JPS6361143A - System for measuring gas concentration distribution - Google Patents

System for measuring gas concentration distribution

Info

Publication number
JPS6361143A
JPS6361143A JP61203994A JP20399486A JPS6361143A JP S6361143 A JPS6361143 A JP S6361143A JP 61203994 A JP61203994 A JP 61203994A JP 20399486 A JP20399486 A JP 20399486A JP S6361143 A JPS6361143 A JP S6361143A
Authority
JP
Japan
Prior art keywords
light
gas
irradiation
optical fibers
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61203994A
Other languages
Japanese (ja)
Inventor
Ryuzo Kano
龍三 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61203994A priority Critical patent/JPS6361143A/en
Publication of JPS6361143A publication Critical patent/JPS6361143A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To instantaneously measure gas concn. distribution without disturbing the gas distribution state of a measuring system, by constituting the measuring system of an irradiation system, a light receiving system, a gas concn. measuring cell and a spectroscopic means. CONSTITUTION:An irradiation system 1 consists of a light source 5 and light irradiating optical fiber 6 and a light receiving system 4 is constituted of a light receiving optical fiber 7 and a light receiver 8. A spectroscopic means 2 is constituted so as to make it possible to rotate a chopper 12, which has a filter 10 permitting the transmission only of the absorption wavelength of the specific gas in a flow passage 9 at one end thereof and a filter 11 not substantially absorbing the wavelengths of all of gaseous components in the flow passage 9 at the other end thereof, by a motor 13. Further, a gas concn. measuring cell 3 is constituted so that the end surface of an optical fiber 6 and that of an optical fiber 7 are arranged and fixed in opposed relationship by a gas permeable sintered filter and irradiation light is efficiently used in measurement. A semiconductor detector for detecting infrared rays is used in the light receiver 8 to compare and detect the intensities of lights propagated having two kinds of wavelengths and the intensity ratio thereof is converted to concn. by an operation part.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明はガス濃度分布測定システムに関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a gas concentration distribution measuring system.

さらに詳しくはガスによる赤外線または紫外線の吸収を
利用した分析計を使用してガス流路内の特定のガスの濃
度分布を測定するシステムに関する。
More specifically, the present invention relates to a system that measures the concentration distribution of a specific gas in a gas flow path using an analyzer that utilizes infrared or ultraviolet absorption by gas.

(ロ)従来の技術 従来煙道等のガス流路内の特定のガスの濃度分布を測定
する場合、該流路内の任意の複数の測定位置に対応する
数の分析計を用いるか、1台の分析計により多点サンプ
リングしてサンプルを切換えて順次濃度を測定する方法
が行われており、上記用いる分析計としては第4図に示
すように一方のサイドに光源(24)、他方のサイドに
検出器(25)を備えた透光性測定セル(26)と、光
、源と透光性測定セルとの間の光路または測定セルと検
出器との間の光路に介設され、被測定ガス中の特定のガ
ス成分の吸収波長と被測定ガス中のいずれのガス成分に
も吸収されない非吸収波長の光を選択透過するそれぞれ
透過性フィルタ(27)をモータ(28)により回転可
能に設定された光チタツピング手段(29)とから構成
されたものを用い、測定にあたっては例えば第5図に示
すように測定流路(30)内の任意の複数の測定位置か
ら各々吸引手段(31)を介して対応する複数の分析計
を設定し、該分析計の測定セル内に測定位置の試料ガス
を吸引し、このセルの一方から光源の光を直接照射して
セルの他方から放出される光線を上記光チタッピング手
段で選択透過して検出器で検出するかまたは光源の光を
先に上記光チヨツピング手段により選択透過された光を
直接上記セルの一方から照射しセルの他方から放出され
る光を検出器で検出するかしていた。
(B) Prior Art Conventionally, when measuring the concentration distribution of a specific gas in a gas flow path such as a flue, one or more analyzers are used, or one A method is used in which the concentration is measured sequentially by sampling at multiple points and switching samples using an analyzer on one side.As shown in Figure 4, the analyzer used above has a light source (24) on one side and a a translucent measuring cell (26) with a detector (25) on the side, and a light beam interposed in the optical path between the source and the translucent measuring cell or between the measuring cell and the detector; Transmissive filters (27) that selectively transmit light at the absorption wavelength of a specific gas component in the gas to be measured and light at a non-absorption wavelength that is not absorbed by any gas component in the gas to be measured can be rotated by a motor (28). For the measurement, for example, as shown in FIG. ), the sample gas at the measurement position is sucked into the measurement cell of the analyzer, and the light from the light source is directly irradiated from one of the cells, and the gas is emitted from the other cell. The light beam selectively transmitted by the optical tapping means is selectively transmitted and detected by a detector, or the light from the light source is first selectively transmitted by the optical tapping means, and the light is directly irradiated from one of the cells and emitted from the other cell. The light emitted was detected by a detector.

(ハ)発明が解決しようとする問題点 しかしながら上記従来の分析計では、サンプルガスをポ
ンプで吸引して測定セルへ流すためサンプルの遅れが生
じ瞬間の変化を測定できない、ガスをサンプリングする
ために測定系のガス分布の乱れが生じる、サンプルが少
量の場合サンプル量が少ないためさらに遅れが生じる、
分析計を数台使用して同時測定する場合コストが高くつ
く、多点サンプリングの場合サンプル切換えによる遅れ
があり連続測定できないため分布の速い変化をとらえら
れない、サンプリングする測定系の圧力(負圧または正
圧)によりサンプリングを調整しなければならない、等
の問題点がある。
(c) Problems to be Solved by the Invention However, in the conventional analyzer described above, the sample gas is sucked in by a pump and flows into the measurement cell, which causes a delay in the sample and makes it impossible to measure instantaneous changes. Disturbances occur in the gas distribution in the measurement system.If the sample is small, there will be an additional delay due to the small amount of sample.
Simultaneous measurement using several analyzers is expensive; multi-point sampling has a delay due to sample switching, making continuous measurement impossible, making it impossible to capture rapid changes in the distribution; pressure (negative pressure) in the sampling measurement system; There are problems such as the need to adjust the sampling by adjusting the pressure (or positive pressure).

この発明はかかる状況に鑑み為されたものであり、こと
に測定系のガス分布状態を乱すことなく瞬時にガス濃度
分布が測定可能なガス濃度分布測定システムを提供しよ
うとするものである。
The present invention has been made in view of this situation, and particularly aims to provide a gas concentration distribution measuring system that can instantaneously measure gas concentration distribution without disturbing the gas distribution state of the measurement system.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、被測定ガス流路内に各々先
端部が挿入配置された複数の光照射用光ファイバおよび
これらの光照射用光ファイバの後端へ外部より光を供給
しうる外部光路とからなる照射系と、 上記各光照射用光ファイバに対応して先端部が各々上記
被測定ガス流路内に挿入配置された複数の受光用光ファ
イバおよびこれらの受光用光ファイバを通じて進行する
光の強度を各々被測定ガス流路外部で検出しうる受光器
とからなる受光系と、上記対応する各々の光照射用光フ
ァイバおよび受光用光ファイバの先端面が各々所定の光
路長間隔で対向するように先端部を固定するガス透過性
固定部材と、 上記照射系の光路中または受光系の光路中に各々被測定
ガス成分の吸収波長の透過性フィルタと被測定ガス中の
いずれのガス成分にも実質的に吸収されない波長の透過
性フィルタを切換配置しうる分光手段とから構成される
ガス濃度分布測定システムが提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a plurality of light irradiation optical fibers each having a distal end inserted into the gas flow path to be measured and a rear end of these light irradiation optical fibers are provided. an irradiation system consisting of an external optical path capable of supplying light from the outside to the end; and a plurality of light receiving lights whose tips are respectively inserted into the gas flow path to be measured corresponding to each of the light irradiation optical fibers. A light receiving system consisting of a fiber and a light receiver capable of detecting the intensity of light traveling through these light receiving optical fibers outside the gas flow path to be measured, and each of the above-mentioned corresponding light irradiation optical fibers and light receiving optical fibers. a gas-permeable fixing member that fixes the tip portions so that the tip surfaces thereof face each other at predetermined optical path length intervals; A gas concentration distribution measuring system is provided which includes a spectroscopy means that can be selectively arranged with a transmissive filter and a transmissive filter having a wavelength that is not substantially absorbed by any gas component in the gas to be measured.

二の発明のシステムにおける照射系と受光系の接合部は
、光照射用光フアイバ先端面と受光用光フアイバ先端面
と、これらの先端面を所定の光路長間隔で対向するよう
に固定するガス透過性固定部材とから構成されるが、該
接合部では光照射用光フアイバ先端面から光が分散せず
平行光線で照射されかつ受光用光フアイバ先端面で集光
されるように構成されたものが照射される光を有効に使
用する点で好ましく、例えば上記各先端面に凸レンズを
使用した構成等が挙げられる。またガス透過性固定部材
としては、金属の焼結物、ベーパ、グラスウールまたは
これらを組合わせたもの等が適している。上記所定の光
路長としては測定ガス濃度に応じて1〜300+u+の
間で設定される。
The joint between the irradiation system and the light receiving system in the system of the second invention consists of a light emitting optical fiber tip surface, a light receiving optical fiber tip surface, and a gas that fixes these tip surfaces so that they face each other at a predetermined optical path length interval. and a transparent fixing member, in which the light from the tip surface of the optical fiber for light irradiation is not dispersed but is irradiated with parallel rays and is condensed at the tip surface of the optical fiber for light reception. This is preferable in that the light irradiated onto the object is used effectively, and for example, a configuration in which a convex lens is used on each of the above-mentioned tip surfaces is exemplified. Further, as the gas-permeable fixing member, sintered metal, vapor, glass wool, or a combination thereof is suitable. The predetermined optical path length is set between 1 and 300+u+ depending on the measured gas concentration.

この発明に用いる照射系の外部光路は、光源のみから構
成されたものであってもよく、光源と該光源の光を複数
の光照射用光ファイバの各端部に供給しうるよう該各端
部に対応して設定された光供給用光路とから構成された
ものであってもよい。
The external optical path of the irradiation system used in this invention may be composed only of a light source, and each end of the light source and the light of the light source can be supplied to each end of a plurality of light irradiation optical fibers. and a light supply optical path set corresponding to the section.

上記光路は光ファイバで形成するのが好ましい。Preferably, the optical path is formed by an optical fiber.

この発明に用いる分光手段は、照射系の光路中または受
光系の光路中のいずれに設定されてもよい。
The spectroscopic means used in this invention may be set either in the optical path of the irradiation system or in the optical path of the light receiving system.

上記分光手段は、被測定ガス成分の吸収波長の透過性フ
ィルタと被測定ガス中のいずれのガス成分にも実質的に
吸収されない波長の透過性フィルタを切換配置しうるよ
う構成されたものが用いられ、例えば上記2種のフィル
タをモータに取付け、モータの回転によりフィルタが光
路を断続して横切る(チョッピング)ように構成された
もの等を挙げることができる。上記分光手段を上記光路
中に設定する場合の構成例としては、上記フィルタが複
数の全光路を同時に横切るように構成されたものであっ
てもよく、個々の光路を順次横切るように構成されてい
てもよい。前者の構成としては複数の光照射用光ファイ
バを束ねて設定した構成のものが挙げられ、後者には上
記フィルタの回転路上に複数の光照射用光ファイバの端
部が並ぶように光照射用光ファイバを配設した構成のも
のを挙げることができる。また前者の場合検出用に用い
る受光器は受光用光ファイバの数に応じた個数が用意さ
れ各受光用光ファイバの端部に接続されて用いられるこ
とが好ましい。一方後者の場合検出用に用いる受光器は
1つであってもよく、用いる受光用光ファイバの数に応
じた個数であってもよい。1つの受光器で構成する場合
は用いる複数の受光用光ファイバを受光器近傍で束ねて
これらの端部を該受光器に接続しかつ分光手段に順次チ
ョッピングされる光線を判別するタイミング素子等を備
えた構成とすることが好ましい。
The above-mentioned spectroscopic means is configured to be able to switch between a filter that transmits the absorption wavelength of the gas component to be measured and a filter that transmits the wavelength that is not substantially absorbed by any of the gas components in the gas to be measured. For example, the above two types of filters may be attached to a motor, and the filter may be configured to cross the optical path intermittently (chopping) as the motor rotates. As an example of a configuration in which the spectroscopic means is set in the optical path, the filter may be configured to cross all of a plurality of optical paths at the same time, or it may be configured to cross each optical path sequentially. You can. The former configuration includes a configuration in which a plurality of optical fibers for light irradiation are bundled together, and the latter includes a configuration in which a plurality of optical fibers for light irradiation are arranged so that the ends of the optical fibers for light irradiation are lined up on the rotation path of the filter. One example is a structure in which an optical fiber is provided. In the former case, it is preferable that the number of light receivers used for detection be prepared in accordance with the number of light-receiving optical fibers and connected to the end of each light-receiving optical fiber. On the other hand, in the latter case, the number of light receivers used for detection may be one, or the number may correspond to the number of light receiving optical fibers used. When configured with one light receiver, a plurality of optical fibers for light reception are bundled near the light receiver, their ends are connected to the light receiver, and a timing element or the like is provided to discriminate the light rays that are sequentially chopped by the spectrometer. It is preferable to have a configuration including the following.

なお、光源に紫外線を用いる場合は光ファイバは石英フ
ァイバが適しており、赤外線の場合はフッ化物ファイバ
、カルコゲンガラスファイバ等が適している。
Note that when using ultraviolet rays as a light source, a quartz fiber is suitable as the optical fiber, and when using infrared rays, fluoride fibers, chalcogen glass fibers, etc. are suitable.

(ポ)作用 この発明によれば、照射系を進行する照射光は、光ファ
イバにより直接被測定ガス流路内に導入され、該光ファ
イバの端部から放射され、ガス雰囲気内を透過して、対
向して配置された・受光用光ファイバの端部に集光され
受光系を進行して受光器まで伝搬される。
(P) Effect According to this invention, the irradiation light traveling through the irradiation system is introduced directly into the gas flow path to be measured through the optical fiber, is emitted from the end of the optical fiber, and is transmitted through the gas atmosphere. The light is focused on the ends of light-receiving optical fibers placed opposite each other, and propagated through the light-receiving system to the light receiver.

上記受光器には、ガス雰囲気内透過前または透過後に特
定成分ガスのみの吸収波長と上記被測定ガス中のいずれ
のガスにも実質的に吸収されない波長とに選択されたも
のが交互に伝搬され、これらの光の強度の比較から特定
成分ガスの濃度が検出される。
The absorption wavelength of only the specific component gas and the wavelength that is not substantially absorbed by any of the gases in the gas to be measured are alternately propagated to the photodetector before or after passing through the gas atmosphere. By comparing the intensities of these lights, the concentration of the specific component gas is detected.

以下実施例によりこの発明の詳細な説明するが、これに
よりこの発明は限定されるものではない。
The present invention will be described in detail below with reference to Examples, but the present invention is not limited thereby.

(へ)実施例 第1図はこの発明のシステムを例示する装置の一実施例
の構成説明図である。この例は被測定ガス流路内の任意
の4点で測定しうるように構成されたものである。図に
おいて(1)は照射系、(2)は分光手段、(3)はガ
ス濃度測定セル、(4)は受光系である。照射系(1)
は光源(5)と光照射用光ファイバ(6)とからなり、
受光系(4)は受光用光ファイバ(7)と受光器(8)
とからなっている。 (9)は被測定ガス流路である。
(F) Embodiment FIG. 1 is an explanatory diagram of the configuration of an embodiment of an apparatus illustrating the system of the present invention. This example is configured so that measurements can be made at any four points within the gas flow path to be measured. In the figure, (1) is an irradiation system, (2) is a spectroscopic means, (3) is a gas concentration measuring cell, and (4) is a light receiving system. Irradiation system (1)
consists of a light source (5) and an optical fiber for light irradiation (6),
The light receiving system (4) includes a light receiving optical fiber (7) and a light receiver (8).
It consists of (9) is a gas flow path to be measured.

光源(5)にはハロゲンランプが使用されている。分光
手段(2)は、一方に上記流路(9)内の特定ガス(例
えばC01)の吸収波長のみを透過するフィルタ(4,
2μのバンドパスフィルタ> (ill)および他方に
は上記流路(9)内のいずれのガス成分も実質的に吸収
しない波長のフィルタ(3,2μのバンドパスフィルタ
) (11)を有するチゴッパ(12)をモータ(13
)で回転しうるよう構成されている。またガス濃度測定
セル(3)は第2図に示すごとくガス透過性の焼結フィ
ルタ(14)により光照射用光ファイバ(6)端面(1
5)と受光用光ファイバ(7)端面(工6)とが対向配
置して固定され、さらに光照射用光フアイバ端面(15
)近傍には該端面(15)から光が略平行光線で照射し
うるよう光照射用凸レンズ(17)が設定され、対向す
る受光用光フアイバ端面(16)近傍には上記平行照射
光線を集光しうる凸型の集光レンズ(18)が設定され
ている。これらにより光照射用光フアイバ中を進行する
照射光は効率良く測定に使用されることとなる。また受
光器(8)には赤外線検出用の半導体検出器(焦電検出
器)が使用されており、該受光器(8)に伝搬される2
種の波長の光の強度を比較検出する。
A halogen lamp is used as the light source (5). The spectroscopic means (2) includes a filter (4,
a 2μ bandpass filter (ill) and a filter having a wavelength that does not substantially absorb any of the gas components in the flow path (9) (3.2μ bandpass filter) (11); 12) to the motor (13
) so that it can be rotated. In addition, the gas concentration measuring cell (3) is connected to the end face (1) of the optical fiber (6) for light irradiation using a gas-permeable sintered filter (14) as shown in
5) and the end face of the light-receiving optical fiber (7) (work 6) are arranged and fixed facing each other, and the end face of the light-irradiating optical fiber (15) is fixed so as to face each other.
) A convex lens for light irradiation (17) is set so that light can be emitted from the end face (15) in substantially parallel rays, and a convex lens for light irradiation (17) is set near the opposing optical fiber end face for light reception (16) to condense the parallel irradiated light rays. A convex condensing lens (18) that emits light is provided. Due to these, the irradiation light traveling through the light irradiation optical fiber can be efficiently used for measurement. Moreover, a semiconductor detector (pyroelectric detector) for detecting infrared rays is used in the light receiver (8), and the 2
Comparatively detect the intensity of light at different wavelengths.

これら検出される強度比は該受光器に接続された図示し
ない演算部により濃度に換算される。
These detected intensity ratios are converted into concentration by a calculation unit (not shown) connected to the light receiver.

次ぎにこの装置の作動を説明する。Next, the operation of this device will be explained.

光源からの光が分光手段によって被測定ガス中の特定ガ
ス成分の吸収波長と被測定ガス中のいずれもガス成分に
も実質的に吸収されない波長との2種の波長に選択透過
されてそれぞれ同一波長の透過光が同時に4本の光照射
用光ファイバを進行して測定セルの光照射用光フアイバ
端面から交互に照射される。交互に照射された2種の波
長の光はそれぞれ光照射用凸レンズにより略平行光線で
交互に該セル中に充満しているガス雰囲気中を透過し集
光レンズでそれぞれ集光されて対向配置された受光用光
ファイバの端面に交互に伝搬される。
Light from a light source is selectively transmitted by a spectroscopic means into two wavelengths: one that is absorbed by a specific gas component in the gas to be measured and a wavelength that is not substantially absorbed by any of the gas components in the gas to be measured. Transmitted light of different wavelengths simultaneously travels through four light irradiation optical fibers and is alternately irradiated from the end face of the light irradiation optical fibers of the measurement cell. The alternately irradiated two wavelengths of light are transmitted through the gas atmosphere filling the cell alternately as substantially parallel rays by a convex lens for light irradiation, and are respectively focused by a condensing lens and placed facing each other. The light is alternately propagated to the end face of the light-receiving optical fiber.

伝搬された2種の波長の光は受光用光ファイバを進行し
て交互に受光器に受光されこれらの2種波長の強度比か
ら測定セル中に充満していたガス成分のうちの特定成分
の濃度が検出されることとなる。
The propagated light of two different wavelengths travels through a light-receiving optical fiber and is alternately received by a light receiver, and from the intensity ratio of these two wavelengths, a specific component of the gas components filled in the measurement cell is determined. The concentration will be detected.

なお、第1図には4本の光照射用光ファイバ(6)を被
測定ガス流路手前まで束ねて構成し、分光手段(2)に
より4本の光照射用光ファイバ(6)に同時に分光して
伝送するよう構成されたものを示したが、光源の光を4
本の光照射用光ファイバ(6)に順次分光して伝送しか
つこれらの分光光線を1つの受光器で受光するよう構成
することも可能である。その例の構成説明図を第3図に
示す。この図において照射系(20)は光源(21)と
分断された4本の光照射用光ファイバ(22)とから構
成され、上記分断位置に設定される分光手段(23)は
上記と同様の構成のものにさらにタイミング素子(24
)が設定されており、受光用光ファイバの末端部が束ね
られて1つの受光器に接続されている以外は第1図と同
様のものである。上記4本の光照射用光ファイバは、各
分断面が分光手段のフィルタが回転して描く回転円周路
上に配置されている。
In addition, in Fig. 1, four optical fibers for light irradiation (6) are bundled up to the front of the gas flow path to be measured, and the four optical fibers for light irradiation (6) are simultaneously connected to each other by the spectrometer (2). The configuration shown above is configured to split and transmit light from a light source.
It is also possible to construct a structure in which the light beams are sequentially separated and transmitted to the optical fiber (6) for irradiating the light of the book, and these separated light beams are received by one light receiver. An explanatory diagram of the configuration of this example is shown in FIG. In this figure, the irradiation system (20) is composed of a light source (21) and four separated light irradiation optical fibers (22), and the spectroscopic means (23) set at the above-mentioned separation position is the same as above. In addition to the timing element (24
), and is the same as that shown in FIG. 1 except that the ends of the light-receiving optical fibers are bundled and connected to one light receiver. The four optical fibers for light irradiation are arranged so that each cross section is on a rotating circumferential path drawn by rotation of the filter of the spectroscopic means.

この構成において作動は、分光手段により4本の光照射
用光ファイバを順次進行し、さらに順次受光器まで進行
する分光透過光を、分光手段に設定されたタイミング素
子で判別して処理する以外は上記と同様に行われる。
In this configuration, the operation is as follows: The spectroscopic means sequentially travels through the four light irradiation optical fibers, and the spectral transmitted light that sequentially travels to the light receiver is discriminated and processed by a timing element set in the spectroscopic means. This is done in the same way as above.

(ト)発明の効果 この発明によれば、被測定ガス流路内のガス雰囲気を乱
すことなく該流路内のガス濃度分布が測定できる。また
サンプリングの必要がないので速い変化にも正確に追従
しうる測定システムである。
(G) Effects of the Invention According to the present invention, the gas concentration distribution within the gas flow path to be measured can be measured without disturbing the gas atmosphere within the gas flow path. Additionally, since there is no need for sampling, the measurement system can accurately follow rapid changes.

さらに被測定ガス流路内の圧力に関係なく該流路内の状
態そのままでの変化が測定でき信頼度の高い測定システ
ムである。またさらに従来に比べて安価な測定システム
を提供できうる。また被測定ガス流路内のガスを系外に
サンプリングしないので危険ガスであっても人体に安全
な状態で測定できる。
Furthermore, it is a highly reliable measurement system that can measure changes in the state of the gas flow path as it is, regardless of the pressure within the gas flow path. Furthermore, it is possible to provide a measurement system that is cheaper than conventional ones. Furthermore, since the gas in the gas flow path to be measured is not sampled outside the system, even dangerous gases can be measured in a state that is safe for the human body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のシステムの一実施例の構成説明図、
第2図は第1図のシステムに用いるガス濃度測定セルの
一例の構成説明図、第3図はこの発明のシステムの他の
実施例の構成説明図、第4図は従来例のガス濃度分析計
の構成説明図、第5図は従来例のガス濃度分析計を用い
てガス濃度分布を測定する際の装置の構成説明図である
。 (1)(20)・・・・・−照射系、  (2)(23
)・・・・・・分光手段、(3)・・・・・・ガス濃度
測定セル、(4)・・・・・・受光系、(5)・・・・
・・光源、 (6)(22)・・・・・・光照射用光ファイバ、(7
)・・・・・・受光用光ファイバ、(8)・・・・・・
受光器、    (9)・・・・・・被測定ガス流路、
(10)(II)・・・・・・フィルタ、(12)・・
・・・・チョッパ、(13)・・・・・・モータ、  
  (14)・・・・・・焼結後フィルタ、(17)・
・・・・・光照射用凸レンズ、(18)・・・・・・集
光レンズ、 (24)タイミング素子。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the system of the present invention;
FIG. 2 is an explanatory diagram of the configuration of an example of a gas concentration measurement cell used in the system of FIG. FIG. 5 is a diagram illustrating the configuration of an apparatus for measuring gas concentration distribution using a conventional gas concentration analyzer. (1)(20)...-Irradiation system, (2)(23
)... Spectroscopic means, (3)... Gas concentration measuring cell, (4)... Light receiving system, (5)...
...Light source, (6) (22) ... Optical fiber for light irradiation, (7
)... Optical fiber for light reception, (8)...
Light receiver, (9)...Measurement gas flow path,
(10) (II)... Filter, (12)...
...Chopper, (13) ...Motor,
(14)...Filter after sintering, (17)
... Convex lens for light irradiation, (18) ... Condensing lens, (24) Timing element.

Claims (1)

【特許請求の範囲】 1、被測定ガス流路内に各々先端部が挿入配置された複
数の光照射用光ファイバおよびこれらの光照射用光ファ
イバの後端へ外部より光を供給しうる外部光路とからな
る照射系と、 上記各光照射用光ファイバに対応して先端部が各々上記
被測定ガス流路内に挿入配置された複数の受光用光ファ
イバおよびこれらの受光用光ファイバを通じて進行する
光の強度を各々被測定ガス流路外部で検出しうる受光器
とからなる受光系と、上記対応する各々の光照射用光フ
ァイバおよび受光用光ファイバの先端面が各々所定の光
路長間隔で対向するように先端部を固定するガス透過性
固定部材と、 上記照射系の光路中または受光系の光路中に各々被測定
ガス成分の吸収波長の透過性フィルタと被測定ガス中の
いずれのガス成分にも実質的に吸収されない波長の透過
性フィルタを切換配置しうる分光手段とから構成される
ガス濃度分布測定システム。
[Scope of Claims] 1. A plurality of optical fibers for light irradiation each having a distal end inserted into the gas flow path to be measured, and an external device capable of supplying light from the outside to the rear ends of these optical fibers for light irradiation. an irradiation system consisting of an optical path; a plurality of light-receiving optical fibers whose tips are respectively inserted into the gas flow path to be measured corresponding to each of the light-irradiating optical fibers; A light receiving system consisting of a light receiver capable of detecting the intensity of the light to be measured outside the gas flow path to be measured, and a tip surface of each of the corresponding light irradiation optical fibers and light receiving optical fibers arranged at predetermined optical path length intervals. a gas-permeable fixing member whose tips are fixed so as to face each other; a transparent filter having an absorption wavelength of the gas component to be measured; A gas concentration distribution measuring system comprising a spectroscopic means that can be selectively arranged with transmitting filters having wavelengths that are not substantially absorbed by gas components.
JP61203994A 1986-08-30 1986-08-30 System for measuring gas concentration distribution Pending JPS6361143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203994A JPS6361143A (en) 1986-08-30 1986-08-30 System for measuring gas concentration distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203994A JPS6361143A (en) 1986-08-30 1986-08-30 System for measuring gas concentration distribution

Publications (1)

Publication Number Publication Date
JPS6361143A true JPS6361143A (en) 1988-03-17

Family

ID=16483014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203994A Pending JPS6361143A (en) 1986-08-30 1986-08-30 System for measuring gas concentration distribution

Country Status (1)

Country Link
JP (1) JPS6361143A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130454A (en) * 1988-11-11 1990-05-18 Hitachi Cable Ltd Cracked gas measuring apparatus for insulating oil
JPH02120056U (en) * 1989-03-15 1990-09-27
JPH02281129A (en) * 1989-03-30 1990-11-16 Measurex Corp Optical system for detecting characteristics of progressing sheet material
JP2013221804A (en) * 2012-04-13 2013-10-28 Mitsubishi Heavy Ind Ltd Concentration measuring apparatus
JP2014115200A (en) * 2012-12-10 2014-06-26 Mitsubishi Heavy Ind Ltd Measuring apparatus for gas composition in gas using laser measurement
CN104280355A (en) * 2014-10-24 2015-01-14 中国科学院上海光学精密机械研究所 Detection device and detection method of ammonia gas and sulfur dioxide gas concentration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130454A (en) * 1988-11-11 1990-05-18 Hitachi Cable Ltd Cracked gas measuring apparatus for insulating oil
JPH02120056U (en) * 1989-03-15 1990-09-27
JPH02281129A (en) * 1989-03-30 1990-11-16 Measurex Corp Optical system for detecting characteristics of progressing sheet material
JP2013221804A (en) * 2012-04-13 2013-10-28 Mitsubishi Heavy Ind Ltd Concentration measuring apparatus
JP2014115200A (en) * 2012-12-10 2014-06-26 Mitsubishi Heavy Ind Ltd Measuring apparatus for gas composition in gas using laser measurement
CN104280355A (en) * 2014-10-24 2015-01-14 中国科学院上海光学精密机械研究所 Detection device and detection method of ammonia gas and sulfur dioxide gas concentration

Similar Documents

Publication Publication Date Title
US5130544A (en) Optical gas analyzer
US3994590A (en) Discrete frequency colorimeter
US4945250A (en) Optical read head for immunoassay instrument
US5942755A (en) Infrared optical gas-measuring system
JP2879141B2 (en) Concentration measuring device and method
JPH0231820B2 (en)
CN101308090A (en) Fire field multi- parameter optical maser wavelength modulated spectrum detector method and apparatus
GB1531844A (en) Method and device for the non-dispersive optical determination of the concentration of gas and smoke components
DK145977B (en) APPARATUS FOR CONTINUOUS MEASUREMENT OF CO2 CONTENTS IN BREATHING AIR
US20110147592A1 (en) Arrangement adapted for spectral analysis of small concentrations of gas
EP0438550B1 (en) Optical read system
CA2738820C (en) An arrangement adapted for spectral analysis of high concentrations of gas
US3735127A (en) Infrared two gas analyzer
JPS6312938A (en) Gas analyzer and gas analyzing method
GB1380841A (en) Analysis of gas by light absorption
US4803052A (en) Carbon monoxide detector
CN201210140Y (en) Multi-parameter laser wavelength modulation spectrum detection apparatus used in fire field
JPS6361143A (en) System for measuring gas concentration distribution
US3851176A (en) Plural gas non-dispersive infrared analyzer
JP4158314B2 (en) Isotope gas measuring device
JPH1189799A (en) Concentration measuring device for specified ingredient
JP4218954B2 (en) Absorption analyzer
RU89233U1 (en) GAS ANALYZER
JPH1183734A (en) Gas detector and gas detecting method
JPS57111423A (en) Measuring device for absorption intensity of infrared ray by atr method