WO2023000593A1 - 一种内燃电传动拖拉机传动系统控制设备和控制方法 - Google Patents

一种内燃电传动拖拉机传动系统控制设备和控制方法 Download PDF

Info

Publication number
WO2023000593A1
WO2023000593A1 PCT/CN2021/138289 CN2021138289W WO2023000593A1 WO 2023000593 A1 WO2023000593 A1 WO 2023000593A1 CN 2021138289 W CN2021138289 W CN 2021138289W WO 2023000593 A1 WO2023000593 A1 WO 2023000593A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
transmission system
diesel engine
asynchronous
load
Prior art date
Application number
PCT/CN2021/138289
Other languages
English (en)
French (fr)
Inventor
黄凯
王雪迪
董笑辰
Original Assignee
中车大连电力牵引研发中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大连电力牵引研发中心有限公司 filed Critical 中车大连电力牵引研发中心有限公司
Publication of WO2023000593A1 publication Critical patent/WO2023000593A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the invention relates to the technical field of internal combustion electric transmission, in particular to a control device and a control method for a transmission system of an internal combustion electric transmission tractor.
  • Tractor is a widely used agricultural machinery and equipment, which has a good development prospect in the field of agricultural transportation and plowing operations.
  • the tractor running system is mainly realized by mechanical drive, and the diesel engine cooperates with the mechanical transmission mechanism for power transmission.
  • the advantage of this traditional mechanical transmission method is its strong power, but it cannot realize the decoupling of running parts and working parts.
  • the speed of the diesel engine depends on the required vehicle speed.
  • the diesel engine cannot always work in the optimal efficiency zone, and the transmission loss is large and the efficiency is low.
  • the mechanical transmission system cannot fully adapt to the development needs of intelligent and networked tractors, and cannot achieve the goal of energy saving and emission reduction.
  • the invention provides a control device and a control method for a transmission system of an internal combustion electric transmission tractor to overcome the problems of large transmission loss and low efficiency.
  • a transmission system control device for an internal combustion electric tractor characterized by comprising: a transmission control unit for an internal combustion electric transmission system and an internal combustion electric transmission system;
  • the internal combustion electric transmission system includes an asynchronous generator, a generator converter, a motor converter, a braking unit, a DCDC converter and an asynchronous motor
  • the asynchronous generator is mechanically connected with the diesel engine coaxially
  • the generator converts
  • the three-phase U/V/W input terminal of the generator is correspondingly connected with the three-phase U/V/W terminal of the asynchronous generator
  • the positive and negative terminals of the DC bus of the generator converter are connected with the motor converter and the braking unit
  • the three-phase U/V/W terminal of the asynchronous motor is correspondingly connected to the three-phase U/V/W output terminal of the motor converter;
  • Both the generator converter and the motor converter are IGBT power devices to form a three-phase two-level topology
  • the transmission control unit of the internal combustion electric transmission system realizes the network communication between the internal combustion electric transmission system and the whole vehicle, receives network control instructions, transmits sampling signals, and uploads the operation status data of the transmission system to the cab monitoring and display equipment, wherein the sampling signal Including voltage, current and temperature of asynchronous generator and asynchronous motor, inverter DC bus voltage and inverter temperature, speed of asynchronous generator and asynchronous motor and cab control command signal.
  • the transmission control unit of the internal combustion electric transmission system includes a signal motherboard and a CPU control board, and the CPU control board is plugged into the signal motherboard;
  • the signal motherboard is used to filter and level-convert the signal of the sampling data and transmit it to the CPU control board;
  • the signal motherboard is used to filter and level-convert the signal of the sampling data and transmit it to the CPU control board;
  • the CPU control board is used to realize the transmission logic control process of the asynchronous generator and asynchronous motor, the PWM modulation process of the inverter and the speed control process of the diesel engine, and at the same time realize the network communication between the traction converter and the whole vehicle.
  • the signal motherboard includes a power module, an analog conditioning circuit, a digital input and output circuit, a rotational speed detection circuit, an AD sampler, a communication and debugging interface, and an output inverter PWM drive;
  • the power module is used to provide power for the signal motherboard
  • the analog conditioning circuit is used for filtering and amplitude conversion of the collected analog signals, the analog signals include the voltage, current, temperature, inverter DC bus voltage and temperature signals of the asynchronous generator and asynchronous motor, and the driving Room analog signal;
  • the AD sampler is used to convert the analog signal after filtering and amplitude conversion into a digital signal and deliver it to the processor;
  • the digital input and output circuit is used for isolation and level conversion of the cab digital input and output signals
  • the rotational speed detection circuit is used for isolating and level converting the pulse signal input by the encoder
  • the communication and debugging interface is used for operation data observation and recording
  • the PWM drive of the output inverter is used to generate an IGBT drive control signal
  • the analog conditioning circuit is connected to the CPU control board through the AD sampler, the digital input and output circuit performs data interaction with the CPU control board, the speed detection circuit, the communication and debugging interface, the The PWM drive of the output inverter is connected with the CPU control board.
  • the CPU control board includes an ARM processor, a DSP controller and an FPGA chip;
  • the ARM processor is used to realize the operation logic control of the internal combustion electric transmission system, the fuel efficiency control of the diesel engine, the buck-boost mode and output voltage control of the DCDC converter, and the network communication function between the internal combustion electric transmission system and the whole vehicle;
  • the DSP controller is used to realize the vector control algorithm and PWM modulation algorithm of the asynchronous generator and the asynchronous motor to generate corresponding PWM comparison values;
  • the FPGA chip is used for receiving the PWM comparison value and outputting a control signal of the inverter PWM.
  • a control method for a transmission system of an internal combustion electric transmission tractor characterized in that:
  • Step 1 Determine the target speed of the diesel engine by using the load power, the load rate of the diesel engine and the DC bus voltage;
  • Step 2 using the voltage control loop output and load power feed-forward compensation to determine the torque current value of the asynchronous generator
  • Step 3 Determine the torque value of the asynchronous motor by using the motor power limit value and the diesel engine load rate adjustment coefficient.
  • step 1 the formula for determining the target speed of the diesel engine in step 1 is:
  • n disel is the target speed of the diesel engine
  • f 1 (P load ) is the power curve of the diesel engine
  • f 2 ( ⁇ load ) is the load rate curve of the diesel engine
  • f 3 (U dc ) is the compensation amount of the diesel engine speed obtained according to the bus voltage.
  • K p is the proportional coefficient set
  • U dc is the DC bus voltage
  • step 3 the formula for determining the torque value of the asynchronous motor in step 3 is:
  • T e-lim is the limit of the outer envelope of the motor torque command, that is, the maximum output torque value of the asynchronous motor, is the unit conversion constant
  • P lim is the motor power limit value
  • f( ⁇ load ) is the adjustment coefficient of the diesel engine load rate
  • n is the motor speed.
  • ⁇ load represents the load rate of the diesel engine
  • ⁇ ⁇ represents the electromagnetic torque retention coefficient during adjustment.
  • the present invention adopts an asynchronous power generation/electric internal combustion electric transmission system, which can improve system reliability, reduce maintenance costs, reduce the volume of the transmission system, and is conducive to the optimization of the space layout of the vehicle.
  • the controller hardware circuit and its control method By optimizing the design of the controller hardware circuit and its control method, the technical advantages of the asynchronous generation/electric internal combustion electric drive system can be fully utilized.
  • Fig. 1 is the structure schematic diagram of internal combustion electric transmission system of the present invention
  • Fig. 2 is a schematic diagram of the transmission control unit of the internal combustion electric transmission system of the present invention.
  • Fig. 3 is a functional topological diagram of the ARM processor of the present invention.
  • Fig. 4 is a flow chart of the system control method of the present invention.
  • Fig. 5 is a control strategy diagram based on inner loop current feedback linearization and load power feedforward in the present invention.
  • Embodiment 1 provides a transmission system control device for an internal combustion electric transmission tractor, as shown in Figure 1, which is characterized in that it includes: a transmission control unit for an internal combustion electric transmission system and an internal combustion electric transmission system;
  • the internal combustion electric transmission system includes an asynchronous generator, a generator converter, a motor converter, a braking unit, a DCDC converter and an asynchronous motor
  • the asynchronous generator is mechanically connected with the diesel engine coaxially
  • the generator converts
  • the three-phase U/V/W input terminal of the generator is correspondingly connected with the three-phase U/V/W terminal of the asynchronous generator
  • the positive and negative terminals of the DC bus of the generator converter are connected with the motor converter and the braking unit
  • the three-phase U/V/W terminal of the asynchronous motor is correspondingly connected to the three-phase U/V/W output terminal of the motor converter;
  • Both the generator converter and the motor converter are IGBT power devices to form a three-phase two-level topology
  • the transmission control unit of the internal combustion electric transmission system realizes the network communication between the transmission system and the vehicle through the J1939 protocol, receives network control instructions, transmits sampling signals, and uploads the operation status data of the transmission system to the cab monitoring and display equipment, wherein the sampling
  • the signals include voltage, current and temperature of the asynchronous generator and asynchronous motor, inverter DC bus voltage and inverter temperature, speed of asynchronous generator and asynchronous motor and cab control command signal.
  • the DCDC converter starts first, raises the DC24V voltage of the battery to DC200V, and charges the DC bus of the traction converter; then starts the diesel engine to work in the constant speed mode, and the diesel engine and the asynchronous generator are coaxially mechanically connected to drive the asynchronous power generation
  • the machine rotates, and the asynchronous generator completes the excitation through the DC200V DC bus voltage;
  • the asynchronous generator works in the braking mode, the DC bus voltage is raised and stabilized at DC910V, and the start-up process is completed, and the DCDC switches to the step-down mode to charge the battery; finally, according to The system gives instructions to start the motor and control the speed of the diesel engine to make it run at the state of optimal efficiency.
  • the transmission control unit of the internal combustion electric transmission system includes a signal motherboard and a CPU control board, and the CPU control board is plugged on the signal motherboard and fixed by fixing screws. mechanical fixation;
  • the signal master board is used to transmit the signal filtering and level conversion of the sampling data to the
  • the CPU control board is used to realize the transmission logic control process of the asynchronous generator and asynchronous motor, the PWM modulation process of the inverter and the realization of the speed control process of the diesel engine, and at the same time realize the network communication between the traction converter and the whole vehicle, wherein the asynchronous generator
  • the transmission logic control of the asynchronous motor adopts the vector control algorithm
  • the inverter PWM modulation adopts the multi-mode synchronous modulation algorithm
  • the diesel engine speed control adopts the fuel efficiency optimization control algorithm.
  • the signal motherboard includes a power module, an analog conditioning circuit, a digital input and output circuit, a rotational speed detection circuit, an AD sampler, a communication and debugging interface, and an output inverter PWM drive;
  • the power module is used to provide power for the signal motherboard
  • the analog conditioning circuit is used for filtering and amplitude conversion of the collected analog signals, the analog signals include the voltage, current, temperature, inverter DC bus voltage and temperature signals of the asynchronous generator and asynchronous motor, and the driving Room analog signal;
  • the AD sampler is used to convert the analog signal after filtering and amplitude conversion into a digital signal and transmit it to the processor;
  • the digital input and output circuit is used for isolation and level conversion of the cab digital input and output signals
  • the rotational speed detection circuit is used for isolating and level converting the pulse signal input by the encoder
  • the communication and debugging interface is used for operation data observation and recording
  • the PWM drive of the output inverter is used to generate an IGBT drive control signal
