WO2022270699A1 - 합성가스 및 방향족 탄화수소의 제조방법 - Google Patents

합성가스 및 방향족 탄화수소의 제조방법 Download PDF

Info

Publication number
WO2022270699A1
WO2022270699A1 PCT/KR2021/018817 KR2021018817W WO2022270699A1 WO 2022270699 A1 WO2022270699 A1 WO 2022270699A1 KR 2021018817 W KR2021018817 W KR 2021018817W WO 2022270699 A1 WO2022270699 A1 WO 2022270699A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
distillation column
discharge stream
aromatic hydrocarbons
pgo
Prior art date
Application number
PCT/KR2021/018817
Other languages
English (en)
French (fr)
Inventor
황성준
김태우
기식
이성규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2022550991A priority Critical patent/JP7436121B2/ja
Priority to MX2022010765A priority patent/MX2022010765A/es
Priority to EP21920105.0A priority patent/EP4174018A4/en
Priority to US17/799,909 priority patent/US20230227308A1/en
Priority to BR112022017321A priority patent/BR112022017321A2/pt
Priority to CN202180017851.5A priority patent/CN115989308B/zh
Publication of WO2022270699A1 publication Critical patent/WO2022270699A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/08Azeotropic or extractive distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the present invention relates to a method for producing syngas and aromatic hydrocarbons, and more particularly, to replace pyrolysis fuel oil discharged from a gasoline rectifier of a naphtha cracking center (NCC) as a raw material for a gasification process, It relates to a method for recovering aromatic hydrocarbons in pyrolysis fuel oil.
  • NCC naphtha cracking center
  • the Naphtha Cracking Center (hereinafter referred to as 'NCC') thermally cracks naphtha, which is a gasoline fraction, at a temperature of about 950 ° C to 1,050 ° C to produce ethylene, propylene, butylene and It is a process to produce BTX (Benzene, Toluene, Xylene), etc.
  • benzene, toluene, xylene, styrene, etc. are produced using pyrolysis gasoline (Raw Pyrolysis Gasoline, RPG), a by-product of the process of producing ethylene and propylene, using naphtha as a raw material, and pyrolysis fuel oil , PFO) was used as fuel.
  • RPG Raw Pyrolysis Gasoline
  • PFO pyrolysis fuel oil
  • CO 2 carbon dioxide
  • synthesis gas is an artificially produced gas, unlike natural gas such as natural gas, methane gas, and ethane gas emitted from the ground in oil fields and coal mines, through a gasification process. are manufactured
  • the gasification process is a process in which hydrocarbons such as coal, petroleum, and biomass are converted into syngas mainly composed of hydrogen and carbon monoxide by thermal decomposition or chemical reaction with gasifiers such as oxygen, air, and water vapor.
  • a gasifier and raw materials are supplied to the combustion chamber located at the forefront of the gasification process to generate syngas through a combustion process at a temperature of 700 ° C. or higher. Since atomizing is not performed smoothly, combustion performance is reduced or the risk of explosion due to excess oxygen is increased.
  • raw materials for the gasification process for producing syngas using liquid hydrocarbon raw materials include vacuum residue (VR) and bunker-C oil discharged from refineries that refine crude oil.
  • Refinery residues such as bunker-c oil were mainly used.
  • these refinery residues are high in kinematic viscosity and require pretreatment such as heat treatment for viscosity mitigation and addition of diluents or water to be used as a raw material for the gasification process. Since the amount of acid gas such as hydrogen sulfide and ammonia is increased, the need to replace the refining residue with a raw material having low sulfur and nitrogen content is emerging in order to cope with the strengthened environmental regulations.
  • the present inventors can replace the pyrolysis fuel oil (PFO) of the naphtha cracking process (NCC) as a raw material for the gasification process, greenhouse gas emissions can be reduced compared to the case of using conventional oil residue as a raw material,
  • PFO pyrolysis fuel oil
  • NCC naphtha cracking process
  • the problem to be solved by the present invention is to replace the pyrolysis fuel oil (PFO) discharged from the naphtha cracking process (NCC) as a raw material for the gasification process in order to solve the problems mentioned in the background technology of the above invention, Provides a method for producing syngas that can reduce greenhouse gas emissions, reduce the operating cost of a gasification process, and improve process efficiency compared to the case of using refined oil residue as a raw material, and included in the pyrolysis fuel oil It is intended to recover aromatic hydrocarbons.
  • PFO pyrolysis fuel oil
  • NCC naphtha cracking process
  • PFO pyrolysis fuel oil
  • PGO pyrolysis gas oil
  • pyrolysis fuel oil (PFO) and pyrolysis gas oil (PGO) of the naphtha cracking process (NCC) are pretreated and replaced with raw materials for the gasification process, thereby reducing greenhouse gas emissions compared to the case of using conventional oil residues as raw materials. Emissions can be reduced, operating costs of the gasification process can be reduced, and process efficiency can be improved.
  • 1 is a process flow chart for a method for producing syngas and aromatic hydrocarbons according to an embodiment of the present invention.
  • Figure 2 is a process flow chart for a method for producing syngas and aromatic hydrocarbons according to Comparison 1 of the present invention.
  • Figure 3 is a process flow chart for a method for producing syngas and aromatic hydrocarbons according to Comparison 2 of the present invention.
  • the term "stream" may refer to a flow of a fluid in a process, and may also refer to a fluid itself flowing in a pipe.
  • the stream may mean a fluid itself and a flow of the fluid flowing in a pipe connecting each device at the same time.
  • the fluid may mean a gas or a liquid, and a case in which a solid component is included in the fluid is not excluded.
  • C# in which "#" is a positive integer denotes all hydrocarbons having # carbon atoms. Accordingly, the term “C8” denotes a hydrocarbon compound having 8 carbon atoms. Also, the term “C#-” denotes all hydrocarbon molecules having # or less carbon atoms. Accordingly, the term “C8-” denotes a mixture of hydrocarbons having up to 8 carbon atoms. Also, the term “C#+” refers to any hydrocarbon molecule having # or more carbon atoms. Accordingly, the term 'C10+' denotes a mixture of hydrocarbons having 10 or more carbon atoms.
  • the method for producing the syngas and aromatic hydrocarbons includes a PFO stream containing Pyrolysis Fuel Oil (PFO) and PGO containing Pyrolysis Gas Oil (PGO) discharged from the naphtha cracking process (S1). supplying the stream to the distillation column 50 as a feed stream (S10); and supplying the lower discharge stream of the distillation column 50 to a combustion chamber for the gasification process (S3) and supplying the upper discharge stream to the BTX manufacturing process (S4) (S20).
  • PFO Pyrolysis Fuel Oil
  • PGO Pyrolysis Gas Oil
  • the syngas is an artificially produced gas and is produced through a gasification process.
  • the gasification process is a process of converting hydrocarbons, such as coal, petroleum, and biomass, into syngas mainly containing hydrogen and carbon monoxide by thermal decomposition or chemical reaction with gasifiers such as oxygen, air, and water vapor.
  • syngas may include hydrogen and carbon monoxide.
  • a gasifier and raw materials are supplied to the combustion chamber located at the forefront of the gasification process to generate syngas through a combustion process at a temperature of 700 ° C. or higher. Since atomizing is not performed smoothly, combustion performance is reduced and the risk of explosion due to excess oxygen is increased.
  • raw materials for the gasification process for producing syngas using liquid hydrocarbon raw materials include vacuum residue (VR) and bunker-C oil discharged from refineries that refine crude oil.
  • Refinery residues such as bunker-c oil were mainly used.
  • these refinery residues are high in kinematic viscosity and require pretreatment such as heat treatment for viscosity mitigation and addition of diluents or water to be used as a raw material for the gasification process.
  • the amount of acid gas such as hydrogen sulfide and ammonia is increased, the need to replace the refining residue with a raw material having low sulfur and nitrogen content is emerging in order to cope with the strengthened environmental regulations.
  • the vacuum residue may contain about 3.5% by weight of sulfur and about 3600 ppm of nitrogen
  • the bunker-C oil may contain about 4.5% by weight of sulfur.
  • pyrolysis fuel oil (PFO) discharged from the naphtha cracking process which is a process of manufacturing basic petrochemical materials such as ethylene and propylene by cracking naphtha, is generally used as a fuel, but its sulfur content is low in fuel without pretreatment. It is a high level to be used as a furnace, so the market is getting narrower due to environmental regulations, and it is necessary to prepare for a situation where sales are impossible in the future.
  • a pretreatment process (S2) for replacing the PFO stream containing pyrolysis fuel oil (PFO) and the PGO stream containing pyrolysis gas oil (PGO) discharged from the naphtha cracking process as a raw material for the gasification process is provided.
  • PFO pyrolysis fuel oil
  • PGO pyrolysis gas oil
  • the RPG stream including raw pyrolysis gasoline (RPG), the PFO stream including pyrolysis fuel oil (PFO), and the PGO stream including the pyrolysis gas oil (PGO) may be discharged from the naphtha cracking process (S1).
  • the naphtha cracking process decomposes naphtha containing paraffin, naphthene and aromatics to produce ethylene, propylene, butylene and BTX ( As a process for producing Benzene, Toluene, Xylene), etc., the naphtha cracking process can be largely composed of a cracking process, a quenching process, a compression process, and a refining process.
  • the cracking process is a process of thermally cracking naphtha into hydrocarbons having a low carbon number in a cracking furnace at 800 ° C. or higher, and high-temperature cracked gas can be discharged.
  • the naphtha may be supplied to the cracking furnace after undergoing a preheating process from high-pressure steam before entering the cracking furnace.
  • the quenching process is a step of suppressing the polymerization reaction of hydrocarbons in the high-temperature cracked gas discharged from the cracking furnace, and cooling the high-temperature cracked gas for the purpose of recovering waste heat and reducing heat load in a subsequent process (compression process).
  • the quenching process may include firstly cooling the high-temperature cracked gas with quench oil and secondarily cooling with quench water.
  • the cracked gas is supplied to a gasoline fractionator to produce light oil, pyrolysis gasoline (RPG), pyrolysis fuel oil (including hydrogen, methane, ethylene, propylene, etc.) PFO) and pyrolysis gas oil (PGO) can be separated. Thereafter, the light fraction may be transferred to a subsequent compression process.
  • a gasoline fractionator to produce light oil
  • pyrolysis fuel oil including hydrogen, methane, ethylene, propylene, etc.
  • PGO pyrolysis gas oil
  • the compression process may be a process of generating a compressed gas having a reduced volume by increasing the pressure of the light fraction under high pressure in order to economically separate and purify the light fraction.
  • the purification process is a process of cooling the compressed gas compressed at high pressure to an ultra-low temperature and then separating components step by step by boiling point difference, hydrogen, ethylene, propylene, propane, C4 oil, pyrolysis gasoline (RPG), etc. are produced It can be.
  • pyrolysis gasoline RPG
  • pyrolysis fuel oil PFO
  • pyrolysis gas oil PGO
  • the pyrolysis fuel oil (PFO) contains about 0.1% by weight or less of sulfur and about 20 ppm or less of nitrogen, so that when used as a fuel, sulfur oxides (SOx) and nitrogen oxides (NOx) are reduced in the combustion process. Since this is emitted, environmental issues may be caused, but when it is used as a raw material for syngas, it is at a fairly low level.
  • the above problems can be solved by pretreating pyrolysis fuel oil (PFO) and pyrolysis gas oil (PGO) through a pretreatment process (S2) and using them as raw materials for a gasification process for producing syngas, and further Greenhouse gas emissions can be reduced compared to the case of using conventional oil residue as a raw material for the gasification process, the operating cost of the gasification process can be reduced, and the process efficiency can be improved.
  • PFO pyrolysis fuel oil
  • PGO pyrolysis gas oil
  • S2 pretreatment process
  • the PFO stream and the PGO stream of the present invention include pyrolysis fuel oil (PFO) and pyrolysis gas oil (PGO) discharged from the gasoline rectifier 10 of the naphtha cracking process (S1), respectively.
  • PFO pyrolysis fuel oil
  • PGO pyrolysis gas oil
  • the pyrolysis fuel oil (PFO) is compared to the total number of stages of the gasoline rectifying column 10 ) may be released from at least 90% of the stage, at least 95% of the stage, or from 95% to 100% of the stage.
  • the pyrolysis gas oil (PGO) may be discharged from a stage of 10% to 70%, a stage of 15% to 65%, or a stage of 20% to 60%.
  • the uppermost stage may be 1 stage and the lowest stage may be 100 stages, and 90% or more of the total number of stages of the gasoline rectifying column 10 are gasoline rectifying columns ( 10) may mean stages 90 to 100.
  • the PGO stream is discharged from the side of the gasoline rectification column 10 of the naphtha cracking process (S1), and after supplying the side discharge stream containing pyrolysis gas oil (PGO) to the first stripper 20, the first 1 may be a bottom discharge stream discharged from the bottom of the stripper 20.
  • the PFO stream is discharged from the bottom of the gasoline rectifier 10 of the naphtha cracking process (S1), and after supplying the bottom discharge stream containing pyrolysis fuel oil (PFO) to the second stripper 30, It may be a lower discharge stream discharged from the lower portion of the second stripper 30.
  • the first stripper 20 and the second stripper 30 may be a device in which a stripping process for separating and removing gas or vapor dissolved in a liquid is performed, for example, steam or inert gas It may be performed by methods such as direct contact, heating, and pressurization.
  • a stripping process for separating and removing gas or vapor dissolved in a liquid for example, steam or inert gas It may be performed by methods such as direct contact, heating, and pressurization.
  • the side discharge stream of the gasoline rectification column 10 is supplied to the first stripper 20, and the light content separated from the side discharge stream of the gasoline rectification column 10 from the first stripper 20 is included.
  • the upper discharge stream to be refluxed may be refluxed to the gasoline rectifying column (10).
  • the bottom discharge stream of the gasoline rectification column 10 is supplied to the second stripper 30, and the second stripper 30 contains a light component separated from the bottom discharge stream of the gasoline rectification column 10
  • the top discharge stream may be refluxed to the gasoline rectifying column (10).
  • the PGO stream contains 70 wt% or more or 70 wt% to 95 wt% of C10 to C12 hydrocarbons
  • the PFO stream contains 70 wt% or more or 70 wt% of C13+ hydrocarbons. to 98% by weight.
  • the PGO stream containing 70% by weight or more of C10 to C12 hydrocarbons may have a kinematic viscosity at 40 °C of 1 to 200 cSt and a flash point of 10 to 50 °C.
  • the kinetic viscosity at 40 ° C may have a kinematic viscosity at 40 °C of 1 to 200 cSt and a flash point of 10 to 50 °C.
  • the PFO stream containing 70% by weight or more of C13+ hydrocarbons may be 400 to 100,000 cSt, and the flash point may be 70 to 200 ° C.
  • the PFO stream containing more heavy hydrocarbons than the PGO stream may have higher kinematic viscosity and flash point than pyrolysis gas oil under the same temperature conditions.
  • the boiling point of the PGO stream may be 200 to 288 °C, or 210 to 270 °C, and the boiling point of the PFO stream may be 289 °C to 550 °C, or 300 to 500 °C.
  • the boiling points of the PGO stream and the PFO stream may refer to the boiling points of the bulk PGO stream and the PFO stream, respectively, composed of a plurality of hydrocarbons.
  • the types of hydrocarbons included in the PGO stream and the types of hydrocarbons included in the PFO stream may be different from each other, and some types may be the same.
  • the types of hydrocarbons included in the PGO stream and the PFO stream may be included as described above.
  • the RPG stream containing pyrolysis gasoline (RPG) discharged from the gasoline rectification column 10 of the naphtha cracking process (S1) may be supplied to the BTX manufacturing process (S4).
  • the pyrolysis gasoline (RPG) may be discharged from a stage of 5% or less or from 1% to 5%.
  • the RPG stream is discharged from the upper part of the gasoline rectification column 10 of the naphtha cracking process (S1), and the upper discharge stream containing pyrolysis gasoline (RPG) is supplied to the NCC downstream process (not shown), so that hydrogen and C4 - Can remove hydrocarbon materials and separate RPG streams.
  • the RPG stream may be a C5+ hydrocarbon mixture, specifically a mixture rich in C5 hydrocarbons to C10 hydrocarbons.
  • the RPG stream includes isopentane (Iso-Pentane), n-Pentane (n-Pentane), 1,4-pentadiene (1,4-Pentadiene), dimethylacetylene (Dimethylacetylene), 1-pentene (1 -Pentene), 3-methyl-1-butene (3-Methyl-1-butene), 2-methyl-1-butene (2-Methyl-1-butene), 2-methyl-2-butene (2-Methyl- 2-butene), isoprene (Iso-Prene), trans-2-Penstene, cis-2-Penstene, trans-1,3-pentadiene (trans-1 ,3-Pentadiene), Cyclopentadiene, Cyclopentane, Cyclopentene, n-Hexan
  • the RPG stream may be supplied to the BTX manufacturing process (S4) to produce any one or more of benzene, toluene and xylene.
  • benzene or BTX may be produced in the BTX manufacturing process (S4).
  • the BTX is an abbreviation of benzene, toluene, and xylene
  • the xylene is ethylbenzene, m-xylene, and o-xylene. (o-Xylene) and p-xylene (p-Xylene) may be included.
  • a PFO stream containing pyrolysis fuel oil (PFO) and a PGO stream containing pyrolysis gas oil (PGO) discharged from the naphtha cracking process (S1) may be supplied to the distillation column 50 as a feed stream.
  • the feed stream supplied to the distillation tower 50 includes both a PGO stream and a PFO stream, and may include both heavy oils (heavies) and light oils (lights).
  • the feed stream containing both the heavy oil and the light oil is supplied to the distillation tower 50, and through the discharge of the upper discharge stream containing the light PFO stream from the top of the distillation tower 50, the distillation tower 50 ) from the bottom of the bottom discharge stream with controlled kinematic viscosity and flash point can be discharged.
  • the PFO stream having a higher content of heavy oil than the PGO stream has a higher kinematic viscosity and flash point than the PGO stream
  • the PGO stream having a higher content of light oil than the PFO stream has a lower kinematic viscosity and flash point than the PFO stream.
  • a stream having a desired kinematic viscosity and flash point can be discharged from the bottom of the distillation column 50 through the removal of the light oil in the feed stream including both of the two streams in conflict with each other as described above.
  • the feed stream may be a mixed oil stream in which the PFO stream and the PGO stream are mixed.
  • the ratio of the flow rate of the PGO stream in the mixed oil stream to the flow rate of the mixed oil stream (hereinafter referred to as 'the flow rate ratio of the PGO stream') is 0.35 to 0.7, 0.4 to 0.65, or 0.4 to 0.6, but is not limited thereto.
  • 'flow rate' may mean the flow of weight per unit time.
  • the unit of the flow rate may be kg/h.
  • the boiling point of the mixed oil stream may be 200 °C to 600 °C, 210 °C to 550 °C, or 240 °C to 500 °C.
  • the boiling point of the mixed oil stream may mean the boiling point of a mixed oil stream in a bulk form composed of a plurality of hydrocarbons.
  • the mixed oil stream may be supplied to the distillation column 50 after passing through the first heat exchanger 40 before being supplied to the distillation column 50 .
  • the mixed oil stream is produced by mixing the high-temperature PGO stream and the PFO stream discharged from the first stripper 20 or the second stripper 30, and the supply temperature of the mixed oil stream to the distillation tower 50 In addition to optimal control, process energy can be saved by reusing sensible heat within the process when necessary.
  • the mixed oil stream may be supplied at a stage of 10% to 70%, 15% to 60%, or 20% to 50% of the total number of stages of the distillation column 50. can Within this range, the distillation column 50 can be efficiently operated, and unnecessary energy consumption can be significantly reduced.
  • the ratio of the flow rate of the upper discharge stream of the distillation tower 50 to the flow rate of the feed stream supplied to the distillation tower 50 (hereinafter referred to as 'distillation ratio of the distillation tower 50' ) may be 0.01 to 0.2, 0.01 to 0.15, 0.03 to 0.15 or 0.1 to 0.2. That is, the distillation ratio of the distillation column 50 may be adjusted to 0.01 to 0.2, 0.01 to 0.15, or 0.03 to 0.15.
  • the distillation ratio of the distillation column 50 within the above range is controlled through a flow control device (not shown) installed in a pipe through which the upper discharge stream of the distillation tower 50 is transported, and the performance of the distillation column 50 is determined by the distillation ratio and the It can be performed by adjusting the reflux ratio of the upper discharge stream of the distillation column 50 using the two heat exchangers 51.
  • the reflux ratio may refer to the ratio of the flow rate of the reflux stream to the flow rate of the effluent stream.
  • the reflux ratio of the upper discharge stream of the distillation column 50 refers to the upper discharge stream of the distillation column 50 When a part of is branched and refluxed to the distillation column 50 as a reflux stream, and the remainder is supplied as an effluent stream to the BTX manufacturing process (S4), the ratio of the flow rate of the reflux stream to the flow rate of the effluent stream (hereinafter referred to as ' referred to as 'reflux ratio').
  • the reflux ratio may be 0.01 to 10, 0.1 to 7, or 0.15 to 5.
  • a gasifier and a raw material are supplied to a combustion chamber (not shown) located at the forefront of the gasification process (S3), and synthesis gas can be generated through a combustion process at a temperature of 700 ° C. or higher.
  • the synthesis gas generation reaction is performed at a high pressure of 20 to 80 atm, and the raw material must move at a high flow rate of 2 to 40 m/s in the combustion chamber. Therefore, the raw material needs to be pumped at a high flow rate at a high pressure for the synthesis gas generation reaction.
  • an expensive pump must be used due to a decrease in pumpability.
  • the raw material cannot be uniformly supplied to the combustion chamber because pumping is not performed smoothly.
  • the differential pressure in the combustion chamber rises or the uniform atomization of raw materials with small particle sizes is not smoothly performed, which can deteriorate combustion performance and productivity, require a large amount of gasifier, and cause excess oxygen. will increase the risk of explosion.
  • the appropriate range of the kinematic viscosity may vary slightly depending on the type of syngas to be synthesized and the conditions of the combustion process performed in the combustion chamber, but in general, the kinematic viscosity of the raw material is the combustion chamber in the gasification process (S3).
  • the appropriate range of the flash point may vary depending on the type of syngas to be synthesized in the combustion chamber, the conditions of the combustion process performed in the combustion chamber, etc., but in general, the flash point of the raw material is transferred to the combustion chamber in the gasification process (S3). It may be desirable to have a range of 25 ° C. or more higher than the temperature of the raw material at the time when the raw material is supplied, and within this range, loss of the raw material, risk of explosion, and damage to the refractory of the combustion chamber can be prevented.
  • the distillation ratio of the distillation column 50 is adjusted in order to control the kinetic viscosity and flash point of the lower discharge stream of the distillation column 50, which is a raw material supplied to the combustion chamber in the gasification process (S3), to an appropriate range.
  • the distillation ratio of the distillation column 50 can be controlled.
  • BTX can increase the production of
  • the third heat exchanger 52 can be operated as a general reboiler.
  • the temperature at the time of supply of the bottom discharge stream of the distillation column 50 to the combustion chamber is 25 ° C. or higher than the flash point at the time of supply of the bottom discharge stream of the distillation column 50 to the combustion chamber. It may be a temperature with a low, kinematic viscosity of 300 cSt or less. That is, the bottom discharge stream of the distillation column 50 may have a kinematic viscosity of 300 cSt or less or 1 cSt to 300 cSt at the time of supply to the combustion chamber, and the flash point of the bottom discharge stream of the distillation column 50 may be in the combustion chamber. It may be at least 25° C. or between 25° C. and 150° C.
  • the temperature of the lower discharge stream of the distillation column 50 when supplied to the combustion chamber may be 20 °C to 90 °C, or 30 °C to 80 °C.
  • the kinematic viscosity may be 300 cSt or less, and may be 25 ° C. or more lower than the flash point, process operating conditions for use as a raw material for the gasification process (S3) can satisfy
  • the distillation tower 50 by adjusting the distillation ratio of the distillation tower 50 to 0.01 to 0.2, 0.01 to 0.15, or 0.03 to 0.15, the distillation tower 50
  • the flash point of the bottom discharge stream of is 25 ° C. or more higher than the temperature of the bottom discharge stream of the distillation column 50 at the time of feeding, and the kinematic viscosity is in the range of 300 cSt or less at the temperature of the bottom discharge stream of the distillation column 50 at the time of feeding.
  • the lower discharge stream of the distillation column 50 increases the flash point increase rate rather than the increase rate of the kinematic viscosity by removing light substances having low flash points in a situation where both flash point and kinematic viscosity are low.
  • the flash point and kinematic viscosity at the time of supply to the combustion chamber can be controlled within the aforementioned flash point and kinematic viscosity ranges.
  • the distillation ratio of the distillation column 50 is less than 0.01, the flash point at the point of supply of the bottom discharge stream of the distillation column 50 to the combustion chamber is higher than the temperature at the point of supply of the bottom discharge stream of the distillation column 50 to the combustion chamber.
  • the gasification step (S3) It can be made to have physical properties suitable for use as a raw material.
  • the PFO stream is directly supplied to the combustion chamber without a pretreatment process (S2), or as shown in FIG. 3, the PGO stream is directly supplied to the combustion chamber without a pretreatment process (S2).
  • S2 the mixed oil stream of the PGO stream and the PFO stream is directly supplied to the combustion chamber without the pretreatment process (S2) according to the present invention, both the kinematic viscosity and flash point within the appropriate ranges are satisfied. There may be a problem that the temperature does not exist.
  • the differential pressure in the combustion chamber increases or the atomization is not smoothly performed.
  • Combustion performance may be reduced, the risk of explosion due to excess oxygen may be increased, or a burner may generate a flame before a combustion reaction occurs, and there is a risk of explosion due to a backfire phenomenon of the flame in the combustion chamber, and the refractory material in the combustion chamber may deteriorate. Damage may occur.
  • the PFO stream and the PGO stream are the heaviest residues in the NCC process and have been used as simple fuels.
  • simple fuels there is no need to adjust the composition and physical properties.
  • specific physical properties for example, kinematic viscosity and flash point must be satisfied at the same time.
  • the flash point is too low, and the PFO stream has a high flash point but the kinematic viscosity is too high, so that each stream cannot simultaneously satisfy the kinematic viscosity and the flash point.
  • the ratio of the flow rate of the PGO stream to the flow rate of the entire PFO stream and the PGO stream is generally about 0.35 to 0.7, even in this case, the gasification process below the flash point. It was difficult to use as a raw material for synthesis gas because it could not satisfy the kinematic viscosity condition for use as a raw material for synthetic gas.
  • the flash point of the lower discharge stream of the distillation column 50 is supplied to the combustion chamber by supplying the entire amount of the PFO stream and the PGO stream to the distillation column 50 for pretreatment.
  • the temperature of the lower discharge stream of the distillation column 50 at the time of supply is controlled to a range of 25 ° C. or more, and the kinematic viscosity is controlled to a range of 300 cSt or less at the temperature of the bottom discharge stream of the distillation column 50 at the time of supply.
  • the discharge stream from the bottom of the distillation tower 50 may be supplied to the gasification process S3 after passing through the fourth heat exchanger 53 before being supplied to the gasification process S3.
  • the supply temperature of the lower discharge stream of the distillation column 50 to the gasification process (S3) is adjusted, and the sensible heat of the lower discharge stream of the distillation column 50 to be discarded as waste heat is reused in the process using a heat exchanger. Process energy can be saved.
  • aromatic hydrocarbons may be produced by supplying the upper discharge stream of the distillation column 50 to the BTX manufacturing process (S4).
  • the bottom discharge stream of the distillation column 50 has a content of C10+ hydrocarbons of 80% by weight or more, or 80% to 98% by weight, and a content of C8- hydrocarbons of 5% by weight or less or 0.01% by weight. % by weight to 5% by weight, and the upper discharge stream of the distillation column 50 may have a content of C6 to C8 aromatic hydrocarbons of 50% by weight or more, 55% by weight to 95% by weight, or 55% by weight to 85% by weight.
  • the C8- hydrocarbon is selected from the group consisting of pentane, pentene, pentadiene, methylbutene, cyclopentane, cyclopentene, hexane, cyclohexane, heptane, methylhexane, octane, benzene, toluene, xylene and styrene.
  • the C8- hydrocarbon may include all of the aforementioned C8- hydrocarbons, but is not limited thereto.
  • the C10+ hydrocarbon may include at least one selected from the group consisting of dicyclopentadiene, naphthalene, methylnaphthalene, tetramethylbenzene, fluorene, and anthracene.
  • the C10+ hydrocarbon may include all of the aforementioned C10+ hydrocarbons, but is not limited thereto.
  • the C6 to C8 aromatic hydrocarbons may include one or more selected from the group consisting of benzene, toluene, xylene, and styrene.
  • the C6 to C8 aromatic hydrocarbons may include all of the aforementioned C6 to C8 aromatic hydrocarbons, but are not limited thereto.
  • the bottom discharge stream of the distillation column 50 is used as a raw material for syngas
  • the top discharge stream of the distillation column 50 having a content of C6 to C8 aromatic hydrocarbons of 50% by weight or more is used as a BTX manufacturing process (S4).
  • burning the bottom discharge stream of the distillation column 50 supplied to the combustion chamber in the gasification process (S3) at a temperature of 700 ° C. or higher, 700 ° C. to 2000 ° C., or 800 ° C. to 1800 ° C. may further include.
  • the bottom discharge stream of the distillation column 50 may be supplied to the combustion chamber together with the gasification agent.
  • the gasification agent may include at least one selected from the group consisting of oxygen, air, and water vapor, and as a specific example, the gasification agent may be oxygen and water vapor.
  • syngas can be produced by burning the lower discharge stream of the distillation column 50 at a high temperature in the presence of a gasifying agent.
  • the syngas produced according to the production method of the present invention includes carbon monoxide and hydrogen, and may further include at least one selected from the group consisting of carbon dioxide, ammonia, hydrogen sulfide, hydrogen cyanide, and carbonyl sulfide.
  • the upper discharge stream of the distillation column 50 is supplied to the BTX manufacturing process (S4) together with the RPG stream to produce at least one selected from the group consisting of benzene, toluene and xylene. .
  • the distillation tower top discharge stream is supplied to the hydrodesulfurization unit of the BTX manufacturing process (S4) together with the RPG stream, and hydrodesulfurization can be performed in the presence of separately supplied hydrogen and a catalyst.
  • the catalyst may be a catalyst capable of selective hydrogenation.
  • the catalyst may include at least one selected from the group consisting of palladium, platinum, copper, and nickel.
  • the catalyst may be used by being supported on at least one carrier selected from the group consisting of gamma alumina, activated carbon, and zeolite.
  • the hydrodesulfurization off stream may be fed to a C5 separation column.
  • An overhead discharge stream containing C5- aromatic hydrocarbons may be discharged from the C5 separation column, and a bottom discharge stream containing C6+ aromatic hydrocarbons may be supplied to a C7 separation column.
  • an overhead discharge stream containing C7- aromatic hydrocarbons may be supplied to an extractive distillation column, and a bottom discharge stream containing C8+ aromatic hydrocarbons may be supplied to a xylene separation column.
  • aromatic hydrocarbons and non-aromatic hydrocarbons included in the upper discharge stream of the C7 separation column may be separated using an extraction solvent.
  • aromatic hydrocarbons in the C7 separation column top discharge stream may be selectively extracted and separated as a bottom discharge stream, and non-aromatic hydrocarbons may be separated as an top discharge stream.
  • the extraction solvent is at least one selected from the group consisting of sulfolane, alkyl-sulfolane, N-formyl morpholine, N-methyl pyrrolidone, tetraethylene glycol, triethylene glycol and diethylene glycol.
  • the extraction solvent may further include water as a co-solvent.
  • the extractive distillation column bottom discharge stream contains C7-aromatic hydrocarbons and may be supplied to a benzene separation column to separate benzene from the benzene separation column top discharge stream, and the bottom discharge stream may be supplied to a toluene separation column.
  • the bottom discharge stream of the extractive distillation column supplied to the benzene separation column may be supplied to the benzene separation column after passing through a solvent recovery column for removing the extraction solvent.
  • the bottom discharge stream of the benzene separation column contains C7 aromatic hydrocarbons and may be supplied to a toluene separation column to separate toluene from the top discharge stream of the toluene separation column, and the bottom discharge stream may be supplied to a xylene separation column.
  • the xylene separation column receives the C7 separation column bottom discharge stream and the toluene separation column bottom discharge stream, separates xylene from the top discharge stream, and discharges the remaining C9+ hydrocarbon heavy materials from the bottom.
  • devices such as valves, pumps, separators and mixers may be additionally installed.
  • the upper discharge stream discharged from 1% of the total number of stages of the gasoline rectifying column 10 of the naphtha cracking process (S1) is supplied to the NCC downstream process (not shown), and the RPG stream from the NCC downstream process discharged.
  • the side discharge stream discharged from 40% of the total number of stages of the gasoline rectification column 10 to the first stripper 20 pyrolysis gas oil (PGO) from the bottom of the first stripper 20
  • PGO pyrolysis gas oil
  • pyrolysis fuel oil from the lower portion of the second stripper 30 A PFO stream containing was discharged, and at this time, the content of C13+ hydrocarbons in the PFO stream was confirmed to be 89% by weight.
  • the flash point of the PGO stream was 25.5 °C and the kinematic viscosity at 40 °C was 75 cSt, and the flash point of the PFO stream was 98 °C and the kinematic viscosity at 40 °C was 660 cSt.
  • the mixed oil stream obtained by mixing the PGO stream and the PFO stream was supplied to the distillation tower 50, and then the distillation ratio of the distillation tower 50 was adjusted to discharge the upper discharge stream of the distillation tower 50.
  • the bottom discharge stream was supplied to the combustion chamber in the gasification process (S3) together with oxygen and steam to produce syngas containing hydrogen and carbon monoxide.
  • the ratio of the flow rate of the PGO stream to the flow rate of the mixed oil stream was 0.42
  • the flash point was 70 °C
  • the kinematic viscosity at 40 °C was 365 cSt.
  • the reflux ratio of the distillation column 50 of the mixed oil stream was controlled to 2.5.
  • the RPG mixed stream which is a mixture of the RPG stream and the upper discharge stream of the distillation column 50, is supplied to the BTX manufacturing process (S4), and is supplied to a hydrodesulfurization unit, a C5 separation column, a C7 separation column, an extractive distillation column, a benzene separation column, and toluene separation Benzene, toluene and xylene were prepared using a column and a xylene separation column.
  • Table 1 below shows the content ratio of C6 to C8 aromatic hydrocarbons in the bottom discharge stream and the top discharge stream of the distillation column 50, the distillation rate of the distillation column 50, and the supply point of the bottom discharge stream of the distillation column 50 to the combustion chamber. Temperature and flash point were measured and indicated. In addition, it was confirmed whether the process operation standards were satisfied according to the above measurement results. At this time, the point at which the exhaust stream from the bottom of the distillation column 50 is supplied to the combustion chamber is set to a temperature condition in which the kinematic viscosity is controlled to 300 cSt using the fourth heat exchanger 53.
  • the kinematic viscosity of the sample was measured for each temperature, and then a correlation between temperature and viscosity was established and calculated using interpolation.
  • Table 3 shows the production amounts of benzene, toluene and xylene produced in the BTX manufacturing process (S4).
  • Kinematic viscosity A sample was obtained from the stream of the sample to be measured and measured according to ASTM D7042 using SVM 3001 manufactured by Anton Paar. In addition, the temperature of each of the above samples was maintained at 10° C. lower than the kinematic viscosity measurement temperature, and vapor generation was minimized by storing the samples in a closed container to prevent evaporation of hard materials (Light).
  • the PFO stream was supplied to the combustion chamber in the gasification process (S3) together with oxygen and steam. At this time, the content of C13+ in the PFO stream was confirmed to be 89% by weight, the flash point of the PFO stream was 98 ° C, and the kinematic viscosity at 40 ° C was 660 cSt.
  • the upper discharge stream discharged from 1% of the total number of stages of the gasoline rectifying column 10 in the naphtha cracking process (S1) is supplied to the NCC downstream process (not shown), and the RPG stream from the NCC downstream process discharged, and the RPG stream is supplied to the BTX manufacturing process (S4) to obtain benzene, Toluene and xylene were produced.
  • Table 3 shows the production amounts of benzene, toluene and xylene produced in the BTX manufacturing process (S4).
  • the first stripper 20 After supplying the side discharge stream discharged from 40% of the total number of stages of the gasoline rectifying column 10 of the naphtha cracking process (S1) to the first stripper 20, the first stripper 20 A PGO stream containing pyrolysis gas oil (PGO) was discharged from the bottom.
  • PGO pyrolysis gas oil
  • the PGO stream was supplied to the combustion chamber in the gasification process (S3) together with oxygen and steam. At this time, the content of C10 to C12 in the PGO stream was confirmed to be 86% by weight, the flash point of the PGO stream was 25.5 ° C, and the kinematic viscosity at 40 ° C was 75 cSt.
  • the upper discharge stream discharged from 1% of the total number of stages of the gasoline rectifying column 10 in the naphtha cracking process (S1) is supplied to the NCC downstream process (not shown), and the RPG stream from the NCC downstream process discharged, and the RPG stream is supplied to the BTX manufacturing process (S4) to obtain benzene, Toluene and xylene were produced.
  • Table 3 shows the production amounts of benzene, toluene and xylene produced in the BTX manufacturing process (S4).
  • the first stripper 20 A PGO stream containing pyrolysis gas oil (PGO) was discharged from the bottom, and at this time, the content of C10 to C12 in the PGO stream was confirmed to be 86% by weight.
  • pyrolysis fuel oil (PFO) from the bottom of the second stripper 30 A PFO stream containing was discharged, and at this time, the content of C13+ in the PFO stream was confirmed to be 89% by weight.
  • a mixed oil stream was produced by mixing the PGO stream and the PFO stream.
  • the flash point of the PGO stream was 25.5 °C and the kinematic viscosity at 40 °C was 75 cSt
  • the flash point of the PFO stream was 98 °C and the kinematic viscosity at 40 °C was 660 cSt.
  • the ratio of the flow rate of the PGO stream to the flow rate of the mixed oil stream was 0.42.
  • the mixed oil stream was supplied to a combustion chamber in the gasification process (S3) together with oxygen and steam.
  • the upper discharge stream discharged from 1% of the total number of stages of the gasoline rectifying column 10 in the naphtha cracking process (S1) is supplied to the NCC downstream process (not shown), and the RPG stream from the NCC downstream process discharged, and the RPG stream is supplied to the BTX manufacturing process (S4) to obtain benzene, Toluene and xylene were produced.
  • Table 3 shows the production amounts of benzene, toluene and xylene produced in the BTX manufacturing process (S4).
  • Example 1 syngas and aromatic hydrocarbons were produced in the same manner as in Example 1, except that the top discharge stream of the distillation column 50 was not supplied to the BTX manufacturing process (S4).
  • Table 3 shows the production amounts of benzene, toluene and xylene produced in the BTX manufacturing process (S4).
  • Example 1 100.0 100.0 100.0
  • Example 2 100.1 100.1 100.0
  • Example 3 100.2 100.8 109.3
  • Example 4 100.2 100.8 109.3
  • Example 5 100.2 100.8 109.3 Comparative Example 1 100.0 100.0 100.0 Comparative Example 2 100.0 100.0 100.0 Comparative Example 3 100.0 100.0 100.0 Comparative Example 4 100.0 100.0 100.0
  • the distillation ratio of the distillation tower 50 is adjusted to an appropriate range (0.01 to 0.2) to generate a bottom discharge stream, and then the distillation tower 50 )
  • the flash point of the lower discharge stream of the distillation column 50 at the point of supply of the lower discharge stream to the combustion chamber. is 25 ° C.
  • the kinematic viscosity is in the range of 300 cSt or less at the temperature of the bottom discharge stream of the distillation column 50 at the time of supply to the combustion chamber.
  • Example 3 in which the distillation ratio of the distillation tower 50 is controlled within the range of 0.03 to 0.15 in the pretreatment process (S2), at the point of supply of the lower discharge stream of the distillation tower 50 to the combustion chamber , It was confirmed that the flash point of the lower discharge stream of the distillation column 50 was higher than the temperature of the lower discharge stream of the distillation column 50 by 30 ° C. at the time of supply to the combustion chamber, enabling more stable operation.
  • the PFO stream is directly supplied to the combustion chamber without a pretreatment step (S2) (Comparative Example 1), or as shown in FIG. 3, the PGO stream is directly supplied without a pretreatment step (S2).
  • S2 the combustion chamber without a pretreatment step
  • S2 the mixed oil stream of the PGO stream and the PFO stream is directly supplied to the combustion chamber without the pretreatment process (S2) according to the present invention as shown in FIG. 4 (Comparative Example 3)
  • the respective streams of Comparative Examples 1 to 3 that did not satisfy both the kinematic viscosity and the flash point within the appropriate range did not satisfy the process operating conditions for use as raw materials in the gasification process (S3).
  • the differential pressure in the combustion chamber may increase or the spray may not be smoothly performed, resulting in deterioration in combustion performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 합성가스 및 방향족 탄화수소의 제조방법에 관한 것으로, 보다 상세하게는 나프타 분해 공정(NCC)으로부터 배출되는 열분해 연료유(Pyrolysis Fuel Oil, PFO)를 포함하는 PFO 스트림 및 열분해 가스유(Pyrolysis Gas Oil, PGO)를 포함하는 PGO 스트림을 피드 스트림으로서 증류탑으로 공급하는 단계(S10); 및 상기 증류탑의 하부 배출 스트림을 가스화 공정을 위한 연소실로 공급하고, 상부 배출 스트림을 BTX 제조 공정으로 공급하는 단계(S20)를 포함하는 합성가스 및 방향족 탄화수소의 제조방법을 제공한다.

Description

합성가스 및 방향족 탄화수소의 제조방법
관련출원과의 상호인용
본 출원은 2021년 06월 24일자 한국특허출원 제10-2021-0082382호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 합성가스 및 방향족 탄화수소의 제조방법에 관한 것으로, 보다 상세하게는 나프타 분해 공정(Naphtha Cracking Center, NCC)의 가솔린 정류탑에서 배출되는 열분해 연료유를 가스화 공정의 원료로 대체함과 동시에, 열분해 연료유 내 방향족 탄화수소를 회수하는 방법에 관한 것이다.
나프타 분해 공정(Naphtha Cracking Center; 이하 'NCC'라 칭함)은 가솔린 유분인 나프타(nathpha)를 약 950 ℃ 내지 1,050 ℃의 온도에서 열 분해하여 석유 화학 제품의 기초 원료인 에틸렌, 프로필렌, 부틸렌 및 BTX(Benzene, Toluene, Xylene) 등을 생산하는 공정이다.
종래에는 이러한 나프타를 원료로 에틸렌 및 프로필렌 등을 생산하는 과정의 부산물인 열분해 가솔린(Raw Pyrolysis Gasoline, RPG)을 사용하여 벤젠, 톨루엔, 자일렌 및 스티렌 등을 제조하고, 열분해 연료유(Pyrolysis Fuel Oil, PFO)는 연료로 사용하였다. 그러나, 상기 열분해 연료유를 전처리 없이 연료로 사용하기에는 황 함량이 높은 수준이고, 이산화탄소(CO2) 배출계수가 크기 때문에, 환경규제로 인해 판로가 점점 좁아지고 있으며, 향후 판매가 불가능한 상황을 대비해야 하는 실정이다.
한편, 합성가스(synthesis gas, syngas)는 유전과 탄광 지역의 땅에서 분출되는 자연성 가스, 메탄 가스, 에탄 가스 등의 천연가스와는 달리, 인공적으로 제조된 가스로서, 가스화(gasification) 공정을 통하여 제조된다.
상기 가스화 공정은 석탄, 석유, 바이오매스 등의 탄화수소를 원료로 하여 열분해나, 산소, 공기, 수증기 등의 가스화제와 화학 반응시켜 주로 수소와 일산화탄소로 이루어진 합성가스로 변환시키는 공정이다. 이러한 가스화 공정의 최전단에 위치하는 연소실에는 가스화제 및 원료가 공급되어 700 ℃ 이상의 온도에서 연소 과정을 통하여 합성가스를 생성하는데, 상기 연소실로 공급되는 원료의 동점도가 높을수록 연소실 내 차압이 상승하거나 분무(atomizing)가 원활하게 이루어지지 않아 연소 성능을 저하시키거나 산소 과잉에 따른 폭발의 위험성을 높이게 된다.
종래, 액체 상의 탄화수소(Hydrocarbon) 원료를 이용하여 합성가스를 제조하기 위한 가스화 공정의 원료로는 원유를 정제하는 정유 공장(refinery)으로부터 배출되는 감압 잔사유(vacuum residue, VR), 벙커-C유(bunker-c oil) 등의 정유 잔사유(refinery residue)를 주로 사용하였다. 그러나, 이러한 정유 잔사유는 동점도가 높아 가스화 공정의 원료로 사용되기 위하여 점도 완화를 위한 열처리, 희석제 또는 물 첨가 등의 전처리가 필요할 뿐만 아니라, 정유 잔사유에는 황 및 질소의 함량이 높아 가스화 공정 중에 황화수소 등의 산성가스 및 암모니아의 발생량이 높아지므로, 강화된 환경규제에 대응하기 위해서는 황 및 질소의 함량이 낮은 원료로 정유 잔사유를 대체해야 하는 필요성이 대두되고 있는 실정이다.
이에, 상기 열분해 연료유를 가스화 공정의 원료로 대체하는 방법이 고려되었으나, 상기 열분해 연료유를 가스화 공정의 원료로 대체하기 위해서는 열분해 연료유를 가열하여 동점도를 낮춰야 하는데, 상기 열분해 연료유의 동점도가 매우 높아 인화점 이하에서 가스화 공정의 원료로 사용하기 위한 동점도 조건을 만족시킬 수 없는 어려움이 있었다.
따라서, 본 발명자는 나프타 분해 공정(NCC)의 열분해 연료유(PFO)를 가스화 공정의 원료로 대체할 수 있으면, 종래의 정유 잔사유를 원료로 사용하는 경우 대비 온실가스 배출이 저감될 수 있고, 가스화 공정의 운전 비용이 감소되고, 공정 효율을 향상시킬 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
본 발명에서 해결하고자 하는 과제는, 상기 발명의 배경이 되는 기술에서 언급한 문제들을 해결하기 위하여, 나프타 분해 공정(NCC)에서 배출되는 열분해 연료유(PFO)를 가스화 공정의 원료로 대체하여, 종래의 정유 잔사유를 원료로 사용하는 경우 대비 온실가스 배출이 저감될 수 있고, 가스화 공정의 운전 비용이 감소되며, 공정 효율이 향상될 수 있는 합성가스의 제조방법을 제공하고, 상기 열분해 연료유에 포함된 방향족 탄화수소를 회수하고자 하는 것이다.
상기 과제를 해결하기 위해 본 발명은, 나프타 분해 공정(NCC)으로부터 배출되는 열분해 연료유(Pyrolysis Fuel Oil, PFO)를 포함하는 PFO 스트림 및 열분해 가스유(Pyrolysis Gas Oil, PGO)를 포함하는 PGO 스트림을 피드 스트림으로서 증류탑으로 공급하는 단계(S10); 및 상기 증류탑의 하부 배출 스트림을 가스화 공정을 위한 연소실로 공급하고, 상부 배출 스트림을 BTX 제조 공정으로 공급하는 단계(S20)를 포함하는 합성가스 및 방향족 탄화수소의 제조방법을 제공한다.
본 발명에 따르면, 나프타 분해 공정(NCC)의 열분해 연료유(PFO) 및 열분해 가스유(PGO)를 전처리하여 가스화 공정의 원료로 대체함으로써, 종래의 정유 잔사유를 원료로 사용하는 경우 대비 온실가스 배출을 저감시킬 수 있고, 가스화 공정의 운전 비용을 감소시키며, 공정 효율을 향상시킬 수 있다.
또한, 상기 열분해 가솔린(RPG)과 더불어 열분해 연료유(PFO) 및 열분해 가스유(PGO)를 전처리하는 과정에서 발생하는 경질의 열분해 연료유를 BTX를 제조하는 원료로 사용함으로써, 상기 BTX의 생산량을 증가시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 합성가스 및 방향족 탄화수소의 제조방법에 대한 공정 흐름도이다.
도 2는 본 발명의 비교에 1에 따른 합성가스 및 방향족 탄화수소의 제조방법에 대한 공정 흐름도이다.
도 3은 본 발명의 비교에 2에 따른 합성가스 및 방향족 탄화수소의 제조방법에 대한 공정 흐름도이다.
도 4는 본 발명의 비교예 3에 따른 합성가스 및 방향족 탄화수소의 제조방법에 대한 공정 흐름도이다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 용어 "스트림(stream)"은 공정 내 유체(fluid)의 흐름을 의미하는 것일 수 있고, 또한, 배관 내에서 흐르는 유체 자체를 의미하는 것일 수 있다. 구체적으로, 상기 스트림은 각 장치를 연결하는 배관 내에서 흐르는 유체 자체 및 유체의 흐름을 동시에 의미하는 것일 수 있다. 또한, 상기 유체는 기체(gas) 또는 액체(liquid)를 의미할 수 있으며, 상기 유체에 고체 성분(solid)이 포함되어 있는 경우에 대해서 배제하는 것은 아니다.
본 발명에서 "#"이 양의 정수인 "C#"란 용어는 #개 탄소 원자를 가진 모든 탄화수소를 나타내는 것이다. 따라서, "C8"란 용어는 8개의 탄소 원자를 가진 탄화수소 화합물을 나타내는 것이다. 또한, "C#-"란 용어는 #개 이하의 탄소 원자를 가진 모든 탄화수소 분자를 나타내는 것이다. 따라서, "C8-"란 용어는 8개 이하의 탄소 원자를 가진 탄화수소의 혼합물을 나타내는 것이다. 또한, "C#+"란 용어는 #개 이상의 탄소 원자를 가진 모든 탄화수소 분자를 나타내는 것이다. 따라서, 'C10+'란 용어는 10개 이상의 탄소 원자를 가진 탄화수소의 혼합물을 나타내는 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 도 1을 참조하여 더욱 상세하게 설명한다.
본 발명에 따르면, 합성가스(synthesis gas, syngas) 및 방향족 탄화수소(aromatic hydrocarbon)의 제조방법이 제공된다. 상기 합성가스 및 방향족 탄화수소의 제조방법은, 나프타 분해 공정(S1)으로부터 배출되는 열분해 연료유(Pyrolysis Fuel Oil, PFO)를 포함하는 PFO 스트림 및 열분해 가스유(Pyrolysis Gas Oil, PGO)를 포함하는 PGO 스트림을 피드 스트림으로서 증류탑(50)으로 공급하는 단계(S10); 및 상기 증류탑(50)의 하부 배출 스트림을 가스화 공정(S3)을 위한 연소실로 공급하고, 상부 배출 스트림을 BTX 제조 공정(S4)으로 공급하는 단계(S20)를 포함할 수 있다.
상기 합성가스는 유전과 탄광 지역의 땅에서 분출되는 자연성 가스, 메탄 가스, 에탄 가스 등의 천연가스와는 달리, 인공적으로 제조된 가스로서, 가스화(gasification) 공정을 통하여 제조된다.
상기 가스화 공정은 석탄, 석유, 바이오매스 등의 탄화수소를 원료로 하여 열분해나, 산소, 공기, 수증기 등의 가스화제와 화학 반응시켜 주로 수소 및 일산화탄소를 포함하는 합성가스로 변환시키는 공정이다. 구체적으로, 본 발명에서 합성가스는 수소 및 일산화탄소를 포함할 수 있다. 이러한 가스화 공정의 최전단에 위치하는 연소실에는 가스화제 및 원료가 공급되어 700 ℃ 이상의 온도에서 연소 과정을 통하여 합성가스를 생성하는데, 상기 연소실로 공급되는 원료의 동점도가 높을수록 연소실 내 차압이 상승하거나 분무(atomizing)가 원활하게 이루어지지 않아 연소 성능을 저하시키고, 산소 과잉에 따른 폭발의 위험성을 높이게 된다.
종래, 액체 상의 탄화수소(Hydrocarbon) 원료를 이용하여 합성가스를 제조하기 위한 가스화 공정의 원료로는 원유를 정제하는 정유 공장(refinery)으로부터 배출되는 감압 잔사유(vacuum residue, VR), 벙커-C유(bunker-c oil) 등의 정유 잔사유(refinery residue)를 주로 사용하였다. 그러나, 이러한 정유 잔사유는 동점도가 높아 가스화 공정의 원료로 사용되기 위하여 점도 완화를 위한 열처리, 희석제 또는 물 첨가 등의 전처리가 필요할 뿐만 아니라, 정유 잔사유에는 황 및 질소의 함량이 높아 가스화 공정 중에 황화수소 등의 산성가스 및 암모니아의 발생량이 높아지므로, 강화된 환경규제에 대응하기 위해서는 황 및 질소의 함량이 낮은 원료로 정유 잔사유를 대체해야 하는 필요성이 대두되고 있는 실정이다. 예를 들어, 상기 정유 잔사유 중 감압 잔사유에는 약 3.5 중량%의 황과, 약 3600 ppm의 질소가 포함되며, 벙커-C유에는 약 4.5 중량%의 황이 포함될 수 있다.
한편, 나프타를 분해하여 에틸렌, 프로필렌 등의 석유화학 기초소재를 제조하는 공정인 나프타 분해 공정에서 배출되는 열분해 연료유(Pyrolysis Fuel Oil, PFO)는 일반적으로 연료로 사용되고 있으나, 황 함량이 전처리 없이 연료로 사용하기에는 높은 수준이어서, 환경규제로 인해 판로가 점점 좁아지고 있으며, 향후 판매가 불가능한 상황을 대비해야 하는 실정이다.
이에, 상기 열분해 연료유를 가스화 공정의 원료로 대체하는 방법이 고려되었으나, 상기 열분해 연료유를 가스화 공정의 원료로 대체하기 위해서는 열분해 연료유를 가열하여 동점도를 낮춰야 하는데, 상기 열분해 연료유의 동점도가 매우 높아 인화점 이하에서 가스화 공정의 원료로 사용하기 위한 동점도 조건을 만족시킬 수 없는 어려움이 있었다.
따라서, 본 발명에서는 나프타 분해 공정으로부터 배출되는 열분해 연료유(PFO)를 포함하는 PFO 스트림과 열분해 가스유(PGO)를 포함하는 PGO 스트림을 상기 가스화 공정의 원료로 대체하기 위한 전처리 공정(S2)을 개발함으로써 종래의 정유 잔사유를 원료로 사용하는 경우 대비 온실가스 배출을 저감시킬 수 있고, 가스화 공정의 운전 비용을 감소시키며, 공정 효율을 향상시키고자 하였다. 또한, 상기 전처리 공정(S2)에서 배출되는 경질 PFO 스트림을 회수하여 방향족 탄화수소를 제조함으로써, 방향족 탄화수소의 생산량을 증가시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 열분해 가솔린(Raw Pyrolysis Gasoline, RPG)을 포함하는 RPG 스트림, 열분해 연료유(PFO)를 포함하는 PFO 스트림 및 상기 열분해 가스유(PGO)를 포함하는 PGO 스트림은 나프타 분해 공정(S1)으로부터 배출되는 것일 수 있다.
구체적으로, 상기 나프타 분해 공정은 파라핀(paraffin), 나프텐(naphthene) 및 방향족 화합물(aromatics)을 포함하는 나프타(naphtha)를 분해하여 석유화학 기초소재로 사용되는 에틸렌, 프로필렌, 부틸렌 및 BTX(Benzene, Toluene, Xylene) 등을 생산하는 공정으로서, 나프타 분해 공정은 크게 분해 공정, 급냉 공정, 압축 공정 및 정제 공정으로 이루어질 수 있다.
상기 분해 공정은 나프타를 800 ℃ 이상의 분해로에서 탄소수가 적은 탄화수소로 열분해 반응시키는 공정으로서, 고온의 분해가스가 배출될 수 있다. 이 때, 상기 나프타는 분해로 진입 전 고압의 수증기로부터 예열 과정을 거친 후 분해로로 공급될 수 있다.
상기 급냉 공정은 분해로에서 배출된 고온의 분해가스 내 탄화수소의 중합 반응을 억제하고, 폐열 회수 및 후속 공정(압축 공정)의 열 부하 감소의 목적으로, 상기 고온의 분해가스를 냉각시키는 단계이다. 이 때, 상기 급냉 공정은 상기 고온의 분해가스를 급냉 오일(quench oil)로 1차 냉각하는 단계, 및 급냉수(quench water)로 2차 냉각시키는 단계를 포함하여 수행될 수 있다.
구체적으로, 상기 1차 냉각하는 단계에서, 상기 분해가스를 가솔린 정류탑(gasoline fractionator)으로 공급하여, 수소, 메탄, 에틸렌, 프로필렌 등을 포함하는 경질 유분, 열분해 가솔린(RPG), 열분해 연료유(PFO) 및 열분해 가스유(PGO)를 분리할 수 있다. 이후, 상기 경질 유분은 후속되는 압축 공정으로 이송될 수 있다.
상기 압축 공정은 상기 경질 유분을 경제적으로 분리 및 정제하기 위하여 고압 하에서 경질 유분의 승압을 통해 부피를 감소시킨 압축 가스를 생성하는 공정일 수 있다.
상기 정제 공정은 상기 고압으로 압축된 압축 가스를 초저온으로 냉각시킨 후 비점차에 의해 단계별로 성분을 분리해내는 공정으로서, 수소, 에틸렌, 프로필렌, 프로판, C4 유분 및 열분해 가솔린(RPG) 등이 생성될 수 있다.
전술한 바와 같이, 상기 나프타의 분해 공정(S1) 중 급냉 공정에서는 열분해 가솔린(RPG), 열분해 연료유(PFO) 및 열분해 가스유(PGO)가 배출될 수 있다. 일반적으로, 상기 열분해 연료유(PFO)에는 약 0.1 중량% 이하의 황, 및 약 20 ppm 이하의 질소가 포함되어 있어, 연료로 사용 시, 연소과정에서 황산화물(SOx) 및 질소산화물(NOx)이 배출되므로, 환경적 이슈가 야기될 수 있으나, 이를 합성가스의 원료로서 사용하는 경우에는 상당히 낮은 수준이다.
따라서, 본 발명에서는 열분해 연료유(PFO) 및 열분해 가스유(PGO)를 전처리 공정(S2)을 통해 전처리하여 합성가스를 제조하기 위한 가스화 공정의 원료로 사용함으로써, 상기 문제점을 해결할 수 있고, 나아가 종래의 정유 잔사유를 가스화 공정의 원료로 사용하는 경우 대비 온실가스 배출을 저감시킬 수 있고, 가스화 공정의 운전 비용을 감소시키며, 공정 효율을 향상시킬 수 있다. 더불어, 상기 전처리 공정(S2)에서 배출되는 경질 PFO 스트림을 방향족 탄화수소를 제조하는 원료로 사용함으로써, 방향족 탄화수소의 생산량을 증가시킬 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 PFO 스트림 및 PGO 스트림은 각각 나프타 분해 공정(S1)의 가솔린 정류탑(10)으로부터 배출되는 열분해 연료유(PFO) 및 열분해 가스유(PGO)를 포함할 수 있다. 구체적인 예로, 가솔린 정류탑(10)의 전체 단수에 있어서, 최상단을 1%의 단, 최하단을 100%의 단으로 표현할 때, 상기 가솔린 정류탑(10)의 전체 단수 대비, 상기 열분해 연료유(PFO)는 90% 이상의 단, 95% 이상의 단, 또는 95% 내지 100%의 단으로부터 배출될 수 있다. 또한, 상기 열분해 가스유(PGO)는 10% 내지 70%의 단, 15% 내지 65%의 단, 또는 20% 내지 60%의 단으로부터 배출될 수 있다. 예를 들어, 상기 가솔린 정류탑(10)의 전체 단수가 100 단인 경우, 최상단이 1단, 최하단이 100단일 수 있고, 상기 가솔린 정류탑(10) 전체 단수의 90% 이상의 단은 가솔린 정류탑(10)의 90단 내지 100단을 의미할 수 있다.
상기 PGO 스트림은 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 측부로부터 배출되며, 열분해 가스유(PGO)를 포함하는 측부 배출 스트림을 제1 스트리퍼(20)에 공급한 후, 상기 제1 스트리퍼(20)의 하부로부터 배출된 하부 배출 스트림일 수 있다. 또한, 상기 PFO 스트림은 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 하부로부터 배출되며, 열분해 연료유(PFO)를 포함하는 하부 배출 스트림을 제2 스트리퍼(30)에 공급한 후, 상기 제2 스트리퍼(30)의 하부로부터 배출된 하부 배출 스트림일 수 있다.
상기 제1 스트리퍼(20) 및 제2 스트리퍼(30)는 액체 중에 용해되어 있는 기체 또는 증기를 분리 및 제거하는 스트리핑(stripping) 공정이 수행되는 장치일 수 있고, 예를 들어, 스팀 또는 불활성 가스 등에 의한 직접 접촉, 가열 및 가압 등의 방법에 의해 수행될 수 있다. 구체적인 예로, 상기 가솔린 정류탑(10)의 측부 배출 스트림을 제1 스트리퍼(20)에 공급하여, 제1 스트리퍼(20)로부터 상기 가솔린 정류탑(10)의 측부 배출 스트림에서 분리한 경질분을 포함하는 상부 배출 스트림을 상기 가솔린 정류탑(10)으로 환류시킬 수 있다. 또한, 상기 가솔린 정류탑(10)의 하부 배출 스트림을 제2 스트리퍼(30)에 공급하여, 제2 스트리퍼(30)로부터 상기 가솔린 정류탑(10)의 하부 배출 스트림에서 분리한 경질분을 포함하는 상부 배출 스트림을 상기 가솔린 정류탑(10)으로 환류시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 PGO 스트림은 C10 내지 C12의 탄화수소를 70 중량% 이상 또는 70 중량% 내지 95 중량% 포함하는 것이고, 상기 PFO 스트림은 C13+ 탄화수소를 70 중량% 이상 또는 70 중량% 내지 98 중량% 포함하는 것일 수 있다. 예를 들어, 상기 C10 내지 C12의 탄화수소를 70 중량% 이상 포함하는 PGO 스트림의 40 ℃에서의 동점도는 1 내지 200 cSt일 수 있고, 인화점은 10 내지 50 ℃일 수 있다. 또한, 예를 들어, 상기 C13+ 탄화수소를 70 중량% 이상 포함하는 PFO 스트림의 40 ℃에서의 동점도는 400 내지 100,000 cSt일 수 있고, 인화점은 70 내지 200 ℃일 수 있다. 이와 같이, 상기 PGO 스트림 대비 중질의 탄화수소를 더 많이 포함하는 PFO 스트림은 동일한 온도 조건에서 열분해 가스유 대비 동점도 및 인화점이 높은 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 PGO 스트림의 비점은 200 내지 288 ℃, 또는 210 내지 270 ℃이고, 상기 PFO 스트림의 비점은 289 ℃ 내지 550 ℃, 또는 300 내지 500 ℃일 수 있다.
상기 PGO 스트림 및 PFO 스트림의 비점은 각각 다수의 탄화수소로 이루어진 벌크(bulk) 형태의 PGO 스트림 및 PFO 스트림의 비점을 의미할 수 있다. 이 때, 상기 PGO 스트림에 포함되는 탄화수소의 종류와 PFO 스트림에 포함되는 탄화수소의 종류는 서로 상이할 수 있고, 일부의 종류는 동일할 수도 있다. 구체적인 예로, 상기 PGO 스트림 및 PFO 스트림에 포함되는 탄화수소의 종류는 전술한 바와 같이 포함될 수 있다.
본 발명의 일 실시예에 따르면, 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)으로부터 배출되는 열분해 가솔린(RPG)을 포함하는 RPG 스트림은 BTX 제조 공정(S4)으로 공급될 수 있다. 구체적인 예로, 상기 가솔린 정류탑(10)의 전체 단수 대비, 상기 열분해 가솔린(RPG)은 5% 이하의 단 또는 1% 내지 5%의 단으로부터 배출될 수 있다.
상기 RPG 스트림은 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 상부로부터 배출되며, 열분해 가솔린(RPG)을 포함하는 상부 배출 스트림을 NCC 후단 공정(미도시)으로 공급하여, 수소 및 C4- 탄화수소 물질을 제거하고, RPG 스트림을 분리할 수 있다.
상기 RPG 스트림은 C5+ 탄화수소 혼합물, 구체적으로 C5 탄화수소 내지 C10 탄화수소가 풍부한 혼합물일 수 있다. 예를 들어, 상기 RPG 스트림은, 이소펜탄(Iso-Pentane), 노말펜탄(n-Pentane), 1,4-펜타디엔(1,4-Pentadiene), 디메틸아세틸렌(Dimethylacetylene), 1-펜텐(1-Pentene), 3-메틸-1-부텐(3-Methyl-1-butene), 2-메틸-1-부텐(2-Methyl-1-butene), 2-메틸-2-부텐(2-Methyl-2-butene), 이소프렌(Iso-Prene), 트랜스-2-펜텐(trans-2-Penstene), 시스-2-펜텐(cis-2-Penstene), 트랜스-1,3-펜타디엔(trans-1,3-Pentadiene), 시클로펜타디엔(Cyclopentadiene), 시클로펜탄(Cyclopentane), 시클로펜텐(Cyclopentene), 노말헥산(n-Hexane), 시클로헥산(Cyclohexane), 1,3-시클로헥사디엔(1,3-cyclohexadiene), 노말헵탄(n-Heptane), 2-메틸헥산(2-methmethylh), 3-메틸헥산(3-methylhexane), 노말옥탄(n-Octane), 노말노난(n-Nonane), 벤젠(Benzene), 톨루엔(Toluene), 에틸벤젠(Ethylbezene), m-자일렌(m-xylene), o-자일렌(o-xylene), p-자일렌(p-xylene), 스티렌(Styrene), 디시클로펜타디엔(Dicyclopentadiene), 인덴(Indene) 및 인단(Indane)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 이 때, 상기 RPG 스트림 내 C6 내지 C8 탄화수소의 함량은 40 중량% 이상, 45 중량% 내지 75 중량% 또는 50 중량% 내지 70 중량%일 수 있다.
상기 RPG 스트림은 BTX 제조 공정(S4)으로 공급되어 벤젠, 톨루엔 및 자일렌 중 어느 하나 이상을 제조할 수 있다. 예를 들어, 상기 BTX 제조 공정(S4)에서는 벤젠 또는 BTX를 제조할 수 있다. 상기 BTX는 벤젠(Benzene), 톨루엔(Toluene) 및 자일렌(Xylene)의 약칭이며, 상기 자일렌(Xylene)은 에틸벤젠(Ethyl Benzene), m-자일렌(m-Xylene), o-자일렌(o-Xylene) 및 p-자일렌(p-Xylene)을 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 나프타 분해 공정(S1)으로부터 배출되는 열분해 연료유(Pyrolysis Fuel Oil, PFO)를 포함하는 PFO 스트림 및 열분해 가스유(Pyrolysis Gas Oil, PGO)를 포함하는 PGO 스트림을 피드 스트림으로서 증류탑(50)으로 공급할 수 있다.
상기 증류탑(50)으로 공급된 피드 스트림은 PGO 스트림 및 PFO 스트림을 모두 포함하는 것으로, 중질 유분(heavies)과 경질 유분(lights)을 모두 포함할 수 있다. 이와 같이, 상기 중질 유분과 경질 유분을 모두 포함하는 피드 스트림은 상기 증류탑(50)으로 공급되어, 상기 증류탑(50)의 상부로부터 경질 PFO 스트림을 포함하는 상부 배출 스트림의 배출을 통하여, 증류탑(50)의 하부로부터 동점도 및 인화점이 조절된 하부 배출 스트림을 배출할 수 있다. 구체적인 예로, 상기 PGO 스트림 대비 중질 유분의 함량이 높은 PFO 스트림은 PGO 스트림 대비 동점도 및 인화점이 높고, 상기 PFO 스트림 대비 경질 유분의 함량이 높은 PGO 스트림은 PFO 스트림 대비 동점도 및 인화점이 낮을 수 있다. 이와 같이 상충되는 두 가지 스트림을 모두 포함하는 상기 피드 스트림 내에서 상기한 바와 같이 경질 유분의 제거를 통하여 목적하는 동점도 및 인화점을 갖는 스트림을 증류탑(50)의 하부로부터 배출시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 피드 스트림은 상기 PFO 스트림과 PGO 스트림을 혼합한 혼합유 스트림일 수 있다. 이 경우, 예를 들어, 상기 혼합유 스트림의 유량 대비, 상기 혼합유 스트림 내 PGO 스트림의 유량 비율(이하, 'PGO 스트림의 유량 비율'이라 칭한다.)은 0.35 내지 0.7, 0.4 내지 0.65, 또는 0.4 내지 0.6일 수 있으며, 이에 한정되는 것은 아니다. 여기서, '유량'은 단위 시간 당 중량의 흐름을 의미할 수 있다. 구체적인 예로, 상기 유량의 단위는 kg/h일 수 있다.
상기 혼합유 스트림의 비점은 200 ℃ 내지 600 ℃, 210 ℃ 내지 550 ℃ 또 240 ℃ 내지 500 ℃일 수 있다. 상기 혼합유 스트림의 비점은 다수의 탄화수소로 이루어진 벌크(bulk) 형태의 혼합유 스트림의 비점을 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 혼합유 스트림을 상기 증류탑(50)으로 공급하기 전에 제1 열교환기(40)를 통과시킨 후 상기 증류탑(50)으로 공급할 수 있다. 상기 혼합유 스트림은 제1 스트리퍼(20) 또는 제2 스트리퍼(30)로부터 배출된 고온의 PGO 스트림 및 PFO 스트림을 혼합하여 생성된 것으로, 상기 혼합유 스트림의 상기 증류탑(50)으로의 공급 온도를 최적으로 조절함과 동시에, 필요 시 현열을 공정 내 재사용함으로써, 공정 에너지를 절감시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 혼합유 스트림은 상기 증류탑(50)의 전체 단수 대비 10% 내지 70%의 단, 15% 내지 60%의 단, 또는 20% 내지 50%의 단으로 공급될 수 있다. 이 범위 내에서, 증류탑(50)을 효율적으로 운전할 수 있어, 불필요한 에너지 소모를 현저히 줄일 수 있다.
본 발명의 일 실시예에 따르면, 상기 증류탑(50)으로 공급되는 피드 스트림의 유량에 대한, 상기 증류탑(50)의 상부 배출 스트림의 유량 비율(이하, '증류탑(50)의 증류 비율'이라고 칭한다)은 0.01 내지 0.2, 0.01 내지 0.15, 0.03 내지 0.15 또는 0.1 내지 0.2일 수 있다. 즉, 상기 증류탑(50)의 증류 비율을 0.01 내지 0.2, 0.01 내지 0.15, 또는 0.03 내지 0.15로 조절할 수 있다.
상기한 범위의 증류탑(50)의 증류 비율은 상기 증류탑(50) 상부 배출 스트림이 이송되는 배관에 설치된 유량조절장치(미도시)를 통해 조절되며, 상기 증류탑(50)의 성능은 증류 비율 및 제2 열교환기(51)를 이용하여, 증류탑(50)의 상부 배출 스트림의 환류비(reflux ratio)를 조절함으로써 수행될 수 있다. 이 때, 상기 환류비는 유출 스트림의 유량에 대한 환류 스트림의 유량의 비를 의미할 수 있고, 구체적인 예로, 상기 증류탑(50)의 상부 배출 스트림의 환류비라 함은 상기 증류탑(50)의 상부 배출 스트림의 일부를 분기하여 환류 스트림으로서 상기 증류탑(50)으로 환류시키고, 잔부는 유출 스트림으로서 BTX 제조 공정(S4)으로 공급하는 경우에, 상기 유출 스트림의 유량에 대한 환류 스트림 유량의 비(이하, '환류비'라고 칭한다.)를 의미할 수 있다. 보다 구체적인 예로, 상기 환류비는 0.01 내지 10, 0.1 내지 7, 또는 0.15 내지 5일 수 있다.
상기 가스화 공정(S3)의 최전단에 위치하는 연소실(미도시)에는 가스화제 및 원료가 공급되어 700 ℃ 이상의 온도에서 연소 과정을 통하여 합성가스를 생성할 수 있다. 이 때, 상기 합성가스 생성 반응은 20 내지 80 기압의 고압에서 이루어지며, 연소실 내에서 원료는 2 내지 40 m/s의 빠른 유속으로 이동해야 한다. 따라서, 상기 합성가스 생성 반응을 위해 높은 압력에서 원료가 빠른 유속으로 펌핑되어야 하는데, 상기 연소실로 공급되는 원료의 동점도가 적정 범위를 초과할 경우, 펌퍼빌리티(pumpability)의 저하로 고가의 펌프를 사용해야 하거나 에너지 소모량이 증가하여 비용이 증가하며, 원하는 조건으로 펌핑(pumping)이 불가할 수 있다. 더불어, 펌핑이 원활하게 이루어지지 않아 원료를 연소실에 균일하게 공급할 수 없는 문제가 있다. 또한, 연소실 내 차압이 상승하거나 작은 입자 크기로 원료의 균일한 분무(atomizing)가 원활하게 이루어지지 않아, 연소 성능을 저하시킬 수 있고, 생산성이 저하되며, 다량의 가스화제가 요구되며, 산소 과잉에 따른 폭발의 위험성을 높이게 된다. 이 때, 상기 동점도의 적정 범위는 합성하고자 하는 합성가스의 종류, 연소실에서 수행되는 연소 과정의 조건 등에 따라 다소 차이가 있을 수 있으나, 일반적으로, 원료의 동점도는, 상기 가스화 공정(S3) 내 연소실로 원료가 공급되는 시점의 원료의 온도에서, 비용, 생산성 및 안정성 측면에서 낮을수록 유리하며, 300 cSt 이하의 범위를 갖는 것이 바람직할 수 있고, 이 범위 내에서 연소실 내 차압 상승을 방지하고, 분무가 원활하게 이루어져 연소 성능을 향상시킬 수 있으며, 연소 반응이 원활하게 이루어져 반응성을 향상시킬 수 있다.
또한, 상기 연소실로 공급되는 원료의 인화점이 적정 범위 미만인 경우 낮은 인화점에 의하여 연소 반응 발생 이전에 버너(Burner)에서 불꽃이 생길 수 있고, 연소실 내 불꽃의 역화 현상에 의해 폭발 위험성이 존재하며 연소실의 내화물이 손상될 수 있다. 이 때, 상기 인화점의 적정 범위는 연소실에서 합성하고자 하는 합성가스의 종류, 연소실에서 수행되는 연소 과정의 조건 등에 따라 달라질 수 있으나, 일반적으로, 원료의 인화점은, 상기 가스화 공정(S3) 내 연소실로 원료가 공급되는 시점의 원료의 온도보다 25 ℃ 이상 높은 범위를 갖는 것이 바람직할 수 있고, 이 범위 내에서 원료의 손실, 폭발 위험성 및 연소실의 내화물의 손상을 방지할 수 있다.
이에 따라, 본 발명에서는 상기 가스화 공정(S3) 내 연소실로 공급되는 원료인 상기 증류탑(50)의 하부 배출 스트림의 동점도 및 인화점을 적정 범위로 제어하기 위하여, 상기 증류탑(50)의 증류 비율을 조절할 수 있다. 즉, 상기 증류탑(50)의 증류 비율을 조절함으로써, 상기 증류탑(50)의 하부 배출 스트림이 상기 연소실로 공급되는 시점의 온도에서의, 상기 증류탑(50)의 하부 배출 스트림의 동점도와 인화점을 적정 범위로 제어할 수 있다. 더불어, 상기 증류탑(50)의 증류 비율을 조절함으로써, 상기 증류탑(50)의 상부 배출 스트림 내 조성이 제어되어, 상기 증류탑(50) 상부 배출 스트림을 BTX 제조 공정(S4)으로 공급하는 경우, BTX의 생산량을 증가시킬 수 있다.
본 발명의 일 실시예에 따르면, 제3 열교환기(52)는 일반적인 리보일러(reboiler)로서 운전될 수 있다.
본 발명의 일 실시예에 따르면, 상기 증류탑(50)의 하부 배출 스트림의 연소실로의 공급 시점의 온도는, 상기 증류탑(50)의 하부 배출 스트림의 상기 연소실로의 공급 시점의 인화점보다 25 ℃ 이상 낮고, 300 cSt 이하의 동점도를 갖는 온도일 수 있다. 즉, 상기 증류탑(50)의 하부 배출 스트림은 연소실로의 공급 시점에서의 동점도가 300 cSt 이하 또는 1 cSt 내지 300 cSt일 수 있고, 상기 증류탑(50)의 하부 배출 스트림의 인화점은 상기 연소실로의 공급 시점에서의 온도보다 25 ℃ 이상 또는 25 ℃ 내지 150 ℃ 높을 수 있다. 이 때, 상기 증류탑(50)의 하부 배출 스트림의 연소실로 공급되는 시점의 온도는 20 ℃ 내지 90 ℃, 또는 30 ℃ 내지 80 ℃일 수 있다. 상기 범위 내의 증류탑(50) 하부 배출 스트림의 연소실로의 공급 시점의 온도에서 동점도는 300 cSt 이하일 수 있고, 인화점보다 25 ℃ 이상 낮을 수 있어, 가스화 공정(S3)의 원료로 사용하기 위한 공정운전 조건을 만족시킬 수 있다.
구체적으로, 상기 증류탑(50)의 증류 비율을 0.01 내지 0.2, 0.01 내지 0.15, 또는 0.03 내지 0.15로 조절함으로써, 상기 증류탑(50)의 하부 배출 스트림의 연소실로의 공급 시점에서, 상기 증류탑(50)의 하부 배출 스트림의 인화점은 상기 공급 시점의 증류탑(50)의 하부 배출 스트림의 온도보다 25 ℃ 이상 높고, 동점도는 상기 공급 시점의 증류탑(50)의 하부 배출 스트림의 온도에서 300 cSt 이하의 범위를 갖을 수 있다.
상기 증류탑(50)의 증류 비율이 0.01 내지 0.2인 경우에는 인화점 및 동점도가 모두 낮은 상황에서 인화점이 낮은 가벼운 물질을 제거함으로써, 동점도의 증가폭보다 인화점의 증가폭이 증가되므로 증류탑(50)의 하부 배출 스트림의 연소실로의 공급 시점에서의 인화점 및 동점도를 전술한 인화점 및 동점도 범위로 제어할 수 있다. 반면, 상기 증류탑(50)의 증류 비율이 0.01 미만인 경우에는 증류탑(50)의 하부 배출 스트림의 연소실로의 공급 시점에서 인화점이 증류탑(50)의 하부 배출 스트림의 연소실로의 공급 시점에서의 온도보다 25 ℃ 이상 높게 제어하는 것이 어렵고, 상기 증류탑(50)의 증류 비율이 0.2를 초과하는 경우에는 인화점 증가 폭보다 동점도 증가폭이 증가되기 때문에 동점도를 300 cSt 이하로 제어하기 어려운 문제가 있다.
이와 같이, 상기 증류탑(50)의 증류 비율을 조절함으로써, 상기 증류탑(50)의 하부 배출 스트림의 상기 연소실로의 공급 시점에서 인화점 및 동점도를 제어할 수 있으며, 이에 따라, 가스화 공정(S3)의 원료로 사용하기에 적합한 물성을 갖도록 할 수 있다.
한편, 예를 들어, 도 2에 도시된 바와 같이 상기 PFO 스트림을 전처리 공정(S2) 없이 직접 연소실로 공급하거나, 도 3에 도시된 바와 같이 상기 PGO 스트림을 전처리 공정(S2) 없이 직접 연소실로 공급하거나, 또는, 도 4에 도시된 바와 같이 상기 PGO 스트림 및 PFO 스트림의 혼합유 스트림을 본 발명에 따른 전처리 공정(S2) 없이 직접 연소실로 공급할 경우에는, 전술한 적정 범위의 동점도 및 인화점을 모두 만족하는 온도가 존재하지 않는 문제점이 발생할 수 있다. 이와 같이, 상기 적정 범위의 동점도 및 인화점 중 어느 하나라도 만족하지 않는 온도로 PFO 스트림, PGO 스트림, 또는 혼합유 스트림이 연소실로 공급될 경우에는, 연소실 내 차압이 상승하거나 분무가 원활하게 이루어지지 않아 연소 성능을 저하시킬 수 있고, 산소 과잉에 따른 폭발의 위험성을 높이게 되거나, 또는 연소 반응 발생 이전에 버너에서 불꽃이 생길 수 있고, 연소실 내 불꽃의 역화 현상에 의해 폭발 위험성이 존재하며 연소실의 내화물이 손상되는 문제가 발생될 수 있다.
일반적으로, PFO 스트림 및 PGO 스트림은 NCC 공정에서 가장 무거운 잔사유로서, 단순 연료로 사용되어왔으며, 이와 같이, 단순 연료로 사용되는 경우에는 조성 및 물성을 조절할 필요가 없었다. 그러나, 본 발명과 같이, 합성 가스의 원료로 사용하기 위해서는 특정한 물성, 예를 들어, 동점도와 인화점을 동시에 만족시켜야 한다. 그러나, PGO 스트림은 동점도가 만족되더라도 인화점이 너무 낮고, PFO 스트림은 인화점은 높더라도 동점도가 너무 높아서, 각각의 스트림은 동점도와 인화점을 동시에 만족시킬 수 없어 합성 가스의 원료로는 사용이 어려웠다. 또한, 상기 PFO 스트림 및 PGO 스트림 전체 스트림을 합성 가스의 원료로 사용할 경우, 일반적으로 PFO 스트림 및 PGO 스트림 전체 스트림의 유량 대비 PGO 스트림의 유량 비율은 0.35 내지 0.7 정도로, 이 경우에도 인화점 이하에서 가스화 공정의 원료로 사용하기 위한 동점도 조건을 만족시킬 수 없어 합성 가스의 원료로는 사용이 어려웠다. 이에 대해, 본 발명에서는 상기 PFO 스트림 및 PGO 스트림 전량을 증류탑(50)에 공급하여 전처리함으로써, 상기 증류탑(50) 하부 배출 스트림의 연소실로의 공급 시점에서, 상기 증류탑(50) 하부 배출 스트림의 인화점은 상기 공급 시점의 증류탑(50) 하부 배출 스트림의 온도보다 25 ℃ 이상 높은 범위로 제어함과 동시에, 동점도는 상기 공급 시점의 증류탑(50) 하부 배출 스트림의 온도에서 300 cSt 이하의 범위로 제어할 수 있었고, 이를 통해, 합성 가스의 원료로 사용하기 위한 조건을 만족시킬 수 있었다.
본 발명의 일 실시예에 따르면, 상기 증류탑(50) 하부 배출 스트림은 가스화 공정(S3)에 공급되기 전에 제4 열교환기(53)를 통과시킨 후 가스화 공정(S3)으로 공급할 수 있다. 이 경우, 상기 증류탑(50) 하부 배출 스트림의 가스화 공정(S3)으로의 공급 온도를 조절함과 동시에, 폐열로 버려질 상기 증류탑(50) 하부 배출 스트림의 현열을 열교환기를 이용하여 공정 내 재사용함으로써 공정 에너지를 절감시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 증류탑(50) 상부 배출 스트림을 BTX 제조 공정(S4)으로 공급하여 방향족 탄화수소를 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 증류탑(50)의 하부 배출 스트림은 C10+ 탄화수소의 함량이 80 중량% 이상 또는 80 중량% 내지 98 중량%이고, C8- 탄화수소의 함량이 5 중량% 이하 또는 0.01 중량% 내지 5 중량%이며, 상기 증류탑(50)의 상부 배출 스트림은 C6 내지 C8 방향족 탄화수소의 함량이 50 중량% 이상, 55 중량% 내지 95 중량% 또는 55 중량% 내지 85 중량%일 수 있다.
예를 들어, 상기 C8- 탄화수소는 펜탄, 펜텐, 펜타디엔, 메틸부텐, 사이클로펜탄, 사이클로펜텐, 헥산, 사이클로헥산, 헵탄, 메틸헥삭, 옥탄, 벤젠, 톨루엔, 자일렌 및 스티렌으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로, 상기 C8- 탄화수소는 전술한 C8- 탄화수소의 종류를 모두 포함하는 것일 수 있으며, 이에 한정되는 것은 아니다.
또한, 예를 들어, 상기 C10+ 탄화수소는 디사이클로펜타디엔, 나프탈렌, 메틸나프탈렌, 테트라메틸벤젠, 플루오렌 및 안트라센으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로, 상기 C10+ 탄화수소는 전술한 C10+ 탄화수소의 종류를 모두 포함하는 것일 수 있으며, 이에 한정되는 것은 아니다.
또한, 예를 들어, 상기 C6 내지 C8 방향족 탄화수소는 벤젠, 톨루엔, 자일렌 및 스티렌으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적인 예로, 상기 C6 내지 C8 방향족 탄화수소는 전술한 C6 내지 C8 방향족 탄화수소의 종류를 모두 포함하는 것일 수 있으며, 이에 한정되는 것은 아니다.
이와 같이, 상기 증류탑(50)의 하부 배출 스트림을 합성가스의 원료로서 사용하고, C6 내지 C8 방향족 탄화수소의 함량이 50 중량% 이상인 상기 증류탑(50)의 상부 배출 스트림을 BTX 제조 공정(S4)으로 공급함으로써, 열분해 연료유를 가스화 공정의 원료로 대체함과 동시에, 열분해 연료유 내 방향족 탄화수소를 회수하여 벤젠, 톨루엔 및 자일렌의 생산량을 증가시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 가스화 공정(S3) 내 연소실로 공급된 증류탑(50) 하부 배출 스트림을 700 ℃ 이상, 700 ℃ 내지 2000 ℃, 또는 800 ℃ 내지 1800 ℃의 온도에서 연소시키는 단계를 더 포함할 수 있다. 또한, 상기 증류탑(50) 하부 배출 스트림을 가스화제와 함께 상기 연소실로 공급할 수 있다. 이 때, 상기 가스화제는 산소, 공기, 수증기로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있으며, 구체적인 예로, 상기 가스화제는 산소 및 수증기일 수 있다.
이와 같이, 상기 증류탑(50) 하부 배출 스트림을 가스화제 존재 하에, 고온에서 연소시킴으로써, 합성가스가 제조될 수 있다. 본 발명의 제조방법에 따라 제조된 상기 합성가스는 일산화탄소와 수소를 포함하고, 이산화탄소, 암모니아, 황화수소, 시안화수소, 및 황화카르보닐로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 증류탑(50) 상부 배출 스트림은 RPG 스트림과 함께 BTX 제조 공정(S4)으로 공급되어 벤젠, 톨루엔 및 자일렌으로 이루어진 군으로부터 선택된 1종 이상을 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 증류탑 상부 배출 스트림은 RPG 스트림과 함께 BTX 제조 공정(S4)의 수첨 탈황부로 공급하여 별도로 공급되는 수소 및 촉매의 존재 하에 수첨 탈황 반응시킬 수 있다. 상기 촉매는 선택적 수소화가 가능한 촉매일 수 있다. 예를 들어, 상기 촉매는 팔라듐, 백금, 구리 및 니켈로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 경우에 따라서, 상기 촉매는 감마 알루미나, 활성탄 및 제올라이트로 이루어진 군으로부터 선택된 1종 이상의 담지체에 담지시켜 사용할 수 있다.
상기 수첨 탈황부 배출 스트림은 C5 분리 컬럼으로 공급될 수 있다. 상기 C5 분리 컬럼에서 C5- 방향족 탄화수소를 포함하는 상부 배출 스트림은 배출시키고, C6+ 방향족 탄화수소를 포함하는 하부 배출 스트림은 C7 분리 컬럼으로 공급할 수 있다.
상기 C7 분리 컬럼에서는 C7- 방향족 탄화수소를 포함하는 상부 배출 스트림은 추출 증류 컬럼으로 공급하고, C8+ 방향족 탄화수소를 포함하는 하부 배출 스트림은 자일렌 분리 컬럼으로 공급할 수 있다.
상기 추출 증류 컬럼에서는 추출 용매를 이용하여 상기 C7 분리 컬럼 상부 배출 스트림 내 포함된 방향족 탄화수소와 비방향족 탄화수소를 분리할 수 있다. 구체적으로, 상기 추출 증류 컬럼에서 상기 C7 분리 컬럼 상부 배출 스트림 내 방향족 탄화수소를 선택적으로 추출하여 하부 배출 스트림으로서 분리하고, 상부 배출 스트림으로서 비방향족 탄화수소를 분리할 수 있다. 예를 들어, 상기 추출 용매는 설포란, 알킬-설포란, N-포르밀 모르폴린, N-메틸 피롤리돈, 테트라에틸렌 글리콜, 트리에틸렌 글리콜 및 디에틸렌 글리콜로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 또한, 상기 추출 용매는 공용매(co-solvent)로서 물을 더 포함할 수 있다.
상기 추출 증류 컬럼 하부 배출 스트림은 C7- 방향족 탄화수소를 포함하는 것으로서, 벤젠 분리 컬럼으로 공급되어, 상기 벤젠 분리 컬럼 상부 배출 스트림으로부터 벤젠을 분리하고, 하부 배출 스트림은 톨루엔 분리 컬럼으로 공급할 수 있다. 이 때, 상기 벤젠 분리 컬럼으로 공급되는 추출 증류 컬럼 하부 배출 스트림은 추출 용매를 제거하기 위한 용매 회수 컬럼을 거친 후 벤젠 분리 컬럼으로 공급될 수 있다.
상기 벤젠 분리 컬럼 하부 배출 스트림은 C7 방향족 탄화수소를 포함하는 것으로서, 톨루엔 분리 컬럼으로 공급되어, 상기 톨루엔 분리 컬럼 상부 배출 스트림으로부터 톨루엔을 분리하고, 하부 배출 스트림은 자일렌 분리 컬럼으로 공급할 수 있다.
상기 자일렌 분리 컬럼에서는 C7 분리 컬럼 하부 배출 스트림과 톨루엔 분리 컬럼 하부 배출 스트림을 공급받아, 상부 배출 스트림으로부터 자일렌을 분리하고, 나머지 C9+ 탄화수소 중질 물질은 하부로부터 배출시킬 수 있다.
본 발명의 일 실시예에 따르면, 합성가스 및 방향족 탄화수소의 제조방법에서는 필요한 경우, 밸브, 펌프, 분리기 및 혼합기 등의 장치를 추가적으로 더 설치할 수 있다.
이상, 본 발명에 따른 합성가스 및 방향족 탄화수소의 제조방법을 기재 및 도면에 도시하였으나, 상기의 기재 및 도면의 도시는 본 발명을 이해하기 위한 핵심적인 구성만을 기재 및 도시한 것으로, 상기 기재 및 도면에 도시한 공정 및 장치 이외에, 별도로 기재 및 도시하지 않은 공정 및 장치는 본 발명에 따른 합성가스 및 방향족 탄화수소의 제조방법을 실시하기 위해 적절히 응용되어 이용될 수 있다.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
실시예
실시예 1 내지 5
도 1에 도시된 공정 흐름도에 따라, BTX 및 합성가스의 제조를 수행하였다.
구체적으로, 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 1%의 단으로부터 배출된 상부 배출 스트림을 NCC 후단 공정(미도시)으로 공급하고, 상기 NCC 후단 공정으로부터 RPG 스트림을 배출하였다. 또한, 상기 가솔린 정류탑(10) 전체 단수 대비 40%의 단으로부터 배출된 측부 배출 스트림을 제1 스트리퍼(20)에 공급한 후, 상기 제1 스트리퍼(20)의 하부로부터 열분해 가스유(PGO)를 포함하는 PGO 스트림을 배출하였고, 이 때, 상기 PGO 스트림 내 C10 내지 C12 탄화수소의 함량은 86 중량%로 확인하였다. 또한, 상기 가솔린 정류탑(10) 전체 단수 대비 100%의 단으로부터 배출된 하부 배출 스트림을 제2 스트리퍼(30)에 공급한 후, 상기 제2 스트리퍼(30)의 하부로부터 열분해 연료유(PFO)를 포함하는 PFO 스트림을 배출하였고, 이 때, 상기 PFO 스트림 내 C13+ 탄화수소의 함량은 89 중량%로 확인하였다. 또한, 상기 PGO 스트림의 인화점은 25.5 ℃이고 40 ℃에서의 동점도는 75 cSt였으며, 상기 PFO 스트림의 인화점은 98 ℃이고, 40 ℃에서의 동점도는 660 cSt였다.
상기 PGO 스트림 및 PFO 스트림을 혼합한 혼합유 스트림은 증류탑(50)으로 공급한 후, 상기 증류탑(50)의 증류 비율을 조절하여 증류탑(50)의 상부 배출 스트림을 배출시켰고, 증류탑(50)의 하부 배출 스트림은 산소 및 증기와 함께 가스화 공정(S3) 내 연소실로 공급하여, 수소 및 일산화탄소를 포함하는 합성가스를 제조하였다. 이 때, 상기 혼합유 스트림의 유량에 대한 PGO 스트림의 유량 비율은 0.42였고, 인화점은 70 ℃, 40 ℃에서의 동점도는 365 cSt였다. 또한, 상기 혼합유 스트림의 증류탑(50)의 환류비는 2.5로 제어하였다.
상기 RPG 스트림과 증류탑(50) 상부 배출 스트림을 혼합한 RPG 혼합 스트림은 BTX 제조 공정(S4)으로 공급하여, 수첨 탈황부, C5 분리 컬럼, C7 분리 컬럼, 추출 증류 컬럼, 벤젠 분리 컬럼, 톨루엔 분리 컬럼 및 자일렌 분리 컬럼을 이용하여 벤젠, 톨루엔 및 자일렌을 제조하였다.
하기 표 1에는 상기 증류탑(50)의 하부 배출 스트림 및 상부 배출 스트림 에서의 C6 내지 C8 방향족 탄화수소의 함량 비율, 상기 증류탑(50)의 증류 비율, 증류탑(50) 하부 배출 스트림의 연소실로의 공급 시점 온도 및 인화점을 측정하여 나타내었다. 또한, 상기 측정 결과에 따라 공정운전 기준 충족 여부를 확인하였다. 이 때, 상기 증류탑(50) 하부 배출 스트림의 연소실로의 공급 시점은 제4 열교환기(53)를 이용하여 동점도를 300 cSt로 제어하는 온도 조건으로 설정하였다. 구체적으로, 동점도를 300 cSt로 제어하는 온도 조건을 도출하기 위해, 해당 샘플의 동점도를 온도별로 측정한 뒤, 온도와 점도 관계식(Correlation)을 수립하여 내삽법(Interpolation)을 이용하여 계산하였다.
또한, 하기 표 3에는 상기 BTX 제조 공정(S4)에서 생산되는 벤젠, 톨루엔 및 자일렌의 생산량을 나타내었다.
동점도와 인화점은 하기와 같이 측정하였으며, 이는 실시예 및 비교예 모두에서 적용하였다.
(1) 동점도: 측정하고자 하는 샘플의 스트림으로부터 샘플을 수득하여 Anton Paar 社의 SVM 3001을 사용하여 ASTM D7042를 기준으로 측정하였다. 또한, 상기 각 샘플들은 동점도 측정 온도보다 10 ℃ 낮게 온도를 유지하고, 경질 물질(Light)의 기화를 막기위해 닫힌 용기에 샘플을 보관하여 기상 발생을 최소화하였다.
(2) 인화점: 측정하고자 하는 샘플의 스트림으로부터 샘플을 수득하여 TANAKA 社의 apm-8을 사용하여 ASTM D93을 기준으로 측정하였다. 또한, 상기 각 샘플들은 인화점 예상 온도보다 10 ℃ 낮게 온도를 유지하고, 경질 물질(Light)의 기화를 막기위해 닫힌 용기에 샘플을 보관하여 기상 발생을 최소화하였다.
비교예
비교예 1
도 2에 도시된 공정 흐름도에 따라, 합성가스의 제조를 수행하였다.
구체적으로, 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 100%의 단으로부터 배출된 하부 배출 스트림을 제2 스트리퍼(30)에 공급한 후, 상기 제2 스트리퍼(30)의 하부로부터 열분해 연료유(PFO)를 포함하는 PFO 스트림을 배출하였다.
상기 PFO 스트림은 산소 및 증기와 함께 가스화 공정(S3) 내 연소실로 공급하였다. 이 때, 상기 PFO 스트림 내 C13+의 함량은 89 중량%로 확인하였고, 상기 PFO 스트림의 인화점은 98 ℃이고, 40 ℃에서의 동점도는 660 cSt였다.
또한, 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 1%의 단으로부터 배출된 상부 배출 스트림을 NCC 후단 공정(미도시)으로 공급하고, 상기 NCC 후단 공정으로부터 RPG 스트림을 배출하였고, 상기 RPG 스트림은 BTX 제조 공정(S4)으로 공급하여, 수첨 탈황부, C5 분리 컬럼, C7 분리 컬럼, 추출 증류 컬럼, 벤젠 분리 컬럼, 톨루엔 분리 컬럼 및 자일렌 분리 컬럼을 이용하여 벤젠, 톨루엔 및 자일렌을 제조하였다.
하기 표 2에는 상기 PFO 스트림의 연소실로의 공급 시점 온도를 측정하여 나타내었다. 또한, 상기 측정 결과에 따라 공정운전 기준 충족 여부를 확인하였다. 이 때, 상기 PFO 스트림의 연소실로의 공급 시점은 열교환기를 이용하여 동점도를 300 cSt로 제어하는 온도 조건으로 설정하였다.
또한, 하기 표 3에는 상기 BTX 제조 공정(S4)에서 생산되는 벤젠, 톨루엔 및 자일렌의 생산량을 나타내었다.
비교예 2
도 3에 도시된 공정 흐름도에 따라, 합성가스의 제조를 수행하였다.
구체적으로, 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 40%의 단으로부터 배출된 측부 배출 스트림을 제1 스트리퍼(20)에 공급한 후, 상기 제1 스트리퍼(20)의 하부로부터 열분해 가스유(PGO)를 포함하는 PGO 스트림을 배출하였다.
상기 PGO 스트림은 산소 및 증기와 함께 가스화 공정(S3) 내 연소실로 공급하였다. 이 때, 상기 PGO 스트림 내 C10 내지 C12의 함량은 86 중량%로 확인하였고, 상기 PGO 스트림의 인화점은 25.5 ℃이고 40 ℃에서의 동점도는 75 cSt였다.
또한, 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 1%의 단으로부터 배출된 상부 배출 스트림을 NCC 후단 공정(미도시)으로 공급하고, 상기 NCC 후단 공정으로부터 RPG 스트림을 배출하였고, 상기 RPG 스트림은 BTX 제조 공정(S4)으로 공급하여, 수첨 탈황부, C5 분리 컬럼, C7 분리 컬럼, 추출 증류 컬럼, 벤젠 분리 컬럼, 톨루엔 분리 컬럼 및 자일렌 분리 컬럼을 이용하여 벤젠, 톨루엔 및 자일렌을 제조하였다.
하기 표 2에는 상기 PGO 스트림의 연소실로의 공급 시점 온도를 측정하여 나타내었다. 또한, 상기 측정 결과에 따라 공정운전 기준 충족 여부를 확인하였다. 이 때, 상기 PGO 스트림의 연소실로의 공급 시점은 열교환기를 이용하여 동점도를 300 cSt로 제어하는 온도 조건으로 설정하였다.
또한, 하기 표 3에는 상기 BTX 제조 공정(S4)에서 생산되는 벤젠, 톨루엔 및 자일렌의 생산량을 나타내었다.
비교예 3
도 4에 도시된 공정 흐름도에 따라, 합성가스의 제조를 수행하였다.
구체적으로, 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 40%의 단으로부터 배출된 측부 배출 스트림을 제1 스트리퍼(20)에 공급한 후, 상기 제1 스트리퍼(20)의 하부로부터 열분해 가스유(PGO)를 포함하는 PGO 스트림을 배출하였고, 이 때, 상기 PGO 스트림 내 C10 내지 C12의 함량은 86 중량%로 확인하였다. 상기 가솔린 정류탑(10)의 전체 단수 대비 100%의 단으로부터 배출된 하부 배출 스트림을 제2 스트리퍼(30)에 공급한 후, 상기 제2 스트리퍼(30)의 하부로부터 열분해 연료유(PFO)를 포함하는 PFO 스트림을 배출하였고, 이 때, 상기 PFO 스트림 내 C13+의 함량은 89 중량%로 확인하였다.
그런 다음, 상기 PGO 스트림 및 PFO 스트림을 혼합함으로써 혼합유 스트림을 생성하였다. 이 때, 상기 PGO 스트림의 인화점은 25.5 ℃이고 40 ℃에서의 동점도는 75 cSt였으며, 상기 PFO 스트림의 인화점은 98 ℃이고, 40 ℃에서의 동점도는 660 cSt였다. 또한, 상기 혼합유 스트림의 유량에 대한 PGO 스트림의 유량 비율은 0.42였다. 그런 다음, 상기 혼합유 스트림을 산소 및 증기와 함께 가스화 공정(S3) 내 연소실로 공급하였다.
또한, 상기 나프타 분해 공정(S1)의 가솔린 정류탑(10)의 전체 단수 대비 1%의 단으로부터 배출된 상부 배출 스트림을 NCC 후단 공정(미도시)으로 공급하고, 상기 NCC 후단 공정으로부터 RPG 스트림을 배출하였고, 상기 RPG 스트림은 BTX 제조 공정(S4)으로 공급하여, 수첨 탈황부, C5 분리 컬럼, C7 분리 컬럼, 추출 증류 컬럼, 벤젠 분리 컬럼, 톨루엔 분리 컬럼 및 자일렌 분리 컬럼을 이용하여 벤젠, 톨루엔 및 자일렌을 제조하였다.
하기 표 2에는 상기 혼합유 스트림의 인화점, 상기 혼합유 스트림의 연소실로의 공급 시점 온도를 측정하여 나타내었다. 또한, 상기 측정 결과에 따라 공정운전 기준 충족 여부를 확인하였다. 이 때, 상기 혼합유 스트림의 연소실로의 공급 시점은 열교환기를 이용하여 동점도를 300 cSt로 제어하는 온도 조건으로 설정하였다.
또한, 하기 표 3에는 상기 BTX 제조 공정(S4)에서 생산되는 벤젠, 톨루엔 및 자일렌의 생산량을 나타내었다.
비교예 4
상기 실시예 1에서, 상기 증류탑(50)의 상부 배출 스트림을 BTX 제조 공정(S4)으로 공급하지 않은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 합성가스 및 방향족 탄화수소를 제조하였다.
또한, 하기 표 3에는 상기 BTX 제조 공정(S4)에서 생산되는 벤젠, 톨루엔 및 자일렌의 생산량을 나타내었다.
증류
비율
C6~C8 방향족
탄화수소 비율
하부
배출
스트림 공급
시점
온도
(℃)
하부
배출
스트림
공급
시점
동점도
(cSt)
하부
배출
스트림 인화점
(℃)
공정운
전 기준 충족
여부
상부
배출
스트림

하부
배출
스트림


실시예 1 0.005 0 1 48.3 300 73 X
실시예 2 0.01 0.08 0.92 49.2 300 75 O
실시예 3 0.1 1 0 60 300 90.5 O
실시예 4 0.2 1 0 73.3 300 99 O
실시예 5 0.3 1 0 97.6 300 105.5 X
스트림
인화점(℃)
스트림 공급
시점
동점도(cSt)
스트림 공급
시점 온도(℃)
공정운전 기준
충족 여부
비교예 1
(PFO)
98 300 78 X
비교예 2
(PGO)
25.5 300 14 X
비교예 3
(혼합유)
70 300 47 X
벤젠 생산량
(%)
톨루엔 생산량
(%)
자일렌 생산량
(%)
실시예 1 100.0 100.0 100.0
실시예 2 100.1 100.1 100.0
실시예 3 100.2 100.8 109.3
실시예 4 100.2 100.8 109.3
실시예 5 100.2 100.8 109.3
비교예 1 100.0 100.0 100.0
비교예 2 100.0 100.0 100.0
비교예 3 100.0 100.0 100.0
비교예 4 100.0 100.0 100.0
상기 표 1 및 표 2에서, 공정운전 기준 충족 여부는 실시예 1 내지 5 및 비교예 1 내지 3 각각에서 연소실로 공급되는 스트림에 대하여, 상기 연소실로의 공급 시점에서의 동점도가 300 cSt가 되도록 하는 상기 연소실로의 공급 시점에서의 온도가 인화점보다 25 ℃ 이상 낮은 경우 O, 그렇지 못하는 경우 X로 표시하였다.
또한, 상기 표 3에서, 벤젠, 톨루엔 및 자일렌 생산량 각각에 대해서는 비교예 1에서의 벤젠, 톨루엔 및 자일렌 생산량(100%)을 기준으로 계산된 상대적인 벤젠, 톨루엔 및 자일렌 생산량 비율로 나타내었다.
상기 표 1 및 표 2를 참조하면, 본 발명의 합성가스의 제조방법에 따라, 증류탑(50)의 증류 비율을 적정 범위(0.01 내지 0.2)로 조절하여 하부 배출 스트림을 생성한 후 상기 증류탑(50) 하부 배출 스트림을 가스화 공정(S3)을 위한 연소실로 공급한 실시예 2 내지 4의 경우, 상기 증류탑(50) 하부 배출 스트림의 연소실로의 공급 시점에서, 상기 증류탑(50) 하부 배출 스트림의 인화점은 상기 연소실로의 공급 시점의 증류탑(50) 하부 배출 스트림의 온도보다 25 ℃ 이상 높고, 동점도는 상기 연소실로의 공급 시점의 증류탑(50) 하부 배출 스트림의 온도에서 300 cSt 이하의 범위를 갖는 것을 확인할 수 있다. 이와 같은 인화점 및 동점도 범위를 동시에 갖음으로써, 가스화 공정(S3)의 원료로 사용하기 위한 공정운전 조건을 충족함을 확인하였다.
특히, 상기 도 1에 도시된 바와 같이, 전처리 공정(S2)에서 증류탑(50)의 증류 비율이 0.03 내지 0.15 범위 내로 제어된 실시예 3은 증류탑(50) 하부 배출 스트림의 연소실로의 공급 시점에서, 상기 증류탑(50) 하부 배출 스트림의 인화점은 상기 연소실로의 공급 시점의 증류탑(50) 하부 배출 스트림의 온도보다 30 ℃ 이상 높아 보다 안정적인 운전이 가능하다는 것을 확인하였다.
또한, 상기 증류탑(50)의 증류 비율을 적정 범위(0.01 내지 0.2)로 조절하지 않은 상태에서 배출되는 증류탑(50) 하부 배출 스트림을 형성한 실시예 1 및 5를 보면, 상기 연소실로의 공급 시점의 증류탑(50) 하부 배출 스트림 온도에서 동점도를 300 cSt로 제어할 때, 상기 연소실로의 공급 시점의 증류탑(50) 하부 배출 스트림의 온도가 인화점보다 25 ℃ 이상 낮게 제어되지 못하는 것을 알 수 있다.
반면, 도 2에 도시된 바와 같이 상기 PFO 스트림을 전처리 공정(S2) 없이 직접 상기 연소실로 공급하거나(비교예 1), 도 3에 도시된 바와 같이 상기 PGO 스트림을 전처리 공정(S2) 없이 직접 상기 연소실로 공급하거나(비교예 2), 또는 상기 도 4에 도시된 바와 같이 PGO 스트림 및 PFO 스트림의 혼합유 스트림을 본 발명에 따른 전처리 공정(S2) 없이 직접 연소실로 공급할 경우(비교예 3)에는 전술한 적정 범위의 동점도 및 인화점을 모두 만족하는 온도가 존재하지 않음을 확인할 수 있다. 이와 같이, 적정 범위의 동점도 및 인화점을 모두 만족하지 못하는 비교예 1 내지 3 각각 스트림은 가스화 공정(S3)의 원료로 사용하기 위한 공정운전 조건을 충족하지 못하는 것을 확인하였다.
상기 적정 범위의 동점도 및 인화점 중 어느 하나라도 만족하지 않는 온도로 가스화 공정(S3)의 원료가 연소실로 공급될 경우에는, 연소실 내 차압이 상승하거나 분무가 원활하게 이루어지지 않아 연소 성능을 저하시킬 수 있고, 산소 과잉에 따른 폭발의 위험성을 높이게 되거나, 또는 연소 반응 발생 이전에 버너에서 불꽃이 생길 수 있고, 연소실 내 불꽃의 역화 현상에 의해 폭발 위험성이 존재하며 연소실의 내화물이 손상되는 문제가 발생되는 문제가 있다.
또한, 상기 표 3을 참조하면, 상기 실시예 1 내지 5에서, 상기 증류탑(50)의 증류 비율에 따라서 상기 BTX 제조 공정(S4)에서의 벤젠, 톨루엔 및 자일렌의 생산량이 변하며, 비교예 대비 생산량이 증가하는 것을 확인할 수 있다. 구체적으로, 상기 증류탑(50)의 증류 비율이 0.01 이상으로 제어되는 경우에 증류탑(50) 상부 배출 스트림으로 C6 내지 C8 방향족 탄화수소가 배출되며, 특히, 상기 증류탑(50)의 증류 비율이 0.1 이상인 경우 C6 내지 C8 방향족 탄화수소 전량이 증류탑(50)의 상부로 배출되는 것을 확인할 수 있었다. 따라서, 상기 증류탑(50)의 증류 비율을 0.1 내지 0.2로 제어하는 것이 합성 가스와 더불어 BTX를 제조하기 위한 최적의 공정 조건임을 확인할 수 있었다.

Claims (13)

  1. 나프타 분해 공정(NCC)으로부터 배출되는 열분해 연료유(Pyrolysis Fuel Oil, PFO)를 포함하는 PFO 스트림 및 열분해 가스유(Pyrolysis Gas Oil, PGO)를 포함하는 PGO 스트림을 피드 스트림으로서 증류탑으로 공급하는 단계(S10); 및
    상기 증류탑의 하부 배출 스트림을 가스화 공정을 위한 연소실로 공급하고, 상부 배출 스트림을 BTX 제조 공정으로 공급하는 단계(S20)를 포함하는 합성가스 및 방향족 탄화수소의 제조방법.
  2. 제1항에 있어서,
    상기 증류탑으로 공급되는 피드 스트림의 유량에 대한, 상기 증류탑의 상부 배출 스트림의 유량 비율은 0.01 내지 0.2인 합성가스 및 방향족 탄화수소의 제조방법.
  3. 제1항에 있어서,
    상기 증류탑으로 공급되는 피드 스트림의 유량에 대한, 상기 증류탑의 상부 배출 스트림의 유량 비율은 0.1 내지 0.2인 합성가스 및 방향족 탄화수소의 제조방법.
  4. 제1항에 있어서,
    상기 증류탑의 하부 배출 스트림은 상기 연소실로의 공급 시점에서의 동점도가 300 cSt 이하이고,
    상기 증류탑의 하부 배출 스트림의 인화점은 상기 연소실로의 공급 시점에서의 온도보다 25 ℃ 이상 높은 합성가스 및 방향족 탄화수소의 제조방법.
  5. 제1항에 있어서,
    상기 증류탑의 하부 배출 스트림의 연소실로의 공급 시점 온도는 20 ℃ 내지 90 ℃인 합성가스 및 방향족 탄화수소의 제조방법.
  6. 제1항에 있어서,
    상기 증류탑의 하부 배출 스트림을 상기 연소실로 공급하기 전에 제4 열교환기를 통과시키는 합성가스 및 방향족 탄화수소의 제조방법.
  7. 제1항에 있어서,
    상기 PGO 스트림은 C10 내지 C12의 탄화수소를 70 중량% 이상 포함하고,
    상기 PFO 스트림은 C13+ 탄화수소를 70 중량% 이상 포함하는 합성가스 및 방향족 탄화수소의 제조방법.
  8. 제1항에 있어서,
    상기 PGO 스트림의 인화점은 10 내지 50 ℃이고,
    상기 PFO 스트림의 인화점은 70 내지 200 ℃인 합성가스 및 방향족 탄화수소의 제조방법.
  9. 제1항에 있어서,
    상기 PGO 스트림은 40 ℃에서의 동점도가 1 내지 200 cSt이고,
    상기 PFO 스트림은 40 ℃에서의 동점도가 400 내지 100,000 cSt인 합성가스 및 방향족 탄화수소의 제조방법.
  10. 제1항에 있어서,
    상기 나프타 분해 공정(NCC)으로부터 배출되는 열분해 가솔린(Raw Pyrolysis Gasoline, RPG)을 포함하는 RPG 스트림을 BTX 제조 공정으로 공급하는 합성가스 및 방향족 탄화수소의 제조방법.
  11. 제1항에 있어서,
    상기 PGO 스트림은 상기 나프타 분해 공정의 가솔린 정류탑의 측부로부터 배출된 측부 배출 스트림을 제1 스트리퍼에 공급한 후, 상기 제1 스트리퍼의 하부로부터 배출된 하부 배출 스트림이고,
    상기 PFO 스트림은 상기 나프타 분해 공정의 가솔린 정류탑의 하부로부터 배출된 하부 배출 스트림을 제2 스트리퍼에 공급한 후, 상기 제2 스트리퍼의 하부로부터 배출된 하부 배출 스트림인 합성가스 및 방향족 탄화수소의 제조방법.
  12. 제11항에 있어서,
    상기 가솔린 정류탑의 하부 배출 스트림은 상기 가솔린 정류탑의 전체 단수 대비 90% 이상의 단에서 배출되고,
    상기 가솔린 정류탑의 측부 배출 스트림은 상기 가솔린 정류탑의 전체 단수 대비 10% 내지 70%의 단에서 배출되는 합성가스 및 방향족 탄화수소의 제조방법.
  13. 제1항에 있어서,
    상기 증류탑의 환류비는 0.01 내지 10인 합성가스 및 방향족 탄화수소의 제조방법.
PCT/KR2021/018817 2021-06-24 2021-12-11 합성가스 및 방향족 탄화수소의 제조방법 WO2022270699A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022550991A JP7436121B2 (ja) 2021-06-24 2021-12-11 合成ガスおよび芳香族炭化水素の製造方法
MX2022010765A MX2022010765A (es) 2021-06-24 2021-12-11 Metodo para preparar gas de sintesis e hidrocarburo aromatico.
EP21920105.0A EP4174018A4 (en) 2021-06-24 2021-12-11 PROCESS FOR PRODUCING SYNTHESIS GAS AND AROMATIC HYDROCARBON
US17/799,909 US20230227308A1 (en) 2021-06-24 2021-12-11 Method for preparing synthesis gas and aromatic hydrocarbon
BR112022017321A BR112022017321A2 (pt) 2021-06-24 2021-12-11 Método para preparar gás de síntese e hidrocarboneto aromático
CN202180017851.5A CN115989308B (zh) 2021-06-24 2021-12-11 制备合成气和芳烃的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210082382A KR20230000227A (ko) 2021-06-24 2021-06-24 합성가스 및 방향족 탄화수소의 제조방법
KR10-2021-0082382 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270699A1 true WO2022270699A1 (ko) 2022-12-29

Family

ID=84544485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018817 WO2022270699A1 (ko) 2021-06-24 2021-12-11 합성가스 및 방향족 탄화수소의 제조방법

Country Status (9)

Country Link
US (1) US20230227308A1 (ko)
EP (1) EP4174018A4 (ko)
JP (1) JP7436121B2 (ko)
KR (1) KR20230000227A (ko)
CN (1) CN115989308B (ko)
BR (1) BR112022017321A2 (ko)
MX (1) MX2022010765A (ko)
TW (1) TW202313531A (ko)
WO (1) WO2022270699A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862899A (en) * 1972-11-07 1975-01-28 Pullman Inc Process for the production of synthesis gas and clean fuels
JPH01252696A (ja) * 1988-02-11 1989-10-09 Shell Internatl Res Maatschappij Bv 残留炭化水素油を熱クラッキングする方法
EP0916739A2 (en) * 1997-11-03 1999-05-19 Texaco Development Corporation Gasification process and plant for direct reduction reactors
US20090159494A1 (en) * 2007-12-24 2009-06-25 Uop Llc A Corporation Of The State Of Delaware Hydrocracking process for fabricating jet fuel from diesel fuel
US20100294994A1 (en) * 2007-11-23 2010-11-25 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons
US20190203130A1 (en) * 2017-12-29 2019-07-04 Lummus Technology Llc Conversion of heavy fuel oil to chemicals

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050303A (ja) 2006-08-24 2008-03-06 Mitsubishi Chemicals Corp 蒸留系の制御方法、制御システム及び制御プログラム
US20120291351A1 (en) 2011-05-16 2012-11-22 Lawrence Bool Reforming methane and higher hydrocarbons in syngas streams
EA030883B1 (ru) * 2013-07-02 2018-10-31 Сауди Бейсик Индастриз Корпорейшн Способ получения легких олефинов и ароматических соединений из углеводородного сырья
KR20170089253A (ko) 2016-01-26 2017-08-03 성균관대학교산학협력단 분해 가스 오일을 이용한 수소 및 메탄 가스 생성 공정
US10689587B2 (en) * 2017-04-26 2020-06-23 Saudi Arabian Oil Company Systems and processes for conversion of crude oil
EP3689843A1 (en) * 2019-02-01 2020-08-05 Basf Se A method for producing an aromatic hydrocarbon or a mixture of aromatic hydrocarbons from a low molecular hydrocarbon or a mixture of low molecular hydrocarbons
KR20210022870A (ko) * 2019-08-21 2021-03-04 주식회사 엘지화학 스티렌 및 벤젠의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862899A (en) * 1972-11-07 1975-01-28 Pullman Inc Process for the production of synthesis gas and clean fuels
JPH01252696A (ja) * 1988-02-11 1989-10-09 Shell Internatl Res Maatschappij Bv 残留炭化水素油を熱クラッキングする方法
EP0916739A2 (en) * 1997-11-03 1999-05-19 Texaco Development Corporation Gasification process and plant for direct reduction reactors
US20100294994A1 (en) * 2007-11-23 2010-11-25 Eni S.P.A. Process for the production of synthesis gas and hydrogen starting from liquid or gaseous hydrocarbons
US20090159494A1 (en) * 2007-12-24 2009-06-25 Uop Llc A Corporation Of The State Of Delaware Hydrocracking process for fabricating jet fuel from diesel fuel
US20190203130A1 (en) * 2017-12-29 2019-07-04 Lummus Technology Llc Conversion of heavy fuel oil to chemicals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174018A4 *

Also Published As

Publication number Publication date
CN115989308B (zh) 2024-07-26
BR112022017321A2 (pt) 2023-01-17
CN115989308A (zh) 2023-04-18
JP2023534574A (ja) 2023-08-10
MX2022010765A (es) 2023-03-14
JP7436121B2 (ja) 2024-02-21
KR20230000227A (ko) 2023-01-02
EP4174018A4 (en) 2023-12-20
TW202313531A (zh) 2023-04-01
EP4174018A1 (en) 2023-05-03
US20230227308A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
CN102348784A (zh) 由含有芳香族化合物的烃馏分回收纯芳香族化合物的方法
WO2022164007A1 (ko) 합성가스의 제조방법
WO2022270699A1 (ko) 합성가스 및 방향족 탄화수소의 제조방법
WO2022270700A1 (ko) 합성가스 및 방향족 탄화수소의 제조방법
WO2022270702A1 (ko) 합성가스의 제조방법
WO2022270701A1 (ko) 합성가스의 제조방법
WO2022164009A1 (ko) 합성가스의 제조방법
WO2021256623A1 (ko) 방향족 탄화수소의 제조방법
WO2021256622A1 (ko) 방향족 탄화수소 제조장치
WO2022164006A1 (ko) 합성가스의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021920105

Country of ref document: EP

Effective date: 20220726

WWE Wipo information: entry into national phase

Ref document number: 202217047643

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022550991

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017321

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022017321

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220829

NENP Non-entry into the national phase

Ref country code: DE