WO2022269689A1 - 通信制御装置、通信制御方法、通信システム、およびプログラム - Google Patents

通信制御装置、通信制御方法、通信システム、およびプログラム Download PDF

Info

Publication number
WO2022269689A1
WO2022269689A1 PCT/JP2021/023415 JP2021023415W WO2022269689A1 WO 2022269689 A1 WO2022269689 A1 WO 2022269689A1 JP 2021023415 W JP2021023415 W JP 2021023415W WO 2022269689 A1 WO2022269689 A1 WO 2022269689A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
base stations
stations
interference
base station
Prior art date
Application number
PCT/JP2021/023415
Other languages
English (en)
French (fr)
Inventor
抗 亢
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to US17/767,256 priority Critical patent/US20240107326A1/en
Priority to PCT/JP2021/023415 priority patent/WO2022269689A1/ja
Publication of WO2022269689A1 publication Critical patent/WO2022269689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to a communication control device, a communication control method, and a program, and particularly to technology for deploying base stations.
  • the 4G network enables high-speed, low-delay communication and large-capacity communication, and terminal devices can, for example, use high-definition video with a large amount of data without delay even when away from home.
  • the 5G network will also support technologies such as autonomous driving, remote control of drones and robots, and IoT (Internet of Things). , is expected to provide highly reliable and low-delay services.
  • the deployment of the base stations is based on network design that takes into account various conditions such as coverage, geographical conditions, geographical conditions, and population density.
  • Base stations (4G base stations) in 4G networks can provide wide coverage and connectivity to densely populated terminals (users).
  • 4G base stations can be deployed (located) at specific locations along network design in view of such characteristics and radio wave interference.
  • a base station and another communication system share the same frequency band, it is possible to allocate radio resources to the base station so that they do not share the same radio resource at the same time (Patent Document 1).
  • base stations (5G base stations) in the network are supposed to share the same frequency with other communication systems such as satellite communication systems in a frequency band such as the 3.7 GHz band. Therefore, if a 5G base station is deployed simply based on network design, if the 5G base station emits radio waves, radio wave interference may have the effect of making satellite communication unusable.
  • co-channel interference with other communication systems, such as satellite communication systems is a major problem in 5G networks.
  • the present invention has been made to solve the above problems, and its object is to provide a communication control apparatus, a communication control method, and a program for appropriately deploying base stations in consideration of co-channel interference. That's what it is.
  • one aspect of a communication control apparatus includes deployment information regarding the deployment of a plurality of base stations, and a plurality of fixed communications for performing communication by sharing a frequency band with the plurality of base stations.
  • acquisition means for acquiring location information relating to the location of a station; interference calculation means for calculating interference values of the plurality of base stations to the plurality of communication stations using the deployment information and the location information; selecting means for selecting one or more base stations having an interference value lower than a predetermined interference threshold set for the plurality of communication stations from among the plurality of base stations as base stations to be deployed according to the deployment information; , has
  • the predetermined interference threshold is individually set for each communication station of the plurality of communication stations, and the selection means of the communication control device selects each base station of the plurality of base stations for each of the communication stations. accumulating in a predetermined order the interference values to each of the communication stations due to the accumulation, specifying one or more base stations that constitute the accumulated interference values within a range in which the accumulated value does not exceed the interference threshold; , one or more base stations commonly specified for the plurality of communication stations may be selected as base stations to be deployed according to the deployment information.
  • the predetermined order may be in descending order of the interference value of each base station to each communication station.
  • the communication control apparatus further includes area calculation means for calculating a service area provided by each base station of the plurality of base stations using the deployment information, and the predetermined order is a service provided by each base station.
  • the value obtained by dividing the area by the interference value to each communication station by each base station may be in descending order.
  • the communication control apparatus may further include output means for generating and outputting at least one of information on the base stations selected by the selection means and information on base stations not selected by the selection means.
  • Each base station may be a different base station device.
  • Each base station may correspond to each sector antenna in the same base station apparatus having a plurality of sector antennas.
  • the deployment information of each base station includes the latitude and/or longitude for each base station, the height of the antenna of each base station, the transmission power value of each base station, the antenna pattern of each base station, and the antenna pattern of each base station.
  • One or more of the orientation and tilt of the base station's antenna may be included.
  • the plurality of base stations may be base stations in a fifth generation (5G) communication network, and the plurality of communication stations may be ground stations in a satellite communication network.
  • 5G fifth generation
  • One aspect of the communication control method acquires deployment information regarding the deployment of a plurality of base stations and position information regarding the positions of a plurality of fixed communication stations that communicate by sharing a frequency band with the plurality of base stations.
  • One aspect of a communication system is a communication system having a plurality of base stations, a plurality of fixed communication stations that perform communication by sharing a frequency band with the plurality of base stations, and a control device
  • the control device comprises acquisition means for acquiring deployment information regarding the deployment of a plurality of base stations and position information regarding the positions of a plurality of fixed communication stations that communicate by sharing a frequency band with the plurality of base stations; interference calculation means for calculating an interference value of each of the plurality of base stations to the plurality of communication stations using the information and the location information; selecting means for selecting one or more base stations having an interference value lower than a set predetermined interference threshold as base stations to deploy according to the deployment information.
  • One aspect of the communication control program according to the present invention is a communication control program for causing a computer to execute communication control processing, the program storing, in the computer, deployment information relating to deployment of a plurality of base stations; an acquisition process of acquiring location information relating to the locations of a plurality of fixed communication stations that communicate by sharing a frequency band with a base station; and one or more base stations among the plurality of base stations having an interference value lower than a predetermined interference threshold set for the plurality of communication stations. selecting a station as a base station to be deployed according to the deployment information.
  • FIG. 1 is a conceptual diagram showing a configuration example of a communication network system including a communication control device according to each embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the communication control device according to the first embodiment;
  • FIG. 3 is a block diagram showing a hardware configuration example of a communication control device according to each embodiment of the present invention.
  • FIG. 4 is a flowchart of processing executed by the communication control device according to the first embodiment.
  • FIG. 5 is a flowchart showing selection processing of a base station to be deployed according to the first embodiment.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the communication control device according to the second embodiment.
  • FIG. 7 is a flowchart of processing executed by the communication control device according to the second embodiment.
  • FIG. 8 is a flow chart showing selection processing of a base station to be deployed according to the second embodiment.
  • FIG. 9 is a diagram for explaining a procedure for selecting base stations to deploy according to the second embodiment.
  • FIG. 1 is a conceptual diagram showing a configuration example of a communication network system including a communication control device according to this embodiment.
  • the communication network system of this embodiment includes a communication control device 1, communication stations 21 and 22, and base stations 31, 32 and 33.
  • the communication stations 21 and 22 and the base stations 31, 32 and 33 shall share the same frequency band for communication.
  • the communication stations 21, 22 are assumed to be fixedly installed terrestrial communication stations (Ground stations) designed and installed for satellite communication networks by satellite operators.
  • the communication stations 21 and 22 can communicate with spacecraft such as artificial satellites, and can also receive radio waves from radio wave sources.
  • Artificial satellites include communication satellites (CS) and broadcasting satellites (BS).
  • the base stations 31, 32, 33 are assumed to be base stations in a 5th generation (5G) communication network called New Radio (NR) according to the 3rd Generation Partnership Project (3GPP).
  • 5G base stations are also referred to as gNodeBs and gNBs.
  • Each of the base stations 31, 32, 33 can provide communication services to one or more terminal devices (not shown) within the ranges of coverages C1, C2, C3 (communication service provision areas).
  • the base stations 31, 32, and 33 may be base stations capable of providing a plurality of slices (services).
  • Slice types include, for example, mMTC, URLLC, and eMBB.
  • mMTC is an abbreviation for Massive Machine Type Communications
  • URLLC is. It stands for Ultra-Reliable and Low Latency Communications
  • eMBB stands for Enhanced Mobile Broad Band.
  • the deployment of base stations can be based on network design that considers various conditions such as coverage, geography, terrain, and population density.
  • 5G it is assumed that a base station shares the same frequency as a communication station (ground station) for satellite communication in a frequency band such as the 3.7 GHz band. Therefore, when base stations are deployed simply based on network design, if the base stations emit radio waves, radio wave interference may result in the inability to use satellite communications.
  • the communication control apparatus 1 has a function of selecting (determining) a base station to be actually deployed in consideration of interference with the communication stations 21 and 22 by each of the base stations 31 , 32 and 33 .
  • Interference values of the base station 31 to the communication stations 21 and 22 in the same frequency band shared by the communication stations 21 and 22 and the base stations 31, 32 and 33 are denoted by I11 and I12, respectively.
  • the interference values of the base station 32 to the communication stations 21 and 22 are represented as I21 and I22
  • the interference values of the base station 33 to the communication stations 21 and 22 are represented as I31 and I32.
  • the communication stations 21 and 22 are assumed to be communication stations (ground stations) for satellite communication, and the base stations 31, 32, and 33 are assumed to be 5G base stations for macrocells.
  • This embodiment can be applied to any wireless communication system that shares the same frequency band.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the communication control device 1 according to this embodiment.
  • a program a communication control program enabling a computer to execute the processing described below
  • a program is stored in a memory such as the ROM 302 (FIG. 3), read out to the RAM 303 (FIG. 3), and executed by the CPU 301 (FIG. 3).
  • a dedicated circuit may be automatically generated on the FPGA from a program for realizing the function of each functional module.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • a Gate Array circuit may be formed in the same manner as the FPGA and implemented as hardware. Also, it may be realized by an ASIC (Application Specific Integrated Circuit). Note that the configuration of the functional blocks shown in FIG. 2 is an example, and a plurality of functional blocks may constitute one functional block, or one of the functional blocks may be divided into blocks that perform a plurality of functions. good too.
  • the communication control device 1 includes an acquisition unit 201, an interference calculation unit 202, a selection unit 203, and an output unit 204 as its functional configuration.
  • Acquisition section 201 acquires information (hereinafter referred to as deployment information) regarding deployment of base stations designed in advance based on network design or the like.
  • the deployment information includes, for example, latitude, longitude, antenna height, transmission power value (for example, maximum transmission power value) for one base station, antenna pattern of the antenna of the base station, azimuth and tilt of the antenna of the base station. including one or more.
  • the acquisition unit 201 can acquire the deployment information by a user's input operation via the input unit 305 (FIG. 3).
  • the acquisition unit 201 can acquire the deployment information by receiving processing from an external device via the communication I/F 307 (FIG. 3).
  • the acquisition unit 201 can acquire the deployment information previously stored in a storage unit such as the RAM 303 (FIG. 3).
  • the deployment information is associated with identification information for identifying the base station.
  • the deployment information includes base station identification information.
  • the acquisition unit 201 acquires deployment information for each of the base stations 31, 32, and 33.
  • Acquisition section 201 also acquires a threshold (hereinafter referred to as interference threshold) for allowable interference (unit: dBm/MHz, for example) set in one or more communication stations that share the same frequency band as the base station.
  • the interference threshold is used to select one or more base stations for final deployment based on the aforementioned deployment information.
  • the interference threshold may be commonly set in the one or more communication stations, or may be set individually. Assume that the interference threshold is a value calculated in advance from the system noise temperature of the receiving system of the communication station, the interference frequency band, the integration time, and the like.
  • the interference threshold can be calculated for the long term and short term, and either value can be used as the interference threshold.
  • the acquisition unit 201 can acquire the interference threshold by a user's input operation via the input unit.
  • the acquisition unit 201 can acquire the interference threshold by performing reception processing from an external device via the communication I/F 307 (FIG. 3).
  • the obtaining unit 201 can obtain the interference threshold previously stored in the storage unit.
  • the acquisition unit 201 may be configured to calculate the interference threshold when necessary information is input. In the case of the network system configuration shown in FIG. 1, the obtaining unit 201 obtains the interference threshold for each of the communication stations 21 and 22 .
  • the acquisition unit 201 acquires location information (hereinafter referred to as geographic data) including the geographical locations of communication stations sharing the same frequency band as the base station.
  • geographic data location information
  • the acquisition unit 201 can acquire the geographic data by a user's input operation via the input unit.
  • the acquisition unit 201 can acquire the geographic data by receiving processing from an external device via the communication I/F (FIG. 3).
  • the acquisition unit 201 can acquire the geographic data previously stored in the storage unit.
  • the acquisition unit 201 acquires geographic data for each of the communication stations 21 and 22.
  • the acquisition unit 201 outputs the acquired deployment information and geographic data to the interference calculation unit 202 and outputs the interference threshold to the selection unit 203 .
  • interference calculation section 202 calculates an interference value (in units of dBm/MHz, for example) for communication stations sharing the same frequency band as the base station. Estimate and calculate.
  • the interference calculation unit 202 can calculate each interference value using, for example, an interference calculation simulator. In the case of the network system configuration shown in FIG. , I22, and interference values I31 and I32 of the base station 33 to the communication stations 21 and 22, respectively.
  • the interference calculator 202 outputs the plurality of calculated interference values to the selector 203 .
  • the selection unit 203 selects (determines) base stations to be deployed according to the deployment information based on the multiple interference values output from the interference calculation unit 202 and the interference threshold output from the acquisition unit 201 . The selection procedure will be described later with reference to FIG.
  • the output section 204 generates and outputs information on the base station selected by the selection section 203 .
  • the output unit 204 generates and outputs a list of base stations selected by the selection unit 203, for example. Also, the output unit 204 may generate and output information about the base stations that have not been selected. For example, the output unit 204 may generate and output information instructing the re-deployment plan of the unselected base stations or information for requesting cancellation of deployment.
  • FIG. 3 is a diagram showing a non-limiting example of the hardware configuration of the communication control device 1 according to this embodiment.
  • the communication control device 1 according to this embodiment can be implemented on any computer or any other processing platform, single or multiple.
  • the communication control device 1 may be implemented in a general-purpose server device that constitutes a cloud, or may be implemented in a dedicated server device.
  • FIG. 3 an example in which the communication control device 1 is implemented in a single computer is shown, but the communication control device 1 according to this embodiment is implemented in a computer system including a plurality of computers. good.
  • a plurality of computers may be interconnectably connected by a wired or wireless network.
  • the communication control device 1 may include a CPU 301 , a ROM 302 , a RAM 303 , an HDD 304 , an input section 305 , a display section 306 , a communication I/F 307 and a system bus 308 .
  • the communication control device 1 may also comprise an external memory.
  • a CPU (Central Processing Unit) 301 comprehensively controls operations in the communication control apparatus 1, and controls each component (302 to 307) via a system bus 308, which is a data transmission line.
  • a ROM (Read Only Memory) 302 is a non-volatile memory that stores control programs and the like necessary for the CPU 301 to execute processing.
  • the program may be stored in a non-volatile memory such as a HDD (Hard Disk Drive) 304 or an SSD (Solid State Drive), or an external memory such as a removable storage medium (not shown).
  • a RAM (Random Access Memory) 303 is a volatile memory and functions as a main memory, a work area, and the like for the CPU 301 . That is, the CPU 301 loads necessary programs and the like from the ROM 302 to the RAM 303 when executing processing, and executes various functional operations by executing the programs and the like.
  • the HDD 304 stores, for example, various data and various information required when the CPU 301 performs processing using a program.
  • the HDD 304 also stores various data, information, and the like obtained by the CPU 301 performing processing using programs and the like, for example.
  • An input unit 305 is configured by a pointing device such as a keyboard and a mouse.
  • a display unit 306 is configured by a monitor such as a liquid crystal display (LCD).
  • the display unit 306 provides a GUI (Graphical User Interface) for inputting instructions to the communication control apparatus 1 such as various parameters used in base station determination processing and communication parameters used in communication with other devices. you can
  • a communication I/F 307 is an interface that controls communication between the communication control device 1 and an external device.
  • At least some of the functions of the elements of the communication control device 1 shown in FIG. 2 can be realized by the CPU 301 executing a program. However, at least some of the functions of the elements of the communication control device 1 shown in FIG. 2 may operate as dedicated hardware. In this case, the dedicated hardware operates under the control of the CPU 301 .
  • FIG. 4 shows a flowchart of processing executed by the communication control device 1 according to this embodiment. This processing is started by performing a predetermined operation on the input unit 305, for example, when a telecommunications carrier that deploys base stations decides to deploy base stations.
  • a predetermined operation on the input unit 305, for example, when a telecommunications carrier that deploys base stations decides to deploy base stations.
  • FIG. 4 the configuration of the network system in FIG. 1 will be referred to below.
  • the acquisition unit 201 of the communication control device 1 acquires deployment information for the base stations 31 , 32 , 33 , interference thresholds for the communication stations 21 , 22 , and geographic data for the communication stations 21 , 22 .
  • the deployment information includes, for example, latitude, longitude, antenna height, transmission power value (for example, maximum transmission power value), antenna pattern of the base station antenna, base station antenna azimuth and Contains one or more of the slopes.
  • the interference threshold is a threshold for allowable interference set in the communication stations 21 and 22 . In this description, the interference threshold for ground station 21 is denoted as TH21, and the interference threshold for ground station 22 is denoted as TH22.
  • Geographic data is information that includes the geographical locations of the communication stations 21 and 22 .
  • Acquisition section 201 outputs deployment information, interference thresholds, and geographic data to interference calculation section 202 .
  • the interference calculation unit 202 estimates the interference value of each base station with respect to each communication station sharing the same frequency band as the base station based on the deployment information and geographic data output from the acquisition unit 201. calculated by Specifically, the interference calculator 202 calculates the interference values I11 and I12 from the base station 31 to the communication stations 21 and 22, the interference values I21 and I22 from the base station 32 to the communication stations 21 and 22, and the base station 33 Then, the interference values I31 and I32 to the communication stations 21 and 22 are calculated. The interference calculator 202 outputs the plurality of calculated interference values to the selector 203 .
  • the selection unit 203 selects (determines) a base station to deploy according to the deployment information based on the interference value output from the interference calculation unit 202 and the interference threshold output from the acquisition unit 201 .
  • FIG. 5 shows a flowchart showing selection processing of a base station to be deployed, which is processing of the selection unit 203 according to this embodiment.
  • the selection unit 203 compares all interference values output from the interference calculation unit 202 with all interference thresholds output from the acquisition unit 201 . Specifically, the selection unit 203 compares the interference values I11, I12, I21, I22, I31, and I32 with the interference thresholds TH21 and TH22 for the communication stations 21 and 22, respectively. If there is an interference value higher than at least one of the interference thresholds TH21 and TH22 (Yes in S52), the selection unit 203 excludes the base station having the high interference value from selection targets (S53). If there is no interference value higher than at least one of the interference thresholds TH21 and TH22 (No in S52), the selection unit 203 performs the processing of S54 to S57 as processing for each of the communication stations 21 and 22.
  • the interference values I11, I21, and I31 of the base stations 31, 32, and 33 with respect to the communication station 21 are set as the first to third interference values (indexed sequentially from 1). This order is an example, and the first to third interference values may be set in the order of I31, I21, and I11. Considering that the lower the interference value, the more base stations can be deployed, the numbers may be assigned in ascending order of the interference value.
  • the selection unit 203 compares the accumulated interference value with the interference threshold TH ⁇ b>21 for the communication station 21 . If the accumulated interference value is equal to or less than the interference threshold TH21 (No in S56), the selection unit 203 increments i and repeats the processes of S54 and S56.
  • the process proceeds to S57, and the base stations having the 1st to i-th interference values (one or more base stations constituting the 1st to i-th interference values ) to the communication station 21 .
  • the selection unit 203 performs the processes of S54 to S57 for the communication station 22, and when the base stations for the communication stations 21 and 22 are specified, the process proceeds to S58.
  • the processing of S54 to S57 for the communication station 21 is followed by the processing of S54 to S57 for the communication station 22.
  • the two processings are independent, the order of the processing is reversed. may be performed at the same time.
  • the selection unit 203 selects the base station commonly identified in the processing of S57 for each of all communication stations (that is, the communication stations 21 and 22), and provides identification information for identifying the selected base station as The selection result is output to the output unit 204, and the process ends. Through such processing, one or more base stations having accumulated interference values that do not exceed the interference threshold are selected (determined) as base stations to be deployed.
  • the output unit 204 generates and outputs information based on the selection result of the selection unit 203. For example, the output section 204 generates and outputs a list of identification information of the base stations selected by the selection section 203 . Also, the output unit 204 may generate and output information about the base stations that have not been selected. For example, the information may generate and output information instructing a re-deployment plan for unselected base stations or information for requesting cancellation of deployment.
  • a carrier may re-deploy or re-deploy base stations that were improperly scheduled for deployment in terms of interference. Cancellation can be considered, and as a result, it is possible to provide communication services with reduced influence of interference.
  • the communication control apparatus 1 calculates the interference value of each base station with respect to each ground station, and selects the base station to be deployed based on the interference value.
  • the communication control apparatus 1 calculates the coverage (that is, service area) of each base station in addition to the interference value for each ground station by each base station, and based on the interference value and coverage, Select the base station to deploy.
  • a large (wide) coverage means a wide range in which communication services can be provided, and is favorable from the viewpoint of the number of installed base stations.
  • a high interference value affects communication quality. Therefore, the communication control apparatus 1 according to the present embodiment selects base stations to be deployed based on the deployment information in consideration of both parameters of coverage and interference value. Differences from the first embodiment will be described below, and descriptions of common items will be omitted.
  • FIG. 6 is a block diagram showing an example of the functional configuration of the communication control device 1 according to this embodiment.
  • the functions of the acquisition unit 601, the interference calculation unit 602, and the output unit 605 are the same as the acquisition unit 201, the interference calculation unit 202, and the output unit 204 in FIG. do.
  • Coverage calculation section 603 functions as an area calculation section that calculates a geographical coverage area (hereinafter referred to as coverage) for each base station based on the deployment information output from acquisition section 601 .
  • Coverage is represented by, for example, a diameter (such as kilometers) or an area (such as square kilometers).
  • the coverage calculation unit 603 can calculate each coverage using, for example, a coverage calculation simulator. In the case of the network system configuration shown in FIG. Coverage calculation section 53 outputs the calculated coverage of each base station to selection section 604 .
  • Selection section 604 deploys according to the deployment information based on multiple interference values output from interference calculation section 602, interference thresholds output from acquisition section 601, and multiple coverages output from coverage calculation section 604. Select (determine) the base station to be used. The selection procedure will be described later with reference to FIG.
  • FIG. 7 shows a flowchart of processing executed by the communication control device according to this embodiment. This processing is started by performing a predetermined operation on the input unit 305, for example, when a telecommunications carrier that deploys base stations decides to deploy base stations.
  • a predetermined operation on the input unit 305, for example, when a telecommunications carrier that deploys base stations decides to deploy base stations.
  • FIG. 7 the configuration of the network system in FIG. 1 will be referred to below.
  • the acquisition unit 601 of the communication control device 1 acquires deployment information for the base stations 31 , 32 , 33 , interference thresholds for the communication stations 21 , 22 , and geographic data for the communication stations 21 , 22 .
  • Acquisition section 601 outputs deployment information, interference thresholds, and geographic data to interference calculation section 602 .
  • the interference calculation unit 602 estimates the interference value of each base station with respect to each communication station sharing the same frequency band as each base station based on the deployment information and geographic data output from the acquisition unit 601. to calculate. Specifically, the interference calculator 602 calculates the interference values I11 and I12 from the base station 31 to the communication stations 21 and 22, the interference values I21 and I22 from the base station 32 to the communication stations 21 and 22, and the base station 33 Then, the interference values I31 and I32 to the communication stations 21 and 22 are calculated. The interference calculator 602 outputs the plurality of calculated interference values to the selector 604 .
  • coverage calculation section 604 calculates the coverage of each base station based on the deployment information output from acquisition section 601 . Specifically, coverage calculation section 604 calculates coverages C1, C2, and C3 of base stations 31, 32, and 33, respectively. Coverage calculation section 604 outputs a plurality of calculated coverages to selection section 604 .
  • the order of the processes of S72 and S73 may be reversed, or may be performed simultaneously.
  • the selection unit 604 selects bases to be deployed according to the deployment information based on the interference value output from the interference calculation unit 602, the coverage output from the coverage calculation unit 604, and the interference threshold output from the acquisition unit 601. Select (determine) a station.
  • FIG. 8 shows a flowchart showing selection processing of a base station to be deployed, which is processing of the selection unit 604 according to this embodiment.
  • the selection unit 604 compares all interference values output from the interference calculation unit 602 with all interference thresholds output from the acquisition unit 201 . Specifically, the selection unit 604 compares the interference values I11, I12, I21, I22, I31, and I32 with the interference thresholds TH21 and TH22 for the communication stations 21 and 22, respectively. If there is an interference value higher than at least one of the interference thresholds TH21 and TH22 (Yes in S82), the selection unit 604 excludes the base station having the high interference value from selection targets (S83). If there is no interference value higher than at least one of the interference thresholds TH21 and TH22 (No in S82), the selection unit 604 performs the processing of S84 to S88 as processing for each of the communication stations 21 and 22.
  • the selection unit 604 calculates the values (coverage/interference value) obtained by dividing the coverages C1, C2, and C3 of the base stations 31, 32, and 33 by the interference values I11, I21, and I31 with respect to the communication station 21, respectively.
  • This coverage/interference value indicates the ratio of coverage to coverage by the base station, taking interference into account, and is hereinafter referred to as the potential coverage ratio.
  • the selection unit 604 calculates potential coverage ratios C1/I11, C2/I21, and C3/I31.
  • the selection unit 604 sorts (arranges) the interference values in descending order of the potential coverage calculated in S84.
  • the selection unit 604 preferentially selects a base station with a high potential coverage rate.
  • the selection unit 604 compares the accumulated interference value with the interference threshold TH ⁇ b>21 for the communication station 21 . If the accumulated interference value is equal to or less than the interference threshold TH21 (No in S87), the selection unit 604 increments i and repeats the processes of S86 and S87.
  • the process proceeds to S88, and the base stations having the 1st to i-th interference values (one or more base stations constituting the 1st to i-th interference values ) to the communication station 21 .
  • the selection unit 604 performs the processing of S84 to S88 for the communication station 22, selects the base station for the communication stations 21 and 22, and then proceeds to S89.
  • the processing of S84 to S88 for the communication station 22 is performed after the processing of S84 to S88 for the communication station 21.
  • both processing are independent, the order of the processing is reversed. may be performed at the same time.
  • the selection unit 604 selects the base station commonly identified in the process of S57 for each of all the communication stations (that is, the communication stations 21 and 22), and provides identification information for identifying the selected base station as The selection result is output to the output unit 605, and the process ends. Through such processing, one or more base stations with higher potential coverage and accumulated interference values that do not exceed the interference threshold are selected (determined) for deployment.
  • the output unit 605 generates and outputs information based on the selection result of the selection unit 203. For example, the output unit 605 generates and outputs a list of identification information of base stations selected by the selection unit 604 . Also, the output unit 605 may generate and output information about the base stations that have not been selected. For example, the information may generate and output information instructing a re-deployment plan for unselected base stations or information for requesting cancellation of deployment.
  • FIG. 9 is a diagram for explaining the procedure for selecting a base station to deploy according to this embodiment. 9, the configuration of the network system in FIG. 1 and the flow charts in FIGS. 7 and 8 will be referred to.
  • the base station is represented by BS and the communication station by WS.
  • FIG. 9(a) shows the interference thresholds TH21 and TH22 for the communication stations (WS) 21 and 22 acquired by the acquisition unit 601 (S71 in FIG. 7).
  • FIG. 9(b) shows the interference value and coverage calculated by the interference calculator 602 (S72 in FIG. 7).
  • the interference values are the interference values I11 and I12 from the base station (BS) 31 to the communication stations 21 and 22 respectively, the interference values I21 and I22 from the base station 32 to the communication stations 21 and 22 respectively, , 22, respectively.
  • the coverage includes coverages C1, C2 and C3 of base stations 31, 32 and 33, respectively.
  • FIG. 9(c) shows the potential coverage ratio (coverage/interference value) calculated from the interference value and coverage shown in FIG. 9(b) (S84 in FIG. 8). A potential coverage ratio is calculated for each base station and each communication station.
  • FIG. 9(d) shows the result of sorting the interference values (FIG. 9(b)) in descending order of the potential coverage shown in FIG. 9(c) (S85 in FIG. 8).
  • the potential coverage ratio decreases in the order of base stations 32, 33, and 31, and the sort result is in the order of I21, I31, and I11.
  • the potential coverage is lower in the order of base stations 32, 31, 33, and the sort result is in the order of I22, I12, I32.
  • FIG. 9(e) shows the result of accumulating the interference values sorted as shown in FIG. 9(d) in order for each communication station.
  • the accumulated values of I21 are shown in the upper row, I21+I31 in the middle row, and I21+I31+I11 in the lower row.
  • the accumulated values of I22 are shown in the upper row, I22+I32 in the middle row, and I22+I32+I12 in the lower row.
  • the selection unit 604 selects the base stations 32 and 33, which are the base stations commonly identified by the communication stations 21 and 22, as base stations to be deployed (S89 in FIG. 8).
  • all ground stations allow One or more base stations can be selected such that the interference value is not exceeded. Also, by outputting information about one or more base stations selected by such processing, a carrier may re-deploy or re-deploy base stations that were improperly scheduled for deployment in terms of interference. Cancellation can be considered, and as a result, it is possible to provide communication services with reduced influence of interference.
  • each base station is a non-directional antenna (omni antenna).
  • omni antenna omni antenna
  • this modification corresponds to a case where base stations 31, 32, and 33 correspond to the base station apparatus having sector antennas in the same base station apparatus having a plurality of sector antennas.
  • the number of sectors is assumed to be 3, for example.
  • the communication control device 1 can select (determine) whether to deploy or not for each sector.
  • the acquisition unit 1 of the communication control device 1 acquires deployment information for each sector (S41 in FIG. 4).
  • the deployment information is associated with identification information for identifying each sector.
  • the deployment information includes sector identification information.
  • the interference calculator 202 calculates the interference value to each ground station for each sector supported by each base station (S42 in FIG. 4).
  • the selection unit 203 applies the processing in FIG. 5 to each sector of one base station, selects one or more sectors (S58 in FIG. 5), identifies the selected one or more sectors,
  • the selection result is output to the output unit 204 .
  • the output unit 204 generates and outputs information based on the selection result of the selection unit 203 (S44 in FIG. 4). For example, the output unit 204 generates and outputs a list of identification information of sectors selected by the selection unit 203 . In addition, the output unit 204 may generate and output information regarding sectors that have not been selected. Also, the output unit 204 may generate and output information about each base station in consideration of sectors. For example, the output unit 204 may generate and output a result indicating that a base station in which all sectors are selected should be deployed.
  • the acquisition unit 1 of the communication control device 1 acquires deployment information for each sector (S71 in FIG. 7).
  • the deployment information is associated with identification information for identifying each sector.
  • the deployment information includes sector identification information.
  • the interference calculator 602 calculates the interference value to each ground station for each sector supported by each base station (S72 in FIG. 7).
  • the coverage calculator 603 calculates the coverage of each base station based on the deployment information (S73 in FIG. 7).
  • the selection unit 604 applies the processing in FIG. 8 to each sector of one base station, selects one or more sectors (S89 in FIG. 8), identifies the selected one or more sectors,
  • the selection result is output to the output unit 605 .
  • the output unit 605 generates and outputs information based on the selection result of the selection unit 604 (S75 in FIG. 7). For example, the output unit 605 generates and outputs a list of identification information of sectors selected by the selection unit 604 . In addition, the output unit 605 may generate and output information regarding sectors that have not been selected. Also, the output unit 605 may generate and output information about each base station considering a sector. For example, the output unit 605 may generate and output a result indicating that all sectors should deploy the selected base stations. In this modified example, an example for one base station has been described, but the same description can also be applied to a case of multiple base stations (that is, a case where each of multiple base stations has multiple sectors).
  • a 5G communication system and a satellite communication system were described as examples of systems that share the same frequency band, but the embodiment can also be applied to two or more systems that share the same frequency band.
  • the same frequency band can be used between a communication system for HAPS (High Altitude Platform Station) and a communication system for public use, or between a 5G communication system and a communication system by a radio astronomical observatory. Even in such a case, by applying the above embodiment, it is possible to appropriately deploy the communication stations/base stations in one system, and to suppress deterioration in communication quality due to the occurrence of interference. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信制御装置は、複数の基地局の配備に関する配備情報と、該複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得し、該配備情報と該位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出し、該複数の基地局のうち、該複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、該配備情報に従って配備する基地局として選択する選択有する。

Description

通信制御装置、通信制御方法、通信システム、およびプログラム
 本発明は、通信制御装置、通信制御方法、およびプログラムに関し、特に、基地局を配備するための技術に関する。
 3世代パートナーシッププロジェクト(3GPP)において、ロングタームエボリューション(LTE)と称される第4世代(4G)やNew  Radio(NR)と称される第5世代(5G)の移動通信システムの規格が策定されている。
 4Gのネットワークでは、高速・低遅延通信および大容量通信を可能とし、端末装置は例えば、外出先でもデータ量の大きい高画質な動画を遅延なく利用することが可能となっている。また、5Gのネットワークでは、4Gで実現された高速・低遅延通信および大容量通信に加え、自動運転、ドローンやロボットの遠隔制御、IoT(Internet of Things)等の技術に対応するために、さらに、高信頼・低遅延のサービスの提供が期待されている。
 基地局装置が複数の端末装置への通信サービスを提供するために、当該基地局の配備は、カバレッジ、地理的条件、地形的条件、人口密度といった様々な条件を考慮したネットワーク設計に基づいて行われうる。
 4Gネットワーク(マクロセル、スモールセル)における基地局(4G基地局)は、広いカバレッジを提供することや、密集した端末装置(ユーザ)に対しても接続を提供できる。4G基地局は、このような特徴、および、電波干渉の観点から、ネットワーク設計に沿った特定の場所に配備(配置)されうる。基地局と他の通信システムが同一周波数帯を共用する場合が生じた場合、両者が同時に同一の無線リソースを共有しないように、基地局に対して無線リソースを割り当てることが可能である(特許文献1)。
特開2014-064219号公報
 5Gネットワークにおいて、当該ネットワークにおける基地局(5G基地局)は、3.7GHz帯といった周波数帯域において、衛星通信システムといった他の通信システムと同じ周波数を共有することが想定されている。そのため、単にネットワーク設計に基づいて5G基地局を配備した場合、5G基地局が電波を放出してしまうと、電波干渉によって衛星通信が利用できなくなるといった影響が生じうる。このように、5Gネットワークでは、衛星通信システムといった他の通信システムとの同一チャネル干渉が大きな問題となっている。
 ここで、特許文献1に記載される手法のように、同一チャネル干渉が生じないように無線リソース割り当てを行うこともできるが、多数の5G基地局を配備した後にこのような制御を行うことは煩雑である。
 また、5Gネットワークと衛星通信システムだけでなく、同一の周波数帯を利用する2つ以上のシステムに対しても、同様な課題が生じうる。
 本発明は上記課題を解決するためになされたものであり、その目的は、同一チャネル干渉を考慮して、適切に基地局を配備するための通信制御装置、通信制御方法、およびプログラムを提供することにある。
 上記課題を解決するために、本発明による通信制御装置の一態様は、複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得手段と、前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出手段と、前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択手段と、を有する。
 前記複数の通信局の各通信局に対して個別に前記所定の干渉閾値が設定されており、前記通信制御装置の前記選択手段は、前記各通信局について、前記複数の基地局の各基地局による前記各通信局への干渉値を、所定の順序で累積し、当該累積による累積値が干渉閾値を超えない範囲で累積された干渉値を構成する1以上の基地局を特定し、前記複数の基地局のうち、前記複数の通信局について共通に特定された1つ以上の基地局を、前記配備情報に従って配備する基地局として選択してもよい。
 前記所定の順序は、前記各基地局による前記各通信局への干渉値が低い順であってもよい。
 前記通信制御装置は、前記配備情報を用いて、前記複数の基地局の各基地局によるサービス提供領域を算出する領域算出手段をさらに有し、前記所定の順序は、前記各基地局によるサービス提供領域を前記各基地局による前記各通信局への干渉値で割った値が高い順であってもよい。
 前記通信制御装置は、前記選択手段により選択された基地局に関する情報と、前記選択手段により選択されなかった基地局に関する情報の少なくとも一方を生成して出力する出力手段をさらに有してもよい。
 前記各基地局は異なる基地局装置であってもよい。
 前記各基地局は、複数のセクタアンテナを備える同一の基地局装置における各セクタアンテナに対応してもよい。
 前記各基地局の前記配備情報は、前記各基地局に対する緯度および/または経度、前記各基地局のアンテナの高さ、前記各基地局による送信電力値、前記各基地局のアンテナパターン、前記各基地局のアンテナの方位および傾きのうちの1つ以上を含んでもよい。
 前記複数の基地局は第5世代(5G)通信ネットワークにおける基地局であり、前記複数の通信局は衛星通信ネットワークにおける地上局であってもよい。
 本発明による通信制御方法の一態様は、複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得工程と、前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出工程と、前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択工程と、を有する。
 本発明による通信システムの一態様は、複数の基地局と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局と、制御装置を有する通信システムであって、前記制御装置は、複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得手段と、前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出手段と、前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択手段と、を有する。
 本発明による通信制御プログラムの一態様は、通信制御処理をコンピュータに実行させるための通信制御プログラムであって、該プログラムは、前記コンピュータに、複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得処理と、前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出処理と、前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択処理と、を含む処理を実行させるためのものである。
 本発明によれば、同一チャネル干渉を考慮して、適切に基地局を配備することが可能となる
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態から理解できるであろう。
図1は、本発明の各実施形態による通信制御装置を含む通信ネットワークシステムの構成例を示す概念図である。 図2は、第1実施形態による通信制御装置の機能構成の一例を示すブロック図である。 図3は、本発明の各実施形態による通信制御装置のハードウェア構成例を示すブロック図である。 図4は、第1実施形態による通信制御装置により実行される処理のフローチャートである。 図5は、第1実施形態による、配備する基地局の選択処理を示すフローチャートである。 図6は、第2実施形態による通信制御装置の機能構成の一例を示すブロック図である。 図7は、第2実施形態による通信制御装置により実行される処理のフローチャートである。 図8は、第2実施形態による、配備する基地局の選択処理を示すフローチャートである。 図9は、第2実施形態による、配備する基地局の選択手順を説明するための図である。
 以下、添付図面を参照して、本発明を実施するための実施形態について詳細に説明する。以下に開示される構成要素のうち、同一機能を有するものには同一の符号を付し、その説明を省略する。なお、以下に開示される実施形態は、本発明の実現手段としての一例であり、本発明が適用される装置の構成や各種条件によって適宜修正または変更されるべきものであり、本発明は以下の実施形態に限定されるものではない。また、本実施形態で説明されている特徴の組み合わせの全てが本発明の解決手段に必須のものとは限らない。
 [第1実施形態]
 <ネットワークシステム構成>
 図1は、本実施形態による通信制御装置を含む通信ネットワークシステムの構成例を示す概念図である。
 図1に示すように、本実施形態の通信ネットワークシステムは、通信制御装置1、通信局21、22、および基地局31、32、33を備える。ここで、通信局21、22と基地局31、32、33は、同一の周波数帯を共用して通信を行うものとする。
 本実施形態では、通信局21、22は、衛星通信事業者により衛星通信ネットワークのために設計され、固定的に設置された地上の通信局(地上局(Ground station))を想定する。通信局21、22は、人工衛星などの宇宙機との間で通信を行うほか、電波源から電波を受信することも可能である。人工衛星としては、通信衛星(Communication Satellite:CS)や放送衛星(Broadcasting Satellite:BS)等がある。
 また、本実施形態では、基地局31、32、33は、3世代パートナーシッププロジェクト(3GPP)による、New  Radio(NR)と称される第5世代(5G)通信ネットワークにおける基地局を想定する。5G仕様では、5Gの基地局はgNodeBやgNBとも称される。
 基地局31、32、33はそれぞれ、カバレッジC1、C2、C3の範囲(通信サービス提供領域)で、1つ以上の端末装置(不図示)に対して通信サービスを提供することができる。なお、基地局31、32、33は、複数のスライス(サービス)を提供可能な基地局であってもよい。スライスの種別(タイプ)としては、例えば、mMTC、URLLCおよびeMBBがある。mMTCは、massive Machine Type Communicationsの略であり、URLLCは。Ultra-Reliable and Low Latency Communicationsの略であり、eMBBは、enhanced Mobile Broad Bandの略である。
 基地局の配備は、カバレッジ、地理的条件、地形的条件、人口密度といった様々な条件を考慮したネットワーク設計に基づいて行われうる。
 一方、5Gでは、基地局は、3.7GHz帯といった周波数帯域において、衛星通信のための通信局(地上局)と同じ周波数を共有することが想定されている。そのため、単にネットワーク設計に基づいて基地局を配備した場合、基地局が電波を放出してしまうと、電波干渉によって衛星通信が利用できなくなるといった影響が生じうる。
 本実施形態では、通信制御装置1は、基地局31、32、33のそれぞれによる通信局21、22への干渉を考慮して、実際に配備する基地局を選択(決定)する機能を有する。
 通信局21、22と基地局31、32、33との間で共用される同一の周波数帯における、基地局31による通信局21、22それぞれへの干渉値を、I11、I12と表す。同様に、基地局32による通信局21、22それぞれへの干渉値を、I21、I22と表し、基地局33による通信局21、22それぞれへの干渉値を、I31、I32と表す。
 なお、本実施形態では、通信局21、22は、衛星通信のための通信局(地上局)を想定し、基地局31、32、33は、マクロセル用の5Gの基地局を想定するが、同一周波数帯を共用するあらゆる無線通信システムに本実施形態を適用可能である。
 <通信制御装置の機能構成>
 図2は、本実施形態による通信制御装置1の機能構成の一例を示すブロック図である。
 図2に示す通信制御装置1の各機能モジュールのうち、ソフトウエアにより実現される機能については、各機能モジュールの機能を提供するためのプログラム(以下に説明する処理をコンピュータに実行可能な通信制御プログラムを含む)がROM302(図3)等のメモリに記憶され、RAM303(図3)に読み出してCPU301(図3)が実行することにより実現される。ハードウェアにより実現される機能については、例えば、所定のコンパイラを用いることで、各機能モジュールの機能を実現するためのプログラムからFPGA上に自動的に専用回路を生成すればよい。FPGAとは、Field Programmable Gate Arrayの略である。また、FPGAと同様にしてGate Array回路を形成し、ハードウェアとして実現するようにしてもよい。また、ASIC(Application Specific Integrated Circuit)により実現するようにしてもよい。なお、図2に示した機能ブロックの構成は一例であり、複数の機能ブロックが1つの機能ブロックを構成するようにしてもよいし、いずれかの機能ブロックが複数の機能を行うブロックに分かれてもよい。
 図2に示すように、通信制御装置1は、その機能構成として、取得部201、干渉算出部202、選択部203、および出力部204を備える。
 取得部201は、ネットワーク設計等に基づいてあらかじめ設計された基地局の配備に関する情報(以下、配備情報)を取得する。配備情報は、例えば、1つの基地局に対する緯度、経度、アンテナの高さ、送信電力値(例えば最大送信電力値)、基地局のアンテナのアンテナパターン、基地局のアンテナの方位および傾きのうちの1つ以上を含む。取得部201は、当該配備情報を、ユーザにより入力部305(図3)を介した入力操作により取得することができる。あるいは取得部201は、当該配備情報を、通信I/F307(図3)を介した外部装置からの受信処理により取得することができる。あるいは、取得部201は、あらかじめRAM303(図3)等の記憶部に格納されていた当該配備情報を取得することができる。
 配備情報には、基地局を識別するための識別情報が関連付けられる。例えば、当該配備情報は、基地局の識別情報を含む。
 図1に示すネットワークシステムの構成の場合、取得部201は、基地局31、32、33のそれぞれについての配備情報を取得する。
 また、取得部201は、基地局と同一の周波数帯を共用する1つ以上の通信局において設定される許容干渉(単位は例えばdBm/MHz)に対する閾値(以下、干渉閾値)を取得する。当該干渉閾値は、前述の配備情報に基づいて最終的に配備する1つ以上の基地局を選択するために用いられる。また、当該干渉閾値は、当該1つ以上の通信局において共通に設定されてもよいし、個別に設定されてもよい。
 当該干渉閾値は、当該通信局の受信系のシステム雑音温度、干渉周波数帯、積分時間等によりあらかじめ算出されている値であるとする。干渉閾値は、長時間用および短時間用について算出されることができ、いずれの値を干渉閾値として用いてもよい。
 前述の配備情報と同様に、取得部201は、ユーザにより入力部を介した入力操作により当該干渉閾値を取得することができる。あるいは取得部201は、当該干渉閾値を、通信I/F307(図3)を介した外部装置からの受信処理により取得することができる。あるいは、取得部201は、あらかじめ記憶部に格納されていた当該干渉閾値を取得することができる。あるいは、取得部201は、必要な情報が入力されている場合に、当該干渉閾値を算出するように構成されてもよい。
 図1に示すネットワークシステムの構成の場合、取得部201は、通信局21、22のそれぞれについての干渉閾値を取得する。
 また、取得部201は、基地局と同一の周波数帯を共用する通信局の地理的位置を含む位置情報(以下、地理データ)を取得する。
 前述の配備情報と同様に、取得部201は、ユーザにより入力部を介した入力操作により当該地理データを取得することができる。あるいは取得部201は、当該地理データを、通信I/F(図3)を介した外部装置からの受信処理により取得することができる。あるいは、取得部201は、あらかじめ記憶部に格納されていた当該地理データを取得することができる。
 図1に示すネットワークシステムの構成の場合、取得部201は、通信局21、22のそれぞれについて地理データを取得する。
 取得部201は、取得した配備情報および地理データを干渉算出部202に出力し、干渉閾値を選択部203へ出力する。
 干渉算出部202は、取得部201から取得した配備情報および地理データに基づいて、基地局による、当該基地局と同一の周波数帯を共用する通信局に対する干渉値(単位は例えばdBm/MHz)を推定して算出する。干渉算出部202は、例えば、干渉算出シミュレータを用いて、各干渉値を算出することができる。
 図1に示すネットワークシステムの構成の場合、干渉算出部202は、基地局31による通信局21、22それぞれへの干渉値I11、I12、基地局32による通信局21、22それぞれへの干渉値I21、I22、基地局33による通信局21、22それぞれへの干渉値I31、I32を算出する。
 干渉算出部202は、算出した複数の干渉値を選択部203へ出力する。
 選択部203は、干渉算出部202から出力された複数の干渉値と、取得部201から出力された干渉閾値に基づいて、配備情報に従って配備すべき基地局を選択(決定)する。当該選択の手順については、図4を用いて後述する。
 出力部204は、選択部203により選択された基地局の情報を生成して出力する。出力部204は、例えば、選択部203により選択された基地局のリストを生成して出力する。また、出力部204は、選択されなかった基地局に関する情報を生成して出力してもよい。例えば、出力部204は、選択されなかった基地局の再配備計画を指示する情報や、配備のキャンセルを要求するための情報を生成して出力してもよい。
 <通信制御装置のハードウェア構成>
 図3は、本実施形態による通信制御装置1のハードウェア構成の非限定的一例を示す図である。
 本実施形態による通信制御装置1は、単一または複数の、あらゆるコンピュータ、または他のいかなる処理プラットフォーム上にも実装することができる。通信制御装置1は、クラウドを構成する汎用サーバ装置に実装されてもよく、専用のサーバ装置に実装されてもよい。
 図3を参照して、通信制御装置1は、単一のコンピュータに実装される例が示されているが、本実施形態による通信制御装置1は、複数のコンピュータを含むコンピュータシステムに実装されてよい。複数のコンピュータは、有線または無線のネットワークにより相互通信可能に接続されてよい。
 図3に示すように、通信制御装置1は、CPU301と、ROM302と、RAM303と、HDD304と、入力部305と、表示部306と、通信I/F307と、システムバス308とを備えてよい。通信制御装置1はまた、外部メモリを備えてよい。
 CPU(Central Processing Unit)301は、通信制御装置1における動作を統括的に制御するものであり、データ伝送路であるシステムバス308を介して、各構成部(302~307)を制御する。
 ROM(Read Only Memory)302は、CPU301が処理を実行するために必要な制御プログラム等を記憶する不揮発性メモリである。なお、当該プログラムは、HDD(Hard Disk Drive)304、SSD(Solid State Drive)等の不揮発性メモリや着脱可能な記憶媒体(不図示)等の外部メモリに記憶されていてもよい。
 RAM(Random Access Memory)303は、揮発性メモリであり、CPU301の主メモリ、ワークエリア等として機能する。すなわち、CPU301は、処理の実行に際してROM302から必要なプログラム等をRAM303にロードし、当該プログラム等を実行することで各種の機能動作を実現する。
 HDD304は、例えば、CPU301がプログラムを用いた処理を行う際に必要な各種データや各種情報等を記憶している。また、HDD304には、例えば、CPU301がプログラム等を用いた処理を行うことにより得られた各種データや各種情報等が記憶される。
 入力部305は、キーボードやマウス等のポインティングデバイスにより構成される。
 表示部306は、液晶ディスプレイ(LCD)等のモニターにより構成される。表示部306は、基地局判定処理で使用される各種パラメータや、他の装置との通信で使用される通信パラメータ等を通信制御装置1へ指示入力するためのGUI(Graphical User Interface)を提供してよい。
 通信I/F307は、通信制御装置1と外部装置との通信を制御するインタフェースである。
 図2に示す通信制御装置1の各要素のうち少なくとも一部の機能は、CPU301がプログラムを実行することで実現することができる。ただし、図2に示す通信制御装置1の各要素のうち少なくとも一部の機能が専用のハードウェアとして動作するようにしてもよい。この場合、専用のハードウェアは、CPU301の制御に基づいて動作する。
 <処理の流れ>
 図4に、本実施形態による通信制御装置1により実行される処理のフローチャートを示す。
 本処理は、例えば、基地局配備を行う通信事業者が、基地局の配備を決定する際に、入力部305に対して所定の操作を行うことにより開始される。以下、図4の説明にあたり、図1のネットワークシステムの構成を参照する。
 S41において、通信制御装置1の取得部201は、基地局31、32、33に対する配備情報、通信局21、22における干渉閾値、および通信局21、22に対する地理データを取得する。
 配備情報は、例えば、各基地局31、32、33に対する緯度、経度、アンテナの高さ、送信電力値(例えば最大送信電力値)、基地局のアンテナのアンテナパターン、基地局のアンテナの方位および傾きのうちの1つ以上を含む。
 干渉閾値は、通信局21、22において設定される許容干渉に対する閾値である。本説明において、地上局21に対する干渉閾値をTH21、地上局22に対する干渉閾値をTH22と表す。
 地理データは、通信局21、22の地理的位置を含む情報である。
 取得部201は、配備情報、干渉閾値、および地理データを、干渉算出部202へ出力する。
 S42において、干渉算出部202は、取得部201から出力された配備情報および地理データに基づいて、各基地局による、当該基地局と同一の周波数帯を共用する各通信局に対する干渉値を推定して算出する。具体的には、干渉算出部202は、基地局31による通信局21、22それぞれへの干渉値I11、I12、基地局32による通信局21、22それぞれへの干渉値I21、I22、基地局33による通信局21、22それぞれへの干渉値I31、I32を算出する。
 干渉算出部202は、算出した複数の干渉値を選択部203へ出力する。
 S43において、選択部203は、干渉算出部202から出力された干渉値と、取得部201から出力された干渉閾値に基づいて、配備情報に従って配備する基地局を選択(決定)する。
 図5に、本実施形態による選択部203の処理である、配備する基地局の選択処理を示すフローチャートを示す。
 S51において、選択部203は、干渉算出部202から出力されたすべての干渉値を、取得部201から出力されたすべての干渉閾値と比較する。具体的には、選択部203は、干渉値I11、I12、I21、I22、I31、I32を、通信局21、22に対する干渉閾値TH21とTH22とそれぞれ比較する。干渉閾値TH21とTH22の少なくとも一方より高い干渉値が存在する場合(S52でYes)、選択部203は、当該高い干渉値を有する基地局を、選択の対象から除外する(S53)。干渉閾値TH21とTH22の少なくとも一方より高い干渉値が存在しない場合(S52でNo)、通信局21、22ごとに対する処理として、選択部203はS54~S57の処理を行う。
 S54~S57の処理の説明として、例えば、通信局21に対する処理から行うものとして説明する。また、基地局31、32、33による通信局21に対する干渉値I11、I21、I31を順に1~3番目の干渉値として設定する(1から順にインデックスをつける)ものとする。なお、この順は一例であり、I31、I21、I11の順に1~3番目の干渉値として設定してもよい。また、干渉値が低い方がより多くの基地局の配備が可能であることを考慮し、低い干渉値から順に番号づけてもよい。
 S54では、選択部203は、1~i番目の干渉値を累積し(i=1の場合は、1番目の干渉値を用いる)、処理はS56へ進む。S56では、選択部203は、累積した干渉値を、通信局21に対する干渉閾値TH21と比較する。累積した干渉値が干渉閾値TH21以下である場合(S56でNo)、選択部203は、iをインクリメントして、S54とS56の処理を繰り返す。
 累積した干渉値が干渉閾値TH21より高い場合(S56でYes)、処理はS57へ進み、1~i番目の干渉値を有する基地局(1~i番目の干渉値を構成する1以上の基地局)を、通信局21に対して特定することを決定する。
 続いて、選択部203はS54~S57の処理を、通信局22に対して行い、通信局21、22に対する基地局を特定すると、処理はS58へ進む。
 なお、本例では、通信局21に対するS54~S57の処理の後に、通信局22に対するS54~S57の処理を行う例について説明したが、両処理は独立しているため、当該処理の順は逆であってもよいし、同時に行われてもよい。
 S58では、選択部203は、全通信局(すなわち、通信局21、22)それぞれに対してS57の処理において共通に特定された基地局を選択し、選択した基地局を識別する識別情報を、選択結果として出力部204に出力し、処理を終了する。
 このような処理により、干渉閾値を超えない範囲で累積された干渉値を有する1つ以上の基地局を、配備する基地局として選択(決定)する。
 図4の説明に戻り、S44において、出力部204は、選択部203による選択結果に基づく情報を生成し、出力する。例えば、出力部204は、選択部203により選択された基地局の識別情報のリストを生成して出力する。また、出力部204は、選択されなかった基地局に関する情報を生成して出力してもよい。例えば、当該情報は、選択されなかった基地局の再配備計画を指示する情報や、配備のキャンセルを要求するための情報を生成して出力してもよい。
 このように、本実施形態によれば、配備予定の複数の基地局から、複数の地上局との干渉を考慮して、全地上局が許容する干渉値を上回らないように、1つ以上の基地局を選択することが可能となる。
 また、このような処理により選択された1つ以上の基地局に関する情報を出力することにより、通信事業者は、干渉の観点で不適切に配備が予定された基地局の再配備または配備自体のキャンセルを検討することが可能となり、結果として、干渉による影響が低減された通信サービスを提供することが可能となる。
 [第2実施形態]
 第1実施形態では、通信制御装置1は、各基地局による各地上局に対する干渉値を算出し、当該干渉値に基づいて、配備すべき基地局を選択した。本実施形態では、通信制御装置1は、各基地局による各地上局に対する干渉値に加えて、各基地局のカバレッジ(すなわち、サービス提供領域)を算出し、当該干渉値とカバレッジに基づいて、配備すべき基地局を選択する。
 カバレッジが大きい(広い)ことは、通信サービスを提供可能な範囲が広いことを意味し、基地局の設置数の観点から、好ましい状態を示す。一方で、干渉値が高いことは、通信品質に影響を与える。よって、本実施形態による通信制御装置1は、カバレッジと干渉値の両パラメータを考慮して、配備情報に基づいて配備する基地局を選択する。
 以下、第1実施形態と異なる点について説明し、共通の事項については説明を省略する。
 <通信制御装置の機能構成>
 図6は、本実施形態による通信制御装置1の機能構成の一例を示すブロック図である。
 取得部601、干渉算出部602、および出力部605の機能はそれぞれ、第1実施形態で説明した図2の取得部201、干渉算出部202、および出力部204とそれぞれ同様のため、説明を省略する。
 カバレッジ算出部603は、取得部601から出力された配備情報に基づいて、各基地局に対する地理的カバレッジエリア(以下、カバレッジ)を算出する領域算出部として機能する。カバレッジは、例えば、直径(キロメートル等)や面積(平方キロメートル等)で表される。カバレッジ算出部603は、例えば、カバレッジ算出シミュレータを用いて、各カバレッジを算出することができる。
 図1に示すネットワークシステムの構成の場合、カバレッジ算出部603は、基地局31、32、33のカバレッジとして、カバレッジC1、C2、C3を算出する。カバレッジ算出部53は、算出した各基地局のカバレッジを、選択部604へ出力する。
 選択部604は、干渉算出部602から出力された複数の干渉値と、取得部601から出力された干渉閾値と、カバレッジ算出部604から出力された複数のカバレッジに基づいて、配備情報に従って配備すべき基地局を選択(決定)する。当該選択の手順については、図7を用いて後述する。
 <処理の流れ>
 図7に、本実施形態による通信制御装置により実行される処理のフローチャートを示す。
 本処理は、例えば、基地局配備を行う通信事業者が、基地局の配備を決定する際に、入力部305に対して所定の操作を行うことにより開始される。以下、図7の説明にあたり、図1のネットワークシステムの構成を参照する。
 S71において、通信制御装置1の取得部601は、基地局31、32、33に対する配備情報、通信局21、22における干渉閾値、および通信局21、22に対する地理データを取得する。
 取得部601は、配備情報、干渉閾値、および地理データを、干渉算出部602へ出力する。
 S72において、干渉算出部602は、取得部601から出力された配備情報および地理データに基づいて、各基地局による、当該各基地局と同一の周波数帯を共用する各通信局に対する干渉値を推定して算出する。具体的には、干渉算出部602は、基地局31による通信局21、22それぞれへの干渉値I11、I12、基地局32による通信局21、22それぞれへの干渉値I21、I22、基地局33による通信局21、22それぞれへの干渉値I31、I32を算出する。
 干渉算出部602は、算出した複数の干渉値を選択部604へ出力する。
 S73において、カバレッジ算出部604は、取得部601から出力された配備情報に基づいて、各基地局のカバレッジを算出する。具体的には、カバレッジ算出部604は、基地局31、32、33のカバレッジC1、C2、C3をそれぞれ算出する。
 カバレッジ算出部604は、算出した複数のカバレッジを選択部604へ出力する。
 なお、S72とS73の処理の順序は逆であってもよく、あるいは同時に行われてもよい。
 S74において、選択部604は、干渉算出部602から出力された干渉値、カバレッジ算出部604から出力されたカバレッジ、および取得部601から出力された干渉閾値に基づいて、配備情報に従って配備すべき基地局を選択(決定)する。
 図8に、本実施形態による選択部604の処理である、配備する基地局の選択処理を示すフローチャートを示す。
 S81において、選択部604は、干渉算出部602から出力されたすべての干渉値を、取得部201から出力されたすべての干渉閾値と比較する。具体的には、選択部604は、干渉値I11、I12、I21、I22、I31、I32を、通信局21、22に対する干渉閾値TH21とTH22とそれぞれ比較する。干渉閾値TH21とTH22の少なくとも一方より高い干渉値が存在する場合(S82でYes)、選択部604は、当該高い干渉値を有する基地局を、選択の対象から除外する(S83)。干渉閾値TH21とTH22の少なくとも一方より高い干渉値が存在しない場合(S82でNo)、通信局21、22ごとに対する処理として、選択部604はS84~S88の処理を行う。
 S84~S88の処理の説明として、例えば、通信局21に対する処理から行うものとして説明する。
 S84では、選択部604は、基地局31、32、33のカバレッジC1、C2、C3をそれぞれ、通信局21に対する干渉値I11、I21、I31で割った値(カバレッジ/干渉値)を算出する。このカバレッジ/干渉値の値は、干渉を考慮した、基地局によるカバレッジに対するカバー割合を示し、以下、潜在的カバー率と称する。選択部604は、潜在的カバー率C1/I11、C2/I21、C3/I31を算出する。
 S85では、選択部604は、S84で算出した潜在的カバー率が高い順に、干渉値をソートする(並べ替える)。例えば、潜在的カバー率C1/I11<C2/I21<、C3/I31の場合、I31、I21、I11の順になるようにし、1からインデックスをつける。潜在的カバー率が高いことは、干渉を考慮しても、カバー可能な割合が相対的に高いことを意味する。よって、選択部604は、潜在的カバー率が高い基地局を優先的に選択する。
 S86では、選択部604は、1~i番目の干渉値を累積し(i=1の場合は、1番目の干渉値を用いる)、処理はS87へ進む。S87では、選択部604は、累積した干渉値を、通信局21に対する干渉閾値TH21と比較する。累積した干渉値が干渉閾値TH21以下である場合(S87でNo)、選択部604は、iをインクリメントして、S86とS87の処理を繰り返す。
 累積した干渉値が干渉閾値TH21より高い場合(S87でYes)、処理はS88へ進み、1~i番目の干渉値を有する基地局(1~i番目の干渉値を構成する1以上の基地局)を、通信局21に対して特定する。
 続いて、選択部604はS84~S88の処理を、通信局22に対して行い、通信局21、22に対する基地局を選択すると、処理はS89へ進む。
 なお、本例では、通信局21に対するS84~S88の処理の後に、通信局22に対するS84~S88の処理を行う例について説明したが、両処理は独立しているため、当該処理の順は逆であってもよいし、同時に行われてもよい。
 S89では、選択部604は、全通信局(すなわち、通信局21、22)それぞれに対してS57の処理において共通に特定された基地局を選択し、選択した基地局を識別する識別情報を、選択結果として出力部605に出力し、処理を終了する。
 このような処理により、潜在的カバー率がより高く、かつ、干渉閾値を超えない範囲で累積された干渉値を有する1つ以上の基地局を、配備する基地局として選択(決定)する。
 図7の説明に戻り、S75において、出力部605は、選択部203による選択結果に基づく情報を生成し、出力する。例えば、出力部605は、選択部604により選択された基地局の識別情報のリストを生成して出力する。また、出力部605は、選択されなかった基地局に関する情報を生成して出力してもよい。例えば、当該情報は、選択されなかった基地局の再配備計画を指示する情報や、配備のキャンセルを要求するための情報を生成して出力してもよい。
 <基地局選択手順の具体例>
 次に、図9を参照して、本実施形態による、配備する基地局の選択手順の具体例について説明する。図9は、本実施形態による、配備する基地局の選択手順を説明するための図である。以下、図9の説明にあたり、図1のネットワークシステムの構成と図7と図8のフローチャートを参照する。図9において、基地局をBSで表し、通信局をWSで表す。
 図9(a)は、取得部601により取得された通信局(WS)21、22に対する干渉閾値TH21、TH22を示す(図7のS71)。
 図9(b)は、干渉算出部602により算出された干渉値とカバレッジを示す(図7のS72)。干渉値は、基地局(BS)31による通信局21、22それぞれへの干渉値I11、I12、基地局32による通信局21、22それぞれへの干渉値I21、I22、基地局33による通信局21、22それぞれへの干渉値I31、I32を含む。カバレッジは、基地局31、32、33のカバレッジC1、C2、C3を含む。
 図9(c)は、図9(b)に示した干渉値とカバレッジから算出された、潜在的カバー率(カバレッジ/干渉値)を示す(図8のS84)。潜在的カバー率は、各基地局と各通信局について算出される。
 図9(d)は、図9(c)に示した潜在的カバー率が高い順に、干渉値(図9(b))をソートした結果を示す(図8のS85)。図9(d)に示すように、通信局21に対しては、潜在的カバー率は、基地局32、33、31の順で低くなり、ソート結果は、I21、I31、I11の順となる。同様に、通信局22に対しては、潜在的カバー率は、基地局32、31、33の順で低くなり、ソート結果は、I22、I12、I32の順となる。
 図9(e)に、図9(d)のようにソートされた干渉値を順に累積した結果を、通信局ごとに示す。累積は、本例では、干渉値[dBm]からmWへ、変換式dBm=10log10(mw)を用いて変換した上で累積処理を行うものとする。
 図9(e)では、通信局21に対しては、上段にI21、中段にI21+I31、下段にI21+I31+I11の累積値が示されている。また、通信局22に対しては、上段にI22、中段にI22+I32、下段にI22+I32+I12の累積値が示されている。
 図9(e)に示す結果から、通信局21に対しては、通信局21に対する干渉閾値TH21(=142[dBm/MHz])を超えない範囲では、中段の結果であるI21+I31が該当する。すなわち、通信制御装置1の選択部604は、通信局21に対しては、基地局32と基地局33を特定することができる。
 一方、通信局22に対しては、通信局22に対する干渉閾値TH22(=140[dBm/MHz])を超えない範囲では、下段の結果であるI22+I32+I12が該当する。すなわち、通信制御装置1の選択部604は、通信局22に対しては、基地局32、基地局31、基地局33を特定することができる。
 最終的に、選択部604は、通信局21、22で共通に特定された基地局である基地局32、33を、配備すべき基地局として選択する(図8のS89)。
 このように、本実施形態によれば、配備予定の複数の基地局から、複数の地上局との干渉、および、干渉を考慮した各基地局のカバレッジを考慮して、全地上局が許容する干渉値を上回らないように、1つ以上の基地局を選択することが可能となる。
 また、このような処理により選択された1つ以上の基地局に関する情報を出力することにより、通信事業者は、干渉の観点で不適切に配備が予定された基地局の再配備または配備自体のキャンセルを検討することが可能となり、結果として、干渉による影響が低減された通信サービスを提供することが可能となる。
 <変形例1>
 上記実施形態では、各基地局が備えるアンテナは無指向性のアンテナ(オムニアンテナ)であることを想定した。変形例1として、各基地局がセクタアンテナを備え、セクタ毎に干渉値およびカバレッジを算出できる例について説明する。本変形例は、例えば、図1を参照すると、基地局31、32、33が複数のセクタアンテナを備える同一の基地局装置における各セクタアンテナを備える当該基地局装置に対応する場合に相当する。ここで、例えばセクタ数は3とする。この場合、通信制御装置1は、各セクタに対して、配備するか否かを選択(決定)することができる。
 第1実施形態をある1つの基地局の各セクタに対して適用する例について、図2、4~5を参照して説明する。第1実施形態にように干渉値に基づいて配備する基地局を選択する場合、通信制御装置1の取得部1は、各セクタに対して配備情報を取得する(図4のS41)。ここで、配備情報には、各セクタを識別するための識別情報が関連付けられる。例えば、当該配備情報は、セクタの識別情報を含む。そして、干渉算出部202は、各基地局がサポートするセクタ毎に、各地上局への干渉値を算出する(図4のS42)。
 選択部203は、1つの基地局の各セクタに対して図5の処理を適用し、1つ以上のセクタを選択し(図5のS58)、選択した1つ以上のセクタの識別情報を、選択結果として出力部204に出力する。
 出力部204は、選択部203による選択結果に基づく情報を生成し、出力する(図4のS44)。例えば、出力部204は、選択部203により選択されたセクタの識別情報のリストを生成して出力する。また、出力部204は、選択されなかったセクタに関する情報を生成して出力してもよい。
 また、出力部204は、セクタを考慮した各基地局についての情報を生成して出力してもよい。例えば、出力部204は、全セクタが選択された基地局を配備すべきとした結果を生成して出力してもよい。
 第2実施形態をある1つの基地局の各セクタに対して提供する例について、図6~8を参照して説明する。第2実施形態にように干渉値とカバレッジに基づいて配備する基地局を選択する場合、通信制御装置1の取得部1は、各セクタに対して配備情報を取得する(図7のS71)。ここで、配備情報には、各セクタを識別するための識別情報が関連付けられる。例えば、当該配備情報は、セクタの識別情報を含む。そして、干渉算出部602は、各基地局がサポートするセクタ毎に、各地上局への干渉値を算出する(図7のS72)。また、カバレッジ算出部603は、配備情報に基づいて、各基地局のカバレッジを算出する(図7のS73)。
 選択部604は、1つの基地局の各セクタに対して図8の処理を適用し、1つ以上のセクタを選択し(図8のS89)、選択した1つ以上のセクタの識別情報を、選択結果として出力部605に出力する。
 出力部605は、選択部604による選択結果に基づく情報を生成し、出力する(図7のS75)。例えば、出力部605は、選択部604により選択されたセクタの識別情報のリストを生成して出力する。また、出力部605は、選択されなかったセクタに関する情報を生成して出力してもよい。
 また、出力部605は、セクタを考慮した各基地局についての情報を生成して出力してもよい。例えば、出力部605は、全セクタが選択された基地局を配備すべきとした結果を生成して出力してもよい。
 なお、本変形例では、1つの基地局に対する例について説明したが、複数の基地局の場合(すなわち複数の基地局それぞれが複数のセクタを備える場合)についても同様の説明を適用可能である。
 <変形例2>
 上記実施形態では、同一周波数帯を共用するシステムとして、5G通信システムと衛星通信システムを例に説明したが、同一周波数帯を共有する2つ以上のシステムに対しても、当該実施形態を適用可能である。例えば、HAPS(High Altitude Platform Station)用の通信システムと公共用の通信システムや、5G通信システムと電波天文台による通信システムとの間で、同一周波数帯が利用されうる。
 このような場合であっても、上記実施形態を適用することにより、一方のシステムにおける通信局/基地局を適切に配備することができ、干渉の発生による通信品質の低下を抑制することができる。
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
1:通信制御装置、21;22:通信局、31;32;33:基地局、201:取得部、202;干渉算出部、203;選択部、204:出力部、301:CPU、302:ROM、303:RAM、304:HDD、305:入力部、306:表示部、307:通信I/F、601:取得部、602:干渉算出部、603:カバレッジ算出部、604:選択部、605:出力部

 

Claims (12)

  1.  複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得手段と、
     前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出手段と、
     前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択手段と、
    を有することを特徴とする通信制御装置。
  2.  前記複数の通信局の各通信局に対して個別に前記所定の干渉閾値が設定されており、
     前記選択手段は、前記各通信局について、前記複数の基地局の各基地局による前記各通信局への干渉値を、所定の順序で累積し、当該累積による累積値が干渉閾値を超えない範囲で累積された干渉値を構成する1以上の基地局を特定し、
     前記複数の基地局のうち、前記複数の通信局について共通に特定された1つ以上の基地局を、前記配備情報に従って配備する基地局として選択することを特徴とする請求項1に記載の通信制御装置。
  3.  前記所定の順序は、前記各基地局による前記各通信局への干渉値が低い順であることを特徴とする請求項2に記載の通信制御装置。
  4.  前記配備情報を用いて、前記複数の基地局の各基地局によるサービス提供領域を算出する領域算出手段をさらに有し、
     前記所定の順序は、前記各基地局によるサービス提供領域を前記各基地局による前記各通信局への干渉値で割った値が高い順であることを特徴とする請求項2に記載の制御装置。
  5.  前記選択手段により選択された基地局に関する情報と、前記選択手段により選択されなかった基地局に関する情報の少なくとも一方を生成して出力する出力手段をさらに有することを特徴とする請求項1から4のいずれか1項に記載の通信制御装置。
  6.  前記各基地局は異なる基地局装置であることを特徴とする請求項1から5のいずれか1項に記載の通信制御装置。
  7.  前記各基地局は、複数のセクタアンテナを備える同一の基地局装置における、各セクタアンテナを備える前記基地局装置であることを特徴とする請求項1から5のいずれか1項に記載の通信制御装置。
  8.  前記各基地局の前記配備情報は、前記各基地局に対する緯度および/または経度、前記各基地局のアンテナの高さ、前記各基地局による送信電力値、前記各基地局のアンテナパターン、前記各基地局のアンテナの方位および傾きのうちの1つ以上を含むことを特徴とする請求項1から7のいずれか1項に記載の通信制御装置。
  9.  前記複数の基地局は第5世代(5G)通信ネットワークにおける基地局であり、前記複数の通信局は衛星通信ネットワークにおける地上局であることを特徴とする請求項1から8のいずれか1項に記載の通信制御装置。
  10.  複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得工程と、
     前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出工程と、
     前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択工程と、
    を有することを特徴とする通信制御方法。
  11.  複数の基地局と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局と、制御装置を有する通信システムであって、
     前記制御装置は、
      複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得手段と、
      前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出手段と、
      前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択手段と、
    を有することを特徴とする通信システム。
  12.  通信制御処理をコンピュータに実行させるための通信制御プログラムであって、該プログラムは、前記コンピュータに、
     複数の基地局の配備に関する配備情報と、前記複数の基地局と周波数帯を共用して通信を行う固定の複数の通信局の位置に関する位置情報を取得する取得処理と、
     前記配備情報と前記位置情報を用いて、前記複数の基地局による、前記複数の通信局への干渉値をそれぞれ算出する干渉算出処理と、
     前記複数の基地局のうち、前記複数の通信局に対して設定された所定の干渉閾値より低い干渉値を有する1つ以上の基地局を、前記配備情報に従って配備する基地局として選択する選択処理と、
    を含む処理を実行させるためのものであることを特徴とする制御プログラム。

     
PCT/JP2021/023415 2021-06-21 2021-06-21 通信制御装置、通信制御方法、通信システム、およびプログラム WO2022269689A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/767,256 US20240107326A1 (en) 2021-06-21 2021-06-21 Communication control apparatus, communication control method and communication system
PCT/JP2021/023415 WO2022269689A1 (ja) 2021-06-21 2021-06-21 通信制御装置、通信制御方法、通信システム、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023415 WO2022269689A1 (ja) 2021-06-21 2021-06-21 通信制御装置、通信制御方法、通信システム、およびプログラム

Publications (1)

Publication Number Publication Date
WO2022269689A1 true WO2022269689A1 (ja) 2022-12-29

Family

ID=84545257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023415 WO2022269689A1 (ja) 2021-06-21 2021-06-21 通信制御装置、通信制御方法、通信システム、およびプログラム

Country Status (2)

Country Link
US (1) US20240107326A1 (ja)
WO (1) WO2022269689A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166505A (ja) * 2009-01-19 2010-07-29 Ntt Docomo Inc 無線通信システムにおける基地局装置及び方法
US20150296386A1 (en) * 2014-04-15 2015-10-15 Eden Rock Communications, Llc System and method for spectrum sharing
JP2017152812A (ja) * 2016-02-23 2017-08-31 Kddi株式会社 基地局制御装置、基地局制御方法及び基地局制御システム
WO2019026375A1 (ja) * 2017-08-04 2019-02-07 ソニー株式会社 制御装置、無線装置、方法及び記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010166505A (ja) * 2009-01-19 2010-07-29 Ntt Docomo Inc 無線通信システムにおける基地局装置及び方法
US20150296386A1 (en) * 2014-04-15 2015-10-15 Eden Rock Communications, Llc System and method for spectrum sharing
JP2017152812A (ja) * 2016-02-23 2017-08-31 Kddi株式会社 基地局制御装置、基地局制御方法及び基地局制御システム
WO2019026375A1 (ja) * 2017-08-04 2019-02-07 ソニー株式会社 制御装置、無線装置、方法及び記録媒体

Also Published As

Publication number Publication date
US20240107326A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US11259191B2 (en) Methods and apparatus for coverage prediction and network optimization in 5G new radio networks
US8817723B2 (en) Methods and apparatus for inter-cell interference coordination self-organized network
KR20150021561A (ko) 셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템
US9992737B2 (en) Automatic channel selection in wireless local area network (WLAN) controller based deployments
US11258164B2 (en) Antenna arrays
US11432166B2 (en) Detecting community in radio access networks with a plurality of vertices
JP2022530245A (ja) ビーム参照シグナリングを可能にするための方法、無線デバイス、及びネットワークノード
Nai et al. Optimizing radio network parameters for vertical sectorization via Taguchi's method
CN114915982B (zh) 用于蜂窝接入节点的波束选择
RU2651577C1 (ru) Устройство беспроводной связи, способ беспроводной связи и система беспроводной связи
US20210360474A1 (en) Methods and apparatus for network load balancing optimization
US10743318B2 (en) Beam management in a cell
US11503611B2 (en) Method and apparatus for allocation of resources in a wireless communication system
WO2022269689A1 (ja) 通信制御装置、通信制御方法、通信システム、およびプログラム
US20220191711A1 (en) Dynamic radio architecture beam pattern control
CN103986506A (zh) 一种单双流波束赋形切换方法和设备
US20230318684A1 (en) Apparatus, methods and computer programs
JP2014239351A (ja) アップチルト情報生成装置、アップチルト情報生成方法およびコンピュータプログラム
KR101393141B1 (ko) 이종 셀룰러 네트워크 환경에서의 다중 무선접속기술 선택 접속과 동시 접속 및 부하 분산하는 기법
CN104301898A (zh) 一种资源分配方法及系统
EP4150861B1 (en) Determining cell upgrade
Chatterjee On Enabling Virtualization and Millimeter Wave Technologies in Cellular Networks
US10251182B2 (en) Transmission controlling apparatus, wireless communication system, and resource allocating method
JP6306976B2 (ja) 無線通信システム、アンテナ装置及び無線通信方法
EP3202176B1 (en) Differentiated adaptation of selection probabilities for frequency channel selection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17767256

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946979

Country of ref document: EP

Kind code of ref document: A1