KR20150021561A - 셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템 - Google Patents

셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템 Download PDF

Info

Publication number
KR20150021561A
KR20150021561A KR1020157000146A KR20157000146A KR20150021561A KR 20150021561 A KR20150021561 A KR 20150021561A KR 1020157000146 A KR1020157000146 A KR 1020157000146A KR 20157000146 A KR20157000146 A KR 20157000146A KR 20150021561 A KR20150021561 A KR 20150021561A
Authority
KR
South Korea
Prior art keywords
metric
load balancing
cluster
target cell
cell
Prior art date
Application number
KR1020157000146A
Other languages
English (en)
Inventor
제프리 하랑
Original Assignee
이든 락 커뮤니케이션즈, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이든 락 커뮤니케이션즈, 엘엘씨 filed Critical 이든 락 커뮤니케이션즈, 엘엘씨
Publication of KR20150021561A publication Critical patent/KR20150021561A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0862Load balancing or load distribution among access entities between base stations of same hierarchy level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/50Overload detection or protection within a single switching element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 실시예들은, 이에 의해 중앙 또는 분산 무선 자원 제어기가 소정의 클러스터에 대하여 부하 밸런싱이 수행되는 시기를 식별하기 위하여 무선-근접 셀들의 클러스터에 대해 점유율의 현재 및 과거 측정과 무선 채널 사용을 이용하는 시스템 및 방법을 포함한다. 필터는 부하 밸런싱 기회들을 식별하기 위하여 데이터에 적용될 수도 있다. 일단 식별되면, 클러스터 안테나 구성은 커버리지 홀의 발생 리스크를 최소화하기 위하여 무선 네트워크 성능 메트릭들을 모니터링하면서, 반복적으로 조절된다.

Description

셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템{METHOD & SYSTEM FOR CELLULAR NETWORK LOAD BALANCE}
관련-출원들에 대한 상호-참조들
본 발명은 2012년 6월 4일에 출원된 정규 미국 출원번호 61/655,375를 우선권으로 주장하고, 이는 모든 목적들을 위하여 참조로서 병합된다.
무선 셀룰러 배치는 종종 확장된 메트로 또는 지역적 커버리지 영역에 배치된다. 이동 사용자 단말기들의 균등하지 않은 분포로 인해, 네트워크의 일부에서의 셀들은 과부하 상태가 되지만, 아직 인접 셀들은 네트워크 서비스를 제공할 수 있는 여분의 무선 채널 용량을 갖는다. 이러한 시나리오에서, 셀룰러 네트워크를 재구성하는 것이 유용하며 그에 따라, 과부하된 셀들의 사용자들 중 일부는 부하 밸런싱으로 알려진 프로세스를 통해 여분의 용량을 갖는 인접 셀들로 그 서빙 셀이 변경된다.
다이나믹 네트워크 부하 밸런싱이 개념으로서 알려져 있지만, 현재의 이동 네트워크들은 통상적으로 정적으로 구성되고 동작된다. 이동 네트워크에서 반복적인 과부하가 나타난다면, 영역 용량(area capacity)을 증가시키도록 새로운 기지국들(셀 분할)을 제공하는 것이 통상적인 대응이다. 실시간 또는 거의 실시간 다이나믹 네트워크 구성("자기 조직 네트워크"라고도 알려짐)은 산업에서 발전되고 있는 추세이다.
부하 밸런싱을 위한 네트워크 재구성은 기계적 및 전기적 안테나 파라미터들을 조절하는 것을 종종 요구하며, 일단 재구성되면, 셀들의 클러스터가 더 이상 최소 영역 커버리지, 이동성 또는 서비스 표준을 만족하지 못할 수 있는 리스크를 동반한다. 이는 "커버리지 홀이 발생한다"라고 말할 수 있다. 따라서, 커버리지 홀들을 발생시킬 리스크를 줄이면서도 부하 밸런싱에 대한 가장 적절한 셀들을 식별하는, 부하 밸런싱을 위한 시스템 및 방법에 대한 요구가 있다.
본 발명의 실시예들은, 이에 의해 중앙 또는 분산 무선 자원 제어기가 소정의 클러스터에 대하여 부하 밸런싱(LB)이 수행되는 시기를 식별하기 위하여 무선-근접 셀들의 클러스터에 대해 점유율의 현재 및 과거 측정과 무선 채널 사용을 이용하는 시스템 및 방법을 포함한다. 일단 식별되면, 클러스터 안테나 구성은 커버리지 홀의 발생 리스크를 최소화하기 위하여 무선 네트워크 성능 메트릭들을 모니터링하면서, 조절된다. 셀 점유율 및 클러스터 상에서의 무선 채널 사용 불평형이 감소하면, 클러스터는 원래의 구성으로 복원될 수도 있다. 다양한 실시예들은 클러스터를 식별하고 부하 밸런싱 메트릭을 계산하고, 부하 밸런싱 기회들을 식별하고 안테나들 조절하는 장치, 시스템 및 방법에 관한 것이다.
일 실시예에서, 셀룰러 네트워크에서 셀 클러스터에 대한 부하 밸런싱 메트릭을 결정하고, 부하 밸런싱 메트릭을 이용하여 부하 밸런싱을 수행하는 시스템은 프로세서; 및 컴퓨터 실행가능한 명령들이 저장된 비일시적인 컴퓨터 판독가능한 매체를 포함한다. 상기 프로세서에 의하여 상기 컴퓨터 실행가능한 명령들이 실행되는 경우, 상기 컴퓨터 실행가능한 명령들이 수행하는 방법은 부하 밸런싱 동작을 위한 타겟인 타겟 셀 및 복수의 인접 셀들을 포함하는 셀들의 클러스터를 정의하는 단계; 상기 타겟 셀에 대한 사용 메트릭을 측정하는 단계; 상기 클러스터에서 남은 셀들에 대한 사용 메트릭을 측정하는 단계; 및 상기 클러스터에서 상기 타겟 셀에 대한 사용 메트릭 값 및 상기 남은 셀들에 대한 상기 사용 메트릭 값들을 이용하여 상기 부하 밸런싱 메트릭을 계산하는 단계를 포함한다.
일 실시예에서, 상기 부하 밸런싱 메트릭을 계산하는 단계는 각각의 셀에 대한 상기 사용 메트릭에 기반하여 상기 타겟 셀을 포함하는 클러스터에서 각 셀에 대한 용량값을 계산하는 단계, 상기 타겟 셀에 대한 용량값과 상기 복수의 인접 셀들 각각에 대한 용량값들 사이의 복수의 차이들을 결정하는 단계, 및 상기 복수의 차이들에 기반하여 통계값을 계산하는 단계를 포함한다. 상기 통계값은 미리결정된 최대 점유율에 관련하여 정규화된 가중 인자를 곱해질 수도 있다. 일 실시예에서, 상기 용량값은 셀의 프로파일링된 피크 총 처리량에 대해 결정된다. 일부 실시예들에서, 상기 부하 밸런싱(LB) 메트릭을 계산하는 단계는 다음 수학식에 따라 수행된다.
[수학식]
Figure pct00001
상기 수학식에서, CTarget 은 타겟 셀에 대한 여유 용량 메트릭이며, Ci는 타겟 셀을 포함하지 않는 클러스터의 i번째 셀에 대한 여유 용량 메트릭이며, N은 타겟 셀을 포함하지 않는 클러스터에서 셀들의 개수이다.
일 실시예에서, 상기 부하 밸런싱 메트릭을 계산하는 단계는 클러스터에서 남은 셀들에 대한 상기 용량 메트릭 값들의 평균을 계산하는 단계, 및 상기 타겟 셀에 대한 여유 용량 메트릭과 상기 남은 셀들에 대한 용량 메트릭 값들의 평균 사이의 비율을 계산하는 단계를 포함한다. 이러한 실시예에서, 상기 비율은 구성된 최대값으로 스케일링되어 상기 메트릭이 구간 [0,1] 에서 변화될 수도 있다.
일 실시예에서, 상기 타겟 셀에 대한 상기 사용 메트릭 및 상기 클러스터의 남은 셀들에 대한 사용 메트릭들은 상향링크 및 하향링크 전송들을 위하여 개별적으로 측정되며, 상기 프로세서에 의해 수행되는 방법은 상기 상향링크 사용 메트릭과 상기 하향링크 사용 메트릭을 비교하여 상기 상향링크 사용 메트릭 및 상기 하향링크 사용 메트릭 중 작은 것을 사용하여 상기 부하 밸런싱 메트릭을 계산하는 단계를 더 포함한다.
일 실시예에서, 상기 부하 밸런싱 메트릭은 임계값과 비교되며, 부하 밸런싱 동작은 상기 부하 밸런싱 메트릭이 상기 미리 결정된 값을 초과할 때 상기 타겟 셀에 대해 수행된다. 상기 부하 밸런싱 메트릭은 부하 밸런싱 동작 동안 임계값과 비교될 수도 있으며, 상기 타겟 셀을 서빙하는 안테나는 상기 부하 밸런싱 동작이 상기 임계값을 초과하지 않으면 원래의 구성으로 되돌아 갈 수 있다.
일 실시예에서, 부하 밸런싱 기회를 결정하는 단계는 부하 밸런싱 동작을 위한 타겟인 타겟 셀과 다수의 인접 셀들을 포함하는 셀들의 클러스터를 정의하는 단계, 타겟 셀에 대한 키 성능 인디케이터(KPI)를 측정하는 단계, 클러스터의 나머지 셀들에 대하여 KPI들을 측정하는 단계, KPI를 메모리에 기록하여 셀들의 클러스터에 대하여 KPI 이력(history)을 구축하는 단계, 패턴 필터를 KPI 이력에 적용하는 단계, 필터 출력에 기반하여 상관 스코어를 계산하는 단계 및 상관 스코어에 기반하여 타겟 셀에 대한 안테나 조절을 수행할지를 결정하는 단계를 포함한다.
본 발명은 프로세스, 장치, 시스템, 물질 조성물, 컴퓨터 판독 가능한 매체 상에서 구현된 컴퓨터 프로그램 제품, 및/또는 프로세서에 연결된 메모리 상에 저장된 및/또는 상기 메모리에 의해 제공된 명령들을 실행하도록 구성된 프로세서와 같은 프로세서를 포함하는 다양한 방식으로 구현될 수 있다. 본 명세서에서, 이들 구현 또는 본 발명에서 취하는 어떤 다른 형태는 프로세스라고 언급될 수도 있다. 일반적으로, 개시된 프로세스들의 단계들의 순서는 본 발명의 범위 내에서 변경될 수도 있다. 달리 설명하지 않는다면, 태스크를 수행하도록 구성된 것으로 설명된 프로세서 또는 메모리와 같은 구성요소는 소정의 시간에 태스크를 수행하도록 일시적으로 구성된 일반적인 구성요소 또는 태스크를 수행하도록 제조된 특정 구성요소로서 구현될 수도 있다. 본 명세서에서 사용되는 "프로세서"란 용어는 하나 이상의 장치들, 회로들, 및/또는 컴퓨터 프로그램 명령들과 같은 데이터를 처리하도록 구성된 프로세싱 코어들을 말한다.
본 발명의 하나 이상의 실시예들의 상세한 설명은 본 발명의 원리를 도시하는 첨부된 도면을 참조하여 제공된다. 본 발명은 이러한 실시예들과 관련되어 설명되지만 본 발명은 어떠한 실시예에도 한정되지 않는다. 본 발명의 범위는 청구범위에 의해서만 한정되며, 본 발명은 수많은 대체물, 변형 및 균등물을 포함한다. 많은 특정 상세들이 본 발명의 전체적인 이해를 제공하기 위하여 다음 설명에 나타난다. 이들 상세들은 예를 들기 위하여 제공되며, 이들 특정 상세들의 일부 또는 전부가 없어도 본 발명이 청구항들에 따라 실행될 수도 있다. 명확하게 하기 위하여, 본 발명의 기술분야에서 공지된 기술적인 내용은 발명이 불필요하게 모호해지지 않도록 설명하지 않았다.
도 1은 본 발명의 일 실시예에 따른 네트워크된 컴퓨팅 시스템을 도시하고 있다.
도 2는 본 발명의 일 실시예에 따른 프로세스를 도시하고 있다.
도 3은 본 발명의 일 실시예에 따른 기지국을 도시하고 있다.
도 4는 본 발명의 일 실시예에 따른 사용자 단말을 도시하고 있다.
도 5는 본 발명의 일 실시예에 따른 네트워크 자원 제어기를 도시하고 있다.
도 6은 본 발명의 일 실시예에 따른 부하 밸런싱을 위한 방법을 도시하고 있다.
도 7은 본 발명의 일 실시예에 따른 RET 조절을 도시하고 있다.
도 8은 본 발명의 일 실시예에 따른 RAS 조절을 도시하고 있다.
도 9는 본 발명의 일 실시예에 따른 RAB 조절을 도시하고 있다.
도 10은 본 발명의 일 실시예에 따른 클러스터를 결정하는 프로세스를 도시하고 있다.
도 11은 본 발명의 일 실시예에 따른 부하 밸런싱 메트릭을 결정하는 프로세스를 도시하고 있다.
도 12a 및 도 12b는 본 발명의 일 실시예에 따른 부하 밸런싱 스코어를 계산하는 프로세스를 나타내고 있다.
도 13a 및 도 13b는 본 발명의 일 실시예에 따른 부하 밸런싱 스코어를 계산하는 프로세스를 도시하고 있다.
도 14는 본 발명의 일 실시예에 따른 부하 밸런싱 기회를 식별하는 프로세스를 도시하고 있다.
도 15는 본 발명의 일 실시예에 따른 필터를 이용하여 부하 밸런싱 기회를 식별하는 프로세스를 도시하고 있다.
도 16은 본 발명의 일 실시예에 따른 필터의 도면을 도시하고 있다.
도 17은 본 발명의 일 실시예에 따른 부하 밸런싱을 수행할지 여부를 결정하는 프로세스를 도시하고 있다.
도 18은 본 발명의 일 실시예에 따른 안테나를 조절하는 프로세스를 도시하고 있다.
도 19는 본 발명의 일 실시예에 따른 안테나를 조절하는 프로세스를 도시하고 있다.
본 발명의 실시예들에 따른 시스템 및 방법은 다양한 측면들의 부하 밸런싱 동작을 구현할 수 있다. 상기 측면들은 특정 타겟 셀에 기반하여 기지국들 또는 셀들의 클러스터를 식별하는 단계, 성능 메트릭을 수집하고 평가하는 단계, 부하 밸런싱 메트릭을 계산하는 단계, 부하 밸런싱 기회들을 평가하는 단계 및 안테나들을 스티어링하여 부하를 밸런싱하는 단계를 포함한다.
이하의 설명은 본 발명의 다양한 측면들이 어떻게 구현될 수 있는 지에 대한 예이다. 상기 예에서, 이동 네트워크 운영자는 이동 사용자 단말(user equipment; UE) 터미널들의 집합으로 서비스를 제공하는 네트워크의 부분에서 셀 과부하의 반복적인 구간을 관찰한다. 과부하된 셀들에서 UE로의 서비스는 열악한데, 그 이유는 무선 자원이 UE들 간에 공유되며, 예상되는 서비스 성능 레벨을 충족하기에는 불충분한 대역폭이 존재하기 때문이다. 운영자는 부하 밸런싱 시스템을 설치한다. 부하 밸런싱 시스템은 일단 준비되면, 셀 무선 안테나 구성들을 자동적으로 조작하여 주파수 및 심각한 셀 과부하를 줄이며, 이에 따라 UE 서비스 레벨을 향상시킨다.
본 발명의 일 실시예에 따른 무선 네트워크 시스템(100)의 일 실시예의 일 예가 도 1에 도시되어 있다. 도시된 바와 같이, 시스템(100)은 데이터 통신 네트워크(102), 하나 이상의 네트워크 기지국들(106a-e), 하나 이상의 기지국 안테나들(104a-e), 하나 이상의 네트워크 제어 장치(110, 112, 114), 및 하나 이상의 사용자 단말들(UE)(108a-m)을 포함할 수 있다.
시스템(100)에서, 데이터 통신 네트워크(102)는 네트워크 제어 장치들(110, 112, 114) 중에서 어느 것과 네트워크 기지국들(106a-e)들 중에서 어느 것 사이에서 분산 네트워크 통신을 가능하게 할 수 있는 백홀(backhaul) 부분을 포함할 수도 있다. 네트워크 제어 장치들(110, 112, 114) 중에서 어느 것은 네트워크 자원 제어기(Network Resource Controllers; NRC)이거나 NRC 기능을 가질 수 있다. 네트워크 기지국들(106a-e) 중 어느 하나는 NRC이거나 네트워크된 컴퓨팅 시스템(100)의 특정 영역 내에서 하나 이상의 이웃하는 기지국들에서 중첩하는 무선 커버리지를 공유할 수 있는 NRC 기능을 가질 수 있다. 하나 이상의 UE(108a-i)는 셀 폰/PDA 장치(108a-i), 랩탑/넷북 컴퓨터(116a-b), 핸드헬드 게임 장치(118), 전자책 장치 또는 태블릿 PC(120), 및 네트워크 기지국들(106a-e)중 어느 하나에 의하여 무선 통신 서비스를 제공받을 수도 있는 다른 타입의 일반적인 휴대용 무선 컴퓨팅 장치를 포함한다.
당업자에 의해 알 수 있는 바와 같이, 대부분의 디지털 통신 네트워크에서, 데이터 통신 네트워크(102)의 백홀 부분은 일반적으로 유선인 네트워크의 백본 및 네트워크 주변에 위치한 서브 네트워크들 또는 기지국들(106a-e) 사이에서 매개 링크(intermediate link)들을 포함할 수도 있다. 예를 들어, 하나 이상의 기지국들(106a-e) 중 어느 것과 통신하는 셀룰러 사용자 단말(예를 들어, UE들(108a-i) 중 어느 것)은 로컬 서브 네트워크를 구성할 수도 있다. 기지국들(106a-e) 중 어느 것과 나머지 사이에서의 네트워크 연결은 액세스 제공자의 통신 네트워크(102)의 백홀 부분에 링크로(예를 들어, 접속 거점(point of presence)을 통하여) 개시할 수도 있다.
일 실시예에서, 네트워크 제어 장치들(110, 112, 114)의 어느 하나 및/또는 네트워크 기지국들(106a-e)은 NRC 기능을 가질 수도 있고, 또는 NRC로서 고려될 수도 있다. NRC는 본 발명의 다양한 실시예들과 관련된 기능들을 가능하게 할 수도 있다. NRC는 소프트웨어 구성요소를 포함할 수도 있는 물리적 엔티티이다. 본 발명의 실시예에 따라, NRC는 네트워크 제어 장치들(110, 112, 114) 중 하나 또는 네트워크 기지국들(106a-e) 중 하나와 같은, 물리적인 장치가 될 수도 있다. 다른 실시예에서, 본 발명의 특정 기능을 수행하는 NRC는 휘발성 및 비휘발성 메모리, 또는 더 일반적으로, 네트워크 제어 장치들(110, 112, 114) 또는 네트워크 기지국들(106a-e) 중 어느 하나와 같은, 물리적 장치의 비일시적인 컴퓨터 판독가능한 매체에 저장될 수 있는 논리적 소프트웨어-기반 엔티티일 수도 있다.
본 발명의 다양한 실시예에 따라, NRC는 수행 가능한 프로세스들에 의하여 정의될 수도 있는 존재 및 기능을 갖는다. 또한, NRC인 개념 엔티티(conceptual entity)는 본 발명의 실시예들과 관련된 프로세스를 수행하는 역할에 의하여 일반적으로 정의될 수도 있다. 따라서 특정 실시예에 따라 NRC 엔티티는 물리적 장치 및/또는 네트워크 컴퓨팅 시스템(100) 내에서 하나 이상의 통신 장치(들)의 휘발성 또는 비휘발성 메모리들과 같은 컴퓨터 판독가능 매체에 저장된 소프트웨어 구성으로 여겨질 수도 있다.
본 발명의 일 실시예에서, 네트워크 제어 장치들(110, 112, 114) 및/또는 기지국들(106a-e) 중에서 어느 것은 본 발명의 다양한 실시예들과 관련된 프로세스들 중 어느 하나를 구현하기 위하여 독립적으로 또는 공동으로 기능할 수도 있다. 더구나, 기지국 안테나 구성을 검사하여 정정하는 프로세스들 중 어느 것은 최신 GSM(Global Systems for Mobile), UMTS(Universal Mobile Telecommunications System), LTE(Long Term Evolution) 네트워크 인프라 등과 관련된 일반 통신 기술들과 같은 종래 알려진 일반 통신 기술을 통하여 수행될 수도 있다.
표준 GSM 네트워크에 따라, 네트워크 제어 장치들(110, 112, 114)(NRC 장치들 또는 선택적으로 NRC 기능을 갖는 다른 장치들) 중 어느 것은 기지국 제어기(Base Station Controller, BSC), 이동 교환국(Mobile Switching Center, MSC) 또는 무선 자원 관리자(Radio Resource Manager, RRM)와 같은 종래에 알려진 다른 일반 서비스 제공자 제어 장치와 관련될 수도 있다. 표준 UMTS 네트워크에 따라, (선택적으로 NRC 기능을 갖는) 네트워크 제어 장치들(110, 112, 114) 중 어느 것은 패킷 교환 지원 노드(Serving GPRS Support Node, SGSN) 또는 무선 자원 관리자(RRM)와 같은 종래에 알려진 다른 일반 서비스 제공자 제어 장치와 관련될 수도 있다. 표준 LTE 네트워크에 따라, (선택적으로 NRC 기능을 갖는) 네트워크 제어 장치들(110, 112, 114) 중 어느 것은 eNodeB 기지국, 이동성 관리 엔티티(Mobility Management Entity, MME) 또는 무선 자원 관리자(RRM)와 같은 종래에 알려진 다른 일반 네트워크 제어 장치와 관련될 수도 있다.
무선 네트워크에서, 특정 기지국에 소속된 UE들의 개수는 기지국의 커버리지 영역에서 서비스를 이용한 사용자들 개수의 함수이다. 만약 많은 사용자들이 인접 기지국들보다 특정 기지국에 더 가깝다면, 비록 UE들의 일부가 인접 기지국들의 서비스 범위 내에 있다 하더라도, 특정 기지국이 인접 기지국들보다 특정 기지국에 소속된 더 많은 수의 UE들을 가질 수도 있다.
일 실시예에 있어서, 네트워크 제어 장치들(110, 112, 114) 중에서 어느 것, 네트워크 기지국들(106a-e) 및 UE들(108a-i) 중 어느 것은 Microsoft® Windows®, Mac OS®, Google® Chrome®, Linux®, Unix®, 또는 Symbian®, Palm®, Windows Mobile®, Google® Android®, Mobile Linux® 등의 모바일 운영체제 등을 포함하는, 그러나 이에 한정되지는 않는, 잘 알려진 운영체제를 구동하도록 구성될 수도 있다. 본 발명의 일 실시예에 있어서, 네트워크 제어 장치들(110, 112, 114) 중 어느 것 또는 기지국들(106a-e) 중 어느 것은 다수의 일반 서버, 데스크톱, 랩톱 및 퍼스널 컴퓨터 장치들을 이용한다.
본 발명의 일 실시예에 있어서, UE들(108a-i) 중 어느 것은 GSM, UMTS, 3GPP LTE, LTE Advanced, WiMAX 등을 포함하는, 그러나 제한되지 않는, 일반 무선 데이터 통신 기술을 채택하여 무선 통신 능력을 갖는 일반 모바일 컴퓨터 디바이스들(예를 들어, 랩톱 컴퓨터들, 노트북 컴퓨터들, 태블릿 컴퓨터들, 셀룰러 폰들, PDA들, 핸드헬드 게임 유닛들, 전자책 장치들, 퍼스널 음악 재생기들, MiFi™ 장치들, 비디오 레코더들 등)의 조합과 관련될 수도 있다.
일 실시예에 있어서, 도 1의 데이터 통신 네트워크(102)의 백홀 부분은 종래 기술에서 알려진 다른 무선 통신 기술과 함께 광섬유, 동축 케이블, 트위스트 페어 선, 이더넷 케이블 및 전력선 케이블과 같은 일반 통신 기술들 중 어느 것을 사용할 수도 있다. 본 발명의 다양한 실시예들의 내용에서, 다양한 데이터 통신 기술들(예를 들어, 네트워크 기지국들(106a-e))과 관련된 무선 통신 커버리지는 전형적으로 네트워크의 형태에 기초한 다른 서비스 제공자 네트워크들과 네트워크의 특정 영역 내에서 사용된 시스템 인프라의 차이(예를 들어, GSM, UMTS, LTE, LTE Advanced, 및 WiMAX 기반 네트워크들과 각각의 네트워크 형태에서 사용된 기술들의 차이)가 있는 것으로 이해되어야 할 것이다.
본 발명의 일 실시예에서, 네트워크 제어 장치들(110, 112, 114), 네트워크 기지국들(106a-e), 및 UE(108a-i) 중 어느 하나는 네트워크된 컴퓨팅 시스템(100) 내에서 데이터를 처리하고, 저장하며, 상호 통신하기 위하여 필요한 임의의 표준 컴퓨팅 소프트웨어 및 하드웨어를 포함할 수 있다. 네트워크 컴퓨팅 시스템(100) 장치들 중 어느 하나(예컨대, 장치들(106a-e, 108a-i, 110, 112, 114) 중 어느 하나)는 하나 이상의 프로세서, 휘발성 및 비휘발성 메모리, 사용자 인터페이스, 트랜스코더, 모뎀, 유선 및/또는 무선 통신 트랜시버 등을 포함할 수도 있다. 또한, 네트워크된 컴퓨팅 시스템(100) 장치들 중 어느 하나(예컨대, 장치들(106a-e, 108a-i, 110, 112, 114) 중 어느 하나)는 실행될 때 본 발명의 다양한 실시예에 관련된 기능들 중 일부를 수행할 수 있는 컴퓨터 판독가능한 명령들의 집합으로 인코딩된 하나 이상의 컴퓨터 판독가능한 매체를 포함할 수도 있다.
도 2는 본 발명의 일 실시예에 따른 부하 밸런싱 동작의 개요를 도시하고 있다. 특히, 도 2는 부하 밸런싱 기능(204)을 구현하기 위하여 통신 네트워크(102)에 대응하며 무선 액세스 네트워크(RAN)(202)와 인터페이싱하는 NRC(200)를 도시하고 있다. 일 실시예에서, NRC(200)는 부하 밸런싱 기능을 구현하며 성능 매트릭(206)을 수집하는데, 성능 매트릭(206)은 무선 키 성능 인디케이터(radio key performance indicator: KPI)일 수 있다. KPI는 시스템이 어떤 무선-인접 셀 클러스터가 부하 밸런싱을 위한 허용가능한 후보들 인지를 식별할 수 있도록 하는 수치적 매트릭 값들로 환산된다.
후보 클러스터가 대략적으로 부하-밸런싱되는 구간 동안, 클러스터의 안테나 구성은 과부하된 셀들에 대한 부하를 감소시키도록 구성 파라미터(208)에 따라 증분적으로 조절될 수 있다. 구성 프로세스 동안 및 그 이후에, KPI는 커버리지 홀이 생성되지 않도록 하기 위하여 모니터링될 수 있다. 과부하 구간이 끝나면, 원래의 안테나 구성이 복원될 수 있다.
도 3은 본 발명의 실시예들에 따른 기지국(300)을 도시하고 있다. 기지국(300)은 도 1에 도시된 임의의 기지국(106)이 될 수도 있다.
네트워크 기지국(300)은 또한 중앙 처리 장치(CPU)(308)를 포함하는 하나 이상의 데이터 처리 장치들을 포함할 수 있다. 일 실시예에서, CPU(308)는 산술 및 논리 연산을 수행하는 산술 논리 유닛(ALU)(도시 생략) 및 메모리로부터 명령 및 저장된 컨텐츠를 추출하여 실행하거나 처리하는 하나 이상의 제어 유닛(CU)(도시 생략)을 포함한다. CPU(308)는 네트워크 기지국(300)의 휘발성(RAM) 및 비휘발성(예컨대, ROM) 시스템 메모리(302) 또는 스토리지(310)에 저장된 컴퓨터 프로그램을 실행할 수 있다.
스토리지(310)는 RAM, ROM, 솔리드 스테이트 드라이브(SSD), SDRAM, 또는 다른 광, 자기 또는 반도체 메모리와 같은 휘발성 또는 비휘발성 메모리를 포함할 수도 있다. 일 실시예에서, 스토리지(310)는 하나 이상의 모듈(312) 및 데이터(314)를 포함한다. 데이터(314)는 지리적 위치 데이터(geo-location data) 및 사용 메트릭과 같이, 본 발명의 실시예들에 의해 사용되는 데이터일 수 있다. 모듈(312)은 다양한 실시예들에 따른 하나 이상의 측면의 프로세스들, 예컨대, 측정된 사용 메트릭을 부하 밸런싱 메트릭을 계산하는데 사용되는 값으로 변환하는 계산들을 수행하는 소프트웨어 모듈이다.
네크워크 기지국(300)은 또한 네트워크 기지국(300)이 도 1의 네트워크 컴퓨팅 시스템(100)의 백홀 또는 무선 부분과 통신할 수 있도록 하는 네트워크 인터페이스 구성요소(318), 아날로그 캐리어 신호를 변조하여 디지털 정보를 인코딩하고, 캐리어 신호를 복조하여 디지털 정보를 디코딩하는 모뎀(306), 및 네트워크 기지국(300)의 하드웨어 자원들 간의 데이터 통신을 가능하게 하는 시스템 버스(316)를 포함한다.
기지국(300)은 기지국(300)의 무선 통신에서 장치들과 무선 통신을 송수신하는 적어도 하나의 안테나(304)를 포함할 수 있다. 본 발명의 일 실시예에서, 기지국 안테나(304)는 기존에 알려진 어떠한 일반적인 변조/인코딩 방식도 사용할 수 있는데, 일반적인 변조/인코딩 방식은 이에 한정되지는 않지만 이진 위상 편이 변조(binary phase shift keying), 직교 위상 편이 변조(quadrature phase shifting keying), 및 직교 진폭 변조(quadrature amplitude modulation)를 포함한다. 추가적으로, 네트워크 기지국(300)은 일반적인 LTE, LTE-Advanced, GSM, UMTS, 또는 WiMAX 프로토콜을 포함하는 셀룰러 데이터 통신 프로토콜을 통해 무선 장비와 통신하도록 구성될 수 있다.
안테나(304)는 본 발명의 실시예들에 따라 평가되고 조절될 수 있는 셀의 특징과 관련된 복수개의 파라미터와 연관될 수 있다. 이러한 파라미터들은 빔폭, 조준 방위(boresight azimuth) 및 다운틸트(downtilt)를 포함한다.
각 기지국은 서로 다른 각각의 주파수 상에서 동작하는 다수의 캐리어들을 서빙할 수도 있으며, 각각 물리적 커버리지 영역을 갖는 다수의 안테나들을 포함한다. 여기에서, "셀"이라는 용어는 소정의 캐리어 주파수를 위한 하나의 안테나에 의해 서빙되는 영역을 의미한다. 셀의 커버리지 영역은 신호 세기가 임계값을 지날 때 강하하는 지점들에 의해 또는 간섭이 임계값 보다 크게 발생하는 지점들에 의해 셀의 경계가 정의되도록 특정 캐리어 신호의 신호 세기에 관련될 수도 있다.
각 셀은 소정의 기지국에 의해 서빙되며, 그에 따라, UE가 셀에 접속된 것으로 기술되는 경우, 셀에 관련된 특정 기지국(300)에 또한 접속된다. 단일 기지국은 각각이 구별된 가능한 중첩하는 커버리지 영역을 갖는 복수개의 셀을 서빙할 수도 있다.
도 4는 본 발명의 일 실시예에 따른 사용자 단말(UE)(400)을 도시하고 있다. UE(400)는 또한 중앙 처리 장치(CPU)(402)와 같은 하나 이상의 데이터 처리 장치들을 포함할 수 있다. 본 발명의 일 실시예에서, CPU(402)는 산술 및 논리 연산을 수행하는 산술 논리 유닛(ALU)(도시 생략) 및 메모리로부터 명령 및 저장된 컨텐츠를 추출하여 실행하거나 처리하는 하나 이상의 제어 유닛(CU)(도시 생략)을 포함한다. CPU(402)는 사용자 단말(400)의 휘발성(RAM) 및 비휘발성(예컨대, ROM) 시스템 메모리(406) 또는 스토리지(408)에 저장된 모든 컴퓨터 프로그램을 실행하는 것을 담당할 수 있다.
UE(400)는 UE(400)와 지역적으로 연결된 컴퓨팅 장치(예컨대, 퍼스널 컴퓨터) 사이의 통신을 가능하게 할 수 있는 네트워크 인터페이스 구성요소(404), 아날로그 캐리어 신호를 변조하여 디지털 정보를 인코딩하고, 캐리어 신호를 복조하여 디지털 정보를 디코딩하는 모뎀(416), 기지국과 무선 통신을 송수신하는 무선 송수신기 구성요소(418), UE(400)의 하드웨어 자원들 간의 데이터 통신을 가능하게 하는 시스템 버스(420), 텍스트 및 그래픽 정보를 표시하는 디스플레이 유닛(422), 키보드, 마우스 또는 터치스크린과 같은 사용자 입력 장치(424), GPS 유닛(426) 및 스토리지(408)를 포함할 수 있다. 스토리지(408)는 데이터 수집 유닛(410), 운영체계/어플리케이션 저장소(412) 및 다양한 사용자 단말 데이터를 저장하는 데이터 저장소(414)를 포함한다.
도 5는 본 발명의 일 실시예에 따른 네트워크 자원 제어기(NRC)(500)를 도시하고 있다. 본 발명의 일 실시예에서, NRC(500)는 LTE eNodeB(선택적으로 무선 모뎀을 포함), RRM, MME, RNC, SGSC, BSC, MSC 등과 같은 당업계에 알려진 일반적인 기지국 또는 네트워크 제어 장치와 연관될 수 있다. 일 실시예에서, NRC(500)는 자기조직 네트워크(SON) 서버이다.
NRC(500)는 CPU(502)를 포함하는 하나 이상의 데이터 처리 장치들을 포함할 수 있다. 일 실시예에서, CPU(502)는 산술 및 논리 연산을 수행하는 산술 논리 유닛(ALU)(도시 생략) 및 메모리로부터 명령 및 저장된 컨텐츠를 추출하여 실행하거나 처리하는 하나 이상의 제어 유닛(CU)(도시 생략)을 포함한다. CPU(502)는 NRC(500)의 휘발성(RAM) 및 비휘발성(예컨대, ROM) 시스템 메모리(506) 또는 스토리지(510)에 저장된 모든 컴퓨터 프로그램을 실행하는 것을 담당할 수 있다.
시스템 메모리(506)는 RAM, ROM, 솔리드 스테이트 드라이브(SSD), SDRAM, 또는 다른 광, 자기 또는 반도체 메모리와 같은 휘발성 또는 비휘발성 메모리를 포함할 수 있다. 스토리지(510)는 성능 메트릭(512), 지리적 위치 데이터(514), 및 하나 이상의 측면의 SON 패턴 필터(516)를 포함할 수 있다.
NRC(500)는 NRC(500)가 도 1의 네트워크 컴퓨팅 시스템(100)의 백홀 부분 또는 무선 부분들과 통신할 수 있도록 하는 네트워크 인터페이스/옵션적 사용자 인터페이스 구성요소(504)를 포함할 수 있고, 사용자 또는 네트워크 관리자가 NRC(500)의 하드웨어 및/또는 소프트웨어 자원들에 접근할 수도 있게 한다. NRC(500)는 NRC(500)의 하드웨어 자원들 간의 데이터 통신을 가능하게 하는 시스템 버스(508)를 포함할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 부하 밸런싱을 위한 프로세스(600)를 도시하고 있다. 도 6의 프로세스(600)는 오퍼레이터가 어떻게 셀룰러 네트워크에서 부하를 밸런싱하기 위하여 본 발명의 다양한 양태를 구현하는지를 나타내는 개략적 개요로서 제공된다.
도 6에 도시된 바와 같이, 클러스터는 프로세스(602)에서 식별된다. 시스템은 네트워크 토폴로지(예컨대, 기지국 안테나 위치들, 지형 및 클러스터 맵), 구성(예컨대, 안테나 포인팅 구성, 송신 전력), 이웃 리스트 및 KPI를 사용하여 각 타겟 셀과 관련된 지역적 셀 클러스터의 세트를 결정할 수 있다. 클러스터의 각 셀 멤버는 클러스터에서 타겟 셀에 관련된 이웃인지를 판단하는 몇 개의 조건을 만족한다. 프로세스(602)는 나머지 프로세스들을 실행하기 전 언제라도 수행될 수도 있다.
프로세스(604)에서, KPI는 각 클러스터에 대한 부하 밸런싱 스코어를 결정하기 위하여 검사된다. 클러스터들은 부하 밸런싱 스코어에 의해 순위가 결정되며, 임계치를 초과하는 스코어의 클러스터는 가능한 후속 부하 밸런싱 프로세스를 위하여 마킹될 수 있다.
프로세스(606)에서, 소정 임계치를 초과하는 스코어의 클러스터는 부하 밸런싱 동작을 개시한다. 일 실시예에서, 어떤 클러스터가 부하 밸런싱 동작을 트리거할지를 추가로 제한하기 위하여 다른 트리거 기준이 적용될 수도 있다. 예컨대, 반복적인 장기간 타겟 셀 과부하를 예측하기 위하여 정보는 과거의 KPI 이력에 근거하여 SON 필터에 의해 처리될 수도 있다. 과부하 조건이 추가적인 부하 밸런싱 프로세스들을 구현하는데 충분한 시간동안 유지되는지 여부의 가능성을 판단하기 위하여, SON 필터가 적용될 수도 있다.
프로세스(608)에서, 부하 밸런싱 동작이 트리거된 클러스터는 KPI를 모니터링하면서 조절된 안테나 구성을 가지며 그에 따라 프로세스(610)에서 커버리지 홀이 발생하지 않는 것을 보장한다. 프로세스(612)에서, 부하 밸런싱 기회를 끝내고 클러스터는 그 원래의 구성으로 되돌아간다. 일 실시예에서, 연속적인 부하 밸런싱 동작들이 프로세스(602) 및 프로세스(604) 중 하나에서 시작한다.
셀들의 클러스터에서의 부하 밸런싱을 위한 몇 가지 가능한 방법들이 있다. 일련의 기술들은, 예컨대, 전기적으로 스티어링 가능한 기지국 안테나 포인팅 각도들(다운틸트, 방위각, 빔폭)을 조절하거나, 셀들 간의 상대적인 송신 전력을 조절하거나, 이들 모두를 조절함으로써, 셀들 사이의 상대적인 커버리지 패턴들을 변경하는 단계를 포함한다. 다른 방법은 단말 등이 새로운 서빙 셀로 이동하도록 유도하는 UE 핸드오버 셀 선택 기준을 조작하는 것이다.
모든 경우에서, 부하 밸런싱 알고리즘은 어떤 셀이 클러스터에 속하는 지를 먼저 판단하는 것이 이득일 수도 있다. 클러스터를 식별하는데 사용되는 특정 프로세스는 클러스터 내에서 부하 밸런싱을 달성하는데 사용되는 특정 기술에 좌우될 수 있다. 일 실시예에서, 클러스터 멤버는 상기 프로세스를 자동화하기 위하여 알고리즘적으로 결정될 수 있다. 다양한 실시예에서, 클러스터 식별은 네트워크에서 모든 셀들에 대한 네트워크 분석 단계 동안 선행하여 발생하거나 특정 셀이 과부하 걸릴 때 요구에 의해 발생할 수 있다.
일부 실시예는 안테나의 클러스터의 RET(Remote electrical tilt)를 사용할 수도 있다. RET의 예는 도 7에 도시되어 있다. 부하를 밸런싱하기 위하여 RET를 사용하는 기본 원리는 안테나 다운틸트를 증가시킴으로써 과부하된 셀이 그 커버리지 영역을 감소시키고 그에 따라 UE 점유율을 감소시키는 동시에, 인접 셀이 과부하된 셀에 의해 더 이상 서빙되지 않는 UE들을 커버하기 위하여 그 안테나 다운틸트를 감소시킴으로써 그 커버리지 영역을 증가시키는 것이다.
도 7에서 알 수 있는 바와 같이, 이웃하는 기지국들(700a 및 700b)은 겹치는 서빙 영역을 갖는다. 원래의 구성에서, 양 그룹 A 및 그룹 B의 모든 UE(706)는 원래의 셀 702a에서 기지국 700a에 의해 서빙되고 있으며, 그에 따라 과부하 조건이 된다. 한편, 이웃하는 기지국(700b)은 사용되지 않는 용량을 갖는 원래의 서빙 셀(702b)이다.
RET를 이용하는 부하 밸런싱의 실시예에서, 기지국(700b)의 안테나의 다운틸트 각도는 감소되며(즉, 안테나는 아래 방향으로 기울어진다), 그에 따라 조절되는 셀(704b)은 그룹 B에서 UE를 커버한다. 동일한 프로세스에서, 기지국(700a)의 안테나는 아래를 향하여 기울어져, 조절된 셀(704a)을 통해 그룹 A의 UE에 서비스를 여전히 제공한다. 그룹 B의 UE는 기지국(700b)으로부터 더 양호한 신호를 수신하므로, 기지국(700a)에서 기지국(700b)으로 핸드오프하며, 그에 따라 무선 부하는 기지국들 간에 밸런싱된다.
도 8에 도시된 바와 같이, 안테나 조절의 다른 프로세스는 원격 방위각 스티어링(remote azimuth steering: RAS)을 통해 안테나 방위각 설정을 조작함으로써 그 공통축 주위의 공동-영역(co-site) 셀들을 회전시키는 것을 수반한다. 셀의 커버리지 영역을 회전하는 것에 의해 공동-영역 셀들에서 경계에 인접한 UE는 새로운 공동-영역 서빙 셀을 선택할 수 있다.
예컨대, 도 8에 도시된 바와 같이, 기지국(800)은 3개의 셀들을 서빙한다. 그룹 A 및 그룹 B의 UE는 원래의 셀(802a)에 위치한다. 기지국(800)의 안테나들은 회전하여 그룹 A의 UE(806)가 조절된 셀(804a)에 의해 커버되고, 그룹 B의 UE가 조절된 셀(804b)에 의해 커버된다. 그룹 B의 UE는 셀룰러 부하를 밸런싱하기 위하여 조절된 셀(802a)의 안테나로부터 조절된 셀(804b)의 안테나로 핸드오프된다.
도 9에 도시된 바와 같이, 부하 밸런싱을 위한 안테나 조절의 세 번째 프로세스는 셀 각도적 커버리지(cell angular coverage) 또는 안테나 이득 패턴 빔폭을 조작하는 것을 포함한다. 일 실시예에서, 빔폭은 원격 안테나 빔폭(remote antenna beamwidth: RAB) 조절을 이용하여 원격으로 조절된다. 일 실시예에서, 과부하된 타겟 안테나 서빙 셀(900)의 빔폭은 셀(900a)에서 셀(900b)로 좁혀지며, 부하가 적은 셀들(902 및 904)과 같은 하나 이상의 공동-영역 셀들의 빔폭은 선택적으로 확장될 수 있다. 다른 실시예에서, 타겟 겔의 빔폭을 줄임으로써, 이웃하는 안테나들에 대한 어떠한 조절도 하지 않고 이웃하는 셀들의 커버리지 영역을 확대한다. 도 7을 참조하여 전술한 RET를 이용하는 실시예에 동일한 원리가 적용된다. 따라서, 일부 실시예에서, 타겟 셀을 서빙하는 안테나만이 조절된다.
도 9에 도시된 바와 같이, 셀(902a)은 셀(902b)로 확장되며, 셀(904a)은 셀(904b)로 확장된다. UE는 부하를 밸런싱하기 위하여 좁아진 타겟 셀로부터 하나 이상의 확장된 셀들로 핸드오프된다. 도 9에서, 그룹 A의 UE는 좁아진 셀(900b)을 확장된 셀(902b)로 핸드오프되며, 그룹 B의 UE는 좁아진 셀(900b)을 확장된 셀(904b)로 핸드오프된다.
일 실시예에서, RAB 조절은 RAS를 통한 셀 회전과 조합하여 수행된다. 조합된 프로세스의 원리는 빔폭을 좁게하면서 동시에 확장하고, 공동-영역 셀들을 회전하여 타겟 셀의 비워진 커버리지를 채움으로써 과부하된 타겟 셀의 커버리지 영역을 감소시키는 것이다.
도 10은 클러스터를 정의하는 프로세스(1000)의 실시예를 도시하고 있다. 도 10의 프로세스(1000)는 도 7에 도시된 프로세스와 같은 안테나가 RET를 이용하여 조절되는 실시예에 사용될 수 있다.
도 10에 도시된 바와 같이, 클러스터를 정의하는 것은 타겟 셀의 지리적 위치를 결정하는 프로세스(1002)에 의해 개시된다. 일 실시예에서, 지리적 위치는 NRC에서 지리적 위치 데이터의 데이터베이스 룩업에 의해 결정된다. 지리적 위치는 위도, 경도, 및 고도와 같은 지리학적 좌표를 포함할 수도 있다. 일 실시예에서, 지리적 위치 데이터는 지형 데이터 상의 높이를 포함할 수도 있다.
클러스터에 포함되기 위한 후보 범위의 기본은 RET 조절을 통해 변경될 수 있는 타겟 셀과 무선 커버리지 겹침을 나눌 수 있을 것 같은 셀들을 선택하는 하나 이상의 기준들의 세트이다. 일 실시예에서, 범위는 5 Km와 같은 타겟 셀로부터의 반경, 또는 메트로 서비스 영역 등의 지리학적 조건이다. 일부 실시예에서, 후보의 범위는 사용자 또는 알고리즘에 의해 정의될 수도 있고, 범위는 프로세스(1004)의 일부로서 결정될 수도 있다. 일 실시예에서, 후보의 범위 내에서 셀들을 결정하는 프로세스(1004)는 지리학적 조건을 만족하는 모든 셀들을 식별하며, 셀들은 후속 프로세스를 통해 더 선별된다.
프로세스(1006)는 후보의 범위 내의 셀이 타겟 셀에 대해 공동-영역을 이루도록 위치하는지를 판단한다. RET 조절이 안테나 조절 한가지 타입인 실시예에서, 타겟 셀에 대해 공동-영역을 이루도록 위치된 셀들(예컨대, 동일한 무선 전송 타워를 이용하는 셀)은 RET 조절들이 이들 간의 UE의 점유율에 일반적으로 영향을 미치지 않으므로, 후보의 범위 내에 있지 않을 수 있다.
그러나, 다른 실시예에서, 타겟 셀(예컨대, 적층 셀)과 공통의 방위각 포인팅을 공유하는 공동-영역 셀들은 클러스터의 범위 내에 포함될 수 있다. 따라서, 프로세스(1006)는 공동-영역 셀이 타겟 셀과 공통의 방위각 포인팅을 공유하는지를 추가로 판단할 수 있다. 후보 셀이 타겟 셀과 공동-영역인 경우, 프로세스(1006)는 후보의 범위에서 다른 셀을 검사하는 단계로 진행할 수 있다.
프로세스(1008)에서, 후보 셀의 타겟 셀까지의 거리 근사치가 평가되고, 프로세스(1010)에서, 거리 근사치는 임계값과 비교된다. 이들 프로세스는 후보의 범위가 임계값보다 큰 지리학적 영역에 의해 결정된 실시예에서 수행될 수 있다. 예컨대, 후보의 범위가 100 제곱 킬로미터의 메트로폴리탄 영역일 때, 임계값은 5 Km, 2 Km, 또는 프로세스(1004)의 영역보다 작은 영역을 정의하는 다른 값이 될 수 있다.
다른 실시예에서, 임계값은 각 타겟 셀에 대해 각각 결정될 수 있다. 이러한 실시예에서, 임계값은 셀간 거리에 비례한다. 더 구체적으로는, 거리 임계치는 타겟 셀로부터 가장 가까운 N개의 비공동-영역 셀들까지의 평균 거리를 평가하고, 거리 임계치를 평균 거리의 배수로 설정함으로써 결정될 수 있다. N의 예는 3, 5 및 10을 포함하며, 배수의 예는 3 및 5를 포함한다. 만약 거리가 임계값보다 크면, 후보 셀은 클러스터로부터 제외된다.
프로세스(1012)에서, 타겟 셀과 후보 셀들간의 지형 경로가 평가된다. 일 실시예에서, 이 프로세스는 NRC 상에 저장된 토폴로지 맵을 평가하는 것 또는 시스템에 의해 접근가능한 플래닝 툴들(planning tools)을 사용하는 것을 포함할 수 있다. 프로세스(1014)는 후보 셀이 타겟 겔에 대해 직선 가시 거리(line of sight: LOS)에 있는 지를 판단하기 위하여 평가된 지형 경로를 사용하며, 만약 LOS의 범위에 없다면, 해당 후보를 리스트로부터 제외한다.
프로세스(1016)에서 UE 핸드오버 관계는 타겟과 후보 셀 사이에서 검사된다. 만약 구성된 이웃 관계들 또는 보고된 핸드오버 횟수가 타겟 셀과 후보 셀 사이에서UE 이동성을 나타내지 않거나 적은 양의 이동성이 UE 이동성이 나타나는 것을 표시하면, 프로세스(1018)는 후보 셀이 타겟 셀의 이웃이 아니고, 후보 셀이 클러스터에 포함되지 않은 것으로 판단한다. 일 실시예에서, 프로세스(1018)는 네트워크 정책 또는 어떤 다른 이유로 인해 UE 이동성을 허용하지 않으며, 그에 따라, 부하 밸런싱에 적합하지 않게 된 후보 셀을 제외한다.
후보 셀의 포인팅 방향(방위각)이 타겟 셀 영역을 향하는지를 판단하기 위하여 프로세스(1020)에서 검사된다. 프로세스(1022)에서, 후보 셀은 타겟 겔이 후보의 임계 빔폭 값 내에 있는지를 판단하기 위하여 검사된다. 일 실시예에서, 임계 빔폭은 3 dB이며, 다른 값이 다른 실시예에서 사용될 수 있다. 타겟 셀이 임계 빔폭 값 내에 없는 후보들은 리스트에서 제외된다.
만약 셀이 후속 프로세스들의 기준을 만족하고, RET이면, 프로세스(1024)에서 셀의 클러스터 세트에 추가될 수 있다. 프로세스(1026)에서, 평가되지 않은 후보 셀들이 있다면, 프로세스(1000)는 프로세스(1006)로 되돌아가서 범위 내의 모든 셀들이 처리될 때까지 남아있는 후보 셀들을 평가한다. 그 결과, 안테나 조절 부하 밸런싱을 위한 타겟 셀의 클러스터를 정의하는 셀들의 리스트가 프로세스(1028)에서 저장된다.
일부 실시예에서, 도 10에 도시된 것들에 추가하여 다른 정책 기준이 가능하다. 다양한 실시예에서, 흐름도에서 단계들의 순서는 클러스터 결정 결과에 중대하게 영향을 미치지 않는 한 변경될 수 있다. 일부 실시예는 도 10에 도시된 하나 이상의 프로세스를 생략할 수 있다.
RAS를 통한 조절을 위한 클러스터를 결정하는 프로세서는 과부하 상태에 있는 타겟 셀을 선택하는 것으로 개시된다. 예컨대, 타겟 셀은 셀의 하나 이상의 KPI를 임계값과 비교하는 것에 기반하여 선택될 수도 있다. 그런 다음, 클러스터에 포함되는 후보 셀들은 셀이 타겟 셀과 영역을 공유하는 지의 여부에 근거하여 평가될 수 있다.
RAB를 이용하는 부하 밸런싱 동작을 위한 클러스터를 결정하는 프로세스에서, 타겟 셀은 그 과부하 상태에 기반하여 선택된다. 후보 셀들은 또한, 셀이 타겟 셀과 영역을 공유하는지의 여부를 포함하는 기준들의 세트에 기반하여 평가될 수도 있다. 일부 실시예에서, 타겟 셀은 세 개의 안테나 조절 모드들(RET, RAS, RAB)을 할 수 있으며 세 개의 모드 모두를 이용하여 조절된다. 이러한 실시예들은 클러스터를 적정한 것으로 정의하기 위한 전술한 프로세스들 중 어떤 것을 결합할 수 있다.
만약 주어진 셀이 과부하되면, 이웃 셀들의 관련 클러스터는 타겟으로부터 부하를 감소시키는데 적합할 수도 적합하지 않을 수도 있다. 예를 들어, 과부하된 타겟 셀의 이웃들이 또한 과부하 상태에 있으면, 이들 사이에 부하를 나눌 기회는 없다. 또한, 클러스터의 하나 이상의 셀들이 일시적으로 사용 불가능할 수 있다(예컨대, 다른 타겟 셀 및 클러스터에 의해 락된(locked) 경우). 따라서, 본 발명의 실시예들은 클러스터가 부하 밸런싱을 위한 좋은 후보인지를 평가하는 것을 돕기 위하여 주어진 클러스터에 대한 수치적 스코어를 정의하는 프로세스를 포함할 수 있다. 일 실시예에서, 이러한 스코어는 클러스터가 어떻게 불균형하게 밸런싱되어 있는지에 대응한다.
도 11은 본 발명의 일 실시예에 따른 셀들의 클러스터에 대해 부하 밸런싱 메트릭을 결정하는 프로세스(1100)를 도시하고 있다. 프로세스(1102)에서, 사용 메트릭은 타겟 셀에 대해 측정된다. 프로세스(1104)에서, 사용 메트릭들은 클러스터의 셀들 각각에 대해 측정된다.
프로세스(1102)에서 측정된 특정 사용 메트릭은 서로 다른 실시예들 마다 다를 수 있다. 사용 메트릭들은 셀에 존재하는 부하의 양, 그 전체 용량에 대한 셀 상의 부하, 또는 이들 모두에 관련되며, KPI일 수 있다. 예컨대, 메트릭은 주어진 시간 주기 내에 셀을 통해 전달되는 총 데이터량일 수 있으며, 셀의 부하 값이라 칭해지기도 한다. 만약 주어진 시간 주기 내에 셀을 통해 전달되는 총 데이터량이 상기 시간 주기 동안 셀이 전달할 수 있는 최대 데이터량으로 나누어지면, 그 결과 값은 용량값이라고 칭해지기도 한다.
일반적으로, 양방향 통신 셀들은 구별된 하향링크 및 상향링크 값들을 가지며, 한 방향에서의 과부하는 반드시 반대 방향이 과부하인 것을 의미하지는 않는다. 따라서, 프로세스들(1102 및 1104)에서, 하향링크 및 상향링크의 사용에 대한 별도의 추정치들이 평가될 수도 있다. 이러한 실시예에서, 상향링크 및 하향링크 전송들들 각각에 대한, 사용 메트릭 또는 사용 메트릭으로부터 계산된 값들이 비교되는 프로세스(1106)가 수행된다. 두 개의 사용 메트릭들 중 작은 쪽이 프로세스(1108)에서 부하 밸런싱 메트릭의 계산에 사용될 수 있다. 다른 실시예에서, 프로세스(1106)는 부하 밸런싱 메트릭이 계산된 후에 행해지며, 그에 따라, 상향링크 및 하향링크 스코어는 다양한 부하 밸런싱 결정들을 위하여 개별적으로 고려된다.
도 12a 및 도 12b는 부하 밸런싱 스코어를 계산하는 프로세스의 실시예들을 도시하고 있다. 프로세스(1202)에서, 용량값은 프로세스들(1102 및 1104)에서 측정된 사용 메트릭에 기반하여 계산될 수 있다. 예컨대, 용량값은 시간 주기 상에서 측정된 셀의 처리량으로서 계산될 수 있으며, 셀의 최대 가능 처리량으로 나누어진다.
프로세스(1204)에서 타겟 셀의 용량값과 클러스터의 각 셀에 대한 용량 사이의 차이가 결정된다. 프로세스(1206)에서, 프로세스(1204)로부터의 차이가 더해지며, 동시에 프로세스(1208)에서, 차이들의 합이 타겟 셀 이외의 클러스터의 셀들의 개수로 나누어진다. 따라서, 프로세스들(1204 내지 1208)은 다음 수학식 1에 따라 수행될 수 있다.
Figure pct00002
수학식 1에서, N은 타겟 셀 이외의 클러스터의 셀들의 개수이며, CT는 타겟 셀에 대한 용량값이며, Ci는 타겟 셀 이외의 클러스터의 i번째 셀에 대한 용량값이다. 용량값은 하나 이상의 사용 메트릭의 값이나 하나 이상의 사용 메트릭으로부터 도출된 값일 수 있다. 일 실시예에서, 용량값은 셀의 여유 용량이다.
단계들 1206 내지 1210이 단순한 평균화 기능에 대하여 기술되었지만, 본 발명의 실시예들은 이에 한정되지 않는다. 다른 실시예들에서 다른 통계적 값들이 차이들의 그룹을 위하여 계산될 수 있다. 예컨대, 일 실시예에서, 평균값이 계산되며, 반면 다른 실시예에서는 제곱평균제곱근(root mean square; RMS) 값을 계산한다. 당업자는 다른 실시예에서 다른 통계적 값들이 가능함을 인지할 것이다.
일 실시예에서, 셀의 여유 용량은 셀을 이용하는 액티브 UE에 추가적인 트래픽을 서빙하는 셀의 남은 용량을 말한다. 셀의 절대 용량은 UE 위치들의 기하학 구조를 포함하는 많은 인자들에 좌우되기 때문에, 여유 용량은 UE 타입, 위치 및 점유율의 많은 조합에 있어서 셀의 프로파일된 피크 총 처리량(profiled peak aggregate throughput)을 참조하여 결정될 수도 있다. 예컨대, 총 처리량은 피크 비지 구간 동안 셀에 대한 시간 주기 상에서 샘플링 될 수 있으며, 셀에 대한 피크 처리량은 샘플들의 95%로서 정의될 수 있다. 다른 실시예에서, 피크 처리량은 셀의 알려진 용량에 기초한 정책에 의해 설정될 수 있다.
일 실시예에서 클러스터에 대한 부하 밸런싱 스코어는 타겟 셀의 점유율에 기반하여 더 좌우될 수도 있다. 예컨대, 스코어는 소정의 최대 점유율(예컨대, 20개의 UE)에 대해 [0,1] 정규화된 가중 인자 W와 곱해질 수도 있다. 유사한 가중 인자들이 다른 실시예에서 점유율을 설명하기 위하여 사용될 수도 있다. 도 12a 및 도 12b에 따른 실시예들이 셀의 사용된 용량에 대하여 기술되었더라도, 셀 부하 부담(예컨대, 셀의 비사용 용량) 에 대한 다른 메트릭 또는 메트릭들의 조합들이 다양한 실시예에서 클러스터에 대한 부하 밸런싱 스코어를 결정하는데 사용될 수도 있다.
도 13a 및 도 13b는 부하 밸런싱 스코어를 계산하는 프로세스(1108)의 추가적인 실시예들을 도시하고 있다. 도 13a 및 도 13b의 실시예들에서, 클러스터의 부하 밸런싱 조건은 셀들의 클러스터에서 그 이웃들과 비교된 타겟 셀 상의 부하를 검사함으로써 결정된다.
일 실시예에서, 부하 밸런싱 스코어는 액티브-UE-점유율에 기반한다. 다른 실시예에서, 부하 밸런싱 스코어는 UE들로의 트래픽을 서빙하는 셀 능력을 잠재적으로 제한하는 한정된 자원에 대응하는 하나 또는 다수의 분수 사용 메트릭에 기반한다.
부하 밸런싱 스코어를 계산하는 프로세스(1300)는 부하 값들을 계산하는 프로세스(1302)로 개시할 수 있다. 프로세스(1302)는 측정된 사용 메트릭들에 대해 추가적인 계산들을 수행하여 부하 값을 도출하는 것을 포함할 수 있다. 다른 실시예에서, 사용 메트릭은 부하 값이며, 프로세스(1302)는 수행되지 않는다.
프로세스(1304)에서, 클러스터의 모든 셀들에 대한 부하 값들의 평균이 계산된다. 평균값은 타겟 셀의 부하 값을 포함할 수도 포함하지 않을 수도 있다. 프로세스(1306)에서, 타겟 셀의 부하 값과 평균값의 비율이 결정된다. 프로세스(1308)에서, 비율은 구성된 최대 값으로 스케일링될 수 있으므로, 스코어는 구간 [0,1] 상에서 변화한다. 평균으로부터 타겟 셀의 부하 값이 클수록 부하 밸런싱 스코어가 커지는데, 이는 부하 밸런싱으로부터 더 큰 잠재적 성능 이익을 갖는 클러스터를 나타낸다.
프로세스들(1304 내지 1308)의 실시예는 다음 수학식 2와 같이 표현된다.
Figure pct00003
수학식 2에서, PT는 타겟 셀의 부하 값이며, Pavg는 클러스터의 부하 값들의 평균이며, Pmax는 상한값 PT 와 하한값 Pavg 에 기반한 비율 (PT/Pavg)을 정규화하는데 사용되는 가중 인자이다.
프로세스(1108)의 실시예들이 도 12a 및 도 12b에 대한 용량값들에 대해 그리고 도 13a 및 도 13b에 대한 부하 값들에 대해 기술되었더라도, 본 발명의 실시예들은 이에 한정되지 않는다. 예컨대, 일 실시예는 용량값들의 평균 또는 부하 값들의 합산된 차이들을 고려할 수도 있다.
클러스터에 대한 부하 밸런싱 스코어는 클러스터를 부하 밸런싱하기 위한 동작에 권한을 부여하기 위하여 사용될 수도 있다. 일 실시예에서, 임계값을 초과하는 스코어들은 셀 안테나 구성들의 부하 밸런싱 조작을 개시하는데 사용된다. 클러스터가 부하 밸런싱되면, 부하 밸런싱 스코어들은 클러스터가 다시 밸런싱되어야 하는지 원래의 구성으로 되돌아가야 하는지를 결정할 때 추가적으로 유용성을 가진다.
특정 타겟 셀이 과부하되고, 과부하의 일부를 분배하는데 사용되어야 하는 이웃 셀의 관련 클러스터가 사용가능하다면, 시스템이 정정 동작을 수행해야 하는지의 의문은 여전히 남는다. 예컨대, 과부하 조건은 간단해야 하며 어떠한 중재 없이 그 자체를 신속히 해결해야 한다. 또한, 여기에서 기술된 부하 밸런싱 방법들은 커버리지 홀들 및 문제점의 검출이 즉각적이지 않을 수 있는 일부 관련 리스크를 가진다. 이러한 이유로, 본 발명의 실시예들은 중재를 제외하고, 과부하가 지속될 가능성 그리고 예상되는 과부하 지속 기간이 얼마나 될지를 과부하의 시나리오 처음부터 식별할 수 있다.
부하 밸런싱 기회의 상대적인 값을 평가하는 프로세스는 네트워크 동작 이력에 기반하여 셀들의 클러스터에서 셀 커버리지 재구성으로부터 성능 이익을 조절하고 모니터링하는데 충분한 상당한 시간 길이동안 지속될 가능성을 예측한다. 이러한 프로세스(1400)의 일 실시예가 도 14에 도시되어 있다.
프로세스(1402)에서, 부하 밸런싱 조건에 관련된 KPI는 기지국 또는 NRC와 같은 하나 이상의 네트워크 장비에 의해 측정된다. 프로세스(1402)에서 측정될 수 있는 KPI의 예들은 과부하 조건, 셀에서 안테나와 UE 사이에 교환되는 정보량, 하향링크 및 상향링크 전송을 위하여 사용되는 셀의 용량의 퍼센티지 등을 포함한다. 실시예들에서, KPI는 전술한 사용 메트릭일 수 있으며, 부하 밸런싱 메트릭이라고 칭해지기도 한다. 프로세스(1404)에서, KPI는 기지국 또는 NRC와 같은 네트워크 장비에 의해 기록된다.
셀이 과부하될 때마다, 값들의 부하 밸런싱 메트릭 이력은 과부하가 반복되어 특정 기간 동안 지속할 가능성을 결정하기 위하여 검사된다. 반복적이고 지속적인 부하 밸런싱 기회의 가능성은 정정 필터를 특정 타겟 셀 및 관련 클러스터에 대한 부하 밸런싱 이력 데이터베이스에 적용하는 프로세스(1406)에 의해 평가된다.
필터를 사용하여 데이터를 분석하는 프로세스(1500)의 실시예가 도 15를 참조하여 설명된다. 필터 출력은 통상적인 반복 네트워크 사용 구간에 대응하도록 구성된 프로그래매틱 필터 탭들(programmatic filter taps)의 세트를 통해 상관된 반복 패턴들을 검출한다. 따라서, 프로세스(1502)에서, 반복 네트워크 사용 구간에 대응하는 시간 주기가 결정된다. 시간 주기의 예들은 일주일 내의 하루, 일주일, 평일, 주말 등을 포함한다.
필터를 적용하는 프로세스(1500)는 시간 주기 상에서 KPI 이력을 평가하는 프로세스(1504)를 포함한다. 프로세스(1504)에서, 과부하 이벤트의 기간은 상관된 반복 구간들의 연속적인 시퀀스에 의해 결정된다. 프로세스(1506)에서, 필터는 상관 스코어 및 과부하 이벤트의 가능한 기간을 출력한다. 프로세스(1508)에서, 상관 스코어는 이전에 일어날 가능성 있는 소정 시간 동안 지속될 수 있는 과부하 이벤트들을 필터링하는데 사용된다. 일 실시예에서, 소정 시간은 짧게는 10분, 길게는 몇 시간이 될 수 있다.
도 16은 본 발명의 일 실시예에 따른 필터의 예를 나타내는데 사용된다. 또한, 다음 항목들은 일 실시예에서 사용될 수 있는 다양한 필터 입력들의 예들의 완전하지 않은 리스트이다. 이 리스트는 예시적이며, 실시예들은 이에 한정되지 않는다. 입력의 예들은 다음을 포함한다:
1) uniqueMetricID- 시간 상에서 연관성이 있는 메트릭의 데이터베이스 이름
2) minMetric- 불린값(boolean) 참으로 간주되는 메트릭에 대한 최소값으로서, 그보다 작으면 거짓
3) minMetric- 불린값 참으로 간주되는 메트릭에 대한 최대값으로서, 그보다 크면 거짓
4) samplingInterval- KPI 보고들 사이의 분단위 시간(예컨대, 15 분)으로서, 양의 정수
5) maxIntervals- 100% 상관성을 위한 메트릭 임계치를 초과해야만 하는, 필터 탭 당 연속적인 샘플링 구간들의 개수로서, 양의 정수
6) tapInterval- 필터 탭들 간의 샘플링 구간들의 개수로서, 양의 정수
7) maxTaps- 필터 탭들의 개수 (시간상 되돌아 본 필터의 시간구간)
8) minCorrelationScore- 상관된 것으로 여겨지는 샘플링 구간들의 연속적인 세트에 대한 최소 평균 스코어 (상관의 최대 샘플링 구간 지속시간을 결정하는데 사용됨)
다음의 항목들은 본 발명의 일 실시예에 따른 다양한 필터 출력들의 예들의 완전하지 않은 리스트이다.
1) correlationScore- 가장 초기의 maxInterval 구간 상에서 메트릭에 대해 특정된 필터의 앙상블 평균 상관 [0,100]%
2) correlationHist- 상기 correlationScores의 구간 빈들을 샘플링하는 것에 의한 히스토그램으로서, 스코어 [0,100]%의 1x tapInterval 어레이
3) maxCorrelationSpan- 상관된 샘플링 구간들의 최대값으로서, 양의 정수(0, …, tapInterval)
상기의 설명에 기반하여, 상관 필터는 특정 타겟 셀 및 클러스터가 반복적이고 지속하는 부하 밸런싱 기회들을 언제 가질 가능성이 있는지를 판단하는 방식을 제공한다. 만약 상관 스코어가 임계값을 초과하면, 타겟 셀 및 클러스터의 부하 불균형을 감소시키고, 그에 따라 기회 동안 이들 셀들에 대한 부하 밸런싱 메트릭에 영향을 미치는 부하 밸런싱 동작이 취해질 수도 있다.
도 15를 다시 참조하면, 타겟 셀 및 클러스터의 액티브 로드 밸런싱 관리의 상태가 프로세스(1510)에서 기록되며 그에 따라, 상관 필터가 상관 스코어를 결정할 때 이 정보를 고려할 수도 있다. 예컨대, 일 실시예에서, 상관 필터는 부하 밸런싱되고 있는 클러스터에서 셀들에 대한 액티브 부하 밸런싱 관리의 시간 주기를 무시할 수도 있다. 다른 실시예에서, 액티브 부하 밸런싱 시간 동안 셀로부터의 데이터는 부하 밸런싱되지 않는 시간 동안 데이터로부터 별도로 평가된다.
일 실시예에서, 부하 밸런싱 시간의 개별 평가는 부하 밸런싱 동작의 효율을 평가하는 것을 포함할 수도 있다. 예컨대, 셀 점유율이 과부하 조건보다 작지만, 임계값을 여전히 초과하는 경우, 부하 밸런싱 동작은 적절히 수행되지 않을 수도 있다. 이러한 실시예에서, 소정의 안테나 조절은 고려된 부하 밸런싱 동작의 성능을 향상시키도록 다시 계산될 수도 있다.
타겟 셀 및 클러스터가 식별된 기회 동안 액티브 부하 밸런싱 관리 하에 있다면, 밸런싱이 상기 기회 동안 더 이상 요구되지 않음을 나타낼 때까지 하나 이상의 측정 구간들이 연속적인 예측된 기회들 동안 상기 상태를 유지한다. 이 이벤트에 도달하면, 프로세스(1512)에서, 타겟 셀 및 관련 클러스터 셀들에 대한 반복적이고 지속적인 부하 밸런싱 기회들을 상관 필터가 다시 검색하도록 하는 LB 기회 상태의 일부 또는 전체는 클리어될 수도 있다. 또한, 프로세스(1514)에서, 겹치는 클러스터들 간의 교착상태(deadlocks)를 방지하기 위하여, 타겟 셀 및 그의 클러스터가 액티브 부하 밸런싱 관리 하에 있으며, 그 상태는 마킹 또는 락킹되며, 그에 따라 겹치는 셀들을 가지는 어떤 다른 타겟 셀 및 클러스터도 공유된 셀들의 구성에 영향을 미칠 수 없다.
프로세스(1500)가 특정 순서에 따라 기술되었더라도, 본 발명의 실시예들은 이 순서에 한정되지 않는다. 실시예들에서, 도 15의 다양한 서브-프로세스들이 다양한 시간에서 다른 순서로 수행될 수도 있고, 또는 전혀 수행되지 않을 수도 있다.
본 발명의 실시예들은 부하 밸런싱 동작을 수행할지 여부를 결정하는 프로세스(1700)를 포함할 수 있다. 프로세스(1702)는 예컨대, 프로세스(1514)에서 부하 밸런싱 상태가 락상태에 있었는지를 판단한다. 만약 상태가 락상태이면, 더 이상 부하 밸런싱을 수행하지 않는다. 프로세스(1704)에서, 프로세스(1100)에서 계산된 부하 밸런싱 스코어는 임계값과 비교된다. 만약 부하 밸런싱 스코어가 임계값을 초과하면, 부하 밸런싱 기회가 있으며, 부하 밸런싱이 수행된다.
일 실시예에서, 상관 필터로부터의 상관 스코어를 임계값과 비교하는 프로세스(1706)가 수행될 수도 있다. 만약 상관 스코어가 임계값을 초과하면, 부하 밸런싱은 스코어가 초과하는 시간 주기 동안 수행될 수도 있다.
일단 특정 타겟 셀 및 관련 클러스터가 부하 밸런싱 동작을 위하여 선택되면, 클러스터에서 상대적인 셀 커버리지가 조절된다. 다양한 안테나 조절의 예들은 RET, RAS, RAB및 송신 전력의 조절을 포함한다. 일 실시예에서, 클러스터가 충분히 부하 밸런싱되었는 지의 여부 또는 클러스터 성능이 감소하고(예컨대, 커버리지 홀의 검출) 부하 밸런싱이 중단되어야 하는 지의 여부를 평가하기 위하여, 안테나 구성은 보고된 KPI 피드백을 이용하여 증가시키는 단계들로 수행된다.
도 18은 본 발명의 일 실시예에 따른 안테나를 조절하는 프로세스(600)를 도시하고 있다. 프로세스(1802)에서, 증분적 안테나 조절을 위한 증분값이 결정된다. 일 실시예에서, 증분값은 원호(arc)의 1도이다. 1도 증가시키는 단계들은 부하 밸런싱 조건들을 향하여 점진적으로 이동하는데 사용될 수 있으며 이와 동시에, 문제를 검출하기 전에 클러스터의 커버리지 및 용량 성능을 상당히 감소시키는 리스크를 감소시킨다. 다른 실시예들에서, 증분은 1도보다 작을 수 있고, 2도, 5도 등이 될 수 있다. 만약 부하 밸런싱이 요구 기반으로 적용된다면, 더 작은 증분이 사용될 수 있는 반면, 시간 상에서 부하 밸런싱 패턴이 구축된다면, 더 큰 증분이 사용될 수 있다.
증분이 설정된 후에, 클러스터 내에서 하나 이상의 안테나들의 증분적 조절(1804)은 클러스터의 셀들 간의 부하 밸런싱을 복원할 목적으로 수행된다. 예컨대, RET 부하 밸런싱의 경우에, 이는 클러스터 불균형을 레벨화하기 위하여 과부하된 타겟 셀의 추가적인 다운틸트 (그 커버리지 영역을 감소시킴) 및 타겟 셀로부터 UE를 가장 잘 받아들일 수 있는 셀들의 업틸트에 의해 달성된다. 다양한 실시예들에서, 유사한 증분적 조절/모니터링 전략들이 RET, RAS, 및 RAB 안테나 조절 또는 송신 전력의 조합을 이용하여 부하 나눔의 다른 프로세스들을 위하여 채용될 수 있다.
RAN 성능 KPI들은 프로세스(1806)에서 추기적으로 보고되어 부하 밸런싱 조건 및 클러스터 성능을 반영하는 수치적 스코어를 도출한다. 일 실시예에서, KPI는 커버리지 및/또는 용량을 나타낼 수 있다. 클러스터 성능은 프로세스(1808)에서 검사되며, 만약 큰 네가티브 이동 또는 네가티브 이동의 추세가 있다면, 알고리즘은 안테나 구성을 다시 더 많은 KPI 보고들을 수집하기 위하여 다시 회전되기 전에 프로세스(1810)에서 이전 설정으로 되돌아 갈 수 있다. 만약 클러스터 성능이 안정적으로 유지하면, 클러스터에서 부하 밸런싱의 상태는 프로세스(1812)에서 검사된다. 만약 검사가 추가적인 조절을 요구한다면, 프로세스(1800)은 증분적 조절의 프로세스(1804)로 되돌아갈 수 있으며, 또는 다른 실시예에서는 프로세스가 프로세스(1806)에 따른 대부분의 최근 KPI 보고들을 계속적으로 모니터링한다.
프로세스(1806)에서 KPI가 보고되는 방법의 일 예는 프로세스(1808)에서 사용될 수도 있는 전체 클러스터 성능이 커버리지 홀들 존재가 추론될 수 있는 메트릭을 사용하는 것에 관련될 수 있다. 예컨대, 호/세션 중단율 및 핸드오버 성공율은 이동 UE가 열악한 커버리지의 영역을 지나갈 때 증가할 수도 있다. 클러스터에 대한 액티브 UE 점유율 및 처리량 성능에서의 추세와 같은 다른 타입의 메트릭이 클러스터 영역 커버리지가 부하 밸런싱이 되도록 조절되는 것과 같이 커버리지 이슈가 나타나는지를 평가하기 위하여 또한 사용될 수 있다.
클러스터 안테나 구성이 조절되는 것에 따라, 프로세스(1812)는 최적의 부하 밸런싱이 달성되어 추가적인 조절이 필요하지 않는지 여부를 평가한다. 이 조절을 위한 다양한 기준들이 가능하다. 예컨대, 전술한 다양한 부하 밸런싱 메트릭들은 임계값과 비교될 수 있는데, 만약 임계값보다 작으면 더 이상 부하 밸런싱 동작은 필요하지 않게 된다.
선택적으로, 만약 획득 가능하면, UE 처리량 통계는 중간 UE 처리량이 클러스터에 대해 최대치인 것과 같은 최적의 안테나 구성을 식별하도록 누적 분포 함수(cumulative distribution function: CDF)에서 사용될 수 있다. 다른 실시예에서, 각각의 액티브 UE가 그가 제공하는 네트워크 부하의 측면에서 대략 동일한 것으로 추정하는 주요 메트릭으로서, 액티브 UE 셀 점유율을 사용하여 부하가 밸런싱될 수 있다.
도 19의 프로세스(1900)에 의해 도시된 바와 같이, 다른 실시에에서, NRC 또는 외부 플랫폼과 통합될 수 있는, 무선 커버리지 예측 엔진은 먼저 셀들의 불균형한 클러스터를 포함하는 무선 네트워크의 부분을 위한 부하를 최적화하는데 사용된다. 커버리지 예측은 실시간으로 일어나며, 과부하 이벤트에 의해 트리거된다. 예측 엔진은 기존 KPI 보고들 및 시작하는 안테나 구성에 기반하여 셀 당 UE의 액티브 개수에 따라 활성화될 수도 있다. 만약 획득가능하면, 예측은 입력으로서 셀 영역들에 관하여 UE의 위치 및/또는 처리량을 수용할 수도 있다. 다른 실시예에서, UE 위치 및 처리량은 원격으로 할당될 수도 있다.
예측 엔진은 표준 최적화 기술들(예컨대, 시뮬레이션된 어닐링)을 사용하여 가변 파라미터로서 클러스터 안테나 구성을 사용하여 클러스터를 부하 밸런싱한다. 일 실시예에서, 결과적으로 예측된 최적 안테나 구성은 구성 제어 루프에 대한 종점 조건들 중 하나로서 사용된다.
부하 밸런싱 동작에서 안테나 조절의 프로세스(1900)는 클러스터 부하 불균형이 검출될 때 개시한다. 프로세스(1902)에서, 이동 커버리지 예측 엔진은 만약 획득가능하다면 액티브 단말 점유율, 위치, 및 처리량 파라미터들에 의해 활성화된다. 실시예들에서, 프로세스(1902)에서 발생된 데이터는 이력 데이터 또는 현재의 데이터일 수도 있다. 다른 실시예에서, 이들 값들은 무작위로 할당된다.
프로세스(1904)에서, 무선 커버리지 예측 엔진은 표준 최적화 방법들에 의해 도출된 일련의 추정들 및 단계(1812)를 수행하는데 사용되는 기준과 같은 클러스터 부하 밸런싱 기준 및 최소 그리드 커버리지 기준 모두를 만족하는 목적 기능을 생성하는데 사용된다. 일 실시예에서, 예측 엔진은 API로서 NRC에 포함될 수도 있다. 프로세스(1906)에서, 최적화 목적을 달성하는 최적의 안테나 구성은 프로세스(1904)의 부하 밸런싱 시뮬레이션으로부터 결정된다. 일 실시예에서, 솔루션이 발견되지 않으면, 제어 루프는 시뮬레이션 없이 전술한 도 18의 실시예와 같은 실시예로 디폴트될 수도 있다.
다음, 프로세스(1908)이 안테나를 조절하기 위하여 수행된다. 그러나, 프로세스(1800)의 단계(1804)와는 대조적으로, 구성이 프로세스(1906)에서 출력되었으면, 안테나 구성에서의 증분들은 경험적으로 보다는 시작과 종점 설정 사이에서 단계적으로 조절된다.
획득가능한 구성이 없다면, 프로세스(1908)는 프로세스(1804)와 유사한 증분적 조절을 사용한다. 프로세스(1908)에서 이루어질 수도 있는 조절의 예는 동시적인 타겟 셀의 RET 다운틸트와 이웃 셀의 RET 업틸트이다. 프로세스들(1910, 1912, 1914 및 1916)은 전술한 프로세스들(1806, 1808, 1810 및 1812)에 각각 대응한다. 일 실시예에서, 하나 이상의 안테나의 조절 후에, 구성은 프로세스(1918)에서 종점에 대해 체크되고, 일단 도달되면 추가적인 조절을 끝낸다.
사전의 시뮬레이션의 한계는 무선 커버리지 예측 엔진의 사용, 예측 엔진 구성, 증가된 처리 복잡도 및 최적의 시뮬레이션된 부하 밸런싱 조건을 찾는 것을 시도하는데 걸리는 지연이다. 시뮬레이션한 네트워크 무선 환경과 실제 네트워크 무선 환경에서의 차이로 인해, 클러스터 안테나들에 대한 시뮬레이션된 부하 밸런싱 구성은 실제와는 매칭되지 않으며, 이는 시스템이 부하 밸런싱 조건이 되기 전에 헌팅을 멈추도록 한다. 그러나, 선행 시뮬레이션의 이점들은 실제 네트워크에서 커버리지 홀들이 발생하지 않는 것을 더 잘 보장한다는 것이며, KPI 피드백을 갖는 사후 검출의 중요성을 감소시키며, 작은 증분을 사용하는 본 발명보다 더 신속하게 동작할 수도 있다. 시뮬레이션을 위하여 획득가능한 컴퓨팅 자원들에 기반하여, KPI 보고들이 시뮬레이션 시간보다 긴 시간 구간에서 획득가능함을 가정한 실제 시스템에서는 추가적인 지연이 인자로 될 가능성이 낮다.

Claims (20)

  1. 셀룰러 네트워크에서 셀들의 클러스터에 대한 부하 밸런싱 메트릭(load balancing metric)을 결정하고, 부하 밸런싱 메트릭을 이용하여 부하 밸런싱을 수행하는 시스템에 있어서,
    프로세서; 및
    컴퓨터 실행가능한 명령들이 저장된 비일시적인 컴퓨터 판독가능한 매체를 포함하고,
    상기 프로세서에 의하여 상기 컴퓨터 실행가능한 명령들이 실행될 때, 상기 컴퓨터 실행가능한 명령들이 수행하는 방법은:
    부하 밸런싱 동작을 위한 타겟인 타겟 셀 및 복수의 인접 셀들을 포함하는 셀들의 클러스터를 정의하는 단계;
    상기 타겟 셀에 대한 사용 메트릭을 측정하는 단계;
    상기 클러스터에서 남은 셀들에 대한 사용 메트릭을 측정하는 단계; 및
    상기 클러스터에서 상기 타겟 셀에 대한 사용 메트릭 값 및 상기 남은 셀들에 대한 사용 메트릭 값들을 이용하여 상기 부하 밸런싱 메트릭을 계산하는 단계를 포함하는 것을 특징으로 하는 시스템.
  2. 청구항 1에 있어서,
    상기 부하 밸런싱 메트릭을 계산하는 단계는,
    각각의 셀에 대한 상기 사용 메트릭에 기반하여 상기 타겟 셀을 포함하는 상기 클러스터에서 각 셀에 대한 용량값을 계산하는 단계;
    상기 타겟 셀에 대한 용량값과 상기 복수의 인접 셀들 각각에 대한 용량값들 사이의 복수의 차이들을 결정하는 단계; 및
    상기 복수의 차이들에 기반하여 통계값을 계산하는 단계를 더 포함하는 것을 특징으로 하는 시스템.
  3. 청구항 2에 있어서,
    상기 컴퓨터 실행가능한 명령들이 저장된 비일시적인 컴퓨터 판독가능한 매체는, 상기 프로세서에 의해 실행될 때, 상기 프로세서가 상기 통계값과 미리결정된 최대 점유율에 관련하여 정규화된 가중 인자를 곱하도록 하는 명령들을 더 포함하는 것을 특징으로 하는 시스템.
  4. 청구항 2에 있어서,
    상기 용량값은 상기 셀의 프로파일링된 피크 총 처리량(profiled peak aggregate throughput)에 대해 결정되는 것을 특징으로 하는 시스템.
  5. 청구항 2에 있어서,
    상기 부하 밸런싱(LB) 메트릭을 계산하는 단계는 다음 수학식:
    Figure pct00004
    에 따라 수행되며,
    상기 수학식에서, CTarget은 상기 타겟 셀에 대한 여유 용량 메트릭이고, Ci는 상기 타겟 셀을 포함하지 않는 클러스터의 i번째 셀에 대한 여유 용량 메트릭이며, N은 상기 타겟 셀을 포함하지 않는 클러스터에서 셀들의 개수인 것을 특징으로 하는 시스템.
  6. 청구항 1에 있어서,
    상기 부하 밸런싱 메트릭을 계산하는 단계는,
    상기 클러스터에서 상기 남은 셀들에 대한 용량 메트릭 값들의 평균을 계산하는 단계; 및
    상기 타겟 셀에 대한 여유 용량 메트릭과 상기 남은 셀들에 대한 용량 메트릭 값들의 평균 사이의 비율을 계산하는 단계를 포함하는 것을 특징으로 하는 시스템.
  7. 청구항 6에 있어서,
    상기 컴퓨터 실행가능한 명령들이 저장된 비일시적인 컴퓨터 판독가능한 매체는, 상기 프로세서에 의해 실행될 때, 상기 프로세서가 상기 메트릭이 구간 [0,1]에서 변화되도록 상기 비율을 구성된 최대값으로 스케일링하게 하는 명령들을 더 포함하는 것을 특징으로 하는 시스템.
  8. 청구항 1에 있어서,
    상기 타겟 셀에 대한 상기 사용 메트릭 및 상기 클러스터의 상기 남은 셀들에 대한 상기 사용 메트릭들은 상향링크 및 하향링크 전송들에 대하여 개별적으로 측정되며,
    상기 프로세서에 의해 수행되는 상기 방법은, 상기 상향링크 사용 메트릭과 상기 하향링크 사용 메트릭을 비교하여 상기 상향링크 사용 메트릭 및 상기 하향링크 사용 메트릭 중 작은 것을 사용하여 상기 부하 밸런싱 메트릭을 계산하는 단계를 더 포함하는 것을 특징으로 하는 시스템.
  9. 청구항 1에 있어서,
    상기 부하 밸런싱 메트릭은 임계값과 비교되며; 및
    부하 밸런싱 동작은 상기 부하 밸런싱 메트릭이 상기 미리 결정된 값을 초과할 때 상기 타겟 셀에 대해 수행되는 것을 특징으로 하는 시스템.
  10. 청구항 9에 있어서,
    상기 부하 밸런싱 메트릭은 부하 밸런싱 동작 동안 임계값과 비교되고, 상기 타겟 셀을 서빙하는 안테나는 상기 부하 밸런싱 동작이 상기 임계값을 초과하지 않을 때 원래의 구성으로 되돌아 가는 것을 특징으로 하는 시스템.
  11. 셀룰러 네트워크에서 셀들의 클러스터에 대한 부하 밸런싱 메트릭을 결정하는 방법에 있어서,
    로드 밸런싱 동작을 위한 타겟인 타겟 셀 및 복수의 인접 셀들을 포함하는 셀들의 클러스터를 정의하는 단계;
    상기 타겟 셀에 대한 사용 메트릭을 측정하는 단계;
    상기 클러스터에서 남은 셀들에 대한 사용 메트릭을 측정하는 단계; 및
    상기 클러스터에서 상기 타겟 셀에 대한 사용 메트릭 값 및 상기 남은 셀들에 대한 사용 메트릭 값들을 이용하여 상기 로드 밸런싱 메트릭을 계산하는 단계를 포함하는 것을 특징으로 하는 방법.
  12. 청구항 11에 있어서,
    상기 부하 밸런싱 메트릭을 계산하는 단계는,
    각각의 셀에 대한 상기 사용 메트릭에 기반하여 상기 타겟 셀을 포함하는 상기 클러스터에서 각 셀에 대한 용량값을 계산하는 단계;
    상기 타겟 셀에 대한 용량값과 상기 복수의 인접 셀들 각각에 대한 용량값들 사이의 차이들을 결정하는 단계; 및
    상기 복수의 차이들에 기반하여 통계값을 계산하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  13. 청구항 12에 있어서,
    상기 통계값과 미리 결정된 최대 점유율에 관하여 정규화된 가중 인자를 곱하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  14. 청구항 12에 있어서,
    상기 용량값은 상기 셀의 프로파일링된 피크 총 처리량에 대해 결정되는 것을 특징으로 하는 방법.
  15. 청구항 12에 있어서,
    상기 부하 밸런싱(LB) 메트릭을 계산하는 단계는 다음 수학식:
    Figure pct00005
    에 따라 수행되며,
    상기 수학식에서, CTarget은 상기 타겟 셀에 대한 여유 용량 메트릭이고, Ci는 상기 타겟 셀을 포함하지 않는 클러스터의 i번째 셀에 대한 여유 용량 메트릭이며, N은 상기 타겟 셀을 포함하지 않는 클러스터에서 셀들의 개수인 것을 특징으로 하는 방법.
  16. 청구항 11에 있어서,
    상기 부하 밸런싱 메트릭을 계산하는 단계는,
    상기 클러스터에서 상기 남은 셀들에 대한 용량 메트릭 값들의 평균을 계산하는 단계; 및
    상기 타겟 셀에 대한 여유 용량 메트릭과 상기 남은 셀들에 대한 용량 메트릭 값들의 평균 사이의 비율을 계산하는 단계를 포함하는 것을 특징으로 하는 방법.
  17. 청구항 11에 있어서,
    상기 타겟 셀에 대한 상기 사용 메트릭 및 상기 클러스터의 상기 남은 셀들에 대한 상기 사용 메트릭들은 상향링크 및 하향링크 전송들에 대하여 개별적으로 측정되며,
    상기 방법은 상기 상향링크 사용 메트릭과 상기 하향링크 사용 메트릭을 비교하여 상기 상향링크 사용 메트릭 및 상기 하향링크 사용 메트릭 중 작은 것을 사용하여 상기 부하 밸런싱 메트릭을 계산하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  18. 컴퓨터 실행가능한 명령들이 저장된 비일시적인 컴퓨터 판독가능한 매체로서, 프로세서에 의해 실행될 때,
    로드 밸런싱 동작을 위한 타겟인 타겟 셀 및 복수의 인접 셀들을 포함하는 셀들의 클러스터를 정의하는 단계;
    상기 타겟 셀에 대한 사용 메트릭을 측정하는 단계;
    상기 클러스터에서 남은 셀들에 대한 사용 메트릭을 측정하는 단계; 및
    상기 클러스터에서 상기 타겟 셀에 대한 사용 메트릭 값 및 상기 남은 셀들에 대한 사용 메트릭 값들을 이용하여 상기 로드 밸런싱 메트릭을 계산하는 단계를 포함하는 것을 특징으로 하는 비일시적인 컴퓨터 판독가능한 매체.
  19. 청구항 18에 있어서,
    상기 부하 밸런싱 메트릭을 계산하는 단계는,
    각각의 셀에 대한 상기 사용 메트릭에 기반하여 상기 타겟 셀을 포함하는 상기 클러스터에서 각 셀에 대한 용량값을 계산하는 단계;
    상기 타겟 셀에 대한 용량값과 상기 복수의 인접 셀들 각각에 대한 용량값들 사이의 차이들을 결정하는 단계; 및
    상기 복수의 차이들에 기반하여 통계값을 계산하는 단계를 더 포함하는 것을 특징으로 하는 비일시적인 컴퓨터 판독가능한 매체.
  20. 청구항 18에 있어서,
    상기 부하 밸런싱 메트릭을 계산하는 단계는,
    상기 클러스터에서 상기 남은 셀들에 대한 용량 메트릭 값들의 평균을 계산하는 단계; 및
    상기 타겟 셀에 대한 여유 용량 메트릭과 상기 남은 셀들에 대한 용량 메트릭 값들의 평균 사이의 비율을 계산하는 단계를 포함하는 것을 특징으로 하는 비일시적인 컴퓨터 판독가능한 매체.
KR1020157000146A 2012-06-04 2013-06-04 셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템 KR20150021561A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261655375P 2012-06-04 2012-06-04
US61/655,375 2012-06-04
PCT/US2013/044171 WO2013184719A1 (en) 2012-06-04 2013-06-04 Method & system for cellular network load balance

Publications (1)

Publication Number Publication Date
KR20150021561A true KR20150021561A (ko) 2015-03-02

Family

ID=49670828

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157000146A KR20150021561A (ko) 2012-06-04 2013-06-04 셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템

Country Status (6)

Country Link
US (2) US20160174103A9 (ko)
EP (1) EP2856794A4 (ko)
JP (1) JP2015525027A (ko)
KR (1) KR20150021561A (ko)
CN (1) CN104584622A (ko)
WO (1) WO2013184719A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210015728A (ko) * 2019-08-01 2021-02-10 티-모바일 유에스에이, 인크. 최적 네트워크 성능 개선 해결책들 선택 시스템들 및 방법들
WO2021194176A1 (ko) * 2020-03-23 2021-09-30 삼성전자 주식회사 무선 통신 시스템에서 통신망 부하를 예측하고 로드 밸런싱을 수행하기 위한 방법 및 장치
US11153765B1 (en) 2020-05-15 2021-10-19 T-Mobile Usa, Inc. Capacity planning of telecommunications network by detecting anomalies in site behavior
US11343683B2 (en) 2020-04-22 2022-05-24 T-Mobile Usa, Inc. Identification and prioritization of optimum capacity solutions in a telecommunications network
US11350289B2 (en) 2020-05-14 2022-05-31 T-Mobile Usa, Inc. Identification of indoor and outdoor traffic usage of customers of a telecommunications network
US11418993B2 (en) 2020-05-07 2022-08-16 T-Mobile Usa, Inc. Management of telecommunications network congestion on roadways

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6014041B2 (ja) 2010-10-15 2016-10-25 シーレイト リミテッド ライアビリティー カンパニーSearete Llc 表面散乱アンテナ
JP5772345B2 (ja) * 2011-07-25 2015-09-02 富士通株式会社 パラメータ設定装置、コンピュータプログラム及びパラメータ設定方法
US9226211B2 (en) * 2013-01-17 2015-12-29 Intel IP Corporation Centralized partitioning of user devices in a heterogeneous wireless network
US9385435B2 (en) 2013-03-15 2016-07-05 The Invention Science Fund I, Llc Surface scattering antenna improvements
WO2014208925A1 (en) * 2013-06-24 2014-12-31 Lg Electronics Inc. Method and apparatus for transmitting split availability of cell in wireless communication system
WO2015044708A1 (en) * 2013-09-24 2015-04-02 Qatar University Qstp-B Methods of optimizing tilt angle of an antenna
CN106063313B (zh) * 2013-10-10 2019-10-01 诺基亚通信公司 撤消对通信网络做出的改变
US9591536B2 (en) * 2013-10-18 2017-03-07 At&T Mobility Ii Llc Cell user occupancy indicator to enhance intelligent traffic steering
WO2015065258A1 (en) * 2013-11-01 2015-05-07 Telefonaktiebolaget L M Ericsson (Publ) Managing radio traffic load
US9871291B2 (en) 2013-12-17 2018-01-16 Elwha Llc System wirelessly transferring power to a target device over a tested transmission pathway
US9179346B1 (en) 2014-02-24 2015-11-03 Sprint Spectrum L.P. Busy period determination based on weighted performance indicators
US10367690B2 (en) 2014-04-30 2019-07-30 Nokia Solutions And Networks Oy Verification in self-organizing networks
US9711852B2 (en) 2014-06-20 2017-07-18 The Invention Science Fund I Llc Modulation patterns for surface scattering antennas
US10446903B2 (en) 2014-05-02 2019-10-15 The Invention Science Fund I, Llc Curved surface scattering antennas
US9591491B2 (en) 2014-05-29 2017-03-07 T-Mobile Usa, Inc. Self-organizing wireless backhaul among cellular access points
WO2015199591A1 (en) * 2014-06-26 2015-12-30 Telefonaktiebolaget L M Ericsson (Publ) Methods, nodes and system for enabling redistribution of cell load
ES2864900T3 (es) * 2014-09-08 2021-10-14 Nokia Solutions & Networks Oy Método y sistema de puntuación para una verificación sólida de las acciones de configuración
KR101872658B1 (ko) * 2014-11-29 2018-06-28 후아웨이 테크놀러지 컴퍼니 리미티드 무선 인터페이스 용량 밀도를 조절하기 위한 방법 및 장치
CN107210799B (zh) * 2015-02-02 2021-01-12 瑞典爱立信有限公司 天线波束信息的利用
US10355895B2 (en) 2015-03-11 2019-07-16 Phluido, Inc. Baseband unit with adaptive fronthaul link for a distributed radio access network
CN107637115B (zh) * 2015-03-19 2021-09-14 诺基亚通信公司 验证移动无线电通信网络的操作的方法
US9538331B2 (en) 2015-06-03 2017-01-03 Vivint, Inc. Narrow beam mesh network
US10075855B2 (en) * 2015-06-04 2018-09-11 Cisco Technology, Inc. Mobile network optimization
KR20190087292A (ko) 2015-06-15 2019-07-24 시리트 엘엘씨 빔형성 안테나를 이용한 통신을 위한 방법 및 시스템
US20170013475A1 (en) * 2015-07-08 2017-01-12 Telefonaktiebolaget L M Ericsson (Publ) Performance Improvement in Wireless Communications Networks
CN106375355B (zh) * 2015-07-20 2020-02-28 中兴通讯股份有限公司 负载均衡处理方法及装置
EP3326405B1 (en) * 2015-07-22 2022-06-01 Telefonaktiebolaget LM Ericsson (publ) Antenna settings in wireless communications networks
CN106572503B (zh) * 2015-10-09 2021-07-06 上海中兴软件有限责任公司 非专网用户迁移方法及装置
US10608734B2 (en) 2015-10-22 2020-03-31 Phluido, Inc. Virtualization and orchestration of a radio access network
US9756518B1 (en) * 2016-05-05 2017-09-05 Futurewei Technologies, Inc. Method and apparatus for detecting a traffic suppression turning point in a cellular network
US10217060B2 (en) 2016-06-09 2019-02-26 The Regents Of The University Of California Capacity augmentation of 3G cellular networks: a deep learning approach
US10362520B2 (en) * 2016-06-09 2019-07-23 The Regents Of The University Of California Congestion reduction of LTE networks
CN105979549B (zh) * 2016-07-06 2019-11-15 北京信息科技大学 一种负载均衡方法及装置
WO2018017468A1 (en) 2016-07-18 2018-01-25 Phluido, Inc. Synchronization of radio units in radio access networks
US10356692B2 (en) * 2016-07-20 2019-07-16 International Business Machines Corporation Beacon placement and distribution
US10588094B2 (en) * 2016-09-27 2020-03-10 T-Mobile Usa, Inc. Load-based power adjustments for cellular communication sites
CN109804674B (zh) * 2016-10-04 2021-07-27 信实通信有限公司 用于从覆盖区域减轻覆盖盲区的系统和方法
US10361481B2 (en) 2016-10-31 2019-07-23 The Invention Science Fund I, Llc Surface scattering antennas with frequency shifting for mutual coupling mitigation
CN108260165B (zh) * 2016-12-28 2021-03-05 中国移动通信集团山东有限公司 一种扇区间负载均衡的方法与装置
US10530453B1 (en) * 2017-08-15 2020-01-07 Sprint Communications Company L.P. Adaptive broadcast beam generation of FD-MIMO systems
US10833381B2 (en) 2017-11-08 2020-11-10 The Invention Science Fund I Llc Metamaterial phase shifters
US12016084B2 (en) 2018-01-04 2024-06-18 Commscope Technologies Llc Management of a split physical layer in a radio area network
SG11202008308YA (en) 2018-03-19 2020-09-29 Pivotal Commware Inc Communication of wireless signals through physical barriers
WO2020021504A1 (en) * 2018-07-27 2020-01-30 Reliance Jio Infocomm Limited System and method for load balancing in a cellular network
US10862545B2 (en) * 2018-07-30 2020-12-08 Pivotal Commware, Inc. Distributed antenna networks for wireless communication by wireless devices
CN112534963A (zh) * 2018-08-09 2021-03-19 苹果公司 Ran条件和小区复合负载指示符
CN112840608A (zh) * 2018-10-22 2021-05-25 康普技术有限责任公司 用于长期演进演进节点b中的分组处理的负载测量和负载均衡
US10522897B1 (en) 2019-02-05 2019-12-31 Pivotal Commware, Inc. Thermal compensation for a holographic beam forming antenna
US10468767B1 (en) 2019-02-20 2019-11-05 Pivotal Commware, Inc. Switchable patch antenna
WO2020197449A1 (en) * 2019-03-22 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node and method performed therein for handling a transmission in a wireless communication network
EP3963729A1 (en) * 2019-05-02 2022-03-09 Telefonaktiebolaget LM Ericsson (publ) Determining available capacity per cell partition
WO2020254922A1 (en) * 2019-06-17 2020-12-24 Nokia Technologies Oy Adaptive beam reconfiguration for load redistribution
US10734736B1 (en) 2020-01-03 2020-08-04 Pivotal Commware, Inc. Dual polarization patch antenna system
US11296936B2 (en) * 2020-02-06 2022-04-05 T-Mobile Usa, Inc. Network element association using network data
JP7427510B2 (ja) * 2020-04-06 2024-02-05 株式会社東芝 情報処理装置、情報処理方法およびプログラム
US11069975B1 (en) 2020-04-13 2021-07-20 Pivotal Commware, Inc. Aimable beam antenna system
US20210360474A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Methods and apparatus for network load balancing optimization
US11190266B1 (en) 2020-05-27 2021-11-30 Pivotal Commware, Inc. RF signal repeater device management for 5G wireless networks
US11032361B1 (en) * 2020-07-14 2021-06-08 Coupang Corp. Systems and methods of balancing network load for ultra high server availability
US11026055B1 (en) 2020-08-03 2021-06-01 Pivotal Commware, Inc. Wireless communication network management for user devices based on real time mapping
US11297606B2 (en) 2020-09-08 2022-04-05 Pivotal Commware, Inc. Installation and activation of RF communication devices for wireless networks
EP4229952A4 (en) * 2020-10-14 2024-06-19 Telefonaktiebolaget LM Ericsson (publ) METHOD AND APPARATUS FOR COMMUNICATION MANAGEMENT
EP4278645A1 (en) 2021-01-15 2023-11-22 Pivotal Commware, Inc. Installation of repeaters for a millimeter wave communications network
WO2022164930A1 (en) 2021-01-26 2022-08-04 Pivotal Commware, Inc. Smart repeater systems
US11451287B1 (en) 2021-03-16 2022-09-20 Pivotal Commware, Inc. Multipath filtering for wireless RF signals
US20240196272A1 (en) * 2021-04-30 2024-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods for Predicting and Signaling Traffic Status and Migration
US11470490B1 (en) 2021-05-17 2022-10-11 T-Mobile Usa, Inc. Determining performance of a wireless telecommunication network
EP4367919A1 (en) 2021-07-07 2024-05-15 Pivotal Commware, Inc. Multipath repeater systems
CN114401527A (zh) * 2021-12-21 2022-04-26 中国电信股份有限公司 一种无线网络的负荷识别方法、装置及存储介质
WO2023205182A1 (en) 2022-04-18 2023-10-26 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery
US20240205097A1 (en) * 2022-07-22 2024-06-20 Rakuten Symphony Singapore Pte. Ltd. New site impact analysis for network improvement
CN116894469B (zh) * 2023-09-11 2023-12-15 西南林业大学 端边云计算环境中的dnn协同推理加速方法、设备及介质

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448621A (en) * 1993-08-02 1995-09-05 Motorola, Inc. Dynamic reallocation of spectral capacity in cellular communication systems
GB2361385A (en) * 2000-04-12 2001-10-17 Queen Mary & Westfield College Intelligent control of radio resorces in a wireless network
JP4252842B2 (ja) * 2003-05-22 2009-04-08 株式会社エヌ・ティ・ティ・ドコモ 管理ノード装置、無線通信システム、負荷分散方法およびプログラム
US8005055B2 (en) * 2003-07-23 2011-08-23 Interdigital Technology Corporation Method and apparatus for determining and managing congestion in a wireless communications system
EP1530388A1 (en) * 2003-11-06 2005-05-11 Matsushita Electric Industrial Co., Ltd. Transmission power level setting during channel assignment for interference balancing in a cellular wireless communication system
TWI511583B (zh) * 2004-05-07 2015-12-01 Interdigital Tech Corp 配置具增強上鏈服務胞元之無線通信系統及方法
EP1860900A1 (en) * 2006-05-23 2007-11-28 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO System and method for radio network planning with HSDPA analysis
JP4788930B2 (ja) * 2006-05-29 2011-10-05 日本電気株式会社 無線アクセス網の構成管理方法、構成管理システムおよび無線アクセス網管理装置
EP1895801A1 (en) * 2006-08-30 2008-03-05 Nokia Siemens Networks Gmbh & Co. Kg Method to balance traffic load between nearby LTE/WiMAX cells grouped into inner and border constellations
KR100926363B1 (ko) * 2007-08-23 2009-11-10 주식회사 케이티 링크 균형 확인 장치 및 그 방법
US8301156B2 (en) * 2008-09-25 2012-10-30 Optimi Corporation Load balancing for capacity improvement in mobile wireless communication networks
WO2010099338A2 (en) * 2009-02-25 2010-09-02 Chaz Immendorf Autonomously determining network capacity and load balancing amongst multiple network cells
KR101585428B1 (ko) * 2009-04-02 2016-01-18 삼성전자주식회사 광대역 무선통신 시스템에서 부하 지시자 송신 장치 및 방법
KR101609641B1 (ko) * 2009-07-28 2016-04-07 삼성전자주식회사 무선통신 시스템에서 자동 이웃 관계 구성 및 최적화를 위한 장치 및 방법
US8243670B2 (en) * 2009-08-19 2012-08-14 Chunghwa Telecom Co., Ltd. User grouping method for inter-cell interference coordination in mobile telecommunication
US8379574B2 (en) * 2010-03-25 2013-02-19 Eden Rock Communications, Llc Systems and methods for mitigating intercell interference by coordinated scheduling amongst neighboring cells
ES2391017B1 (es) * 2010-04-07 2013-10-09 Vodafone España, S.A.U Procedimiento y dispositivo para reducir la congestion de trafico en controladores de red radio
JP2012054736A (ja) * 2010-09-01 2012-03-15 Hitachi Ltd 移動体通信システムおよび移動体通信システムにおける負荷分散方法
JP5468506B2 (ja) * 2010-09-28 2014-04-09 京セラ株式会社 基地局及び無線通信システム並びに基地局での通信エリアの制御方法
US10433207B2 (en) * 2010-10-28 2019-10-01 Verizon Patent And Licensing Inc. Load balancing to provide a target grade of service (GOS)
EP2763472B1 (en) * 2011-09-29 2017-02-01 Nec Corporation Radio parameter control apparatus, radio base station, radio parameter control method, and non-temporarily computer-readable medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210015728A (ko) * 2019-08-01 2021-02-10 티-모바일 유에스에이, 인크. 최적 네트워크 성능 개선 해결책들 선택 시스템들 및 방법들
US11146974B2 (en) 2019-08-01 2021-10-12 T-Mobile Usa, Inc. Optimum network performance improvement solutions selection systems and methods
WO2021194176A1 (ko) * 2020-03-23 2021-09-30 삼성전자 주식회사 무선 통신 시스템에서 통신망 부하를 예측하고 로드 밸런싱을 수행하기 위한 방법 및 장치
US11343683B2 (en) 2020-04-22 2022-05-24 T-Mobile Usa, Inc. Identification and prioritization of optimum capacity solutions in a telecommunications network
US11792662B2 (en) 2020-04-22 2023-10-17 T-Mobile Usa, Inc. Identification and prioritization of optimum capacity solutions in a telecommunications network
US11418993B2 (en) 2020-05-07 2022-08-16 T-Mobile Usa, Inc. Management of telecommunications network congestion on roadways
US11350289B2 (en) 2020-05-14 2022-05-31 T-Mobile Usa, Inc. Identification of indoor and outdoor traffic usage of customers of a telecommunications network
US11678200B2 (en) 2020-05-14 2023-06-13 T-Mobile Usa, Inc. Identification of indoor and outdoor traffic usage of customers of a telecommunications network
US11153765B1 (en) 2020-05-15 2021-10-19 T-Mobile Usa, Inc. Capacity planning of telecommunications network by detecting anomalies in site behavior

Also Published As

Publication number Publication date
US20130324076A1 (en) 2013-12-05
EP2856794A4 (en) 2016-02-10
US20160174103A9 (en) 2016-06-16
CN104584622A (zh) 2015-04-29
US20150189550A1 (en) 2015-07-02
EP2856794A1 (en) 2015-04-08
JP2015525027A (ja) 2015-08-27
WO2013184719A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
KR20150021561A (ko) 셀룰러 네트워크 부하 밸런싱을 위한 방법 및 시스템
US8983470B1 (en) Automatic identification of clustered near neighbor cells in wireless networks
US9698897B2 (en) Method and system for auditing and correcting cellular antenna coverage patterns
US10039016B1 (en) Machine-learning-based RF optimization
EP3017620B1 (en) Antenna tilt optimization in a wireless communications network
US10499281B2 (en) Resource management in a wireless communications network
US9923700B2 (en) Method and system for localizing interference in spectrum co-existence network
US9491763B2 (en) Methods and systems of adjusting antenna electrical tilt
US20140302796A1 (en) Downlink interference detection using transmission matrices
WO2010128576A1 (ja) 網管理システム、無線カバレッジ調節方法および無線カバレッジ調節用プログラム
WO2014168653A1 (en) Uplink interference detection using transmission matrices
JP5949215B2 (ja) セルラワイヤレスネットワークのネットワークパラメータの再選択方法、装置、及びプログラム
US20170251377A1 (en) Method and system for neighbor tier determination
US20160057633A1 (en) Methods and Apparatus for Antenna Tilt Optimization
Lee et al. Design of handover self-optimization using big data analytics
US20170251414A1 (en) Cell outage compensation using best neighbor cell candidate
EP3275093A1 (en) Method and system for crossed antenna feed detection
US20220408334A1 (en) Cellular network user device mobility optimization management
TWI572221B (zh) 中控伺服器及其負載平衡方法
KR102414691B1 (ko) 무선망 최적화 방법 및 이를 위한 관리서버
EP3178251A1 (en) Radio network node, and method for determining whether a wireless device is a suitable candidate for handover to a target cell for load balancing reasons
US20240107326A1 (en) Communication control apparatus, communication control method and communication system
EP4391409A1 (en) Beam grid optimization
Nagaraj et al. Libra: Impact assessment of cellular load balancing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application