WO2023000951A1 - 天线及天线系统 - Google Patents

天线及天线系统 Download PDF

Info

Publication number
WO2023000951A1
WO2023000951A1 PCT/CN2022/103255 CN2022103255W WO2023000951A1 WO 2023000951 A1 WO2023000951 A1 WO 2023000951A1 CN 2022103255 W CN2022103255 W CN 2022103255W WO 2023000951 A1 WO2023000951 A1 WO 2023000951A1
Authority
WO
WIPO (PCT)
Prior art keywords
concave portion
orthographic projection
dielectric layer
antenna
radiating
Prior art date
Application number
PCT/CN2022/103255
Other languages
English (en)
French (fr)
Other versions
WO2023000951A9 (zh
Inventor
王�锋
周健
张亚飞
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/273,787 priority Critical patent/US20240079783A1/en
Publication of WO2023000951A1 publication Critical patent/WO2023000951A1/zh
Publication of WO2023000951A9 publication Critical patent/WO2023000951A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the disclosure belongs to the technical field of communications, and in particular relates to an antenna and an antenna system.
  • the miniaturization and thinning of antennas has become a development trend.
  • the thinning of the antenna helps to realize the conformal structure design and reduce the weight of the antenna.
  • an important aspect of thinning the antenna is to reduce the cross-sectional height of the antenna. Therefore, how to reduce the profile height of the antenna is an urgent technical problem to be solved.
  • the present invention aims to solve at least one of the technical problems in the prior art, and provides an antenna and an antenna system.
  • An embodiment of the present disclosure provides an antenna, which includes:
  • the first dielectric layer has a first surface and a second surface oppositely arranged along its thickness direction;
  • the first electrode layer is disposed on the second surface of the first dielectric layer and at least partially overlaps the orthographic projection of the radiation patch on the second surface;
  • the first electrode layer has an inner concave portion, and the opening of the inner concave portion faces the radiation patch, and the orthographic projection of at least part of the radiation side of the radiation patch on the first dielectric layer is consistent with the The inner concave portion at least partially overlaps in the orthographic projection on the first surface; the depth of the inner concave portion is 1/4 equivalent wavelength.
  • the radiating side of the radiating patch includes a first radiating side and a second radiating side extending along a first direction and arranged side by side along a second direction;
  • the inner concave portion includes a first inner concave portion and a second inner concave portion;
  • the length direction of both the first inner concave portion and the second inner concave portion is the first direction, the width direction of the two is the second direction, and the depth direction of the two is the direction of the first electrode layer.
  • the orthographic projection of the first radiating side on the first medium layer is located within the orthographic projection of the first concave portion on the first medium layer; the second radiating side is in the first The orthographic projection on the medium layer is located within the orthographic projection of the second inner recess on the first medium layer.
  • the radiation side of the radiation patch further includes a third radiation side and a fourth radiation side extending along the second direction and arranged side by side along the first direction;
  • the inner concave part further includes a third inner concave part and a fourth radiation side.
  • the thickness direction of an electrode layer; the orthographic projection of the third radiating side on the first dielectric layer is located within the orthographic projection of the third inner concave portion on the first dielectric layer; the fourth radiating side is in the The orthographic projection on the first medium layer is located within the orthographic projection of the fourth inner concave portion on the first medium layer.
  • first inner concave part, the second inner concave part, the third inner concave part and the fourth inner concave part are sequentially connected to form a closed-loop inner concave part.
  • first inner concave portion, the second inner concave portion, the third inner concave portion and the fourth inner concave portion are sequentially connected to form an open-loop inner concave portion.
  • the antenna further includes: a feeder line arranged on the first surface of the dielectric layer, the feeder line is electrically connected to the radiating patch; the orthographic projection of the feeder line on the first dielectric layer and the Orthographic projections of the open-loop inner concave portion on the first dielectric layer do not overlap.
  • the radiating side of the radiating patch includes a first radiating side and a second radiating side extending along a first direction and arranged side by side along a second direction;
  • the inner concave portion includes a first inner concave portion and a second inner concave portion;
  • the first concave portion includes a first main body and a first branch, the first main body communicates with the first branch, and the depth direction of the first branch is the direction of the first electrode layer In the thickness direction, the depth direction of the first body part is the second direction; the orthographic projection of the first radiation edge on the first medium layer is located at the first body part on the first medium layer in the orthographic projection;
  • the second concave portion includes a second main body and a second branch, the second main body communicates with the second branch, and the depth direction of the second branch is the direction of the first electrode layer In the thickness direction, the depth direction of the second main body part is the second direction; the orthographic projection of the second radiation edge on the first medium layer is located at the position of the second main body part on the first medium layer in the orthographic projection of .
  • the first inner concave portion includes two first branch portions, the first main body portion includes two first sub-main body portions; the two first branch portions are arranged side by side along the first direction;
  • the depth directions of the two first sub-body parts are both the first direction, and they are arranged side by side along the first direction, and the orthographic projections of the first radiation side on the first medium layer are located at two In the orthographic projection of the first sub-body portion on the first dielectric layer;
  • the second inner concave portion includes two second branch portions, the second main body portion includes two second sub-main body portions; the two second branch portions are arranged side by side along the first direction; two The depth direction of the second sub-body part is the first direction, and the two are arranged side by side along the first direction; the orthographic projection of the second radiation side on the first medium layer is located between the two The second sub-body part is within the orthographic projection on the first medium layer.
  • the antenna also includes:
  • a second dielectric layer, a blind groove is arranged on the second dielectric layer; the first electrode layer is arranged on the second dielectric layer, and the blind groove defines the inner recess.
  • the second dielectric layer has a middle region and a peripheral region surrounding the middle region;
  • the blind groove runs through at least part of the boundary line between the middle region and the peripheral region;
  • the radiation patch is the orthographic projection on the first surface overlays the orthographic projection of the intermediate region of the reference electrode on the first surface;
  • the first electrode layer includes a first hollow pattern located in the middle area and a second hollow pattern located in the peripheral area; the radiation patch includes a third hollow pattern.
  • the hollow part of the first hollow pattern completely overlaps the orthographic projection of the hollow part of the third hollow part on the first surface.
  • the bottom angle of the blind groove is 80°-100°.
  • the dielectric material filled in the concave portion includes any one of silicon, aluminum oxide and ceramics.
  • an embodiment of the present disclosure provides an antenna system, which includes at least one antenna described above.
  • the antenna system also includes:
  • a transceiver unit for sending or receiving signals
  • a radio frequency transceiver connected to the transceiver unit, used to modulate the signal sent by the transceiver unit, or to demodulate the signal received by the antenna and transmit it to the transceiver unit;
  • a signal amplifier connected to the radio frequency transceiver, for improving the signal-to-noise ratio of the signal output by the radio frequency transceiver or the signal received by the antenna;
  • a power amplifier connected to the radio frequency transceiver, for amplifying the power of the signal output by the radio frequency transceiver or the signal received by the antenna;
  • the filtering unit is connected to both the signal amplifier and the power amplifier, and is connected to the antenna, and is used to filter the received signal and send it to the antenna, or filter the signal received by the antenna.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view of A-A' of the antenna of FIG. 1.
  • FIG. 3 is another cross-sectional view of A-A' of the antenna of FIG. 1.
  • Fig. 4 is another cross-sectional view of A-A' of the antenna of Fig. 1 .
  • FIG. 5 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic simulation diagram of the antenna shown in FIG. 9 .
  • FIG. 12 is a schematic diagram of a ground layer in another antenna structure according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a radiation patch of another antenna according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an antenna system according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an antenna according to an embodiment of the disclosure
  • FIG. 2 is a cross-sectional view of the antenna A-A' of FIG. 1
  • an embodiment of the disclosure provides an antenna, which includes a first dielectric layer 1.
  • the first dielectric layer 1 includes a first surface and a second surface oppositely arranged along its thickness direction.
  • the radiation patch 2 and the feeder 4 are arranged on the first surface of the first dielectric layer 1 , and the feeder 4 is electrically connected to the radiation patch 2 .
  • the first electrode layer has an inner concave portion, the first electrode layer is disposed on the second surface of the first dielectric layer 1 , and the opening of the inner concave portion on the first electrode layer faces the first dielectric layer 1 .
  • the orthographic projection of the radiation patch 2 on the first dielectric layer 1 is at least partially overlapped with the orthographic projection of the first electrode layer on the first dielectric layer 1, and at least part of the radiation side of the radiation patch 2 is on the first dielectric layer 1
  • the orthographic projection on and the orthographic projection of the inner recess on the first surface at least partially overlap; the depth of the inner recess is 1/4 equivalent wavelength; the equivalent wavelength is the vacuum wavelength divided by the refractive index of the medium material in the inner recess.
  • the first electrode layer includes but is not limited to the ground layer 3 , that is, the signal applied to the first electrode layer is a ground signal.
  • the first electrode layer is the ground layer 3 as an example for illustration. It should be understood that as long as the film antenna is working, the actual voltage on the first electrode layer and the radiation layer can form a loop, that is, the selection of the ground layer 3 for the first electrode layer does not constitute the protection scope of the embodiments of the present disclosure. limits.
  • the radiation side of the radiation patch 2 refers to the side of the radiation patch 2, for example: when the outline of the radiation patch 2 is a rectangle, the four sides of the rectangular radiation patch 2 at this time is the radiation edge.
  • the antenna provided by the embodiment of the present disclosure has an inner concave portion on the ground layer 3, and the orthographic projection of at least part of the radiation side of the radiation patch 2 on the first dielectric layer 1 is located in the inner concave portion on the first dielectric layer 1
  • the distance between the radiation patch 2 and the ground layer 3 can be shortened through the setting of the concave part, and at the same time, the bandwidth of more than 6% can be maintained, and the maximum radiation efficiency of the resonance frequency point can be improved. to 40%-70%. That is to say, the antenna in the embodiments of the present disclosure can reduce the thickness of the first dielectric layer 1 and the overall section height of the antenna, and improve the radiation efficiency of the antenna.
  • the inner concave portion of the first electrode layer can be filled with a filling medium 5, which is a high dielectric constant material corresponding to the microwave and millimeter wave bands, such as silicon, aluminum oxide, specific ceramic materials, etc. .
  • a filling medium 5 is a high dielectric constant material corresponding to the microwave and millimeter wave bands, such as silicon, aluminum oxide, specific ceramic materials, etc. .
  • the radiation efficiency can be increased by 4 to 5 times compared with the traditional low-profile patch antenna, and the maximum radiation efficiency can be increased to 6 to 8 times after the high dielectric constant material is filled. And the radiation bandwidth (of 30% radiation efficiency) will also increase to more than 15%.
  • the materials of the radiation patch 2 , the feeder 4 and the ground layer 3 may all be the same.
  • the material of the radiation patch 22 , the feeder 44 and the ground layer 33 are all made of copper as an example for illustration.
  • the first dielectric layer 1 in the antenna can be a single-layer structure or a composite layer structure.
  • its materials include but are not limited to flexible materials,
  • the first dielectric layer 1 is made of polyimide (PI) or polyethylene terephthalate (PET).
  • FIG. 3 is another cross-sectional view of A-A' of the antenna in FIG. 1; as shown in FIG. layer 11, the first adhesive layer 12, the second sub-dielectric layer 13, the second adhesive layer 14, and the third sub-dielectric layer 15; wherein, the ground layer 33 is arranged on the first sub-dielectric layer 11 away from the first adhesive layer 12, that is, the side of the first sub-dielectric layer 11 facing away from the first adhesive layer 12 is used as the second surface of the dielectric layer 1; the radiation patch 22 is arranged on the third sub-dielectric layer 15 away from the second adhesive layer One side of 14 , that is, the side of the second sub-dielectric layer 13 facing away from the second adhesive layer 14 serves as the first surface of the dielectric layer 1 .
  • the first sub-dielectric layer 11 and the third sub-dielectric layer 15 include but are not limited to using PI material; the second sub-dielectric layer 13 includes but not limited to using polyethylene terephthalate (PET) material. Both the first adhesive layer 12 and the second adhesive layer 14 can be made of transparent optical (OCA) adhesive.
  • OCA transparent optical
  • a protective layer is also formed on the upper surface of the third sub-dielectric layer 15, such as a self-healing transparent waterproof coating, to The third sub-dielectric layer 15 provides protection.
  • Fig. 4 is another cross-sectional view of A-A' of the antenna in Fig. 1; layer 11, the first adhesive layer 12, the second sub-dielectric layer 13, the second adhesive layer 14, and the third sub-dielectric layer 15; wherein, the ground layer 33 is arranged on the first sub-dielectric layer 11 close to the first adhesive layer 12, that is, the side of the first sub-dielectric layer 11 close to the first adhesive layer 12 is used as the second surface of the dielectric layer 1; the radiation patch 22 is arranged on the second sub-dielectric layer 13 close to the second adhesive layer One side of 14 , that is, the side of the second sub-dielectric layer 13 close to the second adhesive layer 14 serves as the first surface of the dielectric layer 1 .
  • the feeder 4 , the radiation patch 2 and the ground layer 3 are not exposed, so water and oxygen corrosion can be effectively prevented.
  • the first dielectric layer 1 when the first dielectric layer 1 includes a first sub-dielectric layer 11 , a first adhesive layer 12 , a second sub-dielectric layer 13 , a second adhesive layer 14 , and a third sub-dielectric layer that are sequentially stacked, 15, the first sub-dielectric layer 11 and the third sub-dielectric layer 15 can be made of the same material, and both have the same or approximately the same thickness.
  • the material and thickness of the second sub-dielectric layer 13 are different from those of the first sub-dielectric layer 11 (third sub-dielectric layer 15 ), and the thickness of the second sub-dielectric layer 13 is greater than that of the first sub-dielectric layer 11 .
  • the thickness of the first sub-dielectric layer 11 (the third sub-dielectric layer 15 ) is about 10 ⁇ m-80 ⁇ m
  • the thickness of the second sub-dielectric layer 13 is about 0.2 mm-0.7 mm.
  • the antenna includes a first dielectric layer 1 , a radiation patch 2 , a feeder 4 and a ground layer 3 .
  • the first dielectric layer 1 includes a first surface (upper surface) and a second surface (lower surface) opposite to each other along its thickness direction.
  • the shape of the radiation patch 2 and the ground layer 3 in the antenna are both plate electrodes.
  • the outline shapes of the radiation patch 2 and the ground layer 3 may be the same or different.
  • Figure 1 only takes the outline of the radiation patch 2 as a square and the outline of the ground layer 3 as an example.
  • the shapes of the radiation patch 2 and the ground layer 3 include, but are not limited to, rectangles, ellipses, circles, and the like.
  • the radiation patch 2 has a first radiation side 201 and a second radiation side 202 extending along the first direction and arranged side by side along the second direction; and extending along the second direction and arranged side by side along the first direction
  • the feeder 4 is connected at a corner position of the radiating patch 2 to provide the radiating patch 2 with microwave signals.
  • the ground layer 3 has two inner recesses (that is, two blind grooves formed on the ground layer 3 ) extending along the first direction and arranged side by side along the second direction, which are respectively the first inner recess 31 and the second inner recess 32 , the filling medium 5 is filled in the first inner concave portion 31 and the second inner concave portion 32 . That is to say, the length direction of the first inner concave portion 31 and the second inner concave portion 32 is the first direction, the width direction is the second direction, and the depth direction is the thickness direction of the ground layer 3 .
  • the orthographic projection of the first radiating edge 201 of the radiating patch 2 on the first dielectric layer 1 runs through the orthographic projection of the first concave portion 31 on the first dielectric layer 1; the second radiating edge 202 of the radiating patch 2 is in The orthographic projection on the first medium layer 1 runs through the orthographic projection of the second concave portion 32 on the first medium layer 1 .
  • the first direction and the second direction are perpendicular to each other, wherein the first direction is a vertical direction, and the second direction is a horizontal direction.
  • the first direction is the vertical direction and the second direction is the horizontal direction as an example for description.
  • the first inner recess 31 and the second inner recess 32 are set on the ground layer 3 as an example.
  • the ground layer 3 can also be provided with a third third extending along the second direction and arranged side by side along the first direction.
  • the inner concave portion 33 and the fourth inner concave portion 34 are set on the ground layer 3 as an example.
  • the orthographic projection of the third radiating edge 203 of the radiating patch 2 on the first dielectric layer 1 runs through the orthographic projection of the third concave portion 33 on the first dielectric layer 1, and the fourth radiating edge 204 of the radiating patch 2 is on the first dielectric layer 1.
  • the orthographic projection on the medium layer 1 runs through the orthographic projection of the fourth inner recess 34 on the medium layer.
  • only one or more of the first concave portion 31 , the second concave portion 32 , the third concave portion 33 and the fourth concave portion 34 may be provided on the ground layer 3 in the embodiment of the present disclosure.
  • the length of the first concave portion 31 is not less than the length of the first radiating side 201, and is not less than one-half wavelength divided by the refractive index of the filling material; and/or the length of the second concave portion 32 is not smaller than the first
  • the length of the two radiating sides 202 is not less than one-half of the vacuum wavelength divided by the refractive index of the filling material.
  • the length of the first inner concave portion 31 is not less than the length of the first radiating side 201
  • the length of the second inner concave portion 32 is not less than the length of the second radiating side 202 .
  • the length of the third inner concave portion 33 is not less than the length of the third radiation side 203, and/or the length of the fourth inner concave portion 34 is not less than the fourth The length of the radial side 204 .
  • the depths of the first concave portion 31 and the second concave portion 32 are equal to or approximately equal to 1/4 of the equivalent wavelength.
  • the equivalent wavelength is equal to or approximately equal to the vacuum wavelength divided by the material refractive index of the filling medium 5 .
  • the width of the first concave portion 31 (second concave portion 32) of the ground layer 3 is more than 5h (only shown schematically in FIG. does not represent the actual size of each film layer and structure), for example: the width 5h-10h of the first inner concave portion 31 (second inner concave portion 32 ) of the ground layer 3 .
  • the first inner concave portion 31 and the second inner concave portion 32 both include a first side and a second side extending along the second direction and arranged side by side along the first direction; the first radiation side 201 on the first dielectric layer 1
  • the distance between the orthographic projection and the orthographic projection of the first side of the first inner concave portion 31 on the first medium layer 1 is a, and the orthographic projection of the second radiating side 202 on the first dielectric layer 1 and the second inner concave portion
  • the distance between the orthographic projections of the first side of 32 on the first dielectric layer 1 is b, and the specific values of a and b need to be obtained through simulation optimization according to the radiation frequency and the height of the first dielectric layer 1 .
  • Both the radiation patch 2 and the ground layer 3 have a thickness of about 3 skin depths.
  • the thickness of the first dielectric layer 1 is 20 ⁇ m, and the dielectric constant is 3; the thickness of the radiation patch 2 and the ground layer 3 are both 3 ⁇ m; the first inner concave portion 31 and the width of the second inner concave portion 32 are both 200 ⁇ m.
  • the depth of the first concave portion 31 and the second concave portion 32 is 800 ⁇ m, and the medium 5 is filled with a material with a dielectric constant of 10 (for example, silicon or aluminum oxide).
  • the first radiating side 201 and the second radiating side 202 are 3.4 ⁇ m
  • the third radiating side 203 and the fourth radiating side 204 are 3 ⁇ m
  • the first inner concave portion 31 and the second inner concave portion 32 are respectively connected to the first radiating side 201 and the second
  • the radiating edge 202 is set correspondingly.
  • the antenna provided with the first concave portion 31 and the second concave portion 32 can obtain a radiation efficiency of 50% at the frequency of 30 GHz
  • the antenna without the first concave portion 31 and the second concave portion 32 on the ground layer 3 can obtain a frequency of 30 GHz.
  • the radiation efficiency of 8.7% is nearly 6 times higher than the radiation frequency of the antenna without the concave part on the ground layer 3 .
  • FIG. 5 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure; as shown in FIG.
  • the ground layer 3 not only has a first concave portion 31 and a second concave portion 32 but also includes a third concave portion 33 and a fourth concave portion 34 .
  • the first inner concave portion 31 , the second inner concave portion 32 , the third inner concave portion 33 and the fourth inner concave portion 34 are sequentially connected end to end to form a closed-loop inner concave portion.
  • the orthographic projection of the radiating edge of the radiation patch 2 on the first dielectric layer 1 is located within the orthographic projection of the concave part of the ground layer 3 on the first dielectric layer 1 .
  • the orthographic projection of the first radiating side 201 of the radiation patch 2 on the first dielectric layer 1 is located within the orthographic projection of the first concave portion 31 of the ground layer 3 on the first dielectric layer 1, and the The orthographic projection of the second radiating edge 202 on the first dielectric layer 1 is located in the orthographic projection of the second concave portion 32 of the ground layer 3 on the first dielectric layer 1, and the third radiating edge 203 of the radiating patch 2 is in the first
  • the orthographic projection on the dielectric layer 1 is located in the orthographic projection of the third concave portion 33 of the ground layer 3 on the first dielectric layer 1, and the orthographic projection of the fourth radiation edge 204 of the radiation patch 2 on the first dielectric layer 1 is located in The fourth concave portion 34 of the ground layer 3 is within the orthographic projection on the first dielectric layer 1 .
  • the ground layer 3 not only has a first concave portion 31 and a second concave portion 32 extending along the first direction, but also includes a third concave portion 33 and a fourth concave portion 34 extending along the second direction.
  • the antenna structure radiates or receives microwave signals not only polarized along the first direction, but also polarized along the second direction, so as to improve the radiation efficiency of microwave signals.
  • the ground layer 3 The widths of the first concave portion 31 and the second concave portion 32 are both W1, and the widths of the third concave portion 33 and the fourth concave portion 34 are both W2.
  • the values of L1, L2, W1, and W2 can be reasonably designed, and according to the values of L1, L2, W1, and W2, the working frequency bands corresponding to the polarization in the first direction and the polarization in the second direction can be designed respectively.
  • the dual polarization of the antenna can be realized by connecting the feeder 4 respectively on the first radiating side 201 and the third radiating side 203 of the radiating patch 2, or respectively connecting the feeder 4 on the second radiating side 202 and the fourth radiating side 204 Feed mode.
  • Fig. 5 only shows that the feeder 4 is connected at one corner position of the radiating patch 2 to realize feeding and receiving of microwave signals.
  • the feeding manner shown in FIG. 5 does not limit the protection scope of the embodiments of the present disclosure.
  • the first concave portion 31 , the second concave portion 32 , the third concave portion 33 and the fourth concave portion 34 in the ground layer 3 are sequentially connected to form an open-loop concave portion. That is, the open-loop inner recess on the ground layer 3 has a disconnected portion, and at this time, the orthographic projection of the feeder 4 on the first dielectric layer 1 penetrates the disconnected portion of the open-loop inner recess on the ground layer 3 in the first dielectric layer. Orthographic projection on layer 1. The reason for such setting is for the feeder 4 to better feed the radiating patch 2 .
  • the structure of this kind of antenna is different from that of the antenna in the first example except the structure mentioned above, and the rest of the structure may be the same as that of the first example, so the details will not be repeated here.
  • FIG. 7 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure; as shown in FIG. 7 , the structure of the antenna is roughly similar to that of the first example and the second example, the only difference is that The shape of the concave part of the ground layer 3.
  • the radiation patch 2 includes a first radiation edge 201 and a second radiation edge 201 extending along the first direction and arranged side by side along the second direction.
  • the side 202, and the third radiating side 203 and the fourth radiating side 204 extending along the second direction and arranged side by side along the first direction.
  • the concave portion on the ground layer 3 includes a first concave portion 31 and a second concave portion 32 .
  • the first inner concave portion 31 includes a first main body portion 311 and a first branch portion 312
  • the second inner concave portion 32 includes a second main body portion and a second branch portion.
  • the first main part 311 communicates with the first branch part 312, and the depth direction of the first main part 311 extends along the first direction, the depth direction of the first branch part 312 is the thickness direction of the ground layer 3, and the first branch part
  • the opening of the branch portion 312 serves as the opening of the first inner concave portion 31 , and the orthographic projection of the first radiating side 201 on the first dielectric layer 1 is located within the orthographic projection of the first main body portion 311 on the first dielectric layer 1 .
  • the second main body communicates with the second branch, and the depth direction of the second main body extends along the first direction, the depth direction of the second branch is the thickness direction of the ground layer 3, and the opening of the second branch As the opening of the second inner concave portion 32 , the orthographic projection of the second radiating side 202 on the first dielectric layer 1 is located within the orthographic projection of the second main body portion on the first dielectric layer 1 .
  • the first inner concave portion 31 includes two first branch portions 312, and the first main body portion 311 includes two first sub-main body portions, denoted by 311a and 311b respectively; wherein, the two first branch portions 311a and 311b are arranged side by side along the first direction, the depth directions of the two first sub-main parts 311a and 311b are both in the first direction, and the two are arranged side by side along the first direction, the first radiation side 201 of the radiation patch 2 is in the first direction.
  • the orthographic projection on the dielectric layer 1 is located within the orthographic projection of the two first sub-body parts 311 a and 311 b on the first dielectric layer 1 .
  • the second concave part 32 includes two second branch parts, and the second main body part includes two second sub-body parts; wherein, the two second branch parts are arranged side by side along the first direction, and the two second sub-body parts The depth directions of the two sub-body parts are both in the first direction and they are arranged side by side along the first direction.
  • the first sub-main part 311a may be connected to the bottom of one first branch part 312
  • the first sub-main part 311b may be connected to the bottom of another first branch part 312 .
  • a second dielectric layer 6 may also be provided on the side of the ground layer 3 away from the first dielectric layer 1 to provide support for the ground layer 3 .
  • the first sub-body portion 311a can be connected to a first branch portion 312
  • the first sub-body part 311b may be connected to the middle region of another first branch part 312 .
  • the second sub-body part can be connected to the bottom of the second branch part, or can be connected to the middle area in the depth direction of the second branch part.
  • the depth of the first inner concave portion 31 is the sum of the depth of the first branch portion 312 and the depth of the first main body portion 311, and the depth of the second inner concave portion 32 is also the sum of the depth of the second branch portion.
  • the depths of the first concave portion 31 and the second concave portion 32 are both equal to or approximately equal to 1/4 of the equivalent wavelength.
  • the equivalent wavelength is the vacuum wavelength divided by the refractive index of the filling medium 5 material.
  • the above only takes the example of setting the first inner concave portion 31 and the second inner concave portion 32 at the positions corresponding to the first radiation side 201 and the second radiation side 202 of the ground layer 3 and the radiation patch 2 as an example.
  • the third inner concave portion 33 and the fourth inner concave portion 34 can also be arranged at the positions corresponding to the third radial side 203 and the fourth radial side 204, and the third inner concave portion 33 and the fourth inner concave portion 34 are the same as the first inner concave portion 31.
  • the shape is the same as that of the second inner concave portion 32 , so it will not be repeated here.
  • FIG. 9 is a schematic structural diagram of another antenna according to an embodiment of the present disclosure; as shown in FIG. 9, the antenna structure includes a first dielectric layer 1, a second dielectric layer 6, a ground layer 3 and a radiation patch 2.
  • blind slots are formed on the second dielectric layer 6
  • the grounding layer 3 is formed on the second dielectric layer 6
  • an inner recess of the grounding layer 3 is defined by the blind slots.
  • the inner recess is filled with a filling medium 5
  • the first dielectric layer 1 is disposed on the surface of the ground layer 3 away from the second dielectric layer 6
  • the radiation patch 2 is disposed on the surface of the first dielectric layer 1 away from the ground layer 3 .
  • the orthographic projection of the radiating patch 2 and the ground layer 3 on the first dielectric layer 1 at least partially overlaps, and the orthographic projection of at least part of the radiation side of the radiating patch 2 on the first dielectric layer 1 is located in the inner recess on the first dielectric layer 1 in the orthographic projection.
  • Radiation efficiency can also be improved by forming a blind slot on the second dielectric layer 6 and defining an inner recess on the ground layer 3 through the blind slot.
  • both the radiating patch 2 and the ground layer 3 are rectangular, and the radiating patch 2 includes a first radiating side 201 and a second radiating side 202 extending along the first direction and arranged side by side along the second direction, and along the second direction
  • the third radiating side 203 and the fourth radiating side 204 are extended and arranged side by side along the first direction.
  • the second dielectric layer 6 includes first blind grooves and second blind grooves extending along the first direction and arranged side by side along the second direction.
  • the ground layer 3 includes A first inner concave portion 31 and a second inner concave portion 32 are provided.
  • the orthographic projection of the first radiating edge 201 on the first dielectric layer 1 is located within the orthographic projection of the first concave portion 31 on the first dielectric layer 1, and the orthographic projection of the second radiating edge 202 on the second dielectric layer 6 The projection is located within the orthographic projection of the second inner recess 32 on the first medium layer 1 .
  • the cross section of the first blind slot and the second blind slot along the second direction is rectangular or trapezoidal, for example: the bottom angle of the first blind slot and the second blind slot is about 80°-100°.
  • the bottom angle of the first blind groove and the second blind groove is 90 °, when the first blind groove and the second blind groove are in
  • the cross-section along the second direction is an inverted trapezoid
  • the bottom angles of the first blind groove and the second blind groove are 100° (as shown in Figure 10), when the first blind groove and the second blind groove are along the second direction
  • the bottom angle of the first blind groove and the second blind groove is 80°.
  • the first blind groove and the second blind groove are formed on the second dielectric layer 6 , and the first inner recess 31 and the second inner recess 32 are correspondingly provided on the ground layer 3 as an example.
  • the third blind slot and the fourth blind slot extending along the second direction and arranged side by side along the first direction are still provided on the second dielectric layer 6, that is, the second blind slot extending along the second direction is provided on the ground layer 3 , and the third inner concave portion 33 and the fourth inner concave portion 34 are arranged side by side along the first direction.
  • the orthographic projection of the third radiating edge 203 of the radiating patch 2 on the first dielectric layer 1 runs through the orthographic projection of the third concave portion 33 on the first dielectric layer 1, and the fourth radiating edge 204 of the radiating patch 2 is on the first dielectric layer 1.
  • the orthographic projection on the medium layer 1 runs through the orthographic projection of the fourth inner recess 34 on the medium layer.
  • only one or more of the first blind slot, the second blind slot, the third blind slot and the fourth blind slot is provided on the second dielectric layer 6 in the embodiment of the present disclosure.
  • FIG. 11 is a schematic simulation diagram of the antenna shown in FIG. 9; as shown in FIG. 11, the dielectric constant of the second dielectric layer 6 is 3, and the thickness is 20 ⁇ m; the width of the first blind slot and the second blind slot is 200 ⁇ m, The depth is 960 ⁇ m; the thickness of the ground layer 3 is 5 ⁇ m, and the dielectric constant of the filling medium 5 is 10. After verification, the maximum radiation efficiency is increased from 8.7% to more than 50% in the 27GHz to 28GHz frequency band.
  • FIG. 12 is a schematic diagram of the ground layer 3 in another antenna structure according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a radiation patch 2 of another antenna according to an embodiment of the present disclosure; as shown in FIG. 12 and As shown in 13, the antenna structure is roughly the same as the middle antenna structure in the fourth example, the only difference is that the radiation patch 2 and the ground layer 3 in this antenna both adopt a metal grid structure.
  • the radiation patch 2 and the ground layer 3 adopting the metal grid structure can effectively improve the light transmittance of the antenna and improve the radiation efficiency.
  • the second dielectric layer 6 has a middle region and a peripheral region surrounding the middle region; the first blind groove and the second blind groove run through at least part of the boundary line between the middle region and the peripheral region; the radiation patch 2
  • the orthographic projection on the first dielectric layer 1 covers the orthographic projection of the middle area of the ground layer 3 on the first dielectric layer 1; the ground layer 3 includes a first hollow pattern 301 located in the middle area and a second hollow pattern 302 located in the peripheral area ;
  • the radiation patch 2 includes a third hollow pattern 200 .
  • the orthographic projections of the hollow part of the first hollow pattern 301 and the hollow part of the third hollow pattern 200 on the first dielectric layer 1 are completely overlapped, and the light transmittance of the antenna structure can be effectively improved in this way.
  • the first hollow pattern 301 includes a plurality of first metal lines extending along the second direction and arranged side by side along the first direction, and the gaps between adjacent first metal lines define the first hollow pattern 301 Hollow out.
  • the second hollow pattern 302 includes a plurality of second metal wires extending along the second direction and arranged side by side along the first direction. The gap between the adjacent second metal wires defines the hollow portion of the second hollow pattern 302 .
  • the third hollow pattern 200 includes a plurality of third metal wires extending along the second direction and arranged side by side along the first direction. The gaps between the adjacent third metal wires define the hollow portion of the third hollow pattern 200 .
  • the orthographic projection of a first metal line and a third metal line on the first dielectric layer 1 at this time Overlapping, for example: the first metal line and the third metal line are set in one-to-one correspondence.
  • part of the second metal lines in the peripheral area It includes a first line segment distributed on the side of the first inner concave portion 31 away from the middle area, and a second line segment on the side of the second inner concave portion 32 away from the middle area.
  • the extension line of a metal line overlaps the orthographic projection of the first line segment and the second line segment of a second metal line on the first dielectric layer 1 .
  • the first hollow pattern 301 and the hollow pattern on the first dielectric layer 1 can be formed by one patterning process, and the ground layer 3 composed of the first hollow pattern 301 and the second hollow pattern 302 can be formed.
  • the transmittance at each position is the same, thereby ensuring the optical uniformity of the film antenna.
  • the extension directions of the first metal wire, the second metal wire and the third metal wire are the same, the transmitted microwave or millimeter wave energy can pass through the first inner concave portion 31 and the second inner concave portion 31 to the maximum extent.
  • the indentations 32 scatter into free space.
  • the extension directions of the first metal line, the second metal line, and the third metal line are all the same as an example for illustration, but in actual design, only the first metal line, the second metal line
  • the extending directions of the metal wires and the third metal wires are all different from the extending directions of the first inner concave portion 31 and the second inner concave portion 32 . Therefore, the extension directions of the first metal line, the second metal line and the third metal line are all in the second direction, which does not limit the protection scope of the embodiments of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an antenna system according to an embodiment of the present disclosure. As shown in FIG. 14 , an embodiment of the present disclosure provides an antenna system, including at least one antenna described above.
  • the antenna system provided by the embodiments of the present disclosure further includes a transceiver unit, a radio frequency transceiver, a signal amplifier, a power amplifier, and a filter unit.
  • the antenna in the antenna system can be used as a transmitting antenna or as a receiving antenna.
  • the transceiver unit may include a baseband and a receiving end.
  • the baseband provides signals of at least one frequency band, such as 2G signals, 3G signals, 4G signals, 5G signals, etc., and sends the signals of at least one frequency band to the radio frequency transceiver.
  • After the antenna in the antenna system receives the signal it can be processed by the filter unit, power amplifier, signal amplifier, and radio frequency transceiver, and then transmitted to the receiving end in the sending unit.
  • the receiving end can be a smart gateway, for example.
  • the radio frequency transceiver is connected with the transceiver unit, and is used for modulating the signal sent by the transceiver unit, or for demodulating the signal received by the antenna and then transmitting it to the transceiver unit.
  • the radio frequency transceiver may include a transmitting circuit, a receiving circuit, a modulating circuit, and a demodulating circuit. After the transmitting circuit receives various types of signals provided by the substrate, the modulating circuit may modulate the various types of signals provided by the baseband, and then sent to the antenna. The signal received by the antenna is transmitted to the receiving circuit of the radio frequency transceiver, and the receiving circuit transmits the signal to the demodulation circuit, and the demodulation circuit demodulates the signal and transmits it to the receiving end.
  • the radio frequency transceiver is connected to a signal amplifier and a power amplifier, and the signal amplifier and the power amplifier are connected to a filtering unit, and the filtering unit is connected to at least one antenna.
  • the signal amplifier is used to improve the signal-to-noise ratio of the signal output by the radio frequency transceiver and then transmitted to the filter unit;
  • the power amplifier is used to amplify the power of the signal output by the radio frequency transceiver and then transmitted to the filter unit;
  • the filter unit may specifically include a duplexer and a filter circuit. The filter unit combines the signals output by the signal amplifier and the power amplifier, filters out clutter, and transmits the signal to the antenna, and the antenna radiates the signal.
  • the antenna receives the signal and transmits it to the filter unit.
  • the filter unit filters the signal received by the antenna and then transmits it to the signal amplifier and power amplifier.
  • the signal amplifier gains the signal received by the antenna. Increase the signal-to-noise ratio of the signal; the power amplifier amplifies the power of the signal received by the antenna.
  • the signal received by the antenna is processed by the power amplifier and the signal amplifier and then transmitted to the radio frequency transceiver, and then the radio frequency transceiver transmits it to the transceiver unit.
  • the signal amplifier may include various types of signal amplifiers, such as a low noise amplifier, which is not limited here.
  • the antenna system provided by the embodiments of the present disclosure further includes a power management unit, which is connected to a power amplifier and provides the power amplifier with a voltage for amplifying signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Waveguide Aerials (AREA)

Abstract

一种天线及天线系统,其中天线包括:第一介质层(1),具有沿其厚度方向相对设置的第一表面和第二表面;辐射贴片(2),设置在第一介质层的第一表面上;第一电极层(3),设置在第一介质层的第二表面上,且与辐射贴片在第二表面上的正投影至少部分重叠;第一电极层具有内凹部(31,32),且内凹部的开口朝向辐射贴片,且辐射贴片的辐射边的至少部分在第一介质层上的正投影,与内凹部在第一表面上的正投影至少部分重叠。

Description

天线及天线系统 技术领域
本公开属于通信技术领域,具体涉及一种天线及天线系统。
背景技术
在手机、笔记本电脑、平板电脑等移动终端上,以及微小卫星、智能窗户和智能穿戴设备中等无线应用中,天线的小型化和薄膜化成为了一种发展趋势。天线薄膜化有助于实现共形结构设计,降低天线的重量。其中,天线薄膜化的一个重要方面是降低天线的剖面高度。因此,如何实现降低天线的剖面高度是一亟需要解决的技术问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线及天线系统。
本公开实施例提供一种天线,其包括:
第一介质层,具有沿其厚度方向相对设置的第一表面和第二表面;
辐射贴片,设置在所述第一介质层的第一表面上;
第一电极层,设置在所述第一介质层的第二表面上,且与所述辐射贴片在所述第二表面上的正投影至少部分重叠;其中,
所述第一电极层具有内凹部,且所述内凹部的开口朝向所述辐射贴片,且所述辐射贴片的辐射边的至少部分在所述第一介质层上的正投影,与所述内凹部在所述第一表面上的正投影内至少部分重叠;所述内凹部的深度为1/4等效波长。
其中,所述辐射贴片的辐射边包括沿第一方向延伸,且沿第二方向并排设置的第一辐射边和第二辐射边;所述内凹部包括第一内凹部和第二内凹部;所述第一内凹部和所述第二内凹部二者的长度方向为所述第一方向,二者的宽度方向为所述第二方向,二者的深度方向为所述第一电极层的厚度方向;所述第一辐射边在所述第一介质层上的正投影位于所述第一内凹部在所 述第一介质层的正投影内;所述第二辐射边在所述第一介质层上的正投影位于所述第二内凹部在所述第一介质层的正投影内。
其中,所述辐射贴片的辐射边还包括沿所述第二方向延伸,且沿所述第一方向并排设置的第三辐射边和第四辐射边;内凹部还包括第三内凹部和第四内凹部;所述第三内凹部和所述第四内凹部二者的长度方向为所述第二方向,二者的宽度方向为所述第一方向,二者的深度方向为所述第一电极层的厚度方向;所述第三辐射边在所述第一介质层上的正投影位于所述第三内凹部在所述第一介质层的正投影内;所述第四辐射边在所述第一介质层上的正投影位于所述第四内凹部在所述第一介质层的正投影内。
其中,所述第一内凹部、所述第二内凹部、所述第三内凹部和所述第四内凹部依次收尾连接形成闭环内凹部。
其中,所述第一内凹部、所述第二内凹部、所述第三内凹部和所述第四内凹部依次连接形成开环内凹部。
其中,所述天线还包括:设置在所述介质层的第一表面上的馈线,所述馈线与所述辐射贴片电连接;所述馈线在所述第一介质层上的正投影与所述开环内凹部在所述第一介质层的正投影无重叠。
其中,所述辐射贴片的辐射边包括沿第一方向延伸,且沿第二方向并排设置的第一辐射边和第二辐射边;所述内凹部包括第一内凹部和第二内凹部;
所述第一内凹部包括第一主体部和第一分支部,所述第一主体部和所述第一分支部连通,且所述第一分支部的深度方向为所述第一电极层的厚度方向,所述第一主体部的深度方向为所述第二方向;所述第一辐射边在所述第一介质层上的正投影位于所述第一主体部在所述第一介质层的正投影内;
所述第二内凹部包括第二主体部和第二分支部,所述第二主体部和所述第二分支部连通,且所述第二分支部的深度方向为所述第一电极层的厚度方向,所述第二主体部的深度方向为所述第二方向;所述第二辐射边在所述第一介质层上的正投影位于所述第二主体部在所述第一介质层的正投影内。
其中,所述第一内凹部包括两个所述第一分支部,所述第一主体部包括两个第一子主体部;两个所述第一分支部沿所述第一方向并排设置;两个第所述一子主体部的深度方向均为所述第一方向,且二者沿第一方向并排设置,所述第一辐射边在第所述一介质层上的正投影位于两个所述第一子主体部在所述第一介质层上的正投影内;
所述第二内凹部包括两个所述第二分支部,所述第二主体部包括两个第二子主体部;两个所述第二分支部沿所述第一方向并排设置;两个所述第二子主体部的深度方向均为第一方向,且二者沿所述第一方向并排设置;所述第二辐射边在所述第一介质层上的正投影位于两个所述第二子主体部在所述第一介质层上的正投影内。
其中,所述天线还包括:
第二介质层,所述第二介质层上设置有盲槽;所述第一电极层设置在所述第二介质层上,所述盲槽限定出所述内凹部。
其中,所述第二介质层具有中间区域和环绕所述中间区域的外围区域;所述盲槽贯穿所述中间区域和所述外围区域之间的边界线的至少部分;所述辐射贴片在所述第一表面上的正投影覆盖所述参考电极的中间区域在所述第一表面上的正投影;
所述第一电极层包括位于中间区域的第一镂空图案和位于外围区域的第二镂空图案;所述辐射贴片包括第三镂空图案。
其中,所述第一镂空图案的镂空部与所述第三镂空部的镂空部在所述第一表面上的正投影完全重叠。
其中,所述盲槽的底角为80°~100°。
其中,所述内凹部中填充的介质材料包括硅、三氧化二铝、陶瓷中的任意一种。
第二方面,本公开实施例一种天线系统,其包括至少一个上述的天线。
其中,所述天线系统还包括:
收发单元,用于发送信号或接收信号;
射频收发机,与所述收发单元相连,用于调制所述收发单元发送的信号,或用于解调所述天线接收的信号后传输给所述收发单元;
信号放大器,与所述射频收发机相连,用于提高所述射频收发机输出的信号或所述天线接收的信号的信噪比;
功率放大器,与所述射频收发机相连,用于放大所述射频收发机输出的信号或所述天线接收的信号的功率;
滤波单元,与所述信号放大器、所述功率放大器均相连,且与所述天线相连,用于将接收到的信号进行滤波后发送给所述天线,或对所述天线接收的信号滤波。
附图说明
图1为本公开实施例的一种天线的结构示意图。
图2为图1的天线的A-A'的一种截面图。
图3为图1的天线的A-A'的另一种截面图。
图4为图1的天线的A-A'的另一种截面图。
图5为本公开实施例的另一种天线的结构示意图。
图6为本公开实施例的另一种天线的结构示意图。
图7为本公开实施例的另一种天线的结构示意图。
图8为本公开实施例的另一种天线的结构示意图。
图9为本公开实施例的另一种天线的结构示意图。
图10为本公开实施例的另一种天线的结构示意图。
图11为图9所示的天线的仿真示意图。
图12为本公开实施例的另一种天线的结构中的接地层示意图。
图13为本公开实施例的另一种天线的辐射贴片的示意图。
图14为本公开实施例的一种天线系统的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,图1为本公开实施例的一种天线的结构示意图;图2为图1的天线的A-A'的一种截面图;本公开实施例提供一种天线,其包括第一介质层1、辐射贴片2、第一电极层和馈线4。其中,第一介质层1包括沿其厚度方向相对设置的第一表面和第二表面。辐射贴片2和馈线4设置在第一介质层1的第一表面上,且馈线4与辐射贴片2电连接。第一电极层具有内凹部,该第一电极层设置在第一介质层1的第二表面上,且第一电极层上的内凹部的开口朝向第一介质层1。辐射贴片2在第一介质层1上的正投影与第一电极层在第一介质层1上的正投影至少部分重叠,且辐射贴片2的辐射边的至少部分在第一介质层1上的正投影与内凹部在第一表面上的正投影至少部分重叠;内凹部的深度为1/4等效波长;等效波长为真空波长除以内凹部中的介质材料的折射率。
需要说明的是,本公开实施例中第一电极层包括但不限于接地层3,也即给第一电极层所施加的信号为接地信号。在本公开实施例中,以第一电极层为接地层3为例进行说明。应当理解的是,只要是在薄膜天线工作时,实际在第一电极层和辐射层上的电压能够形成回路即可,也即第一电极层选用 接地层3并不构成对本公开实施例保护范围的限制。另外,在本公开实施例中辐射贴片2的辐射边是指该辐射贴片2的侧边,例如:辐射贴片2的轮廓为矩形时,此时矩形辐射贴片2的四个侧边则为辐射边。
本公开实施例所提供的天线,由于在接地层3上具有内凹部,且该辐射贴片2的辐射边的至少部分在第一介质层1上的正投影位于内凹部在第一介质层1上的正投影内,通过这种内凹部的设置,可以将辐射贴片2和接地层3之间的距离缩短,同时能够维持6%以上的带宽,并把谐振频点的最大辐射效率提高提高到40%-70%。也就是说,本公开实施例的天线可以降第一介质层1的厚度及天线整体剖面高度,并提高天线的辐射效率。
在一些示例中,第一电极层的内凹部内可以填充有填充介质5,该填充介质5为微波毫米波段相应的高介电常数材料,例如:硅、三氧化二铝、特定陶瓷材料等等。在内凹部内,如果不填充高介电常数材料,辐射效率相对于传统低剖面贴片天线可以提高4到5倍,而填充高介电常数材料后,最高辐射效率能够提高到6到8倍左右,而且(30%辐射效率的)辐射带宽也将增大到15%以上。
在一些示例中,辐射贴片2、馈线4和接地层3的材料均可以相同。例如:铜(Cu)、铝(Al)、钼(Mo)、银(Ag)中的至少一种。在本公开实施例中以辐射贴片22、馈线44和接地层33的材料均采用铜为例进行说明。
在一些示例中,如图2所示,天线中的第一介质层1可以为单层结构也可以是复合层结构,当介质层1采用单层结构时,其材料包括但不限于柔性材质,例如:第一介质层1采用聚酰亚胺(PI)或者聚对苯二甲酸乙二醇酯(PET)材质。
在一些示例中,图3为图1的天线的A-A'的另一种截面图;如图3所示,第一介质层1为复合膜层时,其包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14、第三子介质层15;其中,接地层33设置在第一子介质层11背离第一粘结层12的一侧,也即第一子介质层11背离第一粘结层12的侧面用作介质层1的第二表面;辐射贴片22 设置在第三子介质层15背离第二粘结层14的一侧,也即第二子介质层13背离第二粘结层14的侧面用作介质层1的第一表面。第一子介质层11和第三子介质层15包括但不限于采用PI材质;第二子介质层13包括但不限于采用聚对苯二甲酸乙二醇酯(PET)材质。第一粘结层12和第二粘结层14的材料均可以采用透明光学(OCA)胶。当辐射贴片22设置在第三子介质层15和第二粘结层14之间时,在第三子介质层15的上表面还形成有保护层,例如自修复透明防水涂层,以对第三子介质层15进行保护。
在一些示例中,图4为图1的天线的A-A'的另一种截面图;如图4所示,第一介质层1为复合膜层时,其包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14、第三子介质层15;其中,接地层33设置在第一子介质层11靠近第一粘结层12的一侧,也即第一子介质层11靠近第一粘结层12的侧面用作介质层1的第二表面;辐射贴片22设置在第二子介质层13靠近第二粘结层14的一侧,也即第二子介质层13靠近第二粘结层14的侧面用作介质层1的第一表面。在该种情况下馈线4、辐射贴片2和接地层3均不会暴露在外,因此可以有效防止水氧侵蚀。
在一些示例中,当第一介质层1包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14、第三子介质层15时,第一子介质层11和第三子介质层15可以选用相同材质,且二者厚度相同或者大致相同。第二子介质层13不同于第一子介质层11(第三子介质层15)的材质和厚度,且第二子介质层13的厚度大于第一子介质层11。其中,第一子介质层11(第三子介质层15)的厚度在10μm-80μm左右,第二子介质层13的厚度在0.2mm-0.7mm左右。
以下结合具体示例对本公开实施例的天线的结构进行说明。
第一种示例,如图1和2所示,该天线包括第一介质层1、辐射贴片2、馈线4和接地层3。第一介质层1包括沿其厚度方向相对设置的第一表面(上表面)和第二表面(下表面)。该天线中的辐射贴片2和接地层3的形状均为板状电极。在本公开实施例中,辐射贴片2和接地层3的轮廓的形状可以相同,也可以不同。图1种仅以辐射贴片2的轮廓为正方形,接地层3的轮 廓为矩形为例。在实际应用中辐射贴片2和接地层3的形状包括但不限于矩形、椭圆形、圆形等。继续参照图1,辐射贴片2具有沿第一方向延伸,且沿第二方向并排设置的第一辐射边201和第二辐射边202;以及沿第二方向延伸,且沿第一方向并排设置的第三辐射边203和第四辐射边204。馈线4连接在辐射贴片2的一个顶角位置,为辐射贴片2提供微波信号。接地层3具有沿第一方向延伸,并沿第二方向并排设置的两个内凹部(也即形成在接地层3上的两个盲槽),分别为第一内凹部31和第二内凹部32,在第一内凹部31和第二内凹部32内填充有填充介质5。也就是说,第一内凹部31和第二内凹部32的长度方向均为第一方向,宽度方向为第二方向,深度方向则为接地层3的厚度方向。其中,辐射贴片2的第一辐射边201在第一介质层1上的正投影贯穿第一内凹部31在第一介质层1上的正投影;辐射贴片2的第二辐射边202在第一介质层1上的正投影贯穿第二内凹部32在第一介质层1上的正投影。通过在接地层3设置第一内凹部31和第二内凹部32,以降低天线的剖面高度,以提高辐射效率。
需要说明的是,在本公开实施例中第一方向和第二方向,例如第一方向和第二方向相互垂直,其中,第一方向为垂直方向,第二方向为水平方向。在本公开实施例中均以第一方向为垂直方向,第二方向为水平方向为例进行描述。图2中以在接地层3设置第一内凹部31和第二内凹部32为例,实际上,还可以在接地层3上设置沿第二方向延伸,且沿第一方向并排设置的第三内凹部33和第四内凹部34。辐射贴片2的第三辐射边203在第一介质层1上的正投影贯穿第三内凹部33在第一介质层1上的正投影,辐射贴片2的第四辐射边204在第一介质层1上的正投影贯穿第四内凹部34在介质层上的正投影。当然,在本公开实施例的接地层3上也可以仅设置第一内凹部31、第二内凹部32、第三内凹部33和第四内凹部34中的一者或者任意多者。
在一些示例中,第一内凹部31的长度不小于第一辐射边201的长度,且不小于二分之一波长除以填充材料折射率;和/或第二内凹部32的长度不小于第二辐射边202的长度,且不小于二分之一真空波长除以填充材料折射 率。例如:第一内凹部31的长度不小于第一辐射边201的长度,同时第二内凹部32的长度不小于第二辐射边202的长度。当接地层3还设置第三内凹部33和第四内凹部34时,第三内凹部33的长度不小于第三辐射边203的长度,和/或第四内凹部34的长度不小于第四辐射边204的长度。通过这种设置方式,有效的提高射频信号的辐射效率。
在一些示例中,第一内凹部31和第二内凹部32的深度等于或者近似等于1/4等效波长。该等效波长等于或者近似等于真空波长除以填充介质5的材料折射率。
在一些示例中,若第一介质层1的厚度为h,接地层3的第一内凹部31(第二内凹部32)的宽度在5h以上(图2中仅进行了示意性的表示,并不代表各膜层及结构的实际尺寸),例如:接地层3的第一内凹部31(第二内凹部32)的宽度5h-10h。第一内凹部31和第二内凹部32均包括沿第二方向延伸,且沿第一方向并排设置的第一侧边和第二侧边;第一辐射边201在第一介质层1上的正投影与第一内凹部31的第一侧边在第一介质层1上的正投影之间的距离为a,第二辐射边202在第一介质层1上的正投影与第二内凹部32的第一侧边在第一介质层1上的正投影之间的距离为b,对于a和b的具体数值需要根据辐射频率和第一介质层1的高度进行仿真优化得到。辐射贴片2和接地层3的厚度均为3个趋肤深度左右。
在一个示例中,以10毫米波段(30GHz)为例,第一介质层1的厚度为20μm,介电常数为3;辐射贴片2和接地层3的厚度都取3μm;第一内凹部31和第二内凹部32的宽度均为200μm。第一内凹部31和第二内凹部32的深度为800μm,填充介质5的介电常数为10的材料(例如:硅或者三氧化二铝)。第一辐射边201和第二辐射边202为3.4μm,第三辐射边203和第四辐射边204为3μm,第一内凹部31和第二内凹部32分别与第一辐射边201和第二辐射边202对应设置。此时,设置第一内凹部31和第二内凹部32的天线可以得到30GHz频率50%的辐射效率,未在接地层3设置第一内凹部31和第二内凹部32的天线则得到30GHz频率8.7%的辐射效率,比在接地层3上不设置内凹部的天线的辐射频率高出近6倍。
第二种示例,图5为本公开实施例的另一种天线的结构示意图;如图5所示,该天线与第一种示例中的天线的结构大致相同,区别在于,该天线结构中的接地层3不仅具有第一内凹部31和第二内凹部32,而且还包括第三内凹部33和第四内凹部34。如图5所示,第一内凹部31、第二内凹部32、第三内凹部33和第四内凹部34首尾依次连接,形成一闭环内凹部。辐射贴片2的辐射边在第一介质层1上的正投影位于接地层3的内凹部在第一介质层1的正投影内。也即,辐射贴片2的第一辐射边201在第一介质层1上的正投影位于接地层3的第一内凹部31在第一介质层1上的正投影内,辐射贴片2的第二辐射边202在第一介质层1上的正投影位于接地层3的第二内凹部32在第一介质层1上的正投影内,辐射贴片2的第三辐射边203在第一介质层1上的正投影位于接地层3的第三内凹部33在第一介质层1上的正投影内,辐射贴片2的第四辐射边204在第一介质层1上的正投影位于接地层3的第四内凹部34在第一介质层1上的正投影内。也就是说,接地层3不仅具有沿第一方向延伸的第一内凹部31和第二内凹部32,而且还包括沿第二方向延伸的第三内凹部33和第四内凹部34,此时天线结构辐射或者接收微波信号不仅沿着第一方向极化,而且还可以沿着第二方向极化,以此可以提高微波信号的辐射效率。在该种情况下,假若辐射贴片2的第一辐射边201和第二辐射边202的长度均为L1,第三辐射边203和第四辐射边204的长度均为L2,接地层3的第一内凹部31和第二内凹部32的宽度均为W1,第三内凹部33和第四内凹部34的宽度均为W2。此时可以合理设计L1、L2、W1、W2的值,并根据L1、L2、W1、W2的值,分别设计第一方向极化和第二方向极化所对应的工作频段。可以通过在辐射贴片2的第一辐射边201和第三辐射边203上分别连接馈线4,或者在第二辐射边202和第四辐射边204上分别连接馈线4以实现天线的双极化馈电方式。而且图5中仅给出在辐射贴片2的一个顶角位置连接馈线4,而实现微波信号的馈送和接收。需要说明的四,图5中所示的馈电方式并不构成对本公开实施例保护范围的限制。
在一些示例中,如图6所示,接地层3中的第一内凹部31、第二内凹 部32、第三内凹部33和第四内凹部34依次连接形成一开环内凹部。也即,接地层3上的开环内凹部具有一断开部,此时馈线4在第一介质层1上的正投影贯穿接地层3上的开环内凹部的断开部在第一介质层1上的正投影。之所以如此设置是为了馈线4更好的向辐射贴片2进行馈电。
需要说明的是,该种天线的结构与第一种示例中的天线的结构除上述结构不同外,其余结构可以与第一种示例相同,故在此不再重复赘述。
第三种示例,图7为本公开实施例的另一种天线的结构示意图;如图7所示,该天线的结构与第一种示例和第二种示例的结构大致相似,区别仅在于,接地层3的内凹部的形状。如图7所示,同样以辐射贴片2和接地层3均为正方形为例,辐射贴片2包括沿第一方向延伸,且沿第二方向并排设置的第一辐射边201和第二辐射边202,以及沿第二方向延伸,且沿第一方向并排设置的第三辐射边203和第四辐射边204。接地层3上的内凹部包括第一内凹部31和第二内凹部32。其中,第一内凹部31包括第一主体部311和第一分支部312;第二内凹部32包括第二主体部和第二分支部。其中,第一主体部311与第一分支部312连通,且第一主体部311的深度方向沿第一方向延伸,第一分支部312的深度方向为接地层3的厚度方向,且第一分支部312的开口作为第一内凹部31的开口,第一辐射边201在第一介质层1上的正投影位于第一主体部311在第一介质层1上的正投影内。同理,第二主体部与第二分支部连通,且第二主体部的深度方向沿第一方向延伸,第二分支部的深度方向为接地层3的厚度方向,且第二分支部的开口作为第二内凹部32的开口,第二辐射边202在第一介质层1上的正投影位于第二主体部在第一介质层1上的正投影内。
在一个示例中,第一内凹部31包括两个第一分支部312,第一主体部311包括两个第一子主体部,分别用311a和311b表示;其中,两个第一分支部311a和311b沿第一方向并排设置,两个第一子主体部311a和311b的深度方向均为第一方向,且二者沿第一方向并排设置,辐射贴片2的第一辐射边201在第一介质层1上的正投影位于两个第一子主体部311a和311b在第一介质层1上的正投影内。同理,第二内凹部32包括两个第二分支部, 第二主体部包括两个第二子主体部;其中,两个第二分支部沿第一方向并排设置,两个第二子主体部的深度方向均为第一方向且二者沿第一方向并排设置,辐射贴片2的第二辐射边202在第一介质层1上的正投影位于两个第二子主体部在第一介质层1上的正投影内。
进一步的,如图7所示,第一子主体部311a可以连接在一个第一分支部312的底部,第一子主体部311b可以连接在另一个第一分支部312的底部。此时,若接地层3的厚度较薄,还可以在接地层3背离第一介质层1的一侧设置第二介质层6,用以为接地层3提供支撑。当然,如图8所示,若接地层3较厚,且第一内凹部31和第二内凹部32的深度足够深,此时,第一子主体部311a可以连接在一个第一分支部312的中间区域,第一子主体部311b可以连接在另一个第一分支部312的中间区域。;同理,第二子主体部可以连接在第二分支部的底部,也可以连接在第二分支部的深度方向的中间区域。
在一些示中,第一内凹部31的深度也即为第一分支部312的深度和第一主体部311的深度的总和,第二内凹部32的深度也即为第二分支部的深度和第二主体部的深度的总和。第一内凹部31的深度和第二内凹部32的深度均等于或者近似等于1/4等效波长。该等效波长为真空波长除以填充介质5材料的折射率。
需要说明的是,以上仅以在接地层3与辐射贴片2的第一辐射边201和第二辐射边202对应的位置设置第一内凹部31和第二内凹部32为例进行说明,在实际产品中也可以在第三辐射边203和第四辐射边204对应的位置设置第三内凹部33和第四内凹部34,第三内凹部33和第四内凹部34与第一内凹部31和第二内凹部32的形状相同,故在此不再重复赘述。
第四种示例,图9为本公开实施例的另一种天线的结构示意图;如图9所示,该天线结构包括第一介质层1、第二介质层6、接地层3和辐射贴片2。其中,第二介质层6上形成有盲槽,接地层3形成在第二介质层6上,并通过盲槽限定出接地层3的内凹部。在内凹部内填充有填充介质5,第一介质层1设置在接地层3背离第二介质层6的表面上,辐射贴片2设置第一 介质层1背离接地层3的表面上。该辐射贴片2与接地层3在第一介质层1正投影至少部分重叠,且辐射贴片2的辐射边的至少部分在第一介质层1上的正投影位于内凹部在第一介质层1上的正投影内。通过在第二介质层6上形成盲槽,并通过盲槽限定出接地层3上的内凹部同样可以提高辐射效率。
例如:辐射贴片2和接地层3均为矩形,辐射贴片2包括沿第一方向延伸,且沿第二方向并排设置的第一辐射边201和第二辐射边202,以及沿第二方向延伸,且沿第一方向并排设置的第三辐射边203和第四辐射边204。第二介质层6上包括沿第一方向延伸,且沿第二方向并排设置的第一盲槽和第二盲槽,相应的,接地层3包括沿第一方向沿,且沿第二方向并排设置的第一内凹部31和第二内凹部32。此时,第一辐射边201在第一介质层1上的正投影位于第一内凹部31在第一介质层1上的正投影内,第二辐射边202在第二介质层6上的正投影位于第二内凹部32在第一介质层1上的正投影内。
在一些示例中,第一盲槽和第二盲槽在沿第二方向的截面为矩形或者梯形,例如:第一盲槽和第二盲槽的底角在80°~100°左右。例如:当第一盲槽和第二盲槽在沿第二方向的截面为矩形时,第一盲槽和第二盲槽的底角为90°,当第一盲槽和第二盲槽在沿第二方向的截面为倒梯形时,第一盲槽和第二盲槽的底角为100°(如图10所示),当第一盲槽和第二盲槽在沿第二方向的截面为梯形时,第一盲槽和第二盲槽的底角为80°。
需要说明的是,图9和10中以第二介质层6上形成有第一盲槽和第二盲槽,相应的在接地层3设置第一内凹部31和第二内凹部32为例,实际上,还是在第二介质层6上设置沿第二方向延伸,且沿第一方向并排设置的第三盲槽和第四盲槽,也即在在接地层3上设置沿第二方向延伸,且沿第一方向并排设置的第三内凹部33和第四内凹部34。辐射贴片2的第三辐射边203在第一介质层1上的正投影贯穿第三内凹部33在第一介质层1上的正投影,辐射贴片2的第四辐射边204在第一介质层1上的正投影贯穿第四内凹部34在介质层上的正投影。当然,在本公开实施例的第二介质层6上仅具有第一盲槽、第二盲槽、第三盲槽和第四盲槽中的一者或者任意多者。
图11为图9所示的天线的仿真示意图;如图11所示,第二介质层6的的介电常数为3,厚度为20μm;第一盲槽和第二盲槽的宽度为200μm,深度为960μm;接地层3的厚度为5μm,填充介质5的介电常数为10,经过验证得到,在27GHz到28GHz频段把最大辐射效率从8.7%提高到50%以上。
第五种示例,图12为本公开实施例的另一种天线的结构中的接地层3示意图;图13为本公开实施例的另一种天线的辐射贴片2的示意图;如图12和13所示,该天线结构与第四种示例中的中天线结构大致相同,区别仅在于,该天线中的辐射贴片2和接地层3均采用金属网格结构。采用金属网格结构的辐射贴片2和接地层3可以有效的提高天线的光线透过率,且提高辐射效率。
例如,第二介质层6具有中间区域和环绕所述中间区域的外围区域;第一盲槽和第二盲槽贯穿中间区域和所述外围区域之间的边界线的至少部分;辐射贴片2在第一介质层1的正投影覆盖接地层3的中间区域在第一介质层1上的正投影;接地层3包括位于中间区域的第一镂空图案301和位于外围区域的第二镂空图案302;辐射贴片2包括第三镂空图案200。其中,第一镂空图案301的镂空部和第三镂空图案200的镂空部在第一介质层1上的正投影完全重合,通过该种方式可以有效提高天线结构的光线透过率。
例如:第一镂空图案301包括多条沿第二方向延伸,且沿第一方向并排设置是的第一金属线,相邻设置的第一金属线之间的间隙限定出第一镂空图案301的镂空部。第二镂空图案302包括多条沿第二方向延伸,且沿第一方向并排设置的第二金属线,相邻设置的第二金属线之间的间隙限定出第二镂空图案302的镂空部。第三镂空图案200包括多条沿第二方向延伸,且沿第一方向并排设置的第三金属线,相邻设置的第三金属线之间的间隙限定出第三镂空图案200的镂空部。由于第一镂空图案301的镂空部与第三镂空图案200的镂空部在介质层上方的正投影重叠,此时一条第一金属线和一条第三金属线在第一介质层1上方的正投影重叠,例如:第一金属线和第三金属线一一对应设置。
继续参照图13,由于接地层3中的第一内凹部31和第二内凹部32的设置,且由于在接地层3的中间区域设置第一镂空图案301,因此外围区域的部分第二金属线包括分布在第一内凹部31远离中间区域一侧的第一线段,以及第二内凹部32远离中间区域一侧的第二线段。一条金属线的延长线与一条第二金属线的第一线段和第二线段在第一介质层1上的正投影重叠。在该种情况下,可以通过一次构图工艺形成位于第一介质层1上位于第一镂空图案301和镂空图案,而且由这种第一镂空图案301和第二镂空图案302构成的接地层3的各个位置的透过率相同,从而保证薄膜天线的光学均一性。另外,由于在本公开实施例中,第一金属线、第二金属线和第三金属线的延伸方向相同,因此传输的微波或毫米波能量,最大化的通过第一内凹部31和第二内凹部32散射到自由空间。
需要说明的是,图12和13中是以第一金属线、第二金属线、第三金属线的延伸方向均相同为例进行说明的,但在实际设计中只要第一金属线、第二金属线、第三金属线的延伸方向均与第一内凹部31和第二内凹部32的延伸方向不同即可。因此,第一金属线、第二金属线、第三金属线的延伸方向均为第二方向并不构成对本公开实施例的保护范围的限制。
第二方面,图14为本公开实施例的一种天线系统的结构示意图;如图14所示,本公开实施例提供一种天线系统,包括至少一个上述天线。
在一些示例中,本公开实施例提供的天线系统还包括收发单元、射频收发机、信号放大器、功率放大器、滤波单元。天线系统中的天线可以作为发送天线,也可以作为接收天线。其中,收发单元可以包括基带和接收端,基带提供至少一个频段的信号,例如提供2G信号、3G信号、4G信号、5G信号等,并将至少一个频段的信号发送给射频收发机。而天线系统中的天线接收到信号后,可以经过滤波单元、功率放大器、信号放大器、射频收发机的处理后传输给首发单元中的接收端,接收端例如可以为智慧网关等。
进一步地,射频收发机与收发单元相连,用于调制收发单元发送的信号,或用于解调天线接收的信号后传输给收发单元。具体地,射频收发机可以包括发射电路、接收电路、调制电路、解调电路,发射电路接收基底提供的多 种类型的信号后,调制电路可以对基带提供的多种类型的信号进行调制,再发送给天线。而天线接收信号传输给射频收发机的接收电路,接收电路将信号传输给解调电路,解调电路对信号进行解调后传输给接收端。
进一步地,射频收发机连接信号放大器和功率放大器,信号放大器和功率放大器再连接滤波单元,滤波单元连接至少一个天线。在天线系统进行发送信号的过程中,信号放大器用于提高射频收发机输出的信号的信噪比后传输给滤波单元;功率放大器用于放大射频收发机输出的信号的功率后传输给滤波单元;滤波单元具体可以包括双工器和滤波电路,滤波单元将信号放大器和功率放大器输出的信号进行合路且滤除杂波后传输给天线,天线将信号辐射出去。在天线系统进行接收信号的过程中,天线接收到信号后传输给滤波单元,滤波单元将天线接收的信号滤除杂波后传输给信号放大器和功率放大器,信号放大器将天线接收的信号进行增益,增加信号的信噪比;功率放大器将天线接收的信号的功率放大。天线接收的信号经过功率放大器、信号放大器处理后传输给射频收发机,射频收发机再传输给收发单元。
在一些示例中,信号放大器可以包括多种类型的信号放大器,例如低噪声放大器,在此不做限制。
在一些示例中,本公开实施例提供的天线系统还包括电源管理单元,电源管理单元连接功率放大器,为功率放大器提供用于放大信号的电压。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种天线,其包括:
    第一介质层,具有沿其厚度方向相对设置的第一表面和第二表面;
    辐射贴片,设置在所述第一介质层的第一表面上;
    第一电极层,设置在所述第一介质层的第二表面上,且与所述辐射贴片在所述第二表面上的正投影至少部分重叠;其中,
    所述第一电极层具有内凹部,且所述内凹部的开口朝向所述辐射贴片,且所述辐射贴片的辐射边的至少部分在所述第一介质层上的正投影,与所述内凹部在所述第一表面上的正投影内至少部分重叠;所述内凹部的深度为1/4等效波长。
  2. 根据权利要求1所述的天线,其中,所述辐射贴片的辐射边包括沿第一方向延伸,且沿第二方向并排设置的第一辐射边和第二辐射边;所述内凹部包括第一内凹部和第二内凹部;所述第一内凹部和所述第二内凹部二者的长度方向为所述第一方向,二者的宽度方向为所述第二方向,二者的深度方向为所述第一电极层的厚度方向;所述第一辐射边在所述第一介质层上的正投影位于所述第一内凹部在所述第一介质层的正投影内;所述第二辐射边在所述第一介质层上的正投影位于所述第二内凹部在所述第一介质层的正投影内。
  3. 根据权利要求2所述的天线,其中,所述辐射贴片的辐射边还包括沿所述第二方向延伸,且沿所述第一方向并排设置的第三辐射边和第四辐射边;内凹部还包括第三内凹部和第四内凹部;所述第三内凹部和所述第四内凹部二者的长度方向为所述第二方向,二者的宽度方向为所述第一方向,二者的深度方向为所述第一电极层的厚度方向;所述第三辐射边在所述第一介质层上的正投影位于所述第三内凹部在所述第一介质层的正投影内;所述第四辐射边在所述第一介质层上的正投影位于所述第四内凹部在所述第一介质层的正投影内。
  4. 根据权利要求3所述的天线,其中,所述第一内凹部、所述第二内 凹部、所述第三内凹部和所述第四内凹部依次收尾连接形成闭环内凹部。
  5. 根据权利要求3所述的天线,其中,所述第一内凹部、所述第二内凹部、所述第三内凹部和所述第四内凹部依次连接形成开环内凹部。
  6. 根据权利要求5所述的天线,其中,所述天线还包括:设置在所述介质层的第一表面上的馈线,所述馈线与所述辐射贴片电连接;所述馈线在所述第一介质层上的正投影与所述开环内凹部在所述第一介质层的正投影无重叠。
  7. 根据权利要求1所述的天线,其中,所述辐射贴片的辐射边包括沿第一方向延伸,且沿第二方向并排设置的第一辐射边和第二辐射边;所述内凹部包括第一内凹部和第二内凹部;
    所述第一内凹部包括第一主体部和第一分支部,所述第一主体部和所述第一分支部连通,且所述第一分支部的深度方向为所述第一电极层的厚度方向,所述第一主体部的深度方向为所述第二方向;所述第一辐射边在所述第一介质层上的正投影位于所述第一主体部在所述第一介质层的正投影内;
    所述第二内凹部包括第二主体部和第二分支部,所述第二主体部和所述第二分支部连通,且所述第二分支部的深度方向为所述第一电极层的厚度方向,所述第二主体部的深度方向为所述第二方向;所述第二辐射边在所述第一介质层上的正投影位于所述第二主体部在所述第一介质层的正投影内。
  8. 根据权利要求7所述的天线,其中,所述第一内凹部包括两个所述第一分支部,所述第一主体部包括两个第一子主体部;两个所述第一分支部沿所述第一方向并排设置;两个第所述一子主体部的深度方向均为所述第一方向,且二者沿第一方向并排设置,所述第一辐射边在第所述一介质层上的正投影位于两个所述第一子主体部在所述第一介质层上的正投影内;
    所述第二内凹部包括两个所述第二分支部,所述第二主体部包括两个第二子主体部;两个所述第二分支部沿所述第一方向并排设置;两个所述第二子主体部的深度方向均为第一方向,且二者沿所述第一方向并排设置;所述第二辐射边在所述第一介质层上的正投影位于两个所述第二子主体部在所 述第一介质层上的正投影内。
  9. 根据权利要求1所述的天线,其中,所述天线还包括:
    第二介质层,所述第二介质层上设置有盲槽;所述第一电极层设置在所述第二介质层上,所述盲槽限定出所述内凹部。
  10. 根据权利要求9所述的天线,其中,所述第二介质层具有中间区域和环绕所述中间区域的外围区域;所述盲槽贯穿所述中间区域和所述外围区域之间的边界线的至少部分;所述辐射贴片在所述第一表面上的正投影覆盖所述参考电极的中间区域在所述第一表面上的正投影;
    所述第一电极层包括位于中间区域的第一镂空图案和位于外围区域的第二镂空图案;所述辐射贴片包括第三镂空图案。
  11. 根据权利要求11所述的天线,其中,所述第一镂空图案的镂空部与所述第三镂空部的镂空部在所述第一表面上的正投影完全重叠。
  12. 根据权利要求9所述的天线,其中,所述盲槽的底角为80°~100°。
  13. 根据权利要求1-12中任一项所述的天线,其中,所述内凹部中填充的介质材料包括硅、三氧化二铝、陶瓷中的任意一种。
  14. 一种天线系统,其包括至少一个权利要求1-13中任一所述的天线。
  15. 根据权利要求14所述的天线系统,其中,还包括:
    收发单元,用于发送信号或接收信号;
    射频收发机,与所述收发单元相连,用于调制所述收发单元发送的信号,或用于解调所述天线接收的信号后传输给所述收发单元;
    信号放大器,与所述射频收发机相连,用于提高所述射频收发机输出的信号或所述天线接收的信号的信噪比;
    功率放大器,与所述射频收发机相连,用于放大所述射频收发机输出的信号或所述天线接收的信号的功率;
    滤波单元,与所述信号放大器、所述功率放大器均相连,且与所述天线 相连,用于将接收到的信号进行滤波后发送给所述天线,或对所述天线接收的信号滤波。
PCT/CN2022/103255 2021-07-20 2022-07-01 天线及天线系统 WO2023000951A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/273,787 US20240079783A1 (en) 2021-07-20 2022-07-01 Antenna and Antenna System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110817204.4A CN115642387A (zh) 2021-07-20 2021-07-20 天线及天线系统
CN202110817204.4 2021-07-20

Publications (2)

Publication Number Publication Date
WO2023000951A1 true WO2023000951A1 (zh) 2023-01-26
WO2023000951A9 WO2023000951A9 (zh) 2023-03-30

Family

ID=84939434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103255 WO2023000951A1 (zh) 2021-07-20 2022-07-01 天线及天线系统

Country Status (3)

Country Link
US (1) US20240079783A1 (zh)
CN (1) CN115642387A (zh)
WO (1) WO2023000951A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065321A (ja) * 2007-09-05 2009-03-26 Toppan Printing Co Ltd パッチアンテナ
CN103730725A (zh) * 2013-12-16 2014-04-16 电子科技大学 一种高阻硅基底高频微带天线
CN104009292A (zh) * 2014-06-05 2014-08-27 太原理工大学 小型化宽频微带天线
CN109119757A (zh) * 2018-04-27 2019-01-01 咏业科技股份有限公司 多频天线装置
CN217134663U (zh) * 2021-07-20 2022-08-05 北京京东方技术开发有限公司 天线及天线系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065321A (ja) * 2007-09-05 2009-03-26 Toppan Printing Co Ltd パッチアンテナ
CN103730725A (zh) * 2013-12-16 2014-04-16 电子科技大学 一种高阻硅基底高频微带天线
CN104009292A (zh) * 2014-06-05 2014-08-27 太原理工大学 小型化宽频微带天线
CN109119757A (zh) * 2018-04-27 2019-01-01 咏业科技股份有限公司 多频天线装置
CN217134663U (zh) * 2021-07-20 2022-08-05 北京京东方技术开发有限公司 天线及天线系统

Also Published As

Publication number Publication date
CN115642387A (zh) 2023-01-24
US20240079783A1 (en) 2024-03-07
WO2023000951A9 (zh) 2023-03-30

Similar Documents

Publication Publication Date Title
CN105609944B (zh) 基于空腔结构的双层分形微带射频封装天线
WO2021013010A1 (zh) 天线单元和电子设备
CN107634335A (zh) 基于多层结构的毫米波阵列天线
CN105762513A (zh) 一种应用于无线局域网的小型化高隔离度双频mimo天线
CN213845498U (zh) 天线及天线系统
WO2021000731A1 (zh) 天线组件及电子设备
WO2020029661A1 (zh) 毫米波阵列天线及移动终端
CN108448234A (zh) 基于复合左右手传输线结构的三频段mimo终端天线
US11201394B2 (en) Antenna device and electronic device
US11456526B2 (en) Antenna unit, antenna system and electronic device
CN109066087A (zh) 一种移动通讯终端四单元毫米波天线系统
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
CN114447577A (zh) 天线及天线系统
CN209963248U (zh) 一种小型化微带准八木天线
CN217134663U (zh) 天线及天线系统
WO2023283756A9 (zh) 透明天线及通信系统
US20240154323A1 (en) Antenna, method for manufacturing an antenna and communication system
WO2023000951A1 (zh) 天线及天线系统
WO2022246814A1 (zh) 透明天线及通信系统
CN112421207B (zh) 显示屏模组及电子设备
CN112670708A (zh) 一种毫米波天线模组及通信设备
WO2020140547A1 (zh) 滤波器天线
WO2022226918A1 (zh) 天线及其制备方法、天线系统
CN109103590A (zh) 天线单元及天线系统
CN214411516U (zh) 一种毫米波天线模组及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/2024)