interphase;简称:SEI)使锂电池的内阻增大,根据负极电势表达式:φ(anode)=φ(e)+Δφ,φ(anode)为锂电池的负极电势,φ(e)为析锂平衡电位,Δφ为因锂电池的内阻所产生的电势,且,Δφ<0,可知:由于锂电池内阻增大会导致因锂电池的内阻所产生的电势Δφ减小,因此,锂电池内阻增大会使锂电池的负极电势更容易低于析锂临界电势(通常为0V),故而使析锂现象更加容易出现。
析锂会导致锂电池中锂离子的含量减少,从而导致锂电池的容量降低,此外,锂单质一般以锂枝晶的形式析出,而锂枝晶有可能会刺透锂电池中的隔膜,导致锂电池过热甚至给锂电池带来正负极短路的风险。
由以上说明可知,析锂现象会加速锂电池的老化,甚至会给锂电池的使用带来安全上的风险。因此,在对锂电池充电的过程中,通常需要采取措施避免析锂现象的出现。
相关技术中,可以控制锂电池的负极电势在充电过程中一直保持在析锂临界电势之上,以保证锂离子无法在锂电池的负极捕获电子,从而从源头上杜绝析锂现象的出现。
然而,为了控制锂电池的负极电势在充电过程中一直保持在析锂临界电势之上,就需要保证充电电流一直维持在较低的水平,由于充电电流的大小直接影响锂电池的充电效率,因此,保证充电电流一直维持在较低的水平会导致锂电池的充电效率较低。
有鉴于此,本申请实施例提供了一种充电方法、装置、设备及存储介质,可以在避免锂电池出现析锂现象的前提下提高锂电池的充电效率。
需要指出的是,本申请实施例提供的充电方法的执行主体可以是充电装置,该充电装置装置可以通过软件、硬件或者软硬件结合的方式实现成为电子设备的部分或者全部。其中,该电子设备中设置有锂电池,该电子设备可以为智能手机、平板电脑、可穿戴设备、车载设备、电子书阅读器、MP3播放器或者MP4播放器等,本申请实施例不对该电子设备的具体类型进行限定。
还需要指出的是,该电子设备中还可以设置有充电控制芯片,本申请实施例提供的充电方法具体可以由电子设备中的充电控制芯片执行。
请参考图1,其示出了本申请实施例提供的一种充电方法的流程图,该充电方法可以应用于上文的电子设备中。如图1所示,该充电方法可以包括以下技术过程:
电子设备对锂电池循环执行多次充电操作,直至满足充电截止条件为止。
在一种可能的实现方式中,电子设备在循环执行充电操作的过程中,可以对锂电池的电池状态进行监测,在监测到的电池状态满足充电截止条件的情况下,电子设备即可停止执行充电操作。可选的,在停止执行充电操作之后,电子设备还可以对锂电池执行后续的充电过程,直至锂电池充满为止。在循环执行充电操作的过程中所监测的电池状态可以包括:锂电池的温度、锂电池的电池电压等,本申请实施例对此不作具体限定。
在另一种可能的实现方式中,电子设备在循环执行充电操作的过程中,可以记录充电操作的循环执行次数,在该循环执行次数达到某一次数阈值的情况下,即可认为满足充电截止条件,此时,电子设备可以停止执行充电操作。可选的,在停止执行充电操作之后,电子设备还可以对锂电池执行后续的充电过程,直至锂电池充满为止。
在又一种可能的实现方式中,电子设备在循环执行充电操作的过程中,可以记录循环执行充电操作的时长,在该时长达到某一时长阈值的情况下,即可认为满足充电截止条件,此时,电子设备可以停止执行充电操作。可选的,在停止执行充电操作之后,电子设备还可以对锂电池执行后续的充电过程,直至锂电池充满为止。
在又一种可能的实现方式中,电子设备可以在恒流充电阶段对锂电池循环执行多次充电操作,在检测到锂电池满足恒流充电阶段切换为恒压充电阶段的切换条件的情况下,即可认为满足充电截止条件,此时,电子设备可以停止执行充电操作。可选的,在停止执行充电操作之后,电子设备还可以对锂电池执行后续的充电过程,直至锂电池充满为止,在这种情况下,该后续的充电过程可以为恒压充电的过程。
其中,上文所述的恒流充电阶段切换为恒压充电阶段的切换条件可以为:电池电压达到恒流充电阶段的充电截止电压,其中,该充电截止电压可以是电池的额定截止电压,也可以大于电池的额定截止电压,例如,该充电截止电压可以是电势的额定截止电压与一固定值之和,其中,该固定值可以为0.05V。
另外,上文所述的恒流充电阶段切换为恒压充电阶段的切换条件可以为:充电电压达到预设充电电压值,或者,恒流充电阶段的充电时长达到预设充电时长值等。
其中,锂电池的充电过程一般包括恒流充电阶段和恒压充电阶段,在恒流充电阶段,可以利用相对恒定的充电电流对锂电池充电,在恒流充电阶段,锂电池的电池电压逐渐升高,在锂电池的电池电压达到某一电压阈值的情况下,即可认为锂电池满足恒流充电阶段切换为恒压充电阶段的切换条件,此时,可以进入恒压充电阶段,在恒压充电阶段,可以利用相对恒定的充电电压对锂电池充电,在恒压充电阶段,充电电流不断下降,直至充电电流下降至某一较小的值时停止充电。
下面,本申请实施例将结合图1对电子设备执行的一次充电操作的技术过程进行简要说明,如图1所示,该技术过程包括步骤101以及步骤102。
步骤101、电子设备利用第一充电电流对锂电池进行第一阶段充电,其中,在第一阶段充电结束时,锂电池的负极电势小于或等于析锂临界电势。
可选的,该第一充电电流可以大于等于析锂临界电流值。
由于第一充电电流大于等于析锂临界电流值,因此,在第一阶段充电过程中锂电池的负极电势小于等于析锂临界电势,其中,析锂临界电势可以为0V。
一般来说,采用较大的第一充电电流(大于等于析锂临界电流值)对锂电池充电会导致锂电池的负极电势小于等于析锂临界电势,在锂电池的负极电势小于等于析锂临界电势的情况下,锂离子就有可能在锂电池的负极捕获电子形成锂单质,也即是,就有可能出现析锂现象,但是,采用较大的第一充电电流对锂电池进行充电可以提高对锂电池的充电效率。
在本申请的可选实施例中,电子设备可以根据预先设定的第一负极电势来确定该第一充电电流,其中,该第一负极电势可以小于等于析锂临界电势。
在本申请实施例中,第一负极电势可以是预置于电子设备本地的电势值,也可以是电子设备根据锂电池的电池状态所对应获取到的电势值,还可以是电子设备获取到的历史充电操作过程中第一阶段充电的锂电池负极电势值。
其中,电子设备根据锂电池的电池状态对应获取第一负极电势的技术过程可以为:电子设备根据锂电池的电池状态查询预置于电子设备本地的负极电势数据库,其中,该负极电势数据库中存储有锂电池的电池状态与负极电势的多个对应关系,电子设备可以将查询到的负极电势作为该第一负极电势。
此外,电子设备根据锂电池的电池状态对应获取第一负极电势的技术过程还可以为:电子设备将锂电池的电池状态发送至服务器,以由服务器根据该锂电池的电池状态查询负极电势数据库,其中,该负极电势数据库中存储有锂电池的电池状态与负极电势的多个对应关系,服务器可以将查询到的负极电势 发送至电子设备,电子设备可以将服务器发送的负极电势作为该第一负极电势。
需要说明的是,与上文所述类似地,这里所说的锂电池的电池状态可以包括:锂电池的温度、锂电池的电池电压等,本申请实施例对此不作具体限定。根据锂电池的电池状态获取第一负极电势的方式可以充分考虑到锂电池的老化等各种状况,使获取到的第一负极电势更加准确。
本申请的发明人发现,在循环执行充电操作的过程中锂电池负极嵌入的锂离子会逐渐增多,由于同性相斥,因此,在循环执行充电操作的过程中锂离子嵌入锂电池负极的难度会逐渐增加,故而,在循环执行充电操作的过程中,析锂现象会随着循环次数的增多而更加容易出现。
为了避免因第一阶段充电过程析锂程度严重而导致在后续步骤中无法将析出的锂单质全部转换为锂离子嵌入锂电池的负极,在本申请的可选实施例中,循环执行的多次充电操作中,各次充电操作对应的第一负极电势可以不同。
其中,可以使循环执行的多次充电操作中各充电操作对应的第一充电电流与各充电操作在循环过程中的执行次序负相关,对应地,可以使循环执行的多次充电操作中各充电操作对应的第一负极电势与各充电操作在循环过程中的执行次序正相关。
换言之,可以使在循环过程中越靠后执行的充电操作,其对应的第一充电电流越小、第一负极电势越大(也即是越靠近析锂临界电势),例如,第100次执行的充电操作对应的第一负极电势大于第99次执行的充电操作所对应的第一负极电势,第100次执行的充电操作对应的第一充电电流小于第99次执行的充电操作所对应的第一充电电流。
在循环过程中逐渐减小第一充电电流、增大第一负极电势,可以逐渐增加析锂现象出现的难度,从而抵消析锂现象会随着循环次数的增多而更加容易出现的状况,因此,可以避免在循环过程中越靠后执行的充电操作越会造成较严重的析锂,避免因第一阶段充电过程析锂程度严重而导致无法将析出的锂单质全部转换为锂离子嵌入锂电池的负极,从而进一步保证锂电池在充电操作过程中不出现析锂现象。
在一种可能的实现方式中,第一阶段充电过程中,保持第一充电电流不变,对应地,第一阶段充电过程中锂电池的负极电势也保持不变,可选的,第一阶段充电过程中锂电池的负极电势可以保持上文所述的第一负极电势不变。
需要指出的是,在本申请实施例,保持不变这一概念应做扩大理解,也即是,保持不变指的可以是始终等于某一个值,也可以是始终在某一个值附近波动。保证第一阶段充电过程中第一充电电流保持不变可以降低第一阶段充电的控制复杂度,减少电子设备在第一阶段充电过程中的计算量。
在另一种可能的实现方式中,在第一阶段充电过程中减小第一充电电流,例如,该第一充电电流可以由第一电流值减小为第二电流值,对应地,在第一阶段充电过程中锂电池的负极电势可以从第三电势增加为第四电势,其中,第三电势和第四电势均可以小于等于析锂临界电势,其中,第三电势可以为上文所述的第一负极电势。
可选的,在本申请实施例中,第一充电电流可以由第一电流值线性减小为第二电流值,也可以从第一电流值非线性地减小至第二电流值,也即是,在第一阶段充电过程中,第一充电电流的变化率可以保持不变,也可以发生变化,例如,第一充电电流的变化率可以逐渐降低,或者逐渐升高,本申请实施例对此不作具体限定。
对应地,在第一阶段充电过程中,锂电池的负极电势可以从第三电势线性增加至第四电势,也可以从第三电势非线性增加为第四电势,也即是,在第一阶段充电过程中,锂电池的负极电势的变化率可以保持不变,也可以发生变化,例如,锂电池的负极电势的变化率可以逐渐降低,或者逐渐升高,本申请实施例对此不作具体限定。
令第一充电电流在第一阶段充电过程中逐渐减小、锂电池的负极电势在第一阶段充电过程中逐渐升高,可以使锂电池的析锂程度在第一阶段充电过程中逐渐减轻,这样,有助于在后续步骤中将锂电池在第一充电阶段析出的锂单质转换为锂离子嵌入锂电池的负极,避免因第一阶段充电过程析锂程度严重而导致无法将析出的锂单质全部转换为锂离子嵌入锂电池的负极,从而进一步保证锂电池在充电操作过程中不出现析锂现象。
步骤102、在第一阶段充电结束之后,电子设备对锂电池的负极电势进行升高处理。
可选的,升高处理后的负极电势可以大于等于析锂临界电势。对锂电池的负极电势进行升高处理,可以为锂电池提供一种将析出的锂单质转换为锂离子嵌入锂电池的负极的环境,使锂电池在第一充电阶段析出的锂单质能够转换为锂离子嵌入锂电池的负极。
本申请的发明人发现,轻微的析锂一般是可逆的,也即是,程度较轻的析锂现象所析出的锂单质一般可以重新转换为锂离子嵌入锂电池的负极。基于该原理,在第一阶段充电结束之后,电子设备可以对锂电池的负极电势进行升高处理,以将锂电池在第一充电阶段析出的锂单质转换为锂离子嵌入锂电池的负极,从而避免在充电过程中出现析锂现象。
在一种可能的实现方式中,电子设备对锂电池的负极电势进行升高处理,并控制锂电池的负极电势保持不变。
通常情况下,若第一阶段充电过程中第一充电电流保持不变,锂电池的负极电势保持不变,那么对应地,电子设备可以对锂电池的负极电势进行升高处理,并控制锂电池的负极电势保持不变。
可选的,锂电池的负极电势可以保持第五电势不变,其中,该第五电势可以是预置于电子设备本地的电势值,也可以是电子设备根据锂电池的电池状态所对应获取到的电势值,还可以是电子设备获取到的历史充电操作过程中负极电势升高处理后锂电池的负极电势值。
其中,电子设备根据锂电池的电池状态对应获取第五电势的技术过程与电子设备根据锂电池的电池状态对应获取第一负极电势的技术过程同理,本申请实施例在此不再赘述。
根据锂电池的电池状态获取第五电势的方式可以充分考虑到锂电池的老化等各种状况,使获取到的第五电势更加准确。
在另一种可能的实现方式中,电子设备对锂电池的负极电势进行升高处理,并控制锂电池的负极电势由第一电势减小为第二电势。
通常情况下,若第一阶段充电过程中第一充电电流由第一电流值减小为第二电流值,锂电池的负极电势从第三电势升高为第四电势,那么对应地,电子设备可以对锂电池的负极电势进行升高处理,并控制锂电池的负极电势由第一电势减小为第二电势。
可选的,在本申请实施例中,锂电池的负极电势可以由第一电势线性减小为第二电势,也可以由第一电势非线性减小为第二电势,也即是,在对锂电池的负极电势进行升高处理之后,锂电池的负极电势的变化率可以保持不变,也可以发生变化,例如,锂电池的负极电势的变化率可以逐渐降低,或者逐渐升高,本申请实施例对此不作具体限定。
与上文所述类似地,在本申请实施例中,第一电势和第二电势可以是预置于电子设备本地的电势值,也可以是电子设备根据锂电池的电池状态所对应获取到的电势值,还可以是电子设备获取到的历史充电操作过程中负极电势升高处理后的锂电池的负极电势。
其中,电子设备根据锂电池的电池状态对应获取第一电势和第二电势的技术过程与电子设备根据锂电池的电池状态对应获取第一负极电势的技术过程同理,本申请实施例在此不再赘述。与上文所述同理地,根据锂电池的电池状态获取第一电势和第二电势的方式可以充分考虑到锂电池的老化等各种状况,使获取到的第一电势和第二电势更加准确。
请参考图2和图3,其中,图2示出了在第一阶段充电过程中锂电池的负极电势(V1)保持不变,对锂电池的负极电势进行升高处理并控制锂电池的负极电势(V2)保持不变情况下,循环执行充电操作的过程中,锂电池的负极电势的变化示意图,图3示出了在第一阶段充电过程中锂电池的负极电势(V1)逐渐升高,对锂电池的负极电势进行升高处理并控制锂电池的负极电势(V2)逐渐降低的情况下,循环执行充电操作的过程中,锂电池的负极电势的变化示意图。
在本申请的可选实施例中,对锂电池的负极电势进行升高处理可以包括以下处理中的一种:利用第二充电电流对锂电池进行第二阶段充电、对锂电池进行静置处理或者对锂电池进行放电,其中,第二充电电流小于上文所述的第一充电电流。
其中,对锂电池进行第二阶段充电,可以增加充电操作过程中对锂电池的充电时长,进一步提高锂电池的充电效率。对锂电池进行放电,可以加快锂电池在第一充电阶段析出的锂单质转换为锂离子嵌入锂电池的负极的速度,从而减少对锂电池的负极电势进行升高处理的执行时长,继而可以增加充电操作过程中第一阶段充电的时长占比,从而保证锂电池的充电效率。另外,由于第一阶段充电的充电电流较大,因此,第一阶段充电会导致锂电池的温度显著升高,对锂电池进行静置处理,降低锂电池的温度,避免锂电池加速老化,提升充电过程中的安全性。
可选的,上文所述的第二充电电流可以小于等于析锂临界电流,由于第二充电电流小于等于析锂临界电流值,因此,可以保证第二阶段充电过程中锂电池的负极电势大于等于析锂临界电势。
在本申请的可选实施例中,电子设备可以根据预先设定的第二负极电势来确定该第二充电电流,其中,该第二负极电势可以大于等于析锂临界电势。
在本申请实施例中,第二负极电势可以是预置于电子设备本地的电势值,也可以是电子设备根据锂电池的电池状态所对应获取到的电势值,还可以是电子设备获取到的历史充电操作过程中第二阶段充电的锂电池负极电势值。
电子设备根据锂电池的电池状态对应获取第二负极电势的技术过程与电子设备根据锂电池的电池状态对应获取第一负极电势的技术过程同理,本申请实施例在此不再赘述。根据锂电池的电池状态获取第二负极电势的方式可以充分考虑到锂电池的老化等各种状况,使获取到的第二负极电势更加准确。
此外,若在循环执行充电操作的过程中,各次充电操作对应的所述第一负极电势不相同,那么对应 地,可以使循环执行的多次充电操作中,各次充电操作对应的第二负极电势不相同,其中,循环执行的多次充电操作中各充电操作对应的第二负极电势与各充电操作在循环过程中的执行次序负相关。
换言之,可以控制在循环过程中越靠后执行的充电操作,其第二负极电势越小(也即是越靠近析锂临界电势),例如,第100次执行的充电操作所对应的第二负极电势小于第99次执行的充电操作所对应的第二负极电势。
在一种可能的实现方式中,第二阶段充电过程中保持第二充电电流不变,对应地,第二阶段充电过程中锂电池的负极电势也保持不变。
保证第二阶段充电过程中第二充电电流保持不变可以降低第二阶段充电的控制复杂度,减少电子设备在第二阶段充电过程中的计算量。
在另一种可能的实现方式中,在第二阶段充电过程中,增大第二充电电流,其中,第二充电电流可以在第二阶段充电过程中由第三电流值增大为第四电流值,对应地,在第二阶段充电过程中锂电池的负极电势可以从第一电势减小为第二电势。
可选的,在本申请实施例中,第二充电电流可以由第三电流值线性增大为第四电流值,也可以从第三电流值非线性地增大至第四电流值,也即是,在第二阶段充电过程中,第二充电电流的变化率可以保持不变,也可以发生变化,例如,第二充电电流的变化率可以逐渐降低,或者逐渐升高,本申请实施例对此不作具体限定。
对应地,在第二阶段充电过程中,锂电池的负极电势可以从第一电势线性减小至第二电势,也可以从第一电势非线性减小为第二电势,也即是,在第二阶段充电过程中,锂电池的负极电势的变化率可以保持不变,也可以发生变化,例如,锂电池的负极电势的变化率可以逐渐降低,或者逐渐升高,本申请实施例对此不作具体限定。
请参考图4,其示出了本申请实施例提供的一种示例性的确定第一充电电流的流程图,如图4所示,该技术过程包括以下步骤:
步骤401、电子设备基于第一初始充电电流对锂电池进行充电。
其中,该第一初始充电电流的大小可以是电子设备中预先设置的。
步骤402、在充电的过程中,电子设备检测锂电池的负极电势。
其中,可选的,电子设备检测锂电池的负极电势的方式可以有多种,下面,本申请实施例将示例性地提供三种检测锂电池的负极电势的方式:
第一种、锂电池的内部可以设置有参比电极,例如,该参比电极可以为镀锂铜丝,电子设备可以检测锂电池负极与该参比电极之间的电压,并将检测到的电压作为锂电池的负极电势。
第二种、电子设备可以利用一段时间内的充电电流以及充电时长计算锂电池的电池容量的增加量,并测量该一段时间内锂电池的电池电压的增加量,电子设备可以基于该电池容量的增加量以及电池电压的增加量计算锂电池的负极电势。
第三种、电子设备可以获取预先建立的锂电池的电池模型,并测量锂电池的电池电压、锂电池的温度以及充电电流,而后,电子设备可以将测量得到的锂电池的电池电压、锂电池的温度以及充电电流代入至电池模型中,从而计算得到锂电池的负极电势。
步骤403、电子设备根据第一负极电势与检测到的锂电池的负极电势之间的差距,调整第一初始充电电流,得到第一充电电流。
在本申请实施例中,电子设备可以在充电的过程中,实时或者周期性地检测锂电池的负极电势,并在检测到锂电池的负极电势之后,确定第一负极电势与检测到的锂电池的负极电势之间的差距,接着根据该差距调整第一初始充电电流,直至检测到的锂电池的负极电势与第一负极电势一致为止,此时,即可得到第一充电电流。
请参考图5,其示出了本申请实施例提供的一种示例性的对锂电池进行第一阶段充电的技术过程的流程图,如图5所示,该技术过程包括以下步骤:
步骤501、电子设备获取预设的第一充电时长。
其中,该第一充电时长可以预置于电子设备中,在本申请的一个可选实施例中,电子设备中可以中预置充电时长与负极电势的对应关系,电子设备可以根据第一阶段充电所对应的负极电势,查询该对应关系,并根据查询结果得到该第一充电时长。
此外,预设的第一充电时长可以是根据第一负极电势以及预设析锂条件确定的,其中,预设析锂条件包括锂电池析出的锂单质能够在锂电池按照预设放电倍率放电后全部转换为锂离子返回锂电池的正极。
需要指出的是,该预设放电倍率可以为锂电池的最大放电倍率。
在本申请的可选实施例中,判断锂单质是否全部转换为锂离子的方式可以包括:在惰性气氛中拆解 锂电池,而后,通过扫描电镜观察负极表面上是否有斑纹或者锂金属。
步骤502、电子设备根据第一充电时长对锂电池进行第一阶段充电。
请参考图6,其示出了本申请实施例提供的一种示例性的对锂电池进行第二阶段充电的技术过程的流程图,如图6所示,该技术过程包括以下步骤:
步骤601、电子设备基于第二初始充电电流对锂电池进行充电。
其中,该第二初始充电电流的大小可以是电子设备中预先设置的。
步骤602、在充电的过程中,电子设备检测锂电池的负极电势。
电子设备检测锂电池的负极电势的技术过程与上文所述同理,本申请实施例在此不再赘述。
步骤603、电子设备根据第二负极电势与检测到的锂电池的负极电势之间的差距,调整第二初始充电电流,得到第二充电电流。
与上文所述类似地,在本申请实施例中,电子设备可以在充电的过程中,实时或者周期性地检测锂电池的负极电势,并在检测到锂电池的负极电势之后,确定第二负极电势与检测到的锂电池的负极电势之间的差距,接着根据该差距调整第二初始充电电流,直至检测到的锂电池的负极电势与第二负极电势二致为止,此时,即可得到第二充电电流。
请参考图7,其示出了本申请实施例提供的一种示例性的对锂电池进行第二阶段充电的技术过程的流程图,如图7所示,该技术过程包括以下步骤:
步骤701、电子设备获取预设的第二充电时长。
其中,该第二充电时长可以预置于电子设备中,在本申请的一个可选实施例中,电子设备中可以中预置充电时长与负极电势的对应关系,电子设备可以根据第二阶段充电所对应的负极电势,查询该对应关系,并根据查询结果得到该第二充电时长。
其中,第二充电时长是根据第二负极电势、第一负极电势、第一阶段充电的第一充电时长以及预设锂单质消除条件确定的,该预设锂单质消除条件包括第一阶段充电析出的锂单质全部转换为锂离子嵌入锂电池的负极。
如上文所述,判断锂单质是否全部转换为锂离子的方式可以包括:在惰性气氛中拆解锂电池,而后,通过扫描电镜观察负极表面上是否有斑纹或者锂金属。
需要指出的是,为了保证第一阶段充电析出的锂单质全部转换为锂离子嵌入锂电池的负极,基于第二充电时长对第二阶段充电所对应的负极电势进行积分运算所得到的值需要大于基于第一充电时长对第一阶段充电所对应的负极电势进行积分运算所得到的值。
步骤702、电子设备根据第二充电时长对锂电池进行第二阶段充电。
请参考图8,其示出了本实施例提供的一种示例性地充电操作的技术过程的流程图,如图8所示,该充电操作包括以下步骤:
步骤801、电子设备基于第一初始充电电流对锂电池进行充电。
步骤802、在充电的过程中,电子设备检测锂电池的负极电势。
步骤803、电子设备根据预先设定第一负极电势与检测到的锂电池的负极电势之间的差距,调整第一初始充电电流,直至检测到的锂电池的负极电势与第一负极电势一致为止,得到第一充电电流。
其中,该第一负极电势可以小于等于析锂临界电势,该第一负极电势与当前执行的充电操作在循环过程中的执行次序正相关。该第一充电电流可以大于等于析锂临界电流,该第一充电电流与当前执行的充电操作在循环过程中的执行次序负相关。
步骤804、电子设备获取预设的第一充电时长。
该第一充电时长是根据所述第一负极电势以及预设析锂条件确定的,该预设析锂条件包括所锂电池析出的锂单质能够在锂电池按照预设放电倍率放电后全部转换为锂离子返回锂电池的正极。
步骤805、电子设备基于第一充电电流对锂电池进行充电第一充电时长,以完成第一阶段充电。
其中,第一充电电流在第一阶段充电过程中保持不变;或者,第一充电电流在第一阶段充电过程中由第一电流值减小为第二电流值。
步骤806、电子设备基于第二初始充电电流对锂电池进行充电。
步骤807、在充电的过程中,电子设备检测锂电池的负极电势。
步骤808、电子设备根据预先设定的第二负极电势与检测到的锂电池的负极电势之间的差距,调整第二初始充电电流,直至检测到的锂电池的负极电势与第二负极电势一致为止,得到第二充电电流。
其中,该第二负极电势可以大于等于析锂临界电势,该第二负极电势与当前执行的充电操作在循环过程中的执行次序负相关。该第二充电电流可以小于等于析锂临界电流,该第二充电电流与当前执行的充电操作在循环过程中的执行次序正相关。
步骤809、电子设备获取预设的第二充电时长。
该第二充电时长是根据第二负极电势、第一负极电势、第一充电时长以及预设锂单质消除条件确定的,该预设锂单质消除条件包括第一阶段充电析出的锂单质全部转换为锂离子嵌入锂电池的负极。
步骤810、电子设备基于第二充电电流对锂电池进行充电第二充电时长,以完成第二阶段充电,接着,电子设备返回执行801,直至满足充电截止条件为止。
第二充电电流在第二阶段充电过程中保持不变;或者,第二充电电流在第二阶段充电过程中由第三电流值增大为第四电流值。
请参考图9,其示出了本申请实施例提供的另一种充电方法的流程图,该充电方法可以应用于上文的电子设备中。如图9所示,该充电方法可以包括以下技术过程:
步骤901、在恒流充电阶段,利用第一充电电流对锂电池进行充电第一充电时长,第一充电时长结束时,锂电池的负极电势小于或等于析锂临界电势。
锂电池的充电过程一般包括恒流充电阶段和恒压充电阶段,在恒流充电阶段,可以利用相对恒定的充电电流对锂电池充电,在恒流充电阶段,锂电池的电池电压逐渐升高,在锂电池的电池电压达到某一电压阈值的情况下,即可认为锂电池满足恒流充电阶段切换为恒压充电阶段的切换条件,此时,可以进入恒压充电阶段,在恒压充电阶段,可以利用相对恒定的充电电压对锂电池充电,在恒压充电阶段,充电电流不断下降,直至充电电流下降至某一较小的值时停止充电。
在步骤901中,电子设备可以利用第一充电电流对锂电池进行充电,可选的,该第一充电电流可以大于等于析锂临界电流值。
由于第一充电电流大于等于析锂临界电流值,因此,在利用第一充电电流对锂电池进行充电第一充电时长之后,锂电池的负极电势小于或等于析锂临界电势,其中,析锂临界电势可以为0V。
采用较大的第一充电电流(大于等于析锂临界电流值)对锂电池充电会导致锂电池的负极电势小于等于析锂临界电势,在锂电池的负极电势小于等于析锂临界电势的情况下,锂离子就有可能在锂电池的负极捕获电子形成锂单质,也即是,就有可能出现析锂现象,但是,采用较大的第一充电电流对锂电池进行充电可以提高对锂电池的充电效率。
本申请的发明人发现,在充电过程中锂电池负极嵌入的锂离子会逐渐增多,由于同性相斥,因此,随着时间的推移锂电池中锂离子嵌入锂电池负极的难度会逐渐增加,故而,析锂现象会随着时间的推移而更加容易出现。
为了避免因在第一充电时长之后析锂程度严重而导致在后续步骤中无法将析出的锂单质全部转换为锂离子嵌入锂电池的负极,在本申请的可选实施例中,在利用第一充电电流对锂电池进行充电第一充电时长的过程中,可以减小第一充电电流,这样,就可以逐渐增加析锂现象出现的难度,从而抵消析锂现象会随着时间推移而更加容易出现的状况。可选的,在第一充电时长中,第一充电电流可以最终减小至与析锂临界电流相等。此外,可选的,在本申请实施例中,第一充电电流可以线性减小,也可以非线性地减小,也即是,在第一充电时长中,第一充电电流的变化率可以保持不变,也可以发生变化,例如,第一充电电流的变化率可以逐渐降低,或者逐渐升高,本申请实施例对此不作具体限定。
当然,在本申请的可选实施例中,也可以在利用第一充电电流对锂电池进行充电第一充电时长的过程中,保持第一充电电流不变,保证第一充电电流保持不变可以降低充电的控制复杂度,减少电子设备的计算量。需要指出的是,在本申请实施例,保持不变这一概念应做扩大理解,也即是,保持不变指的可以是始终等于某一个值,也可以是始终在某一个值附近波动。
步骤902、在第一充电时长结束后,利用第二充电电流对锂电池进行充电。
可选的,上文所述的第二充电电流可以小于等于析锂临界电流,由于第二充电电流小于等于析锂临界电流值,因此,可以保证利用第二充电电流对锂电池充电后,锂电池的负极电势大于等于析锂临界电势。这样,就可以为锂电池提供一种将在第一充电时长中析出的锂单质转换为锂离子嵌入锂电池的负极的环境。
本申请的发明人发现,轻微的析锂一般是可逆的,也即是,程度较轻的析锂现象所析出的锂单质一般可以重新转换为锂离子嵌入锂电池的负极。基于该原理,在第一充电时长结束之后,电子设备可以利用第二充电电流对锂电池进行充电,以升高锂电池的负极电势,从而将锂电池在第一充电时长中析出的锂单质转换为锂离子嵌入锂电池的负极,从而避免在充电过程中出现析锂现象。
与第一充电电流类似地,在一种可能的实现方式中,可以保持第二充电电流不变对锂电池进行充电,对应地,锂电池的负极电势也保持不变。保证第二充电电流保持不变可以降低充电的控制复杂度,减少电子设备的计算量。
在另一种可能的实现方式中,可以增大第二充电电流对锂电池进行充电,对应地,锂电池的负极电势会减小。可选的,在本申请实施例中,第二充电电流可以线性增加,也可以非线性增加,也即是,第二充电电流的变化率可以保持不变,也可以发生变化,例如,第二充电电流的变化率可以逐渐降低,或 者逐渐升高,本申请实施例对此不作具体限定。
请参考图10,其示出了本申请实施例提供的一种示例性的确定第一充电电流的流程图,如图10所示,该技术过程包括以下步骤:
步骤1001、电子设备基于第一初始充电电流对锂电池进行充电。
其中,该第一初始充电电流的大小可以是电子设备中预先设置的。
步骤1002、在充电的过程中,电子设备检测锂电池的负极电势。
其中,可选的,电子设备检测锂电池的负极电势的方式可以有多种,下面,本申请实施例将示例性地提供三种检测锂电池的负极电势的方式:
第一种、锂电池的内部可以设置有参比电极,例如,该参比电极可以为镀锂铜丝,电子设备可以检测锂电池负极与该参比电极之间的电压,并将检测到的电压作为锂电池的负极电势。
第二种、电子设备可以利用一段时间内的充电电流以及充电时长计算锂电池的电池容量的增加量,并测量该一段时间内锂电池的电池电压的增加量,电子设备可以基于该电池容量的增加量以及电池电压的增加量计算锂电池的负极电势。
第三种、电子设备可以获取预先建立的锂电池的电池模型,并测量锂电池的电池电压、锂电池的温度以及充电电流,而后,电子设备可以将测量得到的锂电池的电池电压、锂电池的温度以及充电电流代入至电池模型中,从而计算得到锂电池的负极电势。
步骤1003、电子设备根据预设的第一负极电势与检测到的锂电池的负极电势之间的差距,调整第一初始充电电流,得到第一充电电流。
在本申请实施例中,电子设备可以在充电的过程中,实时或者周期性地检测锂电池的负极电势,并在检测到锂电池的负极电势之后,确定第一负极电势与检测到的锂电池的负极电势之间的差距,接着根据该差距调整第一初始充电电流,直至检测到的锂电池的负极电势与第一负极电势一致为止,此时,即可得到第一充电电流。
在本申请的可选实施例中,第一充电时长是根据上述第一负极电势以及预设析锂条件确定的,其中,预设析锂条件可以包括锂电池析出的锂单质能够在锂电池按照预设放电倍率放电后全部转换为锂离子返回锂电池的正极。需要指出的是,该预设放电倍率可以为锂电池的最大放电倍率。在本申请的可选实施例中,判断锂单质是否全部转换为锂离子的方式可以包括:在惰性气氛中拆解锂电池,而后,通过扫描电镜观察负极表面上是否有斑纹或者锂金属。
请参考图11,其示出了本申请实施例提供的一种示例性的确定第二充电电流的流程图,如图11所示,该技术过程包括以下步骤:
步骤1101、电子设备基于第二初始充电电流对锂电池进行充电。
其中,该第二初始充电电流的大小可以是电子设备中预先设置的。
步骤1102、在充电的过程中,电子设备检测锂电池的负极电势。
电子设备检测锂电池的负极电势的技术过程与上文所述同理,本申请实施例在此不再赘述。
步骤1103、电子设备根据预设的第二负极电势与检测到的锂电池的负极电势之间的差距,调整第二初始充电电流,得到第二充电电流。
与上文所述类似地,在本申请实施例中,电子设备可以在充电的过程中,实时或者周期性地检测锂电池的负极电势,并在检测到锂电池的负极电势之后,确定第二负极电势与检测到的锂电池的负极电势之间的差距,接着根据该差距调整第二初始充电电流,直至检测到的锂电池的负极电势与第二负极电势二致为止,此时,即可得到第二充电电流。
请参考图12,其示出了本申请实施例提供的一种示例性的利用第二充电电流对锂电池充电的技术过程的流程图,如图12所示,该技术过程包括以下步骤:
步骤1201、电子设备获取第二充电时长。
其中,第二充电时长是根据第二负极电势、第一负极电势、第一充电时长以及预设锂单质消除条件确定的,该预设锂单质消除条件包括第一阶段充电析出的锂单质全部转换为锂离子嵌入锂电池的负极。
如上文所述,判断锂单质是否全部转换为锂离子的方式可以包括:在惰性气氛中拆解锂电池,而后,通过扫描电镜观察负极表面上是否有斑纹或者锂金属。
需要指出的是,为了保证第一充电时长析出的锂单质全部转换为锂离子嵌入锂电池的负极,基于第二充电时长对第二充电时长内锂电池的负极电势进行积分运算所得到的值需要大于基于第一充电时长对第一充电时长内锂电池的负极电势进行积分运算所得到的值。
步骤1202、电子设备根据第二充电时长以及第二充电电流对锂电池充电。
请参考图13,其示出了本申请实施例提供的一种充电装置1300的框图,该充电装置1300可以配置于上文该的电子设备中。如图13所示,该充电装置1300可以包括:充电模块1301。
其中,该充电模块1301,用于对锂电池循环执行多次充电操作,直至满足充电截止条件为止。
其中,该充电模块1301,包括:
充电单元13011,用于对利用第一充电电流该锂电池进行第一阶段充电。
处理单元13012,用于在该第一阶段充电结束之后,对该锂电池的负极电势进行升高处理,第一阶段充电结束时,锂电池的负极电势小于或等于析锂临界电势。
在本申请的一个可选实施例中,在该第一阶段充电过程中,保持该第一充电电流不变;或者,该第一阶段充电过程中,减小该第一充电电流。
在本申请的一个可选实施例中,该充电单元13011,具体用于:基于第一初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第一负极电势与检测到的该锂电池的负极电势之间的差距,调整该第一初始充电电流,得到该第一充电电流。
在本申请的一个可选实施例中,循环执行的多次该充电操作中,各次充电操作对应的该第一负极电势不相同。
在本申请的一个可选实施例中,该充电单元13011,具体用于:根据预设的第一充电时长,利用该第一充电电流对该锂电池进行该第一阶段充电,其中,该第一充电时长是根据该第一负极电势以及预设析锂条件确定的。
在本申请的一个可选实施例中,该处理单元13012,具体用于:对该锂电池的负极电势进行升高处理,并控制该锂电池的负极电势保持不变;或者,对该锂电池的负极电势进行升高处理,并控制该锂电池的负极电势由第一电势减小为第二电势
在本申请的一个可选实施例中,该处理单元13012,具体用于:利用第二充电电流对该锂电池进行第二阶段充电,该第二充电电流小于该第一充电电流;或者,对该锂电池进行静置处理;或者,对该锂电池进行放电
在本申请的一个可选实施例中,在该第二阶段充电过程中,保持该第二充电电流不变;或者,
在该第二阶段充电过程中,增大该第二充电电流。
在本申请的一个可选实施例中,该处理单元13012,具体用于:基于第二初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第二负极电势与检测到的该锂电池的负极电势之间的差距,调整该第二初始充电电流,得到该第二充电电流。
在本申请的一个可选实施例中,循环执行的多次该充电操作中,各次充电操作对应的该第二负极电势不相同。
在本申请的一个可选实施例中,该处理单元13012,具体用于:根据预设的第二充电时长,利用该第二充电电流对该锂电池进行该第二阶段充电,其中,该第二充电时长是根据该第二负极电势、该第一阶段充电中该锂电池的负极电势、该第一阶段充电的第一充电时长以及预设锂单质消除条件确定的。
在本申请的一个可选实施例中,该充电截止条件,包括:电池电压达到恒流充电阶段的充电截止电压。
本申请实施例提供的充电装置,可以实现上述方法实施例,其实现原理和技术效果类似,在此不再赘述。
关于充电装置的具体限定可以参见上文中对于充电方法的限定,在此不再赘述。上述充电装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备中的处理器中,也可以以软件形式存储于电子设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
请参考图14,其示出了本申请实施例提供的一种充电装置1400的框图,该充电装置1400可以配置于上文该的电子设备中。如图14所示,该充电装置1400可以包括:充电模块1401。
该充电模块1401,用于在恒流充电阶段,利用第一充电电流对锂电池进行充电第一充电时长,第一充电时长结束时,锂电池的负极电势小于或等于析锂临界电势。
该充电模块1401,还用于在第一充电时长结束后,利用第二充电电流对锂电池进行充电。
在本申请的一个可选实施例中,该充电模块1401,具体用于在利用第一充电电流对锂电池进行充电第一充电时长的过程中,保持第一充电电流不变;或者,在利用第一充电电流对锂电池进行充电第一充电时长的过程中,减小第一充电电流。
在本申请的一个可选实施例中,该充电模块1401,具体用于基于第一初始充电电流对锂电池进行充电;在充电过程中,检测锂电池的负极电势;根据预设的第一负极电势与检测到的锂电池的负极电势之间的差距,调整第一初始充电电流,得到第一充电电流。
在本申请的一个可选实施例中,第一充电时长是根据第一负极电势以及预设析锂条件确定的。
在本申请的一个可选实施例中,该充电模块1401,具体用于基于第二初始充电电流对锂电池进行 充电;在充电的过程中,检测锂电池的负极电势;根据预设的第二负极电势与检测到的锂电池的负极电势之间的差距,调整第二初始充电电流,得到第二充电电流。
在本申请的一个可选实施例中,该充电模块1401,具体用于在利用第二充电电流对锂电池进行充电的过程中,保持第二充电电流不变;或者,在利用第二充电电流对锂电池进行充电的过程中,增大第二充电电流。
在本申请的一个可选实施例中,该充电模块1401,具体用于根据预设的第二充电时长,利用第二充电电流对锂电池进行充电,其中,第二充电时长是根据第二负极电势、第一负极电势、第一充电时长以及预设的锂单质消除条件确定的。
在本申请的一个可选实施例中,析锂临界电势小于或等于0V。
关于充电装置的具体限定可以参见上文中对于充电方法的限定,在此不再赘述。上述充电装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备中的处理器中,也可以以软件形式存储于电子设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图15为一个实施例中电子设备的内部结构示意图。如图15所示,该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器用于提供计算和控制能力,支撑整个电子设备的运行。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以上各个实施例所提供的一种充电方法。内存储器为非易失性存储介质中的操作系统和计算机程序提供高速缓存的运行环境。
本领域技术人员可以理解,图15中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在本申请的一个实施例中,提供了一种电子设备,该电子设备包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
对锂电池循环执行多次充电操作,直至满足充电截止条件为止;
其中,该充电操作包括:
利用第一充电电流对该锂电池进行第一阶段充电,在该第一阶段充电结束之后,对该锂电池的负极电势进行升高处理,第一阶段充电结束时,锂电池的负极电势小于或等于析锂临界电势。
在本申请的一个实施例中,在该第一阶段充电过程中,保持该第一充电电流不变;或者,该第一阶段充电过程中,减小该第一充电电流。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:基于第一初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第一负极电势与检测到的该锂电池的负极电势之间的差距,调整该第一初始充电电流,得到该第一充电电流。
在本申请的一个实施例中,循环执行的多次该充电操作中,各次充电操作对应的该第一负极电势不相同。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:根据预设的第一充电时长,利用该第一充电电流对该锂电池进行该第一阶段充电,其中,该第一充电时长是根据该第一负极电势以及预设析锂条件确定的。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:对该锂电池的负极电势进行升高处理,并控制该锂电池的负极电势保持不变;或者,对该锂电池的负极电势进行升高处理,并控制该锂电池的负极电势由第一电势减小为第二电势。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:利用第二充电电流对该锂电池进行第二阶段充电,该第二充电电流小于该第一充电电流;或者,对该锂电池进行静置处理;或者,对该锂电池进行放电。
在本申请的一个实施例中,在该第二阶段充电过程中,保持该第二充电电流不变;或者,在该第二阶段充电过程中,增大该第二充电电流。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:基于第二初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第二负极电势与检测到的该锂电池的负极电势之间的差距,调整该第二初始充电电流,得到该第二充电电流。
在本申请的一个实施例中,循环执行的多次该充电操作中,各次充电操作对应的该第二负极电势不相同。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:根据预设的第二充电时长,利用该第二充电电流对该锂电池进行该第二阶段充电,其中,该第二充电时长是根据该第二负极电势、 该第一阶段充电中该锂电池的负极电势、该第一阶段充电的第一充电时长以及预设锂单质消除条件确定的。
在本申请的一个实施例中,该充电截止条件,包括:电池电压达到恒流充电阶段的充电截止电压。
本申请实施例提供的电子设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在本申请的一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
对锂电池循环执行多次充电操作,直至满足充电截止条件为止;
其中,该充电操作包括:
利用第一充电电流对该锂电池进行第一阶段充电,在该第一阶段充电结束之后,对该锂电池的负极电势进行升高处理,第一阶段充电结束时,锂电池的负极电势小于或等于析锂临界电势。
在本申请的一个实施例中,在所述第一阶段充电过程中,保持所述第一充电电流不变;或者,所述第一阶段充电过程中,减小所述第一充电电流。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:基于第一初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第一负极电势与检测到的该锂电池的负极电势之间的差距,调整该第一初始充电电流,得到该第一充电电流。
在本申请的一个实施例中,循环执行的多次所述充电操作中,各次充电操作对应的所述第一负极电势不相同。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据预设的第一充电时长,利用该第一充电电流对该锂电池进行该第一阶段充电,其中,该第一充电时长是根据该第一负极电势以及预设析锂条件确定的。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:对该锂电池的负极电势进行升高处理,并控制该锂电池的负极电势保持不变;或者,对该锂电池的负极电势进行升高处理,并控制该锂电池的负极电势由第一电势减小为第二电势。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:利用第二充电电流对该锂电池进行第二阶段充电,该第二充电电流小于该第一充电电流;或者,对该锂电池进行静置处理;或者,对该锂电池进行放电。
在本申请的一个实施例中,在所述第二阶段充电过程中,保持所述第二充电电流不变;或者,在所述第二阶段充电过程中,增大所述第二充电电流。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:基于第二初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第二负极电势与检测到的该锂电池的负极电势之间的差距,调整该第二初始充电电流,得到该第二充电电流。
在本申请的一个实施例中,循环执行的多次所述充电操作中,各次充电操作对应的所述第二负极电势不相同。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据预设的第二充电时长,利用该第二充电电流对该锂电池进行该第二阶段充电,其中,该第二充电时长是根据该第二负极电势、该第一阶段充电中该锂电池的负极电势、该第一阶段充电的第一充电时长以及预设锂单质消除条件确定的。
在本申请的一个实施例中,所述充电截止条件,包括:电池电压达到恒流充电阶段的充电截止电压。
本实施例提供的计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在本申请的一个实施例中,提供了一种电子设备,该电子设备包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
在恒流充电阶段,利用第一充电电流对该锂电池进行充电第一充电时长,该第一充电时长结束时,该锂电池的负极电势小于或等于析锂临界电势;在该第一充电时长结束后,利用第二充电电流对该锂电池进行充电。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:在利用第一充电电流对该锂电池进行充电第一充电时长的过程中,保持该第一充电电流不变;或者,在利用第一充电电流对该锂电池进行充电第一充电时长的过程中,减小该第一充电电流。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:基于第一初始充电电流对该锂电池进行充电;在充电过程中,检测该锂电池的负极电势;根据预设的第一负极电势与检测到的该锂电池的负极电势之间的差距,调整该第一初始充电电流,得到该第一充电电流。
在本申请的一个实施例中,该第一充电时长是根据该第一负极电势以及预设析锂条件确定的。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:基于第二初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第二负极电势与检测到的该锂电池的负极电势之间的差距,调整该第二初始充电电流,得到该第二充电电流。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:在利用第二充电电流对该锂电池进行充电的过程中,保持该第二充电电流不变;或者,在利用第二充电电流对该锂电池进行充电的过程中,增大该第二充电电流。
在本申请的一个实施例中,处理器执行计算机程序时还实现以下步骤:根据预设的第二充电时长,利用该第二充电电流对该锂电池进行充电,其中,该第二充电时长是根据该第二负极电势、该第一负极电势、该第一充电时长以及预设的锂单质消除条件确定的。
在本申请的一个实施例中,该析锂临界电势小于或等于0V。
本申请实施例提供的电子设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
在本申请的一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
在恒流充电阶段,利用第一充电电流对该锂电池进行充电第一充电时长,该第一充电时长结束时,该锂电池的负极电势小于或等于析锂临界电势;在该第一充电时长结束后,利用第二充电电流对该锂电池进行充电。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:在利用第一充电电流对该锂电池进行充电第一充电时长的过程中,保持该第一充电电流不变;或者,在利用第一充电电流对该锂电池进行充电第一充电时长的过程中,减小该第一充电电流。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:基于第一初始充电电流对该锂电池进行充电;在充电过程中,检测该锂电池的负极电势;根据预设的第一负极电势与检测到的该锂电池的负极电势之间的差距,调整该第一初始充电电流,得到该第一充电电流。
在本申请的一个实施例中,该第一充电时长是根据该第一负极电势以及预设析锂条件确定的。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:基于第二初始充电电流对该锂电池进行充电;在充电的过程中,检测该锂电池的负极电势;根据预设的第二负极电势与检测到的该锂电池的负极电势之间的差距,调整该第二初始充电电流,得到该第二充电电流。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:在利用第二充电电流对该锂电池进行充电的过程中,保持该第二充电电流不变;或者,在利用第二充电电流对该锂电池进行充电的过程中,增大该第二充电电流。
在本申请的一个实施例中,计算机程序被处理器执行时还实现以下步骤:根据预设的第二充电时长,利用该第二充电电流对该锂电池进行充电,其中,该第二充电时长是根据该第二负极电势、该第一负极电势、该第一充电时长以及预设的锂单质消除条件确定的。
在本申请的一个实施例中,该析锂临界电势小于或等于0V。
本实施例提供的计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以M种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(SyMchliMk)DRAM(SLDRAM)、存储器总线(RaMbus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (24)

  1. 一种充电方法,其中,所述方法包括:
    对锂电池循环执行多次充电操作,直至满足充电截止条件为止;
    其中,所述充电操作包括:
    利用第一充电电流对所述锂电池进行第一阶段充电,在所述第一阶段充电结束之后,对所述锂电池的负极电势进行升高处理;
    所述第一阶段充电结束时,所述锂电池的负极电势小于或等于析锂临界电势。
  2. 根据权利要求1所述的方法,其中,在所述第一阶段充电过程中,保持所述第一充电电流不变;或者,
    所述第一阶段充电过程中,减小所述第一充电电流。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    基于第一初始充电电流对所述锂电池进行充电;
    在充电的过程中,检测所述锂电池的负极电势;
    根据预设的第一负极电势与检测到的所述锂电池的负极电势之间的差距,调整所述第一初始充电电流,得到所述第一充电电流。
  4. 根据权利要求3所述的方法,其中,循环执行的多次所述充电操作中,各次充电操作对应的所述第一负极电势不相同。
  5. 根据权利要求3所述的方法,其中,所述利用第一充电电流对所述锂电池进行第一阶段充电,包括:
    根据预设的第一充电时长,利用所述第一充电电流对所述锂电池进行所述第一阶段充电,其中,所述第一充电时长是根据所述第一负极电势以及预设析锂条件确定的。
  6. 根据权利要求1所述的方法,其中,所述对所述锂电池的负极电势进行升高处理,包括:
    对所述锂电池的负极电势进行升高处理,并控制所述锂电池的负极电势保持不变;或者,
    对所述锂电池的负极电势进行升高处理,并控制所述锂电池的负极电势由第一电势减小为第二电势。
  7. 根据权利要求1或6所述的方法,其中,所述对所述锂电池的负极电势进行升高处理,至少包括以下其中之一:
    利用第二充电电流对所述锂电池进行第二阶段充电,所述第二充电电流小于所述第一充电电流;
    对所述锂电池进行静置处理;
    对所述锂电池进行放电。
  8. 根据权利要求7所述的方法,其中,在所述第二阶段充电过程中,保持所述第二充电电流不变;或者,
    在所述第二阶段充电过程中,增大所述第二充电电流。
  9. 根据权利要求7所述的方法,其中,所述方法还包括:
    基于第二初始充电电流对所述锂电池进行充电;
    在充电的过程中,检测所述锂电池的负极电势;
    根据预设的第二负极电势与检测到的所述锂电池的负极电势之间的差距,调整所述第二初始充电电流,得到所述第二充电电流。
  10. 根据权利要求9所述的方法,其中,循环执行的多次所述充电操作中,各次充电操作对应的所述第二负极电势不相同。
  11. 根据权利要求7所述的方法,其中,所述利用第二充电电流对所述锂电池进行第二阶段充电,包括:
    根据预设的第二充电时长,利用所述第二充电电流对所述锂电池进行所述第二阶段充电,其中,所述第二充电时长是根据所述第二负极电势、所述第一阶段充电中所述锂电池的负极电势、所述第一阶段充电的第一充电时长以及预设锂单质消除条件确定的。
  12. 根据权利要求1所述的方法,其中,所述充电截止条件,包括:
    电池电压达到恒流充电阶段的充电截止电压。
  13. 一种充电方法,其中,所述方法包括:
    在恒流充电阶段,利用第一充电电流对所述锂电池进行充电第一充电时长,所述第一充电时长结束时,所述锂电池的负极电势小于或等于析锂临界电势;
    在所述第一充电时长结束后,利用第二充电电流对所述锂电池进行充电。
  14. 根据权利要求13所述的方法,其中,
    在利用第一充电电流对所述锂电池进行充电第一充电时长的过程中,保持所述第一充电电流不变;或者,
    在利用第一充电电流对所述锂电池进行充电第一充电时长的过程中,减小所述第一充电电流。
  15. 根据权利要求13或14所述的方法,其中,所述方法还包括:
    基于第一初始充电电流对所述锂电池进行充电;
    在充电过程中,检测所述锂电池的负极电势;
    根据预设的第一负极电势与检测到的所述锂电池的负极电势之间的差距,调整所述第一初始充电电流,得到所述第一充电电流。
  16. 根据权利要求13所述的方法,其中,所述第一充电时长是根据所述第一负极电势以及预设析锂条件确定的。
  17. 根据权利要求13所述的方法,其中,所述方法还包括:
    基于第二初始充电电流对所述锂电池进行充电;
    在充电的过程中,检测所述锂电池的负极电势;
    根据预设的第二负极电势与检测到的所述锂电池的负极电势之间的差距,调整所述第二初始充电电流,得到所述第二充电电流。
  18. 根据权利要求17所述的方法,其中,在利用第二充电电流对所述锂电池进行充电的过程中,保持所述第二充电电流不变;或者,
    在利用第二充电电流对所述锂电池进行充电的过程中,增大所述第二充电电流。
  19. 根据权利要求13所述的方法,其中,所述利用第二充电电流对所述锂电池进行充电,包括:
    根据预设的第二充电时长,利用所述第二充电电流对所述锂电池进行充电,其中,所述第二充电时长是根据所述第二负极电势、所述第一负极电势、所述第一充电时长以及预设的锂单质消除条件确定的。
  20. 根据权利要求13所述的方法,其中,所述析锂临界电势小于或等于0V。
  21. 一种充电装置,其中,所述装置包括:
    充电模块,用于对锂电池循环执行多次充电操作,直至满足充电截止条件为止;
    其中,所述充电模块包括:
    充电单元,用于利用第一充电电流对所述锂电池进行第一阶段充电;
    处理单元,用于在所述第一阶段充电结束之后,对所述锂电池的负极电势进行升高处理;
    所述第一阶段充电结束时,所述锂电池的负极电势小于或等于析锂临界电势。
  22. 一种充电装置,其中,所述装置包括:
    充电模块,用于在恒流充电阶段,利用第一充电电流对锂电池进行充电第一充电时长,所述第一充电时长结束时,所述锂电池的负极电势小于或等于析锂临界电势;
    所述充电模块还用于在所述第一充电时长结束后,利用第二充电电流对所述锂电池进行充电。
  23. 一种电子设备,其中,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12或者13至20任一所述的充电方法。
  24. 一种计算机可读存储介质,其中,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12或者13至20任一所述的充电方法。
PCT/CN2022/106322 2021-07-21 2022-07-18 充电方法、装置、设备及存储介质 WO2023001117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110834261.3A CN115693809A (zh) 2021-07-21 2021-07-21 充电方法、装置、设备及存储介质
CN202110834261.3 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023001117A1 true WO2023001117A1 (zh) 2023-01-26

Family

ID=84980026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106322 WO2023001117A1 (zh) 2021-07-21 2022-07-18 充电方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115693809A (zh)
WO (1) WO2023001117A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450536A (zh) * 2016-11-09 2017-02-22 清华大学 一种锂离子电池快速充电方法
CN107148699A (zh) * 2014-10-30 2017-09-08 株式会社Lg化学 用于将电池快速充电的方法和设备
CN112615075A (zh) * 2020-12-16 2021-04-06 清华大学 电池快速充电方法及计算机设备
CN112803510A (zh) * 2019-11-13 2021-05-14 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备及计算机存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148699A (zh) * 2014-10-30 2017-09-08 株式会社Lg化学 用于将电池快速充电的方法和设备
CN106450536A (zh) * 2016-11-09 2017-02-22 清华大学 一种锂离子电池快速充电方法
CN112803510A (zh) * 2019-11-13 2021-05-14 Oppo广东移动通信有限公司 充电控制方法及装置、电子设备及计算机存储介质
CN112615075A (zh) * 2020-12-16 2021-04-06 清华大学 电池快速充电方法及计算机设备

Also Published As

Publication number Publication date
CN115693809A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US10135279B2 (en) Method and apparatus of battery charging
EP3477813B1 (en) Method and apparatus for charging battery
US9231282B2 (en) Method of receiving a potential value of a negative electrode to charge a lithium-ion cell
KR101738543B1 (ko) 전지 쾌속 충전방법
EP3242373B1 (en) Charging method, adapter, mobile terminal and charging system
CN114619925B (zh) 锂离子电池低温快充加热方法、装置、设备和存储介质
KR102634816B1 (ko) 배터리의 전하 균형을 탐지하는 배터리 모니터링 장치 및 방법
US10236702B2 (en) Method and apparatus for rapidly charging battery
US20220271358A1 (en) Method and system for determining parameters of battery pulsed heating
CN108023375B (zh) 充电电池的方法和装置
WO2021056687A1 (zh) 充电方法、电子装置及存储介质
CN111896877B (zh) 电池检测方法、装置、电子设备和存储介质
US10886767B2 (en) Method and apparatus controlling charging of battery based on diffusion characteristics of material included in the battery
WO2021136195A1 (zh) 电池组均衡方法和装置、电子设备、计算机可读存储介质
CN110429684A (zh) 充电控制方法和装置、电子设备、计算机可读存储介质
WO2020047796A1 (zh) 一种充电调整方法、终端及计算机存储介质
WO2023001117A1 (zh) 充电方法、装置、设备及存储介质
CN111711243B (zh) 充电方法、装置、设备及存储介质
US20230344260A1 (en) Battery charging method, electric device, and storage medium
CN112332493A (zh) 锂电池充电电流确定方法、装置、设备及可存储介质
Liu et al. Investigating effects of pulse charging on performance of Li-ion batteries at low temperature
US10243243B2 (en) Battery and charging method
CN115939549A (zh) 电池的阻抗监测方法、装置、电子设备和可读存储介质
CN112072722A (zh) 硅负极锂离子电池的充电控制方法及充电控制装置
WO2021018233A1 (zh) 充电方法、装置、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE