WO2022270201A1 - Gas analysis device - Google Patents

Gas analysis device Download PDF

Info

Publication number
WO2022270201A1
WO2022270201A1 PCT/JP2022/021337 JP2022021337W WO2022270201A1 WO 2022270201 A1 WO2022270201 A1 WO 2022270201A1 JP 2022021337 W JP2022021337 W JP 2022021337W WO 2022270201 A1 WO2022270201 A1 WO 2022270201A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
light
gas
wavelength range
intensity
Prior art date
Application number
PCT/JP2022/021337
Other languages
French (fr)
Japanese (ja)
Inventor
卓司 生田
健太郎 石田
佳洋 横田
雅彦 藤原
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2023529719A priority Critical patent/JPWO2022270201A1/ja
Publication of WO2022270201A1 publication Critical patent/WO2022270201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the present invention relates to a gas analyzer that analyzes component gases contained in sample gas.
  • predetermined component gases e.g., sulfur oxides (SO x ), nitrogen oxides (NO x ).
  • SO x sulfur oxides
  • NO x nitrogen oxides
  • This gas analyzer includes a measurement cell into which a sample gas is introduced, a light source that emits measurement light toward the measurement cell, and a sensor that measures the intensity of the measurement light that has passed through the measurement cell.
  • the measurement light is emitted toward the measurement cell while the sample gas is introduced into the measurement cell, and the intensity of the measurement light after passing through the sample gas in the measurement cell is measured by the sensor.
  • Analysis of the component gas is performed based on the measured intensity of the measurement light.
  • the component gas is analyzed on the premise that the relationship between the intensity of the measurement light after passing through the sample gas and the information about the concentration of the component gas does not change from a predetermined relationship.
  • the relationship between the intensity of the measurement light measured by the sensor and the information about the concentration of the component gas may vary from the predetermined relationship. For example, when the concentration of the component gas is high, the amount of change in the intensity of the measurement light with respect to the change in the concentration of the component gas is smaller than the amount of change in the intensity of the measurement light when the concentration of the component gas is low.
  • the above problem is solved by separately providing an apparatus for low-concentration analysis in which the optical path length of light passing through the component gas is long and an apparatus for high-concentration analysis in which the optical path length of light passing through the component gas is shortened. It is also possible to solve it by However, in this case, two separate devices are provided, which causes problems such as an increase in the size of the analysis device, an increase in the cost of the analysis device, and an increase in power consumption of the analysis device.
  • An object of the present invention is to accurately analyze component gases over a wide concentration range in an analyzer that analyzes component gases using the light absorption characteristics of component gases.
  • a gas analyzer is an apparatus for analyzing component gases contained in a sample gas.
  • a gas analyzer includes a measurement cell, a light source, a separation member, a first sensor section, a second sensor section, and a calculation section.
  • a sample gas is introduced into the interior of the measurement cell.
  • a light source emits measuring light into the interior of the measuring cell.
  • the separation member separates the measurement light that has passed through the measurement cell into first component light and third component light including at least the second component light.
  • the first component light includes components in the first wavelength range.
  • the first wavelength range includes the wavelength range most absorbed by the component gas in one specific wavelength range absorbed by the component gas and is narrower than the specific wavelength range.
  • the second component light includes components in a second wavelength range that is included in the specific wavelength range but not included in the first wavelength range.
  • the first sensor unit measures the intensity of the first component light.
  • the second sensor section measures the intensity of the second component light.
  • the calculation unit calculates information about the component gas in the low concentration range based on the intensity of the first component light measured by the first sensor unit. Also, the calculation unit calculates information about the component gas in the high concentration range based on the intensity of the second component light measured by the second sensor unit.
  • the wide concentration range included in the sample gas can be obtained.
  • component gas can be analyzed with high accuracy.
  • the above gas analyzer may further include a gas switching unit.
  • the gas switching unit switches and introduces a sample gas and a reference gas into the measurement cell.
  • a reference gas is a gas that does not contain component gases. Since the reference gas does not contain any component gas, the intensity of the measurement light when the reference gas is introduced into the measurement cell becomes a background to the intensity of the measurement light when the sample gas is introduced into the measurement cell. Therefore, for example, when calculating the information on the component gas, the information on the component gas can be calculated more accurately by considering the intensity of the measurement light when the reference gas is introduced into the measurement cell.
  • the separation member may be a bandpass filter that transmits the first component light and reflects the third component light. Thereby, the first component light containing the components in the first wavelength range and the third component light containing components outside the first wavelength range can be reliably separated.
  • the first sensor section may include a first pneumatic detector capable of measuring the intensity of light in a specific wavelength range. This allows selective measurement of the intensity of the first component light containing the component in the specific wavelength range.
  • the first sensor section may include a first transmission filter that transmits light in a specific wavelength range, and a thermal solid-state sensor or semiconductor sensor that measures the intensity of light that has passed through the first transmission filter.
  • the second sensor section may include a second pneumatic detector capable of measuring the intensity of light in a specific wavelength range. Thereby, it is possible to selectively measure the intensity of the second component light including the component in the specific wavelength range among the third component light.
  • the second sensor section may include a second transmission filter that is provided between the separation member and the second pneumatic detector and that transmits light in a specific wavelength range.
  • a second transmission filter that is provided between the separation member and the second pneumatic detector and that transmits light in a specific wavelength range.
  • the second sensor section may include a third transmission filter that transmits light in a specific wavelength range, and a thermal solid-state sensor or semiconductor sensor that measures the intensity of light that has passed through the third transmission filter.
  • the above gas analyzer may further include a fourth transmission filter.
  • a fourth transmission filter is provided between the measurement cell and the separation member and transmits light in a specific wavelength range. Thereby, the light containing only the components in the specific wavelength range in the measurement light can be incident on the separation member. As a result, the separation member can separate the first component light and the component light (that is, the second component light) containing the component in the specific wavelength range among the third component light.
  • the first sensor section and the second sensor section may be thermal solid-state sensors or semiconductor sensors that measure the intensity of light in a specific wavelength range. This eliminates the need to provide a transmission filter for each of the first sensor section and the second sensor section, so that the first sensor section and the second sensor section can be configured at low cost.
  • the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas does not change from a predetermined relationship over a wide concentration range. It can accurately analyze component gases in a wide range of concentrations.
  • FIG. 4 is a diagram showing an example of a transmission spectrum and a reflection spectrum of a separation member; The figure which shows the intensity spectrum of each component light.
  • the figure which shows the structure of a control part. 4 is a flow chart showing an analysis operation of a component gas;
  • FIG. 4 is a diagram showing the configuration of a gas analyzer of modification 1;
  • FIG. 10 is a diagram showing the configuration of a gas analyzer according to Modification 2;
  • FIG. 1 is a diagram showing the configuration of a gas analyzer.
  • the gas analyzer 100 can detect, for example, the atmosphere, exhaust gas flowing through a flue, process gas generated in various processes, exhaust gas generated by combustion of waste, exhaust gas generated by combustion of a boiler, gas filled in a gas cylinder, and the like. This device analyzes the component gas contained in the sample gas Gs by using the light absorption characteristics of the component gas.
  • the gas analyzer 100 emits the measurement light Lm into a space alternately filled with the sample gas Gs and the reference gas Gr, and the intensity of the measurement light Lm after passing through the sample gas Gs and the reference gas Gr is is measured, and based on the difference between the intensity of the measurement light Lm measured when the sample gas Gs is filled and the intensity of the measurement light Lm measured when the reference gas Gr is filled, the sample Information (for example, concentration) on the component gas contained in the gas Gs is calculated.
  • the reference gas Gr is a gas containing no component gas.
  • the reference gas Gr is, for example, nitrogen gas (N 2 ), purified air (from which component gases or the like are removed), or the like.
  • the intensity of the measurement light Lm that has passed through the space filled with the reference gas Gr is background to the intensity of the measurement light Lm that has passed through the space filled with the sample gas Gs. becomes. Therefore, based on the difference between the intensity of the measurement light Lm that has passed through the space filled with the sample gas Gs and the intensity of the measurement light Lm that has passed through the space filled with the reference gas Gr, By calculating the information about the component gas, the information about the component gas can be calculated more accurately.
  • Component gases that can be analyzed by the gas analyzer 100 include, for example, carbon dioxide (CO 2 ), carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxide (NO x ) gas (e.g., monoxide nitrogen (NO), nitrogen dioxide ( NO2), nitrous oxide ( N2O), etc.), hydrocarbon gases (eg, methane ( CH4), propane ( C3H8 ), etc.).
  • CO 2 carbon dioxide
  • CO carbon monoxide
  • SO 2 sulfur dioxide
  • NO x nitrogen oxide
  • hydrocarbon gases eg, methane ( CH4), propane ( C3H8 ), etc.
  • the component gas is carbon dioxide (CO 2 ). Even when the other gases listed above are used as component gases, the gas analyzer 100 has substantially the same configuration as the configuration described below.
  • the analyzer includes a measurement cell 1, a gas switching unit 2, a light source 3, a separation member 5, a first sensor unit 7, a second sensor unit 9, a control unit 11, Mainly provide
  • the measurement cell 1 is a hollow member into which the sample gas Gs or the reference gas Gr can be introduced.
  • the measurement cell 1 has an inlet 1a through which the sample gas Gs or the reference gas Gr is introduced, and an outlet 1b through which the introduced gas is discharged to the outside.
  • Infrared transmission windows (for example, calcium fluoride crystal windows) are attached to both ends of the measuring cell 1 in the length direction to form a sealing structure.
  • a space inside the hollow member into which the sample gas Gs or the reference gas Gr is introduced is called a measurement space Sp.
  • a pump (not shown) connected to the outlet 1b sucks the sample gas Gs or the reference gas Gr into the measurement space Sp through the inlet 1a.
  • the sample gas Gs or the reference gas Gr can be introduced into the measurement space Sp by pressurizing it. In this case, it is not particularly necessary to suck gas from the discharge port 1b.
  • the optical path length of the measurement light Lm in the measurement space Sp of the measurement cell 1 is such that the measurement light Lm passing through the measurement space Sp is sufficiently absorbed by the component gas even if the concentration of the component gas contained in the sample gas Gs is low. It is preferable to have a length of a certain degree. Therefore, the measuring cell 1 has a certain length.
  • a plurality of mirrors may be provided in the measurement space Sp to multiple-reflect the measurement light Lm so that the measurement light Lm travels back and forth in the measurement space Sp a plurality of times. You may let
  • the gas switching unit 2 alternately switches and introduces the sample gas Gs and the reference gas Gr into the measurement space Sp of the measurement cell 1 at a constant time cycle.
  • the gas switching unit 2 enables gas communication between the gas line to which the sample gas Gs is supplied and the introduction port 1a, or enables gas communication between the gas line to which the reference gas Gr is supplied and the introduction port 1a. or a solenoid valve capable of alternately switching between
  • the light source 3 is provided at one end of the measuring cell 1 in the length direction.
  • the light source 3 radiates into the measurement space Sp of the measurement cell 1 measurement light Lm containing at least a component in a wavelength range that can be absorbed by the component gas. Since carbon dioxide is used as the component gas in this embodiment, the measurement light Lm in this embodiment is infrared light. Any light source can be used as the light source 3 as long as it can emit infrared light. Note that the wavelength range of the measurement light Lm can be appropriately changed according to the type of component gas. In addition, any light source can be used as the light source 3 according to the wavelength range that the measurement light Lm should have.
  • the separation member 5 converts the measurement light Lm that has passed through the measurement space Sp of the measurement cell 1 into a first component light CL1 used for analyzing component gases in the low concentration range and a second component light CL1 used for analyzing component gases in the high concentration range. and a third component light CL3 including at least the light CL2.
  • the separation member 5 is a bandpass filter having a transmission spectrum and a reflection spectrum as shown in FIG.
  • FIG. 2 is a diagram showing an example of the transmission spectrum and reflection spectrum of the separation member.
  • the wavelength range (referred to as a specific wavelength range) of one specific absorption spectrum (absorbance) absorbed by the component gas is ⁇ 1 or more and ⁇ 2 or less, and the peak of the absorption spectrum is ⁇ 3 ( ⁇ 1 ⁇ 3 ⁇ 2) or more and ⁇ 4 ( ⁇ 1 ⁇ 4 ⁇ 2) or less, the separation member 5 transmits light in the wavelength range of ⁇ 3 or more and ⁇ 4 or less.
  • the separation member 5 transmits component light that includes a wavelength range that is most absorbed by the component gas in the specific wavelength range and that includes components in the first wavelength range narrower than the specific wavelength range.
  • the "wavelength range most absorbed by a component gas" includes the peak position of one particular absorption spectrum (absorbance) of the component gas.
  • the component light containing the components in the first wavelength range most absorbed by the component gas is sufficiently absorbed even if the concentration of the component gas contained in the sample gas Gs is low. It also exhibits high sensitivity to Further, when the concentration of the component gas is low, the relationship between the information on the concentration of the component gas and the intensity of the component light measured by the sensor is constant. Therefore, in the present embodiment, the component light transmitted by the separation member 5 is defined as the first component light CL1 used for analyzing component gases in the low concentration range. Specifically, as shown in FIG. 3, the first component light CL1 has intensity within a wavelength range of ⁇ 3 or more and ⁇ 4 or less (that is, the first wavelength range).
  • FIG. 3 is a diagram showing the intensity spectrum of each component light.
  • the reflection spectrum of the separation member 5 has characteristics opposite to the above transmission spectrum. That is, the separation member 5 separates the component light (referred to as third component light CL3) from the measurement light Lm that has passed through the measurement space Sp of the measurement cell 1, other than the first component light CL1 including the component in the first wavelength range. reflect.
  • the third component light CL3 includes component light having a wavelength less than ⁇ 3 and component light having a wavelength greater than ⁇ 4 in the measurement light Lm. That is, the first component light CL1 is not included in the third component light CL3.
  • the reflection spectrum of the separating member 5 partially includes components in a specific wavelength range. That is, the third component light CL3 reflected by the separation member 5 includes component light that is not included in the first wavelength range but is included in the specific wavelength range. Since this component light is included in a specific wavelength range, it is absorbed by the component gas, but the sensitivity to the component gas is low. This is because this component light is component light in the "bottom" wavelength range of the specific wavelength range, and light absorption by the component gas is smaller than that of the first component light CL1.
  • the component light not included in the first wavelength range but included in the specific wavelength range, out of the third component light CL3, is used for the analysis of the component gas in the high-concentration range.
  • the second component light CL2 has a wavelength range of ⁇ 1 or more and ⁇ 3 or less and a wavelength range of ⁇ 4 or more and ⁇ 2 or less (within the second wavelength range). has a significant intensity in
  • the separation member 5 which is a bandpass filter, can reliably separate the first component light CL1 containing components in the first wavelength range and the third component light CL3 containing components outside the first wavelength range.
  • the band-pass filter having the characteristics described above may be, for example, a thin film of germanium (Ge) and monoxide on a silicon (Si) substrate.
  • a bandpass filter having a multi-layer structure in which thin films of silicon (SiO) are alternately deposited can be used.
  • the configuration of the bandpass filter can be appropriately changed according to the wavelength range of the measurement light Lm, the type of component gas, and the like.
  • the separation member 5 may be any member other than the bandpass filter as long as it can separate the measurement light Lm into the first component light CL1 and the third component light CL3 (second component light CL2).
  • the first sensor unit 7 measures the intensity of the first component light CL1 transmitted by the separation member 5.
  • the first sensor unit 7 has a sealed cell 7b containing a component gas (carbon dioxide in this embodiment), and a first pneumatic sensor capable of measuring the intensity of light in the above specific wavelength range.
  • Detector 7a By using the first pneumatic detector 7a as the first sensor section 7, the intensity of the first component light CL1 included in the specific wavelength range can be selectively measured.
  • selectivity means that while the measurement sensitivity is high for the intensity of light in a specific wavelength range, the measurement sensitivity for other light intensities is low.
  • the second sensor unit 9 measures the intensity of the second component light CL2 included in the third component light CL3 reflected by the separating member 5.
  • the second sensor unit 9 has a sealed cell 9b containing a component gas (carbon dioxide in this embodiment), and a second pneumatic sensor capable of measuring the intensity of light in the above specific wavelength range. Detector 9a.
  • the second pneumatic detector 9a By using the second pneumatic detector 9a as the second sensor unit 9, it is possible to selectively measure the intensity of the second component light CL2 including the component in the specific wavelength range in the third component light CL3.
  • the second sensor section 9 may have a second transmission filter 9c.
  • the second transmission filter 9c is provided between the separation member 5 and the second pneumatic detector 9a, and transmits light in a specific wavelength range.
  • the second transmission filter 9c By providing the second transmission filter 9c in the second sensor section 9, only the second component light CL2 including the component in the specific wavelength range out of the third component light CL3 reflected by the separation member 5 is subjected to the second pneumatic detection. can be incident on the device 9a.
  • the selectivity of the second sensor section 9 for the second component light CL2 can be further enhanced.
  • the second transmission filter 9c is, for example, a bandpass filter having a configuration similar to that of the separation member 5. However, since the second transmission filter 9c allows the second component light CL2 to enter the second pneumatic detector 9a, it is configured to transmit light in a wider wavelength range than the first wavelength range transmitted by the separation member 5. .
  • the second transmission filter 9c is not particularly necessary.
  • the control unit 11 is a computer system composed of a CPU, storage devices (RAM, ROM, etc.), various interfaces (eg, D/A converter, A/D converter, etc.), a display, and the like.
  • the control unit 11 controls the gas analyzer 100 and performs various types of information processing.
  • a part or all of the control and information processing performed by the control unit 11 may be implemented by a program stored in the storage device of the computer system that constitutes the control unit 11 .
  • the control unit 11 may implement part or all of the control and information processing of the gas analyzer 100 by hardware.
  • the control unit 11 may be a SoC (System on Chip) in which a CPU, a storage device, various interfaces, etc. are formed on one chip.
  • SoC System on Chip
  • control unit 11 has a calculation unit 111, a storage unit 113, and a display unit 115.
  • FIG. 4 is a diagram showing the configuration of the control unit.
  • the calculation unit 111 converts an electrical signal related to the intensity of the first component light CL1 measured by the first sensor unit 7 and an electrical signal related to the intensity of the second component light CL2 measured by the second sensor unit 9. Information processing is performed, and the amount of absorption of the first component light CL1 and the second component light CL2 by the component gas is calculated. The calculation unit 111 calculates information about the concentration of the component gas contained in the sample gas Gs based on the absorption amount.
  • the calculation unit 111 calculates information about the concentration of the component gas in the low concentration range based on the intensity of the first component light CL1 measured by the first sensor unit 7, and outputs the information to the second sensor unit 9. Information about the concentration of the component gas in the high concentration range is calculated based on the measured intensity of the second component light CL2. Specifically, the calculation unit 111 calculates the first calibration curve C1 representing the relationship between the information about the concentration of the component gas and the intensity of the first component light CL1, and the first component light CL1 measured by the first sensor unit 7. can be used to calculate information about the constituent gases in the low concentration range.
  • the calculation unit 111 calculates the second calibration curve C2 representing the relationship between the information about the concentration of the component gas and the intensity of the second component light CL2, and the intensity of the second component light CL2 measured by the second sensor unit 9. can be used to calculate information about the constituent gases in the high concentration range.
  • the intensity of the first component light CL1 is measured by the first sensor unit 7, and the intensity of the second component light CL2 is measured by the second sensor unit 9. That is, the intensities of the first component light CL1 and the second component light CL2 are measured by different sensors. Also, the first component light CL1 and the second component light CL2 have different sensitivities to the component gases. Therefore, the first calibration curve C1 and the second calibration curve C2 are created separately.
  • the storage unit 113 is all or part of a storage area of a storage device that constitutes the control unit 11, and stores set values, various parameters, and the like used in the gas analyzer 100. Specifically, the storage unit 113 stores the first calibration curve C1 and the second calibration curve C2.
  • the display unit 115 is a display (for example, a liquid crystal display, an organic EL display, etc.) that constitutes the control unit 11 .
  • the display unit 115 displays various information about the gas analyzer 100 such as analysis results of component gases.
  • FIG. 5 is a flow chart showing the analysis operation of component gases.
  • the sample gas Gs or the reference gas Gr are alternately introduced into the measuring space Sp of the measuring cell 1 .
  • the light source 3 emits the measuring light Lm toward the measuring cell 1 in step S1.
  • the measurement light Lm emitted from the light source 3 passes through the measurement space Sp into which the sample gas Gs or the reference gas Gr is introduced.
  • the measurement light Lm passes through the measurement space Sp while being absorbed by the component gases contained in the sample gas Gs.
  • the reference gas Gr is introduced into the measurement space Sp, the measurement light Lm passes through the measurement space Sp without being absorbed. This is because the reference gas Gr does not contain any component gas.
  • the measurement light Lm that has passed through the measurement cell 1 into which the sample gas Gs and the reference gas Gr are alternately introduced is incident on the separation member 5 .
  • the separation member 5 separates (transmits) the first component light CL ⁇ b>1 from the incident measurement light Lm and causes the first component light CL ⁇ b>1 to enter the first sensor section 7 . Further, the separation member 5 separates (reflects) the third component light CL3 (second component light CL2) from the measurement light Lm and causes it to enter the second sensor section 9 .
  • the first pneumatic detector 7a of the first sensor section 7 detects the first component light CL1.
  • the first pneumatic detector 7a detects the intensity of the first component light CL1 that has passed through the measurement space Sp filled with the sample gas Gs and the intensity of the first component light CL1 that has passed through the measurement space Sp filled with the reference gas Gr. Outputs a signal corresponding to the difference in intensity.
  • the second pneumatic detector 9a of the second sensor unit 9 detects the second component light CL2 included in the third component light CL3.
  • the second pneumatic detector 9a detects the intensity of the second component light CL2 that has passed through the measurement space Sp filled with the sample gas Gs and the intensity of the second component light CL2 that has passed through the measurement space Sp filled with the reference gas Gr. Outputs a signal corresponding to the difference in intensity.
  • the calculation unit 111 calculates the intensity of the first component light CL1 detected after passing through the measurement space Sp filled with the sample gas Gs, which is output from the first pneumatic detector 7a, and the measurement space Sp filled with the reference gas Gr. A signal corresponding to the difference between the intensity of the first component light CL1 that has passed through and the intensity of the sample gas Gs and the reference gas Gr when they pass through the measurement cell is inputted.
  • the calculation unit 111 calculates the intensity of the second component light CL2 that has passed through the measurement space Sp filled with the sample gas Gs, which is output from the second pneumatic detector 9a, and the measurement space Sp filled with the reference gas Gr. A signal corresponding to the intensity difference between the sample gas Gs and the reference gas Gr of the detected second component light CL2 when passing through the measurement cell is inputted. The calculation unit 111 analyzes the component gas based on the input signal.
  • the calculation unit 111 determines in step S3 whether or not the concentration of the component gas contained in the sample gas Gs is estimated to be equal to or higher than a predetermined concentration.
  • the "predetermined concentration” that is the criterion for this determination is, for example, in which concentration range the first calibration curve C1 and the second calibration curve C2 are constant (or changes are small and can be regarded as constant), If it is within the concentration range, it can be determined as appropriate by considering whether significant measurement results can be obtained by the second sensor unit 9 and the like.
  • the determination of whether or not the concentration of the component gas is estimated to be equal to or higher than a predetermined concentration is made, for example, by a signal corresponding to the intensity of the first component light CL1 and/or a signal corresponding to the intensity of the second component light CL2. This can be done by actually calculating the concentration of the component gas from the signal and determining whether the calculated concentration is equal to or higher than a predetermined concentration.
  • the signal corresponding to the intensity of the first component light CL1 and/or the signal corresponding to the intensity of the second component light CL2 is equal to or greater than a predetermined threshold (or equal to or less than the threshold). It is also possible to determine whether or not the concentration of the component gas contained in the sample gas Gs is estimated to be equal to or higher than a predetermined concentration.
  • the calculation unit 111 when it is estimated that the concentration of the component gas is not equal to or higher than the predetermined concentration ("No" in step S3), the calculation unit 111, in step S4, outputs from the first pneumatic detector 7a Information about the concentration of the component gas is calculated based on the signal corresponding to the intensity of the first component light CL1 and the first calibration curve C1. For example, the calculation unit 111 may apply the intensity of the first component light CL1 output from the first pneumatic detector 7a to the first calibration curve C1 representing the relationship between the intensity of the first component light CL1 and the concentration of the component gas. By substituting the corresponding signal value, the concentration of the component gas in the low concentration range lower than the predetermined concentration can be calculated.
  • step S5 determines the second component gas output from the second pneumatic detector 9a.
  • Information about the concentration of the component gas is calculated based on the signal corresponding to the intensity of the light CL2 and the second calibration curve C2.
  • the computing unit 111 adds the intensity of the second component light CL2 output from the second pneumatic detector 9a to the second calibration curve C2 representing the relationship between the intensity of the second component light CL2 and the concentration of the component gas.
  • the first component light CL1 contains the component in the first wavelength range that is most absorbed by the component gas, so it exhibits high sensitivity even to low-concentration component gases. That is, if the first component light CL1 is used, significant measurement results can be obtained by the first sensor unit 7 even if the concentration of the component gas is low. Further, when the concentration of the component gas is low, the relationship between the intensity of the first component light CL1 measured by the first sensor unit 7 and the information regarding the concentration of the component gas matches the first calibration curve C1. Therefore, by calculating information about the concentration of the component gas in the low concentration range based on the intensity of the first component light CL1 measured by the first sensor unit 7, the component gas in the low concentration range can be accurately analyzed.
  • the second component light CL2 includes a component in the second wavelength range that includes the specific wavelength range absorbed by the component gas but does not include the first wavelength range. is lower than the first component light CL1.
  • the second component light CL2 exhibits significant sensitivity to the component gases if the concentration of the component gases is high. That is, if the concentration of the component gas is high, significant measurement results can be obtained by the second sensor unit 9 using the second component light CL2. Further, in the range where the concentration of the component gas is high, the relationship between the intensity of the second component light CL2 measured by the second sensor section 9 and the information regarding the concentration of the component gas matches the second calibration curve C2. Therefore, by calculating information about the concentration of the component gas in the high concentration range based on the intensity of the second component light CL2 measured by the second sensor unit 9, the component gas in the high concentration range can be accurately analyzed.
  • the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas is the first calibration curve C1 and the second calibration curve C1 over a wide concentration range of the component gas. 2 match the standard curve C2. That is, the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas does not change from the predetermined relationship over a wide concentration range.
  • the gas analyzer 100 can accurately analyze component gases in a wide concentration range contained in the sample gas Gs.
  • the first sensor unit 7 is the first pneumatic detector 7a
  • the second sensor unit 9 is the second sensor unit 7a in order to provide selectivity for light in a specific wavelength range that is absorbed by the component gas.
  • a pneumatic detector 9a was used.
  • the first sensor section 7 and the second sensor section 9 can be realized with other configurations as long as they have selectivity for light in a specific wavelength range.
  • the first sensor section 7' of the gas analyzer 100 of Modification 1 has a first transmission filter 7a' and a first sensor element 7b'.
  • FIG. 6 is a diagram showing the configuration of the gas analyzer of Modification 1. As shown in FIG.
  • the first transmission filter 7a' is arranged between the separation member 5 and the first sensor element 7b', and transmits light in a specific wavelength range.
  • the first transmission filter 7a' is, for example, a bandpass filter having a configuration similar to that of the separation member 5 described above.
  • the first transmission filter 7a' preferably has a property of transmitting light in a wavelength range wider than the first wavelength range transmitted by the separation member 5. As shown in FIG.
  • the first sensor element 7b' measures the intensity of light that has passed through the first transmission filter 7a'. Since the first transmission filter 7a' transmits only the light in the specific wavelength range, the first sensor element 7b' itself does not have to be particularly selective to the light in the specific wavelength range.
  • the first sensor element 7b' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
  • the second sensor section 9' has a third transmission filter 9a' and a second sensor element 9b'.
  • the third transmission filter 9a' is arranged between the separation member 5 and the second sensor element 9b' and transmits light in a specific wavelength range.
  • the third transmission filter 9a' is a bandpass filter having the same properties as the first transmission filter 7a'.
  • the second sensor element 9b' measures the intensity of light that has passed through the third transmission filter 9a'. Since the third transmission filter 9a' transmits only the light in the specific wavelength range, the second sensor element 9b' itself does not have to be particularly selective to the light in the specific wavelength range.
  • the second sensor element 9b' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
  • One of the first sensor units 7, 7' or the second sensor units 9, 9' is composed of the above transmission filter and sensor element, and the other is a pneumatic sensor that measures the intensity of light in a specific wavelength range. It may be used as a detector.
  • the gas analyzer 100 further includes a fourth transmission filter 13, the first sensor section 7'' is configured with a third sensor element 7a'', The second sensor section 9'' may be composed of the fourth sensor element 9a''.
  • FIG. 7 is a diagram showing the configuration of a gas analyzer according to Modification 2. As shown in FIG.
  • the fourth transmission filter 13 is provided between the measurement cell 1 and the separation member 5, and transmits light within a specific wavelength range.
  • the fourth transmission filter 13 is, for example, a bandpass filter having a configuration similar to that of the separation member 5 described above.
  • the fourth transmission filter 13 preferably has a property of transmitting light in a wavelength range wider than the first wavelength range transmitted by the separation member 5 .
  • the separation member 5 can reliably separate the first component light CL1 and the component light (that is, the second component light CL2) including the component in the specific wavelength range among the third component light CL3.
  • the third sensor element 7a'' measures the intensity of the light (that is, the first component light CL1) that has passed through the fourth transmission filter 13 and passed through the separation member 5. Since the fourth transmission filter 13 transmits only the light in the specific wavelength range, the third sensor element 7a'' itself does not have to be particularly selective to the light in the specific wavelength range.
  • the third sensor element 7a'' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
  • the fourth sensor element 9a'' measures the intensity of the light transmitted through the fourth transmission filter 13 and reflected by the separation member 5 (that is, the second component light CL2). Since the fourth transmission filter 13 transmits only the light in the specific wavelength range, the fourth sensor element 9a'' itself need not have any particular selectivity for the light in the specific wavelength range.
  • the fourth sensor element 9a'' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
  • the third sensor element 7a'' and the fourth sensor element 9a'' may be the same type of sensor element, or may be different sensor elements. Also, one or both of the third sensor element 7a'' and the fourth sensor element 9a'' may be a pneumatic detector selective to a specific wavelength range.
  • the first sensor section and the second sensor section can be configured at low cost.
  • the gas analyzer 100 (introduction port 1a) samples a gas containing the sample gas Gs from a flue or pipe, and measures the measurement space Sp of the gas analyzer 100 (i.e., It may be connected to a sampling unit 101 which introduces into the measuring cell 1).
  • FIG. 8 is a diagram showing the connection relationship between the sampling unit and the analyzer.
  • the sampling unit 101 includes, for example, a probe 1011 that samples gas flowing through a flue or pipe, a collection filter 1013 that collects dust contained in the sampled gas, and a pretreatment device that preprocesses the sampled gas. 1015 (comprising, for example, an electric cooler, a drain separator, a tube pump, and a mist catcher to remove sulfuric acid mist, salt, etc.).
  • the gas analyzer 100 may include a comparison cell and an optical intermittent mechanism.
  • a comparison cell is a cell filled with a gas that does not absorb the measurement light Lm.
  • the light interrupting mechanism is a mechanism for switching whether or not to introduce the measurement light Lm into the measurement cell 1 and the comparison cell at the same time. Examples of such a light intermittence mechanism include a mechanism combining a lighting light source for the measurement cell 1, a lighting light source for the comparison cell, and a chopper, a blinking light source for the measurement cell 1, and a blinking light source for the comparison cell.
  • a mechanism that combines the The light source may be a single light source capable of simultaneously introducing the measurement light Lm into the measurement cell 1 and the comparison cell. Alternatively, the light interrupting mechanism may be a mechanism that alternately introduces the measurement light Lm into the measurement cell 1 and the comparison cell.
  • the calculator 111 calculates the difference between the intensity of the measurement light Lm (that is, the first component light CL1 and the second component light CL2) that has passed through the measurement cell 1 and the intensity of the measurement light Lm that has passed through the comparison cell. Analyze the constituent gases based on Thereby, the background component included in the measurement result of the measurement light Lm after passing through the measurement cell 1 is subtracted, and the analysis gas can be analyzed with higher accuracy. As a result, the reference gas Gr becomes unnecessary. Further, the gas switching unit 2 for alternately switching between the sample gas Gs and the reference gas Gr into one measuring cell 1 is not required.
  • Information about the component gas calculated based on the first component light CL1 and the second component light CL2 is not limited to information about the concentration of the component gas.
  • the information about the component gas may be a signal notifying that the component gas contained in the sample gas is out of a predetermined concentration range.
  • the signal notifying that the concentration of the component gas has fallen below the predetermined concentration range can be calculated based on the intensity of the first component light CL1 measured by the first sensor section 7.
  • the signal notifying that the concentration of the component gas has reached or exceeded the predetermined concentration range is calculated based on the intensity of the second component light CL2 measured by the second sensor section 9 .
  • the information about the component gas may be a control signal for controlling combustion in the combustion plant.
  • the calculation unit 111 communicates with the control system (control panel) of the combustion plant, and outputs information regarding the calculated component gas to the control system.
  • control signal required when the concentration of the component gas becomes low can be calculated based on the intensity of the first component light CL1 measured by the first sensor section 7.
  • control signal required when the concentration of the component gas becomes high is calculated based on the intensity of the second component light CL2 measured by the second sensor section 9.
  • the information on the component gas (control signal for controlling combustion in the combustion plant) is obtained by the intensity of the first component light CL1 measured by the first sensor unit 7 and the intensity of the second component light CL1 measured by the second sensor unit 9.
  • the calculation unit 111 obtains the information about the component gas as f(X)+g(Y) (f(X): function of the intensity of the first component light CL1 measured by the first sensor unit 7, g(Y) : a function of the intensity of the second component light CL2 measured by the second sensor unit 9).
  • the present invention can be widely applied to gas analyzers that analyze component gases contained in sample gas.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A gas analysis device (100) is provided with a measurement cell (1), a light source (3), a separation member (5), a first sensor unit (7, 7', 7''), a second sensor unit (9, 9', 9''), and a calculation unit (111). A sample gas (Gs) is introduced into the measurement cell (1). The light source (3) radiates measurement light (Lm) inside the measurement cell (1). The separation member (5) splits the measurement light (Lm) having passed through the measurement cell (1) into first component light (CL1) that includes a component in a first wavelength range and third component light (CL3) that includes at least second component light including a component in a second wavelength range. The calculation unit (111) calculates information relating to a component gas in a low concentration range, on the basis of the intensity of the first component light (CL1) measured by the first sensor unit (7, 7', 7''). In addition, the calculation unit (111) calculates information relating to the component gas in a high concentration range, on the basis of the intensity of the second component light (CL2) measured by the second sensor unit (9, 9', 9'').

Description

ガス分析装置gas analyzer
 本発明は、サンプルガスに含まれる成分ガスを分析するガス分析装置に関する。 The present invention relates to a gas analyzer that analyzes component gases contained in sample gas.
 従来、所定の箇所(例えば、煙道など)からサンプリングされるサンプルガス(例えば、排気ガス)に含まれる所定の成分ガス(例えば、硫黄酸化物(SO)、窒素酸化物(NO)、二酸化炭素(CO)、一酸化炭素(CO))を分析するガス分析装置として、当該成分ガスの光吸収特性を利用するものが知られている(例えば、特許文献1を参照)。 Conventionally, predetermined component gases (e.g., sulfur oxides (SO x ), nitrogen oxides (NO x ), As a gas analyzer for analyzing carbon dioxide (CO 2 ) and carbon monoxide (CO), there is known one that utilizes the light absorption characteristics of the component gas (see Patent Document 1, for example).
 このガス分析装置は、サンプルガスが導入される測定セルと、測定セルに向けて測定光を放射する光源と、測定セルを通過した測定光の強度を測定するセンサと、を備える。 This gas analyzer includes a measurement cell into which a sample gas is introduced, a light source that emits measurement light toward the measurement cell, and a sensor that measures the intensity of the measurement light that has passed through the measurement cell.
 上記のガス分析装置では、測定セルにサンプルガスを導入した状態で測定光を測定セルに向けて放射し、測定セル内のサンプルガスを通過後の測定光の強度をセンサにより測定し、センサにより測定された測定光の強度に基づいて、成分ガスの分析(成分ガスに関する情報の算出)が行われる。 In the above-described gas analyzer, the measurement light is emitted toward the measurement cell while the sample gas is introduced into the measurement cell, and the intensity of the measurement light after passing through the sample gas in the measurement cell is measured by the sensor. Analysis of the component gas (calculation of information about the component gas) is performed based on the measured intensity of the measurement light.
特開2012-68164号公報JP 2012-68164 A
 上記のガス分析装置においては、サンプルガスを通過後の測定光の強度と成分ガスの濃度に関する情報との間の関係が、予め決められた関係から変化しないとの前提で成分ガスの分析が行われる。しかしながら、成分ガスを広い濃度範囲で分析する場合、センサにより測定された測定光の強度と成分ガスの濃度に関する情報との間の関係が、予め決められた関係から変化する場合がある。例えば、成分ガスの濃度が高い場合における成分ガスの濃度の変化に対する測定光の強度の変化量が、成分ガスの濃度が低い場合における測定光の強度の変化量よりも小さくなる。 In the gas analyzer described above, the component gas is analyzed on the premise that the relationship between the intensity of the measurement light after passing through the sample gas and the information about the concentration of the component gas does not change from a predetermined relationship. will be However, when analyzing a component gas over a wide concentration range, the relationship between the intensity of the measurement light measured by the sensor and the information about the concentration of the component gas may vary from the predetermined relationship. For example, when the concentration of the component gas is high, the amount of change in the intensity of the measurement light with respect to the change in the concentration of the component gas is smaller than the amount of change in the intensity of the measurement light when the concentration of the component gas is low.
 センサにより測定された測定光の強度と成分ガスの濃度に関する情報との間の関係が変化しないとの前提で成分ガスの分析を行う場合、当該関係がある濃度範囲で変化してしまうと、分析結果に誤差が生じる。 When analyzing a constituent gas on the assumption that the relationship between the intensity of the measurement light measured by the sensor and the information about the concentration of the constituent gas does not change, if the relationship changes over a certain concentration range, the analysis An error occurs in the result.
 センサにより測定された測定光の強度と成分ガスの濃度に関する情報との間の関係の変化を、電気的又は所定の演算により補正することが考えられる。しかしながら、上記関係が極度に変化するものである場合には、電気的又は演算のよる手法によってもこの変化を補正しきれない。 It is conceivable to correct the change in the relationship between the intensity of the measurement light measured by the sensor and the information about the concentration of the component gas electrically or by a predetermined calculation. However, if the relationship is extremely variable, even electrical or computational techniques cannot compensate for this variation.
 また、上記の問題を、成分ガスを通過する光の光路長を長くした低濃度分析用の装置と、成分ガスを通過する光の光路長を短くした高濃度分析用の装置と、を別途設けることで解決することも考えられる。しかしながら、この場合には装置を別途2つ設けることとなるので、分析装置が大型化する、分析装置が高額となる、分析装置の消費電力が大きくなるなどの問題が生じる。 In addition, the above problem is solved by separately providing an apparatus for low-concentration analysis in which the optical path length of light passing through the component gas is long and an apparatus for high-concentration analysis in which the optical path length of light passing through the component gas is shortened. It is also possible to solve it by However, in this case, two separate devices are provided, which causes problems such as an increase in the size of the analysis device, an increase in the cost of the analysis device, and an increase in power consumption of the analysis device.
 本発明の目的は、成分ガスの光吸収特性を用いて成分ガスを分析する分析装置において、広い濃度範囲にて成分ガスの分析を精度よく行うことにある。 An object of the present invention is to accurately analyze component gases over a wide concentration range in an analyzer that analyzes component gases using the light absorption characteristics of component gases.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係るガス分析装置は、サンプルガスに含まれる成分ガスを分析する装置である。ガス分析装置は、測定セルと、光源と、分離部材と、第1センサ部と、第2センサ部と、演算部と、を備える。
 測定セルの内部にはサンプルガスが導入される。光源は、測定セルの内部に測定光を放射する。
 分離部材は、測定セルを通過した測定光を、第1成分光と、第2成分光を少なくとも含む第3成分光と、に分離する。
 第1成分光は、第1波長範囲の成分を含む。第1波長範囲は、成分ガスにより吸収される1つの特定波長範囲において成分ガスにより最も吸収される波長範囲を含み、かつ、特定波長範囲よりも狭い。第2成分光は、特定波長範囲に含まれるが第1波長範囲には含まれない第2波長範囲の成分を含む。
 第1センサ部は、第1成分光の強度を測定する。
 第2センサ部は、第2成分光の強度を測定する。
 演算部は、第1センサ部にて測定された第1成分光の強度に基づいて低濃度範囲の成分ガスに関する情報を算出する。また、演算部は、第2センサ部にて測定された第2成分光の強度に基づいて高濃度範囲の成分ガスに関する情報を算出する。
A plurality of aspects will be described below as means for solving the problem. These aspects can be arbitrarily combined as needed.
A gas analyzer according to one aspect of the present invention is an apparatus for analyzing component gases contained in a sample gas. A gas analyzer includes a measurement cell, a light source, a separation member, a first sensor section, a second sensor section, and a calculation section.
A sample gas is introduced into the interior of the measurement cell. A light source emits measuring light into the interior of the measuring cell.
The separation member separates the measurement light that has passed through the measurement cell into first component light and third component light including at least the second component light.
The first component light includes components in the first wavelength range. The first wavelength range includes the wavelength range most absorbed by the component gas in one specific wavelength range absorbed by the component gas and is narrower than the specific wavelength range. The second component light includes components in a second wavelength range that is included in the specific wavelength range but not included in the first wavelength range.
The first sensor unit measures the intensity of the first component light.
The second sensor section measures the intensity of the second component light.
The calculation unit calculates information about the component gas in the low concentration range based on the intensity of the first component light measured by the first sensor unit. Also, the calculation unit calculates information about the component gas in the high concentration range based on the intensity of the second component light measured by the second sensor unit.
 これにより、センサ部により測定される成分光の強度と成分ガスの濃度などに関する情報との間の関係が、広い濃度範囲にわたって予め決められた関係から変化しないので、サンプルガスに含まれる広い濃度範囲の成分ガスを精度よく分析できる。 As a result, since the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas does not change from the predetermined relationship over a wide concentration range, the wide concentration range included in the sample gas can be obtained. component gas can be analyzed with high accuracy.
 上記のガス分析装置は、ガス切替部をさらに備えてもよい。ガス切替部は、測定セルの内部に、サンプルガスとリファレンスガスと、を切り替えて導入する。リファレンスガスは、成分ガスを含まないガスである。リファレンスガスは成分ガスを含まないので、測定セルにリファレンスガスを導入したときの測定光の強度は、測定セルにサンプルガスを導入したときの測定光の強度に対してバックグラウンドとなる。従って、例えば、成分ガスに関する情報を算出する際に、測定セルにリファレンスガスを導入したときの測定光の強度を考慮して、成分ガスに関する情報をより正確に算出できる。 The above gas analyzer may further include a gas switching unit. The gas switching unit switches and introduces a sample gas and a reference gas into the measurement cell. A reference gas is a gas that does not contain component gases. Since the reference gas does not contain any component gas, the intensity of the measurement light when the reference gas is introduced into the measurement cell becomes a background to the intensity of the measurement light when the sample gas is introduced into the measurement cell. Therefore, for example, when calculating the information on the component gas, the information on the component gas can be calculated more accurately by considering the intensity of the measurement light when the reference gas is introduced into the measurement cell.
 分離部材は、第1成分光を透過させ、第3成分光を反射させるバンドパスフィルタであってもよい。これにより、第1波長範囲の成分を含む第1成分光と、第1波長範囲外の成分を含む第3成分光とを確実に分離できる。 The separation member may be a bandpass filter that transmits the first component light and reflects the third component light. Thereby, the first component light containing the components in the first wavelength range and the third component light containing components outside the first wavelength range can be reliably separated.
 第1センサ部は、特定波長範囲の光の強度を測定可能な第1ニューマチック検出器を含んでもよい。これにより、特定波長範囲の成分を含む第1成分光の強度を選択的に測定できる。 The first sensor section may include a first pneumatic detector capable of measuring the intensity of light in a specific wavelength range. This allows selective measurement of the intensity of the first component light containing the component in the specific wavelength range.
 第1センサ部は、特定波長範囲の光を透過させる第1透過フィルタと、第1透過フィルタを通過した光の強度を測定する熱型固体センサ又は半導体センサと、を含んでもよい。これにより、センサ自体に波長に対する選択性がない場合でも、特定波長範囲の成分を含む第1成分光の強度を選択的に測定できる。 The first sensor section may include a first transmission filter that transmits light in a specific wavelength range, and a thermal solid-state sensor or semiconductor sensor that measures the intensity of light that has passed through the first transmission filter. As a result, even if the sensor itself does not have wavelength selectivity, it is possible to selectively measure the intensity of the first component light containing components in a specific wavelength range.
 第2センサ部は、特定波長範囲の光の強度を測定可能な第2ニューマチック検出器を含んでもよい。これにより、第3成分光のうち特定波長範囲の成分を含む第2成分光の強度を選択的に測定できる。 The second sensor section may include a second pneumatic detector capable of measuring the intensity of light in a specific wavelength range. Thereby, it is possible to selectively measure the intensity of the second component light including the component in the specific wavelength range among the third component light.
 第2センサ部は、分離部材と第2ニューマチック検出器との間に設けられ、特定波長範囲の光を透過させる第2透過フィルタを含んでもよい。これにより、第3成分光のうち特定波長範囲の成分を含む第2成分光のみを第2ニューマチック検出器に入射できるので、第2センサ部の第2成分光に対する選択性をさらに高めることができる。 The second sensor section may include a second transmission filter that is provided between the separation member and the second pneumatic detector and that transmits light in a specific wavelength range. As a result, only the second component light containing the component in the specific wavelength range among the third component light can enter the second pneumatic detector, so that the selectivity of the second sensor unit for the second component light can be further enhanced. can.
 第2センサ部は、特定波長範囲の光を透過させる第3透過フィルタと、第3透過フィルタを通過した光の強度を測定する熱型固体センサ又は半導体センサと、を含んでもよい。これにより、第3成分光のうち特定波長範囲の成分を含む第2成分光のみをセンサに入射できるので、センサ自体に波長に対する選択性がない場合でも、第2成分光の強度を選択的に測定できる。 The second sensor section may include a third transmission filter that transmits light in a specific wavelength range, and a thermal solid-state sensor or semiconductor sensor that measures the intensity of light that has passed through the third transmission filter. As a result, only the second component light containing a component in a specific wavelength range out of the third component light can be incident on the sensor. can be measured.
 上記のガス分析装置は第4透過フィルタをさらに備えてもよい。第4透過フィルタは、測定セルと分離部材との間に設けられ、特定波長範囲の光を透過させる。これにより、測定光のうち特定波長範囲の成分のみを含む光を分離部材に入射できる。その結果、分離部材は、第1成分光と、第3成分光のうち特定波長範囲の成分を含む成分光(すなわち、第2成分光)とを分離できる。 The above gas analyzer may further include a fourth transmission filter. A fourth transmission filter is provided between the measurement cell and the separation member and transmits light in a specific wavelength range. Thereby, the light containing only the components in the specific wavelength range in the measurement light can be incident on the separation member. As a result, the separation member can separate the first component light and the component light (that is, the second component light) containing the component in the specific wavelength range among the third component light.
 ガス分析装置が第4透過フィルタを備える場合、第1センサ部及び第2センサ部は、特定波長範囲の光の強度を測定する熱型固体センサ又は半導体センサであってもよい。これにより、第1センサ部及び第2センサ部のそれぞれに透過フィルタを設ける必要がなくなるので、第1センサ部及び第2センサ部を安価に構成できる。 When the gas analyzer includes a fourth transmission filter, the first sensor section and the second sensor section may be thermal solid-state sensors or semiconductor sensors that measure the intensity of light in a specific wavelength range. This eliminates the need to provide a transmission filter for each of the first sensor section and the second sensor section, so that the first sensor section and the second sensor section can be configured at low cost.
 上記の分析装置では、センサ部により測定される成分光の強度と成分ガスの濃度などに関する情報との間の関係が、広い濃度範囲にわたって予め決められた関係から変化しないので、サンプルガスに含まれる広い濃度範囲の成分ガスを精度よく分析できる。 In the above analyzer, the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas does not change from a predetermined relationship over a wide concentration range. It can accurately analyze component gases in a wide range of concentrations.
分析装置の構成を示す図。The figure which shows the structure of an analyzer. 分離部材の透過スペクトルと反射スペクトルの一例を示す図。FIG. 4 is a diagram showing an example of a transmission spectrum and a reflection spectrum of a separation member; 各成分光の強度スペクトルを示す図。The figure which shows the intensity spectrum of each component light. 制御部の構成を示す図。The figure which shows the structure of a control part. 成分ガスの分析動作を示すフローチャート。4 is a flow chart showing an analysis operation of a component gas; 変形例1のガス分析装置の構成を示す図。FIG. 4 is a diagram showing the configuration of a gas analyzer of modification 1; 変形例2のガス分析装置の構成を示す図。FIG. 10 is a diagram showing the configuration of a gas analyzer according to Modification 2; サンプリングユニットと分析装置の接続関係を示す図。The figure which shows the connection relationship of a sampling unit and an analyzer.
1.第1実施形態
(1)ガス分析装置の構成
 以下、図1を用いて、ガス分析装置100の構成を説明する。図1は、ガス分析装置の構成を示す図である。ガス分析装置100は、例えば、大気、煙道を流れる排ガス、各種プロセスにて発生するプロセスガス、ごみなどの燃焼により生じる排ガス、ボイラの燃焼にて発生する排ガス、ガスボンベに充填されたガスなどのサンプルガスGsに含まれる成分ガスを、当該成分ガスの光吸収特性を用いて分析する装置である。具体的には、ガス分析装置100は、サンプルガスGsとリファレンスガスGrとを交互に充填した空間に、測定光Lmを放射し、サンプルガスGs及びリファレンスガスGrを通過後の測定光Lmの強度をそれぞれ測定し、サンプルガスGsが充填されたときに測定された測定光Lmの強度と、リファレンスガスGrが充填されたときに測定された測定光Lmの強度と、の差に基づいて、サンプルガスGsに含まれる成分ガスに関する情報(例えば、濃度)を算出する。リファレンスガスGrは、成分ガスを含まないガスである。リファレンスガスGrは、例えば、窒素ガス(N)、精製された(成分ガス等が除去された)空気などである。
1. First Embodiment (1) Configuration of Gas Analysis Apparatus The configuration of a gas analysis apparatus 100 will be described below with reference to FIG. FIG. 1 is a diagram showing the configuration of a gas analyzer. The gas analyzer 100 can detect, for example, the atmosphere, exhaust gas flowing through a flue, process gas generated in various processes, exhaust gas generated by combustion of waste, exhaust gas generated by combustion of a boiler, gas filled in a gas cylinder, and the like. This device analyzes the component gas contained in the sample gas Gs by using the light absorption characteristics of the component gas. Specifically, the gas analyzer 100 emits the measurement light Lm into a space alternately filled with the sample gas Gs and the reference gas Gr, and the intensity of the measurement light Lm after passing through the sample gas Gs and the reference gas Gr is is measured, and based on the difference between the intensity of the measurement light Lm measured when the sample gas Gs is filled and the intensity of the measurement light Lm measured when the reference gas Gr is filled, the sample Information (for example, concentration) on the component gas contained in the gas Gs is calculated. The reference gas Gr is a gas containing no component gas. The reference gas Gr is, for example, nitrogen gas (N 2 ), purified air (from which component gases or the like are removed), or the like.
 リファレンスガスGrは成分ガスを含まないので、リファレンスガスGrが充填された空間を通過した測定光Lmの強度は、サンプルガスGsが充填された空間を通過した測定光Lmの強度に対してバックグラウンドとなる。従って、サンプルガスGsが充填された空間を通過した測定光Lmの強度と、リファレンスガスGrが充填された空間を通過した測定光Lmの強度と、の差に基づいて、サンプルガスGsに含まれる成分ガスに関する情報を算出することで、成分ガスに関する情報をより正確に算出できる。 Since the reference gas Gr does not contain any component gas, the intensity of the measurement light Lm that has passed through the space filled with the reference gas Gr is background to the intensity of the measurement light Lm that has passed through the space filled with the sample gas Gs. becomes. Therefore, based on the difference between the intensity of the measurement light Lm that has passed through the space filled with the sample gas Gs and the intensity of the measurement light Lm that has passed through the space filled with the reference gas Gr, By calculating the information about the component gas, the information about the component gas can be calculated more accurately.
 ガス分析装置100にて分析可能な成分ガスとしては、例えば、二酸化炭素(CO)、一酸化炭素(CO)、二酸化硫黄(SO)、窒素酸化物(NO)ガス(例えば、一酸化窒素(NO)、二酸化窒素(NO)、亜酸化窒素(NO)など)、炭化水素ガス(例えば、メタン(CH)、プロパン(C)など)がある。 Component gases that can be analyzed by the gas analyzer 100 include, for example, carbon dioxide (CO 2 ), carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxide (NO x ) gas (e.g., monoxide nitrogen (NO), nitrogen dioxide ( NO2), nitrous oxide ( N2O), etc.), hydrocarbon gases (eg, methane ( CH4), propane ( C3H8 ), etc.).
 以下、ガス分析装置100の具体的構成について説明していく。以下に説明するガス分析装置100において、成分ガスは二酸化炭素(CO)とする。上記に掲げた他のガスを成分ガスとする場合でも、ガス分析装置100は、以下に説明する構成とほぼ同じ構成を有する。図1に示すように、分析装置は、測定セル1と、ガス切替部2と、光源3と、分離部材5と、第1センサ部7と、第2センサ部9と、制御部11と、を主に備える。 A specific configuration of the gas analyzer 100 will be described below. In the gas analyzer 100 described below, the component gas is carbon dioxide (CO 2 ). Even when the other gases listed above are used as component gases, the gas analyzer 100 has substantially the same configuration as the configuration described below. As shown in FIG. 1, the analyzer includes a measurement cell 1, a gas switching unit 2, a light source 3, a separation member 5, a first sensor unit 7, a second sensor unit 9, a control unit 11, Mainly provide
 測定セル1は、内部にサンプルガスGs又はリファレンスガスGrを導入可能な中空部材である。測定セル1は、サンプルガスGs又はリファレンスガスGrを内部に導入するための導入口1aと、その内部に導入したガスを外部に排出する排出口1bと、を有する。測定セル1の長さ方向の両端には赤外透過窓(例えばフッ化カルシウム結晶窓)が装着され、シール構造となっている。なお、サンプルガスGs又はリファレンスガスGrを導入する中空部材の内部の空間を、測定空間Spと呼ぶ。 The measurement cell 1 is a hollow member into which the sample gas Gs or the reference gas Gr can be introduced. The measurement cell 1 has an inlet 1a through which the sample gas Gs or the reference gas Gr is introduced, and an outlet 1b through which the introduced gas is discharged to the outside. Infrared transmission windows (for example, calcium fluoride crystal windows) are attached to both ends of the measuring cell 1 in the length direction to form a sealing structure. A space inside the hollow member into which the sample gas Gs or the reference gas Gr is introduced is called a measurement space Sp.
 上記の測定セル1では、例えば、排出口1bに接続されたポンプ(図示せず)により測定空間Spを吸引することにより、導入口1aを介して、サンプルガスGs又はリファレンスガスGrを測定空間Spに導入できる。その他、サンプルガスGs又はリファレンスガスGrを加圧とすることで、測定空間Spに導入することもできる。この場合、排出口1bからのガスの吸引は、特に必要ない。 In the above-described measurement cell 1, for example, a pump (not shown) connected to the outlet 1b sucks the sample gas Gs or the reference gas Gr into the measurement space Sp through the inlet 1a. can be introduced into Alternatively, the sample gas Gs or the reference gas Gr can be introduced into the measurement space Sp by pressurizing it. In this case, it is not particularly necessary to suck gas from the discharge port 1b.
 測定セル1の測定空間Sp内における測定光Lmの光路長は、サンプルガスGsに含まれる成分ガスの濃度が低くても、測定空間Spを通過中の測定光Lmが成分ガスにより十分に吸収される程度の長さを有することが好ましい。そのため、測定セル1は、ある程度の長さを有する。 The optical path length of the measurement light Lm in the measurement space Sp of the measurement cell 1 is such that the measurement light Lm passing through the measurement space Sp is sufficiently absorbed by the component gas even if the concentration of the component gas contained in the sample gas Gs is low. It is preferable to have a length of a certain degree. Therefore, the measuring cell 1 has a certain length.
 なお、測定セル1の長さを十分に確保できない場合には、例えば、測定空間Sp内に複数のミラーを設けて測定光Lmを多重反射させ、測定光Lmを測定空間Sp内で複数回往復させてもよい。 If a sufficient length of the measurement cell 1 cannot be ensured, for example, a plurality of mirrors may be provided in the measurement space Sp to multiple-reflect the measurement light Lm so that the measurement light Lm travels back and forth in the measurement space Sp a plurality of times. You may let
 ガス切替部2は、測定セル1の測定空間Spに、サンプルガスGsとリファレンスガスGrとを一定の時間周期で交互に切り替えて導入する。ガス切替部2は、例えば、サンプルガスGsが供給されるガスラインと導入口1aとをガス流通可能とするか、リファレンスガスGrが供給されるガスラインと導入口1aとをガス流通可能とするか、を交互に切り替え可能な電磁弁などである。 The gas switching unit 2 alternately switches and introduces the sample gas Gs and the reference gas Gr into the measurement space Sp of the measurement cell 1 at a constant time cycle. For example, the gas switching unit 2 enables gas communication between the gas line to which the sample gas Gs is supplied and the introduction port 1a, or enables gas communication between the gas line to which the reference gas Gr is supplied and the introduction port 1a. or a solenoid valve capable of alternately switching between
 光源3は、測定セル1の長さ方向の一端に設けられる。光源3は、成分ガスが吸収することができる波長範囲の成分を少なくとも含む測定光Lmを、測定セル1の測定空間Spに放射する。本実施形態では成分ガスを二酸化炭素としているので、本実施形態の測定光Lmは赤外光である。赤外光を放射できる光源であれば、任意の光源を光源3として使用できる。なお、測定光Lmが有する波長範囲は、成分ガスの種類に応じて適宜変更できる。また、光源3は、測定光Lmが有するべき波長範囲に応じて任意の光源を使用できる。 The light source 3 is provided at one end of the measuring cell 1 in the length direction. The light source 3 radiates into the measurement space Sp of the measurement cell 1 measurement light Lm containing at least a component in a wavelength range that can be absorbed by the component gas. Since carbon dioxide is used as the component gas in this embodiment, the measurement light Lm in this embodiment is infrared light. Any light source can be used as the light source 3 as long as it can emit infrared light. Note that the wavelength range of the measurement light Lm can be appropriately changed according to the type of component gas. In addition, any light source can be used as the light source 3 according to the wavelength range that the measurement light Lm should have.
 分離部材5は、測定セル1の測定空間Spを通過した測定光Lmを、低濃度範囲の成分ガスの分析に用いる第1成分光CL1と、高濃度範囲の成分ガスの分析に用いる第2成分光CL2を少なくとも含む第3成分光CL3と、に分離する。本実施形態において、分離部材5は、図2に示すような透過スペクトルと反射スペクトルとを有するバンドパスフィルタである。図2は、分離部材の透過スペクトルと反射スペクトルの一例を示す図である。 The separation member 5 converts the measurement light Lm that has passed through the measurement space Sp of the measurement cell 1 into a first component light CL1 used for analyzing component gases in the low concentration range and a second component light CL1 used for analyzing component gases in the high concentration range. and a third component light CL3 including at least the light CL2. In this embodiment, the separation member 5 is a bandpass filter having a transmission spectrum and a reflection spectrum as shown in FIG. FIG. 2 is a diagram showing an example of the transmission spectrum and reflection spectrum of the separation member.
 具体的には、成分ガスにより吸収される吸収スペクトル(吸光度)のうち特定の1つの吸収スペクトルの波長範囲(特定波長範囲と呼ぶ)をλ1以上かつλ2以下とし、当該吸収スペクトルのピークがλ3(λ1<λ3<λ2)以上、かつ、λ4(λ1<λ4<λ2)以下の波長範囲内に存在する場合、分離部材5は、λ3以上、かつ、λ4以下の波長範囲の光を透過させる。このように、分離部材5は、特定波長範囲において成分ガスにより最も吸収される波長範囲を含み、かつ、特定波長範囲よりも狭い第1波長範囲の成分を含む成分光を透過させる。「成分ガスにより最も吸収される波長範囲」は、成分ガスの特定の1つの吸収スペクトル(吸光度)のピーク位置を含む。 Specifically, the wavelength range (referred to as a specific wavelength range) of one specific absorption spectrum (absorbance) absorbed by the component gas is λ1 or more and λ2 or less, and the peak of the absorption spectrum is λ3 ( λ1<λ3<λ2) or more and λ4 (λ1<λ4<λ2) or less, the separation member 5 transmits light in the wavelength range of λ3 or more and λ4 or less. In this way, the separation member 5 transmits component light that includes a wavelength range that is most absorbed by the component gas in the specific wavelength range and that includes components in the first wavelength range narrower than the specific wavelength range. The "wavelength range most absorbed by a component gas" includes the peak position of one particular absorption spectrum (absorbance) of the component gas.
 成分ガスにより最も吸収される第1波長範囲の成分を含んでいる上記の成分光は、サンプルガスGsに含まれる成分ガスの濃度が低くても十分に吸収されるので、低濃度範囲の成分ガスに対しても高い感度を示す。また、成分ガスの濃度が低ければ、成分ガスに関する濃度の情報とセンサにより測定される当該成分光の強度との関係は一定となっている。従って、本実施形態では、分離部材5が透過させる上記の成分光を、低濃度範囲の成分ガスの分析に用いる第1成分光CL1とする。具体的には、図3に示すように、第1成分光CL1は、λ3以上、かつ、λ4以下の波長範囲(すなわち、第1波長範囲)内において強度を有する。図3は、各成分光の強度スペクトルを示す図である。 The component light containing the components in the first wavelength range most absorbed by the component gas is sufficiently absorbed even if the concentration of the component gas contained in the sample gas Gs is low. It also exhibits high sensitivity to Further, when the concentration of the component gas is low, the relationship between the information on the concentration of the component gas and the intensity of the component light measured by the sensor is constant. Therefore, in the present embodiment, the component light transmitted by the separation member 5 is defined as the first component light CL1 used for analyzing component gases in the low concentration range. Specifically, as shown in FIG. 3, the first component light CL1 has intensity within a wavelength range of λ3 or more and λ4 or less (that is, the first wavelength range). FIG. 3 is a diagram showing the intensity spectrum of each component light.
 一方、分離部材5の反射スペクトルは上記の透過スペクトルとは逆の特性を有する。すなわち、分離部材5は、測定セル1の測定空間Spを通過した測定光Lmのうち、第1波長範囲の成分を含む第1成分光CL1以外の成分光(第3成分光CL3と呼ぶ)を反射させる。具体的には、図3に示すように、第3成分光CL3は、測定光Lmのうち、λ3未満の波長を有する成分光と、λ4より大きい波長を有する成分光と、を含む。つまり、第3成分光CL3には、第1成分光CL1は含まれない。 On the other hand, the reflection spectrum of the separation member 5 has characteristics opposite to the above transmission spectrum. That is, the separation member 5 separates the component light (referred to as third component light CL3) from the measurement light Lm that has passed through the measurement space Sp of the measurement cell 1, other than the first component light CL1 including the component in the first wavelength range. reflect. Specifically, as shown in FIG. 3, the third component light CL3 includes component light having a wavelength less than λ3 and component light having a wavelength greater than λ4 in the measurement light Lm. That is, the first component light CL1 is not included in the third component light CL3.
 図2に示すように、分離部材5の反射スペクトルは、特定波長範囲の成分を一部含んでいる。すなわち、分離部材5が反射させる第3成分光CL3は、第1波長範囲には含まれないが特定波長範囲に含まれる成分光を含んでいる。この成分光は、特定波長範囲に含まれているので成分ガスにより吸収されるが、成分ガスに対する感度は低い。なぜなら、この成分光は、特定波長範囲の「すそ」の波長範囲の成分光であり、第1成分光CL1と比べて成分ガスによる光の吸収が小さいからである。 As shown in FIG. 2, the reflection spectrum of the separating member 5 partially includes components in a specific wavelength range. That is, the third component light CL3 reflected by the separation member 5 includes component light that is not included in the first wavelength range but is included in the specific wavelength range. Since this component light is included in a specific wavelength range, it is absorbed by the component gas, but the sensitivity to the component gas is low. This is because this component light is component light in the "bottom" wavelength range of the specific wavelength range, and light absorption by the component gas is smaller than that of the first component light CL1.
 しかしながら、この成分光は、成分ガスの濃度が高ければ、十分に吸収される。また、成分ガスの濃度が高くても、成分ガスの濃度に関する情報とセンサにより測定される当該成分光の強度との関係は一定となる。従って、本実施形態では、第3成分光CL3のうち、第1波長範囲には含まれないが特定波長範囲に含まれる成分光を、高濃度範囲の成分ガスの分析に用いる第2成分光CL2とする。具体的には、図3に示すように、第2成分光CL2は、λ1以上、かつ、λ3以下の波長範囲内と、λ4以上、かつ、λ2以下の波長範囲内(第2波長範囲内)において有意な強度を有する。 However, this component light is sufficiently absorbed if the concentration of the component gas is high. Further, even if the concentration of the component gas is high, the relationship between the information on the concentration of the component gas and the intensity of the component light measured by the sensor is constant. Therefore, in the present embodiment, the component light not included in the first wavelength range but included in the specific wavelength range, out of the third component light CL3, is used for the analysis of the component gas in the high-concentration range. and Specifically, as shown in FIG. 3, the second component light CL2 has a wavelength range of λ1 or more and λ3 or less and a wavelength range of λ4 or more and λ2 or less (within the second wavelength range). has a significant intensity in
 このように、バンドパスフィルタである分離部材5は、第1波長範囲の成分を含む第1成分光CL1と、第1波長範囲外の成分を含む第3成分光CL3とを確実に分離できる。成分ガスを二酸化炭素とし測定光Lmを赤外光とする場合には、上記のような特性を有するバンドパスフィルタとしては、例えば、シリコン(Si)基板上にゲルマニウム(Ge)の薄膜と一酸化ケイ素(SiO)の薄膜とを交互に堆積させた多層構造を有するバンドパスフィルタを用いることができる。 In this way, the separation member 5, which is a bandpass filter, can reliably separate the first component light CL1 containing components in the first wavelength range and the third component light CL3 containing components outside the first wavelength range. When the component gas is carbon dioxide and the measurement light Lm is infrared light, the band-pass filter having the characteristics described above may be, for example, a thin film of germanium (Ge) and monoxide on a silicon (Si) substrate. A bandpass filter having a multi-layer structure in which thin films of silicon (SiO) are alternately deposited can be used.
 なお、測定光Lmの波長範囲、成分ガスの種類などに応じて、バンドパスフィルタの構成は適宜変更できる。また、分離部材5は、測定光Lmを第1成分光CL1と第3成分光CL3(第2成分光CL2)とに分離できればよく、バンドパスフィルタ以外の他の部材であってもよい。 Note that the configuration of the bandpass filter can be appropriately changed according to the wavelength range of the measurement light Lm, the type of component gas, and the like. Also, the separation member 5 may be any member other than the bandpass filter as long as it can separate the measurement light Lm into the first component light CL1 and the third component light CL3 (second component light CL2).
 第1センサ部7は、分離部材5が透過させた第1成分光CL1の強度を測定する。本実施形態において、第1センサ部7は、成分ガス(本実施形態では、二酸化炭素)を封入した封入セル7bを有し、上記の特定波長範囲の光の強度を測定可能な第1ニューマチック検出器7aである。第1センサ部7を第1ニューマチック検出器7aとすることにより、特定波長範囲に含まれる第1成分光CL1の強度を選択的に測定できる。なお、上記の「選択的」(あるいは、選択性)とは、特定の波長範囲の光の強度に対する測定感度が高い一方で、それ以外の光の強度に対する測定感度は低いことを意味する。 The first sensor unit 7 measures the intensity of the first component light CL1 transmitted by the separation member 5. In this embodiment, the first sensor unit 7 has a sealed cell 7b containing a component gas (carbon dioxide in this embodiment), and a first pneumatic sensor capable of measuring the intensity of light in the above specific wavelength range. Detector 7a. By using the first pneumatic detector 7a as the first sensor section 7, the intensity of the first component light CL1 included in the specific wavelength range can be selectively measured. The above-mentioned "selectivity" (or selectivity) means that while the measurement sensitivity is high for the intensity of light in a specific wavelength range, the measurement sensitivity for other light intensities is low.
 第2センサ部9は、分離部材5が反射させた第3成分光CL3に含まれる第2成分光CL2の強度を測定する。本実施形態において、第2センサ部9は、成分ガス(本実施形態では、二酸化炭素)を封入した封入セル9bを有し、上記の特定波長範囲の光の強度を測定可能な第2ニューマチック検出器9aである。第2センサ部9を第2ニューマチック検出器9aとすることにより、第3成分光CL3のうち特定波長範囲の成分を含む第2成分光CL2の強度を選択的に測定できる。 The second sensor unit 9 measures the intensity of the second component light CL2 included in the third component light CL3 reflected by the separating member 5. In this embodiment, the second sensor unit 9 has a sealed cell 9b containing a component gas (carbon dioxide in this embodiment), and a second pneumatic sensor capable of measuring the intensity of light in the above specific wavelength range. Detector 9a. By using the second pneumatic detector 9a as the second sensor unit 9, it is possible to selectively measure the intensity of the second component light CL2 including the component in the specific wavelength range in the third component light CL3.
 図1に示すように、第2センサ部9は、第2透過フィルタ9cを有してもよい。第2透過フィルタ9cは、分離部材5と第2ニューマチック検出器9aとの間に設けられ、特定波長範囲の光を透過させる。第2センサ部9に第2透過フィルタ9cを設けることにより、分離部材5にて反射された第3成分光CL3のうち特定波長範囲の成分を含む第2成分光CL2のみを第2ニューマチック検出器9aに入射できる。その結果、第2センサ部9の第2成分光CL2に対する選択性をさらに高めることができる。 As shown in FIG. 1, the second sensor section 9 may have a second transmission filter 9c. The second transmission filter 9c is provided between the separation member 5 and the second pneumatic detector 9a, and transmits light in a specific wavelength range. By providing the second transmission filter 9c in the second sensor section 9, only the second component light CL2 including the component in the specific wavelength range out of the third component light CL3 reflected by the separation member 5 is subjected to the second pneumatic detection. can be incident on the device 9a. As a result, the selectivity of the second sensor section 9 for the second component light CL2 can be further enhanced.
 第2透過フィルタ9cは、例えば、分離部材5と類似の構成を有するバンドパスフィルタである。ただし、第2透過フィルタ9cは、第2成分光CL2を第2ニューマチック検出器9aに入射させるため、分離部材5が透過させる第1波長範囲よりも広い波長範囲の光を透過させる構成とする。 The second transmission filter 9c is, for example, a bandpass filter having a configuration similar to that of the separation member 5. However, since the second transmission filter 9c allows the second component light CL2 to enter the second pneumatic detector 9a, it is configured to transmit light in a wider wavelength range than the first wavelength range transmitted by the separation member 5. .
 なお、第2ニューマチック検出器9aに第2成分光CL2に対する高い選択性がある場合には、第2透過フィルタ9cは特に必要ない。 If the second pneumatic detector 9a has high selectivity for the second component light CL2, the second transmission filter 9c is not particularly necessary.
 制御部11は、CPU、記憶装置(RAM、ROMなど)、各種インターフェース(例えば、D/A変換器、A/D変換器など)、ディスプレイなどにて構成されるコンピュータシステムである。制御部11は、ガス分析装置100の制御、及び、各種の情報処理を行う。制御部11において実行される制御及び情報処理の一部又は全部は、制御部11を構成するコンピュータシステムの記憶装置に記憶されたプログラムにより実現されてもよい。制御部11は、ガス分析装置100の制御及び情報処理の一部又は全部をハードウェア的に実現してもよい。また、制御部11は、CPU、記憶装置、各種インターフェースなどを1つのチップに形成したSoC(System on Chip)であってもよい。 The control unit 11 is a computer system composed of a CPU, storage devices (RAM, ROM, etc.), various interfaces (eg, D/A converter, A/D converter, etc.), a display, and the like. The control unit 11 controls the gas analyzer 100 and performs various types of information processing. A part or all of the control and information processing performed by the control unit 11 may be implemented by a program stored in the storage device of the computer system that constitutes the control unit 11 . The control unit 11 may implement part or all of the control and information processing of the gas analyzer 100 by hardware. Also, the control unit 11 may be a SoC (System on Chip) in which a CPU, a storage device, various interfaces, etc. are formed on one chip.
 図4に示すように、制御部11は、演算部111と、記憶部113と、表示部115と、を有する。図4は、制御部の構成を示す図である。 As shown in FIG. 4, the control unit 11 has a calculation unit 111, a storage unit 113, and a display unit 115. FIG. 4 is a diagram showing the configuration of the control unit.
 演算部111は、第1センサ部7にて測定された第1成分光CL1の強度に関する電気信号と、第2センサ部9にて測定された第2成分光CL2の強度に関する電気信号と、を情報処理し、成分ガスによる第1成分光CL1及び第2成分光CL2の吸収量を算出する。演算部111は、当該吸収量に基づいて、サンプルガスGsに含まれる成分ガスの濃度に関する情報を算出する。 The calculation unit 111 converts an electrical signal related to the intensity of the first component light CL1 measured by the first sensor unit 7 and an electrical signal related to the intensity of the second component light CL2 measured by the second sensor unit 9. Information processing is performed, and the amount of absorption of the first component light CL1 and the second component light CL2 by the component gas is calculated. The calculation unit 111 calculates information about the concentration of the component gas contained in the sample gas Gs based on the absorption amount.
 本実施形態において、演算部111は、第1センサ部7にて測定された第1成分光CL1の強度に基づいて低濃度範囲の成分ガスの濃度に関する情報を算出し、第2センサ部9にて測定された第2成分光CL2の強度に基づいて高濃度範囲の成分ガスの濃度に関する情報を算出する。具体的には、演算部111は、成分ガスの濃度に関する情報と第1成分光CL1の強度との関係を表す第1検量線C1と、第1センサ部7により測定された第1成分光CL1の強度とを用いて、低濃度範囲の成分ガスに関する情報を算出できる。一方、演算部111は、成分ガスの濃度に関する情報と第2成分光CL2の強度との関係を表す第2検量線C2と、第2センサ部9により測定された第2成分光CL2の強度とを用いて、高濃度範囲の成分ガスに関する情報を算出できる。 In the present embodiment, the calculation unit 111 calculates information about the concentration of the component gas in the low concentration range based on the intensity of the first component light CL1 measured by the first sensor unit 7, and outputs the information to the second sensor unit 9. Information about the concentration of the component gas in the high concentration range is calculated based on the measured intensity of the second component light CL2. Specifically, the calculation unit 111 calculates the first calibration curve C1 representing the relationship between the information about the concentration of the component gas and the intensity of the first component light CL1, and the first component light CL1 measured by the first sensor unit 7. can be used to calculate information about the constituent gases in the low concentration range. On the other hand, the calculation unit 111 calculates the second calibration curve C2 representing the relationship between the information about the concentration of the component gas and the intensity of the second component light CL2, and the intensity of the second component light CL2 measured by the second sensor unit 9. can be used to calculate information about the constituent gases in the high concentration range.
 上記のように、第1成分光CL1の強度は第1センサ部7により測定され、第2成分光CL2の強度は第2センサ部9により測定される。つまり、第1成分光CL1と第2成分光CL2の強度は、異なるセンサにより測定される。また、第1成分光CL1と第2成分光CL2は、成分ガスに対して異なる感度を有している。従って、第1検量線C1と第2検量線C2は、個別に作成される。 As described above, the intensity of the first component light CL1 is measured by the first sensor unit 7, and the intensity of the second component light CL2 is measured by the second sensor unit 9. That is, the intensities of the first component light CL1 and the second component light CL2 are measured by different sensors. Also, the first component light CL1 and the second component light CL2 have different sensitivities to the component gases. Therefore, the first calibration curve C1 and the second calibration curve C2 are created separately.
 記憶部113は、制御部11を構成する記憶装置が有する記憶領域の全部又は一部であり、ガス分析装置100にて用いられる設定値、各種パラメータなどを記憶する。具体的には、記憶部113は、第1検量線C1と、第2検量線C2を記憶する。 The storage unit 113 is all or part of a storage area of a storage device that constitutes the control unit 11, and stores set values, various parameters, and the like used in the gas analyzer 100. Specifically, the storage unit 113 stores the first calibration curve C1 and the second calibration curve C2.
 表示部115は、制御部11を構成するディスプレイ(例えば、液晶ディスプレイ、有機ELディスプレイなど)である。表示部115は、成分ガスの分析結果などのガス分析装置100に関する各種情報を表示する。 The display unit 115 is a display (for example, a liquid crystal display, an organic EL display, etc.) that constitutes the control unit 11 . The display unit 115 displays various information about the gas analyzer 100 such as analysis results of component gases.
(2)ガス分析装置を用いた成分ガスの分析動作
 以下、図5を用いて、上記の構成を有するガス分析装置100を用いた成分ガスの分析動作を説明する。図5は、成分ガスの分析動作を示すフローチャートである。最初に、サンプルガスGs又はリファレンスガスGrが測定セル1の測定空間Spに交互に導入される。その後、ステップS1で、光源3が測定光Lmを測定セル1に向けて放射する。
(2) Analyzing Operation of Component Gas Using Gas Analyzing Apparatus Hereinafter, using FIG. 5, an analyzing operation of a component gas using the gas analyzing apparatus 100 having the above configuration will be described. FIG. 5 is a flow chart showing the analysis operation of component gases. First, the sample gas Gs or the reference gas Gr are alternately introduced into the measuring space Sp of the measuring cell 1 . After that, the light source 3 emits the measuring light Lm toward the measuring cell 1 in step S1.
 光源3から放射された測定光Lmは、サンプルガスGs又はリファレンスガスGrが導入された測定空間Spを通過する。測定空間SpにサンプルガスGsが導入されているとき、測定光Lmは、サンプルガスGsに含まれる成分ガスにより吸収されつつ、測定空間Spを通過する。一方、測定空間SpにリファレンスガスGrが導入されているとき、測定光Lmは、吸収されることなく測定空間Spを通過する。なぜなら、リファレンスガスGrは、成分ガスを含んでいないからである。 The measurement light Lm emitted from the light source 3 passes through the measurement space Sp into which the sample gas Gs or the reference gas Gr is introduced. When the sample gas Gs is introduced into the measurement space Sp, the measurement light Lm passes through the measurement space Sp while being absorbed by the component gases contained in the sample gas Gs. On the other hand, when the reference gas Gr is introduced into the measurement space Sp, the measurement light Lm passes through the measurement space Sp without being absorbed. This is because the reference gas Gr does not contain any component gas.
 サンプルガスGsとリファレンスガスGrとが交互に導入された測定セル1を通過した測定光Lmは、分離部材5に入射される。分離部材5は、入射した測定光Lmから第1成分光CL1を分離して(透過させて)第1センサ部7に入射させる。また、分離部材5は、測定光Lmから第3成分光CL3(第2成分光CL2)を分離して(反射させて)第2センサ部9に入射させる。 The measurement light Lm that has passed through the measurement cell 1 into which the sample gas Gs and the reference gas Gr are alternately introduced is incident on the separation member 5 . The separation member 5 separates (transmits) the first component light CL<b>1 from the incident measurement light Lm and causes the first component light CL<b>1 to enter the first sensor section 7 . Further, the separation member 5 separates (reflects) the third component light CL3 (second component light CL2) from the measurement light Lm and causes it to enter the second sensor section 9 .
 次いで、ステップS2で、第1センサ部7の第1ニューマチック検出器7aが、第1成分光CL1を検出する。第1ニューマチック検出器7aは、サンプルガスGsが充填された測定空間Spを通過した第1成分光CL1の強度と、リファレンスガスGrが充填された測定空間Spを通過した第1成分光CL1の強度との差に応じた信号を出力する。 Next, in step S2, the first pneumatic detector 7a of the first sensor section 7 detects the first component light CL1. The first pneumatic detector 7a detects the intensity of the first component light CL1 that has passed through the measurement space Sp filled with the sample gas Gs and the intensity of the first component light CL1 that has passed through the measurement space Sp filled with the reference gas Gr. Outputs a signal corresponding to the difference in intensity.
 また、第2センサ部9の第2ニューマチック検出器9aが、第3成分光CL3に含まれる第2成分光CL2を検出する。第2ニューマチック検出器9aは、サンプルガスGsが充填された測定空間Spを通過した第2成分光CL2の強度と、リファレンスガスGrが充填された測定空間Spを通過した第2成分光CL2の強度との差に応じた信号を出力する。 Also, the second pneumatic detector 9a of the second sensor unit 9 detects the second component light CL2 included in the third component light CL3. The second pneumatic detector 9a detects the intensity of the second component light CL2 that has passed through the measurement space Sp filled with the sample gas Gs and the intensity of the second component light CL2 that has passed through the measurement space Sp filled with the reference gas Gr. Outputs a signal corresponding to the difference in intensity.
 演算部111は、第1ニューマチック検出器7aが出力した、サンプルガスGsが充填された測定空間Spを通過した検出した第1成分光CL1の強度と、リファレンスガスGrが充填された測定空間Spを通過した第1成分光CL1の強度とサンプルガスGsとリファレンスガスGrの測定セル通過時の強度の差に応じた信号を入力する。 The calculation unit 111 calculates the intensity of the first component light CL1 detected after passing through the measurement space Sp filled with the sample gas Gs, which is output from the first pneumatic detector 7a, and the measurement space Sp filled with the reference gas Gr. A signal corresponding to the difference between the intensity of the first component light CL1 that has passed through and the intensity of the sample gas Gs and the reference gas Gr when they pass through the measurement cell is inputted.
 また、演算部111は、第2ニューマチック検出器9aが出力した、サンプルガスGsが充填された測定空間Spを通過した第2成分光CL2の強度と、リファレンスガスGrが充填された測定空間Spを通過した第2成分光CL2の強度との検出した第2成分光CL2のサンプルガスGsとリファレンスガスGrの測定セル通過時の強度差に応じた信号を入力する。演算部111は、入力した上記信号に基づいて、成分ガスを分析する。 In addition, the calculation unit 111 calculates the intensity of the second component light CL2 that has passed through the measurement space Sp filled with the sample gas Gs, which is output from the second pneumatic detector 9a, and the measurement space Sp filled with the reference gas Gr. A signal corresponding to the intensity difference between the sample gas Gs and the reference gas Gr of the detected second component light CL2 when passing through the measurement cell is inputted. The calculation unit 111 analyzes the component gas based on the input signal.
 成分ガスを分析するにあたり、演算部111は、ステップS3で、サンプルガスGsに含まれる成分ガスの濃度が所定の濃度以上であると推測されるか否かを判定する。なお、この判定の基準となる「所定の濃度」は、例えば、第1検量線C1及び第2検量線C2がどの濃度範囲において一定となるか(あるいは、変化が小さく一定とみなせるか)、どの濃度範囲であれば第2センサ部9により有意な測定結果を得られるか、などを考慮して適宜決定できる。 In analyzing the component gas, the calculation unit 111 determines in step S3 whether or not the concentration of the component gas contained in the sample gas Gs is estimated to be equal to or higher than a predetermined concentration. The "predetermined concentration" that is the criterion for this determination is, for example, in which concentration range the first calibration curve C1 and the second calibration curve C2 are constant (or changes are small and can be regarded as constant), If it is within the concentration range, it can be determined as appropriate by considering whether significant measurement results can be obtained by the second sensor unit 9 and the like.
 成分ガスの濃度が所定の濃度以上であると推測されるか否かの判定は、例えば、第1成分光CL1の強度に応じた信号、及び/又は、第2成分光CL2の強度に応じた信号から成分ガスの濃度を実際に算出し、算出した濃度が所定の濃度以上であるか否かにより行うことができる。 The determination of whether or not the concentration of the component gas is estimated to be equal to or higher than a predetermined concentration is made, for example, by a signal corresponding to the intensity of the first component light CL1 and/or a signal corresponding to the intensity of the second component light CL2. This can be done by actually calculating the concentration of the component gas from the signal and determining whether the calculated concentration is equal to or higher than a predetermined concentration.
 その他、例えば、第1成分光CL1の強度に応じた信号、及び/又は、第2成分光CL2の強度に応じた信号が、予め決められた閾値以上(あるいは、閾値以下)であるか否かにより、サンプルガスGsに含まれる成分ガスの濃度が所定の濃度以上であると推測されるか否かを判定することもできる。 In addition, for example, whether or not the signal corresponding to the intensity of the first component light CL1 and/or the signal corresponding to the intensity of the second component light CL2 is equal to or greater than a predetermined threshold (or equal to or less than the threshold). It is also possible to determine whether or not the concentration of the component gas contained in the sample gas Gs is estimated to be equal to or higher than a predetermined concentration.
 上記の判定の結果、成分ガスの濃度が所定の濃度以上でないと推測された場合(ステップS3で「No」)、演算部111は、ステップS4で、第1ニューマチック検出器7aから出力された第1成分光CL1の強度に応じた信号と、第1検量線C1と、に基づいて、成分ガスの濃度に関する情報を算出する。例えば、演算部111は、第1成分光CL1の強度と成分ガスの濃度との関係を表す第1検量線C1に、第1ニューマチック検出器7aから出力された第1成分光CL1の強度に応じた信号値を代入することで、所定の濃度よりも低い低濃度範囲の成分ガスの濃度を算出できる。 As a result of the above determination, when it is estimated that the concentration of the component gas is not equal to or higher than the predetermined concentration ("No" in step S3), the calculation unit 111, in step S4, outputs from the first pneumatic detector 7a Information about the concentration of the component gas is calculated based on the signal corresponding to the intensity of the first component light CL1 and the first calibration curve C1. For example, the calculation unit 111 may apply the intensity of the first component light CL1 output from the first pneumatic detector 7a to the first calibration curve C1 representing the relationship between the intensity of the first component light CL1 and the concentration of the component gas. By substituting the corresponding signal value, the concentration of the component gas in the low concentration range lower than the predetermined concentration can be calculated.
 一方、成分ガスの濃度が所定の濃度以上であると推測された場合(ステップS3で「Yes」)、演算部111は、ステップS5で、第2ニューマチック検出器9aから出力された第2成分光CL2の強度に応じた信号と、第2検量線C2と、に基づいて、成分ガスの濃度に関する情報を算出する。例えば、演算部111は、第2成分光CL2の強度と成分ガスの濃度との関係を表す第2検量線C2に、第2ニューマチック検出器9aから出力された第2成分光CL2の強度に応じた信号値を代入することで、所定の濃度以上の高濃度範囲の成分ガスの濃度を算出できる。 On the other hand, if it is estimated that the concentration of the component gas is equal to or higher than the predetermined concentration ("Yes" in step S3), the calculation unit 111, in step S5, determines the second component gas output from the second pneumatic detector 9a. Information about the concentration of the component gas is calculated based on the signal corresponding to the intensity of the light CL2 and the second calibration curve C2. For example, the computing unit 111 adds the intensity of the second component light CL2 output from the second pneumatic detector 9a to the second calibration curve C2 representing the relationship between the intensity of the second component light CL2 and the concentration of the component gas. By substituting corresponding signal values, it is possible to calculate the concentration of the component gas in a high concentration range of a predetermined concentration or more.
 上記のように、第1成分光CL1は、成分ガスにより最も吸収される第1波長範囲の成分を含んでいるので、低濃度の成分ガスに対しても高い感度を示す。つまり、第1成分光CL1を用いれば、成分ガスの濃度が低くても、第1センサ部7により有意な測定結果を得られる。また、成分ガスの濃度が低ければ、第1センサ部7により測定される第1成分光CL1の強度と成分ガスの濃度に関する情報との関係は、第1検量線C1と一致する。従って、第1センサ部7にて測定された第1成分光CL1の強度に基づいて低濃度範囲の成分ガスの濃度に関する情報を算出することで、低濃度範囲において成分ガスを精度よく分析できる。 As described above, the first component light CL1 contains the component in the first wavelength range that is most absorbed by the component gas, so it exhibits high sensitivity even to low-concentration component gases. That is, if the first component light CL1 is used, significant measurement results can be obtained by the first sensor unit 7 even if the concentration of the component gas is low. Further, when the concentration of the component gas is low, the relationship between the intensity of the first component light CL1 measured by the first sensor unit 7 and the information regarding the concentration of the component gas matches the first calibration curve C1. Therefore, by calculating information about the concentration of the component gas in the low concentration range based on the intensity of the first component light CL1 measured by the first sensor unit 7, the component gas in the low concentration range can be accurately analyzed.
 一方、第2成分光CL2は、成分ガスにより吸収される特定波長範囲を含んでいるが第1波長範囲を含まない第2波長範囲の成分を含んでいるので、第2成分光CL2の成分ガスに対する感度は第1成分光CL1に比べて低い。しかしながら、第2成分光CL2は、成分ガスの濃度が高ければ、成分ガスに対して有意な感度を示す。つまり、成分ガスの濃度が高ければ、第2成分光CL2を用いて、第2センサ部9により有意な測定結果を得られる。また、成分ガスの濃度が高い範囲において、第2センサ部9により測定される第2成分光CL2の強度と成分ガスの濃度に関する情報との関係は、第2検量線C2と一致する。従って、第2センサ部9にて測定された第2成分光CL2の強度に基づいて高濃度範囲の成分ガスの濃度に関する情報を算出することで、高濃度範囲において成分ガスを精度よく分析できる。 On the other hand, the second component light CL2 includes a component in the second wavelength range that includes the specific wavelength range absorbed by the component gas but does not include the first wavelength range. is lower than the first component light CL1. However, the second component light CL2 exhibits significant sensitivity to the component gases if the concentration of the component gases is high. That is, if the concentration of the component gas is high, significant measurement results can be obtained by the second sensor unit 9 using the second component light CL2. Further, in the range where the concentration of the component gas is high, the relationship between the intensity of the second component light CL2 measured by the second sensor section 9 and the information regarding the concentration of the component gas matches the second calibration curve C2. Therefore, by calculating information about the concentration of the component gas in the high concentration range based on the intensity of the second component light CL2 measured by the second sensor unit 9, the component gas in the high concentration range can be accurately analyzed.
 以上のように、ガス分析装置100では、センサ部により測定される成分光の強度と成分ガスの濃度に関する情報との間の関係が、成分ガスの広い濃度範囲で、第1検量線C1及び第2検量線C2と一致する。すなわち、センサ部により測定される成分光の強度と成分ガスの濃度に関する情報との間の関係が、広い濃度範囲にわたって予め決められた関係から変化しない。これにより、ガス分析装置100は、サンプルガスGsに含まれる広い濃度範囲の成分ガスを精度よく分析できる。 As described above, in the gas analyzer 100, the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas is the first calibration curve C1 and the second calibration curve C1 over a wide concentration range of the component gas. 2 match the standard curve C2. That is, the relationship between the intensity of the component light measured by the sensor unit and the information about the concentration of the component gas does not change from the predetermined relationship over a wide concentration range. As a result, the gas analyzer 100 can accurately analyze component gases in a wide concentration range contained in the sample gas Gs.
(3)変形例1
 上記の第1実施形態では、成分ガスにより吸収される特定波長範囲の光に対する選択性を持たせるため、第1センサ部7を第1ニューマチック検出器7aとし、第2センサ部9を第2ニューマチック検出器9aとしていた。しかしながら、第1センサ部7及び第2センサ部9は、特定波長範囲の光に対する選択性を有していれば、他の構成にて実現できる。
(3) Modification 1
In the above-described first embodiment, the first sensor unit 7 is the first pneumatic detector 7a, and the second sensor unit 9 is the second sensor unit 7a in order to provide selectivity for light in a specific wavelength range that is absorbed by the component gas. A pneumatic detector 9a was used. However, the first sensor section 7 and the second sensor section 9 can be realized with other configurations as long as they have selectivity for light in a specific wavelength range.
 例えば、図6に示すように、変形例1のガス分析装置100の第1センサ部7’は、第1透過フィルタ7a’と、第1センサ素子7b’と、を有している。図6は、変形例1のガス分析装置の構成を示す図である。 For example, as shown in FIG. 6, the first sensor section 7' of the gas analyzer 100 of Modification 1 has a first transmission filter 7a' and a first sensor element 7b'. FIG. 6 is a diagram showing the configuration of the gas analyzer of Modification 1. As shown in FIG.
 第1透過フィルタ7a’は、分離部材5と第1センサ素子7b’との間に配置され、特定波長範囲の光を透過させる。第1透過フィルタ7a’は、例えば、上記の分離部材5と類似の構成を有するバンドパスフィルタである。なお、第1透過フィルタ7a’は、分離部材5が透過させる第1波長範囲よりも広い波長範囲の光を透過させる性質を有することが好ましい。 The first transmission filter 7a' is arranged between the separation member 5 and the first sensor element 7b', and transmits light in a specific wavelength range. The first transmission filter 7a' is, for example, a bandpass filter having a configuration similar to that of the separation member 5 described above. The first transmission filter 7a' preferably has a property of transmitting light in a wavelength range wider than the first wavelength range transmitted by the separation member 5. As shown in FIG.
 第1センサ素子7b’は、第1透過フィルタ7a’を通過した光の強度を測定する。第1透過フィルタ7a’が特定波長範囲の光のみを透過させるので、第1センサ素子7b’自体は、特定波長範囲の光に対する選択性を特に有していなくてもよい。第1センサ素子7b’は、例えば、熱型固体センサ、半導体センサ、又は量子型半導体センサである。 The first sensor element 7b' measures the intensity of light that has passed through the first transmission filter 7a'. Since the first transmission filter 7a' transmits only the light in the specific wavelength range, the first sensor element 7b' itself does not have to be particularly selective to the light in the specific wavelength range. The first sensor element 7b' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
 また、第2センサ部9’は、第3透過フィルタ9a’と、第2センサ素子9b’と、を有している。第3透過フィルタ9a’は、分離部材5と第2センサ素子9b’との間に配置され、特定波長範囲の光を透過させる。第3透過フィルタ9a’は、上記の第1透過フィルタ7a’と同様の性質を有するバンドパスフィルタである。 Further, the second sensor section 9' has a third transmission filter 9a' and a second sensor element 9b'. The third transmission filter 9a' is arranged between the separation member 5 and the second sensor element 9b' and transmits light in a specific wavelength range. The third transmission filter 9a' is a bandpass filter having the same properties as the first transmission filter 7a'.
 第2センサ素子9b’は、第3透過フィルタ9a’を通過した光の強度を測定する。第3透過フィルタ9a’が特定波長範囲の光のみを透過させるので、第2センサ素子9b’自体は、特定波長範囲の光に対する選択性を特に有していなくてもよい。第2センサ素子9b’は、例えば、熱型固体センサ、半導体センサ、又は量子型半導体センサである。 The second sensor element 9b' measures the intensity of light that has passed through the third transmission filter 9a'. Since the third transmission filter 9a' transmits only the light in the specific wavelength range, the second sensor element 9b' itself does not have to be particularly selective to the light in the specific wavelength range. The second sensor element 9b' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
 変形例1では、第1センサ素子7b’及び第2センサ素子9b’自体に特定波長範囲に対する選択性がない場合でも、特定波長範囲の成分を含む第1成分光CL1及び第2成分光CL2の強度を選択的に測定できる。 In Modified Example 1, even if the first sensor element 7b' and the second sensor element 9b' themselves do not have selectivity with respect to the specific wavelength range, the first component light CL1 and the second component light CL2 containing components in the specific wavelength range are detected. Intensity can be selectively measured.
 なお、第1センサ部7、7’又は第2センサ部9、9’のいずれか一方を上記の透過フィルタとセンサ素子とにより構成し、他方を特定波長範囲の光の強度を測定するニューマチック検出器としてもよい。 One of the first sensor units 7, 7' or the second sensor units 9, 9' is composed of the above transmission filter and sensor element, and the other is a pneumatic sensor that measures the intensity of light in a specific wavelength range. It may be used as a detector.
(4)変形例2
 また、他の変形例2として、図7に示すように、ガス分析装置100が第4透過フィルタ13をさらに備え、第1センサ部7’’を第3センサ素子7a’’にて構成し、第2センサ部9’’を第4センサ素子9a’’にて構成してもよい。図7は、変形例2のガス分析装置の構成を示す図である。
(4) Modification 2
Further, as another modified example 2, as shown in FIG. 7, the gas analyzer 100 further includes a fourth transmission filter 13, the first sensor section 7'' is configured with a third sensor element 7a'', The second sensor section 9'' may be composed of the fourth sensor element 9a''. FIG. 7 is a diagram showing the configuration of a gas analyzer according to Modification 2. As shown in FIG.
 第4透過フィルタ13は、測定セル1と分離部材5との間に設けられ、特定波長範囲の光を透過させる。第4透過フィルタ13は、例えば、上記の分離部材5と類似の構成を有するバンドパスフィルタである。なお、第4透過フィルタ13は、分離部材5が透過させる第1波長範囲よりも広い波長範囲の光を透過させる性質を有することが好ましい。 The fourth transmission filter 13 is provided between the measurement cell 1 and the separation member 5, and transmits light within a specific wavelength range. The fourth transmission filter 13 is, for example, a bandpass filter having a configuration similar to that of the separation member 5 described above. The fourth transmission filter 13 preferably has a property of transmitting light in a wavelength range wider than the first wavelength range transmitted by the separation member 5 .
 測定セル1と分離部材5との間に第4透過フィルタ13を設けることで、測定光Lmのうち特定波長範囲の成分のみを含む光を分離部材5に入射できる。その結果、分離部材5は、第1成分光CL1と、第3成分光CL3のうち特定波長範囲の成分を含む成分光(すなわち、第2成分光CL2)とを確実に分離できる。 By providing the fourth transmission filter 13 between the measurement cell 1 and the separation member 5 , the light containing only the components in the specific wavelength range in the measurement light Lm can enter the separation member 5 . As a result, the separation member 5 can reliably separate the first component light CL1 and the component light (that is, the second component light CL2) including the component in the specific wavelength range among the third component light CL3.
 第3センサ素子7a’’は、第4透過フィルタ13を透過し分離部材5により透過された光(すなわち、第1成分光CL1)の強度を測定する。第4透過フィルタ13が特定波長範囲の光のみを透過させるので、第3センサ素子7a’’自体は、特定波長範囲の光に対する選択性を特に有していなくてもよい。第3センサ素子7a’’は、例えば、熱型固体センサ、半導体センサ、又は量子型半導体センサである。 The third sensor element 7a'' measures the intensity of the light (that is, the first component light CL1) that has passed through the fourth transmission filter 13 and passed through the separation member 5. Since the fourth transmission filter 13 transmits only the light in the specific wavelength range, the third sensor element 7a'' itself does not have to be particularly selective to the light in the specific wavelength range. The third sensor element 7a'' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
 第4センサ素子9a’’は、第4透過フィルタ13を透過し分離部材5により反射された光(すなわち、第2成分光CL2)の強度を測定する。第4透過フィルタ13が特定波長範囲の光のみを透過させるので、第4センサ素子9a’’自体は、特定波長範囲の光に対する選択性を特に有していなくてもよい。第4センサ素子9a’’は、例えば、熱型固体センサ、半導体センサ、又は量子型半導体センサである。 The fourth sensor element 9a'' measures the intensity of the light transmitted through the fourth transmission filter 13 and reflected by the separation member 5 (that is, the second component light CL2). Since the fourth transmission filter 13 transmits only the light in the specific wavelength range, the fourth sensor element 9a'' itself need not have any particular selectivity for the light in the specific wavelength range. The fourth sensor element 9a'' is, for example, a thermal solid-state sensor, a semiconductor sensor, or a quantum semiconductor sensor.
 なお、第3センサ素子7a’’と第4センサ素子9a’’は、同じ種類のセンサ素子であってもよいし、異なるセンサ素子であってもよい。また、第3センサ素子7a’’及び第4センサ素子9a’’のうちの一方又は両方を、特定波長範囲に対して選択性を有するニューマチック検出器としてもよい。 The third sensor element 7a'' and the fourth sensor element 9a'' may be the same type of sensor element, or may be different sensor elements. Also, one or both of the third sensor element 7a'' and the fourth sensor element 9a'' may be a pneumatic detector selective to a specific wavelength range.
 変形例2では、第1センサ部及び第2センサ部のそれぞれに、特定波長範囲の光を透過させる透過フィルタを設ける必要がないので、第1センサ部及び第2センサ部を安価に構成できる。 In Modification 2, since it is not necessary to provide a transmission filter for transmitting light in a specific wavelength range in each of the first sensor section and the second sensor section, the first sensor section and the second sensor section can be configured at low cost.
2.他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 (A)ガス分析装置100(の導入口1a)は、図8に示すように、煙道又は配管などからサンプルガスGsを含むガスをサンプリングして、ガス分析装置100の測定空間Sp(すなわち、測定セル1)に導入するサンプリングユニット101に接続されてもよい。図8は、サンプリングユニットと分析装置の接続関係を示す図である。
2. Other Embodiments Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications are possible without departing from the gist of the invention. In particular, multiple embodiments and modifications described herein can be arbitrarily combined as required.
(A) As shown in FIG. 8, the gas analyzer 100 (introduction port 1a) samples a gas containing the sample gas Gs from a flue or pipe, and measures the measurement space Sp of the gas analyzer 100 (i.e., It may be connected to a sampling unit 101 which introduces into the measuring cell 1). FIG. 8 is a diagram showing the connection relationship between the sampling unit and the analyzer.
 サンプリングユニット101は、例えば、煙道又は配管などを流れるガスをサンプリングするプローブ1011と、サンプリングしたガスに含まれるダストなどを捕集する捕集フィルタ1013と、サンプリングしたガスを前処理する前処理装置1015(例えば、電気冷却器と、ドレンセパレータと、チューブポンプと、硫酸ミスト、塩分などを除去するミストキャッチャと、を備える)により構成される。 The sampling unit 101 includes, for example, a probe 1011 that samples gas flowing through a flue or pipe, a collection filter 1013 that collects dust contained in the sampled gas, and a pretreatment device that preprocesses the sampled gas. 1015 (comprising, for example, an electric cooler, a drain separator, a tube pump, and a mist catcher to remove sulfuric acid mist, salt, etc.).
 (B)ガス分析装置100は、比較セルと光断続機構とを備えてもよい。比較セルは、測定光Lmを吸収しないガスを封入したセルである。光断続機構は、測定光Lmを測定セル1と比較セルに同時に導入するかしないかを切り替える機構である。このような光断続機構としては、例えば、測定セル1用の点灯光源と、比較セル用の点灯光源と、チョッパーと、を組み合わせた機構、測定セル1用の点滅光源と比較セル用の点滅光源とを組み合わせた機構が挙げられる。上記光源は、測定セル1と比較セルに同時に測定光Lmを導入できる1つの光源であってもよい。その他、光断続機構は、測定セル1と比較セルに交互に測定光Lmを導入する機構であってもよい。 (B) The gas analyzer 100 may include a comparison cell and an optical intermittent mechanism. A comparison cell is a cell filled with a gas that does not absorb the measurement light Lm. The light interrupting mechanism is a mechanism for switching whether or not to introduce the measurement light Lm into the measurement cell 1 and the comparison cell at the same time. Examples of such a light intermittence mechanism include a mechanism combining a lighting light source for the measurement cell 1, a lighting light source for the comparison cell, and a chopper, a blinking light source for the measurement cell 1, and a blinking light source for the comparison cell. A mechanism that combines the The light source may be a single light source capable of simultaneously introducing the measurement light Lm into the measurement cell 1 and the comparison cell. Alternatively, the light interrupting mechanism may be a mechanism that alternately introduces the measurement light Lm into the measurement cell 1 and the comparison cell.
 この場合、演算部111は、測定セル1を通過した測定光Lm(すなわち、第1成分光CL1と第2成分光CL2)の強度と、比較セルを通過した測定光Lmの強度と、の差分に基づいて成分ガスを分析する。これにより、測定セル1を通過後の測定光Lmの測定結果に含まれるバックグラウンド成分を差し引いて、より精度よく分析ガスを分析できる。この結果、リファレンスガスGrが不要となる。また、1つの測定セル1内部にサンプルガスGsとリファレンスガスGrとを交互に切り替えて導入するガス切替部2が不要となる。 In this case, the calculator 111 calculates the difference between the intensity of the measurement light Lm (that is, the first component light CL1 and the second component light CL2) that has passed through the measurement cell 1 and the intensity of the measurement light Lm that has passed through the comparison cell. Analyze the constituent gases based on Thereby, the background component included in the measurement result of the measurement light Lm after passing through the measurement cell 1 is subtracted, and the analysis gas can be analyzed with higher accuracy. As a result, the reference gas Gr becomes unnecessary. Further, the gas switching unit 2 for alternately switching between the sample gas Gs and the reference gas Gr into one measuring cell 1 is not required.
 (C)第1成分光CL1及び第2成分光CL2に基づいて算出される成分ガスに関する情報は、成分ガスの濃度に関する情報に限られない。例えば、成分ガスに関する情報は、サンプルガスに含まれる成分ガスが所定の濃度範囲外となっていることを通知する信号であってもよい。 (C) Information about the component gas calculated based on the first component light CL1 and the second component light CL2 is not limited to information about the concentration of the component gas. For example, the information about the component gas may be a signal notifying that the component gas contained in the sample gas is out of a predetermined concentration range.
 この場合、成分ガスが所定の濃度範囲以下の濃度となったことを通知する信号は、第1センサ部7により測定される第1成分光CL1の強度に基づいて算出できる。一方、成分ガスが所定の濃度範囲以上の濃度となったことを通知する信号は、第2センサ部9により測定される第2成分光CL2の強度に基づいて算出される。 In this case, the signal notifying that the concentration of the component gas has fallen below the predetermined concentration range can be calculated based on the intensity of the first component light CL1 measured by the first sensor section 7. On the other hand, the signal notifying that the concentration of the component gas has reached or exceeded the predetermined concentration range is calculated based on the intensity of the second component light CL2 measured by the second sensor section 9 .
 (D)サンプルガスGsを、例えば、各種燃焼プラントにおいて排出される排出ガスとした場合、成分ガスに関する情報は、当該燃焼プラントにおける燃焼を制御する制御信号であってもよい。この場合、演算部111は、当該燃焼プラントの制御システム(制御盤)と通信し、算出した成分ガスに関する情報を制御システムに出力する。 (D) If the sample gas Gs is, for example, exhaust gas emitted from various combustion plants, the information about the component gas may be a control signal for controlling combustion in the combustion plant. In this case, the calculation unit 111 communicates with the control system (control panel) of the combustion plant, and outputs information regarding the calculated component gas to the control system.
 この場合、成分ガスが低濃度になったときに必要とされる制御信号は、第1センサ部7により測定される第1成分光CL1の強度に基づいて算出できる。一方、成分ガスが高濃度になったときに必要とされる制御信号は、第2センサ部9により測定される第2成分光CL2の強度に基づいて算出される。 In this case, the control signal required when the concentration of the component gas becomes low can be calculated based on the intensity of the first component light CL1 measured by the first sensor section 7. On the other hand, the control signal required when the concentration of the component gas becomes high is calculated based on the intensity of the second component light CL2 measured by the second sensor section 9. FIG.
 また、成分ガスに関する情報(燃焼プラントにおける燃焼を制御する制御信号)を、第1センサ部7により測定される第1成分光CL1の強度と、第2センサ部9により測定される第2成分光CL2の強度と、に基づいて算出してもよい。例えば、演算部111は、成分ガスに関する情報を、f(X)+g(Y)(f(X):第1センサ部7により測定される第1成分光CL1の強度の関数、g(Y):第2センサ部9により測定される第2成分光CL2の強度の関数)との式を用いて算出してもよい。 Further, the information on the component gas (control signal for controlling combustion in the combustion plant) is obtained by the intensity of the first component light CL1 measured by the first sensor unit 7 and the intensity of the second component light CL1 measured by the second sensor unit 9. You may calculate based on the intensity|strength of CL2. For example, the calculation unit 111 obtains the information about the component gas as f(X)+g(Y) (f(X): function of the intensity of the first component light CL1 measured by the first sensor unit 7, g(Y) : a function of the intensity of the second component light CL2 measured by the second sensor unit 9).
 本発明は、サンプルガスに含まれる成分ガスを分析するガス分析装置に広く適用できる。 The present invention can be widely applied to gas analyzers that analyze component gases contained in sample gas.
100 ガス分析装置
1   測定セル
Sp  測定空間
1a  導入口
1b  排出口
2   ガス切替部
3   光源
5   分離部材
7、7’、7’’ 第1センサ部
7a  第1ニューマチック検出器
7b  封入セル
7a’ 第1透過フィルタ
7b’ 第1センサ素子
7a’’ 第3センサ素子
9、9’、9’’ 第2センサ部
9a  第2ニューマチック検出器
9b  封入セル
9a’ 第3透過フィルタ
9b’ 第2センサ素子
9a’’ 第4センサ素子
9c  第2透過フィルタ
11  制御部
111 演算部
113 記憶部
115 表示部
C1  第1検量線
C2  第2検量線
13  第4透過フィルタ
101 サンプリングユニット
1011    プローブ
1013    捕集フィルタ
1015    前処理装置
Lm  測定光
CL1 第1成分光
CL2 第2成分光
CL3 第3成分光
Gs  サンプルガス
Gr  リファレンスガス
100 gas analyzer 1 measurement cell Sp measurement space 1a introduction port 1b discharge port 2 gas switching unit 3 light source 5 separation members 7, 7', 7'' first sensor unit 7a first pneumatic detector 7b sealed cell 7a' 1 Transmission Filter 7b' First Sensor Element 7a'' Third Sensor Elements 9, 9', 9'' Second Sensor Section 9a Second Pneumatic Detector 9b Sealing Cell 9a' Third Transmission Filter 9b' Second Sensor Element 9a'' Fourth sensor element 9c Second transmission filter 11 Control unit 111 Operation unit 113 Storage unit 115 Display unit C1 First calibration curve C2 Second calibration curve 13 Fourth transmission filter 101 Sampling unit 1011 Probe 1013 Collection filter 1015 Front Processing device Lm Measurement light CL1 First component light CL2 Second component light CL3 Third component light Gs Sample gas Gr Reference gas

Claims (10)

  1.  サンプルガスに含まれる成分ガスを分析する装置であって、
     前記サンプルガスを内部に導入する測定セルと、
     前記測定セルの内部に測定光を放射する光源と、
     前記測定セルを通過した前記測定光を、前記成分ガスにより吸収される1つの特定波長範囲において前記成分ガスにより最も吸収される波長範囲を含み、かつ、前記特定波長範囲よりも狭い第1波長範囲の成分を含む第1成分光と、前記特定波長範囲に含まれるが前記第1波長範囲には含まれない第2波長範囲の成分を含む第2成分光を少なくとも含む第3成分光と、に分離する分離部材と、
     前記第1成分光の強度を測定する第1センサ部と、
     前記第2成分光の強度を測定する第2センサ部と、
     前記第1センサ部にて測定された前記第1成分光の強度に基づいて低濃度範囲の成分ガスに関する情報を算出し、前記第2センサ部にて測定された前記第2成分光の強度に基づいて高濃度範囲の成分ガスに関する情報を算出する演算部と、
     を備える、ガス分析装置。
    A device for analyzing a component gas contained in a sample gas,
    a measuring cell into which the sample gas is introduced;
    a light source that emits measurement light inside the measurement cell;
    A first wavelength range that includes a wavelength range that is most absorbed by the component gas in one specific wavelength range that is absorbed by the component gas and that is narrower than the specific wavelength range. and a third component light that includes at least a second component light that includes a component in a second wavelength range that is included in the specific wavelength range but not included in the first wavelength range. a separating member that separates;
    a first sensor unit that measures the intensity of the first component light;
    a second sensor unit that measures the intensity of the second component light;
    Information about the component gas in the low concentration range is calculated based on the intensity of the first component light measured by the first sensor unit, and the intensity of the second component light measured by the second sensor unit is calculated. a calculation unit that calculates information about the component gas in the high concentration range based on
    A gas analyzer, comprising:
  2.  前記測定セルの内部に、前記サンプルガスと、前記成分ガスを含まないリファレンスガスと、を切り替えて導入するガス切替部をさらに備える、請求項1に記載のガス分析装置。 The gas analyzer according to claim 1, further comprising a gas switching unit for switching and introducing the sample gas and the reference gas that does not contain the component gas inside the measurement cell.
  3.  前記分離部材は、前記第1成分光を透過させ、前記第3成分光を反射させるバンドパスフィルタである、請求項1又は2に記載のガス分析装置。 The gas analyzer according to claim 1 or 2, wherein the separation member is a bandpass filter that transmits the first component light and reflects the third component light.
  4.  前記第1センサ部は、前記特定波長範囲の光の強度を測定可能な第1ニューマチック検出器を含む、請求項1~3のいずれかに記載のガス分析装置。 The gas analyzer according to any one of claims 1 to 3, wherein said first sensor section includes a first pneumatic detector capable of measuring the intensity of light in said specific wavelength range.
  5.  前記第1センサ部は、前記特定波長範囲の光を透過させる第1透過フィルタと、前記第1透過フィルタを通過した光の強度を測定する熱型固体センサ又は半導体センサと、を含む、請求項1~3のいずれかに記載のガス分析装置。 3. The first sensor unit includes a first transmission filter that transmits light in the specific wavelength range, and a thermal solid-state sensor or semiconductor sensor that measures the intensity of the light that has passed through the first transmission filter. 4. The gas analyzer according to any one of 1 to 3.
  6.  前記第2センサ部は、前記特定波長範囲の光の強度を測定可能な第2ニューマチック検出器を含む、請求項1~5のいずれかに記載のガス分析装置。 The gas analyzer according to any one of claims 1 to 5, wherein said second sensor section includes a second pneumatic detector capable of measuring the intensity of light in said specific wavelength range.
  7.  前記第2センサ部は、前記分離部材と前記第2ニューマチック検出器との間に設けられ、前記特定波長範囲の光を透過させる第2透過フィルタを含む、請求項6に記載のガス分析装置。 7. The gas analyzer according to claim 6, wherein said second sensor section includes a second transmission filter provided between said separation member and said second pneumatic detector and transmitting light in said specific wavelength range. .
  8.  前記第2センサ部は、前記特定波長範囲の光を透過させる第3透過フィルタと、前記第3透過フィルタを通過した光の強度を測定する熱型固体センサ又は半導体センサと、を含む、請求項1~5のいずれかに記載のガス分析装置。 3. The second sensor unit includes a third transmission filter that transmits light in the specific wavelength range, and a thermal solid-state sensor or semiconductor sensor that measures the intensity of the light that has passed through the third transmission filter. 6. The gas analyzer according to any one of 1 to 5.
  9.  前記測定セルと前記分離部材との間に設けられ、前記特定波長範囲の光を透過させる第4透過フィルタをさらに備える、請求項1~8のいずれかに記載のガス分析装置。 The gas analysis device according to any one of claims 1 to 8, further comprising a fourth transmission filter provided between said measurement cell and said separation member and transmitting light in said specific wavelength range.
  10.  前記第1センサ部及び前記第2センサ部は、前記特定波長範囲の光の強度を測定する熱型固体センサ又は半導体センサである、請求項9に記載のガス分析装置。 The gas analyzer according to claim 9, wherein the first sensor section and the second sensor section are thermal solid-state sensors or semiconductor sensors that measure the intensity of light in the specific wavelength range.
PCT/JP2022/021337 2021-06-25 2022-05-25 Gas analysis device WO2022270201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529719A JPWO2022270201A1 (en) 2021-06-25 2022-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-106046 2021-06-25
JP2021106046 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022270201A1 true WO2022270201A1 (en) 2022-12-29

Family

ID=84544526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021337 WO2022270201A1 (en) 2021-06-25 2022-05-25 Gas analysis device

Country Status (2)

Country Link
JP (1) JPWO2022270201A1 (en)
WO (1) WO2022270201A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114530A (en) * 1997-06-21 1999-01-22 Horiba Ltd Measuring instrument for pm in exhaust gas
JP2004085252A (en) * 2002-08-23 2004-03-18 Horiba Ltd Gas analyzer
JP2006329823A (en) * 2005-05-26 2006-12-07 Horiba Ltd Analyzer
WO2015181956A1 (en) * 2014-05-30 2015-12-03 富士電機株式会社 Multicomponent laser gas analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114530A (en) * 1997-06-21 1999-01-22 Horiba Ltd Measuring instrument for pm in exhaust gas
JP2004085252A (en) * 2002-08-23 2004-03-18 Horiba Ltd Gas analyzer
JP2006329823A (en) * 2005-05-26 2006-12-07 Horiba Ltd Analyzer
WO2015181956A1 (en) * 2014-05-30 2015-12-03 富士電機株式会社 Multicomponent laser gas analyzer

Also Published As

Publication number Publication date
JPWO2022270201A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US7454950B2 (en) Vehicle exhaust gas analyzer
US8654334B1 (en) Incoherent cavity ringdown spectroscopy gas analyzer coupled with periodic chemical scrubbing
US20140338540A1 (en) Exhaust gas flowmeter and exhaust gas analyzing system
WO2007136124A1 (en) Gas analyzing apparatus, and laser wavelength sweep control method in the gas analyzing apparatus
WO2010102375A1 (en) Apparatus for continuous in situ monitoring of elemental mercury vapour, and method of using same
EP3470820A1 (en) Analysis device
JP2012013573A (en) Ozone concentration meter and ozone concentration monitoring kit with the ozone concentration meter
WO2016125338A1 (en) Gas analyzing method and gas analyzing device
KR100897279B1 (en) NDIR gas analyzer and gas analyzing method using the same
JP2012242311A (en) Gas analyzer
WO2022270201A1 (en) Gas analysis device
JP2003050203A (en) Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JP2009257808A (en) Infrared gas analyzer
KR100910871B1 (en) Method and apparatus for measuring water contained in the chimney gas
US20090302230A1 (en) Use of a Broad Band UV Light Source for Reducing The Mercury Interference in Ozone Measurements
CN112697747A (en) Device and method for detecting decomposer, moisture and purity in sulfur hexafluoride gas
JP4218954B2 (en) Absorption analyzer
CN103344603B (en) Gas-detecting device and method
JPH07151685A (en) Non-dispersion type infrared gas analyzer
CN112504988A (en) Gas detection device and gas detection method
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JPS6361143A (en) System for measuring gas concentration distribution
WO2023120231A1 (en) Analysis device and analysis method
JP2022108038A (en) gas analyzer
CN111912805A (en) Ultraviolet spectrum detection method and device for monitoring trace hydrogen sulfide in blast furnace flue gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529719

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE