WO2019096277A1 - 用于多载波通信的载波切换方法、装置和系统 - Google Patents

用于多载波通信的载波切换方法、装置和系统 Download PDF

Info

Publication number
WO2019096277A1
WO2019096277A1 PCT/CN2018/116032 CN2018116032W WO2019096277A1 WO 2019096277 A1 WO2019096277 A1 WO 2019096277A1 CN 2018116032 W CN2018116032 W CN 2018116032W WO 2019096277 A1 WO2019096277 A1 WO 2019096277A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink carrier
carrier
information
uplink
cell
Prior art date
Application number
PCT/CN2018/116032
Other languages
English (en)
French (fr)
Inventor
刘哲
汪凡
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18879964.7A priority Critical patent/EP3706353B1/en
Priority to BR112020009467-6A priority patent/BR112020009467A2/pt
Priority to EP23158140.6A priority patent/EP4221047A3/en
Priority to JP2020527092A priority patent/JP7055869B2/ja
Publication of WO2019096277A1 publication Critical patent/WO2019096277A1/zh
Priority to US16/874,761 priority patent/US11540278B2/en
Priority to US18/064,174 priority patent/US11902953B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a multi-carrier communication technology in a wireless communication system.
  • a sounding reference signal is introduced in a Long Term Evolution (LTE) system.
  • SRS can be used to determine uplink channel quality.
  • a network device for example, a base station
  • CC component carrier
  • a terminal for example, a user equipment UE
  • M M ⁇ N uplink carriers
  • LTE Rel-14 introduces transmitting SRS on the NM TDD carriers, that is, supporting SRS carrier switching, and the UE may
  • One of the uplink carriers (which may be referred to as a switching-from UL CC) is switched to one of the NM carriers (which may be referred to as a destination uplink carrier (switching-to UL CC) to transmit the SRS. .
  • uplink resource sharing is discussed, and the shared uplink resources can be regarded as supplemental uplink (SUL) resources.
  • SUL Supplemental uplink
  • the embodiments of the present application provide a wireless communication method, apparatus, and system, which can clarify a source uplink carrier of an SRS handover and a destination uplink carrier of an SRS handover for a cell including a SUL, and improve reliability of SRS transmission.
  • an embodiment of the present application provides a wireless communication method and a communication device.
  • the communication device can be, for example, an integrated circuit, a terminal, a wireless device, a circuit module, and the like.
  • the communication device receives configuration information including the first uplink carrier information and the second uplink carrier information, and determines a source uplink carrier and a destination uplink carrier of the SRS handover according to the configuration information.
  • the first uplink carrier information is used to indicate that the first uplink carrier is a source uplink carrier of the SRS handover.
  • the second uplink carrier information is used to indicate that the second uplink carrier is the destination uplink carrier of the SRS handover.
  • the communication device may determine to borrow a resource of the SUL (eg, RF capability). It is also a resource (such as RF capability) of non-SUL (sometimes referred to as primary uplink, PUL).
  • a resource of the SUL eg, RF capability
  • non-SUL sometimes referred to as primary uplink, PUL.
  • the communication device can determine whether to switch to the SUL or the non-SUL to transmit the SRS, and ensure the reliability of the SRS transmission.
  • the communications device is configured to receive a DCI carrying the aperiodic A-SRS trigger indication information and the uplink carrier identifier information, to indicate which specific uplink carrier the A-SRS triggers.
  • the destination uplink carrier of the A-SRS handover is determined according to the second uplink carrier information, the A-SRS trigger indication information, and the uplink carrier identifier information, and the communication device can also determine the SRS switch in a special SRS scenario.
  • the source uplink carrier and the destination uplink carrier of the SRS handover can be applied to more scenarios.
  • the communication device may comprise corresponding modules or means for performing the above method design, the modules or means may be software, and/or hardware.
  • the communication device of the first aspect includes a receiving module and a determining module.
  • the receiving module is configured to receive configuration information, where the configuration information includes first uplink carrier information and second uplink carrier information.
  • the first uplink carrier information is used to indicate that the first uplink carrier is the source uplink carrier of the SRS handover, and the second uplink carrier information is used to indicate that the second uplink carrier is the destination uplink carrier of the SRS handover; the first uplink carrier and the second uplink.
  • At least one of the carriers belongs to a cell that includes a supplemental uplink SUL resource.
  • the determining module is configured to determine a source uplink carrier and a destination uplink carrier of the SRS handover according to the first uplink carrier information and the second uplink carrier information in the configuration information.
  • the receiving module is further configured to receive the downlink control information DCI, where the DCI carries the aperiodic sounding reference signal A-SRS triggering indication information and the uplink carrier identifier, where the uplink carrier identifier is used to indicate the second uplink carrier.
  • determining, by the determining module, the destination uplink carrier of the SRS handover according to the configuration information includes: determining, by the determining module, the destination uplink carrier of the SRS handover according to the second uplink carrier information, the A-SRS trigger indication information, and the uplink carrier identifier.
  • an embodiment of the present application provides a wireless communication method and a communication device.
  • the communication device can be, for example, an integrated circuit, a network device (e.g., a base station), a wireless device, a circuit module, and the like.
  • the communication device transmits configuration information of the SRS including the first uplink carrier information and the second uplink carrier information.
  • the configuration information includes the first uplink carrier information and the second uplink carrier information, where the first uplink carrier information is used to indicate that the first uplink carrier is the source uplink carrier of the SRS handover, and the second uplink carrier information is used to indicate the second uplink.
  • the carrier is a destination uplink carrier of the SRS handover; at least one of the first uplink carrier and the second uplink carrier belongs to a cell including the supplemental uplink resource SUL.
  • the communications device is further configured to send the downlink control information DCI, where the DCI carries the aperiodic sounding reference signal A-SRS triggering indication information and the uplink carrier identifier, where the uplink carrier identifier is used to indicate the second uplink carrier.
  • the communication device may comprise corresponding modules or means for performing the above method design, the modules or means may be software, and/or hardware.
  • the communication device of the second aspect includes a sending module, where the sending module is configured to send configuration information of the SRS, where the configuration information includes the first uplink carrier information and the second uplink carrier information.
  • the first uplink carrier information is used to indicate that the first uplink carrier is the source uplink carrier of the SRS handover, and the second uplink carrier information is used to indicate that the second uplink carrier is the destination uplink carrier of the SRS handover; the first uplink carrier and the second uplink.
  • At least one of the carriers belongs to a cell that includes a supplemental uplink SUL.
  • the sending module is further configured to send the downlink control information DCI, where the DCI carries the aperiodic sounding reference signal A-SRS triggering indication information and the uplink carrier identifier, where the uplink carrier identifier is used to indicate the second uplink carrier.
  • the communications apparatus may further include a receiving module, configured to receive uplink information sent by the terminal.
  • At least one of the first uplink carrier information and the second uplink carrier information includes a cell identifier and an uplink carrier identifier. Since the SUL Cell includes multiple uplink carriers (for example, two uplink carriers), not only the cell identifier but also the uplink carrier identifier is added to the first uplink carrier information and/or the second uplink carrier information, so that the source uplink of the SRS handover can be determined.
  • the destination uplink carrier of the carrier and/or SRS handover is which uplink carrier in the cell.
  • the second uplink carrier is a non-SUL (sometimes may also be referred to as a primary uplink primary uplink, or an auxiliary uplink) Road, etc.) carrier.
  • the downlink carriers of the SUL carrier and the TDD carrier are at different frequency points, and there is no channel reciprocity, and there is no physical uplink shared channel (PUSCH)/
  • PUSCH Physical Uplink Share Channel
  • the SRS cannot be acquired on the SUL carrier, and the downlink channel condition of the SUL Cell cannot be obtained.
  • the switching-to UL CC is a non-SUL carrier that can be predefined (eg, by protocol convention, pre-configuration, or other means), so that the downlink channel condition of the SUL Cell can be obtained through the configured SRS.
  • the non-PUCCH carrier (which may also be referred to as a PUCCH less carrier) of the first uplink carrier may avoid the PUCCH. Impact.
  • At least one of the first uplink carrier information and the second uplink carrier information is a new carrier indication domain NCIF identifier, and the NCIF identifier is used to indicate the first uplink carrier and/or the second uplink carrier, NCIF
  • the source uplink carrier of the SRS handover and the destination uplink carrier of the SRS handover can be flexibly indicated.
  • the NCIF identifier includes a cell identifier and an uplink carrier identifier, where the NCIF identifier includes not only the cell identifier but also the uplink carrier identifier, and therefore, the source uplink carrier and/or the SRS switch destination of the SRS handover may be determined based on the NCIF.
  • the uplink carrier is specifically which uplink carrier in the cell.
  • the configuration information is further used to indicate an uplink carrier (eg, a non-PUSCH/PUCCH carrier, or a PUSCH/PUCCH less carrier) that does not transmit the PUSCH/PUCCH, where the information block of the UE group level DCI is located,
  • the information block of the UE group-level DCI includes at least one of SRS power control information, A-SRS trigger indication information, and uplink carrier identification information that does not transmit the PUSCH/PUCCH carrier, and only the uplink that does not transmit the PUSCH/PUCCH needs to be indicated in the configuration information.
  • the carrier is located at the location of the information block of the UE group-level DCI, and the UE can determine the source uplink carrier of the SRS handover and the destination uplink carrier of the SRS handover according to the information in the information block, thereby saving the overhead of configuration information.
  • the configuration information further includes a group index and an intra-group carrier index where the uplink carrier that does not transmit the PUSCH/PUCCH is located, and when the uplink carrier that does not transmit the PUSCH/PUCCH is more, the PUSCH/PUCCH may not be transmitted.
  • the uplink carrier is grouped, and the group index and the intra-group carrier index are set in the configuration information, and the UE can quickly determine the source uplink carrier of the SRS handover and the destination uplink carrier of the SRS handover according to the group index and the intra-group carrier index.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor and an instruction stored on the memory and operable on the processor, where the processor executes the instruction to enable the communication device to implement The method of any of the first or second aspect.
  • the communication device may include a transceiver unit.
  • the present application provides a computer storage medium comprising instructions which, when executed on a computer, cause the computer to perform the method of any of the first or second aspects.
  • the present application provides a computer program product that, when run on a computer, causes the computer to perform the methods described in the various aspects above.
  • FIG. 1 is a schematic diagram of a possible radio access network according to an embodiment of the present application
  • FIG. 2 is a schematic diagram showing an example of a structure of a communication system
  • FIG. 3 shows a schematic diagram of an SRS carrier switching scheme
  • FIG. 4 is a flowchart of a method for wireless communication according to an embodiment of the present application.
  • 5 to 9 respectively show schematic diagrams of an SRS carrier switching scheme
  • Figure 10 shows a schematic diagram of a SUL Cell containing a plurality of NCIF markers
  • FIG. 11 is a flowchart of a method for wireless communication according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a network device according to the present application.
  • FIG. 13 is a schematic structural diagram of a terminal provided by the present application.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency division multiple access
  • a CDMA network can implement wireless technologies such as Universal Terrestrial Radio Access (UTRA), CDMA2000, and the like.
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and CDMA and other variants.
  • a TDMA network can implement a wireless technology such as the Global System for Mobile Communications (GSM).
  • GSM Global System for Mobile Communications
  • the OFDMA network can implement wireless technologies such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (WIFI), IEEE 802.16 (WiMAX), IEEE 802.20, and the like.
  • E-UTRA may include multiple versions of LTE, LTE-A, and the like.
  • the application can also be applied to a 5G network, a subsequent evolution network, or a combination of multiple networks.
  • FIG. 1 is a schematic diagram of a possible radio access network (RAN) for an embodiment of the present application.
  • the RAN includes one or more network devices 20.
  • the radio access network can be connected to a core network (CN).
  • the network device 20 can be any device having a wireless transceiving function.
  • the network device 20 includes, but is not limited to, a base station (eg, a base station BS, a base station NodeB, an evolved base station eNodeB or eNB, a base station gNodeB or gNB in a fifth generation 5G communication system, a base station in a future communication system, and a WiFi system).
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, and the like.
  • a plurality of base stations can support the networks of the same technology mentioned above, and can also support the networks of the different technologies mentioned above.
  • the base station may include one or more co-site or non-co-located transmission receiving points (TRPs).
  • the network device 20 may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the network device 100 can also be a server, a wearable device, or an in-vehicle device or the like.
  • the network device 20 will be described as an example of a base station.
  • the plurality of network devices 20 may be the same type of base station or different types of base stations.
  • the base station can communicate with the terminal 10 or with the terminal 10 via the relay station.
  • the terminal 10 can support communication with multiple base stations of different technologies.
  • the terminal can support communication with a base station supporting the LTE network, can also support communication with a base station supporting the 5G network, and can also support the base station with the LTE network and the 5G network. Dual connectivity of the base station.
  • the terminal 10 is a device with wireless transceiving function that can be deployed on land, including indoors or outdoors, handheld, wearable or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (such as airplanes, balloons). And satellites, etc.).
  • the terminal device may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • a terminal may also be called a terminal device, a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, and a terminal.
  • Equipment, wireless communication equipment, UE proxy or UE device, etc. The terminal can also be fixed or mobile.
  • FIG. 2 is a schematic diagram showing an architecture of a communication system.
  • a network device in a radio access network RAN is a base station (such as a gNB) of a CU and a DU separation architecture.
  • the RAN can be connected to the core network (for example, it can be the core network of LTE, or the core network of 5G, etc.).
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • the CU and DU can be physically separated or deployed together.
  • the function of the RAN terminates at the CU. Multiple DUs can share one.
  • a DU can also be connected to multiple CUs (not shown).
  • the CU and the DU can be connected through an interface, for example, an F1 interface.
  • the CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the packet data convergence protocol (PDCP) layer and the radio resource control (RRC) layer are set in the CU, and radio link control (RLC), media access control.
  • the functions of the (Media Access Control, MAC) layer, the physical layer, and the like are set in the DU.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • RLC radio link control
  • the functions of the (Media Access Control, MAC) layer, the physical layer, and the like are set in the DU.
  • the division of the CU and DU processing functions according to this protocol layer is merely an example, and may be divided in other manners.
  • a CU or a DU can be divided into functions having more protocol layers.
  • a CU or a DU can also be divided into partial processing functions with a protocol layer.
  • some functions of the RLC layer and functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU.
  • the functions of the CU or DU can also be divided according to the type of service or other system requirements. For example, according to the delay division, the function that needs to meet the delay requirement in the processing time is set in the DU, and the function that does not need to meet the delay requirement is set in the CU.
  • the network architecture shown in Figure 2 can be applied to a 5G communication system, which can also share one or more components or resources with an LTE system.
  • the CU may also have one or more functions of the core network.
  • One or more CUs can be set centrally and also separated.
  • the CU can be set to facilitate centralized management on the network side.
  • the DU can have multiple RF functions or remotely set the RF function.
  • the function of the CU can be implemented by one entity, and the control plane (CP) and the user plane (UP) can be further separated, that is, the control plane (CU-CP) and the user plane (CU-UP) of the CU can be different functions.
  • the entity implements, and the CU-CP and CU-UP can be coupled with the DU to jointly perform the functions of the base station.
  • the “communication device” may be the network device (for example, a base station, a DU, or a CU) in the above-mentioned FIG. 1 and FIG. 2, or a terminal, or may be a component of a network device or a terminal (for example, an integrated circuit, a chip, etc.). Or other communication modules.
  • FIG. 3 shows a schematic diagram of an SRS carrier switching scheme.
  • the UE RF needs two orthogonal frequency division multiplexing (OFDM) symbols, CC2 is switching-to UL CC, and CC1 is switching-from UL CC, when the UE switches from CC1 to CC2.
  • OFDM orthogonal frequency division multiplexing
  • the UE may not transmit a physical uplink shared channel (PUSCH) from the symbol 11-13 on the subframe N corresponding to the CC1 to the symbol 0-1 on the subframe N+1.
  • PUSCH physical uplink shared channel
  • a cell may refer to a coverage area of a base station and/or a base station subsystem serving a coverage area.
  • the coverage area of the eNB may be a macro cell, a micro cell, a pico cell, or other type of cell.
  • the macro cell can cover a relatively large geographical area, and the micro cell can cover a relatively small geographical area and the like.
  • a base station can support one or more cells.
  • one cell serving it may include one downlink carrier and one uplink carrier (e.g., an LTE network). After the SUL resource is introduced, the cell serving the terminal may also include one downlink carrier and multiple uplink carriers.
  • one cell may include one downlink carrier and two uplink carriers.
  • a SUL resource refers to a transmission in which only uplink resources are used for the current communication system. For example, for one carrier, only uplink resources are used for transmission.
  • a fifth generation (5G) mobile communication system also referred to as an NR communication system
  • carrier A is used only for uplink transmission of NR and not for downlink transmission, or carrier A is used for downlink transmission of LTE communication system. If it is not used for downlink transmission of NR, then the carrier A is a SUL resource.
  • a SUL cell is sometimes referred to as a cell including a SUL, and is a cell including a SUL resource.
  • a carrier wave is a radio wave of a specific frequency and is an electromagnetic wave that can be modulated in frequency, amplitude, or phase to transmit speech, music, images, or other signals.
  • An uplink resource can be understood as a carrier (including a carrier in a non-CA scenario and a carrier in a CA scenario), that is, the uplink resource can be a part of the carrier for uplink transmission, or the uplink resource can also be understood as a cell (including a CA scenario).
  • the lower cell and the cell in the non-CA scenario) are used for uplink transmission, that is, the uplink resource may be a part of the cell for uplink transmission.
  • the CC in the CA scenario may be a primary CC or a secondary CC
  • the cell in the CA scenario may be a primary cell (PCell) or a secondary cell (Scell).
  • the uplink resource may also be referred to as an uplink carrier.
  • the part of the carrier or the cell used for downlink transmission can be understood as a downlink resource or a downlink carrier.
  • a frequency resource used for uplink transmission on a carrier can be understood as the uplink resource or an uplink carrier; a frequency resource used for downlink transmission on a carrier can be understood as a downlink resource or a downlink carrier.
  • a time domain resource used for uplink transmission on a carrier can be understood as the uplink resource or an uplink carrier; a time domain resource used for downlink transmission on a carrier can be understood as a downlink resource or a downlink carrier.
  • FIG. 4 is a flowchart of a method for wireless communication according to an embodiment of the present application, and the method may be applied to the network shown in FIG. 1 and FIG.
  • the network device sends configuration information to the UE.
  • the configuration information includes information of at least two uplink carriers.
  • the first uplink carrier information and the second uplink carrier information are used, where the first uplink carrier information is used to indicate that the first uplink carrier is the source uplink carrier of the SRS handover, and the second uplink carrier information is used to indicate that the second uplink carrier is the SRS switch.
  • the destination uplink carrier; at least one of the first uplink carrier and the second uplink carrier belongs to a cell that includes the SUL resource.
  • the configuration information further includes configuration information of the SRS of the UE on the second uplink carrier, configured to configure time domain, frequency domain, and code domain information of the UE SRS transmission.
  • the configuration information may be specific instruction information, or may be carried in Radio Resource Control (RRC) information (eg, RRC connection setup signaling, RRC connection re-establishment signaling, RRC connection reconfiguration signaling, etc.) or Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the cell in which the source uplink carrier of the SRS handover is located is the handover source cell, and the destination uplink carrier of the SRS handover is the handover destination cell.
  • the cell 1 is a SUL cell, and the cell 1 includes a 1.8G SUL uplink carrier and a 3.5G UL uplink.
  • the first uplink carrier information may include information indicating the cell 1 and the 3.5G UL uplink carrier. That is, the first uplink carrier information includes information indicating the source cell of the handover and information of the source carrier.
  • FIG. 5 the cell in which the source uplink carrier of the SRS handover is located.
  • the second uplink carrier information may include the cell 1 and the 3.5G UL uplink carrier.
  • the information, that is, the second carrier information includes information indicating the target cell of the handover and information of the destination carrier.
  • At least one of the first uplink carrier information and the second uplink carrier information includes a cell identifier and an uplink carrier identifier.
  • the cell identifier is used to identify a cell, for example, a cell index, a secondary cell index (SCellIndex), or other information that can be used to identify a cell.
  • the uplink carrier identifier is used to identify a carrier, such as a component carrier index (CC index), an uplink index (UL index), a secondary cell SUL uplink index (SCellSULIndex), or other information that can be used to identify a carrier.
  • CC index component carrier index
  • UL index uplink index
  • SCellSULIndex secondary cell SUL uplink index
  • the SCellSULIndex is an identifier of the uplink carrier, and the present application does not limit the manner and name of the cell identifier and the uplink carrier identifier.
  • the information indicating the source cell of the handover may be a cell identifier, such as a cell index or a secondary cell index. Since there are two uplink carriers in the source cell 1, and one UL uplink carrier, one SUL uplink carrier.
  • the information indicating the source carrier may be a carrier identifier indicating whether the source carrier is a 1.8G SUL uplink carrier or a 3.5G UL uplink carrier.
  • the carrier identification may indicate whether the source carrier is a UL carrier or a SUL carrier. If the indication is that the source carrier is a UL carrier, it can be known that the source carrier of the handover is a 3.5G UL uplink carrier. If the source carrier is a SUL carrier, it can be known that the source carrier of the handover is a 1.8G SUL uplink carrier. It is similar in the example described in FIG. 6, and will not be described again.
  • the method of cell identity and uplink carrier identification may be used to indicate the source uplink carrier of the SRS handover and/or the destination uplink carrier of the SRS handover.
  • the cell 1 is a handover source cell, and the cell 1 includes two uplink carriers: a 1.8G SUL uplink carrier and a 3.5G UL uplink carrier, where the 3.5G UL uplink carrier is a source of SRS handover.
  • the uplink carrier, the first uplink carrier information includes the identifier of the cell 1 and the identifier of the 3.5G UL uplink carrier.
  • the first uplink carrier information may use the information of the SCellIndex and the SCellSULIndex to indicate the source uplink carrier of the SRS handover.
  • the cell 2 is a handover target cell, and the cell 2 includes an uplink carrier of 3.5 G UL. Therefore, the identifier of the cell 2 may be included in the second uplink carrier information.
  • the second uplink carrier information may use SCellIndex to indicate the source uplink carrier of the SRS handover.
  • the cell 1 is a handover target cell, and the cell 1 includes two uplink carriers: a 1.8G SUL uplink carrier and a 3.5G UL uplink carrier, wherein the 3.5G UL uplink carrier is used for the purpose of SRS handover.
  • the uplink carrier, the second uplink carrier information includes the identifier of the cell 1 and the identifier of the 3.5G UL uplink carrier.
  • the second uplink carrier information may use the information of the SCellIndex and the SCellSULIndex to indicate the destination uplink carrier of the SRS handover.
  • the cell 2 is a handover source cell, and the cell 2 includes an uplink carrier of 3.5G UL. Therefore, the first uplink carrier information may include the identifier of the cell 2.
  • the first uplink carrier information may use the SCellIndex to indicate the source uplink carrier of the SRS handover. .
  • the cell 2 is a handover source cell, and the cell 2 includes two uplink carriers: a 1.8G SUL uplink carrier and a 3.5G UL uplink carrier, where the 3.5G UL uplink carrier is a source of SRS handover.
  • the uplink carrier, the first uplink carrier information includes the identifier of the cell 2 and the identifier of the 3.5G UL uplink carrier.
  • the first uplink carrier information may use the information of the SCellIndex and the SCellSULIndex to indicate the source uplink carrier of the SRS handover.
  • the cell 1 is a handover destination carrier, and the cell 1 includes two uplink carriers: a 1.8G SUL uplink carrier and a 3.5G UL uplink carrier, wherein the 1.8G SUL uplink carrier is the destination uplink carrier of the SRS handover, and therefore, the second The uplink carrier information includes the identifier of the cell 1 and the identifier of the 1.8G SUL uplink carrier.
  • the second uplink carrier information may use two information, SCellInde and SCellSULIndex, to indicate the destination uplink carrier of the SRS handover.
  • the switching-from UL CC indicated by the SCell index is a SUL Cell
  • an additional SCellSULindex field is needed to indicate the switching-from UL CC. If the switching-to UL CC is a SUL Cell and the SRS needs to be transmitted on the SUL and non-SUL, then two switching-from UL CCs need to be configured.
  • the uplink carrier identification information of the second uplink carrier may also indicate the destination uplink carrier of the SRS handover by using the SCellIndex+resource configuration manner.
  • the SCellIndex+radioResourceConfigDedicatedSCell cell jointly indicates that the second uplink carrier is The 3.5G UL, where the radioResourceConfigDedicatedSCell includes the SRS configuration information on the 3.5G UL and some other UE-level configuration information; the SCellIndex+SULradioResourceConfigDedicatedSCell cell jointly indicates that the second uplink carrier is 1.8G SUL, and the SULradioResourceConfigDedicatedSCell includes the 1.8G SUL.
  • SRS configuration information and some other UE level configuration information are examples of the SCellIndex+resourceConfigDedicatedSCell cell.
  • the second uplink carrier is a non-SUL carrier.
  • the non-SUL carrier is an uplink carrier in a 5G system, for example, an NR dedicate UL carrier.
  • the non-SUL carrier in the cell including the SUL may be defined as the second uplink carrier in a protocol pre-defined manner, that is, the non-SUL carrier in the cell including the SUL defaults to the destination uplink carrier of the SRS handover.
  • the SCell is a SUL Cell
  • the SCell includes one TDD carrier and one SUL carrier, and the downlink carriers of the SUL carrier and the TDD carrier are at different frequency points, and there is no channel reciprocity, and there is no PUSCH/physical uplink control channel (physical uplink).
  • the control channel (PUCCH) transmits the SUL cell.
  • the SRS configured on the SUL carrier cannot obtain the downlink channel condition of the SUL cell.
  • the protocol can be pre-configured.
  • the switching-to UL CC is defined as a non-SUL, such as the 3.5G UL carrier of cell 1 as described in FIG.
  • the serving cell in which the first uplink carrier is located is a cell that includes the SUL
  • the first uplink carrier is a non-PUCCH carrier, that is, the uplink carrier in which the PUCCH transmission is not configured in the cell that includes the SUL.
  • the first uplink carrier is defined as an uplink carrier that is not configured to transmit a PUSCH/PUCCH in the TDD serving cell.
  • the non-PUCCH carrier in the cell including the SUL is predefined (for example, by protocol, or pre-negotiated, pre-configured, etc.) as the first uplink carrier, that is, the cell including the SUL.
  • the non-PUCCH carrier in the default is the source uplink carrier of the SRS handover. For example, if the cell in which the switching-from UL CC is located is a SUL Cell, since the SUL Cell includes two uplink carriers, one uplink carrier (eg, a non-PUCCH carrier, or a carrier of the last uplink transmission) in the SUL Cell is predefined. As the first uplink carrier.
  • the SRS on the switching-to UL CC needs to utilize the resources of the switching-from UL CC (for example, the UL RF capability)
  • the RRC signaling configures a PUCCH carrier, in order to avoid the PUCCH.
  • the impact can be predefined (for example, by protocol agreement, pre-configuration, pre-agreed, etc.) switching-from UL CC is a non-PUCCH carrier, as shown in Figure 5, the 3.5G UL carrier of cell 1; if SUL Cell is used as a secondary The cell, the protocol can pre-define the switching-from UL CC as the uplink carrier that last transmitted the PUSCH.
  • the cell identifier sCellIndex-r10 is configured in the configuration information.
  • the switching-from UL CC is The uplink carrier of the PUSCH transmission is configured, so the switching-from UL CC is not required to be configured.
  • the cell of the UE includes a 3.5G UL carrier and a 1.8G SUL carrier, where the 1.8G SUL carrier is configured as When the PUSCH is transmitted, the 1.8G SUL carrier is the switching-from UL CC.
  • At least one of the first uplink carrier information and the second uplink carrier information is a new carrier indicator field (NCIF) identifier.
  • NCIF new carrier indicator field
  • the NCIF identifier is used to indicate the first uplink carrier and/or the second uplink carrier, and may also have other names, for example, the carrier indication field CIF and the new air interface carrier indication field NR CIF, which is not limited in this application.
  • one SUL Cell may be configured with multiple NCIF identifiers, and each NCIF identifier corresponds to a dual group (SCellIndex, ULCCindex), where SCellIndex is a cell identifier, and ULCCindex is an uplink carrier identifier, which may be indicated by an NCIF identifier.
  • SCellIndex is a cell identifier
  • ULCCindex is an uplink carrier identifier, which may be indicated by an NCIF identifier.
  • the NCIF identifier can be carried in the NCIF domain of the DCI, and the NCIF domain can be multiplexed with the Carrier Indicator Field (CIF) domain.
  • CIF Carrier Indicator Field
  • a person skilled in the art may also set other identifiers to indicate the first uplink carrier and/or the second uplink carrier, and is not limited to the NCIF identifier.
  • NCIF0 indicates a 1.8G SUL carrier in cell 2
  • NCIF1 indicates a 3.5G UL carrier in cell 2
  • NCIF2 indicates a 3.5G UL carrier in cell 1.
  • the NCIF flag can be used to indicate the corresponding switching-from UL CC and switching-to UL CC.
  • the RRC signaling further includes an NCIF identifier when configuring the UE-level PUSCH, PUCCH, and SRS configuration information.
  • the RRC signaling may be, for example, an RRC connection configuration (connection setup) or an RRC connection reconfiguration (connectionreconfiguration) or RRC connection reestablishment (connectionr establishment) signaling.
  • the RRC signaling may include at least one of radio resource configuration information (eg, radioresourceconfigDedicated) and SUL radio resource configuration information (eg, SULradioresourceconfigdedicated). If the RRC signaling includes both radio resource configuration information and SUL radio resource configuration information, the radio resource configuration information is associated with at least one NCIF identifier (eg, NCIF1), and the SUL radio resource configuration information is associated with at least one NCIF identifier (eg, NCIF2); The association method is not limited.
  • the NCIF1 identifier, and the radioresourcecconfigddedicated may be two cells in the RRC signaling, and the NCIF1 may also be carried in the geographicsourceconfigdedicated information.
  • the NCIF2 identifier and the SULradioresourcecconfigddedicated may be two cells in the RRC signaling, and the NCIF2 identifier may also be carried in the SULradioresourceconfigdedicated information.
  • the radio resource configuration information may include non-SUL configuration information (radioresourceconfigULdedicated).
  • the radio resource configuration information may further include UE level configuration information of the DL.
  • the SUL radio resource configuration information may include configuration information of the SUL, or may also include other configuration information.
  • the name of the message and the naming of the cell are only examples, and other names may be used, which is not limited in this application.
  • the radioresourceconfigdedicated is associated with an NCIF1 identifier, and the SULradioresourceconfigdedicated and NCIF2 identifiers are associated.
  • the physical configuration information (physicalconfigdedicated) may be associated with the NCIF1 identifier, and the SUL physical configuration information (SULphysicalconfigdedicated) is associated with the NCIF2 identifier.
  • the association manner is not limited, and the NCIF identifier may be juxtaposed with the physicalconfigdedicated It can also be hosted inside the physicalconfigdedicated.
  • the manner in which the NCIF identifier is specifically configured is not limited by the above examples.
  • the physicalconfigdedicated may include non-SUL configuration information (physicalconfigULdedicated).
  • the UE-level configuration information of the non-SUL and the DL may also be included; the physicalSULconfigdedicated includes the configuration information of the SUL.
  • the naming of a specific cell is not limited to the above.
  • the physicalconfigdedicated includes UE-level PUSCH, PUCCH, PDCCH, and SRS configuration information on the non-SUL.
  • the SULphysicalconfigdedicated includes UE-level PUSCH, SRS, and PUCCH configuration information on the SUL.
  • the physicalconfigdedicated may include non-SUL configuration information, the physicalconfigdedicated may be renamed to physicalconfigULdedicated, and optionally may also include non-SUL and DL UE-level configuration information; the SULphysicalconfigULdedicated includes SUL configuration information.
  • the naming of a specific cell is not limited to the above.
  • the NCIF identifier includes a cell identifier and/or an uplink carrier identifier.
  • the serving cell is a SUL cell
  • the NCIF identifier is equivalent to the cell identifier and the uplink carrier identifier.
  • the serving cell is a cell that includes only one uplink carrier and one downlink carrier
  • the NCIF identifier is equivalent to the cell identifier.
  • the NCIF identifier may be an identifier generated based on the cell identifier and the uplink carrier identifier, for example, the SCellIndex+SCellSULIndex is used as the NCIF identifier, or the NCIF identifier may also be the identifier generated based on the cell identifier. It can be understood that NCIF can also add other parts to form other structures, and does not affect the function of NCIF in the solution of the present application.
  • RRC signaling configures a plurality of NCIF identifiers in one SUL cell is not limited to the above examples.
  • 3.5G DL carrier and 3.5G UL carrier are associated with NCIF0, 1.8G SUL carrier domain NCIF1 association or 3.5G DL carrier And the 1.8G SUL carrier is associated with NCIF1. Therefore, the first carrier information and the second carrier information can be represented by an NCIF identifier.
  • the base station gNB may dynamically schedule the transmission of the PUSCH on the UL CC and the SUL CC or the RRC signaling shows that the configuration gNB can dynamically schedule the transmission of the PUSCH on the UL CC and the SUL CC.
  • the uplink scheduling grant information includes an NCIF value, which is used to indicate whether the scheduled PUSCH is transmitted on the 1.8G SUL carrier or on the 3.5G UL carrier.
  • the bandwidth can be a contiguous resource in the frequency domain.
  • the bandwidth may sometimes be referred to as a bandwidth part (BWP), a carrier bandwidth part, a subband bandwidth, a narrowband bandwidth, or other names.
  • BWP bandwidth part
  • carrier bandwidth part a carrier bandwidth part
  • subband bandwidth a subband bandwidth
  • narrowband bandwidth or other names. The name is not limited in this application.
  • one BWP includes consecutive K (K>0) subcarriers; or one BWP is N (N>0) frequency domain resources in which non-overlapping consecutive resource blocks (RBs) are located, the RB's
  • the subcarrier spacing may be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, or other values; or, one BWP is the frequency at which M (M>0) non-overlapping consecutive resource block groups (RBGs) are located.
  • an RBG includes P (P>0) consecutive RBs, and the subcarrier spacing of the RB may be 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, or other values.
  • the UE receives configuration information, and determines a source uplink carrier and a destination uplink carrier of the SRS handover according to the configuration information.
  • the UE may determine a source uplink carrier of the SRS handover based on the first uplink carrier information, and determine a destination uplink carrier of the SRS handover based on the second uplink carrier information.
  • the source uplink carrier of the SRS handover is determined according to the first uplink carrier information
  • the destination uplink carrier of the SRS handover is determined according to the second uplink carrier information.
  • the source uplink carrier of the SRS handover is the 3.5G UL carrier in the cell 1.
  • the destination uplink carrier of the SRS handover is the 3.5G UL carrier in the cell 1.
  • the first uplink carrier information includes NCIF1
  • the source uplink carrier of the SRS handover is a 3.5G UL carrier in the cell 2.
  • the network device sends configuration information including the first uplink carrier information and the second uplink carrier information to the UE, and determines a source uplink carrier of the SRS handover according to the first uplink carrier information, and according to the second The uplink carrier information determines the destination uplink carrier of the SRS handover.
  • the SUL Cell as the switching-from UL CC, it can be determined whether to borrow the RF capability of the SUL or the RF capability of the non-SUL.
  • the SUL Cell as the switching-to UL CC It can be determined whether the SRS is transmitted on the SUL or the non-SUL, thereby ensuring the reliability of the SRS transmission.
  • FIG. 11 is a flowchart of a method for wireless communication according to another embodiment of the present application. On the basis of the embodiment shown in FIG. 4, the method further includes:
  • the network device sends downlink control information DCI to the UE.
  • the DCI includes aperiodic A-SRS trigger indication information and an uplink carrier identifier.
  • the uplink carrier identifier is used to indicate a second uplink carrier.
  • the UE is configured with only one serving cell, and the serving cell is a SUL Cell; or the destination uplink carrier of the SRS handover of the UE is a SUL Cell.
  • the configured SRS is A-SRS
  • the DL-DCI on the SUL Cell or the group-side DCI-triggered A-SRS is which A-SRS on the uplink carrier needs further indication. Therefore, the uplink carrier that triggers the A-SRS can be indicated by DCI.
  • the configuration information includes an A-SRS identifier, and the A-SRS identifier is associated with the second uplink carrier.
  • the A-SRS resources on the SUL and the non-SUL of the cell may be uniformly numbered, and each A-SRS identifier (index) is associated with an A-SRS on one UL CC, for example,
  • the A-SRS resources in 7 are uniformly numbered, the A-SRS index 1 is associated with the 3.5G UL of the cell 1, the A-SRS index 2 is associated with the 1.8G SUL of the cell 1, and the A-SRS index 3 is associated with the 3.5G UL of the cell 2.
  • the A-SRS index 4 is associated with the 1.8G SUL of the cell 2, and the corresponding uplink carrier can be determined according to the A-SRS index.
  • the uplink carrier may include multiple A-SRS resources, and may be uniformly numbered in the foregoing manner.
  • a SUL CIF field of 1 bit or multiple bits may be added to each information block of the group DCI, where the SUL CIF field is used to indicate the second uplink carrier.
  • the DCI carries the A-SRS trigger indication information
  • the uplink carrier information may be predefined as a non-SUL carrier.
  • an implementation manner of determining a destination uplink carrier of the SRS handover according to the configuration information in the section 102 includes:
  • the UE receives the DCI information, and determines the destination uplink carrier of the A-SRS handover according to the A-SRS trigger indication information, the uplink carrier identification information, and the 102 partially received configuration information in the DCI information.
  • the SRS switch needs to be determined according to the second uplink carrier information, the A-SRS trigger indication information, and the uplink carrier identification information. The purpose of the uplink carrier.
  • the method described in FIG. 11 can also be referred to.
  • the network device sends the DCI carrying the A-SRS trigger indication information and/or the uplink carrier identifier information to the UE, according to the second uplink carrier information, the A-SRS trigger indication information, and the uplink carrier identifier.
  • the information determines the destination uplink carrier of the SRS handover, and can also determine the source uplink carrier of the SRS handover and the destination uplink carrier of the SRS handover in a special SRS scenario, and can be applied to more scenarios.
  • the configuration information is further used to indicate, according to any one of the foregoing embodiments of FIG. 4 and FIG.
  • the block includes at least one of SRS power control information, A-SRS trigger indication information, and uplink carrier identification information that do not transmit a PUSCH/PUCCH carrier.
  • the uplink carrier that does not transmit the PUSCH/PUCCH is included in the UE group level DCI (group DCI).
  • group DCI UE group level DCI
  • each information block includes at least one of SRS power control information, A-SRS trigger indication information, and uplink carrier identification information that does not transmit a PUSCH/PUCCH carrier, and the configuration information indicates that the uplink carrier that does not transmit the PUSCH/PUCCH is in the The location of the information block of the UE group level DCI, that is, the second uplink carrier.
  • the uplink information indicating that the PUSCH/PUCCH is not transmitted in the configuration information corresponds to the information block position in the UE group level DCI, that is, the second uplink carrier information, the power control information, or the A-SRS trigger indication included in the information block. At least one of the information.
  • the RRC signaling carries the exclusive physical resource configuration information of the Scell, where the SCell exclusive physical resource configuration information element includes the transmit power control of the type B ( Transmit power control (TPC) configures a cell for configuring the block location of the SCell corresponding to the group DCI, and one UE configures at most four blocks in the groupDCI.
  • TPC Transmit power control
  • the group DCI signaling When the periodic P-SRS needs to be transmitted on the PUSCH/PUCCH less carrier, the group DCI signaling only includes TPC signaling; when the A-SRS is configured on the PUSCH/PUCCH less carrier, the group DCI signaling includes At least one of TPC signaling, A-SRS trigger indication information, or uplink carrier indication information; when SPS-SRS is configured on the PUSCH/PUCCH less carrier, the group DCI signaling includes TPC signaling, SPS-SRS activation/ Deactivate signaling, or at least one of the uplink carrier indication information.
  • the configuration information further includes a carrier group index and an intra-group carrier index where the uplink carrier that does not transmit the PUSCH/PUCCH is located.
  • the carrier information is configured as M groups, and the configuration information further includes a group index and an uplink carrier identifier of an uplink carrier that does not transmit the PUSCH/PUCCH, and the second uplink carrier may be determined according to the group index and the uplink carrier identifier.
  • the RRC signaling carries a physical exclusive resource configuration cell, where the exclusive physical resource configuration cell includes a TPC configuration cell of type A
  • the TPC configuration information of the type A is used to configure the carrier group index (CCSetIndex) and the intra-group carrier index (CCIndexInOneCcSet) where the PUSCH/PUCCH less carrier is located. All PUSCH/PUCCH less carrier information may be included in the TPC configuration cell of type A.
  • a block DCI When a P-SRS needs to be transmitted on a PUSCH/PUCCH less carrier, a block DCI includes a carrier group index and TPC signaling in a block; when A-SRS is configured on a PUSCH/PUCCH less carrier, a group DCI A block of signaling includes a carrier group index and TPC signaling, and the triggering of the A-SRS is triggered by the downlink DCI, and the downlink DCI includes the uplink carrier index indication information; when the SPS-SRS is configured on the PUSCH/PUCCH less carrier, A block of groupDCI signaling includes a carrier group index and TPC signaling, and the SPS-SRS activation/deactivation signaling is triggered by a downlink DCI or a Media Access Control (MAC) control element (Control Element, CE).
  • MAC Media Access Control
  • One UE corresponds to one block in group DCI signaling.
  • the carrier group index in one block of the group DCI signaling is used to indicate the triggered carrier group, and the TPC field in one block indicates the SRS power control command on the corresponding second uplink carrier.
  • the TPC configuration cell of typeA is configured in the physicalconfigdedicated.
  • the switching-from UL CC may be indicated when configuring the SRS resources of the UE level.
  • the UE configures the PUSCH and the SRS on the 1.8G SUL by default, and only transmits the SRS on the 3.5G non-SUL.
  • the exclusive physical configuration information of the 3.5G non-SUL includes only the configuration information of the exclusive SRS of the UE.
  • the configuration information of the exclusive SRS may include A-SRS, P-SRS, and SPS-SRS configuration information, and the srs-swtichFromServCellIndex field in the code 8 is an optional field. If the srs-swtichFromServCellIndex field exists, the configured value is NCIF2.
  • the SRS transmission on the 3.5G non-SUL requires the SUL radio module; if the srs-swtichFromServCellIndex field does not exist, it means that the SRS transmission on the 3.5G non-SUL does not need to borrow the SUL radio module.
  • An implementation manner of indicating a switching-from UL CC when configuring a UE-level SRS resource is as shown in code eight.
  • the embodiment of the present application further provides a communication device, which is used to execute the method described in any of the foregoing embodiments.
  • the communication device includes the means necessary to perform the above-described method embodiments.
  • the means can be implemented by software and/or hardware.
  • the communication device may be the network device or terminal in Figures 1 and 2.
  • FIG 12 is a block diagram showing the structure of a communication device.
  • the communication device 20 can be the network device 20 of Figures 1 and 2.
  • the network device can be used to implement the method described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments.
  • the communication device 20 includes one or more processors 21, which may be general purpose processors or special purpose processors or the like.
  • processors 21 can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (eg, base stations, baseband chips, DUs, or CUs, etc.), execute software programs, and process data of software programs. .
  • the processor 21 may also include instructions 23 that may be executed on the processor such that the communication device 20 performs the methods described in the above method embodiments.
  • communication device 20 may include circuitry that may implement the functions of transmission or reception in the foregoing method embodiments.
  • the communication device 20 may include one or more memories 22 on which the instructions 24 are stored, and the instructions may be executed on the processor, so that the communication device 20 performs the above method embodiment.
  • data may also be stored in the memory. Instructions and/or data can also be stored in the optional processor.
  • the processor and memory can be set separately or integrated.
  • the communication device 20 may further include a transceiver 25 and/or an antenna 26.
  • the processor 21 may be referred to as a processing unit that controls a communication device (terminal or base station).
  • the transceiver 505 can be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiving function of the communication device through the antenna 26.
  • a communication device may include a processor and a transceiver. If the apparatus is used to implement the functions of the network device, for example, the configuration information may be transmitted by the transceiver to the UE in FIG. 4, or the transceiver in FIG. 11 may send the DCI to the UE. If the device is used to implement the function of the terminal, for example, the configuration information may be received by the transceiver in FIG. 4, and the source uplink carrier and the destination uplink carrier of the SRS handover may be determined by the processor configuration information, or may be configured by the transceiver in FIG. Receiving the DCI, the processor determines the destination uplink carrier of the A-SRS transmission according to the second uplink carrier information, the A-SRS trigger indication information, and the uplink carrier identification information.
  • the configuration information may be transmitted by the transceiver to the UE in FIG. 4, or the transceiver in FIG. 11 may send the DCI to the UE.
  • the configuration information may be received by the transceiver in FIG. 4,
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit RFIC, a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board ( Printed circuit board, PCB), electronic equipment, etc.
  • IC integrated circuit
  • analog IC an analog IC
  • radio frequency integrated circuit RFIC a radio frequency integrated circuit
  • mixed signal IC an application specific integrated circuit
  • ASIC application specific integrated circuit
  • PCB printed circuit board
  • electronic equipment etc.
  • the processor and transceiver can also be fabricated using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide semiconductor (n-metal oxide semiconductor) (n-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type A positive oxide metal oxide semiconductor (PMOS), a Bipolar Junction Transistor (BJT), a bipolar CMOS (BiCMOS), a silicon germanium (SiGe), or a gallium arsenide (GaAs).
  • CMOS complementary metal oxide semiconductor
  • n-metal oxide semiconductor n-type metal oxide semiconductor
  • PMOS P-type A positive oxide metal oxide semiconductor
  • BJT Bipolar Junction Transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in this application may be a standalone device or may be part of a larger device.
  • the device can be:
  • the set of ICs may also include storage means for storing data and/or instructions;
  • an ASIC such as a modem (MSM);
  • receivers cellular phones, wireless devices, handsets, mobile units, network devices, etc.
  • FIG. 13 provides a schematic structural diagram of a terminal.
  • the UE can be adapted for use in the system shown in FIG.
  • FIG. 13 shows only the main components of the terminal.
  • the terminal 10 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling the entire terminal, executing software programs, and processing data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 13 shows only one memory and processor for ease of illustration. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control and execute the entire user equipment.
  • the processor in FIG. 13 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the user equipment may include a plurality of baseband processors to accommodate different network standards, and the user equipment may include a plurality of central processors to enhance its processing capabilities, and various components of the user equipment may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 11 of the UE 10, and the processor having the processing function is regarded as the processing unit 12 of the UE 10.
  • the UE 10 includes a transceiver unit 11 and a processing unit 12.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 101 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 101 is regarded as a sending unit, that is, the transceiver unit 11 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit.
  • the present application also provides a computer storage medium comprising instructions which, when run on a computer, cause the computer to perform the terminal side technical solution in the foregoing method embodiments.
  • the present application also provides a computer storage medium comprising instructions which, when executed on a computer, cause the computer to perform the technical solution on the network device side of the foregoing method embodiments.
  • the present application also provides a computer program product that, when executed on a computer, causes the computer to perform the terminal side technical solution in the foregoing method embodiments.
  • the present application also provides a computer program product that, when executed on a computer, causes the computer to perform the technical solution on the network device side of the foregoing method embodiments.
  • a general purpose processor may be a microprocessor, which may alternatively be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in an ASIC, and the ASIC may be disposed in the UE. Alternatively, the processor and the storage medium may also be located in different components in the UE.
  • the computer program product includes one or more computer instructions (sometimes referred to as a computer program).
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the term “comprise” and variations thereof may mean non-limiting inclusion; the term “or” and variations thereof may mean “and/or”.
  • the terms “first”, “second”, and the like in this application are used to distinguish similar objects, and are not necessarily used to describe a particular order or order.
  • “plurality” means two or more.
  • the character “/" generally indicates that the contextual object is an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种用于多载波通信的载波切换方案。网络设备向终端发送配置信息。所述配置信息包括第一上行载波信息和第二上行载波信息。所述第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波。所述第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波。所述第一上行载波和所述第二上行载波中的至少一个属于包含增补上行链路SUL的小区。终端可以根据所述配置信息确定配置的多个上行载波中,哪个是SRS切换的源上行载波和目的上行载波。

Description

用于多载波通信的载波切换方法、装置和系统
本申请要求于2017年11月17日提交中国专利局、申请号为201711148290.4、申请名称为“用于多载波通信的载波切换”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及无线通信系统中的多载波通信技术。
背景技术
在长期演进(Long Term Evolution,LTE)系统中引入了探测参考信号(sounding reference signal,SRS)。例如,SRS可以用于确定上行链路信道质量。在多载波通信中,例如,载波聚合(carrier aggregation,CA)场景下,网络设备(例如基站)为终端(例如用户设备UE)配置了N个成员载波(component Carrier,CC),而UE可能因为上行能力不够,只能支持M(M<N)个上行载波同时传输。因此,为了获取UE的N-M个时分双工(time division duplexing,TDD)载波的下行信道状态,LTE Rel-14引入了在这N-M个TDD载波上传输SRS,即支持SRS载波切换,UE可以从M个上行载波中的一个上行载波(可以称为源上行载波(switching-from UL CC))切换到N-M个载波中的一个TDD载波(可以称为目的上行载波(switching-to UL CC)上发送SRS。
为了充分利用LTE系统的上行资源,上行资源共享被讨论,被共享的上行资源可以看做是增补上行链路(supplementary uplink,SUL)资源。
发明内容
本申请实施例提提供一种无线通信方法、装置和系统,可以对于包含SUL的小区,明确SRS切换的源上行载波和SRS切换的目的上行载波,提高SRS传输的可靠性。
第一方面,本申请实施例提供一种无线通信方法和通信装置。所述通信装置例如可以是集成电路,终端,无线设备,电路模块等等。所述通信装置接收包含第一上行载波信息和第二上行载波信息的配置信息,并根据配置信息确定SRS切换的源上行载波和目的上行载波。所述第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波。所述第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波。
采用本申请的方案,对于包含SUL的小区(有时可称为SUL Cell)作为SRS切换的源上行载波(switching-from UL CC)来说,通信装置可以确定是借用SUL的资源(例如RF能力)还是non-SUL(有时也可称为主上行链路primary uplink,PUL)的资源(例如RF能力)。对于SUL Cell作为SRS切换的目的上行载波(switching-to UL CC)来说,通信装置可以确定是切换到SUL上还是non-SUL上传输SRS,保证SRS传输的可靠性。
可选地,通信装置用于接收携带非周期性A-SRS触发指示信息和上行载波标识信息的DCI,用于指示A-SRS在具体的哪一个上行载波上触发。
可选地,根据第二上行载波信息、A-SRS触发指示信息和上行载波标识信息确定A-SRS切换的目的上行载波,可以在特殊的SRS的场景下,所述通信装置也能确定SRS切换的源上行载波和SRS切换的目的上行载波,可以适用于更多的场景。
所述通信装置可以包含用于执行上述方法设计中相应的模块或者部件(means),所述模块或者部件(means)可以是软件,和/或硬件。
在一种设计中,所述第一方面涉及的通信装置包括接收模块和确定模块。所述接收模块,用于接收配置信息,配置信息包括第一上行载波信息和第二上行载波信息。其中,第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波,第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;第一上行载波和第二上行载波中的至少一个属于包含增补上行链路SUL资源的小区。所述确定模块,用于根据配置信息中的第一上行载波信息和第二上行载波信息确定SRS切换的源上行载波和目的上行载波。
可选地,接收模块还用于接收下行控制信息DCI,DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,上行载波标识用于指示第二上行载波。
可选地,确定模块根据配置信息确定SRS切换的目的上行载波包括:确定模块根据第二上行载波信息、A-SRS触发指示信息和上行载波标识确定SRS切换的目的上行载波。
第二方面,本申请实施例提供一种无线通信方法和通信装置。所述通信装置例如可以是集成电路,网络设备(例如基站),无线设备,电路模块等等。通信设备发送包含第一上行载波信息和第二上行载波信息的SRS的配置信息。所述配置信息包括第一上行载波信息和第二上行载波信息;其中,第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波,第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;第一上行载波和第二上行载波中的至少一个属于包含增补上行资源SUL的小区。
可选地,所述通信设备还用于发送下行控制信息DCI,DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,上行载波标识用于指示第二上行载波。
所述通信装置可以包含用于执行上述方法设计中相应的模块或者部件(means),所述模块或者部件(means)可以是软件,和/或硬件。
在一种设计中,第二方面涉及的通信装置,包括发送模块,所述发送模块,用于发送SRS的配置信息,配置信息包括第一上行载波信息和第二上行载波信息;
其中,第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波,第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;第一上行载波和第二上行载波中的至少一个属于包含增补上行链路SUL的小区。
可选地,所述发送模块还用于发送下行控制信息DCI,DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,该上行载波标识用于指示第二上行载波。
可选的,通信装置还可以包括接收模块,用于接收终端发送的上行信息。
可选地,在上述方面中,第一上行载波信息和第二上行载波信息中的至少一个包括小区标识和上行载波标识。由于SUL Cell包括多个上行载波(例如2个上行载波),在第一上行载波信息和/或第二上行载波信息中不仅添加小区标识,还添加上行载波标识,从而可以确定SRS切换的源上行载波和/或SRS切换的目的上行载波是小区中的哪一个上行载波。
可选地,在上述方面中,若第二上行载波所在的小区为包含SUL的小区,则第二上行载波为的non-SUL(有时也可以称为主上行链路primary uplink,或者辅助上行链路等)载波。对于包含一个TDD载波和一个SUL载波的SUL Cell来说,SUL载波和TDD载波的下行载波处于不同的频点,没有信道互易性,对于没有物理上行共享信道(Physical Uplink Shared Channel,PUSCH)/物理上行控制信道(Physical Uplink Control Channel,PUCCH)传输的SUL Cell来说,在SUL载波上配置SRS的无法获取SUL Cell的下行信道条件,因此,当SUL Cell的两个UL CC上都没有配置PUSCH/PUCCH时,可以预定义(例如通过协议约定,预先配置,或者其他方式)switching-to UL CC是non-SUL载波,从而可以通过配置的SRS获取SUL Cell的下行信道条件。
可选地,在上述方面中,若第一上行载波所在的服务小区为包含SUL的小区,则第一上行载波为的non-PUCCH载波(有时也可以称为PUCCH less载波),可以避免对PUCCH的影响。
可选地,在上述方面中,第一上行载波信息和第二上行载波信息中的至少一个为新载波指示域NCIF标识,NCIF标识用于指示第一上行载波和/或第二上行载波,NCIF标识的设置方式较多,在SUL小区场景中,可以灵活多变的指示SRS切换的源上行载波和SRS切换的目的上行载波。
可选地,在上述方面中,NCIF标识包括小区标识和上行载波标识,NCIF标识中不仅包括小区标识,还包括上行载波标识,因此可以基于NCIF确定SRS切换的源上行载波和/SRS切换的目的上行载波具体是小区中的哪一个上行载波。
可选地,在上述方面中,配置信息还用于指示不传输PUSCH/PUCCH的上行载波(例如non-PUSCH/PUCCH载波,或者PUSCH/PUCCH less载波)在UE组级DCI的信息块的位置,UE组级DCI的信息块中包含不传输PUSCH/PUCCH载波的SRS功率控制信息、A-SRS触发指示信息、上行载波标识信息中的至少一个,配置信息中仅需要指示不传输PUSCH/PUCCH的上行载波在UE组级DCI的信息块的位置,UE即可根据该信息块中的信息确定SRS切换的源上行载波和/SRS切换的目的上行载波,节省配置信息的开销。
可选地,在上述方面中,配置信息还包括不传输PUSCH/PUCCH的上行载波所在的组索引和组内载波索引,当不传输PUSCH/PUCCH的上行载波较多时,可以将不传输PUSCH/PUCCH的上行载波进行分组,在配置信息中设置组索引和组内载波索引,UE可以根据组索引和组内载波索引快速确定SRS切换的源上行载波和/SRS切换的目的上行载波。
第三方面,本申请实施例提供一种通信装置,通信装置包括处理器以及存储在存储器上并可在处理器上运行的指令,所述处理器执行所述指令时,使得所述通信装置实现第一方面或第二方面任一实施例所述的方法。可选的,所述通信装置可以包括收发单元。
第四方面,本申请提供一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面或第二方面任一实施例所述的方法。
第五方面,本申请提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
图1示出了本申请实施例的一种可能的无线接入网的示意图;
图2示出的通信系统的一种架构举例示意图;
图3示出了一种SRS载波切换方案的示意图;
图4为本申请一实施例提供的一种无线通信方法的流程图;
图5-图9分别示出了一种SRS载波切换方案的示意图;
图10示出了一种SUL Cell包含多个NCIF标识的示意图;
图11为本申请另一实施例提供的一种无线通信方法的流程图;
图12为本申请提供的一种网络设备的结构示意图;
图13为本申请提供的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行描述。
本申请所描述的技术可以用于各种无线通信网络,比如码分多址(CDMA)网络、时分多址(TDMA)网络,频分多址(FDMA)网络、正交频分多址(OFDMA)网络、单载波频分多址(SC-FDMA)网络和其他网络等。CDMA网络可以实现如通用陆地无线接入(UTRA),CDMA2000等之类的无线技术。UTRA包括宽带码分多址(WCDMA)和CDMA以及其他变形。TDMA网络可以实现如全球移动通信系统(GSM)之类的无线技术。OFDMA网络可以实现如演进的UTRA(E-UTRA),超移动宽带(UMB),IEEE802.11(WIFI),IEEE802.16(WiMAX),IEEE802.20等之类的无线技术。E-UTRA可以包括LTE,LTE-A等多个版本。本申请还可以适用于5G网络、后续演进网络,或者多种网络的融合。
图1示出了本申请实施例的一种可能的无线接入网(radio access network,简称RAN)的示意图。所述RAN包括一个或多个网络设备20。所述无线接入网可以与核心网络(core network,CN)相连。网络设备20可以是任意一种具有无线收发功能的设备。所述网络设备20包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。网络设备20还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)。网络设备100还可以服务器,可穿戴设备,或车载设备等。以下以网络设备20为基站为例进行说明。所述多个网络设备20可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端10进行通信,也可以通过中继站与终端10进行通信。终端10可以支持与不同技术的多个基站进行通信,例如,终端可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端10是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发 功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
图2示出的通信系统的一种架构举例示意图,如图2所示无线接入网RAN中的网络设备是CU和DU分离架构的基站(如gNB)。RAN可以与核心网相连(例如可以是LTE的核心网,也可以是5G的核心网等)。CU和DU可以理解为是对基站从逻辑功能角度的划分。CU和DU在物理上可以是分离的也可以部署在一起。RAN的功能终止于CU。多个DU可以共用一个。一个DU也可以连接多个CU(图中未示出)。CU和DU之间可以通过接口相连,例如可以是F1接口。CU和DU可以根据无线网络的协议层划分。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及无线资源控制(radio resource control,RRC)层的功能设置在CU,而无线链路控制(radio link control,RLC),媒体接入控制(Media Access Control,MAC)层,物理(physical)层等的功能设置在DU。可以理解对CU和DU处理功能按照这种协议层的划分仅仅是一种举例,也可以按照其他的方式进行划分。例如可以将CU或者DU划分为具有更多协议层的功能。例如,CU或DU还可以划分为具有协议层的部分处理功能。在一设计中,将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。在另一种设计中,还可以按照业务类型或者其他系统需求对CU或者DU的功能进行划分。例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。图2所示的网络架构可以应用于5G通信系统,其也可以与LTE系统共享一个或多个部件或资源。在另一种设计中,CU也可以具有核心网的一个或多个功能。一个或者多个CU可以集中设置,也分离设置。例如CU可以设置在网络侧方便集中管理。DU可以具有多个射频功能,也可以将射频功能拉远设置。
CU的功能可以由一个实体来实现,也可以进一步将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和用户面(CU-UP)可以由不同的功能实体来实现,所述CU-CP和CU-UP可以与DU相耦合,共同完成基站的功能。
本申请中,名词“网络”和“系统”经常交替使用,“装置”和“设备”也经常交替使用,但本领域的技术人员可以理解其含义。“通信装置”可以是上述图1和图2中的网络设备(例如基站,DU、或者CU),或者终端,也可以是网络设备或者终端的的部件(例如,集成电路,芯片等等),或者其他通信模块。
图3示出了一种SRS载波切换方案的示意图。如图3所示,UE RF需要2个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,CC2为switching-to UL CC,CC1为switching-from UL CC,当UE从CC1切换到CC2上发送SRS时,会导致UE在CC1对应的子帧N上的符号11-13到子帧N+1上的符号0-1不能发送物理上行共享信道(physical uplink shared channel,PUSCH)。
为方便说明,本申请以LTE系统中的术语为例,可以理解在其他的系统中也可以使用其他的术语。以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
小区可以指代基站的覆盖区域和/或服务改覆盖区域的基站子系统。例如,eNB的覆盖区域可以为宏小区,微小区,微微小区,或其他类型的小区。宏小区可以覆盖相对大的地理区域,微小区可以覆盖相对小的地理区域等。一个基站可以支持一个或多个小区。对终端而言,为其服务的一个小区可以包括一个下行载波和一个上行载波(例如LTE网络)。引入SUL资源后,为终端服务的小区也可以包括一个下行载波和多个上行载波。例如,在5G通信里面,一个小区可以包括一个下行载波和两个上行载波。
SUL资源是指仅有上行资源用于当前通信制式的传输。例如,对于一个载波,仅有上行资源用于传输。例如,在第五代(5G)移动通信系统,又称为NR的通信系统中,载波A仅用于NR的上行传输而不用于下行传输,或者,载波A用于LTE通信系统的下行传输而不用于NR的下行传输,则该载波A为SUL资源。
SUL小区有时称为包含SUL的小区,是指包含SUL资源的小区。
载波是一个特定频率的无线电波,是一种如可在频率、调幅或相位方面被调制以传输语言、音乐、图象或其它信号的电磁波。
上行资源可以理解为载波(包括非CA场景下的载波和CA场景下的载波),即该上行资源可以为载波上用于上行传输的部分,或者,上行资源也可以理解为小区(包括CA场景下的小区和非CA场景下的小区)用于上行传输的部分,即该上行资源可以为小区中用于上行传输的部分。其中,CA场景下的CC可以为主CC或辅CC,CA场景下的小区可以为主小区(Primary Cell,PCell)或辅小区(Secondary Cell,Scell)。该上行资源也可以称为上行载波。相应的,载波或小区用于下行传输的部分可以理解为下行资源或下行载波。例如,在FDD系统中,载波上用于上行传输的频率资源可以理解为该上行资源或上行载波;载波上用于下行传输的频率资源可以理解为下行资源或下行载波。再如,在TDD系统中,载波上用于上行传输的时域资源可以理解为该上行资源或上行载波;载波上用于下行传输的时域资源可以理解为下行资源或下行载波。
图4为本申请一实施例提供的一种无线通信方法的流程图,该方法可以应用于图1和图2所示的网络。
101部分、网络设备向UE发送配置信息。
其中,配置信息包含至少两个上行载波的信息。例如,包括第一上行载波信息和第二上行载波信息,第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波,第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;第一上行载波和第二上行载波中的至少一个属于包含SUL资源的小区。
可选的,配置信息中还包括UE在第二上行载波上SRS的配置信息,用于配置UE SRS传输的时域、频域、码域信息
所述配置信息可以为专门的指令信息,也可以承载在无线资源控制(Radio Resource Control,RRC)信息(例如,RRC连接建立信令、RRC连接重建立信令、RRC连接重配置信令等)或者下行控制信息(Downlink Control Information,DCI)中。
SRS切换的源上行载波所在的小区为切换源小区,SRS切换的目的上行载波为切换目的小区,如图5所示,小区1为SUL小区,小区1包括1.8G SUL上行载波和3.5G UL上 行载波,若小区1为切换源小区,3.5G UL上行载波为SRS切换的源上行载波,则第一上行载波信息中可以包含用于指示小区1和3.5G UL上行载波的信息。也就是说,第一上行载波信息包含指示切换的源小区的信息和源载波的信息。同理,如图6所示,若小区1为切换目的小区,3.5G UL上行载波为SRS切换的目的上行载波,则第二上行载波信息中可以包含用于指示小区1和3.5G UL上行载波的信息,也就是说,第二载波信息包含指示切换的目的小区的信息和目的载波的信息。
可选地,第一上行载波信息和第二上行载波信息中的至少一个包括小区标识和上行载波标识。所述小区标识用于标识小区,例如为小区索引(cell index),辅小区索引(SCellIndex)或是其他可用于标识小区的信息。所述上行载波标识用于标识载波,例如为成员载波索引(CC index),上行索引(UL index),辅小区SUL上行索引(SCellSULIndex)或者其他可用于标识载波的信息。其中,SCellSULIndex为上行载波的标识,本申请对于小区标识以及上行载波标识的表示方式以及名称不做限定。例如,在图5所示的例子中,所述指示切换的源小区的信息可以为小区标识,如小区索引、或者辅小区索引。由于源小区1中有两个上行载波,及一个UL上行载波,一个SUL上行载波。所述指示源载波的信息可以为载波标识,指示源载波是1.8G SUL上行载波,还是3.5G UL上行载波。在另一个例子中该载波标识可以指示该源载波是UL载波还是SUL载波。如果指示是该源载波是UL载波,则可以得知切换的源载波是3.5G UL上行载波,如果该源载波是SUL载波,则可以得知切换的源载波是1.8G SUL上行载波。在图6所述的例子中也类似,不再进行赘述。
以下描述中,有时对于这些不同表述混用,用于表示小区标识或者上行载波标识。
可以采用小区标识和上行载波标识的方法来指示SRS切换的源上行载波和/或SRS切换的目的上行载波。
在如图5所示的例子中,小区1为切换源小区,小区1中包括1.8G SUL上行载波和3.5G UL上行载波这两个上行载波,其中,3.5G UL上行载波为SRS切换的源上行载波,因此,第一上行载波信息中包括小区1的标识和3.5G UL上行载波的标识,例如,第一上行载波信息可以采用SCellIndex和SCellSULIndex这两个信息来指示SRS切换的源上行载波。小区2为切换目的小区,小区2中包括3.5G UL的上行载波,因此,第二上行载波信息中可以包括小区2的标识。例如第二上行载波信息可以采用SCellIndex来指示SRS切换的源上行载波。
在如图6所示的例子中,小区1为切换目的小区,小区1中包括1.8G SUL上行载波和3.5G UL上行载波这两个上行载波,其中,3.5G UL上行载波为SRS切换的目的上行载波,因此,第二上行载波信息中包括小区1的标识和3.5G UL上行载波的标识,例如,第二上行载波信息可以采用SCellIndex和SCellSULIndex这两个信息来指示SRS切换的目的上行载波。小区2为切换源小区,小区2中包括3.5G UL的上行载波,因此,第一上行载波信息中可以包括小区2的标识,例如第一上行载波信息可以采用SCellIndex来指示SRS切换的源上行载波。
在如图7所示的例子中,小区2为切换源小区,小区2中包括1.8G SUL上行载波和3.5G UL上行载波这两个上行载波,其中,3.5G UL上行载波为SRS切换的源上行载波,因此,第一上行载波信息中包括小区2的标识和3.5G UL上行载波的标识,例如,第一上行载波信息可以采用SCellIndex和SCellSULIndex这两个信息来指示SRS切换的源上行载 波。同理,小区1为切换目的载波,小区1中包括1.8G SUL上行载波和3.5G UL上行载波这两个上行载波,其中,1.8G SUL上行载波为SRS切换的目的上行载波,因此,第二上行载波信息中包括小区1的标识和1.8G SUL上行载波的标识,例如,第二上行载波信息可以采用SCellInde和SCellSULIndex这两个信息来指示SRS切换的目的上行载波。
例如,如代码一所示,若SCell index指示的switching-from UL CC是一个SUL Cell,那么需要额外使用SCellSULindex字段用于指示switching-from UL CC。若switching-to UL CC是一个SUL Cell,且需要在SUL和non-SUL上传输SRS,则需要配置两个switching-from UL CC。
可选的,第二上行载波的上行载波标识信息也可以通过SCellIndex+资源配置的方式隐似指示SRS切换的目的上行载波,例如在伪代码一中SCellIndex+radioResourceConfigDedicatedSCell信元共同表示了第二上行载波为3.5G UL,其中radioResourceConfigDedicatedSCell中包含3.5G UL上的SRS配置信息和一些其他的UE级配置信息;SCellIndex+SULradioResourceConfigDedicatedSCell信元共同表示了第二上行载波为1.8G SUL,其中SULradioResourceConfigDedicatedSCell中包含1.8G SUL上的SRS配置信息和一些其他的UE级配置信息。
代码一:
Figure PCTCN2018116032-appb-000001
可选地,若第二上行载波所在的小区为包含SUL的小区,则第二上行载波为的non-SUL载波。
其中,non-SUL载波为5G系统中的上行载波,例如,NR dedicate UL载波。
在本实施例中,可以采用协议预定义的方式将包含SUL的小区中non-SUL载波定义为第二上行载波,也即,包含SUL的小区中non-SUL载波默认为SRS切换的目的上行载波。例如,若SCell为SUL Cell,该SCell包含一个TDD载波和一个SUL载波,SUL载波和TDD载波的下行载波处于不同的频点,没有信道互易性,对于没有PUSCH/物理上行控制信道(physical uplink control channel,PUCCH)传输的SUL Cell来说,在SUL载波上配置的SRS无法获取SUL Cell的下行信道条件;因此,当SUL Cell的两个UL CC上都没有 配置PUSCH/PUCCH时,协议可以预定义switching-to UL CC是non-SUL,如图6所述的小区1的3.5G UL载波。
可选地,若第一上行载波所在的服务小区为包含SUL的小区,则第一上行载波为的non-PUCCH载波,即所述包含SUL的小区中没有配置PUCCH传输的上行载波。
其中,在LTE Rel-14中,第一上行载波被定义为在TDD服务小区中没有被配置为传输PUSCH/PUCCH的上行载波。
在本实施例中,包含SUL的小区中的non-PUCCH载波被预定义(例如通过通过协议规定,或者预协商,预先配置等方式预定义)为第一上行载波,也即,包含SUL的小区中的non-PUCCH载波默认为SRS切换的源上行载波。例如,若switching-from UL CC所在的小区为SUL Cell,由于该SUL Cell包含两个上行载波,SUL Cell中的一个上行载波(例如non-PUCCH载波,或者最近一次上行传输的载波)被预定义为作为第一上行载波。
进一步地,由于switching-to UL CC上的SRS需要借助switching-from UL CC的资源(例如UL RF能力),若SUL Cell作为一个主小区,RRC信令会配置一个PUCCH载波,为了避免对PUCCH的影响,可以预定义(例如通过协议约定,预配置,预先约定等方式)switching-from UL CC是non-PUCCH载波,如图5所示的小区1的3.5G UL载波;若SUL Cell作为一个辅小区,协议可以预定义switching-from UL CC为最近一次传输PUSCH的上行载波。
例如,如代码二所示,由于预先定义了包含SUL的小区中的non-PUCCH载波作为第一上行载波,则在配置信息中配置小区标识sCellIndex-r10。
代码二:
Figure PCTCN2018116032-appb-000002
可选地,若UE配置了一个SUL Cell,且UE只有一套上行射频(uplink Radio Frequency,UL RF),也即UE配置了一个用于PUSCH传输的上行载波,则switching-from UL CC即为配置了PUSCH传输的上行载波,因此不需要配置信息额外制定switching-from UL CC,如图8所示,UE的小区包括3.5G UL载波和1.8G SUL载波,其中,1.8G SUL载波被配置为传输PUSCH,则1.8G SUL载波即为switching-from UL CC。
可选地,第一上行载波信息和第二上行载波信息中的至少一个为新载波指示域(new carrier indicator field,NCIF)标识。可以理解,NCIF标识用于指示第一上行载波和/或第二上行载波,其也可以有其他名称,例如,载波指示域CIF,新空口载波指示域NR CIF,本申请对此不作限定。
在本实施例中,一个SUL Cell可以配置多个NCIF标识,每个NCIF标识对应一个二 元组(SCellIndex,ULCCindex),其中,SCellIndex为小区标识,ULCCindex为上行载波标识,可以通过NCIF标识指示switching-to UL CC或switching-from UL CC,NCIF标识可以承载在DCI的NCIF域中,NCIF域可以和载波控制域(Carrier Indicator Field,CIF)域复用。本领域技术人员还可以设置其它的标识来指示第一上行载波和/或第二上行载波,并不限于NCIF标识。
如图9所示,NCIF0指示的是小区2中的1.8G SUL载波,NCIF1指示的是小区2中的3.5G UL载波,NCIF2指示的是小区1中的3.5G UL载波。当有其它的小区和上行载波时,还可以设置更多的NCIF标识来指示不同小区中的不同上行载波。如代码三所示,可以使用NCIF标识表示对应switching-from UL CC和switching-to UL CC。
代码三:
Figure PCTCN2018116032-appb-000003
可选地,RRC信令配置UE级PUSCH、PUCCH、SRS配置信息时还包含NCIF标识。
例如,所述RRC信令,例如可以是RRC连接配置(connectionsetup)或RRC连接重配置(connectionreconfiguration)或RRC连接重建(connectionrestablishment)信令。所述RRC信令中可以包含无线资源配置信息(例如,radioresourceconfigDedicated)和SUL无线资源配置信息(例如,SULradioresourceconfigdedicated)中的至少一个。如果所述RRC信令同时包含无线资源配置信息和SUL无线资源配置信息,无线资源配置信息和至少一个NCIF标识(例如NCIF1)关联,SUL无线资源配置信息和至少一个NCIF标识(例如NCIF2)关联;关联方式不限定。例如,NCIF1标识,和radioresourcecconfigddedicated可以为RRC信令中的两个信元,NCIF1也可以承载在该radioresourceconfigdedicated信息里面。NCIF2标识和SULradioresourcecconfigddedicated可以为RRC信令中的两个信元,NCIF2标识也可以承载在该SULradioresourceconfigdedicated信息里面。
所述无线资源配置信息可包含non-SUL的配置信息(radioresourceconfigULdedicated)。可选的,无线资源配置信息还可以包含DL的UE级配置信息。所述SUL无线资源配置信息可包含SUL的配置信息,或者还可以包含其他的配置信息。本申请中对于消息的名称以及信元的命名仅仅举例,也可以采用其他的命名,本申请不做限定。
如代码四所示,在RRCconnectionsetup信令配置中,radioresourceconfigdedicated和一个NCIF1标识关联,SULradioresourceconfigdedicated和NCIF2标识关联。
代码四:
Figure PCTCN2018116032-appb-000004
Figure PCTCN2018116032-appb-000005
可选的,如代码五所示,在radioresourceconfigdedicated配置中,物理配置信息(physicalconfigdedicated)可以和NCIF1标识关联,SUL物理配置信息(SULphysicalconfigdedicated)和NCIF2标识关联,关联方式不限定,NCIF标识可以与physicalconfigdedicated并列,也可以承载在该physicalconfigdedicated里面。具体配置NCIF标识的方式不受以上举例限制。可选的,physicalconfigdedicated可包含non-SUL的配置信息(physicalconfigULdedicated),可选的,还可以包含non-SUL和DL的UE级配置信息;physicalSULconfigdedicated包含SUL的配置信息。具体信元的命名不局限于上述方式。
其中,physicalconfigdedicated中包含non-SUL上的UE级PUSCH、PUCCH、PDCCH、SRS配置信息;SULphysicalconfigdedicated中包含SUL上的UE级PUSCH、SRS、PUCCH配置信息。可选的,physicalconfigdedicated可包含non-SUL的配置信息,则该physicalconfigdedicated可重命名为physicalconfigULdedicated,可选的还可以包含non-SUL和DL的UE级配置信息;SULphysicalconfigULdedicated包含SUL的配置信息。具体信元的命名不局限于上述方式。
代码五:
Figure PCTCN2018116032-appb-000006
可选地,NCIF标识包括小区标识和/或上行载波标识。例如,当服务小区为SUL小区,那么NCIF标识相当于小区标识和上行载波标识;当服务小区为只包含一个上行载波和一个下行载波的小区,那么NCIF标识相当于小区标识。
在本实施例中,NCIF标识可以是基于小区标识和上行载波标识生成的标识,比如,将SCellIndex+SCellSULIndex作为NCIF标识,或NCIF标识也可以是基于小区标识生成的标识。可以理解NCIF也可以加上其他的部分从而构成其他的结构,并不影响NCIF在本申请方案中的功能。
需要说明的是,RRC信令配置一个SUL cell中包含多个NCIF标识的方式并不局限于以上举例。
可选地,RRC信令配置一个SUL Cell包含多个NCIF标识的一个示例如图10所示,3.5G DL载波和3.5G UL载波与NCIF0关联,1.8G SUL载波域NCIF1关联或3.5G DL载波和1.8G SUL载波与NCIF1关联。因此,第一载波信息、第二载波信息可以通过NCIF标识来表示。如果RRC配置信令同时包含UL CC的UL带宽(bandwidth)BWP1和SUL CC上的UL BWP1配置信息或显示指示激活UL CC和SUL CC;基站gNB可动态调度UL CC和SUL CC上PUSCH的传输或RRC信令显示配置gNB可动态调度UL CC和SUL CC上PUSCH的传输。上行调度授权信息中包含NCIF值,用于指示调度的PUSCH是在1.8G SUL载波上传输还是在3.5G UL载波上传输,当SUL Cell包含多个SUL时,SUL Cell配置的NCIF标识的值等于SUL的数目加1。
带宽(bandwidth)可以为频域上一段连续的资源。带宽有时可称为带宽部分(bandwidth part,BWP)、载波带宽部分(carrier bandwidth part)、子带(subband)带宽、窄带(narrowband) 带宽、或者其他的名称,本申请对名称并不做限定。例如,一个BWP包含连续的K(K>0)个子载波;或者,一个BWP为N(N>0)个不重叠的连续的资源块(resource block,RB)所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M(M>0)个不重叠的连续的资源块组(resource block group,RBG)所在的频域资源,一个RBG包括P(P>0)个连续的RB,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值。
102部分、UE接收配置信息,根据配置信息确定SRS切换的源上行载波和目的上行载波。
例如,UE可以基于第一上行载波信息确定SRS切换的源上行载波,基于第二上行载波信息确定SRS切换的目的上行载波。
在本实施例中,解析配置信息之后,根据第一上行载波信息确定SRS切换的源上行载波,并根据第二上行载波信息确定SRS切换的目的上行载波。如图5所示,若第一上行载波信息中包括小区1的标识和3.5G UL载波的标识,则SRS切换的源上行载波为小区1中的3.5G UL载波。如图6所示,若第二上行载波信息中包括小区1的标识和3.5G UL载波的标识,则SRS切换的目的上行载波为小区1中的3.5G UL载波。如图9所示,若第一上行载波信息中包含NCIF1,则SRS切换的源上行载波为小区2中的3.5G UL载波。
本申请实施例提供的SRS的传输方法,网络设备向UE发送包括第一上行载波信息和第二上行载波信息的配置信息,根据第一上行载波信息确定SRS切换的源上行载波,并根据第二上行载波信息确定SRS切换的目的上行载波,对于SUL Cell作为switching-from UL CC来说,可以确定是借用SUL的RF能力还是non-SUL的RF能力,对于SUL Cell作为switching-to UL CC来说,可以确定是切换到SUL上还是non-SUL上传输SRS,从而保证SRS传输的可靠性。
图11为本申请另一实施例提供的一种无线通信方法的流程图,在图4所示实施例的基础上,该方法还包括:
201部分、网络设备向UE发送下行控制信息DCI。
例如,DCI包含非周期性(aperiodic)A-SRS触发指示信息和上行载波标识。所述上行载波标识用于指示第二上行载波。
在本实施例中,若UE只配置了一个服务小区,且该服务小区是SUL Cell;或UE的SRS切换的目的上行载波是一个SUL Cell。当配置的SRS为A-SRS时,SUL Cell上的DL-DCI或组级(group)DCI触发的A-SRS是哪个上行载波上的A-SRS需要进一步的指示。因此,可以通过DCI来指示触发A-SRS的上行载波。
可选地,配置信息包括A-SRS标识,A-SRS标识与第二上行载波关联。
在本实施例中,可将小区的SUL和non-SUL上的A-SRS资源进行统一编号,每个A-SRS标识(index)和一个UL CC上的一个A-SRS关联,例如,将图7中的A-SRS资源进行统一编号,A-SRS index1与小区1的3.5G UL关联,A-SRS index2与小区1的1.8G SUL关联,A-SRS index3与小区2的3.5G UL关联,A-SRS index4与小区2的1.8G SUL关联,根据该A-SRS index即可确定对应的上行载波。其中,一个上行载波上可以包含多个A-SRS资源,也可以采用前述的方式进行统一编号。
可选地,还可以在group DCI的每个信息块(block)中添加1bit或者多个bit的SUL  CIF域,该SUL CIF域用于指示第二上行载波。
一种设计中,每个信息块中所需bit数和SUL Cell中包含的上行载波数目相关,假设所需N个bit,上行载波数为M,则,N=log2M。
可选的,DCI携带A-SRS触发指示信息,上行载波信息可以预定义为non-SUL载波。
可选地,102部分中“根据配置信息确定SRS切换的目的上行载波”的一种实现方式包括:
202部分、UE接收DCI信息,根据DCI信息中的A-SRS触发指示信息、上行载波标识信息和102部分接收的配置信息,确定A-SRS切换的目的上行载波。
在本实施例中,在配置信息中配置了第二上行载波信息后,若该SRS为A-SRS,则需要根据第二上行载波信息、A-SRS触发指示信息和上行载波标识信息确定SRS切换的目的上行载波。
可选地,当配置的SRS为半静态(semi-persistent)SPS-SRS时,也可参照图11所述的方法。
本申请实施例提供的SRS的传输方法,网络设备向UE发送携带A-SRS触发指示信息和/或上行载波标识信息的DCI,根据第二上行载波信息、A-SRS触发指示信息和上行载波标识信息确定SRS切换的目的上行载波,可以在特殊的SRS的场景下也能确定SRS切换的源上行载波和SRS切换的目的上行载波,可以适用于更多的场景。
可选地,在上述图4-图11任一实施例的基础上,配置信息还用于指示不传输PUSCH/PUCCH的上行载波在UE组级DCI的信息块的位置,UE组级DCI的信息块中包含不传输PUSCH/PUCCH载波的SRS功率控制信息、A-SRS触发指示信息、上行载波标识信息中的至少一个。
在本实施例中,若UE被配置为包括至多N个(N为正整数,例如N为4或其他值)不传输PUSCH/PUCCH的上行载波,在UE组级DCI(group DCI)中包含多个信息块,每个信息块包含一个不传输PUSCH/PUCCH载波的SRS功率控制信息、A-SRS触发指示信息、上行载波标识信息中的至少一个,配置信息指示不传输PUSCH/PUCCH的上行载波在UE组级DCI的信息块的位置,也即指示第二上行载波。例如,配置信息中指示不传输PUSCH/PUCCH的上行载波对应在UE组级DCI中的信息块位置,即信息块中包含的了第二上行载波信息,功控控制信息,或者A-SRS触发指示信息中的至少一个。
例如,当UE至多配置了4个PUSCH/PUCCH less的载波时,RRC信令中携带Scell的专享物理资源配置信元,其中,SCell专享物理资源配置信元中包含typeB的发射功控(Transmit power control,TPC)配置信元,该配置信元用于配置该SCell对应于group DCI的block位置,一个UE至多配置了groupDCI中的4个block。当PUSCH/PUCCH less载波上需要传输周期性(Periodic)P-SRS时,group DCI信令中只包含TPC信令;当PUSCH/PUCCH less载波上配置了A-SRS时,group DCI信令中包含TPC信令,A-SRS触发指示信息,或者上行载波指示信息中的至少一个;当PUSCH/PUCCH less载波上配置了SPS-SRS时,groupDCI信令中包含了TPC信令,SPS-SRS激活/去激活信令,或者和上行载波指示信息中的至少一个。
如代码六所示,在PhysicalConfigDedicated中配置typeB的TPC配置信元。
代码六:
Figure PCTCN2018116032-appb-000007
Figure PCTCN2018116032-appb-000008
可选地,配置信息还包括不传输PUSCH/PUCCH的上行载波所在的载波组索引和组内载波索引。
在本实施例中,若UE被配置为包括多于N个(N为正整数,例如N=4或其他值)不传输PUSCH/PUCCH的上行载波,多于N个不传输PUSCH/PUCCH的上行载波被配置为M个组,则配置信息还包括不传输PUSCH/PUCCH的上行载波所在的组索引和上行载波标识,根据该组索引和上行载波标识可以确定第二上行载波。
例如,当UE配置了多于4个PUSCH/PUCCH less的载波时,RRC信令会携带物理专享资源配置信元,其中,专享物理资源配置信元中包含typeA的TPC配置信元,该typeA的TPC配置信元用于配置PUSCH/PUCCH less载波所在的载波组索引(CCSetIndex)和组内载波索引(CCIndexInOneCcSet)。typeA的TPC配置信元中可以包括所有的PUSCH/PUCCH less载波信息。当PUSCH/PUCCH less载波上需要传输P-SRS时,group DCI信令一个信息块(block)中包含载波组索引和TPC信令;当PUSCH/PUCCH less载波上配置了A-SRS时,group DCI信令的一个block中包含载波组索引和TPC信令,A-SRS的触发由下行DCI来触发,下行DCI中包含上行载波索引指示信息;当PUSCH/PUCCH less载波上配置了SPS-SRS时,groupDCI信令的一个block中包含了载波组索引和TPC信令,SPS-SRS激活/去激活信令由下行DCI或多媒体访问控制(Media Access Control,MAC)控制元素(Control Element,CE)来触发。一个UE对应group DCI信令中的一个block。所述group DCI信令一个block中的载波组索引用于指示触发的载波组,一个block中的TPC字段指示对应的第二上行载波上的SRS功率控制命令。
如代码七所示,在physicalconfigdedicated中配置了typeA的TPC配置信元。
代码七:
Figure PCTCN2018116032-appb-000009
可选地,若是在一个SUL Cell内的non-SUL和SUL之间的SRS载波切换,可以在配置UE级的SRS资源时指示switching-from UL CC。
例如,UE默认配置了1.8G SUL上传输PUSCH和SRS,3.5G non-SUL上只传输SRS, 3.5G non-SUL的专享物理配置信元中只包含UE级的专享SRS的配置信息,该专享SRS的配置信息可以包含A-SRS、P-SRS、SPS-SRS配置信息,则代码八中的srs-swtichFromServCellIndex字段为可选字段,如果存在srs-swtichFromServCellIndex字段,则配置的值为NCIF2,则意味着3.5G non-SUL上的SRS传输需要借助SUL的射频模块;如果不存在srs-swtichFromServCellIndex字段,则意味着3.5G non-SUL上SRS传输不需要借用SUL的射频模块。
一种配置UE级的SRS资源时指示switching-from UL CC的实现方式如代码八所示。
代码八:
Figure PCTCN2018116032-appb-000010
本申请实施例还提供一种通信装置,该通信装置用于执行上述任一实施例所述的方法。所述通信装置包含执行上述方法实施例必要的部件(means)。所述means可以通过软件和/或者硬件实现。所述通信装置可以是图1和图2中的网络设备或者终端。
图12给出了一种通信装置的结构示意图。所述通信装置20可以是图1和图2中的网络设备20。网络设备可用于实现上述方法实施例中描述的方法,具体参见上述方法实施例中的说明。
所述通信装置20包括一个或多个处理器21,所述处理器21可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
可选的一种设计中,处理器21也可以包括指令23,所述指令可以在所述处理器上被运行,使得所述通信装置20执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置20可以包括电路,所述电路可以实现前述方法实施例中发送或接收的功能。
可选的,所述通信装置20中可以包括一个或多个存储器22,其上存有指令24,所述指令可在所述处理器上被运行,使得所述通信装置20执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。所 述处理器和存储器可以单独设置,也可以集成在一起。
可选的,所述通信装置20还可以包括收发器25和/或天线26。所述处理器21可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发器505可以称为收发单元、收发机、收发电路、或者收发器等,用于通过天线26实现通信装置的收发功能。
在一个设计中,一种通信装置(例如,集成电路、无线设备、电路模块,网络设备,终端设备等)可包括处理器和收发器。若该装置用于实现网络设备的功能时,例如,图4中可以由收发器向UE发送配置信息,或者,图11中收发器向UE发送DCI。若该装置用于实现终端的功能时,例如,图4中可以由收发器接收配置信息,由处理器配置信息确定SRS切换的源上行载波和目的上行载波,或者,图11中可以由收发器接收DCI,由处理器根据第二上行载波信息、A-SRS触发指示信息和上行载波标识信息确定A-SRS传输的目的上行载波。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、蜂窝电话、无线设备、手持机、移动单元,网络设备等等;
(6)其他等等。
图13提供了一种终端的结构示意图。该UE可适用于图1所示出的系统中。为了便于说明,图13仅示出了终端的主要部件。如图13所示,终端10包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到 射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图13仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个用户设备进行控制,执行软件程序,处理软件程序的数据。图13中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,用户设备可以包括多个基带处理器以适应不同的网络制式,用户设备可以包括多个中央处理器以增强其处理能力,用户设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在发明实施例中,可以将具有收发功能的天线和控制电路视为UE10的收发单元11,将具有处理功能的处理器视为UE10的处理单元12。如图13所示,UE10包括收发单元11和处理单元12。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元101中用于实现接收功能的器件视为接收单元,将收发单元101中用于实现发送功能的器件视为发送单元,即收发单元11包括接收单元和发送单元示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
本申请还提供一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述方法实施例中的终端侧的技术方案。
本申请还提供一种计算机存储介质,包括指令,当其在计算机上运行时,使得计算机执行前述方法实施例中网络设备侧的技术方案。
本申请还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行前述方法实施例中的终端侧的技术方案。
本申请还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行前述方法实施例中网络设备侧的技术方案。
本领域技术任何还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、 微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(有时也可以称为计算机程序)。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。

Claims (43)

  1. 一种无线通信方法,其特征在于,包括:
    接收配置信息,所述配置信息包括第一上行载波信息和第二上行载波信息;
    其中,所述第一上行载波信息用于指示第一上行载波为探测参考信号SRS切换的源上行载波,所述第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;所述第一上行载波和所述第二上行载波中的至少一个属于包含增补上行链路SUL的小区;
    根据所述配置信息确定所述SRS切换的源上行载波和目的上行载波。
  2. 如权利要求1所述的方法,其特征在于,包括:
    接收下行控制信息DCI,所述DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,所述上行载波标识用于指示所述第二上行载波。
  3. 如权利要求2所述的方法,其特征在于,根据所述第二上行载波信息、所述A-SRS触发指示信息和所述上行载波标识确定所述SRS切换的目的上行载波。
  4. 一种无线通信方法,其特征在于,包括:发送探测参考信号SRS的配置信息,所述配置信息包括第一上行载波信息和第二上行载波信息;
    其中,所述第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波,所述第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;所述第一上行载波和所述第二上行载波中的至少一个属于包含增补上行链路频率SUL的小区。
  5. 如权利要求4所述的方法,其特征在于,包括:
    发送下行控制信息DCI,所述DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,所述上行载波标识用于指示所述第二上行载波。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述第一上行载波信息包括用于指示源小区的信息以及用于指示源载波的信息。
  7. 如权利要求1至6任一项所述的方法,其特征在于,所述第一上行载波所在的源小区包括一个上行UL载波和一个SUL载波。
  8. 如权利要求6至7任一项所述的方法,所述指示源小区的信息为小区标识。
  9. 如权利要求6或7所述的方法,所述指示源载波的信息为上行载波标识或者指示源载波是UL载波还是SUL载波。
  10. 如权利要求9所述的方法,其特征在于,所述上行载波标识为以下一项或多项:成员载波索引、上行索引,辅小区SUL上行索引或者可用于标识载波的信息。
  11. 如权利要求1至10任一项所述的方法,其特征在于,所述第二上行载波信息包括指示切换的目的小区的信息和目的载波的信息。
  12. 如权利要求1至11任一项所述的方法,其特征在于,所述第一上行载波信息和所述第二上行载波信息中的至少一个包括用于指示小区的信息和用于指示上行载波的信息。
  13. 如权利要求1至12任一项所述的方法,其特征在于,若所述第二上行载波所在的小区为包含所述SUL的小区,则所述第二上行载波为的non-SUL载波。
  14. 如权利要求1-13任一项所述的方法,其特征在于,若所述第一上行载波所在的小 区为包含所述SUL的小区,则所述第一上行载波为的非物理上行控制信道non-PUCCH载波。
  15. 如权利要求1至5任一项所述的方法,其特征在于,所述第一上行载波信息和所述第二上行载波信息中的至少一个为新载波指示域NCIF标识,所述NCIF标识用于指示所述第一上行载波和/或所述第二上行载波。
  16. 如权利要求15所述的方法,其特征在于,所述NCIF标识包括小区标识和上行载波标识。
  17. 如权利要求1-16任一项所述的方法,其特征在于,所述配置信息还用于指示所述不传输PUSCH/PUCCH的上行载波在UE组级DCI的信息块的位置,所述UE组级DCI的信息块中包含所述不传输物理上行共享信道/物理上行控制信道PUSCH/PUCCH载波的SRS功率控制信息、A-SRS触发指示信息、上行载波标识信息中的至少一个。
  18. 如权利要求1-16任一项所述的方法,其特征在于,所述配置信息还包括所述不传输PUSCH/PUCCH的上行载波所在的载波组索引和组内载波索引。
  19. 一种通信装置,其特征在于,所述通信装置用于执行权利要求1至12项任一项所述的方法。
  20. 一种通信装置,所述通信装置包括处理器以及存储在存储器上并可在处理器上运行的指令,其特征在于,所述处理器执行所述指令时,使得所述通信装置实现如权利要求1至18项任一项所述的方法。
  21. 一种计算机存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-18任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至18任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求11至18任一项所述的方法。
  24. 一种终端,包括收发单元和处理单元,其中
    所述收发单元用于接收配置信息,所述配置信息包括第一上行载波信息和第二上行载波信息;
    其中,所述第一上行载波信息用于指示第一上行载波为探测参考信号SRS切换的源上行载波,所述第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;所述第一上行载波和所述第二上行载波中的至少一个属于包含增补上行链路SUL的小区;
    所述处理单元用于根据所述配置信息确定所述SRS切换的源上行载波和目的上行载波。
  25. 如权利要求24所述的终端,其特征在于所述收发单元还用于接收下行控制信息DCI,所述DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,所述上行载波标识用于指示所述第二上行载波。
  26. 如权利要求25所述的终端,其特征在于所述处理单元根据所述第二上行载波信息、所述A-SRS触发指示信息和所述上行载波标识确定所述SRS切换的目的上行载波。
  27. 如权利要求24-26任一项所述的终端,其特征在于,所述第一上行载波信息包括 用于指示源小区的信息以及用于指示源载波的信息。
  28. 一种网络设备,包括收发单元以及处理单元,其中所述收发单元用于
    发送探测参考信号SRS的配置信息,所述配置信息包括第一上行载波信息和第二上行载波信息;
    其中,所述第一上行载波信息用于指示第一上行载波为SRS切换的源上行载波,所述第二上行载波信息用于指示第二上行载波为SRS切换的目的上行载波;所述第一上行载波和所述第二上行载波中的至少一个属于包含增补上行链路频率SUL的小区。
  29. 如权利要求28所述的网络设备,其特征在于,所述收发单元还用于发送下行控制信息DCI,所述DCI携带非周期性探测参考信号A-SRS触发指示信息和上行载波标识,所述上行载波标识用于指示所述第二上行载波。
  30. 如权利要求24至29任一项所述的终端或者网络设备,其特征在于,所述第一上行载波信息包括用于指示源小区的信息以及用于指示源载波的信息。
  31. 如权利要求24至30任一项所述的终端或者网络设备,其特征在于,所述第一上行载波所在的源小区包括一个上行UL载波和一个SUL载波。
  32. 如权利要求30至31任一项所述的终端或者网络设备,所述指示源小区的信息为小区标识。
  33. 如权利要求30或31所述的终端或者网络设备,所述指示源载波的信息为上行载波标识或者指示源载波是UL载波还是SUL载波。
  34. 如权利要求33所述的终端或者网络设备,其特征在于,所述上行载波标识为以下一项或多项:成员载波索引、上行索引,辅小区SUL上行索引或者可用于标识载波的信息。
  35. 如权利要求24至34任一项所述的终端或者网络设备,其特征在于,所述第二上行载波信息包括指示切换的目的小区的信息和目的载波的信息。
  36. 如权利要求24至35任一项所述的终端或者网络设备,其特征在于,所述第一上行载波信息和所述第二上行载波信息中的至少一个包括用于指示小区的信息和用于指示上行载波的信息。
  37. 如权利要求24至36任一项所述的终端或者网络设备,其特征在于,若所述第二上行载波所在的小区为包含所述SUL的小区,则所述第二上行载波为的non-SUL载波。
  38. 如权利要求24-37任一项所述的终端或者网络设备,其特征在于,若所述第一上行载波所在的小区为包含所述SUL的小区,则所述第一上行载波为的非物理上行控制信道non-PUCCH载波。
  39. 如权利要求24至29任一项所述的终端或者网络设备,其特征在于,所述第一上行载波信息和所述第二上行载波信息中的至少一个为新载波指示域NCIF标识,所述NCIF标识用于指示所述第一上行载波和/或所述第二上行载波。
  40. 如权利要求39所述的终端或者网络设备,其特征在于,所述NCIF标识包括小区标识和上行载波标识。
  41. 如权利要求24-40任一项所述的终端或者网络设备,其特征在于,所述配置信息还用于指示所述不传输物理上行共享信道/物理上行控制信道PUSCH/PUCCH的上行载波 在用户设备UE组级DCI的信息块的位置,所述UE组级DCI的信息块中包含所述不传输PUSCH/PUCCH载波的SRS功率控制信息、A-SRS触发指示信息、上行载波标识信息中的至少一个。
  42. 如权利要求24-40任一项所述的终端或者网络设备,其特征在于,所述配置信息还包括所述不传输PUSCH/PUCCH的上行载波所在的载波组索引和组内载波索引。
  43. 一种通信系统,包括如权利要求24至42任一项所述的终端和网络设备。
PCT/CN2018/116032 2017-11-17 2018-11-16 用于多载波通信的载波切换方法、装置和系统 WO2019096277A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18879964.7A EP3706353B1 (en) 2017-11-17 2018-11-16 Carrier switching method, device and system for multi-carrier communication
BR112020009467-6A BR112020009467A2 (pt) 2017-11-17 2018-11-16 método de comunicação sem fio, aparelho, terminal, dispositivo de rede, sistema e meio de armazenamento de computador
EP23158140.6A EP4221047A3 (en) 2017-11-17 2018-11-16 Carrier switching method, apparatus, and system for multi-carrier communication
JP2020527092A JP7055869B2 (ja) 2017-11-17 2018-11-16 マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
US16/874,761 US11540278B2 (en) 2017-11-17 2020-05-15 Carrier switching method, apparatus, and system for multi-carrier communication
US18/064,174 US11902953B2 (en) 2017-11-17 2022-12-09 Carrier switching method, apparatus, and system for multi-carrier communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711148290.4 2017-11-17
CN201711148290.4A CN109802799A (zh) 2017-11-17 2017-11-17 用于多载波通信的载波切换

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/874,761 Continuation US11540278B2 (en) 2017-11-17 2020-05-15 Carrier switching method, apparatus, and system for multi-carrier communication

Publications (1)

Publication Number Publication Date
WO2019096277A1 true WO2019096277A1 (zh) 2019-05-23

Family

ID=66538929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116032 WO2019096277A1 (zh) 2017-11-17 2018-11-16 用于多载波通信的载波切换方法、装置和系统

Country Status (6)

Country Link
US (2) US11540278B2 (zh)
EP (2) EP4221047A3 (zh)
JP (1) JP7055869B2 (zh)
CN (2) CN109802799A (zh)
BR (1) BR112020009467A2 (zh)
WO (1) WO2019096277A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203002A1 (en) * 2020-04-03 2021-10-07 Qualcomm Incorporated Sounding reference signal carrier switching
JP7486611B2 (ja) 2020-05-20 2024-05-17 中興通訊股▲ふん▼有限公司 上り信号伝送方法、装置、通信ノードおよび記憶媒体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240010085A (ko) 2017-05-05 2024-01-23 삼성전자주식회사 패킷 데이터 수렴 프로토콜 복제 기능을 지원하는 시스템, 데이터 송신 방법 및 네트워크 장비, 및 부가적 상향링크 반송파 구성 정보를 전송하는 방법 및 장치 그리고 연결 이동성 조정을 수행하는 방법 및 장치
CN109802799A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 用于多载波通信的载波切换
JP6966004B2 (ja) * 2018-02-14 2021-11-10 日本電気株式会社 gNBにおいて用いられる方法およびgNB
CN111726874A (zh) * 2018-11-19 2020-09-29 华为技术有限公司 一种上行链路切换的方法、通信装置和通信系统
CN112751600B (zh) * 2019-10-31 2023-10-31 中国电信股份有限公司 支持上行载波多天线发射的方法、基站和通信系统
CN113922933B (zh) * 2020-07-10 2023-01-06 维沃移动通信有限公司 一种载波切换处理方法、装置及终端
CN114390548A (zh) * 2020-10-16 2022-04-22 展讯半导体(南京)有限公司 载波切换指示方法及相关产品
CN114667785A (zh) * 2020-10-23 2022-06-24 华为技术有限公司 通信方法和通信装置
WO2022141099A1 (zh) * 2020-12-29 2022-07-07 华为技术有限公司 一种上行定位方法及通信装置
WO2022188134A1 (en) * 2021-03-12 2022-09-15 Qualcomm Incorporated Configuration for uplink transmit switching and sounding reference signal carrier switching
US11528711B2 (en) * 2021-04-05 2022-12-13 Qualcomm Incorporated Techniques for transport block transmission over multiple slots
CN115276927A (zh) * 2021-04-30 2022-11-01 华为技术有限公司 通信方法、装置及系统
CN115529112A (zh) * 2021-06-25 2022-12-27 华为技术有限公司 一种参考信号的发送与配置方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050155A1 (zh) * 2015-09-25 2017-03-30 中兴通讯股份有限公司 探测参考信号的发送方法及装置、信令配置方法及装置
CN107317660A (zh) * 2016-04-26 2017-11-03 北京信威通信技术股份有限公司 探测参考信号发送方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2614610T3 (es) * 2010-04-01 2017-06-01 Alcatel Lucent Agregación de portadoras optimizado para traspaso
CN108352953B (zh) * 2015-10-19 2021-01-26 Lg 电子株式会社 接收下行链路信号的方法和用户设备以及发送下行链路信号的方法和基站
CA3019646A1 (en) 2016-04-01 2017-10-05 Huawei Technologies Co., Ltd. System and method for srs switching, transmission, and enhancements
WO2017223196A1 (en) * 2016-06-22 2017-12-28 Intel IP Corporation Uplink sounding reference signal (srs) transmission in carrier aggregation system
CN109478980B (zh) * 2016-07-20 2021-11-19 瑞典爱立信有限公司 在未许可频带上的基于srs载波的切换
AU2017338040B2 (en) * 2016-09-30 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Control of aperiodic signalling of SRS for wireless systems
CN109804575B (zh) * 2016-10-11 2022-07-08 瑞典爱立信有限公司 用于考虑到测量过程而改变srs切换的方法和设备
EP3852289A1 (en) * 2017-04-14 2021-07-21 LG Electronics Inc. Method and apparatus for performing initial connection in wireless communication system
US11190320B2 (en) * 2017-06-16 2021-11-30 Lg Electronics Inc. Method for generating SRS sequence and terminal therefor
CN116782286A (zh) * 2017-09-11 2023-09-19 交互数字专利控股公司 用于新无线电中的无线电链路监测的方法、装置和系统
TWI800554B (zh) * 2017-11-14 2023-05-01 美商內數位專利控股公司 無線系統中輔助上鏈
US20220417804A1 (en) * 2017-11-14 2022-12-29 Idac Holdings, Inc. Supplementary uplink in wireless systems
JP7138170B2 (ja) * 2017-11-14 2022-09-15 アイディーエーシー ホールディングス インコーポレイテッド 無線システムにおける補助的なアップリンク送信
MX2020004961A (es) * 2017-11-15 2020-09-25 Idac Holdings Inc Métodos para el acceso de enlace ascendente suplementario en sistemas inalámbricos.
CN109802799A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 用于多载波通信的载波切换

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017050155A1 (zh) * 2015-09-25 2017-03-30 中兴通讯股份有限公司 探测参考信号的发送方法及装置、信令配置方法及装置
CN107317660A (zh) * 2016-04-26 2017-11-03 北京信威通信技术股份有限公司 探测参考信号发送方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Other Issues on NR CA and DC Including SRS Switching and SUL", 3GPP TSG RAN WGI MEETING#9OBIS, 13 October 2017 (2017-10-13), XP051340271 *
HUAWEI: "List of Agreements for ''SRS Carrier-Based Switching", RAN WGI MEETING#87, 18 November 2016 (2016-11-18), pages 13, XP051160729 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203002A1 (en) * 2020-04-03 2021-10-07 Qualcomm Incorporated Sounding reference signal carrier switching
US11690019B2 (en) 2020-04-03 2023-06-27 Qualcomm Incorporated Sounding reference signal carrier switching
JP7486611B2 (ja) 2020-05-20 2024-05-17 中興通訊股▲ふん▼有限公司 上り信号伝送方法、装置、通信ノードおよび記憶媒体

Also Published As

Publication number Publication date
US20200280987A1 (en) 2020-09-03
EP3706353A4 (en) 2021-01-06
EP3706353A1 (en) 2020-09-09
BR112020009467A2 (pt) 2020-11-03
JP2021503834A (ja) 2021-02-12
EP4221047A2 (en) 2023-08-02
JP7055869B2 (ja) 2022-04-18
CN112469090B (zh) 2021-11-19
EP3706353B1 (en) 2023-03-29
CN109802799A (zh) 2019-05-24
US11902953B2 (en) 2024-02-13
US11540278B2 (en) 2022-12-27
CN112469090A (zh) 2021-03-09
US20230164754A1 (en) 2023-05-25
EP4221047A3 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
WO2019096277A1 (zh) 用于多载波通信的载波切换方法、装置和系统
CN111066354B (zh) 无线通信系统中的装置和方法、计算机可读存储介质
EP3639558B1 (en) Communication apparatus, method and computer program
WO2019029348A1 (zh) 数据传输方法、终端和基站
US20210258958A1 (en) Communications Method and Apparatus
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2021062918A1 (zh) 一种资源的动态指示方法及装置
WO2023030514A1 (zh) 无线通信方法和通信装置
CN116349192A (zh) 由设备进行的用于请求定位资源的物理层信令
US20220304011A1 (en) Control Signaling for Physical Control Channel Reliability Enhancement
KR20230073283A (ko) 무선 통신 동안 연결 상태에서의 멀티미디어 브로드캐스트 및 멀티캐스트 서비스(mbms) 전송 및 수신
CN111756497B (zh) 通信方法及装置
CN117460007A (zh) 一种小区状态切换方法及装置
WO2021062892A1 (zh) 一种资源的动态指示方法及装置
CN114930958A (zh) 终端以及通信方法
CN112399561B (zh) 通信方法及装置
WO2023143007A1 (zh) 信息传输方法和装置
WO2023279969A1 (zh) 一种数据传输的方法及通信装置
US20230179371A1 (en) Communication method and apparatus
WO2023066329A1 (zh) 一种通信方法及装置
JP2024503448A (ja) マルチdciマルチtrp動作のためのharqプロセスハンドリング
CN116420412A (zh) Lte和5g nr动态频谱共享的调度限制增强
CN114223166A (zh) 通信方法、装置、系统和可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879964

Country of ref document: EP

Effective date: 20200604

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009467

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009467

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200513