WO2023000681A1 - 深水海底电缆 - Google Patents

深水海底电缆 Download PDF

Info

Publication number
WO2023000681A1
WO2023000681A1 PCT/CN2022/079582 CN2022079582W WO2023000681A1 WO 2023000681 A1 WO2023000681 A1 WO 2023000681A1 CN 2022079582 W CN2022079582 W CN 2022079582W WO 2023000681 A1 WO2023000681 A1 WO 2023000681A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
buffer
deep
support
cable core
Prior art date
Application number
PCT/CN2022/079582
Other languages
English (en)
French (fr)
Inventor
张洪亮
胡明
于洪淼
严彦
闫志雨
赵囿林
王丽媛
顾春飞
张小龙
花炜
Original Assignee
中天科技海缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技海缆股份有限公司 filed Critical 中天科技海缆股份有限公司
Publication of WO2023000681A1 publication Critical patent/WO2023000681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/22Cables including at least one electrical conductor together with optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/005Power cables including optical transmission elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Definitions

  • the present application relates to the field of wire and cable technology, and more specifically, to a deep-water submarine cable.
  • Submarine cables are wires wrapped with insulating materials and laid under the seabed and rivers for telecommunication transmission. Submarine cables are divided into submarine communication cables and submarine power cables. Submarine communication cables are mainly used for communication services, and submarine power cables are mainly used for underwater transmission of high-power electric energy.
  • the existing submarine cables include a cable core, an optical fiber unit, a filling unit and a protection unit.
  • the cable core can be one or more. Both the fiber optic unit and the protection unit are located inside the protection unit, and the filling unit is filled between the cable core and the fiber unit.
  • the cable core is the power unit, and the protection unit includes armor and outer sheath.
  • the extended metal strips are stranded; in the process of laying the submarine cable underwater, under the gravity of the submarine cable and the buoyancy of the seawater on the submarine cable, the bottom end of the armor layer will be subjected to a downward pulling force , the metal strip in the armor layer will be tightened to the inside, and the inner cable core, filling unit and fiber unit will be squeezed.
  • the force on the bottom of the armor layer will be greater and greater, so that the internal cable core will be subjected to an increasing pressure.
  • the seabed The electrical performance of the cable will degrade, and even breakdown will occur.
  • the present application provides a deep-water submarine cable, which has high electrical performance and can avoid breakdown.
  • the application provides a deep-water submarine cable, including a cable core, a buffer support, an optical fiber unit, and a protection unit; the number of cable cores is at least three; the buffer support is arranged between a plurality of cable cores, and the hardness of the buffer support is less than The hardness of the peripheral wall of the cable core; the edge of the buffer support has support parts and gaps distributed at intervals, the support part has accommodating space for the optical fiber unit, at least part of the cable core is located in the gap; the protection unit covers the cable core, buffers The supporting piece and the optical fiber unit, and the inner peripheral wall of the protection unit is attached to the outer peripheral wall of each cable core.
  • the buffer support includes a first buffer portion and a plurality of second buffer portions, the first buffer portion is located at the center of the cable, and the axis of the first buffer portion is aligned with the axis of the cable.
  • the axes are coincident; a plurality of second buffer parts are evenly distributed in the circumferential direction of the first buffer part, and the extension direction of the second buffer part is consistent with the radial direction of the first buffer part, and the gap is formed in two adjacent second buffer parts Between the parts, the notch abuts against the outer peripheral wall of the corresponding cable core; a support part is provided on the extension end of at least one second buffer part, and the support part has a support hole whose axial direction is consistent with the axial direction of the cable, and the inner part of the support hole The cavity forms a receiving space, and the optical fiber unit is located in the supporting hole.
  • the second buffer part is a buffer arm, and the widths of the two ends of the buffer arm are respectively smaller than the width of the middle part of the buffer arm; the buffer arms are connected successively in the radial direction of the first buffer part
  • the first buffer section and the second buffer section, the first buffer section is located on the side of the second buffer section close to the first buffer section.
  • the first buffer section has a plurality of cavities distributed at intervals in the circumferential direction of the first buffer portion.
  • the number of optical fiber units and supporting parts is the same and they are arranged correspondingly; multiple supporting parts are arranged on the same second buffer part, or multiple supporting parts are respectively arranged on different on the second buffer.
  • the second buffer parts correspond to the support parts one by one.
  • At least three cable cores include a plurality of first cable cores, and the plurality of first cable cores are evenly spaced in the circumferential direction of the cable, and the adjacent two first cable cores
  • the two buffer parts jointly clamp a first cable core, so that the outer peripheral wall of the first cable core abuts against the corresponding notch.
  • the first buffer part is provided with a through hole, and the axis of the through hole coincides with the axis of the cable.
  • the plurality of cable cores further include a second cable core, the second cable core is disposed in the through hole, and the axis of the second cable core coincides with the axis of the through hole.
  • the protection unit includes an armor layer
  • the armor layer includes at least one armor layer unit
  • the armor layer unit includes a plurality of metal elements arranged adjacent to each other along the circumference of the cable. strip.
  • the metal strip has a concave portion and a convex portion sequentially connected in the radial direction of the cable, and the concave direction of the concave portion and the convex direction of the convex portion are both in line with the circumference
  • the protrusion of one of the two adjacent metal strips snaps into the depression of the other.
  • the concave part is a concave arc segment
  • the protruding part is a convex arc segment
  • the multi-layer armor layer units are sheathed sequentially in the radial direction of the cable, and two adjacent armor layers The metal strips in the layer unit are dislocated in the radial direction of the cable.
  • the extension lengths of the side of the metal strip facing the inner side of the cable and the side facing the outer side of the cable are different in the circumferential direction of the cable.
  • the deep-water submarine cable provided by the present application includes a cable core, a buffer support, an optical fiber unit and a protection unit; the number of cable cores is at least three; the buffer support is arranged between multiple cable cores, and the hardness of the buffer support is smaller than that of the cable core The hardness of the outer peripheral wall; the edge of the buffer support has support parts and gaps distributed at intervals, the support part has accommodating space for the optical fiber unit, at least part of the cable core is located in the gap; the protection unit covers the cable core, the buffer support and the optical fiber unit, and the inner peripheral wall of the protection unit is attached to the outer peripheral wall of each cable core.
  • the deep-water submarine cable provided by the present application has high electrical performance and is not easy to be broken down.
  • Figure 1a is a schematic diagram of the first structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Figure 1b is a second structural schematic diagram of the deep-water submarine cable provided by the embodiment of the present application.
  • Figure 1c is a schematic diagram of the third structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Figure 1d is a schematic diagram of the fourth structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Figure 1e is a schematic diagram of the fifth structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Fig. 2 is a schematic diagram of the positional relationship between the buffer support, the optical fiber unit and the cable core in the deep-water submarine cable provided by the embodiment of the present application;
  • Fig. 3 is a structural schematic diagram of the buffer support in the deep-water submarine cable provided by the embodiment of the present application;
  • Fig. 4 is the positional relationship between the cable cores when the number of cable cores in the deep-water submarine cable provided by the embodiment of the present application is greater than three;
  • Fig. 5 is a schematic structural diagram of an optical fiber unit in a deep-water submarine cable provided by an embodiment of the present application
  • Fig. 6 is a schematic structural diagram of a filling unit in a deep-water submarine cable provided by an embodiment of the present application.
  • first and second are only used to describe different components conveniently, and should not be understood as indicating or implying a sequence relationship, relative importance, or implicit indication The number of technical characteristics.
  • features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • Submarine cables are wires wrapped with insulating materials and laid under the seabed and rivers for telecommunication transmission. Submarine cables are divided into submarine communication cables and submarine power cables. Submarine communication cables are mainly used for communication services, and submarine power cables are mainly used for underwater transmission of high-power electric energy.
  • Most of the existing submarine cables include a cable core, an optical fiber unit, a filling unit and a protection unit.
  • the cable core can be one or more. Both the fiber optic unit and the protection unit are located inside the protection unit, and the filling unit is filled between the cable core and the fiber unit.
  • the cable core is the power unit, and the protection unit includes armor and outer sheath.
  • the extended metal strips are stranded; in the process of laying the submarine cable underwater, under the action of gravity of the submarine cable, the armor layer will be subjected to a downward pulling force, in which the armor layer at the water surface is subject to The tensile force of the cable is the largest, and accordingly, the metal strips that make up the armor layer will be tightened inward, and the cable core, filling unit and optical fiber unit located inside will be squeezed; further, when the existing submarine cable includes multiple In the case of cable cores, multiple cable cores are set up in point contact, and the contact area is small.
  • the force on the armor layer will become greater and greater, so that the inner cable core will be subject to greater and greater extrusion force;
  • the extrusion force generated from the outside is too large, it may cause the deformation of the contact point between the cable cores, which will further lead to the deformation and damage of the internal insulation structure, which will cause the cable core of the submarine cable to be damaged.
  • the electrical performance is degraded, and even breakdown may occur.
  • the embodiment of the present application provides a deep-water submarine cable, by arranging buffer supports between the cable cores to buffer the extrusion force on the cable core; and by improving the structure of the metal strips in the armor layer, In order to make it difficult for the metal strip to move to the center of the cable when it is squeezed, it is difficult to break down the cable, and it can ensure that the electrical performance of the cable will not be damaged due to the extrusion of the cable core.
  • Fig. 1a is a schematic diagram of the first structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Fig. 1b is a schematic diagram of the second structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Fig. 1c is a schematic diagram of the third structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Figure 1d is a schematic diagram of the fourth structure of the deep-water submarine cable provided by the embodiment of the present application.
  • Fig. 1e is a schematic diagram of a fifth structure of a deep-water submarine cable provided by an embodiment of the present application.
  • the embodiment of the present application provides a deep-water submarine cable, including a cable core 1, a buffer support 2, an optical fiber unit 3 and a protection unit 4;
  • the cable core 1 is an electrical unit, and the number of the cable core 1
  • the buffer support 2 is arranged between a plurality of cable cores 1, and the hardness of the buffer support 2 is less than the hardness of the outer peripheral wall of the cable core 1;
  • the edge of the buffer support 2 has support portions 21 distributed at intervals And the notch 22, the support part 21 has accommodating space for the optical fiber unit 3, at least part of the cable core 1 is located in the notch 22;
  • the protection unit 4 covers the cable core 1, the buffer support 2 and the optical fiber unit 3, and the protection unit 4
  • the inner peripheral wall is attached to the outer peripheral wall of each cable core 1 .
  • the deepwater submarine cable provided by the embodiment of the present application includes a buffer support 2 arranged between a plurality of cable cores 1. Therefore, in the process of laying the deepwater submarine cable underwater, when the deepwater submarine cable's own gravity makes the cable core 1 When subjected to extrusion force, the buffer support 2 can buffer the extrusion force received by the cable core 1, prevent the cable core 1 from being over-extruded, and prevent the electrical performance of the cable core 1 from being reduced or impacted due to extrusion deformation. Put on.
  • Fig. 2 is a schematic diagram of the positional relationship between the buffer support, the optical fiber unit and the cable core in the deep-water submarine cable provided by the embodiment of the present application.
  • the cable core 1 includes a water-blocking conductor 11, a conductor shielding layer 12, an insulating layer 13, an insulating shielding layer 14, a semiconducting resistance water layer 15, and a metal shielding layer 16 and non-metallic layer 17;
  • the water-blocking conductor 11 is located at the center of the cable core 1, and the conductor shielding layer 12, the insulating layer 13, the insulating shielding layer 14, the semiconducting resistance water layer 15, the metal shielding layer 16 and the non-metallic layer 17 are successively covered
  • the role of the conductor shielding layer 12 is to improve the electric field distribution on the surface of the wire and eliminate the gap between the wire and the insulating layer 13, so as to improve the overall electrical performance of the cable;
  • the role of the insulating shielding layer 14 It is capable of quickly transferring the induced charges generated on the surface of the insulating layer 13 .
  • the water-blocking conductor 11 is a compact circular conductor, and the water-blocking conductor 11 can be formed by layered twisting of multiple round copper wires, and a seawater-proof type is filled between each layer of copper wires. Water-blocking material; the water-blocking conductor 11 can also be formed by layered twisting of multiple aluminum wires.
  • the shape of the monofilament forming the water-blocking conductor 11 is trapezoidal or circular, and the resistance of the monofilament forming the water-blocking conductor 11 is Comply with GB/T3953 standard.
  • the conductor shielding layer 12, the insulating layer 13 and the insulating shielding layer 14 adopt a three-layer co-extrusion type, which can be extruded at one time, and the form of three-layer co-extrusion can prevent the External impurities are introduced between the shielding layer 12, the insulating layer 13, and the insulating shielding layer 14 to improve the roundness and interface smoothness of the cable core 1; at the same time, the conductor shielding layer 12, the insulating layer 13, and the insulating shielding layer 14 can be closely connected. Combined, it can increase the initial free discharge voltage, improve the electric field distribution, and improve the withstand voltage level and service life of the cable.
  • the semi-conductive resistance water layer 15 is formed by one or more layers of semi-conductive resistance water tape covering and wrapping, and the material of the semi-conductive resistance water layer 15 is a waterproof material with a high water absorption rate and a high expansion rate.
  • Seawater type semi-conductive resistance hose; the metal shielding layer 16 can be an extruded alloy lead sheath structure, or it can be a multi-wire twisted and/or metal strip covered wrapping structure; the non-metallic layer 17 is extruded and formed on the metal On the periphery of the shielding layer 16, the material of the non-metal layer 17 is an insulating material or a semi-conductive polyethylene material, and the material of the non-metal layer 17 is not specifically limited here.
  • the buffer support member 2 is made of a silicone material with a Shore hardness less than 50HA. It should be noted that the Shore hardness refers to the reading of the value measured with a Shore hardness meter.
  • Fig. 3 is a schematic structural diagram of a buffer support in a deep-water submarine cable provided by an embodiment of the present application.
  • the buffer support 2 includes a first buffer part 23 and a plurality of second buffer parts 24, the first buffer part 23 is located at the center of the cable, and the second The axis of a buffer part 23 coincides with the axis of the cable; a plurality of second buffer parts 24 are evenly spaced in the circumferential direction of the first buffer part 23, and the extension direction of the second buffer part 24 is in line with the radial direction of the first buffer part 23 Consistently, the notch 22 is formed between two adjacent second buffer portions 24 , and the notch 22 abuts against the outer peripheral wall of the corresponding cable core 1 .
  • a support portion 21 is provided on the extension end of at least one second buffer portion 24, and the support portion 21 has a support whose axial direction is consistent with the axial direction of the cable.
  • the hole 211 and the inner cavity of the supporting hole 211 form an accommodation space, and the optical fiber unit 3 is located in the supporting hole 211 . In this way, the optical fiber unit 3 can be radially limited, preventing the optical fiber unit 3 from being displaced and deformed when subjected to a radial pressing force.
  • the number of optical fiber units 3 and support parts 21 is the same and they are arranged correspondingly; multiple support parts 21 can be set on the same second buffer part 24; multiple support parts 21 can also be respectively set on different on the second buffer portion 24 . For example, there may be no support portion 21 or at least one support portion 21 on the same second buffer portion 24 .
  • the second buffer part 24 and the support part 21 are one by one. correspond. In this way, the processing steps of the buffer support member 2 can be simplified.
  • the angle between adjacent second buffer parts 24 is 120°, there are three optical fiber units 3, and there are three support parts 21 , and the support portion 21 is set in one-to-one correspondence with the second buffer portion 24;
  • the second buffer portion 24 is a buffer arm, and the widths of the two ends of the buffer arm are respectively smaller than the width of the middle part of the buffer arm;
  • the buffer arm is included in the first buffer portion 23
  • the first buffer segment 241 and the second buffer segment 242 are connected in sequence in the radial direction, and the first buffer segment 241 is located on a side of the second buffer segment 242 close to the first buffer portion 23 .
  • the first buffer segment 241 has a plurality of spaced distribution in the circumferential direction of the first buffer portion 23 . Cavity 2411. In this way, due to the existence of the cavity 2411, when the cable core 1 is subjected to extrusion force, the buffer support member 2 can be greatly deformed to buffer more extrusion force.
  • the first buffer section 241 has two cavities 2411 distributed at intervals in the circumferential direction of the first buffer part 23. It should be noted that the cavities 2411 here can be grooves The inner cavity of the cavity may also be the inner cavity of a hole, and here, the number and specific form of the cavities 2411 are not specifically limited.
  • the first buffer portion 23 is provided with a through hole 231 , and the axis of the through hole 231 coincides with the axis of the cable. In this way, when the cable core 1 is subjected to extrusion force, the buffer support member 2 can further buffer more extrusion force, preventing excessive deformation of the cable core 1 .
  • Fig. 4 shows the positional relationship among the cable cores when the number of cable cores in the deep-water submarine cable provided by the embodiment of the present application is greater than three.
  • the multiple cable cores 1 may include multiple first cable cores 1a and second cable cores 1b, and multiple first cable cores 1b
  • the cable cores 1a are evenly distributed in the circumferential direction of the cable, and two adjacent second buffer parts 24 jointly clamp a first cable core 1a, so that the outer peripheral wall of the first cable core 1a abuts against the corresponding notch 22 Inside, the second cable core 1b is disposed in the through hole 231 , and the axis of the second cable core 1b coincides with the axis of the through hole 231 .
  • the number and size of the cable cores 1 can be determined according to actual needs, and there is no specific limitation on the number and size of the cable cores 1 here.
  • Fig. 5 is a schematic structural diagram of an optical fiber unit in a deep-water submarine cable provided by an embodiment of the present application.
  • the optical fiber unit 3 includes a plurality of optical fibers 31 and an inner lining layer 32 wrapped around the outer sides of the plurality of optical fibers 31, a stainless steel spiral hose 33 and a braided reinforcement layer 34; wherein , the inner liner 32 is extruded from nylon or polyfluoroethylene propylene to improve the temperature resistance level of the cable; the stainless steel spiral hose 33 plays the role of resistance to compression, bending and torsion.
  • the stainless steel spiral hose 33 can improve the extrusion resistance of the cable, and it is set in a spiral shape to improve the bending resistance of the cable;
  • the braided reinforcement layer 34 is a combination of stainless steel wire and fiber braided reinforcement layer
  • the fiber braided reinforcement layer is composed of polyparaphenylene benzobisoxazole fiber, which has high strength and high temperature resistance, and can improve the service life of the entire cable.
  • the protection unit 4 includes a wrapping layer 41, an armored cushion layer 42, an armored layer 43, and an armored binding layer that are sequentially sleeved from the inside to the outside.
  • the binding material around the cladding 41 is a high-strength rubberized cloth tape
  • the armored pad 42 can be an insect-proof copper tape layer, which is formed on the outer periphery of the cladding 41 by copper tape wrapping
  • the armoring layer 43 includes At least one layer of armor layer unit 431, when the armor layer unit 431 is multi-layer, the multi-layer armor layer unit 431 is sheathed successively in the radial direction of the cable, and the armor layer unit 431 includes a plurality of layers adjacent to each other in the circumferential direction of the cable Arranged metal strips 4311, the outer circumference of the armor layer 43 is also coated with anti-corrosion asphalt material
  • the armored cushion layer 42 is set as an insect-proof copper tape layer, which can prevent rats, termites, and marine organisms from eroding, and improve the operating capability and service life of deep-water submarine cables in complex marine environments.
  • the binding material around the wrapping layer 41 can also be high-strength polytetramethylene terephthalate (Polybutylene terephthalate, pbt) wrapping tape, polyester fiber tape, non-woven fabric, cotton cloth tape Or other applicable materials;
  • the armor layer 43 can be formed by twisting a plurality of low-carbon galvanized steel wires, and the armor layer 43 can also be formed by twisting a mixture of galvanized steel wires and copper wires.
  • the metal strip 4311 can be made to make the part close to the center of the cable in the radial direction of the cable and the part far away from the center of the cable. In this way, the metal strip 4311 can be prevented from shifting in the radial direction of the cable, and the twisting angle of the metal strip 4311 can be kept, so that the middle part of the cable is subjected to a relatively small extrusion force.
  • the metal strip 4311 has a concave part 43111 and a convex part 43112 connected in sequence in the radial direction of the cable, the concave direction of the concave part 43111 and the convex part of the convex part 43112 The directions are consistent with the circumferential direction of the cable.
  • the protruding part 43112 of one of the two adjacent metal strips 4311 snaps into the concave part 43111 of the other.
  • the protrusion 43112 or the depression 43111 of one of the two adjacent metal strips 4311 will also It will block the concave part 43111 or the protruding part 43112 in the other, so as to prevent the metal strip 4311 from moving in the radial direction of the cable, and ensure that the inside of the cable will not be greatly squeezed.
  • the recessed part 43111 is a concave arc segment
  • the protruding part 43112 is a convex arc segment, that is, the cross-sectional figure of the metal strip 4311 in the cable radial direction is close to " S-shaped", and in order to facilitate bending or processing the metal strip 4311, the radii and central angles of the concave part 43111 and the protruding part 43112 can be kept equal.
  • the recessed portion 43111 may have two side walls forming an angle with each other, and the protrusion 43112 may also have two side walls forming an angle with each other, that is,
  • the cross-sectional figure of the metal strip 4311 in the radial direction of the cable is close to a "Z" shape, and in order to bend or process the metal strip 4311, the angle between the two side walls of the concave part 43111 and the protruding part 43112 can be kept
  • the two opposite side walls of the concave portion 43111 and the protruding portion 43112 are parallel to each other and have equal lengths.
  • the concave portion 43111 and the convex portion 43112 can also be in other shapes, as long as the convex portion 43112 or the concave portion 43111 of one of the adjacent two metal strips 4311 can be concave to the other. If the concave portion 43111 or the protruding portion 43112 is blocked, the purpose of the embodiment of the present application can be achieved. Here, the specific shapes of the concave portion 43111 and the protruding portion 43112 are not limited.
  • metal strip 4311 also can be other shapes, for example is, the metal strip 4311 in two adjacent armor layer units 431 is dislocated in the radial direction of cable . In this way, the metal strip 4311 located in the armor layer unit 431 of the inner layer can block the metal strip 4311 located in the armor layer unit 431 of the outer layer to a certain extent.
  • the extension lengths of the side of the metal strip 4311 facing the inner side of the cable and the side facing the outer side of the cable in the circumferential direction of the cable are different, that is, the length of the metal strip 4311 in the radial direction of the cable is different.
  • the cross-sectional figure can be trapezoidal.
  • Fig. 6 is a schematic structural diagram of a filling unit in a deep-water submarine cable provided by an embodiment of the present application.
  • the deepwater submarine cable provided by the embodiment of the present application also includes a plurality of filling units 5, and the filling units 5 are filled in the protection unit 4, the cable core 1 and the buffer support 2, and the outer peripheral wall of the filling unit 5 is attached to the inner peripheral wall of the protection unit 4.
  • the filling unit 5 can also block it, so as to ensure the electrical protection of the deep-water submarine cable provided by the embodiment of the present application. performance.
  • filling unit 5 can be made by extruding polyethylene or polypropylene.
  • extruded material used for the filling unit 5 is not specifically limited.
  • the inner peripheral wall of the filling unit 5 includes a first arc segment 51 and two second arc segments 52, the first arc segment 51 is located between the two second arc segments 52, and the first arc segment 51 is attached to the outer peripheral wall of the corresponding supporting part 21, and the second arc segment 52 is attached to the outer peripheral wall of the corresponding cable core 1, that is, the radius of the first arc segment 51 is equal to the radius of the supporting part, and the second arc segment The radius of the segment 52 is equal to the radius of the corresponding core 1 .
  • the central angle corresponding to the first arc segment 51 is 60°
  • the central angle corresponding to the second arc segment 52 is 120°.
  • the specific shapes of the corresponding filling units 5 will not be introduced one by one.
  • the deep-water submarine cable provided by the present application includes a cable core, a buffer support, an optical fiber unit and a protection unit; the number of cable cores is at least three; the buffer support is arranged between multiple cable cores, and the hardness of the buffer support is smaller than that of the cable core The hardness of the outer peripheral wall; the edge of the buffer support has support parts and gaps distributed at intervals, the support part has accommodating space for the optical fiber unit, at least part of the cable core is located in the gap; the protection unit covers the cable core, the buffer support and the optical fiber unit, and the inner peripheral wall of the protection unit is attached to the outer peripheral wall of each cable core.
  • the deep-water submarine cable provided by the present application has high electrical performance and is not easy to be broken down.

Landscapes

  • Insulated Conductors (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

提供了一种深水海底电缆。包括缆芯(1)、缓冲支撑件(2)、光纤单元(3)和保护单元(4);缆芯(1)数量为至少三个;缓冲支撑件(2)设置在多个缆芯(1)之间,且缓冲支撑件(2)的硬度小于缆芯(1)的外周壁的硬度;缓冲支撑件(2)的边缘处具有间隔分布的支撑部(21)和缺口(22),支撑部(21)具有容纳光纤单元(3)的容纳空间,缆芯(1)的至少部分位于缺口(22)内;保护单元(4)包覆缆芯(1)、缓冲支撑件(2)和光纤单元(3),且保护单元(4)的内周壁与每个缆芯(1)的外周壁贴合。深水海底电缆具有较高的电气性能,且不易被击穿。

Description

深水海底电缆
本申请要求于2021年07月23日提交中国专利局、申请号为2021108374243、申请名称为“深水海底电缆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电线电缆技术领域,更为具体地,涉及一种深水海底电缆。
背景技术
海底电缆是用绝缘材料包裹的导线,敷设在海底及河流水下,用于电信传输。海底电缆分为海底通信电缆和海底电力电缆两种,海底通信电缆主要用于通讯业务,海底电力电缆主要用于水下传输大功率电能。
现有的海底电缆大多包括缆芯、光纤单元、填充单元和保护单元,缆芯可以为一个或多个,光纤单元、填充单元和保护单元的延伸方向均与缆芯的延伸方向一致,缆芯和光纤单元均位于保护单元内部,填充单元填充于缆芯与光纤单元之间,其中,缆芯为电力单元,保护单元包括铠装层和外护层等,铠装层由多个延一个方向延伸的金属条绞合而成;在海底电缆向水下敷设的过程中,在海底电缆的重力作用以及海水对海底电缆的浮力作用下,铠装层的底端会受到一个向下的拉力作用,铠装层中的金属条则会向内部收紧,位于内部的缆芯、填充单元和光纤单元会受到挤压。
因此,在上述的海底电缆敷设的过程中,铠装层底端的受力会越来越大,使得内部的缆芯等受到的挤压力会越来越大,当海底电缆敷设完成后,海底电缆的电气性能会下降,甚至会发生击穿。
发明内容
本申请提供一种深水海底电缆,具有较高的电气性能,且能够避免发生击穿。
本申请提供一种深水海底电缆,包括缆芯、缓冲支撑件、光纤单元和保护单元;缆芯数量为至少三个;缓冲支撑件设置在多个缆芯之间,且缓冲支撑件的硬度小于缆芯的外周壁的硬度;缓冲支撑件的边缘处具有间隔分布的 支撑部和缺口,支撑部具有容纳光纤单元的容纳空间,缆芯的至少部分位于缺口内;保护单元包覆缆芯、缓冲支撑件和光纤单元,且保护单元的内周壁与每个缆芯的外周壁贴合。
可选的,在本申请提供的深水海底电缆中,缓冲支撑件包括第一缓冲部和多个第二缓冲部,第一缓冲部位于电缆的中心位置,且第一缓冲部的轴线与电缆的轴线重合;多个第二缓冲部在第一缓冲部的周向上均匀间隔分布,且第二缓冲部的延伸方向与第一缓冲部的径向一致,缺口形成于相邻的两个第二缓冲部之间,缺口与对应的缆芯的外周壁抵接;至少一个第二缓冲部的延伸端上设置有支撑部,支撑部具有轴向与电缆的轴向一致的支撑孔,支撑孔的内腔形成容纳空间,光纤单元位于支撑孔内。
可选的,在本申请提供的深水海底电缆中,第二缓冲部为缓冲臂,缓冲臂的两端的宽度分别小于缓冲臂的中部的宽度;缓冲臂包括在第一缓冲部的径向上依次相连的第一缓冲段和第二缓冲段,第一缓冲段位于第二缓冲段的靠近第一缓冲部的一侧。
可选的,在本申请提供的深水海底电缆中,第一缓冲段在第一缓冲部的周向上具有多个间隔分布的空腔。
可选的,在本申请提供的深水海底电缆中,光纤单元和支撑部数量相同且对应设置;多个支撑部设置在同一个第二缓冲部上,或者,多个支撑部分别设置在不同的第二缓冲部上。
可选的,在本申请提供的深水海底电缆中,当多个支撑部设置在不同的第二缓冲部上时,第二缓冲部与支撑部一一对应。
可选的,在本申请提供的深水海底电缆中,至少三个的缆芯包括多个第一缆芯,多个第一缆芯在电缆的周向上均匀间隔分布,且相邻的两个第二缓冲部共同夹抱一个第一缆芯,以使第一缆芯的外周壁抵接在对应的缺口内。
可选的,在本申请提供的深水海底电缆中,第一缓冲部上设有通孔,通孔的轴线与电缆的轴线重合。
可选的,在本申请提供的深水海底电缆中,多个缆芯还包括第二缆芯,第二缆芯设置在通孔内,且第二缆芯的轴线与通孔的轴线重合。
可选的,在本申请提供的深水海底电缆中,保护单元包括铠装层,铠装层包括至少一层铠装层单元,铠装层单元包括多个沿电缆的周向紧邻排布的金属条。
可选的,在本申请提供的深水海底电缆中,金属条具有在电缆的径向上依次连接的凹陷部和凸出部,凹陷部的凹陷方向和凸出部的凸出方向均与电缆的周向一致,在铠装层单元中,相邻的两个金属条中一者的凸出部卡入另一者的凹陷部内。
可选的,在本申请提供的深水海底电缆中,凹陷部为凹弧段,凸出部为凸弧段。
可选的,在本申请提供的深水海底电缆中,当铠装层包括多层铠装层单元时,多层铠装层单元在电缆的径向上依次套设,且相邻的两个铠装层单元中的金属条在电缆的径向上错位分布。
可选的,在本申请提供的深水海底电缆中,金属条的朝向电缆内侧的一面和朝向电缆外侧的一面在电缆的周向上的延伸长度不等。
本申请提供的深水海底电缆包括缆芯、缓冲支撑件、光纤单元和保护单元;缆芯数量为至少三个;缓冲支撑件设置在多个缆芯之间,且缓冲支撑件的硬度小于缆芯的外周壁的硬度;缓冲支撑件的边缘处具有间隔分布的支撑部和缺口,支撑部具有容纳光纤单元的容纳空间,缆芯的至少部分位于缺口内;保护单元包覆缆芯、缓冲支撑件和光纤单元,且保护单元的内周壁与每个缆芯的外周壁贴合。本申请提供的深水海底电缆具有较高的电气性能,且不易被击穿。
本申请的构造以及它的其他申请目的及有益效果将会通过结合附图而对优选实施例的描述而更加明显易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为本申请实施例提供的深水海底电缆的第一种结构示意图;
图1b为本申请实施例提供的深水海底电缆的第二种结构示意图;
图1c为本申请实施例提供的深水海底电缆的第三种结构示意图;
图1d为本申请实施例提供的深水海底电缆的第四种结构示意图;
图1e为本申请实施例提供的深水海底电缆的第五种结构示意图;
图2为本申请实施例提供的深水海底电缆中的缓冲支撑件、光纤单元与缆芯之间的位置关系示意图;
图3为本申请实施例提供的深水海底电缆中的缓冲支撑件的结构示意图;
图4为本申请实施例提供的深水海底电缆中的缆芯个数大于三时的各缆芯之间的位置关系;
图5为本申请实施例提供的深水海底电缆中的光纤单元的结构示意图;
图6为本申请实施例提供的深水海底电缆中的填充单元的结构示意图。
附图标记:
1-缆芯;
1a-第一缆芯;
1b-第二缆芯;
11-阻水导体;
12-导体屏蔽层;
13-绝缘层;
14-绝缘屏蔽层;
15-半导电阻水层;
16-金属屏蔽层;
17-非金属层;
2-缓冲支撑件;
21-支撑部;
211-支撑孔;
22-缺口;
23-第一缓冲部;
231-通孔;
24-第二缓冲部;
241-第一缓冲段;
2411-空腔;
242-第二缓冲段;
3-光纤单元;
31-光纤;
32-内衬层;
33-不锈钢螺旋软管;
34-编织加强层;
4-保护单元;
41-绕包层;
42-铠装垫层;
43-铠装层;
431-铠装层单元;
4311-金属条;
44-铠装捆扎层;
5-填充单元;
51-第一弧段;
52-第二弧段。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通 技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
需要说明的是,在本申请的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
海底电缆是用绝缘材料包裹的导线,敷设在海底及河流水下,用于电信传输。海底电缆分为海底通信电缆和海底电力电缆两种,海底通信电缆主要用于通讯业务,海底电力电缆主要用于水下传输大功率电能。
现有的海底电缆大多包括缆芯、光纤单元、填充单元和保护单元,缆芯可以为一个或多个,光纤单元、填充单元和保护单元的延伸方向均与缆芯的延伸方向一致,缆芯和光纤单元均位于保护单元内部,填充单元填充于缆芯与光纤单元之间,其中,缆芯为电力单元,保护单元包括铠装层和外护层等,铠装层由多个延一个方向延伸的金属条绞合而成;在海底电缆向水下敷设的过程中,在海底电缆的重力作用下,铠装层会受到一个向下的拉力作用,其中,处于水面位置的铠装层受到的拉力作用最大,相应地,构成铠装层的金属条则会向内部收紧,位于内部的缆芯、填充单元和光纤单元会受到挤压;进一步地,当现有的海底电缆包括多个缆芯时,多个缆芯紧挨设置为点接触,接触面积小。
因此,在上述的海底电缆敷设的过程中,随着水深的增加,铠装层的受力会越来越大,使得内部的缆芯等受到的挤压力会越来越大;在包括多个缆芯的海底电缆中,一旦外部向内产生的挤压力过大时,可能会造成缆芯之间接触点的变形,进一步导致内部绝缘结构变形受损,则会造成海底电缆的缆芯的电气性能下降,甚至会发生击穿。
由此,本申请实施例提供一种深水海底电缆,通过在各缆芯之间设置缓冲支撑件,以缓冲缆芯受到的挤压力;并通过对铠装层内的金属条结构进行改进,以使得金属条在受到挤压力的时候难以向电缆的中心位置移动,从而确保电缆难以发生击穿,且能够保证电缆的电气性能不因缆芯被挤压发生损坏而下降。
图1a为本申请实施例提供的深水海底电缆的第一种结构示意图。图1b为本申请实施例提供的深水海底电缆的第二种结构示意图。图1c为本申请实施例提供的深水海底电缆的第三种结构示意图。图1d为本申请实施例提供的 深水海底电缆的第四种结构示意图。图1e为本申请实施例提供的深水海底电缆的第五种结构示意图。
如图1a至图1e所示,本申请实施例提供一种深水海底电缆,包括缆芯1、缓冲支撑件2、光纤单元3和保护单元4;缆芯1为电气单元,且缆芯1数量为至少三个;缓冲支撑件2设置在多个缆芯1之间,且缓冲支撑件2的硬度小于缆芯1的外周壁的硬度;缓冲支撑件2的边缘处具有间隔分布的支撑部21和缺口22,支撑部21具有容纳光纤单元3的容纳空间,缆芯1的至少部分位于缺口22内;保护单元4包覆缆芯1、缓冲支撑件2和光纤单元3,且保护单元4的内周壁与每个缆芯1的外周壁贴合。本申请实施例提供的深水海底电缆包括设置于多个缆芯1之间的缓冲支撑件2,因此,在将深水海底电缆向水下敷设的过程中,当深水海底电缆的自身重力使得缆芯1受到挤压力时,缓冲支撑件2能够对缆芯1受到的挤压力进行缓冲,防止缆芯1被过度挤压,能够避免缆芯1的电气性能因挤压变形而下降或发生击穿。
在本实施例的具体的实施方式中,缆芯1有3个,且相邻的缆芯1之间的夹角为120°。
图2为本申请实施例提供的深水海底电缆中的缓冲支撑件、光纤单元与缆芯之间的位置关系示意图。
如图2所示,在一些可选的实施方式中,且缆芯1包括阻水导体11、导体屏蔽层12、绝缘层13、绝缘屏蔽层14、半导电阻水层15、金属屏蔽层16和非金属层17;阻水导体11位于缆芯1的中心位置,导体屏蔽层12、绝缘层13、绝缘屏蔽层14、半导电阻水层15、金属屏蔽层16和非金属层17依次套设在阻水导体11的外侧,其中,导体屏蔽层12的作用是改善导线表面的电场分布,消除导线与绝缘层13之间的间隙,以提升电缆整体的电气性能;绝缘屏蔽层14的作用是能够将绝缘层13表面产生的感应电荷快速传递出去。
在一些具体的实施方式中,阻水导体11为紧压圆形导体,阻水导体11可以采用多根圆铜丝分层绞合形成,并且在每层铜丝之间填设有防海水型阻水材料;阻水导体11还可以采用多根铝丝分层绞合形成,具体的,形成阻水导体11的单丝形状为梯形或圆形,并且形成阻水导体11的单丝的电阻符合GB/T3953标准。
需要说明的是,在一些可选的实施方式中,导体屏蔽层12、绝缘层13和绝缘屏蔽层14采用三层共挤型式,一次性挤出,通过三层共挤的形式可以防 止在导体屏蔽层12、绝缘层13及绝缘屏蔽层14之间引入外界的杂质,提升缆芯1的圆整度和界面光滑度;同时能够使得导体屏蔽层12、绝缘层13、与绝缘屏蔽层14紧密结合在一起,可提高起始游离放电电压、改善电场分布,提升电缆的耐压水平和使用寿命。
在一些可选的实施方式中,半导电阻水层15由一层或多层半导电阻水带搭盖绕包形成,半导电阻水层15的材料为高吸水速率和高膨胀速率的防海水型半导电阻水带;金属屏蔽层16可以为挤包合金铅套结构,也可以为多根金属丝绞合和/或金属带搭盖绕包结构;非金属层17挤包形成在金属屏蔽层16的外周,非金属层17的材料为绝缘材料或半导电聚乙烯材料,在此,对非金属层17的材料不作具体限制。
在本实施例的具体的实施方式中,缓冲支撑件2由邵氏硬度小于50HA的硅胶材料制成。需要说明的是,邵氏硬度是指用邵氏硬度计测出的值的读数。
图3为本申请实施例提供的深水海底电缆中的缓冲支撑件的结构示意图。
如图3所示,在本申请实施例提供的深水海底电缆中,缓冲支撑件2包括第一缓冲部23和多个第二缓冲部24,第一缓冲部23位于电缆的中心位置,且第一缓冲部23的轴线与电缆的轴线重合;多个第二缓冲部24在第一缓冲部23的周向上均匀间隔分布,且第二缓冲部24的延伸方向与第一缓冲部23的径向一致,缺口22形成于相邻的两个第二缓冲部24之间,缺口22与对应的缆芯1的外周壁抵接。
而为了对光纤单元3进行安装限位,在本申请的实施方式中,至少一个第二缓冲部24的延伸端上设置有支撑部21,支撑部21具有轴向与电缆的轴向一致的支撑孔211,支撑孔211的内腔形成容纳空间,光纤单元3位于支撑孔211内。这样,则能够对光纤单元3进行径向的限位,防止光纤单元3在受到径向的挤压力时,产生位移而发生变形。
在一些具体的实施方式中,光纤单元3和支撑部21数量相同且对应设置;多个支撑部21可以设置在同一个第二缓冲部24上;多个支撑部21也可以分别设置在不同的第二缓冲部24上。例如是,同一个第二缓冲部24上可以没有支撑部21也可以设置至少一个的支撑部21。
而为了便于对缓冲支撑件2进行加工制造,在一些可选的实施方式中,当多个支撑部21设置在不同的第二缓冲部24上时,第二缓冲部24与支撑部 21一一对应。这样,则能够简化缓冲支撑件2的加工步骤。
在本实施例的具体的实施方式中,第二缓冲部24为三个,相邻的第二缓冲部24之间的夹角为120°,光纤单元3为三个,支撑部21为三个,且支撑部21与第二缓冲部24一一对应设置;第二缓冲部24为缓冲臂,缓冲臂的两端的宽度分别小于缓冲臂的中部的宽度;缓冲臂包括在第一缓冲部23的径向上依次相连的第一缓冲段241和第二缓冲段242,第一缓冲段241位于第二缓冲段242的靠近第一缓冲部23的一侧。
为了增大缓冲支撑件2的形变量,以使其具有较高的缓冲性能,在一些可选的实施方式中,第一缓冲段241在第一缓冲部23的周向上具有多个间隔分布的空腔2411。这样,由于空腔2411的存在,则当缆芯1受到挤压力的时候,可以使缓冲支撑件2发生较大的形变,以缓冲等多的挤压力。
在本实施例的具体的实施方式中,第一缓冲段241在第一缓冲部23的周向上具有两个间隔分布的空腔2411,需要说明的是,此处的空腔2411可以为槽体的内腔也可以是孔的内腔,在此,对空腔2411的个数和具体形式不作具体限制。
为了进一步提升缓冲支撑件2的缓冲性能,在本实施例的具体的实施方式中,第一缓冲部23上设有通孔231,通孔231的轴线与电缆的轴线重合。这样,当缆芯1受到挤压力时,缓冲支撑件2能够进一步缓冲更多的挤压力,防止缆芯1发生过度变形。
图4为本申请实施例提供的深水海底电缆中的缆芯个数大于三时的各缆芯之间的位置关系。
如图4所示,在一些其他的实施方式中,当缆芯1的个数大于3时,多个缆芯1可以包括多个第一缆芯1a和第二缆芯1b,多个第一缆芯1a在电缆的周向上均匀间隔分布,且相邻的两个第二缓冲部24共同夹抱一个第一缆芯1a,以使第一缆芯1a的外周壁抵接在对应的缺口22内,第二缆芯1b设置在通孔231内,且第二缆芯1b的轴线与通孔231的轴线重合。需要说明的是,在对本申请进行实施的过程中,可以根据实际需求确定缆芯1的个数及大小,在此,对缆芯1的个数及尺寸不作具体限制。
图5为本申请实施例提供的深水海底电缆中的光纤单元的结构示意图。
如图5所示,在一些可选的实施方式中,光纤单元3包括多个光纤31以及依次包裹在多个光纤31外侧的内衬层32、不锈钢螺旋软管33和编织加强 层34;其中,内衬层32由尼龙或聚全氟乙丙烯挤包而成,以提升电缆的耐温等级;不锈钢螺旋软管33起到抗压、抗弯曲、抗扭转的作用,由于挤压力对电缆衰减影响很大,因此,不锈钢螺旋软管33可提高电缆的抗挤压能力,将其设置成螺旋状以提升电缆的抗弯曲性能;编织加强层34则是由不锈钢丝与纤维编织加强层组合而成,纤维编织加强层是由聚对苯撑苯并二噁唑纤维组成,具有强度高、耐高温的性能,能够提升了整个电缆的使用寿命。
如图1a至图1e所示,在一些可选的实施方式中,保护单元4包括由内之外依次套设的绕包层41、铠装垫层42、铠装层43和铠装捆扎层44,其中,绕包层41的绑扎材料为高强度的涂胶布带;铠装垫层42可以为防虫铜带层,由铜带绕包形成在绕包层41的外周;铠装层43包括至少一层铠装层单元431,当铠装层单元431为多层时,多层铠装层单元431在电缆的径向上依次套设,铠装层单元431包括多个沿电缆的周向紧邻排布的金属条4311,铠装层43的外周还涂覆有防腐沥青材料;铠装捆扎层44为缠绕在铠装层43外周的两层聚丙烯绳,两层聚丙烯绳的绞合方向相反;将铠装垫层42设置为防虫铜带层,可以起到防鼠、防白蚁、防海洋生物侵蚀的作用,提升深水海底电缆在复杂海洋环境下的运行能力和使用寿命。
在一些具体的实施方式中,绕包层41的绑扎材料还可以为高强度聚对苯二甲酸四次甲基酯(Polybutylene terephthalate,pbt)包带、聚酯纤维带、无纺布、棉布带或其他适用的材料;铠装层43可以由多根低碳镀锌钢丝绞合而成,铠装层43也可以由镀锌钢丝和铜丝混合绞合而成。在此,对绕包层41的绑扎材料以及铠装层43的具体制作材质不作限制。
如图1a所示,当海水较浅时,此时对应的深水海底电缆的高度也较小,因此,由于电缆的重力作用对电缆的中部所产生的挤压力也较小,此时,金属条4311的沿电缆的径向截面的图形可以是圆形,由于,此时的挤压力较小,金属条4311在电缆的径向上也难以发生位置的偏移。
而当海水较深时,此时对应的深水海底电缆在水中的长度也较大,因此,由于电缆的重力作用对电缆的中部所产生的挤压力也较大,此时,为了防止金属条4311在电缆的径向上发生位置的偏移,应该对截面图形为圆形的金属条4311进行改进,具体的,可以使得金属条4311在电缆的径向上使其靠近电缆中心的部位对远离电缆中心的部位产生一定的阻挡作用,这样,则可以避免金属条4311在电缆的径向上发生位置的偏移,保持金属条4311的绞合 角度,以使得电缆中部受到较小的挤压力。
如图1b至图1d所示,在一些实施例中,金属条4311具有在电缆的径向上依次连接的凹陷部43111和凸出部43112,凹陷部43111的凹陷方向和凸出部43112的凸出方向均与电缆的周向一致,在铠装层单元中,相邻的两个金属条4311中一者的凸出部43112卡入另一者的凹陷部43111内。这样,当电缆的中部受到挤压力时,即使会促使金属条4311向靠近电缆中心的部位移动,此时,相邻的两个金属条4311中一者的凸出部43112或凹陷部43111也会对另一者中的凹陷部43111或凸出部43112产生阻挡作用,从而能够防止金属条4311在电缆的径向上发生移动,确保电缆内部不会受到较大的挤压。
如图1b和图1c所示,在一些可选的实施方式中,凹陷部43111为凹弧段,凸出部43112为凸弧段,即使得金属条4311在电缆径向上的截面图形接近于“S形”,而为了便于对金属条4311进行折弯或加工,可以保持凹陷部43111与凸出部43112的半径和圆心角均相等。
如图1d所示,在另一些可选的实施方式中,凹陷部43111可以具有两个互成夹角的侧壁,凸出部43112也可以具有连个互成夹角的侧壁,即使得金属条4311在电缆径向上的截面图形接近于“Z”形,而为了便于对金属条4311进行折弯或加工,可以保持凹陷部43111与凸出部43112的两个侧壁之间的夹角相等,且凹陷部43111与凸出部43112的相对的两个侧壁互相平行且长度相等。
需要说明的是,凹陷部43111和凸出部43112也可以是其他的形状,只要使得相邻的两个金属条4311中一者的凸出部43112或凹陷部43111能够对另一者中的凹陷部43111或凸出部43112进行阻挡,则能够实现本申请实施例的目的,在此,对凹陷部43111和凸出部43112的具体形状不作限制。
而当铠装层43包括多层铠装层单元431时,金属条4311也可以是其他形状,例如是,相邻的两个铠装层单元431中的金属条4311在电缆的径向上错位分布。这样,位于内层的铠装层单元431中的金属条4311则能够对位于外层的铠装层单元431中的金属条4311进行一定的阻挡。
如图1e所示,在一些具体的实施方式中,金属条4311的朝向电缆内侧的一面和朝向电缆外侧的一面在电缆的周向上的延伸长度不等,亦即,金属条4311在电缆径向上的截面图形可以是梯形。在此,对金属条4311在电缆径向上的截面图形不作具体限制。
图6为本申请实施例提供的深水海底电缆中的填充单元的结构示意图。
如图1a、图1b、图1c、图1d和图1e所示,本申请实施例提供的深水海底电缆还包括多个填充单元5,填充单元5填充于保护单元4、缆芯1与缓冲支撑件2围成的区域内,且填充单元5的外周壁与保护单元4的内周壁贴合。这样,即使保护层在受到的挤压力过大的情况下,向电缆的中心发生移动或凹陷时,填充单元5也能够对其进行阻挡,以确保本申请实施例提供的深水海底电缆的电学性能。
需要说明的是,上述的填充单元5可以采用聚乙烯挤出制成,也可以采用聚丙烯挤出制成。在此,对填充单元5所采用的挤出材料不作具体限制。
在一些可选的实施方式中,填充单元5的内周壁包括第一弧段51和两个第二弧段52,第一弧段51位于两个第二弧段52之间,第一弧段51与对应的支撑部21的外周壁贴合,第二弧段52与对应的缆芯1的外周壁贴合,亦即,第一弧段51的半径与支撑部的半径相等,第二弧段52的半径与对应的缆芯1的半径相等。
在本实施例的具体的实施方式中,当缆芯1为三个时,第一弧段51对应的圆心角为60°,第二弧段52对应的圆心角为120°。在此,对缆芯1大于三个时,所对应的填充单元5的具体形状不作一一介绍。
本申请提供的深水海底电缆包括缆芯、缓冲支撑件、光纤单元和保护单元;缆芯数量为至少三个;缓冲支撑件设置在多个缆芯之间,且缓冲支撑件的硬度小于缆芯的外周壁的硬度;缓冲支撑件的边缘处具有间隔分布的支撑部和缺口,支撑部具有容纳光纤单元的容纳空间,缆芯的至少部分位于缺口内;保护单元包覆缆芯、缓冲支撑件和光纤单元,且保护单元的内周壁与每个缆芯的外周壁贴合。本申请提供的深水海底电缆具有较高的电气性能,且不易被击穿。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种深水海底电缆,其特征在于,包括缆芯、缓冲支撑件、光纤单元和保护单元;所述缆芯数量为至少三个;
    所述缓冲支撑件设置在多个所述缆芯之间,且所述缓冲支撑件的硬度小于所述缆芯的外周壁的硬度;所述缓冲支撑件的边缘处具有间隔分布的支撑部和缺口,所述支撑部具有容纳所述光纤单元的容纳空间,所述缆芯的至少部分位于所述缺口内;
    所述保护单元包覆所述缆芯、缓冲支撑件和所述光纤单元,且所述保护单元的内周壁与每个所述缆芯的外周壁贴合。
  2. 根据权利要求1所述的深水海底电缆,其特征在于,所述缓冲支撑件包括第一缓冲部和多个第二缓冲部,所述第一缓冲部位于所述电缆的中心位置,且所述第一缓冲部的轴线与所述电缆的轴线重合;
    多个第二缓冲部在所述第一缓冲部的周向上均匀间隔分布,且所述第二缓冲部的延伸方向与所述第一缓冲部的径向一致,所述缺口形成于相邻的两个所述第二缓冲部之间,所述缺口与对应的缆芯的外周壁抵接;
    至少一个所述第二缓冲部的延伸端上设置有所述支撑部,所述支撑部具有轴向与所述电缆的轴向一致的支撑孔,所述支撑孔的内腔形成所述容纳空间,所述光纤单元位于所述支撑孔内。
  3. 根据权利要求2所述的深水海底电缆,其特征在于,所述第二缓冲部为缓冲臂,所述缓冲臂的两端的宽度分别小于所述缓冲臂的中部的宽度;
    所述缓冲臂包括在所述第一缓冲部的径向上依次相连的第一缓冲段和第二缓冲段,所述第一缓冲段位于所述第二缓冲段的靠近所述第一缓冲部的一侧。
  4. 根据权利要求3所述的深水海底电缆,其特征在于,所述第一缓冲段在所述第一缓冲部的周向上具有多个间隔分布的空腔。
  5. 根据权利要求2-4任一项所述的深水海底电缆,其特征在于,所述光纤单元和所述支撑部数量相同且对应设置;
    多个所述支撑部设置在同一个所述第二缓冲部上,或者,多个所述支撑部分别设置在不同的所述第二缓冲部上。
  6. 根据权利要求5所述的深水海底电缆,其特征在于,当多个所述支撑 部设置在不同的所述第二缓冲部上时,所述第二缓冲部与所述支撑部一一对应。
  7. 根据权利要求6所述的深水海底电缆,其特征在于,至少三个的所述缆芯包括多个第一缆芯,多个所述第一缆芯在所述电缆的周向上均匀间隔分布,且相邻的两个所述第二缓冲部共同夹抱一个所述第一缆芯,以使所述第一缆芯的外周壁抵接在对应的所述缺口内。
  8. 根据权利要求6或7所述的深水海底电缆,其特征在于,所述第一缓冲部上设有通孔,所述通孔的轴线与所述电缆的轴线重合。
  9. 根据权利要求8所述的深水海底电缆,其特征在于,多个所述缆芯还包括第二缆芯,所述第二缆芯设置在所述通孔内,且所述第二缆芯的轴线与所述通孔的轴线重合。
  10. 根据权利要求9所述的深水海底电缆,其特征在于,所述保护单元包括铠装层,所述铠装层包括至少一层铠装层单元,所述铠装层单元包括多个沿所述电缆的周向紧邻排布的金属条。
  11. 根据权利要求10所述的深水海底电缆,其特征在于,所述金属条具有在所述电缆的径向上依次连接的凹陷部和凸出部,所述凹陷部的凹陷方向和所述凸出部的凸出方向均与所述电缆的周向一致,在所述铠装层单元中,相邻的两个所述金属条中一者的凸出部卡入另一者的凹陷部内。
  12. 根据权利要求11所述的深水海底电缆,其特征在于,所述凹陷部为凹弧段,所述凸出部为凸弧段。
  13. 根据权利要求10所述的深水海底电缆,其特征在于,当所述铠装层包括多层所述铠装层单元时,多层铠装层单元在所述电缆的径向上依次套设,且相邻的两个所述铠装层单元中的金属条在所述电缆的径向上错位分布。
  14. 根据权利要求13所述的深水海底电缆,其特征在于,所述金属条的朝向所述电缆内侧的一面和朝向所述电缆外侧的一面在所述电缆的周向上的延伸长度不等。
PCT/CN2022/079582 2021-07-23 2022-03-07 深水海底电缆 WO2023000681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110837424.3 2021-07-23
CN202110837424.3A CN113571245A (zh) 2021-07-23 2021-07-23 深水海底电缆

Publications (1)

Publication Number Publication Date
WO2023000681A1 true WO2023000681A1 (zh) 2023-01-26

Family

ID=78166766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079582 WO2023000681A1 (zh) 2021-07-23 2022-03-07 深水海底电缆

Country Status (2)

Country Link
CN (2) CN113571245A (zh)
WO (1) WO2023000681A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487095A (zh) * 2023-05-12 2023-07-25 广州澳兴光电传输科技有限公司 一种耐腐蚀电力电缆
CN116864198A (zh) * 2023-07-14 2023-10-10 山东鲁青线缆有限公司 一种基于三芯的抗拉抗压抗咬电缆
CN117316524A (zh) * 2023-11-29 2023-12-29 江苏南方通信科技有限公司 一种可预警式防火复合光缆
CN117741883A (zh) * 2024-02-19 2024-03-22 江苏南方通信科技有限公司 一种层绞式室外用光缆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571245A (zh) * 2021-07-23 2021-10-29 中天科技海缆股份有限公司 深水海底电缆
CN114325979B (zh) * 2021-12-09 2023-09-22 富通集团(嘉善)通信技术有限公司 一种抗冲击光缆
CN115036878A (zh) * 2022-08-12 2022-09-09 山东柏远复合材料科技股份有限公司 一种便于安装的抗压海底线缆包装管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166335A1 (en) * 2011-08-23 2014-06-19 Furukawa Electric Co., Ltd. Undersea cable, multilayer tape for water shielding layer of undersea cable, and method for improving fatigue characteristics of undersea cable
CN105913966A (zh) * 2016-06-14 2016-08-31 江苏亨通高压电缆有限公司 一种交联聚乙烯绝缘光纤复合三芯海底电力电缆
CN107731360A (zh) * 2017-11-22 2018-02-23 山东希尔电缆有限公司 Wmf预置式分层配注、配产专用密封承荷探测电缆
CN207966522U (zh) * 2018-03-22 2018-10-12 中天科技海缆有限公司 一种多芯海底电缆用填充条
CN108806854A (zh) * 2018-07-13 2018-11-13 韩玉权 一种高强度强弱电复合电缆
CN109215856A (zh) * 2017-07-07 2019-01-15 Ls电线有限公司 电缆用填充构件以及具有该电缆用填充构件的海底电缆
CN113077926A (zh) * 2021-03-31 2021-07-06 中航宝胜海洋工程电缆有限公司 一种高载流抗腐蚀长寿命高压海缆
CN113571245A (zh) * 2021-07-23 2021-10-29 中天科技海缆股份有限公司 深水海底电缆

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB428540A (en) * 1933-11-15 1935-05-15 Ericsson Telefon Ab L M Improvements in or relating to armors for cables
CN212301996U (zh) * 2020-05-20 2021-01-05 中航宝胜海洋工程电缆有限公司 一种高强度耐侧压、耐冲击的海底光缆缆芯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140166335A1 (en) * 2011-08-23 2014-06-19 Furukawa Electric Co., Ltd. Undersea cable, multilayer tape for water shielding layer of undersea cable, and method for improving fatigue characteristics of undersea cable
CN105913966A (zh) * 2016-06-14 2016-08-31 江苏亨通高压电缆有限公司 一种交联聚乙烯绝缘光纤复合三芯海底电力电缆
CN109215856A (zh) * 2017-07-07 2019-01-15 Ls电线有限公司 电缆用填充构件以及具有该电缆用填充构件的海底电缆
CN107731360A (zh) * 2017-11-22 2018-02-23 山东希尔电缆有限公司 Wmf预置式分层配注、配产专用密封承荷探测电缆
CN207966522U (zh) * 2018-03-22 2018-10-12 中天科技海缆有限公司 一种多芯海底电缆用填充条
CN108806854A (zh) * 2018-07-13 2018-11-13 韩玉权 一种高强度强弱电复合电缆
CN113077926A (zh) * 2021-03-31 2021-07-06 中航宝胜海洋工程电缆有限公司 一种高载流抗腐蚀长寿命高压海缆
CN113571245A (zh) * 2021-07-23 2021-10-29 中天科技海缆股份有限公司 深水海底电缆

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116487095A (zh) * 2023-05-12 2023-07-25 广州澳兴光电传输科技有限公司 一种耐腐蚀电力电缆
CN116487095B (zh) * 2023-05-12 2023-11-03 广州澳兴光电传输科技股份有限公司 一种耐腐蚀电力电缆
CN116864198A (zh) * 2023-07-14 2023-10-10 山东鲁青线缆有限公司 一种基于三芯的抗拉抗压抗咬电缆
CN116864198B (zh) * 2023-07-14 2024-05-03 山东鲁青线缆有限公司 一种基于三芯的抗拉抗压抗咬电缆
CN117316524A (zh) * 2023-11-29 2023-12-29 江苏南方通信科技有限公司 一种可预警式防火复合光缆
CN117316524B (zh) * 2023-11-29 2024-01-26 江苏南方通信科技有限公司 一种可预警式防火复合光缆
CN117741883A (zh) * 2024-02-19 2024-03-22 江苏南方通信科技有限公司 一种层绞式室外用光缆
CN117741883B (zh) * 2024-02-19 2024-05-03 江苏南方通信科技有限公司 一种层绞式室外用光缆

Also Published As

Publication number Publication date
CN117352216A (zh) 2024-01-05
CN113571245A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023000681A1 (zh) 深水海底电缆
EP1691378A2 (en) Deep water signal cable
CN101521055B (zh) 光纤复合电力电缆
WO2022257513A1 (zh) 柔性直流海缆
CN111223596A (zh) 一种耐弯折电缆
CN105761828A (zh) 一种额定电压220kV 两芯光电复合海底电缆
WO2022241926A1 (zh) 动静态海缆及其制造方法
CN211528777U (zh) 一种直接表面敷设铠装光缆
CN111292889A (zh) 动静态铠装缆及制造方法
CN113782264B (zh) 海底电缆
CN210896693U (zh) 一种抗压耐弯折的复合电缆
KR101918679B1 (ko) 광복합 케이블
CN117038189B (zh) 一种阻水型中高压电力电缆
CN216487467U (zh) 非铠装型中高压复合屏蔽电缆
CN211427922U (zh) 一种抗干扰铠装信号电缆
KR20190111610A (ko) 전자파 차폐 기능을 갖는 광-전력 쉴드 브레이드 복합 케이블
US4523648A (en) Sheathed, multi-core, oil filled, electric cable with oil duct exterior to the cores
CN215770559U (zh) 一种海上钻井平台顶驱游动跳线综合电缆
CN220913941U (zh) 电缆
CN218214676U (zh) 一种集成电缆及其集成装置
CN217061495U (zh) 一种耐腐蚀抗干扰氟塑料绝缘安装线缆
CN215815309U (zh) 一种交联聚乙烯绝缘铝丝铠装低烟无卤护套中压电缆
CN114822982B (zh) 直流海底电缆
CN209747225U (zh) 一种额定电压交联聚乙烯绝缘电力电缆
CN216528145U (zh) 防火耐压电线电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22844854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE