WO2022270133A1 - 超音波探傷手法および超音波探傷装置 - Google Patents

超音波探傷手法および超音波探傷装置 Download PDF

Info

Publication number
WO2022270133A1
WO2022270133A1 PCT/JP2022/017620 JP2022017620W WO2022270133A1 WO 2022270133 A1 WO2022270133 A1 WO 2022270133A1 JP 2022017620 W JP2022017620 W JP 2022017620W WO 2022270133 A1 WO2022270133 A1 WO 2022270133A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
frequency
flaw detection
wedge
elements
Prior art date
Application number
PCT/JP2022/017620
Other languages
English (en)
French (fr)
Inventor
祥 山口
聡 北澤
泰広 仁平
和也 江原
Original Assignee
日立Geニュークリア・エナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Geニュークリア・エナジー株式会社 filed Critical 日立Geニュークリア・エナジー株式会社
Publication of WO2022270133A1 publication Critical patent/WO2022270133A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Definitions

  • the present invention relates to an ultrasonic flaw detection method and an ultrasonic flaw detection device.
  • the ultrasonic scanner provided at the tip of the insertion portion is provided with a large number of ultrasonic transducers arranged linearly in the axial direction, and the odd-numbered ultrasonic transducers have a low oscillation frequency. and the even-numbered ultrasonic transducers are high-frequency transducers that oscillate at high frequencies.
  • the low-frequency ultrasonic signal processing unit when the low-frequency ultrasonic signal processing unit is operated, the low-frequency transducer is operated to obtain a low-frequency ultrasonic linear image, and when the high-frequency ultrasonic signal processing unit is operated, high-frequency vibration It is described that the child operates to obtain a high frequency ultrasound linear image.
  • Patent Document 2 describes a. A thickness of several ultrasonic wavelengths between an ultrasonic probe consisting of an array of many small ultrasonic elements, each having an ultrasonic beam divergence, and a part with a non-uniform surface by immersing the part in a liquid to provide a fluid coupling of b. scanning the part with an ultrasonic beam while activating the individual ultrasonic elements one by one; c.
  • the ultrasonic waveforms emitted from individual ultrasonic elements in the array and reflected by the surfaces of the parts and the ultrasonic waveforms reflected by internal reflectors of the parts are stored, and the ultrasonic waveform data is stored.
  • Remaining life evaluation is used for power plant equipment as a guarantee of safety, and information on defect positions and defect dimensions inside the inspected object, mainly inside the pipes, is required.
  • Non-destructive inspection is performed to acquire information on defects inside an object to be inspected, and one of the techniques is ultrasonic flaw detection.
  • the defect size and the defect position from the probe can be measured from the ultrasonic waveform received by the probe.
  • Patent Document 1 As a method of indirectly bringing the test object and the sensor into close contact, a flaw detection method that uses a gel, which is a soft material, as an intervening substance to perform flaw detection, is used in medicine.
  • the above-mentioned Patent Document 1 is characterized by an array sensor in which ultrasonic elements that emit high-frequency and low-frequency ultrasonic waves are alternately combined, but is premised on medical use.
  • the characteristics of ultrasonic flaw detection in medical care are that the object to be inspected is the human body, and that the sound velocity of ultrasonic waves in the human body is equivalent to that of water.
  • the skin is soft, and when the array sensor is pressed against it, the skin naturally assumes the shape of the array sensor.
  • a soft intermediate catalyst such as gel whose ultrasonic sound velocity is close to that of water, Flaw detection is possible without considering the refraction of ultrasonic waves at the bonding surface between the intermediate catalyst and the object to be inspected.
  • the ultrasonic wave is refracted at the bonding surface between the intermediate catalyst and the test object. Imaging techniques that do not consider the refraction of ultrasonic waves produce errors in defect position and defect size.
  • a wedge that indirectly contacts the sensor and the surface of the inspection object is used to extract the coordinates of the surface shape, It is considered effective to calculate the propagation path of ultrasonic waves to the inside.
  • an intermediate layer is provided between the ultrasonic array sensor and the surface of the object to be inspected, the surface coordinates of the object to be inspected are extracted from the received waveform of the ultrasonic waves, and the propagation path of the ultrasonic waves to the inside of the object to be inspected is obtained. It is characterized by enabling ultrasonic flaw detection in consideration of unevenness.
  • the ultrasonic frequency suitable for shape extraction of the surface of the inspection object using the intermediate layer and the frequency suitable for flaw detection inside the inspection object are in different bands.
  • the surface shape extraction accuracy is improved.
  • the ultrasonic waves are scattered and attenuated inside the object to be inspected, there arises a problem that a defect signal may be overlooked due to a decrease in the intensity of the signal reflected from the inside of the object to be inspected.
  • An object of the present invention is to provide an ultrasonic flaw detection method and an ultrasonic flaw detection apparatus that can more easily achieve both the extraction of the surface shape and the detection of flaws inside the object to be inspected, which has been difficult to achieve in the past. That is.
  • the present invention includes a plurality of means for solving the above problems.
  • One example is an ultrasonic probe having two or more types of ultrasonic elements with different vibration frequencies, and an object to be inspected and the ultrasonic waves placing a wedge in indirect contact with a probe on the test object; controlling transmission and reception of ultrasonic waves from the ultrasonic element of the ultrasonic probe; and placing the ultrasonic waves.
  • FIG. 1 is a diagram showing an overview of the entire image during ultrasonic flaw detection in the ultrasonic flaw detector according to the embodiment of the present invention
  • FIG. FIG. 4 is a schematic diagram of waveform recording in a high-frequency element in the ultrasonic flaw detector according to the embodiment
  • FIG. 4 is a schematic diagram of extracting the coordinates of the surface of the test object from the waveform received by the high-frequency element in the ultrasonic flaw detector according to the embodiment
  • FIG. 4 is a schematic diagram of ultrasonic waves refracted into the interior of an inspection object and received by the low-frequency elements when the low-frequency elements irradiate ultrasonic waves in the ultrasonic testing apparatus according to the embodiment; 1 is a diagram of an inspection flow of an ultrasonic flaw detection method according to an embodiment; FIG.
  • FIG. 1 An embodiment of the ultrasonic flaw detection method and ultrasonic flaw detection apparatus of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 the same or corresponding components are denoted by the same or similar reference numerals, and repeated descriptions of these components may be omitted.
  • FIG. 1 is an overall configuration diagram of an ultrasonic flaw detector according to this embodiment.
  • an ultrasonic flaw detector 100 of this embodiment is suitable for inspecting an inspection object 106 having a curved surface, and includes an ultrasonic array probe 101, a wedge 102, a transmission/reception control device 104, and an arithmetic device. 105 is provided.
  • the ultrasonic array probe 101 has a plurality of ultrasonic elements, and can emit and receive ultrasonic waves from the ultrasonic elements.
  • the ultrasonic array probe 101 of this embodiment has frequency characteristics that enable strong transmission and reception due to resonance characteristics, and is composed of at least two or more types of low-frequency elements 107 and high-frequency elements 108 that have different vibration frequency characteristics. .
  • the ultrasonic array probe 101 includes a low-frequency element 107 capable of oscillating low-frequency ultrasonic waves suitable for flaw detection inside the test object 106, and a low-frequency element 107 capable of oscillating high-frequency ultrasonic waves suitable for surface shape extraction.
  • the same number of ultrasonic elements capable of transmitting and receiving two types of frequencies are provided.
  • the low frequency element 107 is preferably 2 to 5 [MHz]
  • the high frequency element 108 is preferably 10 [MHz] or higher, but the range is not limited to this range. Also, the numbers do not need to be the same, and either one may be greater.
  • one or more types of elements on the lower frequency side including the element with the lowest frequency, are used as low-frequency elements capable of oscillating low-frequency ultrasonic waves suitable for flaw detection inside the test object, and the lowest frequency
  • One or more types of elements on the high frequency side including elements with a high value, are classified as high frequency elements capable of oscillating high frequency ultrasonic waves suitable for surface shape extraction.
  • the positions of the low-frequency elements 107 and the high-frequency elements 108 in the ultrasonic array probe 101 when the center of the ultrasonic array probe 101 is the origin O are known. are arranged at regular intervals with the elements interposed therebetween.
  • the low-frequency element 107 and the high-frequency element 108 are alternately arranged as shown in FIG. 1 in order to prevent occurrence of areas where resolution is reduced when ultrasonic waves are received by each element.
  • the horizontal direction with respect to the sensor is defined as the X coordinate
  • the depth direction with respect to the sensor is defined as the Z coordinate.
  • the wedge 102 has a shape that allows it to be placed on top of the test object 106 and has a moving surface that extends along the moving direction of the ultrasonic array probe 101 . Further, the wedge 102 is configured to be movable while the ultrasonic array probe 101 is in close contact with the test object 106 and the ultrasonic array probe 101 indirectly. Preferably, the wedge 102 is a linear member extending linearly in the moving direction of the ultrasonic array probe 101 . Note that the wedge 102 is not limited to a linear member, and may be an arc member extending in an arc shape in the movement direction.
  • the wedge 102 is preferably made of a solid material such as acrylic, but it is not particularly limited and may be made of fluid or gel depending on the test conditions.
  • the wedge 102 is provided with grooves 103 on the surface of the side of the wedge 102 that contacts the test object 106 in order to correspond to the unevenness existing on the surface of the test object 106, and the space between the groove 103 and the test object 106 is liquid. of couplant 103A.
  • the shape and position of the grooves 103 are known, and the refraction of ultrasonic waves passing through the grooves 103 can be calculated using the computing device 105 .
  • a couplant for ultrasonic measurement such as Sonicoat manufactured by Taiyo Nippon Sanso Gas & Welding Co., Ltd. is preferably used. can be used.
  • the transmission/reception control device 104 is a device that controls transmission/reception of ultrasonic waves from the low-frequency element 107 and the high-frequency element 108 of the ultrasonic array probe 101 .
  • This arithmetic unit 105 is, for example, a computer (PC), and has a processing unit 105a corresponding to a CPU, a recording unit 105b configured with an HDD, SSD, etc., a display unit 105c configured with a display, and the like.
  • PC computer
  • Arithmetic device 105 records the waveform received by each element of the reflected echo from the surface of test object 106 and the reflected echo inside test object 106 by flaw detection using ultrasonic array probe 101 , and records the waveform of wedge 102 . It has a function of imaging the inside of the wedge 102 and the inside of the test object 106 by using the internal sound velocity and the sound speed inside the test object 106 to consider the refraction of the ultrasonic wave propagation path by the surface of the test object 106 .
  • the processing unit 105 a controls the wedge 102 and the object to be inspected 106 based on the waveform of the ultrasonic wave received by the high-frequency element 108 having a higher vibration frequency, which is input via the transmission/reception control unit 104 .
  • the coordinates of the surface of the object to be inspected 106 are extracted using the transmission/reception waveform of the high-frequency element 108 capable of transmitting/receiving a high frequency and the speed of sound inside the wedge 102 of at least two types of frequency components. Identify the surface shape of the body 106 .
  • Fig. 2 is a diagram simulating waveform recording with an element capable of transmitting and receiving high frequencies among the ultrasonic array sensors.
  • the ultrasonic waves oscillated from the high-frequency elements 108 are reflected by the surface of the test object 106 and recorded by all the high-frequency elements 108 arranged in the ultrasonic array probe 101 .
  • Waveform information in a matrix is recorded by repeating the above-described recording process of sequentially oscillating ultrasonic waves from all high-frequency elements 108 and recording waveforms received by all high-frequency elements 108 in sequence.
  • the recorded waveform information is preferably visualized by aperture synthesis using the sound velocity inside the wedge 102 and the sound velocity of the couplant 103A, so that the echo of the surface of the test object 106, which is a strong reflection source, can be obtained.
  • Fig. 3 is a diagram of coordinate information when the surface shape is extracted after visualizing the waveform received by the high-frequency element recorded in Fig. 2 at the speed of sound inside the wedge.
  • Coordinate information with the center of the sensor as the origin O is recorded from the reflected echo on the surface of the object to be inspected 106 .
  • the coordinate information 109 of the surface of the inspection object 106 with the center of the ultrasonic array probe 101 as the origin O can be extracted. Since the coordinate information of the surface shape is extracted at a high frequency with a shorter wavelength than the low frequency used in the conventional method, it is possible to extract the surface coordinates with high resolution.
  • the processing unit 105a of the arithmetic device 105 visualizes the inside of the test object 106 based on the received waveform of the ultrasonic waves at the low-frequency element 107 on the side of the lower vibration frequency.
  • the refraction angle at the time of incidence of ultrasonic waves from the wedge into the test object 106 is calculated, and then , the ultrasonic wave propagation path from the low-frequency element 107 to the calculation point is obtained, and the inside of the inspection object 106 is imaged using the obtained ultrasonic wave propagation path.
  • FIG. 4 is a diagram of ultrasonic waves refracted into the interior of the test object 106 and received by the low-frequency elements when ultrasonic waves are irradiated by the low-frequency elements.
  • the coordinate information 109 of the surface of the inspection object 106 is known by the steps in FIGS. Further, by using the ultrasonic sound velocity inside the wedge 102, the sound velocity of the couplant 103A, and the ultrasonic sound velocity inside the inspection object 106, the ultrasonic wave refraction on the inspection object 106 surface can be calculated. is.
  • the image After being "visualized” by the arithmetic unit 105, the image can be displayed on the display unit 105c in real time. can.
  • the aperture synthesis method can be used, but other ultrasonic imaging techniques such as the phased array method can also be used.
  • the object to be inspected 106 is, for example, a material to be subjected to ultrasonic flaw detection, such as a pipe, and may be flat or have a locally curved surface. Although not preferred, it is metal.
  • FIG. 5 is an overall flow chart of the flaw detection method in the embodiment of the present invention.
  • the imaging of the inside of the inspection object 106 by the ultrasonic flaw detection method according to this embodiment consists of steps (processes).
  • step S1 ultrasonic waves with a higher frequency are transmitted and received (step S1).
  • This step S ⁇ b>1 corresponds to the step of placing the ultrasonic array probe 101 and the wedge 102 on the test object 106 and the step of controlling transmission/reception of ultrasonic waves from the ultrasonic array probe 101 .
  • step S1 first, one of the high-frequency elements 108 oscillates ultrasonic waves (step S1-1), and all the high-frequency elements 108 receive the ultrasonic waves (step s1-2). After that, it is determined whether or not ultrasonic waves have been oscillated by all the high-frequency elements 108 (step S1-3). If so, the process returns to step S1-1, and all the high-frequency elements 108 oscillate ultrasonic waves.
  • step S2 corresponds to the step of determining the boundary between the wedge 102 and the test object 106 based on the received waveform of the ultrasonic waves at the high-frequency element 108 on the side of the higher vibration frequency.
  • step S2 first, the inside of the wedge is visualized, preferably by aperture synthesis, using the high-frequency ultrasonic wave received and recorded by the high-frequency element 108 in the previous step S1-2 and the sound velocity inside the wedge 102 (step S2-1).
  • step S2-2 the shape of the surface of the test object 106 and the surface coordinates of the test object 106 when the center of the ultrasonic array probe 101 is set as the origin are extracted from the image inside the wedge 102 (step S2-2).
  • step S3 transmission and reception of ultrasonic waves with a lower frequency among the two types of frequencies that can be oscillated by the ultrasonic element are performed.
  • This step S3 also corresponds to the step of controlling transmission and reception of ultrasonic waves from the ultrasonic array probe 101 .
  • step S3 first, one of the low-frequency elements 107 oscillates ultrasonic waves (step S3-1), and all the low-frequency elements 107 receive ultrasonic waves (step S3-2). Thereafter, it is determined whether or not ultrasonic waves have been oscillated by all the low-frequency elements 107 (step S3-3). If it is determined that there is not, the process returns to step S3-1, and all the low-frequency elements 107 oscillate ultrasonic waves.
  • step S4 corresponds to the step of visualizing the inside of the test object 106 based on the received waveform of the ultrasonic waves at the low-frequency element 107 .
  • step S4 first, using the surface shape of the test object 106 extracted in step S2, the ultrasonic wave speed inside the wedge 102, and the low-frequency ultrasonic wave speed inside the test object 106, The refraction of the sound wave on the surface of the test object 106 is calculated, and the propagation path of the ultrasonic wave from the low-frequency element of the ultrasonic probe to the inside of the test object 106 is obtained (step S4-1).
  • the inside of the object to be inspected 106 is imaged, preferably by the synthetic aperture method, using the propagation path of the ultrasonic waves and the ultrasonic waveform in the low-frequency element 107 (step S4-2).
  • a high-frequency ultrasonic waveform has a short wavelength and is easily affected by scattering and attenuation inside the object to be inspected 106. Since the intensity of the waveform reflected from the inside of the object to be inspected 106 is weak, it causes failure signals to be overlooked. rice field.
  • two or more types of low-frequency elements 107 having different vibration frequencies, an ultrasonic array probe 101 having a high-frequency element 108, and an object 106 and the ultrasonic array probe 101 A step of placing a wedge 102 in indirect contact with the test object 106, a step of controlling transmission and reception of ultrasonic waves from the low-frequency element 107 and the high-frequency element 108 of the ultrasonic array probe 101, and In the ultrasonic array probe 101, the wedge 102 and the test object 106 are separated from each other based on the received waveform of the ultrasonic waves in the high frequency element 108 having a higher vibration frequency among the two or more types of low frequency elements 107 and high frequency elements 108. and a step of imaging the inside of the test object 106 based on the waveform of ultrasonic waves received by the low-frequency element 107 on the lower vibration frequency side of the arranged ultrasonic array probes 101. and have
  • an inspection method and an inspection apparatus capable of achieving both high-precision surface extraction of the inspection object 106 and improved visibility of defect signals by improving the intensity of reflected signals from the inside of the inspection object 106, which could not be achieved by conventional methods.
  • This will increase the reliability of remaining life evaluation of plant equipment, etc. by ultrasonic flaw detection, making it possible to improve the operating rate of equipment.
  • the transmission/reception waveform of the ultrasonic waves in the high-frequency element 108 having the higher vibration frequency and the sound velocity inside the wedge 102 are used to determine the surface of the test object 106. Since the coordinates are extracted, visualization and subsequent visualization of the interior of the inspected object 106 can be performed with higher accuracy.
  • the step of visualizing the inside of the inspection object 106 information on the boundary obtained in the step of finding the boundary between the wedge 102 and the inspection object 106, the sound velocity inside the wedge 102, and the sound speed inside the inspection object 106 is used. to calculate the angle of refraction when the ultrasonic wave is incident on the inside of the test object 106 from the wedge 102, obtain the propagation path of the ultrasonic wave from the low-frequency element 107 and the high-frequency element 108 to the calculation point, and use the propagation path A clearer internal image can be obtained by imaging with the
  • a clear image can be obtained by imaging the inside of the inspection object 106 by the synthetic aperture method.
  • the high-frequency element 108 having a higher vibration frequency among two or more types of low-frequency elements 107 and high-frequency elements 108 is arranged at regular intervals.
  • two or more types of low-frequency elements 107 and high-frequency elements 108 are arranged at regular intervals, thereby suppressing unevenness in resolution and providing clearer images. image can be obtained.
  • Ultrasonic flaw detector 101 Ultrasonic array probe (ultrasonic probe) Reference numeral 102: Wedge 103: Groove 103A: Coupling material 104: Transmitting/receiving control device (transmitting/receiving device) DESCRIPTION OF SYMBOLS 105... Arithmetic device 105a... Processing part 105b... Recording part 105c... Display part 106... Inspection body 107... Low-frequency element (ultrasonic element) capable of oscillating low-frequency ultrasonic waves 108 ... High-frequency element (ultrasonic element) capable of oscillating high-frequency ultrasonic waves 109... Surface coordinate information 110... Low-frequency element 111 which oscillates low-frequency ultrasonic waves... Low-frequency element 112 which receives low-frequency ultrasonic waves... Ultrasonic wave propagation path via the inside

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

超音波アレイ探触子101の低周波素子107、高周波素子108からの超音波の送受信を制御する工程と、配置された超音波アレイ探触子101のうち、2種類以上の低周波素子107、高周波素子108のうち振動周波数が高い側の高周波素子108での超音波の受信波形に基づいてウェッジ102と検査体106との境界を求める工程と、配置された超音波アレイ探触子101のうち、振動周波数が低い側の低周波素子107での超音波の受信波形に基づいて検査体106の内部を映像化する工程と、を有する。これにより、従来は実現が困難であった表面形状の抽出と検査体内部の探傷を従来に比べて容易に両立させることが可能となる。

Description

超音波探傷手法および超音波探傷装置
 本発明は、超音波探傷手法および超音波探傷装置に関する。
 異なる発振周波数の超音波振動子を交互に配列することによって、同じ超音波視野範囲の深部に至るまでの超音波画像と、浅部の高分解能の超音波画像とを同時に取得する技術として、特許文献1には、挿入部の先端に設けた超音波スキャナは、軸線方向に多数の超音波振動子を直線的に並べて設けたものであり、奇数番目の超音波振動子は低周波の発振周波数を持った低周波振動子であり、また偶数番目の超音波振動子は高周波発振する高周波振動子であり、超音波観測装置には、低周波超音波信号処理部と高周波超音波信号処理部とが設けられて、低周波超音波信号処理部を作動させると、低周波振動子が作動して、低周波超音波リニア画像が得られ、また高周波超音波信号処理部を作動させると、高周波振動子が作動して、高周波超音波リニア画像が得られる、ことが記載されている。
 不均一表面を有する部品を超音波で検査するための技術の一例として、特許文献2には、a.液体中に部品を浸漬し、各々が超音波ビーム広がりを有する多数の小型の超音波要素の配列体よりなる超音波プローブと不均一表面を有する部品との間に数超音波波長分の厚さの流体カップリングを与え、b.個々の超音波要素を一つずつ作動させながら超音波ビームで部品を走査し、c.各作動ごとに配列体中の個々の超音波要素から出て部品の表面により反射された超音波波形と部品の内部反射物とにより反射された超音波波形とを記憶し、超音波波形データの配列を掃引して表面形状を測定し、表面形状に基づいて、超音波プローブの位置の関数として信号処理パラメーターを算出し、d.信号処理パラメーターを用いてデータ配列を処理することにより、処理部品の表面の不規則性に対する補正を行い、部品内部の反射物の検査結果を算出する、ことが記載されている。
特開平7-163559号公報 特開2015-145872号公報
 発電プラント設備には、安全性の担保として余寿命評価が用いられており、その際、検査体内部、主に配管内部の欠陥位置と欠陥寸法の情報が必要である。検査体内部の欠陥情報の取得のために非破壊検査が実施されるが、その手法のうちの一つとして超音波探傷が挙げられる。この超音波探傷では、探触子が受信した超音波波形から、欠陥寸法と探触子からの欠陥位置を測定できる。
 近年、超音波探触子の超音波送受信素子の位置情報と、検査体内部の超音波の音速と、超音波の受信波形の情報から、検査体内部への超音波の経路を計算し、検査体内部を映像化する開口合成手法が注目されている。しかし、検査対象となる配管によっては溶接部余盛による凹凸が残存しており、センサを密着させることができず従来手法では超音波探傷が実施できないため、検査体とセンサを間接的に密着させる手法が必要である。
 検査体とセンサを間接的に密着させる手法として、柔らかい素材であるゲルを介在物質として用いて探傷を行う探傷手法が医療で用いられており、例えば上述の特許文献1に記載の技術がある。上述の特許文献1においては、高周波および低周波の超音波を照射する超音波素子を交互に組み合わせたアレイセンサを特徴としているが、医療での使用を前提としている。
 ここで、医療における超音波探傷の特徴は、検査体が人体である点と、人体での超音波の音速が水と同等であるという点である。検査体が人体である場合、皮膚が柔らかいことからアレイセンサを押し当てた際に、皮膚が自然とアレイセンサの形状になり、検査体とアレイセンサを密着させながらの探傷が可能である。また、仮に骨に近い部分等の皮膚がアレイセンサの形状とならず、アレイセンサを密着させることができない場合でも、超音波の音速が水に近いゲル等の柔らかい中間接触媒質を用いることで、中間接触媒質と検査体との接着面での超音波の屈折を考慮することなく探傷が可能である。
 しかし、工業用での検査体では、金属等の超音波の音速が水よりも遥かに速い材質を検査する必要がある。当然、金属であることから検査体がアレイセンサの形状に合わせて変形することはなく、アレイセンサを検査体に密着させるために超音波が伝播する中間層(以下、中間接触媒質)が必要となる。
 しかし、中間接触媒質として用いられる材料での超音波の音速は、金属での超音波の音速とは異なるため、中間接触媒質と検査体との接着面での超音波の屈折が生じる。超音波の屈折を考慮しない映像化手法では、欠陥位置や欠陥寸法に誤差が生じるため、医療における超音波探傷技術を工業にそのまま転用することは非現実的である。
 以上の事情により、工業における曲面を有する検査体に対し、超音波検査を実施するには、センサと検査体表面を間接的に密着させるウェッジを用いて、表面形状の座標を抽出し、検査体内部への超音波の伝播経路を計算する手法が有効と考えられる。
 上述の特許文献2では、超音波アレイセンサと検査体表面の間に中間層を設け、超音波の受信波形から検査体の表面座標を抽出し、検査体内部への超音波の伝播経路を求めることで凹凸を考慮した超音波探傷を可能とすることを特徴としている。
 しかし、中間層を用いた検査体表面の形状抽出に適した超音波の周波数と検査体内部の探傷に適した周波数とは異なる帯域である。
 従って、検査体表面の形状抽出に適する高周波を上記技術に適用しても、表面形状抽出精度は向上する。しかしながら、検査体内部での超音波の散乱,減衰が生じるため、検査体内部からの反射信号の強度低下による欠陥信号の見落としの原因となる、という課題が生じる。
 また、検査体内部の探傷に適する低周波を用いる場合は、検査体表面の形状抽出精度が低いため、検査体内部への超音波の伝播経路が正しく求めることができず、検査体内部への探傷精度は低下する、という課題がある。
 また、上記手法においては中間層として水などの流体カップリングを用いることを前提としているが、常にセンサと検査体との間を流体で満たす必要がある。しかし、大量の水の供給手法および排水手法が必要となるため、検査環境によっては使用できない手法である。
 本発明の目的は、従来は実現が困難であった表面形状の抽出と検査体内部の探傷とを従来に比べて容易に両立させることが可能な超音波探傷手法および超音波探傷装置を提供することである。
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、振動周波数の異なる2種類以上の超音波素子を有する超音波探触子、および検査体と前記超音波探触子とを間接的に接触させるウェッジを前記検査体に配置する工程と、前記超音波探触子の前記超音波素子からの超音波の送受信を制御する工程と、配置された前記超音波探触子のうち、2種類以上の前記超音波素子のうち前記振動周波数が高い側の前記超音波素子での超音波の受信波形に基づいて前記ウェッジと前記検査体との境界を求める工程と、配置された前記超音波探触子のうち、前記振動周波数が低い側の前記超音波素子での超音波の受信波形に基づいて前記検査体の内部を映像化する工程と、を有することを特徴とする。
 本発明によれば、表面形状の抽出と検査体内部の探傷を従来に比べて容易に両立させることができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態に係る超音波探傷装置における超音波探傷時の概要の全体像を示す図である。 実施形態に係る超音波探傷装置における高周波素子での波形収録の概要図である。 実施形態に係る超音波探傷装置における高周波素子での受信波形から検査体表面の座標を抽出した際の概要図である。 実施形態に係る超音波探傷装置における低周波素子での超音波照射の際の検査体内部への超音波の屈折および低周波素子での受信の概要図である。 実施形態に係る超音波探傷手法の検査フローの図である。
 本発明の超音波探傷手法および超音波探傷装置の実施形態について図1乃至図5を用いて説明する。なお、本明細書で用いる図面において、同一のまたは対応する構成要素には同一、または類似の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。
 最初に、超音波探傷装置の全体構成や各々の構成の詳細について説明する。図1は、本実施形態の超音波探傷装置の全体構成図である。
 図1において、本実施形態の超音波探傷装置100は、曲面を有する検査体106の検査に好適なものであって、超音波アレイ探触子101、ウェッジ102、送受信制御装置104、および演算装置105を備えている。
 超音波アレイ探触子101は、複数の超音波素子を有しており、超音波素子から超音波の照射および受信が可能である。
 本実施形態の超音波アレイ探触子101は、共振特性から強く送受信できる周波数特性があり、上記の振動周波数の特性が異なる、少なくとも2種類以上の低周波素子107、高周波素子108から構成される。
 この例において、超音波アレイ探触子101は検査体106内部の探傷に適した低周波の超音波が発振可能な低周波素子107と、表面形状抽出に適した高周波の超音波を発振可能な高周波素子108と、の2種類の周波数を送受信可能な複数の超音波素子を、同じ数だけ備えている。低周波素子107は好適には2~5[MHz]、高周波素子108は好適には10[MHz]以上とするが、この範囲に限定されるものではない。また、数についても同じである必要は無く、いずれか一方が多くてもよい。
 また、異なる周波数が2種類の場合について説明したが、3種類以上とすることができる。3種類以上とした場合、最も周波数の低い素子を含む、周波数の低い側の1種類以上の素子を検査体内部の探傷に適した低周波の超音波が発振可能な低周波素子として、最も周波数の高い素子を含む、周波数の高い側の1種類以上の素子を表面形状抽出に適した高周波の超音波を発振可能な高周波素子に分類することとする。
 超音波アレイ探触子101中心を原点Oとした際の超音波アレイ探触子101内における各低周波素子107、高周波素子108の位置は既知であり、これら低周波素子107、および高周波素子108のいずれも、互いの素子を間に挟んで等間隔で配置されている。また、これら低周波素子107および高周波素子108は、各々の素子で超音波を受信した際に分解能の低下する領域が生じにくくするために、図1に示すように交互に配置されている。こで、図1中、センサに対する水平方向をX座標、センサに対する深さ方向をZ座標と定義する。
 ウェッジ102は、検査体106の上部に設置することが可能な形状であり、超音波アレイ探触子101の移動方向に沿って延びる移動面を有している。また、ウェッジ102は、超音波アレイ探触子101が密着しながら移動可能に構成されており、検査体106と超音波アレイ探触子101とを間接的に接触させている。好適には、ウェッジ102は、超音波アレイ探触子101の移動方向に直線状に延びる直線部材である。なお、ウェッジ102は直線部材に限定されず、移動方向に円弧状に延びる円弧部材であってもよい。
 このウェッジ102はアクリル等の固体材質が好ましいが、試験の状況に合わせ流体でもゲル状のものを使用しても構わず、特に限定されない。
 ウェッジ102には検査体106の表面に存在する凹凸に対応すべく、検査体106と接触する側の表面に溝103が付与されており、溝103と検査体106との間の空間は液体状の接触媒質103Aで満たされている。
 溝103の形状および位置は既知であり、溝103を通過する超音波の屈折は演算装置105を用いることで計算可能となっている。
 溝103に配置される接触媒質103Aは、例えば大陽日酸ガス&ウェルディング株式会社製のソニコートなどの超音波測定用接触媒質が好適に用いられるが、超音波さえ透過する液体状、あるいはゲル状の物質を用いることができる。
 送受信制御装置104は、超音波アレイ探触子101の低周波素子107、高周波素子108からの超音波の送受信を制御する装置である。
 この演算装置105は、例えばコンピュータ(PC)であり、CPUなどに相当する処理部105a、HDDやSSDなどで構成される記録部105b、ディスプレイで構成される表示部105cなどを有する。
 演算装置105は、超音波アレイ探触子101を用いた探傷により、検査体106の表面からの反射エコーや検査体106の内部での反射エコーを各素子で受信した波形を記録し、ウェッジ102内部の音速と検査体106内部の音速とを用いて、検査体106の表面による超音波伝播経路の屈折を考慮し、ウェッジ102内部と検査体106内部を映像化する機能を有する。
 特には、演算装置105は、処理部105aにおいて、送受信制御装置104を介して入力された、振動周波数が高い側の高周波素子108での超音波の受信波形に基づいてウェッジ102と検査体106との境界を映像化する。好適には、少なくとも2種類の周波数成分の内、高い周波数の送受信が可能な高周波素子108での送受信波形と、ウェッジ102内部の音速を用いて、検査体106表面の座標を抽出することで検査体106の表面形状を特定する。
 図2は超音波アレイセンサの内、高周波の送受信が可能な素子での波形収録を模擬した図である。
 図2において、高周波素子108から発振された超音波は、検査体106の表面で反射されて、超音波アレイ探触子101内に配置された全ての高周波素子108にて各々収録される。全ての高周波素子108から超音波を順に発振し、全ての高周波素子108で順に受信して波形を記録する、という上記の収録工程を繰り返すことにより、マトリクス状の波形情報が記録される。
 収録した波形情報をウェッジ102内部の音速と、接触媒質103Aの音速と、を用いて好ましくは開口合成による映像化を行うことにより、強い反射源である検査体106の表面のエコーが得られる。
 図3は図2にて収録した高周波素子での受信波形をウェッジ内部の音速で映像化した後、表面形状を抽出した際の座標情報の図である。
 図2における高周波素子による検査体106表面からの反射波の収録波形と、ウェッジ102の内部の音速を用い、演算装置105を用いて好ましくは開口合成処理により、検査体106表面からの反射エコーの画像が得られる。
 検査体106表面の反射エコーから、センサの中心を原点Oとした座標情報を記録する。本工程により、超音波アレイ探触子101中心を原点Oとする検査体106の表面の座標情報109が抽出できる。従来手法で用いていた低周波に比べ、波長の短い高周波での表面形状の座標情報の抽出であるため、高分解能での表面座標抽出が可能となる。
 また、演算装置105は、処理部105aにおいて、振動周波数が低い側の低周波素子107での超音波の受信波形に基づいて検査体106の内部を映像化する。好適には、先に特定した検査体106の表面形状と、検査体106内部の音速を用いることで、ウェッジから検査体106の内部への超音波の入射の際の屈折角を計算し、その後、低周波素子107から計算点までの超音波の伝播経路を求め、求めた超音波の伝播経路を用いて検査体106内部を映像化する。
 図4は低周波素子での超音波照射の際の検査体106の内部への超音波の屈折および低周波素子での受信の図である。
 超音波が媒質が異なる材料の境界面を通過する際の屈折角を求めるには、境界面の形状と各材料での超音波の音速が必要である。
 図4に示すように、検査体106の表面の座標情報109は、図2および図33での工程により既知である。また、ウェッジ102内部での超音波の音速と、接触媒質103Aの音速と、検査体106内部での超音波の音速と、を用いることで、検査体106表面での超音波の屈折は計算可能である。
 従って、低周波素子110から低周波素子111までの検査体106内部を経由した、屈折を伴う超音波の伝播経路112は計算可能であり、上記の超音波の伝播経路112を用いた、演算装置105を用いて、好ましくは開口合成処理により、従来手法よりも高精度な検査体106内部の探傷画像が得られる。
 演算装置105では、「映像化」した後は、表示部105cに表示してリアルタイムで画像を表示することができ、換えてあるいは加えて記録部105bに記録しておいて後で確認することができる。
 演算装置105における検査体106の内部を映像化する処理には、開口合成法を用いることができるが、フェーズドアレイ法等の他の超音波映像化技術を用いることができる。
 図1に戻り、検査体106は、例えば配管等の超音波探傷の実施対象となる物質であり、平面であっても、局部的な曲面を有していてもよく、また材質についても特に限定されないが、好適には金属である。
 次に、本実施形態に係る超音波探傷手法について図5を参照して説明する。図5は本発明の実施形態における探傷手法の全体フロー図である。
 図5に示すように、本実施形態に係る超音波探傷手法による検査体106の内部の映像化は各ステップ(工程)からなる。
 まず、上記の超音波探触子の発振可能な2種類の周波数のうち、高い周波数の超音波の送受信を行う(ステップS1)。このステップS1が、超音波アレイ探触子101、およびウェッジ102を検査体106に配置する工程、および超音波アレイ探触子101からの超音波の送受信を制御する工程、に相当する。
 ステップS1では、まず、高周波素子108の内の1つの素子で超音波を発振し(ステップS1-1)、全ての高周波素子108で超音波を受信する(ステップs1-2)。その後、全ての高周波素子108で超音波の発振が行われたか否かを判定し(ステップS1-3)、行われたと判定されたときは処理をステップS2に進めるのに対し、行われていないと判定されたときは処理をステップS1-1に戻して、全ての高周波素子108での超音波の発振を行う。
 次いで、上記ステップS1で受信した高周波の超音波波形を用い、超音波アレイ探触子101中心を原点とする検査体106の表面の座標を抽出する(ステップS2)。このステップS2が、振動周波数が高い側の高周波素子108での超音波の受信波形に基づいてウェッジ102と検査体106との境界を求める工程に相当する。
 ステップS2では、まず、先のステップS1-2において高周波素子108で受信し、収録した高周波の超音波波形とウェッジ102内部の音速とを用い、好ましくは開口合成によってウェッジ内部を映像化する(ステップS2-1)。
 その後、ウェッジ102内部の映像から検査体106の表面の形状、および超音波アレイ探触子101中心を原点とした際の検査体106の表面座標を抽出する(ステップS2-2)。
 低周波の周波数成分のみを発振可能なアレイセンサを用いた場合、上記の検査体106の表面の形状を低周波の超音波波形を用いて抽出する必要があった。低周波の超音波波形は波長が長く、分解能が低いため検査体106の表面の微細な凹凸を検出不可能であった。故に、検査体106の内部への超音波の屈折を正しく計算できず、欠陥位置や欠陥寸法に誤差が生じる原因となっていた。
 しかしながら、上記の検査体106の表面の形状抽出に高周波の超音波を用いる本工程を有することにより、より高精度な上記の検査体の表面形状の抽出が可能となったため、上記の検査体106の内部への超音波の伝播経路計算の精度が向上し、欠陥位置と欠陥寸法の誤差を低減させることができる。
 次いで、超音波素子の発振可能な2種類の周波数のうち、低い周波数の超音波の送受信を行う(ステップS3)。このステップS3も、超音波アレイ探触子101からの超音波の送受信を制御する工程に相当する。
 ステップS3では、まず、低周波素子107の内の1つの素子で超音波を発振し(ステップS3-1)、全ての低周波素子107で超音波を受信する(ステップS3-2)。その後、全ての低周波素子107で超音波の発振が行われたか否かを判定し(ステップS3-3)、行われたと判定されたときは処理をステップS4に進めるのに対し、行われていないと判定されたときは処理をステップS3-1に戻して、全ての低周波素子107での超音波の発振を行う。
 次いで、上記の低周波の超音波を用い、検査体106の内部を映像化する(ステップS4)。このステップS4が、低周波素子107での超音波の受信波形に基づいて検査体106の内部を映像化する工程に相当する。
 ステップS4では、まず、ステップS2にて抽出した検査体106の表面形状と、ウェッジ102内部の超音波の音速と、検査体106の内部での低周波超音波の音速と、を用いて、超音波の上記の検査体106の表面での屈折を計算し、上記の超音波探触子の低周波素子から検査体106の内部までの超音波の伝播経路を求める(ステップS4-1)。
 その後は、上記の超音波の伝播経路と低周波素子107での超音波波形を用いて、好ましくは開口合成法により検査体106の内部を映像化する(ステップS4-2)。
 高周波の周波数成分のみを発振可能なアレイセンサを用いた場合、上記の検査体106の内部の探傷を高周波の超音波波形を用いて行う必要があった。高周波の超音波波形は波長が短く、検査体106の内部での散乱、減衰の影響を受けやすく、検査体106の内部からの反射波形の強度が弱いため、欠陥信号の見落としの原因となっていた。
 しかしながら、上記の検査体106の内部への探傷に低周波の超音波波形を用いる本工程を有することにより、検査体106の内部からの反射波形の強度を強くすることで、欠陥信号の視認性向上が可能となった。
 次に、本実施形態の効果についてまとめる。
 上述した本実施形態の超音波探傷手法では、振動周波数の異なる2種類以上の低周波素子107、高周波素子108を有する超音波アレイ探触子101、および検査体106と超音波アレイ探触子101とを間接的に接触させるウェッジ102を検査体106に配置する工程と、超音波アレイ探触子101の低周波素子107、高周波素子108からの超音波の送受信を制御する工程と、配置された超音波アレイ探触子101のうち、2種類以上の低周波素子107、高周波素子108のうち振動周波数が高い側の高周波素子108での超音波の受信波形に基づいてウェッジ102と検査体106との境界を求める工程と、配置された超音波アレイ探触子101のうち、振動周波数が低い側の低周波素子107での超音波の受信波形に基づいて検査体106の内部を映像化する工程と、を有する。
 このように、高周波での検査体106の情報の取得により、従来手法よりも高精度での抽出が可能となる。また表面形状の抽出精度の向上により、ウェッジ102から検査体106の内部へ入射する超音波の屈折経路の計算精度が向上するため、検査体106の内部の欠陥位置と欠陥寸法の検出精度も向上する。特に、検査体106曲面部の抽出精度を向上させることができる。
 これにより、従来手法ではなし得なかった高精度の検査体106の表面抽出と検査体106の内部からの反射信号の強度向上による欠陥信号の視認性向上とを両立可能な検査手法および検査装置が提供され、超音波探傷によるプラント設備等の余寿命評価の信頼性が増すため、設備の稼働率向上が可能となる。
 また、ウェッジ102と検査体106との境界を求める工程では、振動周波数が高い側の高周波素子108での超音波の送受信波形と、ウェッジ102の内部の音速を用いて、検査体106の表面の座標を抽出するため、映像化、およびその後の検査体106内部の映像化をより高精度に行うことができる。
 更に、検査体106の内部を映像化する工程では、ウェッジ102と検査体106との境界を求める工程で求めた境界、ウェッジ102の内部の音速、および検査体106の内部の音速の情報を用いて、ウェッジ102から検査体106の内部への超音波の入射の際の屈折角を計算し、低周波素子107、高周波素子108から計算点までの超音波の伝播経路を求め、伝播経路を用いて映像化することで、より鮮明な内部映像を得ることができる。
 また、検査体106の内部を映像化する工程では、開口合成法により検査体106の内部を映像化することにより、鮮明な像を得ることができる。
 更に、超音波アレイ探触子101は、2種類以上の低周波素子107、高周波素子108のうち振動周波数が高い側の高周波素子108が等間隔で配置されていることや超音波アレイ探触子101は、2種類以上の低周波素子107、高周波素子108のうち振動周波数が低い側の低周波素子107を等間隔で配置されていることにより、分解能にムラが生じることを抑制し、より鮮明な像が得ることができるようになる。
 <その他> 
 なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。
100…超音波探傷装置
101…超音波アレイ探触子(超音波探触子)
102…ウェッジ
103…溝
103A…接触媒質
104…送受信制御装置(送受信装置)
105…演算装置
105a…処理部
105b…記録部
105c…表示部
106…検査体
107…低周波超音波を発振可能な低周波素子(超音波素子)
108…高周波超音波を発振可能な高周波素子(超音波素子)
109…表面の座標情報
110…低周波超音波を発振する低周波素子
111…低周波超音波を受信する低周波素子
112…内部を経由する超音波伝播経路

Claims (8)

  1.  振動周波数の異なる2種類以上の超音波素子を有する超音波探触子、および検査体と前記超音波探触子とを間接的に接触させるウェッジを前記検査体に配置する工程と、
     前記超音波探触子の前記超音波素子からの超音波の送受信を制御する工程と、
     配置された前記超音波探触子のうち、2種類以上の前記超音波素子のうち前記振動周波数が高い側の前記超音波素子での超音波の受信波形に基づいて前記ウェッジと前記検査体との境界を求める工程と、
     配置された前記超音波探触子のうち、前記振動周波数が低い側の前記超音波素子での超音波の受信波形に基づいて前記検査体の内部を映像化する工程と、を有する
     ことを特徴とする超音波探傷手法。
  2.  請求項1に記載の超音波探傷手法において、
     前記ウェッジと前記検査体との境界を求める工程では、前記振動周波数が高い側の前記超音波素子での超音波の送受信波形と、前記ウェッジの内部の音速を用いて、前記検査体の表面の座標を抽出する
     ことを特徴とする超音波探傷手法。
  3.  請求項1に記載の超音波探傷手法において、
     前記検査体の内部を映像化する工程では、前記ウェッジと前記検査体との境界を求める工程で求めた前記境界、前記ウェッジの内部の音速、および前記検査体の内部の音速の情報を用いて、前記ウェッジから前記検査体の内部への超音波の入射の際の屈折角を計算し、前記超音波素子から計算点までの超音波の伝播経路を求め、前記伝播経路を用いて映像化する
     ことを特徴とする超音波探傷手法。
  4.  請求項1に記載の超音波探傷手法において、
     前記検査体の内部を映像化する工程では、開口合成法により前記検査体の内部を映像化する
     ことを特徴とする超音波探傷手法。
  5.  振動周波数の異なる2種類以上の超音波素子を有する超音波探触子と、
     検査体の上部に設置され、前記検査体と前記超音波探触子とを間接的に接触させるウェッジと、
     前記超音波探触子の前記超音波素子からの超音波の送受信を制御する送受信装置と、
     2種類以上の前記超音波素子のうち前記振動周波数が高い側の前記超音波素子での超音波の受信波形に基づいて前記ウェッジと前記検査体との境界を映像化し、前記振動周波数が低い側の前記超音波素子での超音波の受信波形に基づいて前記検査体の内部を映像化する演算装置と、を備える
     ことを特徴とする超音波探傷装置。
  6.  請求項5に記載の超音波探傷装置において、
     前記超音波探触子は、2種類以上の前記超音波素子のうち前記振動周波数が高い側の前記超音波素子が等間隔で配置されている
     ことを特徴とする超音波探傷装置。
  7.  請求項5に記載の超音波探傷装置において、
     前記超音波探触子は、2種類以上の前記超音波素子のうち前記振動周波数が低い側の前記超音波素子を等間隔で配置されている
     ことを特徴とする超音波探傷装置。
  8.  請求項5に記載の超音波探傷装置において、
     前記演算装置は、開口合成法を用いて前記検査体の内部を映像化する
     ことを特徴とする超音波探傷装置。
PCT/JP2022/017620 2021-06-23 2022-04-12 超音波探傷手法および超音波探傷装置 WO2022270133A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103930A JP2023003020A (ja) 2021-06-23 2021-06-23 超音波探傷手法および超音波探傷装置
JP2021-103930 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270133A1 true WO2022270133A1 (ja) 2022-12-29

Family

ID=84545602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017620 WO2022270133A1 (ja) 2021-06-23 2022-04-12 超音波探傷手法および超音波探傷装置

Country Status (2)

Country Link
JP (1) JP2023003020A (ja)
WO (1) WO2022270133A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572857A (en) * 1978-11-17 1980-06-02 Westinghouse Electric Corp Defects detecting * characteristic determing of those or examining method of products through acoustic image focusing
JPS61160053A (ja) * 1985-01-09 1986-07-19 Mitsubishi Heavy Ind Ltd 超音波探傷試験方法
JPS6268000A (ja) * 1985-09-19 1987-03-27 Fujitsu Ltd 超音波探触子
JPH07163559A (ja) * 1993-12-10 1995-06-27 Fuji Photo Optical Co Ltd 超音波診断装置の超音波スキャナ
US20070056373A1 (en) * 2005-09-10 2007-03-15 Intelligendt Systems & Services Gmbh & Co. Kg Method and device for ultrasonic testing of a workpiece having an uneven surface
JP2011247649A (ja) * 2010-05-24 2011-12-08 Central Res Inst Of Electric Power Ind 超音波探傷試験体の表面形状の同定方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラム
JP2016156692A (ja) * 2015-02-24 2016-09-01 三菱日立パワーシステムズ株式会社 超音波探傷システム及び超音波探傷方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572857A (en) * 1978-11-17 1980-06-02 Westinghouse Electric Corp Defects detecting * characteristic determing of those or examining method of products through acoustic image focusing
JPS61160053A (ja) * 1985-01-09 1986-07-19 Mitsubishi Heavy Ind Ltd 超音波探傷試験方法
JPS6268000A (ja) * 1985-09-19 1987-03-27 Fujitsu Ltd 超音波探触子
JPH07163559A (ja) * 1993-12-10 1995-06-27 Fuji Photo Optical Co Ltd 超音波診断装置の超音波スキャナ
US20070056373A1 (en) * 2005-09-10 2007-03-15 Intelligendt Systems & Services Gmbh & Co. Kg Method and device for ultrasonic testing of a workpiece having an uneven surface
JP2011247649A (ja) * 2010-05-24 2011-12-08 Central Res Inst Of Electric Power Ind 超音波探傷試験体の表面形状の同定方法並びに同定プログラム、開口合成処理プログラム及びフェーズドアレイ探傷プログラム
JP2016156692A (ja) * 2015-02-24 2016-09-01 三菱日立パワーシステムズ株式会社 超音波探傷システム及び超音波探傷方法

Also Published As

Publication number Publication date
JP2023003020A (ja) 2023-01-11

Similar Documents

Publication Publication Date Title
JP5795651B2 (ja) 任意の表面輪郭を有する部材の超音波浸漬検査
Yashiro et al. A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan
JP4785151B2 (ja) 超音波探傷装置及び方法
US7650789B2 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
JP5412647B2 (ja) 非破壊検査用プローブの移動検出方法、非破壊検査方法、およびプローブシステム
Takatsubo et al. Generation laser scanning method for the visualization of ultrasounds propagating on a 3-D object with an arbitrary shape
WO2012008144A1 (ja) 超音波探傷装置および超音波探傷方法
KR101921685B1 (ko) 결함 검출 장치 및 이를 이용한 결함 검출 방법
Ni et al. Non-destructive laser-ultrasonic Synthetic Aperture Focusing Technique (SAFT) for 3D visualization of defects
JP2009540311A (ja) アレイ探触子を備える超音波試験装置
JP2011027571A (ja) 配管減肉検査装置および配管減肉検査方法
KR101251204B1 (ko) 초음파 비파괴 검사 장치 및 초음파 비파괴 검사 방법
de Castro et al. Baseline-free damage imaging algorithm using spatial frequency domain virtual time reversal
JP3535417B2 (ja) 超音波による欠陥高さ測定装置及び欠陥高さ測定方法
JP4595117B2 (ja) 超音波伝搬の映像化方法および装置
JP4564183B2 (ja) 超音波探傷方法
WO2022270133A1 (ja) 超音波探傷手法および超音波探傷装置
JP2006138672A (ja) 超音波検査方法及び装置
Birring Sizing Discontinuities by Ultrasonics
JP2004077292A (ja) 応力腐食割れ検査方法及び検査装置
JPH07244028A (ja) 球状被検体の超音波探傷装置およびその方法
JP2011163773A (ja) 使用中のボルトネジ部の検査方法
KR20120028127A (ko) 배관 내부 구조물의 초음파검사 방법
JP5123644B2 (ja) 超音波探傷方法および超音波探傷装置
Mirmahdi et al. Investigating the Effects of Defects and the Effect of Geometric Anisotropy in Stainless Steel Pipes: Phased Array Ultrasonic Test, SH-wave

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE