WO2023001024A1 - 一种配置方法及通信装置 - Google Patents

一种配置方法及通信装置 Download PDF

Info

Publication number
WO2023001024A1
WO2023001024A1 PCT/CN2022/105195 CN2022105195W WO2023001024A1 WO 2023001024 A1 WO2023001024 A1 WO 2023001024A1 CN 2022105195 W CN2022105195 W CN 2022105195W WO 2023001024 A1 WO2023001024 A1 WO 2023001024A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
channel bandwidth
same
scs
configuration information
Prior art date
Application number
PCT/CN2022/105195
Other languages
English (en)
French (fr)
Inventor
侯海龙
金哲
罗之虎
曲韦霖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22845189.4A priority Critical patent/EP4358618A1/en
Publication of WO2023001024A1 publication Critical patent/WO2023001024A1/zh
Priority to US18/414,407 priority patent/US20240154845A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate

Definitions

  • the present application relates to the field of communication technologies, and in particular to a configuration method and a communication device.
  • the network device In order to ensure data transmission between the terminal device and the network device, after the terminal device enters the radio resource control (RRC) connected state (RRC connected state) or enters the RRC inactive state (RRC inactive state), the network device
  • RRC radio resource control
  • the network device The terminal device will be configured with at least one channel bandwidth that matches the bandwidth capability of the terminal device through RRC dedicated signaling, and each channel bandwidth in the at least one channel bandwidth is not greater than the bandwidth capability of the terminal device, and each channel bandwidth corresponds to The subcarrier spacing (subcarrier spacing, SCS) of different.
  • SCS subcarrier spacing
  • the network device configures at least one bandwidth part (bandwidth part, BWP) for the terminal device within the channel bandwidth, and the at least one BWP is used for data transmission with the terminal device, and
  • BWP bandwidth part
  • the SCS corresponding to each BWP configured on the channel bandwidth is the same as the SCS of the channel bandwidth, and the frequency domain resource range of each BWP must be within the channel bandwidth.
  • the data transmission between the network device and the terminal device can be dynamically adjusted within the range of frequency domain resources corresponding to the aforementioned at least one BWP (such as the method of this BWP scheduling and cross-BWP scheduling), but at any time the terminal device can only determine A BWP (that is, activated BWP) is used for data transmission with network devices, that is, it can be understood that the frequency domain resource corresponding to each data transmission of the terminal device can only be within the frequency domain resource range corresponding to one BWP.
  • a BWP that is, activated BWP
  • the BWP used by the terminal device to transmit data is limited by the bandwidth capability of the terminal device, which affects the frequency selection scheduling gain and frequency diversity gain of the terminal device; and when the terminal device needs more resources in the frequency domain
  • the network device When performing data transmission within a certain range, the network device must realize BWP switching by reconfiguring the channel bandwidth of the terminal device to meet the transmission requirements of the terminal device. Configuring BWP in this way leads to a large configuration delay, which affects The data transmission performance of the terminal equipment.
  • Embodiments of the present application provide a configuration method and a communication device, so that a terminal device can determine multiple associated BWPs according to the configuration method.
  • the embodiment of the present application provides a configuration method, and the execution body of the method may be a terminal device, or may be a chip applied in the terminal device.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives first configuration information from the network device, where the first configuration information is used to configure multiple first channel bandwidths, where the multiple first channel bandwidths include at least two second channel bandwidths with the same subcarrier spacing SCS.
  • the terminal device receives second configuration information from the network device, where the second configuration information is used to configure multiple first bandwidth part BWPs, where the multiple first BWPs include at least two second BWPs with the same SCS, and the second BWPs
  • the SCS is the same as the SCS corresponding to the second channel bandwidth.
  • the SCSs of each channel bandwidth in the multiple channel bandwidths must be different, based on the configuration method of the first aspect, multiple SCSs with the same channel bandwidth and different SCSs can be configured at the same time.
  • the channel bandwidth improves the flexibility of channel bandwidth configuration and expands the bandwidth range of terminal work; moreover, when terminal equipment needs to perform BWP switching, compared with the way of BWP that needs to be reconfigured through channel bandwidth, it can Fast switching is performed between two BWPs with the same SCS configured based on the configuration method of the first aspect, which reduces the switching delay when the terminal device performs BWP switching.
  • the first configuration information includes first sub-configuration information, or first sub-configuration information and second sub-configuration information.
  • the first sub-configuration information is used to configure the same second channel bandwidth of at least two SCSs; or, the second sub-configuration information is used to configure a third channel bandwidth other than the second channel bandwidth.
  • the SCSs of each channel bandwidth in the configured multiple channel bandwidths no longer have to be different, that is, there may be channel bandwidths with the same SCS and channel bandwidths with different SCSs in the multiple channel bandwidths, which improves the channel bandwidth.
  • the flexibility of the bandwidth configuration method can adapt to various types of business requirements and work scenarios. By configuring the same channel bandwidth of multiple SCSs, the same BWP of multiple SCSs can work on a wider range of frequency domain resources, which improves The flexibility of resource scheduling improves the transmission performance of terminal equipment and network equipment.
  • the first sub-configuration information includes at least two frequency domain positions, at least two frequency domain start positions, or at least two frequency domain offsets corresponding to at least two SCSs with the same second channel bandwidth.
  • One or more of the shift values are configured in the configuration information corresponding to each channel bandwidth, but by adding multiple frequency domain positions in the configuration information corresponding to a certain channel bandwidth, Configure multiple SCSs with the same channel bandwidth, thereby reducing signaling overhead, saving communication resources, and improving resource utilization.
  • multiple SCSs with the same channel bandwidth multiple SCSs with the same BWP can work in a wider range In terms of frequency domain resources, the flexibility of resource scheduling is improved, and the transmission performance of terminal equipment and network equipment is improved.
  • the first configuration information includes at least two frequency domain positions, and each frequency domain position is used to indicate a position of the first channel bandwidth.
  • indication information is received from the network device, where the indication information is used to indicate that one of the at least two second BWPs with the same SCS is in a valid state.
  • control information from the network device is received, where the control information is used to indicate the fifth BWP activated at the first moment.
  • the fifth BWP is associated with the sixth BWP
  • the switching delay from the sixth BWP to the fifth BWP is the first switching delay
  • the sixth BWP is the BWP activated at the second moment
  • the second moment is at the first time before.
  • the fifth BWP is not associated with the sixth BWP
  • the switching delay from the sixth BWP to the fifth BWP is the second switching delay.
  • the first switching delay is shorter than the second switching delay
  • the fifth BWP is different from the sixth BWP.
  • the fifth BWP is associated with the sixth BWP, and the fifth BWP and the sixth BWP meet one or more of the following conditions: the bandwidth of the fifth BWP and the bandwidth of the sixth BWP The bandwidth is the same; or, the SCS of the fifth BWP is the same as the SCS of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same as the physical transmission channel configuration of the sixth BWP; or, the physical signal configuration of the fifth BWP is the same as that of the sixth BWP.
  • the physical signal configuration of the sixth BWP is the same; or, the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP; or, The identifier of the fifth BWP is the same as the identifier of the sixth BWP, and the sub-identifier corresponding to the identifier of the fifth BWP is different from the sub-identifier corresponding to the identifier of the sixth BWP.
  • the at least two second BWPs with the same SCS include the fifth BWP and the sixth BWP.
  • the embodiment of the present application provides a configuration method, and the execution subject of the method may be a terminal device, or may be a chip applied in the terminal device.
  • the following description is made by taking the execution subject as a terminal device as an example.
  • the terminal device receives third configuration information from the network device, where the third configuration information is used to configure multiple first channel bandwidths, and the subcarrier spacing SCS corresponding to each first channel bandwidth in the multiple first channel bandwidths is different.
  • the terminal device receives fourth configuration information from the network device, where the fourth configuration information is used to configure multiple first BWPs, the multiple first BWPs are associated with the multiple first channel bandwidths, and the multiple first BWPs include At least two second BWPs with the same SCS.
  • the terminal device When the terminal device needs to perform BWP switching, compared with the way of BWP that needs to be reconfigured through channel bandwidth, it can quickly switch over multiple BWPs with the same SCS configured based on the configuration method of the second aspect, reducing the Handover delay when terminal equipment performs BWP handover.
  • the frequency domain resource range of the second BWP exceeds the frequency domain resource range of the first channel bandwidth corresponding to the second BWP, and a fourth channel bandwidth is determined.
  • the frequency domain resource range of the fourth channel bandwidth includes the frequency domain resource range of the second BWP.
  • the fourth channel bandwidth satisfies one or more of the following conditions: the starting position of the frequency domain resource of the fourth channel bandwidth is the same as the starting position of the frequency domain resource of the second BWP Or, the SCS of the fourth channel bandwidth is the same as the SCS of the second BWP; or, the size of the fourth channel bandwidth is the same as the size of the first channel bandwidth corresponding to the second BWP; or, the second BWP is the same as the first channel bandwidth corresponding to the second BWP; The relative position of the channel bandwidth is the same as the relative position of the first channel bandwidth corresponding to the fourth BWP and the second BWP, wherein the SCS of the second BWP and the fourth BWP are the same.
  • indication information is received from the network device, where the indication information is used to indicate that one of the at least two second BWPs with the same SCS is in a valid state.
  • control information from the network device is received, and the control information is used to indicate the fifth BWP activated at the first moment; the fifth BWP is associated with the sixth BWP, and the terminal device switches from the sixth BWP
  • the switching delay to the fifth BWP is the first switching delay
  • the sixth BWP is the BWP activated at the second moment, and the second moment is before the first moment
  • the fifth BWP is not associated with the sixth BWP
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay; wherein, the first switching delay is shorter than the second switching delay, and the fifth BWP is different from the sixth BWP.
  • the fifth BWP is associated with the sixth BWP, and the fifth BWP and the sixth BWP meet one or more of the following conditions: the bandwidth of the fifth BWP and the bandwidth of the sixth BWP The bandwidth is the same; or, the SCS of the fifth BWP is the same as the SCS of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same as the physical transmission channel configuration of the sixth BWP; or, the physical signal configuration of the fifth BWP is the same as that of the sixth BWP.
  • the physical signal configuration of the sixth BWP is the same; or, the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP; or, The identifier of the fifth BWP is the same as the identifier of the sixth BWP, and the sub-identifier corresponding to the identifier of the fifth BWP is different from the sub-identifier corresponding to the identifier of the sixth BWP.
  • the at least two second BWPs with the same SCS include the fifth BWP and the sixth BWP.
  • the embodiment of the present application provides a configuration method, and the execution subject of the method may be a network device or a chip applied to the network device.
  • the following description is made by taking the execution subject as an example of a network device.
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to configure multiple first channel bandwidths, where the multiple first channel bandwidths include at least two second channel bandwidths with the same subcarrier spacing SCS; to the terminal device sending second configuration information, where the second configuration information is used to configure multiple first bandwidth parts BWPs, the multiple first BWPs include at least two second BWPs with the same SCS, and the SCS of the second BWP is the same as the second channel bandwidth
  • the corresponding SCS is the same.
  • the first configuration information includes first sub-configuration information, or first sub-configuration information and second sub-configuration information; wherein, the first sub-configuration information is used to configure at least two SCS The same second channel bandwidth; or, the second sub-configuration information is used to configure a third channel bandwidth other than the second channel bandwidth.
  • the first sub-configuration information includes at least two frequency domain positions, at least two frequency domain start positions, or at least two frequency domain offsets corresponding to at least two SCSs with the same second channel bandwidth.
  • One or more of the shift values are configured by adding multiple frequency domain positions to the configuration information corresponding to a certain channel bandwidth, thereby reducing the amount of data transmitted by communication and saving communication resource.
  • the first configuration information includes at least two frequency domain positions, and each frequency domain position is used to indicate a position of the first channel bandwidth.
  • indication information is sent to the terminal device, where the indication information is used to indicate that one second BWP among the at least two second BWPs with the same SCS is in a valid state.
  • control information is sent to the terminal device, and the control information is used to indicate the fifth BWP activated at the first moment;
  • the switching delay of BWP switching to the fifth BWP is the first switching delay
  • the sixth BWP is the BWP activated at the second moment, and the second moment is before the first moment; between the fifth BWP and the sixth BWP
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay; wherein, the first switching delay is less than the second switching delay, and the fifth BWP and the fifth BWP Six BWPs are different.
  • the switching delay of the terminal device switching between two associated BWPs is shorter than the switching delay of the terminal device switching between two unassociated BWPs.
  • the fifth BWP and the sixth BWP meet one or more of the following conditions: the bandwidth of the fifth BWP and the bandwidth of the sixth BWP
  • the bandwidth of the six BWPs is the same; or, the SCS of the fifth BWP is the same as the SCS of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same as that of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same;
  • the signal configuration is the same as the physical signal configuration of the sixth BWP; or, the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP ;
  • the identifier of the fifth BWP is the same as the identifier of the sixth BWP
  • the sub-identifier corresponding to the identifier of the fifth BWP is
  • the at least two second BWPs with the same SCS include the fifth BWP and the sixth BWP.
  • the embodiment of the present application provides a configuration method, and the execution body of the method may be a network device or a chip applied to the network device.
  • the following description is made by taking the execution subject as an example of a network device.
  • the network device sends third configuration information to the terminal device, the third configuration information is used to configure multiple first channel bandwidths, and the subcarrier spacing SCS corresponding to each first channel bandwidth in the multiple first channel bandwidths is different; to the terminal device sending fourth configuration information, where the fourth configuration information is used to configure multiple first BWPs, the multiple first BWPs are associated with the multiple first channel bandwidths, and the multiple first BWPs include at least two SCSs with the same Second BWP.
  • the frequency domain resource range of the second BWP exceeds the frequency domain resource range of the first channel bandwidth corresponding to the second BWP, and a fourth channel bandwidth is determined; wherein, the frequency domain resource range of the fourth channel bandwidth
  • the domain resource range includes the frequency domain resource range of the second BWP.
  • the fourth channel bandwidth satisfies one or more of the following conditions: the starting position of the frequency domain resource of the fourth channel bandwidth is the same as the starting position of the frequency domain resource of the second BWP Or, the SCS of the fourth channel bandwidth is the same as the SCS of the second BWP; or, the size of the fourth channel bandwidth is the same as the size of the first channel bandwidth corresponding to the second BWP; or, the second BWP is the same as the first channel bandwidth corresponding to the second BWP; The relative position of the channel bandwidth is the same as the relative position of the first channel bandwidth corresponding to the fourth BWP and the second BWP, wherein the SCS of the second BWP and the fourth BWP are the same.
  • indication information is sent to the terminal device, where the indication information is used to indicate that one second BWP among the at least two second BWPs with the same SCS is in a valid state.
  • control information is sent to the terminal device, and the control information is used to indicate the fifth BWP activated at the first moment;
  • the switching delay of BWP switching to the fifth BWP is the first switching delay
  • the sixth BWP is the BWP activated at the second moment, and the second moment is before the first moment; between the fifth BWP and the sixth BWP
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay; wherein, the first switching delay is less than the second switching delay, and the fifth BWP and the fifth BWP Six BWPs are different.
  • the switching delay of the terminal device switching between two associated BWPs is shorter than the switching delay of the terminal device switching between two unassociated BWPs.
  • the fifth BWP and the sixth BWP meet one or more of the following conditions: the bandwidth of the fifth BWP and the bandwidth of the sixth BWP
  • the bandwidth of the six BWPs is the same; or, the SCS of the fifth BWP is the same as the SCS of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same as that of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same;
  • the signal configuration is the same as the physical signal configuration of the sixth BWP; or, the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP ;
  • the identifier of the fifth BWP is the same as the identifier of the sixth BWP
  • the sub-identifier corresponding to the identifier of the fifth BWP is
  • the at least two second BWPs with the same SCS include the fifth BWP and the sixth BWP.
  • the present application provides a communication device, which may be a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the first aspect or the second aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above. This unit can be software and/or hardware.
  • the present application provides a communication device, which may be a device in a network device, or a device that can be matched with the network device.
  • the communication device may also be a system on a chip.
  • the communication device may execute the method described in the third aspect or the fourth aspect.
  • the functions of the communication device may be realized by hardware, or may be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above. This unit can be software and/or hardware.
  • the present application provides a communication device, and the communication device may be the terminal device in the above method embodiment, or a chip provided in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the terminal device in the above method embodiments.
  • the present application provides a communication device, and the communication device may be the network device in the foregoing method embodiment, or a chip provided in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions
  • the processor is coupled to the memory and the communication interface.
  • the communication device executes the method performed by the network device in the above method embodiments.
  • the present application provides a computer-readable storage medium, which is used to store computer-executable instructions, and when the computer-executable instructions are executed, as described in the first aspect or the second aspect, The method performed by the terminal device in the method is realized.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store computer-executable instructions, and when the computer-executable instructions are executed, the The method performed by the network device in the method is realized.
  • the present application provides a computer program product including a computer program.
  • the computer program When the computer program is executed, the method executed by the terminal device in the method described in the first aspect or the second aspect is realized.
  • the present application provides a computer program product including a computer program.
  • the computer program When the computer program is executed, the method performed by the network device in the method described in the third aspect or the fourth aspect is realized.
  • the present application provides a communication system, which includes the communication device described in the fifth aspect or the seventh aspect and the communication device described in the sixth aspect or the eighth aspect.
  • FIG. 1 is a schematic diagram of a system architecture provided by the present application
  • FIG. 2 is a schematic diagram of a BWP handover delay provided by the present application.
  • FIG. 3 is a schematic flowchart of a configuration method provided by the present application.
  • FIG. 4 is a schematic diagram of channel bandwidth configuration information provided by the present application.
  • FIG. 5 is a schematic flowchart of another configuration method provided by the present application.
  • Figure 6a is a schematic diagram of an associated BWP provided by the present application.
  • Figure 6b is a schematic diagram of another associated BWP provided by the present application.
  • FIG. 7 is a schematic structural diagram of a communication device provided by the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by the present application.
  • At least one (item) means one or more
  • “multiple” means two or more
  • “at least two (items)” means two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships, for example, “A and/or B” can mean: only A exists, only B exists, and A and B exist at the same time A case where A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c ", where a, b, c can be single or multiple.
  • the method provided by the embodiment of the present application can be applied to various communication systems, for example, it can be a machine-to-machine (M2M) communication system, an Internet of Things (IoT) system, a narrowband Internet of Things ( narrow band internet of things (NB-IoT) system, long term evolution (long term evolution, LTE) system, or the fifth generation (5th-generation, 5G) communication system, or a hybrid architecture of LTE and 5G, or It is a 5G new radio (new radio, NR) system, and a new communication system that will appear in the future communication development.
  • M2M machine-to-machine
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • LTE long term evolution
  • 5th-generation, 5G fifth generation
  • 5G new radio new radio
  • FIG. 1 is a schematic diagram of a system architecture 10 provided by an embodiment of the present application.
  • the system architecture 10 includes a network device 20 and a terminal device 30 , wherein an air interface communication connection exists between the network device 20 and the terminal device 30 .
  • the number of network devices 20 and the number of terminal devices 30 shown in FIG. 1 is only illustrative, and should not be regarded as a limitation on the application scenario of this application.
  • the terminal equipment and network equipment involved in this application will be introduced in detail below.
  • the terminal device involved in the embodiment of the present application is an entity on the user side for receiving or transmitting signals.
  • a terminal device may be a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like. End devices may also be other processing devices connected to wireless modems.
  • the terminal device can communicate with a radio access network (radio access network, RAN).
  • radio access network radio access network
  • Terminal equipment can also be called wireless terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point) ), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment, UE) etc.
  • Terminal equipment may be mobile terminal equipment, such as mobile phones (or called "cellular" phones) and computers with mobile terminal equipment, such as portable, pocket, hand-held, computer built-in or vehicle-mounted mobile devices, which Exchanging language and/or data with the radio access network.
  • the terminal equipment can also be a personal communication service (personal communication service, PCS) phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Common terminal devices include, for example: automobiles, drones, robotic arms, mobile phones, tablet computers, notebook computers, handheld computers, mobile internet devices (mobile internet device, MID), wearable devices, such as smart watches, smart bracelets, Pedometer, etc., but the embodiment of the present application is not limited thereto.
  • the terminal device involved in this application may be a new radio (NR) reduced capability (REDCAP) terminal device, or a normal (NR legacy) terminal device without reducing the channel bandwidth.
  • NR new radio
  • REDCAP reduced capability
  • NR legacy normal terminal device without reducing the channel bandwidth
  • NR Legacy terminal equipment can support the use of 100MHz frequency domain resources and network equipment on one carrier at the same time for data transmission
  • NR REDCAP terminal equipment can support the use of 20MHz, 10MHz or 5MHz frequency domain resources and network equipment on one carrier at the same time. for data transfer.
  • the number of transmitting and receiving antennas is different.
  • the minimum antenna configuration supported by NR Legacy terminal equipment is 4 transmissions and 2 receptions, that is, under the minimum antenna configuration, 4 receiving antennas are used to receive downlink data, and 2 transmission antennas are used to transmit uplink data; while the maximum antenna configuration supported by NR REDCAP terminal equipment
  • the configuration is lower than 4 transmissions and 2 receptions.
  • NR REDCAP UE only supports 2 receptions and 1 transmission, or it can also support 2 receptions and 2 transmissions.
  • the maximum uplink transmit power is different.
  • the maximum uplink transmission power of NR Legacy terminal equipment can be 23dBm or 26dBm, while the maximum uplink transmission power of NR REDCAP terminal equipment can only be a value between 4dBm and 20dBm.
  • NR Rel-15 and NR Rel-16 terminal equipment can be considered as NR Legacy terminal equipment
  • NR REDCAP terminal equipment can be considered as NR Rel-17 terminal equipment .
  • NR Legacy terminal devices can support carrier aggregation, while NR REDCAP terminal devices do not support carrier aggregation; another example, NR REDCAP Both NR Legacy terminal devices support carrier aggregation, but the maximum number of carrier aggregation supported by NR Legacy terminal devices at the same time is greater than the maximum number of carrier aggregation supported by NR REDCAP terminal devices at the same time, for example, NR Legacy terminal devices can support up to 5 at the same time Carrier or aggregation of 32 carriers, while NR REDCAP terminal equipment supports aggregation of up to 2 carriers at the same time.
  • NR Legacy terminal devices support full-duplex FDD, while NR REDCAP terminal devices only support half-duplex FDD.
  • NR REDCAP terminal equipment and NR Legacy terminal equipment have different data processing time capabilities.
  • the minimum delay between NR Legacy terminal equipment receiving downlink data and sending feedback on the downlink data is less than NR REDCAP terminal equipment receiving downlink data.
  • the minimum delay between sending the feedback of the downlink data, and/or, the minimum delay between the NR Legacy terminal device sending the uplink data and receiving the feedback of the uplink data is less than the NR REDCAP terminal device sending the uplink data and receiving The minimum delay between feedbacks for this upstream data.
  • the uplink and/or downlink corresponding to NR Legacy terminal equipment and NR REDCAP terminal equipment have different transmission peak rates.
  • the network equipment (or access network equipment) involved in the embodiment of the present application is a kind of entity used to transmit or receive signals on the network side, and can be used to connect the received air frame with the network protocol (internet protocol, IP) packets are interconverted and act as a router between the terminal device and the rest of the access network, which may include the IP network, etc.
  • Access network devices can also coordinate attribute management for the air interface.
  • the access network device may be an evolved base station (evolutional Node B, eNB or e-NodeB) in LTE, or a new wireless controller (new radio controller, NR controller), or an ng-eNB, or It can be the gNode B (gNB) in the 5G system, it can also be a centralized unit, it can also be a new wireless base station, it can also be a remote radio module, it can also be a micro base station, or it can be a relay (relay), can also be a distributed unit (distributed unit), can also be a reception point (transmission reception point, TRP) or a transmission point (transmission point, TP) or any other wireless access device, but the implementation of this application Examples are not limited to this.
  • BWP Bandwidth part
  • a bandwidth part (BWP) is introduced into NR.
  • the BWP is a continuous resource in the frequency domain, including uplink BWP and downlink BWP, which are used for uplink transmission and downlink transmission respectively.
  • the base station configures the initial uplink BWP and initial downlink BWP for the terminal.
  • the base station additionally configures one or more terminal-specific uplink BWP and downlink BWP for the terminal.
  • the uplink channel or uplink signal transmission is completely carried out in the uplink BWP, and the downlink channel or signal transmission is completely carried out in the downlink BWP.
  • the terminal can receive multiple BWP configurations, but at the same time, the terminal can only work on one of the BWPs, and this BWP is called the active BWP.
  • the bandwidth of the BWP cannot exceed the maximum bandwidth corresponding to the terminal (that is, it cannot exceed the bandwidth capability range supported by the terminal), otherwise the terminal cannot successfully access the network.
  • BWP B BWP including physical layer signaling that triggers BWP switching
  • BWP B BWP different from BWP A.
  • the subcarrier spacing (subcarrier spacing, SCS) used for data transmission corresponding to the two BWPs is different.
  • the physical downlink control channel (PDCCH) configurations corresponding to the two BWPs are different, or the corresponding PDSCH configurations are different, or the corresponding physical uplink control channel (PUCCH) configurations are different, or the corresponding The configuration of the physical uplink shared channel (PUSCH) is different.
  • PDCH physical downlink control channel
  • Ways to trigger BWP switching include: BWP switching triggered based on physical layer signaling, BWP switching triggered based on RRC signaling, BWP switching triggered based on timer, or BWP switching triggered based on RRC preconfiguration or predefined trigger.
  • BWP handover delay triggered by physical layer signaling and the BWP handover delay triggered by RRC signaling will be described in detail below.
  • the BWP handover delay triggered by physical layer signaling is shown in Figure 2.
  • the terminal Unit n that is, DL slot n shown in Figure 2 receives the BWP switching request information sent by the network device, and the terminal needs to be able to delay the BWP switching after the downlink time unit n (that is, T BWP switching shown in Figure 2 time delay ) after receiving the PDSCH and other physical downlink channels or downlink signals on the nearest downlink time unit (ie DL slot m shown in Figure 2);
  • the terminal The device needs to be able to send PUSCH and Other physical uplink channels or uplink signals. It should be known that, in FIG. 2 , only a time unit is used as a time slot (slot) for a schematic example, and it should not be regarded as
  • the BWP handover delay corresponding to the terminal device includes two types, and Table 1 shows the BWP handover delay supported by the terminal device.
  • corresponds to different SCSs, specifically, when ⁇ is 0, the SCS is 15KHz, when ⁇ is 1, the SCS is 30KHz, when ⁇ is 2, the SCS is 60KHz, and when ⁇ is 3, the SCS is 120KHz.
  • Type 1 and Type 2 of the BWP handover delay are determined according to the capability reported by the terminal device.
  • the delay corresponding to the BWP handover triggered by the terminal device based on the physical layer is as follows: As shown in Type1 in Table 1, if the reporting capability of the terminal device only supports Type 2, the delay corresponding to the BWP handover triggered by the terminal device based on the physical layer is shown in Type2 in the table.
  • the BWP switching delay triggered by RRC signaling means that the terminal receives the RRC signaling indicating BWP switching in the downlink time unit n, then the terminal needs to be in the downlink time unit closest to the downlink time unit n interval T RRC delay Receive PDSCH and other physical downlink channels or downlink signals, or the terminal receives and sends PUSCH and other physical uplink channels or uplink signals in the uplink time unit that is n interval T RRC delay from the downlink time unit, where T RRC delay is Based on the BWP handover delay triggered by RRC signaling, the formula for calculating the T RRC delay can be shown in formula (1).
  • T RRC delay T RRCprocessingDelay +T BWPswitchDelayRRC (1)
  • T RRC delay is the BWP switching delay triggered by RRC signaling
  • T RRCprocessingDelay is the delay introduced by the RRC process
  • T BWPswitchDelayRRC is the time required for the UE to perform BWP switching.
  • the network device configures at least one channel bandwidth for the terminal device according to the bandwidth capability of the terminal device (in this application, the channel bandwidth may also be referred to as a carrier), Each channel bandwidth of the at least one channel bandwidth is not greater than the bandwidth capability of the terminal device. Further, the network device configures at least one BWP for the terminal device within the frequency domain range of the at least one channel bandwidth, and the at least one BWP is used for data transmission between the terminal device and the network device. It can be seen that the BWP configured in this way is limited by the bandwidth capability of the terminal equipment, which affects the frequency selective scheduling gain and frequency diversity gain of the terminal equipment.
  • the terminal device can only transmit data with the network device within a frequency domain resource range that activates BWP at any time, when the terminal device needs to perform data transmission within a larger frequency domain resource range, the terminal device must transmit data according to the network device
  • the BWP switching is performed according to the instruction, which will cause BWP switching delay, and when the BWP switching delay is large, it will affect the data transmission performance of the terminal device.
  • This application provides a configuration method that can configure multiple SCSs with the same channel bandwidth and multiple SCSs with the same BWP.
  • a terminal device needs to perform BWP switching, it is no longer necessary to reconfigure the channel bandwidth through Within the range of the same channel bandwidth of the configured multiple SCSs, fast switching between BWPs with the same multiple SCSs is realized, thus reducing the switching delay when the terminal equipment switches between multiple associated BWPs.
  • the switching delay of BWP is reduced, and fast load balancing, high-priority service avoidance and fast interference avoidance can be realized.
  • the invention in this application can The scheme switches some business data transmission to the BWP with lower load, so as to realize fast load balancing; and for example, when the high-priority business on the current BWP needs to be transmitted, some business data transmission can be switched through the inventive scheme in this application to other BWPs, so as to realize high-priority service avoidance; and for example, when the interference on a certain BWP is high, some service data transmissions can be switched to BWPs with less interference through the inventive solution in this application, So as to realize fast interference avoidance.
  • the application can re-determine a channel bandwidth including the frequency domain range of the BWP according to the frequency domain resource range of the BWP, so that the channel
  • the frequency domain range of the bandwidth can not be limited by the bandwidth capability of the terminal equipment, so that the frequency domain range of the BWP can no longer be limited by the bandwidth capability of the terminal equipment, which improves the frequency selection scheduling gain and/or in the data transmission of the terminal equipment or frequency diversity gain.
  • FIG. 3 is a schematic flowchart of a configuration method provided by an embodiment of the present application. As shown in FIG. 3 , the configuration method includes the following steps 301 - 302 .
  • the execution subject of the method shown in FIG. 3 may be a terminal device or a chip in the terminal device, or may be a network device or a chip in the network device.
  • FIG. 3 uses a terminal device and a network device as an example for illustration. in:
  • 301 Receive first configuration information from a network device, where the first configuration information is used to configure multiple first channel bandwidths, where the multiple first channel bandwidths include at least two second channel bandwidths with the same SCS.
  • the network device may send first configuration information to the terminal device through RRC signaling, where the first configuration information is used to configure multiple first channel bandwidths.
  • the terminal device determines multiple first channel bandwidths from the system bandwidth of the network device according to the first configuration information, and the multiple first channel bandwidths include at least two second channel bandwidths with the same SCS.
  • the multiple first channel bandwidths include at least two second channel bandwidths with the same SCS, and there are the following two situations:
  • the multiple first channel bandwidths include: channel bandwidth 10, channel bandwidth 11, and channel bandwidth 12.
  • the channel bandwidth 10, channel bandwidth 11, and channel bandwidth 12 correspond to the same SCS, and the SCS is SCS1.
  • the first configuration information includes first sub-configuration information, and the first sub-configuration information is used to configure the same second channel bandwidth of at least two SCSs. It can be understood that the SCSs of all the first channel bandwidths among the multiple first channel bandwidths configured through the first configuration information are the same.
  • the configuration manner in which the first configuration information configures multiple first channel bandwidths includes:
  • the first configuration information includes configuration information of multiple first channel bandwidths, and each configuration information of the first channel bandwidth contains only one frequency domain position (or called frequency domain start position or frequency domain offset transfer value).
  • the terminal device configures each first channel bandwidth according to the configuration information of each first channel bandwidth in the first configuration information.
  • FIG. 4 is configuration information of a first channel bandwidth provided by this application.
  • the subcarrierSpacing field is used to configure the SCS of the first channel bandwidth
  • the carrierBandwidth field is used to indicate the bandwidth size of the first channel bandwidth
  • the offsetToCarrier field is used to indicate the first The frequency domain position of the channel bandwidth (or called the frequency domain start position or the frequency domain offset value).
  • the configuration information of each first channel bandwidth has and only contains one frequency domain position (or called frequency domain start position or frequency domain offset value), which can be understood as only There is an offsetToCarrier field, and the offsetToCarrier field can only configure one frequency domain position (or called the frequency domain start position or frequency domain offset value).
  • the terminal device determines multiple first channel bandwidths according to configuration information of multiple first channel bandwidths as shown in FIG. 4 .
  • the first configuration information includes first sub-configuration information, and the first sub-configuration information includes at least two frequency domain positions corresponding to at least two SCSs with the same second channel bandwidth, at least two frequency domain starting positions, or One or more items of at least two frequency domain offset values.
  • an optional implementation manner is: adding at least Two offsetToCarrier fields, the plurality of offsetToCarrier fields are used to indicate the frequency domain positions (or referred to as frequency domain starting positions or frequency domain offset values) of the at least two second channel bandwidths.
  • the first sub-configuration information includes: the subcarrierSpacing field indicates that the SCS of the second channel bandwidth is SCS1, the carrierBandwidth indicates that the bandwidth size of the second channel bandwidth is 40 MHz, and the offsetToCarrier field 1 indicates that the frequency domain position of the second channel bandwidth is Location1 , the offsetToCarrier field 2 indicates that the frequency domain location of the second channel bandwidth is Location2, and the offsetToCarrier field 3 indicates that the frequency domain location of the second channel bandwidth is Location3.
  • three second channel bandwidths are configured through the first sub-configuration information: channel bandwidth 1, channel bandwidth 2, and channel bandwidth 3.
  • the channel bandwidth 1 SCS is SCS1, the bandwidth size is 40MHz, and the location in the system bandwidth is Location1;
  • the channel bandwidth 3 The SCS is SCS1, the bandwidth is 40MHz, and the location in the system bandwidth is Location3.
  • at least two offsetToCarrier fields are added to the configuration information of a first channel bandwidth as shown in FIG. 4, and the at least two offsetToCarrier fields are used to indicate the frequency domain positions of the at least two second channel bandwidths (or called the frequency domain starting position or frequency domain offset value).
  • Another optional implementation manner is: there are at least two frequency domain positions (or referred to as frequency domain starting positions or frequency domain offset values) in the offsetToCarrier field of the configuration information of a certain second channel bandwidth.
  • the first sub-configuration information includes: the subcarrierSpacing field indicates that the SCS of the second channel bandwidth is SCS1, the carrierBandwidth indicates that the bandwidth size of the second channel bandwidth is 40 MHz, and the offsetToCarrier field indicates that the frequency domain position of the second channel bandwidth is Location1, Location2 and Location3. Then it can be understood that three second channel bandwidths are configured through the first sub-configuration information: channel bandwidth 1, channel bandwidth 2, and channel bandwidth 3.
  • the channel bandwidth 1 SCS is SCS1, the bandwidth size is 40MHz, and the location in the system bandwidth is Location1;
  • the channel bandwidth 3 The SCS is SCS1, the bandwidth is 40MHz, and the location in the system bandwidth is Location3.
  • at least two offsetToCarrier fields are added to the configuration information of a first channel bandwidth as shown in FIG. 4, and the at least two offsetToCarrier fields are used to indicate the frequency domain positions of the at least two second channel bandwidths (or called the frequency domain starting position or frequency domain offset value).
  • the configuration method of the second method can configure the same second channel bandwidth of at least two SCSs with less communication transmission resources.
  • the same second channel bandwidth of the multiple SCSs may be regarded as multiple different channel bandwidths, or may be understood as the same channel bandwidth having different frequency domain positions.
  • the same channel bandwidths of the multiple SCSs may form a channel bandwidth set or a channel bandwidth group (channel bandwidth group).
  • the plurality of first channel bandwidths includes one or more groups of second channel bandwidths with the same SCS and other first channel bandwidths (which can be understood as first channel bandwidths with different SCSs and SCSs of the group of second channel bandwidths) .
  • the multiple first channel bandwidths include a group of second channel bandwidths with the same SCS, for example, the multiple first channel bandwidths include: channel bandwidth 10, channel bandwidth 11, channel bandwidth 12, and channel bandwidth 13.
  • channel bandwidth 10 and channel bandwidth 12 correspond to the same SCS as SCS1
  • channel bandwidth 11 corresponds to SCS2
  • channel bandwidth 13 corresponds to SCS3.
  • the multiple first channel bandwidths include multiple sets of second channel bandwidths with the same SCS, for example, the multiple first channel bandwidths include 2 sets of second channel bandwidths with the same SCS: channel bandwidth 10, channel bandwidth 11 , channel bandwidth 12, channel bandwidth 13, and channel bandwidth 14.
  • the channel bandwidth 10, the channel bandwidth 11 and the channel bandwidth 12 correspond to the same SCS, and the SCS is SCS1; the channel bandwidth 13 and the channel bandwidth 14 correspond to the same SCS, and the SCS is SCS2.
  • the first configuration information includes first sub-configuration information and second sub-configuration information
  • the first sub-configuration information is used to configure the same second channel bandwidth of at least two SCSs
  • the second sub-configuration information uses To configure a third channel bandwidth (that is, the aforementioned other first channel bandwidth) except the second channel bandwidth.
  • the way the first configuration information configures multiple first channel bandwidths includes:
  • the first configuration information includes configuration information of a plurality of second channel bandwidths, and each second channel bandwidth configuration information contains only one frequency domain position (or called frequency domain starting position or frequency domain offset transfer value).
  • the second sub-configuration information includes configuration information of multiple third channel bandwidths, and each configuration information of the third channel bandwidth contains and only includes one frequency domain position (or called frequency domain start position or frequency domain offset value) .
  • the first configuration information includes at least two frequency domain positions, and each frequency domain position is used to indicate the position of the first channel bandwidth.
  • the first sub-configuration information includes at least two frequency domain positions corresponding to at least two SCSs with the same second channel bandwidth, at least two frequency domain starting positions, or at least two frequency domain offset values. or more.
  • the second sub-configuration information includes configuration information of multiple third channel bandwidths, and each configuration information of the third channel bandwidth contains and only includes one frequency domain position (or called frequency domain start position or frequency domain offset value) .
  • the first configuration information includes first sub-configuration information and second configuration information.
  • the first sub-configuration information includes configuration information of one or more groups of second channel bandwidths, and each group of second channel bandwidth information includes a subcarrierSpacing field, a carrierBandwidth field, and multiple offsetToCarrier fields (or there are multiple offsetToCarrier fields in one offsetToCarrier field). frequency domain positions).
  • the second sub-configuration information includes configuration information of a plurality of third channel bandwidths, that is, a plurality of subcarrierSpacing fields, a plurality of carrierBandwidth fields, and a plurality of offsetToCarrier fields.
  • the frequency domain resources corresponding to the same second channel bandwidth of the multiple SCSs may or may not overlap, which is not specifically limited in this application.
  • the channel bandwidth configuration in this application can be configured separately for downlink channel bandwidth and uplink channel bandwidth, or only for downlink channel bandwidth, or only for uplink channel bandwidth, or for joint configuration of downlink channel bandwidth and uplink channel bandwidth, This application does not specifically limit it.
  • the 302. Receive second configuration information from a network device, where the second configuration information is used to configure multiple first BWPs, where the multiple first BWPs include at least two second BWPs with the same SCS, and the multiple second BWPs
  • the SCS is the same as the SCS corresponding to the aforementioned second channel bandwidth.
  • the network device sends second configuration information to the terminal device, where the second configuration information is used to configure multiple first BWPs in multiple first channel bandwidths.
  • the second configuration information includes one set of BWP configuration parameters or multiple sets of BWP configuration parameters.
  • the BWP configuration parameters include but are not limited to one or more of the following parameters: BWP index (or BWP identifier or BWP ID), BWP frequency domain position, BWP bandwidth size, BWP SCS, cyclic prefix of BWP, other common parameters (such as cell-specific parameters), dedicated parameters (user-specific parameters), physical transport channel configuration on BWP or physical channel configuration on BWP.
  • the terminal device configures the first BWP in the first channel bandwidth corresponding to each set of BWP configuration parameters.
  • the channel bandwidth corresponding to the BWP configuration parameters can be understood as the SCS of the BWP and the SCS of the channel bandwidth. same.
  • the present application does not limit the number of BWPs configured in each first channel bandwidth, that is, multiple BWPs may be configured in one first channel bandwidth, or one BWP may be configured in one first channel bandwidth.
  • the second configuration information includes one set of BWP configuration parameters, or the second configuration information includes multiple sets of BWP configuration parameters.
  • the second configuration information includes multiple sets of BWP configuration parameters.
  • the SCS of each set of BWP configuration parameters in the multiple sets of BWP configuration parameters may be the same or different. That is, in the case where the SCSs of the first channel bandwidths in the multiple first channel bandwidths are different; or, the SCSs of some of the first channel bandwidths in the multiple first channel bandwidths are the same, and the SCSs of some of the first channel bandwidths are different or, if the SCSs of all the first channel bandwidths in the multiple first channel bandwidths are the same, this method can be applied to configure the first BWP.
  • the multiple first channel bandwidths include: channel bandwidth 10, channel bandwidth 11, channel bandwidth 12, and channel bandwidth 13.
  • channel bandwidth 10 and channel bandwidth 12 correspond to the same SCS as SCS1
  • channel bandwidth 11 corresponds to SCS2
  • channel bandwidth 13 corresponds to SCS3.
  • the second configuration information includes multiple sets of BWP configuration parameters, wherein: the SCS in the configuration parameters of BWP#0 is SCS1, the SCS in the configuration parameters of BWP#1 is SCS2, and the SCS in the configuration parameters of BWP#2 is SCS3.
  • the terminal device receives the second configuration information
  • the first BWP is configured in channel bandwidth 10 according to the configuration parameters of BWP#0
  • the SCS of BWP#1 is the same as the SCS of channel bandwidth 11, then configure the first BWP in channel bandwidth 11 according to BWP#1 configuration parameters
  • BWP#2 The SCS is the same as the SCS of channel bandwidth 13, then the first BWP is configured in channel bandwidth 13 according to the configuration parameters of BWP#2.
  • the multiple first channel bandwidths include at least two second channel bandwidths with the same SCS, the first BWPs configured in the second channel bandwidths of the same SCS are correlated, that is, The aforementioned second BWP.
  • the second configuration information includes a set of BWP configuration parameters.
  • the second configuration information includes a set of BWP configuration parameters, and the terminal device determines the same first channel bandwidth as the SCS in the BWP configuration parameters from multiple first channel bandwidths according to the SCS in the BWP configuration parameters. Further, multiple first BWPs are configured in the same first channel bandwidth as the SCS in the BWP configuration parameter according to the BWP configuration parameter.
  • the multiple first channel bandwidths include: channel bandwidth 10, channel bandwidth 11, channel bandwidth 12, and channel bandwidth 13.
  • channel bandwidth 10 and channel bandwidth 12 correspond to the same SCS as SCS1
  • channel bandwidth 11 corresponds to SCS2
  • channel bandwidth 13 corresponds to SCS3.
  • the second configuration information includes a set of BWP configuration parameters, and the SCS of the BWP configuration parameters is SCS1, and the terminal device can determine the BWP in the channel bandwidth 10 and the channel bandwidth 11 according to the second configuration information.
  • At least two second channel bandwidths with the same SCS can be determined among the multiple first channel bandwidths through a set of BWP configuration parameters. channel bandwidth.
  • configuring at least two second BWPs with the same SCS in this way is applicable to at least two second channel bandwidths with the same SCS as those in the BWP configuration parameters among the multiple first channel bandwidths.
  • the execution sequence of the aforementioned steps 301 and 302 is only used as a schematic explanation, and cannot be regarded as a specific limitation to the present application. That is to say, the execution sequence of 301 and 302 may be to execute 301 first, then to execute 302; or to execute 302 first and then to execute 301; or to execute 301 and 302 at the same time.
  • FIG. 5 is a schematic flowchart of another configuration method provided by an embodiment of the present application.
  • the configuration method includes the following steps 501 to 502 .
  • the execution subject of the method shown in FIG. 5 may be a terminal device or a chip in the terminal device, or may be a network device or a chip in the network device.
  • FIG. 5 uses a terminal device and a network device as an example for illustration. in:
  • the terminal device receives third configuration information from the network device, where the third configuration information is used to configure multiple first channel bandwidths, and the SCS of each first channel bandwidth in the multiple first channel bandwidths is different.
  • the network device may send third configuration information to the terminal device through RRC signaling, where the third configuration information is used to configure multiple first channel bandwidths, where the SCS of each first channel bandwidth in the multiple first channel bandwidths is different, and may It is understood that there is a one-to-one correspondence between the first channel bandwidth and the SCS.
  • the network device sends third configuration information to the terminal device through RRC signaling, where the third configuration information includes a plurality of configuration information of the first channel bandwidth as shown in FIG. 4 , and the configuration information of the first channel bandwidth includes : the subcarrierSpacing field used to indicate the SCS of the first channel bandwidth, the carrierBandwidth field used to indicate the bandwidth size of the first channel bandwidth, and the frequency domain position (or called the frequency domain start) of the first channel bandwidth offsetToCarrier field of position or frequency domain offset value). Further, the terminal device determines multiple first channel bandwidths according to configuration information of multiple first channel bandwidths as shown in FIG. 4 .
  • the configuration information of the plurality of first channel bandwidths includes: the subcarrierSpacing field indicates SCS1, the carrierBandwidth field indicates 30 MHz, the offsetToCarrier field indicates Location1; the subcarrierSpacing field indicates SCS2, the carrierBandwidth field indicates 50 MHz, and the offsetToCarrier field indicates Location2; the subcarrierSpacing field indicates SCS3, carrierBandwidth The field indicates 60MHz, and the offsetToCarrier field indicates Location3.
  • the terminal device determines that the SCS of channel bandwidth 1 is SCS1, the bandwidth size is 30 MHz, and the frequency domain location is Location1; the SCS of channel bandwidth 2 is SCS2, and the bandwidth size is 50 MHz, The frequency domain location is Location2; the SCS of channel bandwidth 3 is SCS3, the bandwidth size is 60MHz, and the frequency domain location is Location3.
  • the terminal device receives fourth configuration information from the network device, where the fourth configuration information is used to configure multiple first BWPs, the multiple first BWPs are associated with the multiple first channel bandwidths, and the multiple first BWPs are associated with the multiple first channel bandwidths.
  • the BWP includes at least two second BWPs with the same SCS.
  • the network device sends fourth configuration information to the terminal device, where the fourth configuration information is used to configure multiple first BWPs in the foregoing multiple first channel bandwidths.
  • the fourth configuration information includes one set of BWP configuration parameters or multiple sets of BWP configuration parameters.
  • the configuration parameters include but are not limited to one or more of the following parameters: BWP index (or BWP identifier or BWP ID), BWP frequency domain position, BWP bandwidth size, BWP SCS, BWP cyclic prefix (cyclic prefix), other public parameters (such as cell-specific parameters), dedicated parameters (user-specific parameters), physical transmission channel configuration on the BWP or physical channel configuration on the BWP.
  • the terminal device configures the first BWP in the first channel bandwidth corresponding to each set of BWP configuration parameters. It should be known that, when the SCS in the BWP configuration parameter is the same as the SCS in the channel bandwidth, one or more BWPs can be configured in the channel bandwidth according to the BWP configuration parameter.
  • the multiple first channel bandwidths include: channel bandwidth 20, channel bandwidth 21, and channel bandwidth 22, wherein channel bandwidth 20 corresponds to SCS1, channel bandwidth 21 corresponds to SCS2, channel bandwidth 22 corresponds to SCS3, and SCS1 is different from SCS2 in SCS3.
  • the fourth configuration information includes multiple sets of first BWP configuration parameters, wherein the SCS in the configuration parameters of BWP#0 is SCS1, the SCS in the configuration parameters of BWP#1 is SCS2, and the SCS in the configuration parameters of BWP#2 is SCS3. Further, the terminal device determines one or more BWP#0 in the channel bandwidth 20, determines one or more BWP#1 in the channel bandwidth 21, and determines one or more BWP#2 in the channel bandwidth 22.
  • the BWPs configured in the same channel bandwidth have the same SCS, that is, the aforementioned second BWP. Since the first channel bandwidth is configured by the network device according to the bandwidth capability of the terminal device, the first channel bandwidth is limited by the bandwidth capability of the terminal device. In a case where the frequency domain resource range of the second BWP exceeds the frequency domain of the first channel bandwidth corresponding to the second BWP, in order to prevent the second BWP from being limited by the bandwidth capability of the terminal device.
  • the terminal device determines the fourth channel bandwidth, where the frequency domain range of the fourth channel bandwidth includes the frequency domain resource range of the second BWP.
  • this application only uses the frequency domain resource range of the second BWP to exceed the frequency domain resource range of the first channel bandwidth corresponding to the second BWP, and schematically explains the method for determining the channel bandwidth according to the BWP, and does not should be regarded as a specific limitation on the present application. That is to say, it can be understood that when the frequency domain range of the aforementioned first BWP exceeds the frequency domain resource range of the first channel bandwidth corresponding to the first BWP, the channel bandwidth including the first BWP can still be determined through the method of determining the channel bandwidth according to the BWP. The channel bandwidth of the frequency domain range.
  • the channel bandwidth 20 is the first channel bandwidth corresponding to BWP#0, and at least one BWP# is configured in the channel bandwidth 20 according to the BWP#0 configuration parameter.
  • the at least one BWP#0 includes: BWP#0 1 and BWP#0 2 , when the frequency domain resource range of BWP#0 2 exceeds the frequency domain resource range of the channel bandwidth 20, the terminal device (or network device) determines the fourth Channel bandwidth, the fourth channel bandwidth includes the frequency domain resources of the BWP# 02 .
  • the fourth channel bandwidth satisfies one or more of the following conditions:
  • the starting position of the frequency domain resource of the fourth channel bandwidth is the same as the starting position of the frequency domain resource of the second BWP. It can be understood that the fourth channel bandwidth is determined according to the starting position of the frequency domain resource of the second BWP, and the size of the fourth channel bandwidth includes at least the frequency domain resource of the second BWP.
  • the SCS of the fourth channel bandwidth is the same as the SCS of the second BWP. It can be understood that the SCS of the fourth channel bandwidth is determined according to the SCS of the second BWP, and the size of the fourth channel bandwidth includes at least the frequency domain resources of the second BWP.
  • the size of the fourth channel bandwidth is the same as the size of the first channel bandwidth corresponding to the second BWP.
  • BWP#0 2 is configured in the channel bandwidth 20 according to the BWP#0 configuration parameter, and when the frequency domain resource range of BWP#0 2 exceeds the frequency domain resource range of the channel bandwidth 20, the fourth channel bandwidth is determined.
  • the bandwidth size of the four-channel bandwidth is the same as that of the channel bandwidth 20.
  • the relative position of the second BWP to the fourth channel bandwidth is the same as the relative position of the fourth BWP to the first channel bandwidth corresponding to the second BWP, wherein the second BWP is the same as the SCS of the fourth BWP.
  • the SCS of channel bandwidth 20 is the same as the SCS in the BWP#0 configuration parameter
  • the channel bandwidth 20 is the first channel bandwidth corresponding to BWP#0
  • at least one BWP# is configured in the channel bandwidth 20 according to the BWP#0 configuration parameter.
  • the at least one BWP#0 includes: BWP#0 1 and BWP#0 2 , when the frequency domain resource range of BWP#0 2 exceeds the frequency domain resource range of the channel bandwidth 20, the terminal device (or network device) determines the fourth The channel bandwidth, the relative position of BWP#0 2 and the fourth channel bandwidth is the same as the relative position of BWP#0 1 and channel bandwidth 20.
  • the execution order of the aforementioned steps 501 and 502 is only for illustrative explanation, and cannot be regarded as a specific limitation to the present application. That is to say, the execution sequence of 501 and 502 may be to execute 501 first, then to execute 502; or to execute 502 first and then to execute 501; or to execute 501 and 502 simultaneously.
  • the terminal device may also receive control information from the network device, where the control information is used to indicate the fifth BWP activated at the first moment.
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the first switching delay
  • the sixth BWP is the BWP activated at the second moment
  • the second moment is before the first moment.
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay.
  • the first switching delay is shorter than the second switching delay
  • the fifth BWP is different from the sixth BWP.
  • the active BWP used by the terminal device to transmit data is BWP1 (ie, the aforementioned sixth BWP).
  • the terminal device receives control information from the network device, the control information indicates the fifth BWP activated at the first moment after the second moment, and the control information carries the BWP identifier (or sub-identifier) of the fifth BWP.
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the first switching delay; if the fifth BWP and the sixth BWP are not In the case of association, the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay.
  • the first switching delay is smaller than the second switching delay. That is, it can be understood that the switching delay of the terminal device switching between two associated BWPs is shorter than the switching delay of the terminal device switching between two unassociated BWPs.
  • the fifth BWP and the sixth BWP meet one or more of the following conditions:
  • the bandwidth size of the fifth BWP is the same as the bandwidth size of the sixth BWP. For example, if the bandwidth of the fifth BWP is 20 MHz, and the bandwidth of the sixth BWP is also 20 MHz, it is considered that the fifth BWP is associated with the sixth BWP.
  • the SCS of the fifth BWP is the same as the SCS of the sixth BWP. For example, if both the SCS of the fifth BWP and the SCS of the sixth BWP are SCS1, it is considered that the fifth BWP is associated with the sixth BWP.
  • the physical transmission channel configuration of the fifth BWP is the same as the physical transmission channel configuration of the sixth BWP.
  • the physical transport channel configuration includes but not limited to PDCCH configuration, PDSCH configuration, PUCCH configuration or PUSCH configuration.
  • the transmission configuration of the PDCCH in the fifth BWP (the transmission configuration includes but not limited to transmission speed) is the same as the transmission configuration of the PDCCH in the sixth BWP, it is considered that the fifth BWP is associated with the sixth BWP.
  • the physical signal configuration of the fifth BWP is the same as the physical signal configuration of the sixth BWP.
  • the physical signal configuration includes, but is not limited to, the configuration of a demodulation reference signal (DMRS), the configuration of a channel state information reference signal (CSI-RS), and the configuration of a tracking reference signal (tracking reference signal).
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • TRS tracking reference signal
  • SRS sounding reference signal
  • the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP.
  • the relative position of the BWP and the channel bandwidth refers to the relative position between the center position of the frequency domain resource of the BWP and the center position of the frequency domain resource of the channel bandwidth, or the starting position of the frequency domain resource of the BWP and the frequency domain resource of the channel bandwidth.
  • the relative position between the starting positions refers to the frequency domain resource offset value (offset) of the BWP. For example, referring to FIG.
  • the frequency domain resource of the fifth BWP is in the middle position of the frequency domain resource of the first channel bandwidth corresponding to the fifth BWP (that is, the center position of the frequency domain resource of the fifth BWP is the same as that of the first channel bandwidth).
  • the center position of the frequency domain resource of the channel bandwidth coincides
  • the frequency domain resource of the sixth BWP is also in the middle position of the frequency domain resource of the first channel bandwidth corresponding to the sixth BWP (that is, the center position of the frequency domain resource of the sixth BWP is the same as that of the frequency domain resource of the sixth BWP). If the center positions of the frequency domain resources of the first channel bandwidth coincide), it is considered that the fifth BWP is associated with the sixth BWP.
  • the identifier of the fifth BWP is the same as the identifier of the sixth BWP, wherein the sub-identifier corresponding to the identifier of the fifth BWP is different from the sub-identifier corresponding to the identifier of the sixth BWP.
  • the sub-identifier corresponding to the identifier of the fifth BWP is different from the sub-identifier corresponding to the identifier of the sixth BWP.
  • FIG. 6b only multiple BWPs with different frequency domain resource positions correspond to the same BWP identifier, and each BWP has a sub-identifier under the BWP identifier.
  • both the BWP identifier of the fifth BWP and the BWP identifier of the sixth BWP are BWP#0, the sub-identity of the fifth BWP is Location#0, and the sub-identity of the sixth BWP is Location#1.
  • the BWP switching delay is divided into: the BWP switching delay triggered by physical layer signaling, the BWP switching delay triggered by RRC signaling, the first switching delay and the second switching delay Make an expanded description.
  • the switching delay between two unassociated BWPs (that is, the aforementioned second switching delay) can be referred to in Table 1 above.
  • the handover delay between that is, the aforementioned first handover delay).
  • corresponds to different SCSs, specifically, when ⁇ is 0, the SCS is 15KHz, when ⁇ is 1, the SCS is 30KHz, when ⁇ is 2, the SCS is 60KHz, and when ⁇ is 3, the SCS is 120KHz.
  • Type 1 and Type 2 of BWP handover delay are determined according to the capability reported by the terminal device. For example, if the terminal device’s reporting capability only supports BWP handover delay Type 1, the delay corresponding to the BWP handover triggered based on the physical layer is shown in Type 1 in Table 1. If the terminal device’s reporting capability only supports Type 2, the delay based on the physical layer The delay corresponding to the triggered BWP switchover is shown in Type2 in the table.
  • the terminal device reports that the terminal device only supports Type 1
  • the handover delay when the terminal device switches between two unassociated BWPs is 2 slots
  • the handover delay when the terminal device switches between two associated BWPs is less than 2 slots slot.
  • the handover delay when the terminal equipment switches between two unassociated BWPs can be determined according to Table 1 (i.e., the aforementioned second handover time delay) is 5 slots, and according to Table 2, it can be determined that the handover delay when the terminal device switches between two associated BWPs (that is, the aforementioned first handover delay) is less than 5 slots.
  • the BWP switching delay consists of two parts: T RRCprocessingDelay is the delay introduced by the RRC process, and T BWPswitchDelayRRC is the time required for the UE to perform BWP switching.
  • T RRCprocessingDelay is the delay introduced by the RRC process
  • T BWPswitchDelayRRC is the time required for the UE to perform BWP switching.
  • the first handover delay for a terminal device to switch between two associated BWPs is less than the second handover delay for a terminal device to switch between two unassociated BWPs.
  • the terminal device switches between two associated BWPs
  • the T RRCprocessingDelay for switching between two unassociated BWPs is smaller than the T RRCprocessingDelay for switching between two unassociated BWPs ; or, the T BWPswitchDelayRRC for a terminal device switching between two associated BWPs is smaller than the T BWPswitchDelayRRC .
  • the at least two second BWPs with the same SCS include the fifth BWP and the sixth BWP. That is, it can be understood that the at least two second BWPs with the same SCS are associated with each other.
  • the multiple first channel bandwidths include a default (default) channel bandwidth.
  • the default channel bandwidth is used to determine the default (default) channel bandwidth as an initial working channel bandwidth and/or a corresponding BWP when the terminal device receives multiple channel bandwidth configuration information.
  • the terminal device may switch back to the default channel bandwidth and/or the corresponding default BWP.
  • the default channel bandwidth may be preset according to a communication protocol, or may be determined according to an instruction of a network device (for example, through a signaling instruction, etc.).
  • the terminal device receives the instruction information and the second configuration information from the network device, determines the default channel bandwidth in the same second channel bandwidth of the at least two SCSs according to the instruction information, and according to the The BWP configuration parameters included in the second configuration information determine the effective BWP in the default channel bandwidth.
  • the terminal device determines the fourth channel bandwidth in the manner shown in FIG. Determine the default channel bandwidth among the four channel bandwidths.
  • the multiple first channel bandwidths include: channel bandwidth 10, channel bandwidth 11, channel bandwidth 12, and channel bandwidth 13.
  • channel bandwidth 10 and channel bandwidth 12 correspond to the same SCS as SCS1, channel bandwidth 11 corresponds to SCS2, and channel bandwidth 13 corresponds to SCS3.
  • the second configuration information includes multiple sets of BWP configuration parameters, wherein: the SCS in the configuration parameters of BWP#0 is SCS1, the SCS in the configuration parameters of BWP#1 is SCS2, and the SCS in the configuration parameters of BWP#2 is SCS3.
  • the second channel bandwidth includes: channel bandwidth 10 and channel bandwidth 12 . Determine the default channel bandwidth as channel bandwidth 10 according to the instruction of the network device.
  • the terminal device will not determine BWP#0 in the channel bandwidth 12 according to the BWP#0 configuration parameter.
  • the terminal device determines BWP#0 only in the channel bandwidth 10 (default channel bandwidth) according to the BWP#0 configuration parameter in the second configuration information (the SCS in the configuration parameter is SCS1).
  • the terminal device receives indication information from the network device, where the indication information is used to indicate that one of the at least two second BWPs with the same SCS is in a valid state.
  • the terminal device determines multiple first BWPs through the foregoing first configuration information and second configuration information, and after the multiple first BWPs include at least two second BWPs with the same SCS, the terminal device can only It is determined from the at least two second BWPs with the same SCS that one second BWP can be used as a candidate for activating the BWP, and the rest of the second BWPs are in the invalid state (when the second BWP is in the invalid state, it can be simply understood as not according to the The second configuration information determines the second BWP).
  • multiple associated BWPs can be configured for the terminal device, and the switching delay of the terminal device switching between two associated BWPs is less than that of the terminal device switching between two unassociated BWPs.
  • BWP switching delay of the terminal equipment is reduced by means of handover delay for handover between terminals.
  • the methods provided in the embodiments of the present application are introduced from the perspective of interaction between various devices.
  • the above-mentioned steps performed by the access network device may also be respectively implemented by different communication devices.
  • the network architecture includes one or more distributed units (distributed unit, DU), one or more centralized units (centralized unit, CU) and one or more radio frequency units (RU), the steps performed by the above access network equipment It can be realized by DU, CU and RU respectively.
  • FIG. 7 shows a schematic structural diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device shown in Figure 7 can be used to realize some or all functions of the terminal equipment in the embodiment corresponding to the above configuration method, or the communication device shown in Figure 7 can be used to realize part or all of the network equipment in the embodiment corresponding to the above configuration method Full functionality.
  • the communication device shown in FIG. 7 can be used to realize some or all functions of the terminal device in the method embodiment described in FIG. 3 or FIG. 5 above.
  • the device may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication transposition may also be a chip system.
  • the communication device shown in FIG. 7 may include a transmission module 701 and a processing module 702 . in:
  • the transmission module 701 is configured to receive first configuration information from a network device, where the first configuration information is used to configure multiple first channel bandwidths, where the multiple first channel bandwidths include at least two second channels with the same subcarrier spacing SCS Bandwidth; receiving second configuration information from a network device, where the second configuration information is used to configure multiple first bandwidth part BWPs, the multiple first BWPs include at least two second BWPs with the same SCS, and the second BWPs
  • the SCS is the same as the SCS corresponding to the second channel bandwidth.
  • the first configuration information includes first sub-configuration information, or first sub-configuration information and second sub-configuration information; wherein, the first sub-configuration information is used to configure at least two SCSs with the same The second channel bandwidth; or, the second sub-configuration information is used to configure a third channel bandwidth other than the second channel bandwidth.
  • the first sub-configuration information includes at least two frequency domain positions, at least two frequency domain start positions, or at least two frequency domain offsets corresponding to at least two SCSs with the same second channel bandwidth.
  • One or more of the shift values are included in the first sub-configuration information.
  • the first configuration information includes at least two frequency domain positions, and each frequency domain position is used to indicate a position of the first channel bandwidth.
  • the transmission module 701 is configured to receive third configuration information from a network device, where the third configuration information is used to configure multiple first channel bandwidths, and each of the multiple first channel bandwidths The subcarrier spacing SCS corresponding to the first channel bandwidth is different; receiving fourth configuration information from the network device, the fourth configuration information is used to configure a plurality of first BWPs, the plurality of first BWPs and the plurality of first BWPs
  • the multiple first BWPs include at least two second BWPs with the same SCS.
  • the frequency domain resource range of the second BWP exceeds the frequency domain resource range of the first channel bandwidth corresponding to the second BWP, and the processing module 702 is configured to determine the fourth channel Bandwidth; wherein, the frequency domain resource range of the fourth channel bandwidth includes the frequency domain resource range of the second BWP.
  • the fourth channel bandwidth satisfies one or more of the following conditions: the starting position of the frequency domain resource of the fourth channel bandwidth is the same as the frequency domain resource of the second BWP The resource starting position is the same; or, the SCS of the fourth channel bandwidth is the same as the SCS of the second BWP; or, the size of the fourth channel bandwidth is the same as the size of the first channel bandwidth corresponding to the second BWP or, the relative position of the second BWP to the fourth channel bandwidth is the same as the relative position of the fourth BWP to the first channel bandwidth corresponding to the second BWP, wherein the fourth BWP is the same as the first channel bandwidth corresponding to the second BWP
  • the SCS of the two BWPs are the same.
  • the transmission module 701 is configured to receive indication information from the network device, where the indication information is used to indicate that one of the at least two second BWPs with the same SCS is in a valid state .
  • the transmission module 701 is configured to receive control information from the network device, where the control information is used to indicate the fifth BWP activated at the first moment; when the fifth BWP is related to the sixth BWP In the case of the connection, the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the first switching delay, and the sixth BWP is the BWP activated at the second moment, and the second moment is before the first moment; In the case that the fifth BWP is not associated with the sixth BWP, the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay; wherein, the first switching delay is less than the second switching delay Second, handover delay, the fifth BWP is different from the sixth BWP.
  • the switching delay of the terminal device switching between two associated BWPs is shorter than the switching delay of the terminal device switching between two unassociated BWPs.
  • the fifth BWP and the sixth BWP meet one or more of the following conditions: the bandwidth of the fifth BWP and the bandwidth of the sixth BWP
  • the bandwidth of the six BWPs is the same; or, the SCS of the fifth BWP is the same as the SCS of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same as that of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same;
  • the signal configuration is the same as the physical signal configuration of the sixth BWP; or, the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP ;
  • the identifier of the fifth BWP is the same as the identifier of the sixth BWP
  • the sub-identifier corresponding to the identifier of the fifth BWP is
  • the at least two second BWPs with the same SCS include the fifth BWP and the sixth BWP. BWP.
  • the communication device shown in FIG. 7 may be used to implement some or all functions of the network device in the method embodiment described in FIG. 3 or FIG. 5 above.
  • the device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication transposition may also be a chip system.
  • the communication device shown in FIG. 7 may include a transmission module 701 and a processing module 702 . in:
  • the transmission module 701 is configured to send first configuration information to the terminal device, where the first configuration information is used to configure multiple first channel bandwidths, and the multiple first channel bandwidths include at least two second channel bandwidths with the same subcarrier spacing SCS. channel bandwidth;
  • the second configuration information is used to configure multiple first bandwidth part BWPs, where the multiple first BWPs include at least two second BWPs with the same SCS, and the second The SCS of the BWP is the same as the SCS corresponding to the second channel bandwidth.
  • the first configuration information includes first sub-configuration information, or first sub-configuration information and second sub-configuration information; wherein, the first sub-configuration information is used to configure the at least two The same second channel bandwidth as the SCS; or, the second sub-configuration information is used to configure a third channel bandwidth other than the second channel bandwidth.
  • the first sub-configuration information includes at least two frequency domain positions, at least two frequency domain start positions, or at least two frequency domain positions corresponding to the at least two SCSs with the same second channel bandwidth.
  • One or more of the offset values are included in the first sub-configuration information.
  • the first configuration information includes at least two frequency domain positions; each frequency domain position is used to indicate a position of the first channel bandwidth.
  • the transmission module 701 is configured to send third configuration information to the terminal device, the third configuration information is used to configure multiple first channel bandwidths, and each first channel in the multiple first channel bandwidths The subcarrier spacing SCS corresponding to the bandwidth is different; the fourth configuration information is sent to the terminal device, and the fourth configuration information is used to configure multiple first BWPs, the multiple first BWPs and the multiple first channel The bandwidths are associated, and the multiple first BWPs include at least two second BWPs with the same SCS.
  • the frequency domain resource range of the first BWP exceeds the frequency domain range of the first channel bandwidth corresponding to the first BWP, and a fourth channel bandwidth is determined; wherein, the frequency domain of the fourth channel bandwidth
  • the domain resource range includes the frequency domain resource range of the first BWP.
  • the fourth channel bandwidth satisfies one or more of the following conditions: the starting position of the frequency domain resource of the fourth channel bandwidth is the same as the starting position of the frequency domain resource of the first BWP The location is the same; or, the SCS of the fourth channel bandwidth is the same as the SCS of the first BWP; or, the size of the fourth channel bandwidth is the same as the size of the first channel bandwidth corresponding to the first BWP; or , the relative position between the first BWP and the fourth channel bandwidth is the same as the relative position between the fourth BWP and the first channel bandwidth corresponding to the first BWP, wherein the fourth BWP is the same as the first BWP SCS is the same.
  • the transmission module 701 is configured to send indication information to the terminal device, where the indication information is used to indicate that one second BWP among the first BWPs with the same at least two SCSs is valid state.
  • the transmission module 701 is configured to send control information to the terminal device, the control information is used to indicate the fifth BWP activated at the first moment, and the second configuration information includes the Configuration information of the fifth BWP.
  • the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the first switching delay
  • the sixth BWP is the BWP activated at the second moment
  • the sixth BWP is the BWP activated at the second moment.
  • the second moment is before the first moment; when the fifth BWP is not associated with the sixth BWP, the switching delay for the terminal device to switch from the sixth BWP to the fifth BWP is the second switching delay; wherein, The first switching delay is shorter than the second switching delay, and the fifth BWP is different from the sixth BWP.
  • the fifth BWP and the sixth BWP meet one or more of the following conditions: the bandwidth of the fifth BWP and the bandwidth of the sixth BWP
  • the bandwidth of the six BWPs is the same; or, the SCS of the fifth BWP is the same as the SCS of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same as that of the sixth BWP; or, the physical transmission channel configuration of the fifth BWP is the same;
  • the signal configuration is the same as the physical signal configuration of the sixth BWP; or, the relative position of the fifth BWP within the first channel bandwidth corresponding to the fifth BWP is the same as the relative position of the sixth BWP within the first channel bandwidth corresponding to the sixth BWP ;
  • the identifier of the fifth BWP is the same as the identifier of the sixth BWP
  • the sub-identifier corresponding to the identifier of the fifth BWP is
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided in this application, where the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to execute the instructions or storing data generated after the processor 810 executes the instructions.
  • the processor 810 is used to execute the function of the processing module 702
  • the interface circuit 820 is used to execute the function of the transmission module 701 above.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as radio frequency modules or antennas), and the information is sent to the terminal device by the network device; or, the terminal device chip sends information to other modules in the terminal device (such as radio frequency modules or antenna) to send information, which is sent by the terminal device to the network device.
  • the network equipment chip implements the functions of the network equipment in the above method embodiments.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent to the network device by the terminal device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antenna) to send information, which is sent by the network device to the terminal device.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or known in the art any other form of storage medium.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in the access network device or the terminal device.
  • the processor and the storage medium may also exist in the access network device or the terminal device as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (solid state disk, SSD).
  • a magnetic medium such as a floppy disk, a hard disk, or a magnetic tape
  • an optical medium such as a DVD
  • it may also be a semiconductor medium such as a solid state disk (solid state disk, SSD).
  • the embodiment of the present application also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed, the methods performed by the terminal device in the above method embodiments are implemented.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed, the method performed by the network device in the foregoing method embodiments is implemented.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes a computer program, and when the computer program is executed, the method executed by the terminal device in the above method embodiment is implemented.
  • An embodiment of the present application further provides a computer program product, where the computer program product includes a computer program, and when the computer program is executed, the method performed by the network device in the above method embodiment is implemented.
  • An embodiment of the present application also provides a communication system, where the communication system includes a terminal device or a network device.
  • the terminal device is configured to execute the method performed by the terminal device in the foregoing method embodiments.
  • the network device is configured to execute the method executed by the network device in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种配置方法及通信装置,该配置方法包括:接收来自网络设备的第一配置信息,该第一配置信息用于配置多个第一信道带宽,该多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽;接收来自网络设备的第二配置信息,该第二配置信息用于配置多个第一带宽部分BWP,该多个第一BWP包括至少两个SCS相同的第二BWP,该第二BWP的SCS和该第二信道带宽对应的SCS相同。本申请通过这种配置方法,终端设备可以在网络设备配置的信道带宽中确定多个相关联的BWP(即SCS相同的BWP),进而减小终端设备在两个相关联的BWP之间进行切换的切换时延。

Description

一种配置方法及通信装置
本申请要求于2021年07月23日提交于中国专利局、申请号为202110839775.8、申请名称为“一种配置方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种配置方法及通信装置。
背景技术
为了保证终端设备和网络设备之间的数据传输,在终端设备进入无线资源控制(radio resource control,RRC)的连接态(RRC connected state)或者进入RRC非激活态(RRC inactive state)之后,网络设备会通过RRC专用信令为终端设备配置与该终端设备带宽能力匹配的至少一个信道带宽,该至少一个信道带宽中的每个信道带宽均不大于该终端设备的带宽能力,且每个信道带宽对应的子载波间隔(subcarrier spacing,SCS)不同。进一步地,针对该每个信道带宽而言,网络设备在该信道带宽内为终端设备配置至少一个带宽部分(bandwidth part,BWP),该至少一个BWP用于与终端设备之间进行数据传输,并且该信道带宽上配置的每个BWP对应的SCS与该信道带宽的SCS相同,每个BWP的频域资源范围必须位于该信道带宽内。网络设备与终端设备之间的数据传输可以在前述至少一个BWP对应的频域资源范围内,进行动态的调整(例如本BWP调度、跨BWP调度的方法),但在任何时刻终端设备仅能确定出一个BWP(即激活BWP)用于与网络设备进行数据传输,即可以理解为终端设备每次数据传输对应的频域资源只能在一个BWP对应的频域资源范围内。
通过这样配置BWP的方式,使得终端设备用于传输数据的BWP受限于终端设备的带宽能力,影响了终端设备的频选调度增益和频率分集增益;并且当终端设备需要在更大频域资源范围内的进行数据传输时,网络设备须得通过对终端设备的信道带宽进行重新配置方式来实现BWP的切换,满足终端设备的传输需求,通过这样配置BWP的方式导致配置时延大,从而影响终端设备的数据传输性能。
发明内容
本申请实施例提供一种配置方法及通信装置,使得终端设备可以根据该配置方法确定多个相关联的BWP。
第一方面,本申请实施例提供一种配置方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。终端设备接收来自网络设备的第一配置信息,该第一配置信息用于配置多个第一信道带宽,该多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽。终端设备接收来自网络设备的第二配置信息,该第二配置信息用于配置多个第一带宽部分BWP,该多个第一BWP包括至少两个SCS相同的第二BWP,该第二BWP的SCS与第二信道带宽对应的SCS相同。
和给终端设备配置多个信道带宽,该多个信道带宽中各个信道带宽的SCS必须不同的方式相比,基于该第一方面的配置方法,可以同时配置多个SCS相同的信道带宽和SCS不同的信道带宽,提升了信道带宽配置的灵活性,扩大了终端工作的带宽范围;并且,在终端设备需要进行BWP进行切换时,和需要通过信道带宽重配的方式进行BWP的方式相比,可以在 基于该第一方面配置方法配置的两个SCS相同的BWP进行快速切换,降低了终端设备进行BWP切换时的切换时延。
在一种可选的实施方式中,该第一配置信息包括第一子配置信息,或第一子配置信息和第二子配置信息。其中,第一子配置信息用于配置至少两个SCS相同的第二信道带宽;或者,第二子配置信息用于配置除第二信道带宽之外的第三信道带宽。通过实施该可选的实施方式,配置的多个信道带宽中各个信道带宽的SCS不再必须不同,即该多个信道带宽中可以存在SCS相同的信道带宽和SCS不同的信道带宽,提升了信道带宽配置方法的灵活性,可以适应多种类型的业务需求和工作场景,通过配置多个SCS相同的信道带宽,使得多个SCS相同的BWP可以工作在更大范围的频域资源上,提升了资源调度的灵活性,提升了终端设备与网络设备的传输性能。
在一种可选的实施方式中,第一子配置信息包括至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。通过实施该可选的实施方式,每个信道带宽对应的配置信息中不再只能配置一个信道带宽,而是可以通过在某个信道带宽对应的配置信息中添加多个频域位置的方式,配置出多个SCS相同的信道带宽,从而减小信令开销,节约通信资源,提高资源利用率,同时通过配置多个SCS相同的信道带宽,使得多个SCS相同的BWP可以工作在更大范围的频域资源上,提升了资源调度的灵活性,提升了终端设备与网络设备的传输性能。
在一种可选的实施方式中,第一配置信息包括至少两个频域位置,每个频域位置用于指示第一信道带宽的位置。
在一种可选的实施方式中,接收来自网络设备的指示信息,该指示信息用于指示该至少两个SCS相同的第二BWP中一个第二BWP为有效状态。
在一种可选的实施方式中,接收来自网络设备的控制信息,该控制信息用于指示第一时刻激活的第五BWP。第五BWP和第六BWP相关联,从第六BWP切换至第五BWP的切换时延为第一切换时延,该第六BWP为第二时刻激活的BWP,该第二时刻在该第一时刻之前。该第五BWP和该第六BWP不相关联,从第六BWP切换至第五BWP的切换时延为第二切换时延。其中,该第一切换时延小于该第二切换时延,第五BWP与第六BWP不同。通过实施该可选的实施方式,终端设备在两个关联的BWP之间切换的切换时延小于终端设备在两个不相关联的BWP之间切换的切换时延。
在一种可选的实施方式中,第五BWP和第六BWP相关联,该第五BWP和第六BWP满足以下条件中的一种或多种:第五BWP的带宽大小和第六BWP的带宽大小相同;或者,第五BWP的SCS和第六BWP的SCS相同;或者,第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同;或者,第五BWP的物理信号配置和第六BWP的物理信号配置相同;或者,第五BWP在第五BWP对应的第一信道带宽内的相对位置与第六BWP在第六BWP对应的第一信道带宽内的相对位置相同;或者,第五BWP的标识与第六BWP的标识相同,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。通过实施该可选的实施方式,为确定两个BWP相关联提供了多种确定方式,提升了配置相关联BWP的灵活性。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括该第五BWP和该第六BWP。
第二方面,本申请实施例提供一种配置方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。终端设备接收来 自网络设备的第三配置信息,该第三配置信息用于配置多个第一信道带宽,该多个第一信道带宽中每个第一信道带宽对应的子载波间隔SCS不同。终端设备接收来自网络设备的第四配置信息,该第四配置信息用于配置多个第一BWP,该多个第一BWP与该多个第一信道带宽相关联,该多个第一BWP包括至少两个SCS相同的第二BWP。
在终端设备需要进行BWP进行切换时,和需要通过信道带宽重配的方式进行BWP的方式相比,可以在基于该第二方面的配置方法配置的多个SCS相同的BWP进行快速切换,降低了终端设备进行BWP切换时的切换时延。
在一种可选的实施方式中,第二BWP的频域资源范围超出该第二BWP对应的第一信道带宽的频域资源范围,确定第四信道带宽。其中,该第四信道带宽的频域资源范围包括该第二BWP的频域资源范围。通过实施该可选的实施方式,使得终端设备工作的BWP范围可以不再受限于该终端设备的带宽能力,进而提升终端设备的频选调度增益或频率分集增益。
在一种可选的实施方式中,该第四信道带宽满足一下条件中的一项或多项:第四信道带宽的频域资源的起始位置与该第二BWP的频域资源起始位置相同;或者,第四信道带宽的SCS与第二BWP的SCS相同;或者,第四信道带宽的大小与第二BWP对应的第一信道带宽的大小相同;或者,所述第二BWP与第四信道带宽的相对位置与第四BWP与该第二BWP对应的第一信道带宽的相对位置相同,其中该第二BWP与第四BWP的SCS相同。
在一种可选的实施中,接收来自网络设备的指示信息,该指示信息用于指示该至少两个SCS相同的第二BWP中一个第二BWP为有效状态。
在一种可选的实施方式中,接收来自网络设备的控制信息,该控制信息用于指示第一时刻激活的第五BWP;第五BWP和第六BWP相关联,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延,该第六BWP为第二时刻激活的BWP,该第二时刻在该第一时刻之前;该第五BWP和该第六BWP不相关联,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延;其中,该第一切换时延小于该第二切换时延,第五BWP与第六BWP不同。通过实施该可选的实施方式,终端设备在两个关联的BWP之间切换的切换时延小于终端设备在两个不相关联的BWP之间切换的切换时延。
在一种可选的实施方式中,第五BWP和第六BWP相关联,该第五BWP和第六BWP满足以下条件中的一种或多种:第五BWP的带宽大小和第六BWP的带宽大小相同;或者,第五BWP的SCS和第六BWP的SCS相同;或者,第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同;或者,第五BWP的物理信号配置和第六BWP的物理信号配置相同;或者,第五BWP在第五BWP对应的第一信道带宽内的相对位置与第六BWP在第六BWP对应的第一信道带宽内的相对位置相同;或者,第五BWP的标识与第六BWP的标识相同,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。通过实施该可选的实施方式,为确定两个BWP相关联提供了多种确定方式,提升了配置相关联BWP的灵活性。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括该第五BWP和该第六BWP。
第三方面,本申请实施例提供一种配置方法,该方法的执行主体可以是网络设备也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。网络设备向终端设备发送第一配置信息,该第一配置信息用于配置多个第一信道带宽,该多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽;向终端设备发送第二配置信息,该第二配置信息用于配置多个第一带宽部分BWP,该多个第一BWP包括至少两个SCS相同的第二 BWP,该第二BWP的SCS与第二信道带宽对应的SCS相同。
基于该第二方面的配置方法的有益效果可参见前述基于第一方面的配置方法的有益效果,在此不再进行赘述。
在一种可选的实施方式中,该第一配置信息包括第一子配置信息,或第一子配置信息和第二子配置信息;其中,该第一子配置信息用于配置至少两个SCS相同的第二信道带宽;或者,该第二子配置信息用于配置除该第二信道带宽之外的第三信道带宽。通过实施该可选的实施方式,可同时配置多个信道带宽,该多个信道带宽中可以存在SCS相同的信道带宽和SCS不同的信道带宽,提升了信道带宽配置方法的灵活性。
在一种可选的实施方式中,第一子配置信息包括至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。通过实施该可选的实施方式,通过在某个信道带宽对应的配置信息中添加多个频域位置的方式,配置出多个SCS相同的信道带宽,从而减小通信传输的数据量,节约通信资源。
在一种可选的实施方式中,第一配置信息包括至少两个频域位置,每个频域位置用于指示第一信道带宽的位置。
在一种可选的实施方式中,向终端设备发送指示信息,该指示信息用于指示该至少两个SCS相同的第二BWP中一个第二BWP为有效状态。
在一个可选的实施方式中,向终端设备发送控制信息,该控制信息用于指示第一时刻激活的第五BWP;在第五BWP和第六BWP相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延,该第六BWP为第二时刻激活的BWP,该第二时刻在该第一时刻之前;在该第五BWP和该第六BWP不相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延;其中,该第一切换时延小于该第二切换时延,第五BWP与第六BWP不同。通过实施该可选的实施方式,终端设备在两个关联的BWP之间切换的切换时延小于终端设备在两个不相关联的BWP之间切换的切换时延。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,第五BWP和第六BWP满足以下条件中的一种或多种:第五BWP的带宽大小和第六BWP的带宽大小相同;或者,第五BWP的SCS和第六BWP的SCS相同;或者,第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同;或者,第五BWP的物理信号配置和第六BWP的物理信号配置相同;或者,第五BWP在第五BWP对应的第一信道带宽内的相对位置与第六BWP在第六BWP对应的第一信道带宽内的相对位置相同;或者,第五BWP的标识与第六BWP的标识相同,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。通过实施该可选的实施方式,为确定两个BWP相关联提供了多种确定方式,提升了配置相关联BWP的灵活性。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括该第五BWP和该第六BWP。
第四方面,本申请实施例提供一种配置方法,该方法的执行主体可以是网络设备也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。网络设备向终端设备发送第三配置信息,该第三配置信息用于配置多个第一信道带宽,该多个第一信道带宽中各个第一信道带宽对应的子载波间隔SCS不同;向终端设备发送第四配置信息,该第四配置信息用于配置多个第一BWP,该多个第一BWP与该多个第一信道带宽相关联,该多个第一BWP包括至少两个SCS相同的第二BWP。
基于该第四方面的配置方法的有益效果,可参见前述基于第二方面的配置方法的有益效 果,在此不再进行赘述。
在一种可选的实施方式中,第二BWP的频域资源范围超出该第二BWP对应的第一信道带宽的频域资源范围,确定第四信道带宽;其中,该第四信道带宽的频域资源范围包括该第二BWP的频域资源范围。通过实施该可选的实施方式,使得终端设备工作的BWP范围可以不再受限于该终端设备的带宽能力,进而提升终端设备的频选调度增益或频率分集增益。
在一种可选的实施方式中,该第四信道带宽满足一下条件中的一项或多项:第四信道带宽的频域资源的起始位置与该第二BWP的频域资源起始位置相同;或者,第四信道带宽的SCS与第二BWP的SCS相同;或者,第四信道带宽的大小与第二BWP对应的第一信道带宽的大小相同;或者,所述第二BWP与第四信道带宽的相对位置与第四BWP与该第二BWP对应的第一信道带宽的相对位置相同,其中该第二BWP与第四BWP的SCS相同。
在一种可选的实施方式中,向终端设备发送指示信息,该指示信息用于指示该至少两个SCS相同的第二BWP中一个第二BWP为有效状态。
在一个可选的实施方式中,向终端设备发送控制信息,该控制信息用于指示第一时刻激活的第五BWP;在第五BWP和第六BWP相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延,该第六BWP为第二时刻激活的BWP,该第二时刻在该第一时刻之前;在该第五BWP和该第六BWP不相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延;其中,该第一切换时延小于该第二切换时延,第五BWP与第六BWP不同。通过实施该可选的实施方式,终端设备在两个关联的BWP之间切换的切换时延小于终端设备在两个不相关联的BWP之间切换的切换时延。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,第五BWP和第六BWP满足以下条件中的一种或多种:第五BWP的带宽大小和第六BWP的带宽大小相同;或者,第五BWP的SCS和第六BWP的SCS相同;或者,第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同;或者,第五BWP的物理信号配置和第六BWP的物理信号配置相同;或者,第五BWP在第五BWP对应的第一信道带宽内的相对位置与第六BWP在第六BWP对应的第一信道带宽内的相对位置相同;或者,第五BWP的标识与第六BWP的标识相同,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。通过实施该可选的实施方式,为确定两个BWP相关联提供了多种确定方式,提升了配置相关联BWP的灵活性。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括该第五BWP和该第六BWP。
第五方面,本申请提供一种通信装置,该装置可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第一方面或第二方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面或第二方面所述的方法以及有益效果,重复之处不再赘述。
第六方面,本申请提供一种通信装置,该装置可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该通信装置还可以为芯片系统。该通信装置可执行第三方面或第四方面所述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第三方面或第四方面所述的方法以 及有益效果,重复之处不再赘述。
第七方面,本申请提供一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第八方面,本申请提供一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第九方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机执行指令,当该计算机执行指令被执行时,使得如第一方面或第二方面所述的方法中终端设备执行的方法被实现。
第十方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机执行指令,当该计算机执行指令被执行时,使得如第三方面或第四方面所述的方法中网络设备执行的方法被实现。
第十一方面,本申请提供一种包括计算机程序的计算机程序产品,当该计算机程序被执行时,使得如第一方面或第二方面所述的方法中终端设备执行的方法被实现。
第十二方面,本申请提供一种包括计算机程序的计算机程序产品,当该计算机程序被执行时,使得如第三方面或第四方面所述的方法中网络设备执行的方法被实现。
第十三方面,本申请提供一种通信系统,该通信系统包括上述第五方面或第七方面所述的通信装置和上述第六方面或第八方面所述的通信装置。
附图说明
图1为本申请提供的一种系统架构的示意图;
图2为本申请提供的一种BWP切换时延的示意图;
图3为本申请提供的一种配置方法的流程示意图;
图4为本申请提供的一种信道带宽的配置信息的示意图;
图5为本申请提供的另一种配置方法的流程示意图;
图6a为本申请提供的一种相关联BWP的示意图;
图6b为本申请提供的另一种相关联BWP的示意图;
图7为本申请提供的一种通信装置的结构示意图;
图8为本申请提供的另一种通信装置的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
为了更好地理解本申请实施例,下面首先对本申请实施例涉及的系统架构进行介绍:
本申请实施例提供的方法可以应用于各类通信系统中,例如,可以是机器对机器(machine-to-machine,M2M)通信系统、物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统,以及未来通信发展中出现的新的通信系统等。
请参见图1,图1是本申请实施例提供的一种系统架构10的示意图。如图1所示,该系统架构10包括网络设备20和终端设备30,其中,网络设备20和终端设备30之间存在空口通信连接。需要知晓的是,图1所示的网络设备20的数量和终端设备30的数量仅为示意性的,并不能视为对本申请应用场景的限定。下面再对本申请所涉及的终端设备和网络设备进行详细介绍。
一、终端设备
本申请实施例中涉及的终端设备,是用户侧的一种用于接收或发射信号的实体。终端设备可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以是连接到无线调制解调器的其他处理设备。终端设备可以与无线接入网(radio access network,RAN)进行通信。终端设备也可以称为无线终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment,UE)等等。终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,终端设备还可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。常见的终端设备例如包括:汽车、无人机、机械臂、手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等,但本申请实施例不限于此。
需要知晓的是,本申请所涉及的终端设备可以是新无线(new radio,NR)能力缩减(reduced  capability,REDCAP)终端设备,也可以是未降低信道带宽的正常(NR legacy)终端设备。其中,NR REDCAP终端设备相对于NR legacy终端设备之间的区别包括以下至少一项:
1、带宽能力不同。例如NR Legacy终端设备最大可以支持在一个载波上同时使用100MHz频域资源和网络设备进行数据传输,而NR REDCAP终端设备最大可以支持在一个载波上同时使用20MHz或者10MHz或者5MHz频域资源和网络设备进行数据传输。
2、收发天线个数不同。例如NR Legacy终端设备最小支持的天线配置为4发2收,即在最小天线配置下,使用4根接收天线接收下行数据,使用2根发送天线发送上行数据;而NR REDCAP终端设备最大支持的天线配置低于4发2收,例如NR REDCAP UE只支持2收1发,或者也可以支持2收2发。
3、上行最大发射功率不同。例如NR Legacy终端设备的上行最大发射功率可以为23dBm或者26dBm,而NR REDCAP终端设备的上行最大发射功率只能为4dBm~20dBm中的一个值。
4、NR REDCAP终端设备与NR Legacy终端设备对应的协议版本不同,例如NR Rel-15、NR Rel-16终端设备可以认为是NR Legacy终端设备,NR REDCAP终端设备可以认为是NR Rel-17终端设备。
5、NR REDACP终端设备与NR Legacy终端设备支持的载波聚合(carrier aggregation,CA)能力不同,例如,NR Legacy终端设备可以支持载波聚合,而NR REDCAP终端设备不支持载波聚合;又例如,NR REDCAP与NR Legacy终端设备都支持载波聚合,但是NR Legacy终端设备同时支持的载波聚合的最大个数大于NR REDCAP终端设备同时支持的载波聚合的最大个数,例如NR Legacy终端设备可以最多同时支持5个载波或者32个载波的聚合,而NR REDCAP终端设备最多同时支持2个载波的聚合。
6、NR Legacy终端设备支持全双工FDD,而NR REDCAP终端设备仅支持半双工FDD。
7、NR REDCAP终端设备和NR Legacy终端设备对数据的处理时间能力不同,例如,NR Legacy终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延小于NR REDCAP终端设备接收下行数据与发送对该下行数据的反馈之间的最小时延,和/或,NR Legacy终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延小于NR REDCAP终端设备发送上行数据与接收对该上行数据的反馈之间的最小时延。
8、NR Legacy终端设备与NR REDCAP终端设备的处理能力不同。
9、NR Legacy终端设备与NR REDCAP终端设备对应的上行和/或下行,传输峰值速率不同。
二、网络设备
本申请实施例中所涉及的网络设备(或称接入网设备),是网络侧的一种用于发射或接收信号的实体,可以用于将收到的空中帧与网络协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可以包括IP网络等。接入网设备还可以协调对空中接口的属性管理。例如,接入网设备可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB),还可以是新无线控制器(new radio controller,NR controller),还可以是ng-eNB,还可以是5G系统中的gNode B(gNB),还可以是集中式网元(centralized unit),还可以是新无线基站,还可以是射频拉远模块,还可以是微基站,还可以是中继(relay),还可以是分布式网元(distributed unit),还可以是接收点(transmission reception point,TRP)或还传输点(transmission point,TP)或者任何其它无线接入设备,但本申请实施例不限于此。
为了方便理解本方案的内容,下面再对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、带宽部分(bandwidth part,BWP)
由于NR中有多种带宽能力的终端,为了支持不同带宽能力的终端,NR中引入带宽部分(bandwidth part,BWP)。BWP是频域上一段连续的资源,包括上行BWP和下行BWP,分别用于上行传输和下行传输。通常在终端的初始接入阶段,基站给终端配置初始上行BWP和初始下行BWP,在终端进入RRC连接态之后,基站给终端额外配置一个或者多个终端专属的上行BWP和下行BWP。其中,上行信道或者上行信号传输完全在上行BWP内进行,下行信道或者信号传输完全在下行BWP内进行。终端可以收到多个BWP配置,但在同一时间,终端只能在工作在其中一个BWP上,此BWP称之为激活BWP。
在一个实施例中,BWP的带宽不能超过终端对应的最大带宽(即不能超出终端支持的带宽能力范围),否则终端不能成功接入网络。
2、BWP切换时延
即指两个不同BWP之间进行切换的时延,例如,终端设备在接收到触发BWP切换的物理层信令之后,可以在BWP切换时延之后,将与基站之间的数据传输从BWP A切换到BWP B,其中,BWP A是包括触发BWP切换的物理层信令的BWP,BWP B为不同于BWP A的其他BWP。需要知晓的是,两个BWP不同,可认为两个BWP对应的配置参数有以下至少一项不同:
a)两个BWP对应的中心频点位置不同。
b)两个BWP对应的BWP带宽不同。
c)两个BWP对应的数据传输所使用的子载波间隔(subcarrier spacing,SCS)不同。
d)两个BWP对应的多输入多输出(multiple input multiple output,MIMO)数据传输层数或者天线数不同。
e)两个BWP对应的物理下行控制信道(physical downlink control channel,PDCCH)配置不同,或者对应的PDSCH配置不同,或者对应的物理上行控制信道(physical uplink control channel,PUCCH)配置不同,或者对应的物理上行共享信道(physical uplink shared channel,PUSCH)配置不同。
触发BWP切换的方式包括:基于物理层信令触发的BWP切换、基于RRC信令触发的BWP切换、基于定时器触发的BWP切换或基于RRC预配置或预定义触发的BWP切换。示意性地,下面针对基于物理层信令触发的BWP切换时延,基于RRC信令触发的BWP切换时延进行详细描述。
(一)基于物理层信令触发的BWP切换时延
基于物理层信令(例如下行控制信息(downlink control information,DCI))触发的BWP切换时延如图2所示,在下行BWP切换(即图2所示DL BWP切换)中,终端在下行时间单元n(即图2中所示的DL slot n)接收到网络设备发送的BWP切换请求信息,终端需要能在下行时间单元n之后的BWP切换时延(即图2中所示的T BWP切换时延)后最近的下行时间单元(即图2中所示的DL slot m)上接收PDSCH以及其他物理下行信道或下行信号;在上行BWP切换(即图2所示UL BWP切换)中,终端设备需要能在下行时间单元n之后的BWP切换时延(即图2中所示的T BWP切换时延)后最近的上行时间单元(即图2中所示的UL slot m)上发送PUSCH以及其他物理上行信道或上行信号。需要知晓的是,在图2中仅以时间单元为时隙(slot)进行示意性举例,并不能视为对本申请技术方案的限定。
通常,终端设备对应的BWP切换时延包括两种,如表1所示为终端设备支持的BWP切换时延。
表1
Figure PCTCN2022105195-appb-000001
其中,μ对应不同的SCS,具体地μ为0对应SCS为15KHz,μ为1对应SCS为30KHz,μ为2对应SCS为60KHz,μ为3对应SCS为120KHz。BWP切换时延的Type 1与Type 2根据终端设备上报的能力决定,例如,若终端设备上报能力为仅支持BWP切换时延Type 1,则终端设备基于物理层触发的BWP切换对应的时延如表1中Type1所示,如果终端设备上报能力仅支持Type 2,则终端设备基于物理层触发的BWP切换对应的时延如表中Type2所示。
(二)基于RRC信令触发的BWP切换时延
基于RRC信令触发的BWP切换时延,是指终端在下行时间单元n接收指示BWP切换的RRC信令,则终端需要在与该下行时间单元n间隔T RRC时延后最近的下行时间单元上接收PDSCH以及其他物理下行信道或下行信号,或者终端在与该下行时间单元n间隔T RRC时延后最近的上行时间单元上接收发送PUSCH以及其他物理上行信道或上行信号,其中T RRC时延是基于RRC信令触发的BWP切换时延,该T RRC时延的计算公式可参见公式(1)所示。
T RRC时延=T RRCprocessingDelay+T BWPswitchDelayRRC    (1)
其中,T RRC时延是基于RRC信令触发的BWP切换时延,T RRCprocessingDelay为RRC过程引入的时延,T BWPswitchDelayRRC为UE执行BWP切换所需要的时间。
通常在终端设备进入RRC连接态或终端设备进入RRC非激活态之后,网络设备根据终端设备的带宽能力,为终端设备配置至少一个信道带宽(在本申请中,信道带宽也可称为载波),该至少一个信道带宽中的每个信道带宽均不大于该终端设备的带宽能力。进一步地,网络设备在该至少一个信道带宽的频域范围内为终端设备配置至少一个BWP,该至少一个BWP用于终端设备与网络设备之间的数据传输。可见,通过这样的方式配置的BWP受限于终端设备的带宽能力,影响了终端设备的频选调度增益和频率分集增益。并且由于任何时刻终端设备仅能在一个激活BWP的频域资源范围内与网络设备进行数据传输,当终端设备需要在更大的频域资源范围内进行数据传输时,终端设备须得根据网络设备的指示进行BWP切换,导致产生BWP切换时延,而当BWP切换时延较大时,则会影响终端设备的数据传输性能。
本申请通过提供一种配置方法,可以配置多个SCS相同的信道带宽和多个SCS相同的BWP,当终端设备需要进行BWP切换的时候,不再需要通过RRC重新配置信道带宽,而是在预配置的多个SCS相同信道带宽范围内,实现多个SCS相同的BWP之间的快速地切换,故降低了终端设备在多个相关联BWP之间进行切换时的切换时延。进而在一些应用场景中,降低了BWP的切换时延,可以实现快速负荷均衡、高优先级业务避让以及快速干扰避让等,例如当某个BWP上负载较高时,可以通过本申请中的发明方案将一些业务数据传输切换到 负载较低的BWP上进行,从而实现快速负载均衡;又例如当前BWP上高优先级的业务需要传输时,可以通过本申请中的发明方案将一些业务数据传输切换到其他的BWP上进行,从而实现高优先级业务避让;又例如当某个BWP上干扰较高时,可以通过本申请中的发明方案将一些业务数据传输切换到干扰较小的BWP上进行,从而实现快速干扰避让。并且当BWP的频域资源范围超出该BWP对应信道带宽的频域资源范围之后,本申请可以根据BWP的频域资源范围重新确定一个包含该BWP的频域范围的信道带宽的方式,使该信道带宽的频域范围可以不受限于终端设备的带宽能力,进而使得BWP的频域范围也可以不再受限于终端设备的带宽能力,提升了终端设备数据传输中的频选调度增益和/或频率分集增益。
下面结合附图对本申请提供的配置方法及通信装置进行进一步介绍:
请参见图3,图3是本申请实施例提供的一种配置方法的流程示意图。如图3所示,该配置方法包括如下301~302,图3所示的方法执行主体可以为终端设备或终端设备中的芯片,也可以为网络设备或网络设备中的芯片。图3以终端设备和网络设备为执行主体为例进行说明。其中:
301、接收来自网络设备的第一配置信息,该第一配置信息用于配置多个第一信道带宽,该多个第一信道带宽中包括至少两个SCS相同的第二信道带宽。
网络设备可以通过RRC信令向终端设备发送第一配置信息,该第一配置信息用于配置多个第一信道带宽。终端设备根据该第一配置信息,从该网络设备的系统带宽中确定多个第一信道带宽,该多个第一信道带宽中包括至少两个SCS相同的第二信道带宽。
可以理解的是,该多个第一信道带宽中包括至少两个SCS相同的第二信道带宽,存在以下两种情形:
情形一:该多个第一信道带宽中所有第一信道带宽的SCS均相同。
例如,该多个第一信道带宽包括:信道带宽10、信道带宽11和信道带宽12,该信道带宽10、信道带宽11和信道带宽12对应相同的SCS,该SCS为SCS1。
在此种情形下,第一配置信息包括第一子配置信息,该第一子配置信息用于配置至少两个SCS相同的第二信道带宽。可以理解为,通过该第一配置信息配置的多个第一信道带宽中所有第一信道带宽的SCS均相同。
具体地,在这种情形下该第一配置信息配置多个第一信道带宽的配置方式包括:
方式一、该第一配置信息包括多个第一信道带宽的配置信息,每个第一信道带宽的配置信息中有且仅包含一个频域位置(或称为频域起始位置或频域偏移值)。终端设备根据该第一配置信息中各个第一信道带宽的配置信息,配置各个第一信道带宽。
请参见图4所示,图4为本申请提供的一个第一信道带宽的配置信息。在图4所示的第一信道带宽的配置信息中,subcarrierSpacing字段用于配置该第一信道带宽的SCS,carrierBandwidth字段用于指示该第一信道带宽的带宽大小,offsetToCarrier字段用于指示该第一信道带宽的频域位置(或称为频域起始位置或频域偏移值)。其中,每个第一信道带宽的配置信息中有且仅包含一个频域位置(或称为频域起始位置或频域偏移值),可以理解为该第一信道带宽的配置信息中仅有一个offsetToCarrier字段,并且该offsetToCarrier字段仅能配置一个频域位置(或称为频域起始位置或频域偏移值)。进一步地,终端设备根据多个如图4所示的第一信道带宽的配置信息确定多个第一信道带宽。
方式二、该第一配置信息包括第一子配置信息,该第一子配置信息包括至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值 中的一项或多项。
在这种配置方式中,通过该第一子配置信息配置该至少两个SCS相同的第二信道带宽时,一种可选的实施方式是:在某一个第二信道带宽的配置信息中添加至少两个offsetToCarrier字段,该多个offsetToCarrier字段用于指示该至少两个第二信道带宽的频域位置(或称为频域起始位置或频域偏移值)。
示例性地,该第一子配置信息包括:subcarrierSpacing字段指示第二信道带宽的SCS为SCS1,carrierBandwidth指示第二信道带宽的带宽大小为40MHz,offsetToCarrier字段1指示第二信道带宽的频域位置为Location1,offsetToCarrier字段2指示第二信道带宽的频域位置为Location2,offsetToCarrier字段3指示第二信道带宽的频域位置为Location3。则通过该第一子配置信息配置的3个第二信道带宽:信道带宽1、信道带宽2和信道带宽3。其中,信道带宽1:SCS为SCS1,带宽大小为40MHz,在系统带宽中的位置为Location1;信道带宽2:SCS为SCS1,带宽大小为40MHz,在系统带宽中的位置为Location2;信道带宽3:SCS为SCS1,带宽大小为40MHz,在系统带宽中的位置为Location3。可以理解为在如图4所示的一个第一信道带宽的配置信息中添加了至少两个offsetToCarrier字段,该至少两个offsetToCarrier字段用于指示该至少两个第二信道带宽的频域位置(或称为频域起始位置或频域偏移值)。
另一种可选的实施方式是:在某一个第二信道带宽的配置信息的offsetToCarrier字段中存在至少两个频域位置(或称为频域起始位置或频域偏移值)。
示例性地,该第一子配置信息包括:subcarrierSpacing字段指示第二信道带宽的SCS为SCS1,carrierBandwidth指示第二信道带宽的带宽大小为40MHz,offsetToCarrier字段指示第二信道带宽的频域位置为Location1、Location2和Location3。则可以理解为,通过该第一子配置信息配置的3个第二信道带宽:信道带宽1、信道带宽2和信道带宽3。其中,信道带宽1:SCS为SCS1,带宽大小为40MHz,在系统带宽中的位置为Location1;信道带宽2:SCS为SCS1,带宽大小为40MHz,在系统带宽中的位置为Location2;信道带宽3:SCS为SCS1,带宽大小为40MHz,在系统带宽中的位置为Location3。可以理解为在如图4所示的一个第一信道带宽的配置信息中添加了至少两个offsetToCarrier字段,该至少两个offsetToCarrier字段用于指示该至少两个第二信道带宽的频域位置(或称为频域起始位置或频域偏移值)。
可见,方式二中第一子配置信息配置的多个第二信道带宽中,各个第二信道带宽的配置信息中仅有频域位置不同。方式二的配置方式相较于方式一的配置方式而言,网络设备可以通过较少的通信传输资源配置至少两个SCS相同的第二信道带宽。需要理解的是,该多个SCS相同的第二信道带宽可以认为是多个不同的信道带宽,也可以理解为同一信道带宽具有不同频域位置。在这种情况下,该多个SCS相同的信道带宽可构成一个信道带宽集合或者信道带宽组(channel bandwidth group)。
情形二:该多个第一信道带宽包括一组或多组SCS相同的第二信道带宽和其他第一信道带宽(可以理解为SCS和该组第二信道带宽的SCS不同的第一信道带宽)。
在一个示例中,该多个第一信道带宽中包括一组SCS相同的第二信道带宽,例如该多个第一信道带宽包括:信道带宽10、信道带宽11和信道带宽12和信道带宽13。其中,信道带宽10和信道带宽12对应相同的SCS为SCS1,信道带宽11对应SCS2、信道带宽13对应SCS3。
在另一个示例中,该多个第一信道带宽包括多组SCS相同的第二信道带宽,例如该多个第一信道带宽包括2组SCS相同的第二信道带宽:信道带宽10、信道带宽11、信道带宽12、 信道带宽13和信道带宽14。其中,信道带宽10、信道带宽11和信道带宽12对应相同的SCS,该SCS为SCS1;信道带宽13和信道带宽14对应相同的SCS,该SCS为SCS2。
在此种情形下,第一配置信息包括第一子配置信息和第二子配置信息,该第一子配置信息用于配置至少两个SCS相同的第二信道带宽,该第二子配置信息用于配置除该第二信道带宽之外的第三信道带宽(即前述其他第一信道带宽)。可以理解为通过第一子配置信息配置的第一信道带宽的SCS相同,通过第二子配置信息配置的第一信道带宽的SCS不同。
具体地,在这种情形下,该第一配置信息配置多个第一信道带宽的配置方式包括:
方式一、该第一配置信息包括多个第二信道带宽的配置信息,每个第二信道带宽的配置信息中有且仅包含一个频域位置(或称为频域起始位置或频域偏移值)。该第二子配置信息多个第三信道带宽的配置信息,每个第三信道带宽的配置信息中有且仅包含一个频域位置(或称为频域起始位置或频域偏移值)。
即可以理解为,在这种配置方式中,该第一配置信息包括至少两个频域位置,每个频域位置用于指示第一信道带宽的位置。
方式二、该第一子配置信息包括至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。该第二子配置信息多个第三信道带宽的配置信息,每个第三信道带宽的配置信息中有且仅包含一个频域位置(或称为频域起始位置或频域偏移值)。
即可以理解为,在这种配置方式中,该第一配置信息包括第一子配置信息和第二配置信息。其中,第一子配置信息包括一组或多组第二信道带宽的配置信息,每组第二信道带宽信息中包括一个subcarrierSpacing字段、一个carrierBandwidth字段和多个offsetToCarrier字段(或一个offsetToCarrier字段中存在多个频域位置)。第二子配置信息包括多个第三信道带宽的配置信息,即多个subcarrierSpacing字段、多个carrierBandwidth字段和多个offsetToCarrier字段。
需要声明的是,在本申请中该多个SCS相同的第二信道带宽对应的频域资源之间可以有重叠也可以没有重叠,本申请对此不作具体限定。本申请的信道带宽配置既可以针对下行信道带宽和上行信道带宽分别配置,也可以仅对下行信道带宽配置,也可以仅对上行信道带宽配置,还可以针对下行信道带宽和上行信道带宽联合配置,本申请对此亦不作具体限定。
302、接收来自网络设备的第二配置信息,该第二配置信息用于配置多个第一BWP,该多个第一BWP包括至少两个SCS相同的第二BWP,该多个第二BWP的SCS与前述第二信道带宽对应的SCS相同。
网络设备向终端设备发送第二配置信息,该第二配置信息用于在多个第一信道带宽中配置多个第一BWP。其中,第二配置信息中包括一套BWP配置参数或多套BWP配置参数。需要了解的是,该BWP配置参数包括但不限于以下参数中的一种或多种:BWP的索引(或称为BWP标识或BWP ID)、BWP的频域位置、BWP的带宽大小、BWP的SCS、BWP的循环前缀(cyclic prefix)、其他公共参数(例如小区专属参数)、专用参数(用户专用参数)、BWP上的物理传输信道配置或BWP上物理信道配置。终端设备根据该一套或多套BWP配置参数,在各套BWP配置参数相对应的第一信道带宽中配置第一BWP。
需要说明的是,在本申请中BWP配置参数对应的信道带宽(或称为BWP对应的信道带宽,或是BWP相关联的信道带宽),均可理解为该BWP的SCS与该信道带宽的SCS相同。本申请对每个第一信道带宽内配置的BWP的个数不限定,即可以在一个第一信道带宽中配置多个BWP,也可以在一个第一信道带宽中配置1个BWP。
下面针对第二配置信息包括一套BWP配置参数,或第二配置信息包括多套BWP配置参数的情况进行详细描述。
方式一、该第二配置信息包括多套BWP配置参数。
其中,该多套BWP配置参数中每套BWP配置参数的SCS可以相同,也可以不同。即在该多个第一信道带宽中各个第一信道带宽的SCS不同的情况下;或,该多个第一信道带宽中部分第一信道带宽的SCS相同,部分第一信道带宽的SCS不同的情况下;或,该多个第一信道带宽中全部第一信道带宽的SCS相同的情况下,均可适用此方式配置第一BWP。
示例性地,多个第一信道带宽包括:信道带宽10、信道带宽11和信道带宽12和信道带宽13。其中,信道带宽10和信道带宽12对应相同的SCS为SCS1,信道带宽11对应SCS2、信道带宽13对应SCS3。第二配置信息包括多套BWP配置参数,其中:BWP#0配置参数中SCS为SCS1,BWP#1的配置参数中SCS为SCS2,BWP#2的配置参数中SCS为SCS3。在这种情况下,终端设备接收该第二配置信息之后,由于BWP#0的SCS与信道带宽10和信道带宽12的SCS相同,则根据BWP#0配置参数在信道带宽10中配置第一BWP,根据BWP#0配置参数在信道带宽12中配置第一BWP;BWP#1的SCS与信道带宽11的SCS相同,则根据BWP#1配置参数在信道带宽11中配置第一BWP;BWP#2的SCS与信道带宽13的SCS相同,则根据BWP#2配置参数在信道带宽13中配置第一BWP。
通过这样的配置BWP的方式,由于多个第一信道带宽中包括至少两个SCS相同的第二信道带宽,则在相同SCS的第二信道带宽中配置的第一BWP之间相关联,即为前述第二BWP。
方式二、该第二配置信息包括一套BWP配置参数。
该第二配置信息包括一套BWP配置参数,则终端设备根据该BWP配置参数中的SCS,从多个第一信道带宽中确定出与该BWP配置参数中SCS相同的第一信道带宽。进一步地,根据该BWP配置参数在与该BWP配置参数中SCS相同的第一信道带宽中配置多个第一BWP。
示例性地,多个第一信道带宽包括:信道带宽10、信道带宽11和信道带宽12和信道带宽13。其中,信道带宽10和信道带宽12对应相同的SCS为SCS1,信道带宽11对应SCS2、信道带宽13对应SCS3。第二配置信息中包括一套BWP配置参数,该BWP配置参数的SCS为SCS1,则终端设备可以根据该第二配置信息在信道带宽10和信道带宽11中确定BWP。
在一个应用场景中,当该多个第一信道带宽中各个第一信道带宽的SCS相同时,可以通过一套BWP配置参数在该多个第一信道带宽中确定SCS相同的至少两个第二信道带宽。
可见,通过此种方式配置至少两个SCS相同的第二BWP,适用于该多个第一信道带宽中存在与该BWP配置参数中SCS相同的至少两个第二信道带宽。
需要知晓的是,前述步骤301和302的执行顺序仅作为示意性的一个讲解,并不能视为对本申请的一个具体限定。即是说,301和302的执行顺序可以是先执行301,后执行302;也可以是先执行302后执行301;还可以是301和302同时执行。
请参见图5,图5是本申请实施例提供的另一种配置方法的流程示意图。如图5所示,该配置方法包括如下501~502,图5所示的方法执行主体可以为终端设备或终端设备中的芯片,也可以为网络设备或网络设备中的芯片。图5以终端设备和网络设备为执行主体为例进行说明。其中:
501、终端设备接收来自网络设备的第三配置信息,该第三配置信息用于配置多个第一信 道带宽,该多个第一信道带宽中每个第一信道带宽的SCS不同。
网络设备可以通过RRC信令向终端设备发送第三配置信息,该第三配置信息用于配置多个第一信道带宽,该多个第一信道带宽中每个第一信道带宽的SCS不同,可以理解为第一信道带宽与SCS之间是一一对应的关系。
示例性地,网络设备通过RRC信令向终端设备发送第三配置信息,该第三配置信息包括多个如图4所示的第一信道带宽的配置信息,该第一信道带宽的配置信息包括:用于指示该第一信道带宽的SCS的subcarrierSpacing字段,用于指示该第一信道带宽的带宽大小的carrierBandwidth字段,用于指示该第一信道带宽的频域位置(或称为频域起始位置或频域偏移值)的offsetToCarrier字段。进一步地,终端设备根据多个如图4所示的第一信道带宽的配置信息确定多个第一信道带宽。例如,该多个第一信道带宽的配置信息包括:subcarrierSpacing字段指示SCS1、carrierBandwidth字段指示30MHz、offsetToCarrier字段指示Location1;subcarrierSpacing字段指示SCS2、carrierBandwidth字段指示50MHz、offsetToCarrier字段指示Location2;subcarrierSpacing字段指示SCS3、carrierBandwidth字段指示60MHz、offsetToCarrier字段指示Location3。进一步地,终端设备根据该多个第一信道带宽的配置信息,确定信道带宽1的SCS为SCS1、带宽大小为30MHz,频域位置为Location1;信道带宽2的SCS为SCS2、带宽大小为50MHz,频域位置为Location2;信道带宽3的SCS为SCS3、带宽大小为60MHz,频域位置为Location3。
502、终端设备接收来自网络设备的第四配置信息,该第四配置信息用于配置多个第一BWP,该多个第一BWP与该多个第一信道带宽相关联,该多个第一BWP包括至少两个SCS相同的第二BWP。
网络设备向终端设备发送第四配置信息,该第四配置信息用于在前述多个第一信道带宽中配置多个第一BWP。其中,该第四配置信息中包括一套BWP配置参数或多套BWP配置参数。该配置参数包括但不限于以下参数中的一种或多种:BWP的索引(或称为BWP标识或BWP ID)、BWP的频域位置、BWP的带宽大小、BWP的SCS、BWP的循环前缀(cyclic prefix)、其他公共参数(例如小区专属参数)、专用参数(用户专用参数)、BWP上的物理传输信道配置或BWP上物理信道配置。终端设备根据该一套或多套BWP配置参数,在各套BWP配置参数相对应的第一信道带宽中配置第一BWP。需要知晓的是,BWP配置参数中SCS与信道带宽中SCS相同的情况下,可根据该BWP配置参数在该信道带宽中配置一个或多个BWP。
示例性地,该多个第一信道带宽包括:信道带宽20、信道带宽21和信道带宽22,其中,信道带宽20对应SCS1、信道带宽21对应SCS2、信道带宽22对应SCS3,SCS1不同于SCS2不同于SCS3。第四配置信息中包括多套第一BWP配置参数,其中BWP#0配置参数中SCS为SCS1,BWP#1的配置参数中SCS为SCS2,BWP#2的配置参数中SCS为SCS3。进一步地,终端设备在信道带宽20中确定一个或多个BWP#0,在信道带宽21中确定一个或多个BWP#1,在信道带宽22中确定一个或多个BWP#2。
在一个应用场景中,由于该第一信道带宽中可配置多个BWP,同一个信道带宽配置的BWP的SCS相同,即为前述第二BWP。由于第一信道带宽是网络设备根据终端设备的带宽能力配置的,故该第一信道带宽受限于终端设备的带宽能力。在该第二BWP的频域资源范围超出该第二BWP对应的第一信道带宽的频域的情况下,为了避免第二BWP受限于终端设备的带宽能力。终端设备(或网络设备)确定第四信道带宽,该第四信道带宽的频域范围包括该第二BWP的频域资源范围。
需要知晓的是,本申请仅以第二BWP的频域资源范围超出该第二BWP对应的第一信道带宽的频域资源范围,对根据BWP确定信道带宽的方法进行示意性的讲解,并不应视为对本申请的一个具体限定。即可以理解为,当前述第一BWP的频域范围超出该第一BWP对应的第一信道带宽的频域资源范围,依旧可通过该根据BWP确定信道带宽的方法,确定出包括该第一BWP的频域范围的信道带宽。
例如,信道带宽20的SCS与BWP#0配置参数中SCS相同,则该信道带宽20为BWP#0对应的第一信道带宽,根据该BWP#0配置参数在信道带宽20中配置至少一个BWP#0。该至少一个BWP#0包括:BWP#0 1和BWP#0 2,当BWP#0 2的频域资源范围超出该信道带宽20的频域资源范围时,终端设备(或网络设备)确定第四信道带宽,该第四信道带宽包括该BWP#0 2的频域资源。
在一个可选的实施方式中,该第四信道带宽满足以下条件中的一项或多项:
a)该第四信道带宽的频域资源的起始位置与该第二BWP的频域资源起始位置相同。可以理解为,根据该第二BWP的频域资源起始位置确定第四信道带宽,该第四信道带宽的大小至少包括该第二BWP的频域资源。
b)第四信道带宽的SCS与第二BWP的SCS相同。可以理解为,根据第二BWP的SCS确定第四信道带宽的SCS,该第四信道带宽的大小至少包括该第二BWP的频域资源。
c)第四信道带宽的大小与第二BWP对应的第一信道带宽的大小相同。例如,根据该BWP#0配置参数在信道带宽20中配置BWP#0 2,当BWP#0 2的频域资源范围超出该信道带宽20的频域资源范围时,确定第四信道带宽,该第四信道带宽的带宽大小和信道带宽20的带宽大小相同。
d)第二BWP与第四信道带宽的相对位置与第四BWP与第二BWP对应的第一信道带宽的相对位置相同,其中第二BWP与该第四BWP的SCS相同。例如,信道带宽20的SCS与BWP#0配置参数中SCS相同,则该信道带宽20为BWP#0对应的第一信道带宽,根据该BWP#0配置参数在信道带宽20中配置至少一个BWP#0。该至少一个BWP#0包括:BWP#0 1和BWP#0 2,当BWP#0 2的频域资源范围超出该信道带宽20的频域资源范围时,终端设备(或网络设备)确定第四信道带宽,该BWP#0 2与第四信道带宽的相对位置,与BWP#0 1和信道带宽20的相对位置相同。
可见,通过此种方式配置至少两个SCS相同的第二BWP,可以在确定多个相关联的BWP的同时,通过根据BWP确定信道带宽的方式,避免BWP受限于该BWP对应信道带宽的频域范围,从而避免终端设备的BWP受限于终端设备的带宽能力,以提升终端设备的频选调度增益和/或频率分集增益。
需要知晓的时,前述步骤501和502的执行顺序仅作为示意性的讲解,并不能视为对本申请的一个具体限定。即是说,501和502的执行顺序可以是先执行501,后执行502;也可以是先执行502后执行501;还可以是501和502同时执行。
基于图3或图5所提供的配置方法,在一个可选的实施方式中,终端设备还可以接收来自网络设备的控制信息,该控制信息用于指示第一时刻激活的第五BWP。进一步地,在该第五BWP和第六BWP相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延,第六BWP为第二时刻激活的BWP,该第二时刻在第一时刻之前。在第五BWP和第六BWP不相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延。其中,第一切换时延小于第二切换时延,第五BWP与第六BWP不同。
例如,在当前时刻(即前述第二时刻)终端设备用于传输数据的激活BWP为BWP1(即前述第六BWP)。终端设备接收来自网络设备的控制信息,该控制信息指示了第二时刻之后的第一时刻激活的第五BWP,该控制信息中携带有第五BWP的BWP标识(或子标识)。进一步地,在该第五BWP和第六BWP相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延;在该第五BWP和第六BWP不相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延。其中,第一切换时延小于第二切换时延。即可以理解为,终端设备在两个相关联的BWP之间切换的切换时延,小于终端设备在两个不相关联的BWP之间切换的切换时延。
针对两个BWP相关联需要说明的是,在第五BWP和第六BWP相关联的情况下,该第五BWP和第六BWP满足以下条件中的一种或多种:
a)第五BWP的带宽大小和该第六BWP的带宽大小相同。例如,第五BWP的带宽大小为20MHz,第六BWP的带宽大小也为20MHz,则视为第五BWP和第六BWP相关联。
b)第五BWP的SCS和第六BWP的SCS相同。例如,第五BWP的SCS与第六BWP的SCS均为SCS1,则视为第五BWP和第六BWP相关联。
c)第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同。需要知晓的是,该物理传输信道配置包括但不限于PDCCH的配置、PDSCH的配置、PUCCH的配置或PUSCH的配置。例如,第五BWP中PDCCH的传输配置(传输配置包括但不限于传输速度)与第六BWP中PDCCH的传输配置相同,则视为第五BWP和第六BWP相关联。
d)第五BWP的物理信号配置和第六BWP的物理信号配置相同。需要知晓的是,该物理信号配置包括但不限于调参考信号(demodulation reference signal,DMRS)的配置、信道状态信息参考信号(channel state information reference signal,CSI-RS)的配置、跟踪参考信号(tracking reference signal,TRS)的配置、探测参考信号(sounding reference signal,SRS)的配置等。例如,第五BWP中DMRS的配置和第六BWP中DMRS的配置相同,则视为第五BWP和第六BWP相关联。
e)第五BWP在该第五BWP对应的第一信道带宽内的相对位置与第六BWP在该第六BWP对应的第一信道带宽内的相对位置相同。BWP和信道带宽的相对位置是指BWP的频域资源中心位置与该信道带宽的频域资源中心位置之间的相对位置,或者,BWP的频域资源起始位置与该信道带宽的频域资源起始位置之间的相对位置,或者,指BWP的频域资源偏移值(offset)。例如,请参见图6a所示,以第五BWP的频域资源处于该第五BWP对应的第一信道带宽的频域资源的中间位置(即第五BWP的频域资源中心位置与该第一信道带宽的频域资源中心位置重合),第六BWP的频域资源也在该第六BWP对应的第一信道带宽的频域资源的中间位置(即第六BWP的频域资源中心位置与该第一信道带宽的频域资源中心位置重合),则视为第五BWP和第六BWP相关联。
f)第五BWP的标识与第六BWP的标识相同,其中,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。例如,请参见图6b所示,仅有频域资源位置不同的多个BWP对应同一BWP标识,每个BWP在该BWP标识下具有子标识。在这种情况下,第五BWP的BWP标识和第六BWP的BWP标识均为BWP#0,该第五BWP的子标识为Location#0,该第六BWP的子标识为Location#1。在这种情况下,可以视为第五BWP和第六BWP不同,且第五BWP和第六BWP相关联。
针对两个相关联BWP之间的切换时延和两个不相关联BWP之间的切换时延,需要说明的是,由于基于触发BWP切换的方式不同,BWP切换时延的具体确定方式不同。示意性地, 下面针对BWP切换时延分为:基于物理层信令触发的BWP切换时延,基于RRC信令触发的BWP切换时延的情况,对第一切换时延和第二切换时延进行展开描述。
(一)基于物理层信令触发的BWP切换时延
针对基于物理层信令触发的BWP切换时延的情况,两个不相关联BWP之间的切换时延(即前述第二切换时延)可参见前述表1所示,两个相关联BWP之间的切换时延(即前述第一切换时延)可参见表2所示。
表2
Figure PCTCN2022105195-appb-000002
其中,μ对应不同的SCS,具体地μ为0对应SCS为15KHz,μ为1对应SCS为30KHz,μ为2对应SCS为60KHz,μ为3对应SCS为120KHz。BWP切换时延的Type 1与Type 2根据终端设备上报的能力决定。例如,若终端设备上报能力仅支持BWP切换时延Type 1,则基于物理层触发的BWP切换对应的时延如表1中Type1所示,如果终端设备上报能力仅支持Type 2,则基于物理层触发的BWP切换对应的时延如表中Type2所示。
在这种情况下,当终端设备上报能力为该终端设备仅支持Type1时,当μ为1时,根据表1可确定终端设备在两个不相关联BWP之间进行切换时的切换时延(即前述第二切换时延)为2个slot,而根据表2可确定终端设备在两个相关联BWP之间进行切换时的切换时延为(即前述第一切换时延)为小于2个slot。当终端设备上报能力为该终端设备仅支持Type2时,当μ为1时,根据表1可确定终端设备在两个不相关联BWP之间进行切换时的切换时延(即前述第二切换时延)为5个slot,而根据表2可确定终端设备在两个相关联BWP之间进行切换时的切换时延为(即前述第一切换时延)为小于5个slot。
(二)基于RRC信令触发的BWP切换时延
根据前述公式(1)可知,在这种情况下BWP切换时延由两部分组成:T RRCprocessingDelay为RRC过程引入的时延,T BWPswitchDelayRRC为UE执行BWP切换所需要的时间。终端设备在两个相关联BWP之间切换的第一切换时延小于终端设备在两个不相关联的BWP之间切换的第二切换时延,具体表现在:终端设备在两个相关联BWP之间切换的T RRCprocessingDelay小于在两个不相关联BWP之间切换的T RRCprocessingDelay;或者,终端设备在两个相关联BWP之间切换的T BWPswitchDelayRRC小于在两个不相关联BWP之间切换的T BWPswitchDelayRRC
需要知晓的是,在该第五BWP和第六BWP相关联的情况下,该至少两个SCS相同的第二BWP包括该第五BWP和第六BWP。即可以理解为,该至少两个SCS相同的第二BWP之间互相关联。
在一种可能的实现中,该多个第一信道带宽中包括默认(default)信道带宽。在一个应用场景中,该默认信道带宽用于在终端设备收到多个信道带宽配置信息时,将该默认(default)信道带宽确定为初始工作的信道带宽和/或相应的BWP。在又一种应用场景,当终端设备在当前工作的BWP上长时间没有进行数据传输时,终端设备可以切换回默认的信道带宽和/或 相应的默认的BWP。
其中,该default信道带宽可以是根据通信协议预先设定的,也可以是根据网络设备的指示(例如通过信令指示等)确定的。在一种可选的实施方式中,终端设备接收来自网络设备的指示信息和第二配置信息,根据该指示信息在该至少两个SCS相同的第二信道带宽中确定default信道带宽,并根据该第二配置信息中包括的BWP配置参数在该default信道带宽中确定有效状态的BWP。在另一种可选的实施方式中,终端设备(或网络设备)通过图5所示的方式确定第四信道带宽之后,在与该第四信道带宽的SCS相同的第一信道带宽和该第四信道带宽中确定default信道带宽。
示例性地,在一个应用场景中,多个第一信道带宽包括:信道带宽10、信道带宽11和信道带宽12和信道带宽13。其中,信道带宽10和信道带宽12对应相同的SCS为SCS1,信道带宽11对应SCS2、信道带宽13对应SCS3。第二配置信息包括多套BWP配置参数,其中:BWP#0配置参数中SCS为SCS1,BWP#1的配置参数中SCS为SCS2,BWP#2的配置参数中SCS为SCS3。可见,在此应用场景中第二信道带宽包括:信道带宽10和信道带宽12。根据网络设备的指示确定default信道带宽为信道带宽10。在这种情况下,尽管BWP#0配置参数的SCS与信道带宽12的SCS相同,终端设备也不会根据BWP#0配置参数在信道带宽12中确定BWP#0。终端设备根据第二配置信息中BWP#0配置参数(该配置参数中SCS为SCS1)在仅在信道带宽10(default信道带宽)中确定BWP#0。
通过这样的方式,可以在该应用场景中减少多个信道带宽同时工作而造成的资源浪费的情况,同时也提升了确定BWP的灵活性。
在一个可选的实现中,终端设备接收来自网络设备的指示信息,该指示信息用于指示该至少两个SCS相同的第二BWP中一个第二BWP为有效状态。换而言之,终端设备通过前述第一配置信息和第二配置信息,确定了多个第一BWP,该多个第一BWP中包括至少两个SCS相同的第二BWP之后,终端设备仅能从该至少两个SCS相同的第二BWP中确定一个第二BWP可作为激活BWP的候选,其余的第二BWP处于无效状态(当该第二BWP处于无效状态时,可简单理解为未根据第二配置信息确定该第二BWP)。
综上所述,通过这样的配置方法可以为终端设备配置多个相关联的BWP,通过终端设备在两个相关联BWP之间进行切换的切换时延小于终端设备在两个不相关联BWP之间进行切换的切换时延的方式,降低终端设备的BWP切换时延。
需要说明的是,在具体实施中可以选择附图中的部分步骤进行实施,还可以调整图示中步骤的顺序进行实施,本申请对此不做限定。应理解,执行图示中的部分步骤或调整步骤的顺序进行具体实施,均落在本申请的保护范围内。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。上述接入网设备执行的步骤也可以由不同的通信装置来分别实现。本当网络架构中包括一个或多个分布单元(distributed unit,DU)、一个或多个集中单元(centralized unit,CU)和一个或多个射频单元(RU)时,上述接入网设备执行的步骤可以分别由DU、CU和RU来实现。
请参见图7,图7示出了本申请实施例的一种通信装置700的结构示意图。图7所示的通信装置可用于实现上述配置方法对应的实施例中终端设备的部分或全部功能,或者图7所示的通信装置可用于实现上述配置方法对应的实施例中网络设备的部分或全部功能。
在一个实施例中,图7所示的通信装置可以用于实现上述图3或图5所描述的方法实施 例中终端设备的部分或全部功能。该装置可以是终端设备,也可以是终端设备中的装置,或者是能和终端设备匹配使用的装置。其中,该通信转置还可以为芯片系统。图7所示的通信装置可以包括传输模块701和处理模块702。其中:
传输模块701,用于接收来自网络设备的第一配置信息,该第一配置信息用于配置多个第一信道带宽,该多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽;接收来自网络设备的第二配置信息,该第二配置信息用于配置多个第一带宽部分BWP,该多个第一BWP包括至少两个SCS相同的第二BWP,该第二BWP的SCS与第二信道带宽对应的SCS相同。
在一种可选的实施方式中,该第一配置信息包括第一子配置信息,或第一子配置信息和第二子配置信息;其中,第一子配置信息用于配置至少两个SCS相同的第二信道带宽;或者,第二子配置信息用于配置除第二信道带宽之外的第三信道带宽。
在一种可选的实施方式中,第一子配置信息包括至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。
在一种可选的实施方式中,第一配置信息包括至少两个频域位置,每个频域位置用于指示第一信道带宽的位置。
在一个实施例中,所述传输模块701,用于接收来自网络设备的第三配置信息,所述第三配置信息用于配置多个第一信道带宽,所述多个第一信道带宽中各个第一信道带宽对应的子载波间隔SCS不同;接收来自所述网络设备的第四配置信息,所述第四配置信息用于配置多个第一BWP,所述多个第一BWP与所述多个第一信道带宽相关联,所述多个第一BWP包括至少两个SCS相同的第二BWP。
在一种可选的实施方式中,所述第二BWP的频域资源范围超出所述第二BWP对应的第一信道带宽的频域资源范围,所述处理模块702,用于确定第四信道带宽;其中,所述第四信道带宽的频域资源范围包括所述第二BWP的频域资源范围。
在一种可选的实施方式中,所述第四信道带宽满足以下条件中的一项或多项:所述第四信道带宽的频域资源的起始位置与所述第二BWP的频域资源起始位置相同;或者,所述第四信道带宽的SCS与所述第二BWP的SCS相同;或者,所述第四信道带宽的大小与所述第二BWP对应的第一信道带宽的大小相同;或者,所述第二BWP与所述第四信道带宽的相对位置与第四BWP与所述第二BWP对应的第一信道带宽的相对位置相同,其中所述第四BWP与所述第二BWP的SCS相同。
在一种可选的实施方式中,所述传输模块701,用于接收来自网络设备的指示信息,该指示信息用于指示该至少两个SCS相同的第二BWP中一个第二BWP为有效状态。
在一种可选的实施方式中,所述传输模块701,用于接收来自网络设备的控制信息,该控制信息用于指示第一时刻激活的第五BWP;在第五BWP和第六BWP相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延,该第六BWP为第二时刻激活的BWP,该第二时刻在该第一时刻之前;在该第五BWP和该第六BWP不相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延;其中,该第一切换时延小于该第二切换时延,第五BWP与第六BWP不同。通过实施该可选的实施方式,终端设备在两个关联的BWP之间切换的切换时延小于终端设备在两个不相关联的BWP之间切换的切换时延。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,第五BWP和第六BWP满足以下条件中的一种或多种:第五BWP的带宽大小和第六BWP的带宽大小相同; 或者,第五BWP的SCS和第六BWP的SCS相同;或者,第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同;或者,第五BWP的物理信号配置和第六BWP的物理信号配置相同;或者,第五BWP在第五BWP对应的第一信道带宽内的相对位置与第六BWP在第六BWP对应的第一信道带宽内的相对位置相同;或者,第五BWP的标识与第六BWP的标识相同,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。
在一种可选的实施方式中,在所述第五BWP和所述第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括所述第五BWP和所述第六BWP。
关于上述传输模块701和处理模块702更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
在另一个实施例中,图7所示的通信装置可以用于实现上述图3或图5所描述的方法实施例中网络设备的部分或全部功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能和网络设备匹配使用的装置。其中,该通信转置还可以为芯片系统。图7所示的通信装置可以包括传输模块701和处理模块702。其中:
传输模块701,用于向终端设备发送第一配置信息,所述第一配置信息用于配置多个第一信道带宽,所述多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽;
向所述终端设备发送第二配置信息,所述第二配置信息用于配置多个第一带宽部分BWP,所述多个第一BWP包括至少两个SCS相同的第二BWP,所述第二BWP的SCS与所述第二信道带宽对应的SCS相同。
在一个可能的实现中,所述第一配置信息包括第一子配置信息,或第一子配置信息和第二子配置信息;其中,所述第一子配置信息用于配置所述至少两个SCS相同的第二信道带宽;或者,所述第二子配置信息用于配置除所述第二信道带宽之外的第三信道带宽。
在一个可能的实现中,所述第一子配置信息包括所述至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。
在一个可能的实现中,所述第一配置信息包括至少两个频域位置;每个频域位置用于指示第一信道带宽的位置。
在一个实施例中,传输模块701,用于向终端设备发送第三配置信息,所述第三配置信息用于配置多个第一信道带宽,所述多个第一信道带宽中各个第一信道带宽对应的子载波间隔SCS不同;向所述终端设备发送第四配置信息,所述第四配置信息用于配置多个第一BWP,所述多个第一BWP与所述多个第一信道带宽相关联,所述多个第一BWP包括至少两个SCS相同的第二BWP。
在一个可能的实现中,所述第一BWP的频域资源范围超出所述第一BWP对应的第一信道带宽的频域范围,确定第四信道带宽;其中,所述第四信道带宽的频域资源范围包括所述第一BWP的频域资源范围。
在一个可能的实现中,所述第四信道带宽满足以下条件中的一项或多项:所述第四信道带宽的频域资源的起始位置与所述第一BWP的频域资源起始位置相同;或者,所述第四信道带宽的SCS与所述第一BWP的SCS相同;或者,所述第四信道带宽的大小与所述第一BWP对应的第一信道带宽的大小相同;或者,所述第一BWP与所述第四信道带宽的相对位置与第四BWP与所述第一BWP对应的第一信道带宽的相对位置相同,其中所述第四BWP与所述第一BWP的SCS相同。
在一种可能的实现中,所述传输模块701,用于向所述终端设备发送指示信息,所述指 示信息用于指示所述至少两个SCS相同的第一BWP中的一个第二BWP为有效状态。
在一种可能的实现中,所述传输模块701,用于向所述终端设备发送控制信息,所述控制信息用于指示第一时刻激活的第五BWP,所述第二配置信息包括所述第五BWP的配置信息。在第五BWP和第六BWP相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第一切换时延,该第六BWP为第二时刻激活的BWP,该第二时刻在该第一时刻之前;在该第五BWP和该第六BWP不相关联的情况下,终端设备从第六BWP切换至第五BWP的切换时延为第二切换时延;其中,该第一切换时延小于该第二切换时延,第五BWP与第六BWP不同。
在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,第五BWP和第六BWP满足以下条件中的一种或多种:第五BWP的带宽大小和第六BWP的带宽大小相同;或者,第五BWP的SCS和第六BWP的SCS相同;或者,第五BWP的物理传输信道配置和第六BWP的物理传输信道配置相同;或者,第五BWP的物理信号配置和第六BWP的物理信号配置相同;或者,第五BWP在第五BWP对应的第一信道带宽内的相对位置与第六BWP在第六BWP对应的第一信道带宽内的相对位置相同;或者,第五BWP的标识与第六BWP的标识相同,第五BWP对应该标识下的子标识与第六BWP对应该标识下的子标识不同。在一种可选的实施方式中,在第五BWP和第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括该第五BWP和该第六BWP。
关于上述传输模块701和处理模块702更详细的描述,可参考上述方法实施例中的相关描述,在此不再说明。
请参见图8,图8为本申请提供的一种通信装置800的结构示意图,该通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现上述方法实施例中的方法时,处理器810用于执行上述处理模块702的功能,接口电路820用于执行上述传输模块701的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指 令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,当该计算机执行指令被执行时,使得上述方法实施例中终端设备执行的方法被实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机执行指令,当该计算机执行指令被执行时,使得上述方法实施例中网络设备执行的方法被实现。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当该计算机程序被执行时,使得上述方法实施例中终端设备执行的方法被实现。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当该计算机程序被执行时,使得上述方法实施例中网络设备执行的方法被实现。
本申请实施例还提供一种通信系统,该通信系统包括终端设备或网络设备。其中,终端设备用于执行上述方法实施例中终端设备执行的方法。网络设备用于执行上述方法实施例中网络设备执行的方法。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (25)

  1. 一种配置方法,其特征在于,所述方法包括:
    接收来自网络设备的第一配置信息,所述第一配置信息用于配置多个第一信道带宽,所述多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽;
    接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置多个第一带宽部分BWP,所述多个第一BWP包括至少两个SCS相同的第二BWP,所述第二BWP的SCS与所述第二信道带宽对应的SCS相同。
  2. 根据权利要求1所述方法,其特征在于,
    所述第一配置信息包括第一子配置信息,或第一子配置信息和第二子配置信息;
    其中,所述第一子配置信息用于配置所述至少两个SCS相同的第二信道带宽;
    或者,所述第二子配置信息用于配置除所述第二信道带宽之外的第三信道带宽。
  3. 根据权利要求2所述方法,其特征在于,
    所述第一子配置信息包括所述至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。
  4. 根据权利要求1所述方法,其特征在于,
    所述第一配置信息包括至少两个频域位置;每个频域位置用于指示第一信道带宽的位置。
  5. 一种配置方法,其特征在于,所述方法包括:
    接收来自网络设备的第三配置信息,所述第三配置信息用于配置多个第一信道带宽,所述多个第一信道带宽中每个第一信道带宽所对应的子载波间隔SCS不同;
    接收来自所述网络设备的第四配置信息,所述第四配置信息用于配置多个第一BWP,所述多个第一BWP与所述多个第一信道带宽相关联,所述多个第一BWP包括至少两个SCS相同的第二BWP。
  6. 根据权利要求5所述方法,其特征在于,所述方法还包括:
    所述第二BWP的频域资源范围超出所述第二BWP对应的第一信道带宽的频域资源范围,确定第四信道带宽;其中,所述第四信道带宽的频域资源范围包括所述第二BWP的频域资源范围。
  7. 根据权利要求6所述方法,其特征在于,所述第四信道带宽满足以下条件中的一项或多项:
    所述第四信道带宽的频域资源的起始位置与所述第二BWP的频域资源起始位置相同;
    或者,所述第四信道带宽的SCS与所述第二BWP的SCS相同;
    或者,所述第四信道带宽的大小与所述第二BWP对应的第一信道带宽的大小相同;
    或者,所述第二BWP与所述第四信道带宽的相对位置与第四BWP与所述第二BWP对应的第一信道带宽的相对位置相同,其中所述第四BWP与所述第二BWP的SCS相同。
  8. 根据权利要求1-7中任一项所述方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的指示信息,所述指示信息用于指示所述至少两个SCS相同的第二BWP中的一个第二BWP为有效状态。
  9. 根据权利要求1-8中任一项所述方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的控制信息,所述控制信息用于指示第一时刻激活的第五BWP;
    所述第五BWP和第六BWP相关联,从所述第六BWP切换至所述第五BWP的切换时延为第一切换时延,所述第六BWP为第二时刻激活的BWP,所述第二时刻在所述第一时刻之前;
    所述第五BWP和所述第六BWP不相关联,从所述第六BWP切换至所述第五BWP的切换时延为第二切换时延;
    其中,所述第一切换时延小于所述第二切换时延,所述第五BWP与所述第六BWP不同。
  10. 根据权利要求9所述方法,其特征在于,所述第五BWP和所述第六BWP相关联,所述第五BWP和所述第六BWP满足以下条件中的一种或多种:
    所述第五BWP的带宽大小和所述第六BWP的带宽大小相同;
    或者,所述第五BWP的SCS和所述第六BWP的SCS相同;
    或者,所述第五BWP的物理传输信道配置和所述第六BWP的物理传输信道配置相同;
    或者,所述第五BWP的物理信号配置和所述第六BWP的物理信号配置相同;
    或者,所述第五BWP在所述第五BWP对应的第一信道带宽内的相对位置与所述第六BWP在所述第六BWP对应的第一信道带宽内的相对位置相同;
    或者,所述第五BWP的标识与所述第六BWP的标识相同,所述第五BWP对应所述标识下的子标识与所述第六BWP对应所述标识下的子标识不同。
  11. 根据权利要求9或10所述方法,其特征在于,在所述第五BWP和所述第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括所述第五BWP和所述第六BWP。
  12. 一种配置方法,其特征在于,所述方法包括:
    向终端设备发送第一配置信息,所述第一配置信息用于配置多个第一信道带宽,所述多个第一信道带宽包括至少两个子载波间隔SCS相同的第二信道带宽;
    向所述终端设备发送第二配置信息,所述第二配置信息用于配置多个第一带宽部分BWP,所述多个第一BWP包括至少两个SCS相同的第二BWP,所述第二BWP的SCS与所述第二信道带宽对应的SCS相同。
  13. 根据权利要求12所述方法,其特征在于,
    所述第一配置信息包括第一子配置信息,或第一子配置信息和第二子配置信息;
    其中,所述第一子配置信息用于配置所述至少两个SCS相同的第二信道带宽;
    或者,所述第二子配置信息用于配置除所述第二信道带宽之外的第三信道带宽。
  14. 根据权利要求13所述方法,其特征在于,
    所述第一子配置信息包括所述至少两个SCS相同的第二信道带宽对应的至少两个频域位置、至少两个频域起始位置或至少两个频域偏移值中的一项或多项。
  15. 根据权利要求12所述方法,其特征在于,
    所述第一配置信息包括至少两个频域位置;每个频域位置用于指示第一信道带宽的位置。
  16. 一种配置方法,其特征在于,所述方法包括:
    向终端设备发送第三配置信息,所述第三配置信息用于配置多个第一信道带宽,所述多个第一信道带宽中每个第一信道带宽对应的子载波间隔SCS不同;
    向所述终端设备发送第四配置信息,所述第四配置信息用于配置多个第一BWP,所述多个第一BWP与所述多个第一信道带宽相关联,所述多个第一BWP包括至少两个SCS相同的第二BWP。
  17. 根据权利要求16所述方法,其特征在于,所述方法还包括:
    所述第一BWP的频域资源范围超出所述第一BWP对应的第一信道带宽的频域范围,确定第四信道带宽;其中,所述第四信道带宽的频域资源范围包括所述第一BWP的频域资源范围。
  18. 根据权利要求17所述方法,其特征在于,所述第四信道带宽满足以下条件中的一项或多项:
    所述第四信道带宽的频域资源的起始位置与所述第一BWP的频域资源起始位置相同;
    或者,所述第四信道带宽的SCS与所述第一BWP的SCS相同;
    或者,所述第四信道带宽的大小与所述第一BWP对应的第一信道带宽的大小相同;
    或者,所述第一BWP与所述第四信道带宽的相对位置与第四BWP与所述第一BWP对应的第一信道带宽的相对位置相同,其中所述第四BWP与所述第一BWP的SCS相同。
  19. 根据权利要求12-18任一项所述方法,其特征在于,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示所述至少两个SCS相同的第一BWP中的一个第二BWP为有效状态。
  20. 根据权利要求12-19任一项所述方法,其特征在于,所述方法还包括:
    向所述终端设备发送控制信息,所述控制信息用于指示第一时刻激活的第五BWP;
    所述第五BWP和第六BWP相关联,从所述第六BWP切换至所述第五BWP的切换时延为第一切换时延,所述第六BWP为第二时刻激活的BWP,所述第二时刻在所述第一时刻之前;
    所述第五BWP和所述第六BWP不相关联,从所述第六BWP切换至所述第五BWP的切换时延为第二切换时延;
    其中,所述第一切换时延小于所述第二切换时延,所述第五BWP与所述第六BWP不同。
  21. 根据权利要求20所述方法,其特征在于,所述第五BWP和所述第六BWP相关联,所述第五BWP和所述第六BWP满足以下条件中的一种或多种:
    所述第五BWP的带宽大小和所述第六BWP的带宽大小相同;
    或者,所述第五BWP的SCS和所述第六BWP的SCS相同;
    或者,所述第五BWP的物理传输信道配置和所述第六BWP的物理传输信道配置相同;
    或者,所述第五BWP的物理信号配置和所述第六BWP的物理信号配置相同;
    或者,所述第五BWP在所述第五BWP对应的第一信道带宽内的相对位置与所述第六BWP在所述第六BWP对应的第一信道带宽内的相对位置相同;
    或者,所述第五BWP的标识与所述第六BWP的标识相同,所述第五BWP对应所述标识下的子标识与所述第六BWP对应所述标识下的子标识不同。
  22. 根据权利要求20或21所述方法,其特征在于,在所述第五BWP和所述第六BWP相关联的情况下,所述至少两个SCS相同的第二BWP包括所述第五BWP和所述第六BWP。
  23. 一种通信装置,其特征在于,包括用于执行如权利要求1-11中任一项所述方法的模块;或者,包括用于执行如权利要求12-22中任一项所述方法的模块。
  24. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-11或者12-22中任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-11或者12-22中任一项所述的方法。
PCT/CN2022/105195 2021-07-23 2022-07-12 一种配置方法及通信装置 WO2023001024A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22845189.4A EP4358618A1 (en) 2021-07-23 2022-07-12 Configuration method and communication apparatus
US18/414,407 US20240154845A1 (en) 2021-07-23 2024-01-16 Configuration method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110839775.8 2021-07-23
CN202110839775.8A CN115701191A (zh) 2021-07-23 2021-07-23 一种配置方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/414,407 Continuation US20240154845A1 (en) 2021-07-23 2024-01-16 Configuration method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2023001024A1 true WO2023001024A1 (zh) 2023-01-26

Family

ID=84978980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105195 WO2023001024A1 (zh) 2021-07-23 2022-07-12 一种配置方法及通信装置

Country Status (4)

Country Link
US (1) US20240154845A1 (zh)
EP (1) EP4358618A1 (zh)
CN (1) CN115701191A (zh)
WO (1) WO2023001024A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087470A1 (zh) * 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
US20200296725A1 (en) * 2017-06-13 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Bandwidth part configuration method, network device, and terminal
WO2021026926A1 (zh) * 2019-08-15 2021-02-18 华为技术有限公司 通信方法及终端设备、网络设备
CN112997564A (zh) * 2021-02-02 2021-06-18 北京小米移动软件有限公司 带宽部分切换方法、装置及通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200296725A1 (en) * 2017-06-13 2020-09-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Bandwidth part configuration method, network device, and terminal
WO2020087470A1 (zh) * 2018-11-01 2020-05-07 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2021026926A1 (zh) * 2019-08-15 2021-02-18 华为技术有限公司 通信方法及终端设备、网络设备
CN112997564A (zh) * 2021-02-02 2021-06-18 北京小米移动软件有限公司 带宽部分切换方法、装置及通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU, SAMSUNG: "Correction on description of subCarrierSpacing in BWP", 3GPP DRAFT; R2-2106723, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210519 - 20210527, 26 May 2021 (2021-05-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052014402 *
QUALCOMM INCORPORATED: "RRM issues in BWP switching", 3GPP DRAFT; R4-1807861 RRM ISSUES IN BWP SWITCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051447394 *

Also Published As

Publication number Publication date
EP4358618A1 (en) 2024-04-24
CN115701191A (zh) 2023-02-07
US20240154845A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2019096277A1 (zh) 用于多载波通信的载波切换方法、装置和系统
WO2019029510A1 (zh) 带宽部分的配置方法、网络设备及终端
WO2022028311A1 (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
WO2019062542A1 (zh) 信息传输的方法、终端设备和网络设备
EP3462780B1 (en) Frequency band processing method and device
US10819397B2 (en) Information transmission method and related device
CN108811125A (zh) 一种通信方法、网络设备及用户设备
WO2019029516A1 (zh) 频带状态处理方法及设备
JP2020502831A (ja) 信号送信方法、端末機器およびネットワーク機器
CN114365537A (zh) 一种上行传输的方法及装置
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
CN109150479B (zh) 一种通信方法及装置
JP7410190B2 (ja) クロスキャリア伝送方法及び装置、端末機器
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2019047553A1 (zh) 一种时隙格式指示方法、设备及系统
US20230140502A1 (en) Beam indication method and communications apparatus
CN114095981A (zh) 一种小区状态切换方法及装置
WO2020015715A1 (zh) 一种数据发送的方法和装置
WO2021031018A1 (zh) 一种通信方法及装置
WO2023001024A1 (zh) 一种配置方法及通信装置
WO2018228518A1 (zh) 一种通信方法及装置
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
WO2023143011A1 (zh) 一种通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845189

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022845189

Country of ref document: EP

Effective date: 20240117

NENP Non-entry into the national phase

Ref country code: DE