  • the analog conditioning circuit is connected to the CPU control board through the AD sampler, the digital input and output circuit performs data interaction with the CPU control board, the speed detection circuit, the communication and debugging interface, the The PWM drive of the output inverter is connected with the CPU control board.
  • the CPU control board includes an ARM processor, a DSP controller and an FPGA chip.
  • the ARM processor is used to realize the operation logic control of the internal combustion electric transmission system, the fuel efficiency control of the diesel engine, the buck-boost mode and output voltage control of the DCDC converter, and the network communication function between the internal combustion electric transmission system and the whole vehicle .
  • the chip model used by the ARM processor is STM32F417ZG. Software programming is performed through the state machine mode.
  • the 1ms clock generated by the SYSTICK timer is used as the time base standard for each task, and data interaction is performed through the internal FSMC module and FPGA.
  • the ARM processor enables two internal CAN communication modules, CAN1 communicates with the DCDC controller and the leakage protection module of the converter, and CAN2 communicates with the cab and the diesel engine controller using the J1939 protocol.
  • the DSP controller is used to realize the vector control algorithm and PWM modulation algorithm of the asynchronous generator and the asynchronous motor to generate corresponding PWM comparison values.
  • the chip model used by the DSP controller is TI’s TMS320F28377D dual-core DSP, which contains two independent control cores.
  • the core CPU1 is used to realize the generator control, and the core CPU2 is used to realize the motor control.
  • CPU1 and CPU2 share data through the internal RAM. Interaction ensures the fast dynamic response performance of the system.
  • DSP controller communicates with FPGA through XINTF bus. Through the communication between SPI and CH395, the upper computer can realize the functions of program programming, debugging observation and data recording through Ethernet.
  • the FPGA chip receives the PWM comparison value generated by the DSP controller, and outputs the inverter PWM control signal by comparing it with the triangle wave.
  • FPGA simultaneously implements inverter and generator motor over-voltage, over-current and over-temperature hardware protection functions, generator and motor speed signal reading and calculation functions.
  • the FPGA chip uses the SPARTAN6 series of XILINX company, and realizes the dual-port RAM function through internal programming, and performs data interaction with the ARM processor and the DSP controller.
  • Embodiment 2 a method for controlling the transmission system of an internal combustion electric tractor, the method for controlling the transmission system of an internal combustion electric tractor specifically includes diesel engine control, asynchronous generator control and asynchronous motor control Three parts, including:
  • Step 1 The diesel engine works in the constant speed mode, and its control target is a given speed, and the target speed of the diesel engine is determined by using the load power, the load rate of the diesel engine and the DC bus voltage;
  • the formula for determining the target speed of the diesel engine is:
  • n disel is the target speed of the diesel engine
  • f 1 (P load ) is the power curve of the diesel engine
  • f 2 ( ⁇ load ) is the load rate curve of the diesel engine
  • f 3 (U dc ) is the compensation amount of the diesel engine speed obtained according to the bus voltage.
  • P load is the load power, including motor output power, transmission loss power and dynamic compensation power.
  • the dynamic compensation power mainly considers the power overshoot during the system adjustment process and can be determined according to the corresponding test standards.
  • ⁇ load is the load rate of the diesel engine.
  • the goal of fuel efficiency optimization control is to ensure the highest load rate of the diesel engine in the dynamic process and to ensure the stability of the system at the same time.
  • the proportional control strategy is adopted to control the load rate of the oil extraction machine within the range of 96%-100%.
  • the load rate is greater than 100%, the diesel engine speed is rapidly increased to prevent the diesel engine from shutting down.
  • the load rate is less than 96%, the diesel engine is quickly reduced. speed to ensure optimum fuel efficiency.
  • U dc is the DC bus voltage.
  • the DC bus voltage needs to be limited within a reasonable range. By adjusting the generator speed, that is, the diesel engine speed, the DC bus voltage can be increased.
  • K p is the proportional coefficient set
  • U dc is the DC bus voltage
  • Step 2 In order to ensure the best fuel efficiency, the diesel engine speed needs to be adjusted and changed in real time. At the same time, for the on-site operating conditions of the tractor, the power of the load motor is frequently switched, and the system needs to have fast dynamic response performance.
  • the present invention designs a control strategy based on inner-loop current feedback linearization and load power feedforward, where v 1 and v 2 are linear adjustment parts, and the intersection part in the figure is feedback linearization decoupling link, using the voltage control loop output and load power feed-forward compensation to determine the torque current value of the asynchronous generator.
  • the structure in Figure 5 decouples the excitation current and torque current control of the asynchronous generator through the method of feedback linearization, where i sd and i sq are the feedback values of the excitation current and torque current, and the quantities marked with * in the upper right corner are the corresponding Given value, L s ⁇ s , ⁇ L s ⁇ s and R s are motor parameters, PI is proportional-integral controller, v 1 and v 2 are motor voltage linear control parts, dq/ ⁇ is rotation coordinate transformation, u sd , u sq , u s ⁇ , u s ⁇ are components of output motor voltage at different coordinates, S a , S b and S c are inverter control signals.
  • the formula for determining the torque current value of the asynchronous generator is:
  • the power compensation adjustment coefficient ⁇ is added. When ⁇ is greater than 1, it is overcompensated, and when ⁇ is less than 1, it is undercompensated.
  • Step 3 The control of the asynchronous motor mainly lies in the limitation of power and torque, so the torque value of the asynchronous motor is determined by using the motor power limit value and the diesel engine load rate adjustment coefficient.
  • T e-lim is the limit of the outer envelope of the motor torque command
  • P lim is the motor power limit value
  • f( ⁇ load ) is the adjustment coefficient of the diesel engine load rate
  • the function of f( ⁇ load ) is to ensure the stable operation of the diesel engine when the load is heavy
  • n is the motor speed.
  • ⁇ load represents the diesel engine load rate
  • ⁇ ⁇ represents the electromagnetic torque retention coefficient during adjustment, where the diesel engine load rate ⁇ load ranges from 0 to 1.0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种内燃电传动拖拉机传动系统控制设备和控制方法,包括内燃电传动系统传动控制单元和内燃电传动系统,内燃电传动系统包括异步发电机、发电机变流器、电动机变流器、制动单元、DCDC变流器和异步电动机。本发明采用异步发电/电动内燃电传动系统,可以提高系统可靠性,降低维护成本,减小传动系统体积,有利于整车空间布局的优化。通过优化设计控制器硬件电路及其控制方法,可以充分发挥异步发电/电动内燃电传动系统的技术优势。通过对柴油机、异步发电机和异步电动机的联合优化控制,提高燃油利用率和传动系统效率,更加节能环保。

Description

一种内燃电传动拖拉机传动系统控制设备和控制方法 技术领域
本发明涉及内燃电传动技术领域,尤其涉及一种内燃电传动拖拉机传动系统控制设备和控制方法。
背景技术
农机装备的推广应用是农业机械化和现代化的重要标志,拖拉机是一种应用广泛的农机装备,在农业运输和犁地作业领域具有良好的发展前景。
目前,拖拉机走行系统主要采用机械驱动方式实现,柴油机配合机械传动机构进行动力传递。这种传统机械传动方式的优势是动力强劲,然而无法实现走行部件和工作部件的解耦,柴油机转速取决于需求车速,柴油机不能一直工作在最佳效率区,传动损耗较大,效率较低。机械传动系统也不能完全适应拖拉机智能化和网联化的发展需求,无法实现节能减排的目标。
发明内容
本发明提供一种内燃电传动拖拉机传动系统控制设备和控制方法,以克服传动损耗较大、效率低等问题。
为了实现上述目的,本发明的技术方案是:
一种内燃电传动拖拉机传动系统控制设备,其特征在于,包括:内燃电传动系统传动控制单元和内燃电传动系统;
所述内燃电传动系统包括异步发电机、发电机变流器、电动机变流器、制动单元、DCDC变流器和异步电动机,所述异步发电机与柴油机同轴机械连接,所述发电机变流器三相U/V/W输入端与异步发电机三相U/V/W端子端对应连接,所述发电机变流器直流母线正负端与所述电动机变流器、所 述制动单元和所述DCDC变流器正负端对应连接,所述异步电动机三相U/V/W端子端与所述电动机变流器三相U/V/W输出端对应连接;
所述发电机变流器和所述电动机变流器均为IGBT功率器件组成三相两电平拓扑结构;
所述内燃电传动系统传动控制单元实现内燃电传动系统与整车的网络通信、接收网络控制指令、采样信号的传输和上传传动系统运行状态数据至驾驶室监控和显示设备,其中所述采样信号包括异步发电机和异步电动机的电压、电流和温度、逆变器直流母线电压和逆变器温度、异步发电机和异步电动机的转速和驾驶室控制指令信号。
进一步的,所述内燃电传动系统传动控制单元包括信号母板和CPU控制板,所述CPU控制板插接在所述信号母板上;
所述信号母板用于将采样数据的信号滤波和电平变换后传输至所述CPU控制板;
所述信号母板用于将采样数据的信号滤波和电平变换后传输至所述CPU控制板;
所述CPU控制板用于实现异步发电机和异步电动机传动逻辑控制过程、逆变器PWM调制过程和柴油机转速控制过程的实现,同时实现牵引变流器与整车的网络通信。
进一步的,所述信号母板包括电源模块、模拟量调理电路、数字量输入输出电路、转速检测电路、AD采样器、通信和调试接口和输出逆变器PWM驱动;
所述电源模块用于为所述信号母板提供电源;
所述模拟量调理电路用于对采集到的模拟信号进行滤波和幅值变换,所述模拟信号包括异步发电机与异步电动机的电压、电流、温度、逆变器直流母线电压和温度信号,驾驶室模拟信号;
所述AD采样器用于把经过滤波和幅值变换后的所述模拟信号转换成 数字信号传递给处理器;
所述数字量输入输出电路用于对驾驶室数字量输入输出信号进行隔离和电平变换;
所述转速检测电路用于对编码器输入的脉冲信号进行隔离和电平变换;
所述通信和调试接口用于运行数据观测和记录;
所述输出逆变器PWM驱动用于生成IGBT驱动控制信号;
所述模拟量调理电路通过所述AD采样器连接所述CPU控制板,所述数字量输入输出电路与所述CPU控制板进行数据交互,所述转速检测电路、所述通信和调试接口、所述输出逆变器PWM驱动与所述CPU控制板连接。
进一步的,所述CPU控制板包括ARM处理器、DSP控制器和FPGA芯片;
所述ARM处理器用于实现内燃电传动系统操作逻辑控制、柴油机燃油效率控制、DCDC变流器升降压模式和输出电压控制和内燃电传动系统与整车的网络通信功能;
所述DSP控制器用于实现所述异步发电机与所述异步电动机的矢量控制算法、PWM调制算法生成相应的PWM比较值;
所述FPGA芯片用于接收所述PWM比较值,并输出逆变器PWM的控制信号。
一种内燃电传动拖拉机传动系统控制方法,其特征在于:
步骤1、利用负载功率、柴油机负载率和直流母线电压确定柴油机目标转速;
步骤2、利用电压控制环输出量和负载功率前馈补偿量确定异步发电机转矩电流值;
步骤3、利用电动机功率限制值和柴油机负载率调节系数确定异步电动机转矩值。
进一步的,步骤1确定柴油机目标转速的公式为:
n disel=f(P loadload,U dc)=f 1(P load)+f 2load)+f 3(U dc)
其中,n disel是柴油机目标转速,f 1(P load)为柴油机功率曲线,f 2load)为柴油机负载率曲线,f 3(U dc)为根据母线电压得到的柴油机转速补偿量。
进一步的,步骤1中根据母线电压得到的柴油机转速补偿量f 3(U dc)的计算公式为:
Figure PCTCN2021138289-appb-000001
其中K p为设定的比例系数,U dc为直流母线电压。
进一步的,步骤2确定异步发电机转矩电流值的公式为:
Figure PCTCN2021138289-appb-000002
Figure PCTCN2021138289-appb-000003
其中,
Figure PCTCN2021138289-appb-000004
为异步发电机转矩电流值,
Figure PCTCN2021138289-appb-000005
为电压控制环输出,
Figure PCTCN2021138289-appb-000006
是负载功率前馈补偿量,λ为功率补偿调节系数,P motor为负载电动机功率给定值,K isq_p为发电机功率-转矩电流变换系数。
进一步的,步骤3确定异步电动机转矩值的公式为:
Figure PCTCN2021138289-appb-000007
其中,T e-lim为电动机转矩指令外包络线限制,即异步电动机最大输出转矩值,
Figure PCTCN2021138289-appb-000008
为单位变换常数,P lim为电动机功率限制值,f(δ load)为柴油机负载率调节系数,n为电动机转速。
进一步的,获取柴油机负载率调节系数f(δ load)的公式为:
Figure PCTCN2021138289-appb-000009
其中,δ load代表柴油机负载率,δ Δ代表调节时电磁转矩保留系数。
有益效果:本发明采用异步发电/电动内燃电传动系统,可以提高系统可靠性,降低维护成本,减小传动系统体积,有利于整车空间布局的优 化。通过优化设计控制器硬件电路及其控制方法,可以充分发挥异步发电/电动内燃电传动系统的技术优势。
通过模块化的硬件设计,各部分功能实现分配更加合理,提高软硬件开发效率,同时实现了逻辑和算法、输入和输出、主控和调试功能的分离,有利于现场调试和后续维护工作。
通过对柴油机、异步发电机和异步电动机的联合优化控制,提高燃油利用率和传动系统效率,更加节能环保。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明内燃电传动系统结构示意图;
图2为本发明内燃电传动系统传动控制单元示意图;
图3为本发明ARM处理器功能拓扑图;
图4为本发明系统控制方法流程图;
图5为本发明基于内环电流反馈线性化和负载功率前馈的控制策略图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本实施例1提供了一种内燃电传动拖拉机传动系统控制设备,如图1,其特征在于,包括:内燃电传动系统传动控制单元和内燃电传动系统;
所述内燃电传动系统包括异步发电机、发电机变流器、电动机变流器、制动单元、DCDC变流器和异步电动机,所述异步发电机与柴油机同轴机械连接,所述发电机变流器三相U/V/W输入端与异步发电机三相U/V/W端子端对应连接,所述发电机变流器直流母线正负端与所述电动机变流器、所述制动单元和所述DCDC变流器正负端对应连接,所述异步电动机三相U/V/W端子端与所述电动机变流器三相U/V/W输出端对应连接;
所述发电机变流器和所述电动机变流器均为IGBT功率器件组成三相两电平拓扑结构;
所述内燃电传动系统传动控制单元通过J1939协议实现传动系统与整车的网络通信、接收网络控制指令、采样信号的传输和上传传动系统运行状态数据至驾驶室监控和显示设备,其中所述采样信号包括异步发电机和异步电动机的电压、电流和温度、逆变器直流母线电压和逆变器温度、异步发电机和异步电动机的转速和驾驶室控制指令信号。
系统工作时,DCDC变流器首先启动,把蓄电池DC24V电压抬升到DC200V,给牵引变流器直流母线充电;然后启动柴油机工作在定速模式,柴油机和异步发电机同轴机械连接,带动异步发电机旋转,异步发电机通过DC200V直流母线电压完成励磁;异步发电机工作在制动模式,直流母线电压提升并稳定在DC910V,完成启动过程,DCDC切换到降压模式,为蓄电池充电;最后,根据系统给定指令启动电动机工作,并控制柴油机转速,使其运行在效率最优状态。
在具体实施例1中,如图2所示,所述内燃电传动系统传动控制单元包括信号母板和CPU控制板,所述CPU控制板插接在所述信号母板上,通过固定螺丝进行机械固定;
所述信号母板用于将采样数据的信号滤波和电平变换后传输至所述
CPU控制板;
所述CPU控制板用于实现异步发电机和异步电动机传动逻辑控制过程、逆变器PWM调制过程和柴油机转速控制过程的实现,同时实现牵引变流器与整车的网络通信,其中异步发电机和异步电动机传动逻辑控制采用矢量控制算法,逆变器PWM调制采用多模式同步调制算法,柴油机转速控制采用燃油效率优化控制算法。
在具体实施例1中,所述信号母板包括电源模块、模拟量调理电路、数字量输入输出电路、转速检测电路、AD采样器、通信和调试接口和输出逆变器PWM驱动;
所述电源模块用于为所述信号母板提供电源;
所述模拟量调理电路用于对采集到的模拟信号进行滤波和幅值变换,所述模拟信号包括异步发电机与异步电动机的电压、电流、温度、逆变器直流母线电压和温度信号,驾驶室模拟信号;
所述AD采样器用于把经过滤波和幅值变换后的所述模拟信号转换成数字信号传递给处理器;
所述数字量输入输出电路用于对驾驶室数字量输入输出信号进行隔离和电平变换;
所述转速检测电路用于对编码器输入的脉冲信号进行隔离和电平变换;
所述通信和调试接口用于运行数据观测和记录;
所述输出逆变器PWM驱动用于生成IGBT驱动控制信号;
所述模拟量调理电路通过所述AD采样器连接所述CPU控制板,所述数字量输入输出电路与所述CPU控制板进行数据交互,所述转速检测电路、所述通信和调试接口、所述输出逆变器PWM驱动与所述CPU控制板连接。
所述CPU控制板包括ARM处理器、DSP控制器和FPGA芯片。
如图3所示,所述ARM处理器用于实现内燃电传动系统操作逻辑控制、柴油机燃油效率控制、DCDC变流器升降压模式和输出电压控制和内燃电传动系统与整车的网络通信功能。ARM处理器使用的芯片型号为STM32F417ZG,通过状态机模式进行软件编程,以SYSTICK定时器产生1ms时钟作为各个任务的时基标准,通过内部FSMC模块和FPGA进行数据交互。ARM处理器使能内部2组CAN通信模块,CAN1与DCDC控制器和变流器漏电保护模块通信,CAN2采用J1939协议与驾驶室和柴油机控制器通信。
所述DSP控制器用于实现所述异步发电机与所述异步电动机的矢量控制算法、PWM调制算法生成相应的PWM比较值。DSP控制器使用的芯片型号为TI公司的TMS320F28377D双核DSP,内部包含两个独立的控制核心,内核CPU1用于实现发电机控制,内核CPU2用于实现电动机控制,CPU1和CPU2通 过内部共享RAM进行数据交互,保证系统的快速动态响应性能。DSP控制器通过XINTF总线和FPGA通信。通过SPI和CH395通信,实现上位机通过以太网进行程序烧写、调试观测和数据记录的功能。
FPGA芯片接收DSP控制器生成的PWM比较值,通过与三角波比较,输出逆变器PWM的控制信号。FPGA同时实现逆变器和发电机电动机过压,过流和过温硬件保护功能,发电机和电动机转速信号读取和计算功能。FPGA芯片使用XILINX公司SPARTAN6系列,通过内部编程实现双口RAM功能,与ARM处理器和DSP控制器进行数据交互。
同样的目的,如图4所示,本申请还提供实施例2,一种内燃电传动拖拉机传动系统控制方法,内燃电传动拖拉机传动系统控制方法具体包括柴油机控制、异步发电机控制和异步电动机控制三部分内容,具体包括:
步骤1、柴油机工作在定速模式,其控制目标为给定转速,利用负载功率、柴油机负载率和直流母线电压确定柴油机目标转速;
其中确定柴油机目标转速的公式为:
n disel=f(P loadload,U dc)=f 1(P load)+f 2load)+f 3(U dc)
其中,n disel是柴油机目标转速,f 1(P load)为柴油机功率曲线,f 2load)为柴油机负载率曲线,f 3(U dc)为根据母线电压得到的柴油机转速补偿量。P load是负载功率,包括电动机输出功率、传动损耗功率和动态补偿功率三部分,动态补偿功率主要考虑系统调节过程中的功率过冲,按照相应的试验标准确定即可。δ load是柴油机负载率,燃油效率优化控制的目标是在动态过程中保证柴油机负载率一直最高,同时保证系统稳定。这里采用比例控制策略,把采油机负载率控制在96%-100%的范围内,当负载率大于100%时迅速升高柴油机转速,防止柴油机停机,当负载率小于96%时,迅速降低柴油机转速,保证燃油效率最优。U dc是直流母线电压,为使驱动系统有足够的功率输出,直流母线电压需要限制在合理的范围内,通过调节发电机转速,即柴油机转速可以提高直流母线电压。
根据母线电压得到的柴油机转速补偿量f 3(U dc)的计算公式为:
Figure PCTCN2021138289-appb-000010
其中K p为设定的比例系数,U dc为直流母线电压。
步骤2、为了保证燃油效率最优,柴油机转速需实时调节变化,同时对于拖拉机的现场运行工况,负载电动机功率频繁投切,系统需要有快速的动态响应性能,针对异步发电机解耦控制问题,如图5所示,本发明设计了一种基于内环电流反馈线性化和负载功率前馈的控制策略,其中v 1和v 2为线性调节部分,图中交叉部分为反馈线性化解耦环节,利用电压控制环输出量和负载功率前馈补偿量确定异步发电机转矩电流值。图5中结构通过反馈线性化的方法对异步发电机励磁电流和转矩电流控制进行解耦,其中i sd和i sq为励磁电流和转矩电流反馈值,右上角标*的量为对应的给定值,L sω s、σL sω s和R s为电机参数,PI为比例积分控制器,v 1和v 2为电机电压线性控制部分,dq/αβ为旋转坐标变换,u sd、u sq、u 、u 为输出电机电压在不同坐标下的分量,S a、S b和S c为逆变器控制信号。
其中确定异步发电机转矩电流值的公式为:
Figure PCTCN2021138289-appb-000011
Figure PCTCN2021138289-appb-000012
其中,
Figure PCTCN2021138289-appb-000013
为异步发电机转矩电流值,
Figure PCTCN2021138289-appb-000014
为电压控制环输出,
Figure PCTCN2021138289-appb-000015
是负载功率前馈补偿量,λ为功率补偿调节系数,P motor为负载电动机功率给定值,K isq_p为发电机功率-转矩电流变换系数。由于系统控制存在滞后性和实际参数的偏差,加入功率补偿调节系数λ,λ大于1时为过补偿,λ小于1时为欠补偿。
步骤3、对于异步电动机的控制主要在于功率和转矩的限制,所以利用电动机功率限制值和柴油机负载率调节系数确定异步电动机转矩值。
其中确定异步电动机转矩值的公式为:
Figure PCTCN2021138289-appb-000016
其中,T e-lim为电动机转矩指令外包络线限制,
Figure PCTCN2021138289-appb-000017
为单位变换常数,P lim为电动机功率限制值,f(δ load)为柴油机负载率调节系数,f(δ load)的作用是保证负载较重时柴油机运行稳定,n为电动机转速。
获取柴油机负载率调节系数f(δ load)的公式为:
Figure PCTCN2021138289-appb-000018
其中,δ load代表柴油机负载率,δ Δ代表调节时电磁转矩保留系数,其 中柴油机负载率δ load取值范围在0-1.0之间。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明技术方案的范围。

Claims (10)

  1. 一种内燃电传动拖拉机传动系统控制设备,其特征在于,包括:内燃电传动系统传动控制单元和内燃电传动系统;
    所述内燃电传动系统包括异步发电机、发电机变流器、电动机变流器、制动单元、DCDC变流器和异步电动机,所述异步发电机与柴油机同轴机械连接,所述发电机变流器三相U/V/W输入端与异步发电机三相U/V/W端子端对应连接,所述发电机变流器直流母线正负端与所述电动机变流器、所述制动单元和所述DCDC变流器正负端对应连接,所述异步电动机三相U/V/W端子端与所述电动机变流器三相U/V/W输出端对应连接;
    所述发电机变流器和所述电动机变流器均为IGBT功率器件组成三相两电平拓扑结构;
    所述内燃电传动系统传动控制单元实现内燃电传动系统与整车的网络通信、接收网络控制指令、采样信号的传输和上传传动系统运行状态数据至驾驶室监控和显示设备,其中所述采样信号包括异步发电机和异步电动机的电压、电流和温度、逆变器直流母线电压和逆变器温度、异步发电机和异步电动机的转速和驾驶室控制指令信号。
  2. 如权利要求1所述的一种内燃电传动拖拉机传动系统控制设备,其特征在于:所述内燃电传动系统传动控制单元包括信号母板和CPU控制板,所述CPU控制板插接在所述信号母板上;
    所述信号母板用于将采样数据的信号滤波和电平变换后传输至所述CPU控制板;
    所述CPU控制板用于实现异步发电机和异步电动机传动逻辑控制过程、逆变器PWM调制过程和柴油机转速控制过程的实现,同时实现牵引变流器与整车的网络通信。
  3. 如权利要求2所述的一种内燃电传动拖拉机传动系统控制设备, 其特征在于:
    所述信号母板包括电源模块、模拟量调理电路、数字量输入输出电路、转速检测电路、AD采样器、通信和调试接口和输出逆变器PWM驱动;
    所述电源模块用于为所述信号母板提供电源;
    所述模拟量调理电路用于对采集到的模拟信号进行滤波和幅值变换,所述模拟信号包括异步发电机与异步电动机的电压、电流、温度、逆变器直流母线电压和温度信号,驾驶室模拟信号;
    所述AD采样器用于把经过滤波和幅值变换后的所述模拟信号转换成数字信号传递给处理器;
    所述数字量输入输出电路用于对驾驶室数字量输入输出信号进行隔离和电平变换;
    所述转速检测电路用于对编码器输入的脉冲信号进行隔离和电平变换;
    所述通信和调试接口用于运行数据观测和记录;
    所述输出逆变器PWM驱动用于生成IGBT驱动控制信号;
    所述模拟量调理电路通过所述AD采样器连接所述CPU控制板,所述数字量输入输出电路与所述CPU控制板进行数据交互,所述转速检测电路、所述通信和调试接口、所述输出逆变器PWM驱动与所述CPU控制板连接。
  4. 如权利要求3所述的一种内燃电传动拖拉机传动系统控制设备,其特征在于:
    所述CPU控制板包括ARM处理器、DSP控制器和FPGA芯片;
    所述ARM处理器用于实现内燃电传动系统操作逻辑控制、柴油机燃油效率控制、DCDC变流器升降压模式和输出电压控制和内燃电传动系统与整车的网络通信功能;
    所述DSP控制器用于实现所述异步发电机与所述异步电动机的矢量控制算法、PWM调制算法生成相应的PWM比较值;
    所述FPGA芯片用于接收所述PWM比较值,并输出逆变器PWM的控制信号。
  5. 一种如权利要求4所述的内燃电传动拖拉机传动系统控制方法,其特征在于:
    步骤1、利用负载功率、柴油机负载率和直流母线电压确定柴油机目标转速;
    步骤2、利用电压控制环输出量和负载功率前馈补偿量确定异步发电机转矩电流值;
    步骤3、利用电动机功率限制值和柴油机负载率调节系数确定异步电动机转矩值。
  6. 如权利要求5所述的一种内燃电传动拖拉机传动系统控制方法,其特征在于,
    步骤1确定柴油机目标转速的公式为:
    n disel=f(P loadload,U dc)=f 1(P load)+f 2load)+f 3(U dc)
    其中,n disel是柴油机目标转速,f 1(P load)为柴油机功率曲线,f 2load)为柴油机负载率曲线,f 3(U dc)为根据母线电压得到的柴油机转速补偿量。
  7. 如权利要求6所述的一种内燃电传动拖拉机传动系统控制方法,其特征在于,步骤1中根据母线电压得到的柴油机转速补偿量f 3(U dc)的计算公式为:
    Figure PCTCN2021138289-appb-100001
    其中K p为设定的比例系数,U dc为直流母线电压。
  8. 如权利要求7所述的一种内燃电传动拖拉机传动系统控制方法,其特征在于,
    步骤2确定异步发电机转矩电流值的公式为:
    Figure PCTCN2021138289-appb-100002
    Figure PCTCN2021138289-appb-100003
    其中,
    Figure PCTCN2021138289-appb-100004
    为异步发电机转矩电流值,
    Figure PCTCN2021138289-appb-100005
    为电压控制环输出,
    Figure PCTCN2021138289-appb-100006
    是负载功率前馈补偿量,λ为功率补偿调节系数,P motor为负载电动机功率给定值,K isq_p为发电机功率-转矩电流变换系数。
  9. 如权利要求8所述的一种内燃电传动拖拉机传动系统控制方法,其特征在于,
    步骤3确定异步电动机转矩值的公式为:
    Figure PCTCN2021138289-appb-100007
    其中,T e-lim为电动机转矩指令外包络线限制,即异步电动机最大输出转矩值,
    Figure PCTCN2021138289-appb-100008
    为单位变换常数,P lim为电动机功率限制值,f(δ load)为柴油机负载率调节系数,n为电动机转速。
  10. 如权利要求9所述的一种内燃电传动拖拉机传动系统控制方法,其特征在于,获取柴油机负载率调节系数f(δ load)的公式为:
    Figure PCTCN2021138289-appb-100009
    其中,δ load代表柴油机负载率,δ Δ代表调节时电磁转矩保留系数。
PCT/CN2021/138289 2021-07-20 2021-12-15 一种内燃电传动拖拉机传动系统控制设备和控制方法 WO2023000593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110821194.1 2021-07-20
CN202110821194.1A CN113595464B (zh) 2021-07-20 2021-07-20 一种内燃电传动拖拉机传动系统控制设备和控制方法

Publications (1)

Publication Number Publication Date
WO2023000593A1 true WO2023000593A1 (zh) 2023-01-26

Family

ID=78248554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138289 WO2023000593A1 (zh) 2021-07-20 2021-12-15 一种内燃电传动拖拉机传动系统控制设备和控制方法

Country Status (2)

Country Link
CN (1) CN113595464B (zh)
WO (1) WO2023000593A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595464B (zh) * 2021-07-20 2023-12-19 中车大连电力牵引研发中心有限公司 一种内燃电传动拖拉机传动系统控制设备和控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070276556A1 (en) * 2004-03-04 2007-11-29 Tm4 Inc. System and Method for Starting a Combustion Engine of a Hybrid Vehicle
CN111969898A (zh) * 2020-07-13 2020-11-20 杭州赫日新能源科技有限公司 新能源汽车永磁同步电机控制器及控制方法
CN112334374A (zh) * 2018-06-22 2021-02-05 三菱电机株式会社 驱动控制装置及铁路车辆用驱动装置
CN113595464A (zh) * 2021-07-20 2021-11-02 中车大连电力牵引研发中心有限公司 一种内燃电传动拖拉机传动系统控制设备和控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328690A (ja) * 2004-04-12 2005-11-24 Hitachi Ltd 車両用回転電機
JP4634321B2 (ja) * 2006-02-28 2011-02-16 日立オートモティブシステムズ株式会社 電動4輪駆動車用制御装置
CN102963784B (zh) * 2012-11-28 2015-02-04 南京理工大学 电梯曳引机驱动、控制一体化系统的工作方法
CN104079230B (zh) * 2014-07-07 2016-09-28 神王伟国 异步电动机效率优化控制的方法、装置、系统及电动汽车
CN105826948B (zh) * 2016-05-17 2018-03-06 中国船舶重工集团公司第七0四研究所 电力推进船舶交流供电系统
CN110752793A (zh) * 2019-10-14 2020-02-04 湖南强军科技有限公司 基于zynq的多电机直接转矩控制系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070276556A1 (en) * 2004-03-04 2007-11-29 Tm4 Inc. System and Method for Starting a Combustion Engine of a Hybrid Vehicle
CN112334374A (zh) * 2018-06-22 2021-02-05 三菱电机株式会社 驱动控制装置及铁路车辆用驱动装置
CN111969898A (zh) * 2020-07-13 2020-11-20 杭州赫日新能源科技有限公司 新能源汽车永磁同步电机控制器及控制方法
CN113595464A (zh) * 2021-07-20 2021-11-02 中车大连电力牵引研发中心有限公司 一种内燃电传动拖拉机传动系统控制设备和控制方法

Also Published As

Publication number Publication date
CN113595464A (zh) 2021-11-02
CN113595464B (zh) 2023-12-19

Similar Documents

Publication Publication Date Title
CN102497141B (zh) 大功率交流伺服驱动器大扭矩启动方法
CN101814766A (zh) 电动汽车双向充电机电源拓扑结构
CN102497153B (zh) 永磁同步电机功率角恒定自适应控制方法
CN103163460A (zh) 用于电机测试的电机对拖平台
CN108321843B (zh) 谐波电网电压下双馈风力发电系统的控制方法
WO2023000593A1 (zh) 一种内燃电传动拖拉机传动系统控制设备和控制方法
CN101753092B (zh) 一种电动车大功率无传感器矢量控制器
CN111969649B (zh) 弱电网下提升双馈风机功率传输极限的控制方法及系统
CN102832820B (zh) 数字化控制的低压直流电源能量回馈型电子负载升压系统
CN103187918B (zh) 牵引逆变器控制方法及装置
CN102299673B (zh) 开关磁阻电机协同斩波启动电路和方法
CN202737749U (zh) 数字化控制的低压直流电源能量回馈型电子负载升压系统
CN113241765B (zh) 并网逆变器全等效并联电阻有源阻尼控制方法
CN109802385B (zh) 电压源型逆变器的阻抗建模方法
CN111525811A (zh) 一种双有源全桥双向dc/dc变换器的磁平衡控制方法
CN201671802U (zh) 风机泵类负载自适应超级节电装置
CN203283049U (zh) 一种电动车驱动控制装置
CN103259281A (zh) 具有负序电流补偿机制的能量转换系统和方法
CN200976558Y (zh) 电动汽车用永磁无刷电机驱动控制器
CN200990582Y (zh) 基于dsp的参与二次调频的双馈型风力发电机交流励磁装置
CN103441713B (zh) 一种调节开关磁阻电机开通角和关断角的方法
CN113258553B (zh) 纯电池动力船舶综合电力系统直流母线电压镇定控制方法
CN105958525A (zh) 一种永磁风力发电系统的pwm并网逆变器控制方法
Liu et al. Development of Cooperative Controller for Dual‐Motor Independent Drive Electric Tractor
CN103078348B (zh) 一种无信号互联线并联的三相逆变器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE