WO2022269302A1 - 塗装評価装置及び塗装評価方法 - Google Patents
塗装評価装置及び塗装評価方法 Download PDFInfo
- Publication number
- WO2022269302A1 WO2022269302A1 PCT/IB2021/000416 IB2021000416W WO2022269302A1 WO 2022269302 A1 WO2022269302 A1 WO 2022269302A1 IB 2021000416 W IB2021000416 W IB 2021000416W WO 2022269302 A1 WO2022269302 A1 WO 2022269302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- surface roughness
- evaluation
- shape
- painted
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 120
- 238000010422 painting Methods 0.000 title claims abstract description 9
- 230000003746 surface roughness Effects 0.000 claims abstract description 101
- 238000013210 evaluation model Methods 0.000 claims abstract description 48
- 230000004044 response Effects 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims description 67
- 238000000576 coating method Methods 0.000 claims description 67
- 239000000463 material Substances 0.000 claims description 31
- 238000010801 machine learning Methods 0.000 claims description 14
- 238000013461 design Methods 0.000 claims description 8
- 238000013528 artificial neural network Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 4
- 230000010365 information processing Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010238 partial least squares regression Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/30—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
- G01B11/303—Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0118—Apparatus with remote processing
- G01N2021/0125—Apparatus with remote processing with stored program or instructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/8422—Investigating thin films, e.g. matrix isolation method
- G01N2021/8427—Coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Definitions
- the present invention relates to a coating evaluation device and a coating evaluation method.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a coating evaluation apparatus capable of accurately evaluating the sharpness of a coated surface even when the coated surface is curved. and to provide a coating evaluation method.
- a coating evaluation device and a coating evaluation method acquire shape information representing the curved shape of a coated surface and surface roughness information representing the surface roughness of the coated surface, and obtain shape information and surface roughness. Using an evaluation model that outputs an evaluation value of sharpness of a painted surface in response to an input containing information, an evaluation value corresponding to a combination of shape information and surface roughness information is estimated.
- FIG. 1 is a block diagram showing the configuration of a coating evaluation device according to one embodiment of the present invention.
- FIG. 2 is a flow chart showing processing of the coating evaluation device according to one embodiment of the present invention.
- the coating evaluation apparatus includes a shape obtaining section 11 , a surface roughness obtaining section 17 and a controller 100 .
- the coating evaluation device may include the material acquisition unit 13 , the image acquisition unit 21 and the output unit 400 .
- the shape acquisition unit 11 , the material acquisition unit 13 , the surface roughness acquisition unit 17 , the image acquisition unit 21 and the output unit 400 are connected to the controller 100 .
- the shape acquisition unit 11 acquires shape information representing the curved shape of the painted surface to be evaluated for coating. More specifically, the shape acquisition unit 11 may acquire design data of the painted surface as shape information.
- design data includes CAD (Computer-aided design) data.
- the design data is not limited to this as long as it represents the degree of curvature (curvature) of the coated surface and the degree of inclination of the coated surface with respect to a surface roughness acquisition unit described later.
- the shape acquisition unit 11 may acquire the stored design data of the painted surface from a database (not shown), or may acquire the design data of the painted surface from an external connection device (not shown) via a wired/wireless network. may be acquired. In addition, the shape acquisition unit 11 may acquire design data based on user input.
- the shape acquisition unit 11 may acquire measurement data obtained by measuring the coated surface as shape information.
- the shape acquisition unit 11 may be a 3D scanner.
- the material acquisition unit 13 acquires material information of the painted surface. More specifically, the material acquisition unit 13 acquires information such as the type and color of the member as the material information of the coated surface.
- the material acquisition unit 13 may acquire the stored material information of the painted surface from a database (not shown), or may acquire the material information of the painted surface from an external connection device (not shown) via a wired/wireless network. may be acquired. Alternatively, the material acquisition unit 13 may acquire material information based on user input.
- the surface roughness acquisition unit 17 acquires surface roughness information representing the surface roughness of the coated surface. More specifically, the surface roughness acquisition unit 17 may acquire the surface roughness obtained by measuring the coated surface as the surface roughness information.
- the surface roughness acquisition unit 17 may be a laser microscope.
- the surface roughness acquisition unit 17 may acquire surface roughness information of the painted surface stored from a database (not shown), or may acquire surface roughness information from an externally connected device (not shown) via a wired or wireless network. It is also possible to acquire the surface roughness information of the coated surface.
- the shape acquisition unit 11 may acquire surface roughness information based on user input.
- the image acquisition unit 21 acquires a captured image of the painted surface to be evaluated for painting. More specifically, the image acquisition unit 21 is a digital camera equipped with a solid-state imaging device such as CCD or CMOS, and acquires a digital image by imaging the coated surface.
- a solid-state imaging device such as CCD or CMOS
- the image acquisition unit 21 captures an image of the painted surface to be evaluated for painting by setting the focal length, the angle of view of the lens, the vertical and horizontal angles of the camera, and the like.
- the controller 100 is a general-purpose computer equipped with a CPU (Central Processing Unit), memory, storage device, input/output unit, and the like.
- CPU Central Processing Unit
- a computer program (painting evaluation program) is installed in the controller 100 to function as a paint evaluation device.
- the controller 100 functions as a plurality of information processing circuits provided in the coating evaluation apparatus.
- a plurality of information processing circuits provided in the coating evaluation apparatus by software is shown. It is also possible to configure Also, a plurality of information processing circuits may be configured by individual hardware.
- the controller 100 includes an evaluation model setting section 120 , an evaluation value estimation section 130 and a position specifying section 140 .
- the evaluation model setting unit 120 sets an evaluation model that outputs an evaluation value of sharpness of a painted surface for inputs including shape information and surface roughness information.
- the evaluation model is generated by machine learning based on teacher data consisting of a set of shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface, and an evaluation value of sharpness of the evaluated painted surface. Learning model.
- the evaluation value of sharpness is determined by, for example, at least one of the smoothness of the painted surface, the ratio of diffuse reflection to the reflected light on the painted surface, and the resolution of the image reflected on the painted surface. is an indicator.
- the evaluation value of sharpness of the evaluated painted surface is a numerical value previously given to the evaluated painted surface by another sharpness evaluation method.
- the evaluation model setting unit 120 may set an evaluation model that outputs an evaluation value of sharpness of a painted surface in response to inputs including material information, shape information, and surface roughness information.
- the evaluation model is teacher data consisting of a set of material information of the evaluated painted surface, shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface, and an evaluation value of clarity of the evaluated painted surface. is a learning model generated by machine learning based on
- Techniques for generating learning models by machine learning include, for example, neural networks, support vector machines, Random Forest, XGBoost, LightGBM, PLS regression, Ridge regression, and Lasso regression. is mentioned.
- a method of generating a learning model by machine learning is not limited to the examples given here.
- the evaluation model setting unit 120 may set an evaluation model by performing machine learning based on teacher data acquired from a database (not shown).
- the evaluation model may be stored in advance in a database (not shown), and the evaluation model setting unit 120 may set the evaluation model acquired from the database.
- the evaluation model may be configured by a neural network including an input layer and an output layer. More specifically, a neural network typically has an input layer, multiple hidden layers, and an output layer, each layer (input layer, hidden layer, output layer) containing multiple neurons. .
- the input layer includes shape information representing the curved shape of the painted surface and surface roughness information representing the surface roughness of the painted surface as input data processed via each hidden layer. Also, the neurons in the output layer are assigned the sharpness evaluation values of the painted surface assigned to the input data by the neural network. That is, the output data output from the output layer is the evaluation value of the sharpness of the painted surface.
- the neural network that constitutes the evaluation model reproduces teacher data consisting of a set of shape information representing the curved shape of the painted surface, surface roughness information representing the surface roughness of the painted surface, and an evaluation value for the clarity of the painted surface. yes, be trained. That is, when input data consisting of a set of shape information and surface roughness information included in the training data is input, machine learning is trained to output the evaluation value of the sharpness of the painted surface as output data. be.
- machine learning based on teacher data is performed to generate an evaluation model that outputs an evaluation value for the sharpness of the painted surface in response to input including shape information and surface roughness information.
- the evaluation value estimation unit 130 uses the set evaluation model to estimate an evaluation value corresponding to a combination of shape information and surface roughness information. More specifically, the set evaluation model is based on teacher data consisting of a set of shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface, and an evaluation value of sharpness of the evaluated painted surface. In the case of a learning model generated by machine learning, the evaluation value estimation unit 130 inputs shape information and surface roughness information to the evaluation model. Then, the evaluation value estimating section 130 sets the value output from the evaluation model as the evaluation value corresponding to the combination of the shape information and the surface roughness information. The evaluation value corresponding to the combination of the shape information and the surface roughness information is an estimated evaluation value regarding the sharpness of the painted surface.
- the set evaluation model is teaching data in which the material information of the evaluated painted surface, the shape information of the evaluated painted surface, the surface roughness information of the evaluated painted surface, and the evaluation value of the clarity of the evaluated painted surface are combined. If the learning model is generated by machine learning based on the evaluation model, the evaluation value estimation unit 130 inputs shape information, surface roughness information, and material information to the evaluation model. Then, the evaluation value estimating section 130 sets the value output from the evaluation model as the evaluation value corresponding to the combination of the shape information, the surface roughness information, and the material information. An evaluation value corresponding to the combination of shape information, surface roughness information, and material information is an estimated evaluation value relating to sharpness of the painted surface.
- the position specifying unit 140 associates the captured image and the shape information with the surface roughness information, and records the position on the painted surface from which the surface roughness information was acquired. More specifically, the captured image and the shape information when the surface roughness information is obtained are linked to the surface roughness information and recorded in a database (not shown) or the like. Thereby, the position on the painted surface when the surface roughness information is acquired is specified.
- the output unit 400 outputs the estimated evaluation value regarding the sharpness of the painted surface.
- step S102 the surface roughness acquisition unit 17 acquires surface roughness information representing the surface roughness of the coated surface to be evaluated for coating. Further, the shape acquisition unit 11 acquires shape information representing the curved shape of the painted surface. In addition, the material acquisition unit 13 acquires material information of the coated surface. The image acquisition unit 21 acquires a captured image of the coated surface.
- step S104 the position specifying unit 140 acquires surface roughness information by associating the captured image and shape information with the surface roughness information and recording the position on the coating surface where the surface roughness information was acquired. Identify the actual position on the painted surface.
- step S111 the evaluation value estimation unit 130 estimates an evaluation value corresponding to a combination of shape information and surface roughness information using the set evaluation model.
- step S113 the output unit 400 outputs the evaluation value estimated by the evaluation value estimation unit 130.
- the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment include shape information representing the curved shape of the coated surface and surface roughness information representing the surface roughness of the coated surface. , and using an evaluation model that outputs an evaluation value for the sharpness of the painted surface in response to input including shape information and surface roughness information, evaluates the evaluation value corresponding to the combination of shape information and surface roughness information presume.
- the evaluation model includes the shape information of the evaluated painted surface, the surface roughness information of the evaluated painted surface, and the sharpness of the evaluated painted surface. It may be a learning model generated by machine learning based on teacher data having a set of evaluation values. As a result, it is possible to accurately evaluate the sharpness of the painted surface using the evaluation model generated from the teaching data on the evaluated painted surface having various curved surface shapes.
- the evaluation value of the sharpness of the painted surface is the smoothness of the painted surface, the ratio of diffuse reflection to the reflected light on the painted surface, It may be an index determined by at least one of resolution of an image reflected on a painted surface. In this way, criteria for evaluating sharpness of painted surfaces are specified.
- the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment may acquire the design data of the coated surface as shape information, or the measurement data obtained by measuring the coated surface. may be acquired as shape information. Accordingly, it is possible to accurately evaluate the sharpness of the painted surface in consideration of the curved shape of the painted surface.
- the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment acquire the captured image of the coated surface, associate the captured image and shape information with the surface roughness information, and acquire the surface roughness information. It may also record the position on the painted surface. Thereby, the position on the painted surface when the surface roughness information is acquired is specified. In addition, it is possible to accurately evaluate the sharpness of the painted surface.
- the coating evaluation apparatus, coating evaluation method, and coating evaluation program acquire material information of the painted surface, and determine the freshness of the painted surface with respect to the input including the material information, the shape information, and the surface roughness information.
- An evaluation model that outputs an evaluation value of image quality may be used to estimate an evaluation value corresponding to a combination of shape information, surface roughness information, and material information.
- the evaluation model includes material information of the evaluated painted surface, shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface,
- the learning model may be a learning model generated by machine learning based on teacher data having a set of evaluation values of sharpness of the painted surface that has been evaluated. As a result, it is possible to accurately evaluate the sharpness of the painted surface by using the evaluation model generated from the teaching data on the evaluated painted surface composed of various curved surface shapes and various materials.
- the evaluation model used in the coating evaluation device, coating evaluation method, and coating evaluation program according to the present embodiment may be configured by a neural network including an input layer and an output layer.
- a neural network including an input layer and an output layer.
- shape information representing the curved shape of the painted surface and surface roughness information representing the surface roughness of the painted surface, input data to be input to the input layer, and an evaluation value of the sharpness of the painted surface, and the output data output from the output layer may be learned in association with each other.
- the evaluation model used in the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment includes shape information representing the curved shape of the coated surface, surface roughness information representing the surface roughness of the coated surface, and coating Acquire training data consisting of evaluation values for the clarity of the surface, perform machine learning based on the training data, and evaluate the clarity of the painted surface for input including shape information and surface roughness information. may be generated by configuring to output
- an evaluation model that expresses the relationship between the shape information and surface roughness information of the painted surface and the evaluation value of the sharpness of the painted surface.
- Processing circuitry includes programmed processors, electrical circuits, etc., as well as devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions. etc. are also included.
- ASICs application specific integrated circuits
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
図1を参照して、本実施形態に係る塗装評価装置の構成例を説明する。図1に示すように、塗装評価装置は、形状取得部11と、面粗度取得部17と、コントローラ100とを備える。その他、塗装評価装置は、材質取得部13と、画像取得部21と、出力部400とを備えるものであってもよい。形状取得部11、材質取得部13、面粗度取得部17、画像取得部21、出力部400は、コントローラ100と接続される。
次に、本実施形態に係る塗装評価装置の処理手順を、図2のフローチャートを参照して説明する。なお、図2のフローチャートで示される処理が開始される前に、評価モデル設定部120によって評価モデルが既に設定されているものとする。
以上詳細に説明したように、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムは、塗装面の湾曲形状を表す形状情報、及び、塗装面の表面粗さを表す面粗度情報を取得し、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを用いて、形状情報及び面粗度情報の組合せに対応する評価値を推定する。
13 材質取得部
17 面粗度取得部
21 画像取得部
100 コントローラ
120 評価モデル設定部
130 評価値推定部
140 位置特定部
400 出力部
Claims (12)
- 塗装面の湾曲形状を表す形状情報を取得する形状取得部と、
前記塗装面の表面粗さを表す面粗度情報を取得する面粗度取得部と、
コントローラと、を備える塗装評価装置であって、
前記コントローラは、
前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報及び前記面粗度情報の組合せに対応する評価値を推定すること
を特徴とする塗装評価装置。 - 請求項1に記載の塗装評価装置であって、
前記評価モデルは、
評価済塗装面の形状情報、前記評価済塗装面の面粗度情報、前記評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルであること
を特徴とする塗装評価装置。 - 請求項1又は2に記載の塗装評価装置であって、
前記塗装面の鮮映性の評価値は、前記塗装面の平滑度、前記塗装面での反射光に占める拡散反射の割合、前記塗装面に映りこむ像の解像度、の少なくとも1つによって決定される指標であること
を特徴とする塗装評価装置。 - 請求項1~3のいずれか一項に記載の塗装評価装置であって、
前記形状取得部は、前記塗装面の設計データを前記形状情報として取得すること
を特徴とする塗装評価装置。 - 請求項1~4のいずれか一項に記載の塗装評価装置であって、
前記形状取得部は、前記塗装面を計測して得られた計測データを前記形状情報として取得すること
を特徴とする塗装評価装置。 - 請求項1~5のいずれか一項に記載の塗装評価装置であって、
前記塗装面の撮像画像を取得する画像取得部を更に備え、
前記コントローラは、
前記撮像画像及び前記形状情報を前記面粗度情報に紐づけて、前記面粗度情報を取得した前記塗装面上の位置を記録すること
を特徴とする塗装評価装置。 - 請求項1~6のいずれか一項に記載の塗装評価装置であって、
前記塗装面の材質情報を取得する材質取得部を更に備え、
前記コントローラは、
前記材質情報、前記形状情報、前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報、前記面粗度情報、前記材質情報の組合せに対応する評価値を推定すること
を特徴とする塗装評価装置。 - 請求項7に記載の塗装評価装置であって、
前記評価モデルは、
評価済塗装面の前記材質情報、前記評価済塗装面の形状情報、前記評価済塗装面の面粗度情報、前記評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルであること
を特徴とする塗装評価装置。 - 塗装面の湾曲形状を表す形状情報を取得し、
前記塗装面の表面粗さを表す面粗度情報を取得し、
前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報及び前記面粗度情報の組合せに対応する評価値を推定すること
を特徴とする塗装評価方法。 - 塗装面の湾曲形状を表す形状情報を取得する形状取得部と、
前記塗装面の表面粗さを表す面粗度情報を取得する面粗度取得部と、
を制御するコンピュータに、
前記形状取得部を用いて前記形状情報を取得するステップと、
前記面粗度取得部を用いて前記面粗度情報を取得するステップと、
前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報及び前記面粗度情報の組合せに対応する評価値を推定するステップと、
を実行させるための塗装評価プログラム。 - 入力層及び出力層を含むニューラルネットワークによって構成された評価モデルであって、
塗装面の湾曲形状を表す形状情報及び前記塗装面の表面粗さを表す面粗度情報を含み、前記入力層に入力される入力データと、
前記塗装面の鮮映性の評価値を含み、前記出力層から出力される出力データと、
を互いに関連付けて学習させたこと
を特徴とする評価モデル。 - 塗装面の湾曲形状を表す形状情報、前記塗装面の表面粗さを表す面粗度情報、前記塗装面の鮮映性の評価値を組とする教師データを取得し、
前記教師データに基づく機械学習を行って、前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを生成すること
を特徴とする評価モデル生成方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180099260.7A CN117501108A (zh) | 2021-06-21 | 2021-06-21 | 涂装评价装置和涂装评价方法 |
PCT/IB2021/000416 WO2022269302A1 (ja) | 2021-06-21 | 2021-06-21 | 塗装評価装置及び塗装評価方法 |
EP21946909.5A EP4361613A4 (en) | 2021-06-21 | 2021-06-21 | PAINT EVALUATION DEVICE AND PAINT EVALUATION METHOD |
JP2023529139A JPWO2022269302A1 (ja) | 2021-06-21 | 2021-06-21 | |
US18/572,255 US20240230547A1 (en) | 2021-06-21 | 2021-06-21 | Coating evaluation device and coating evaluation method |
JP2023529142A JPWO2022269342A1 (ja) | 2021-06-21 | 2022-06-13 | |
PCT/IB2022/000312 WO2022269342A1 (ja) | 2021-06-21 | 2022-06-13 | 塗装評価装置及び塗装評価方法 |
EP22826649.0A EP4361614A1 (en) | 2021-06-21 | 2022-06-13 | Coating evaluation device and coating evaluation method |
CN202280041949.9A CN117480383A (zh) | 2021-06-21 | 2022-06-13 | 涂装评价装置和涂装评价方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2021/000416 WO2022269302A1 (ja) | 2021-06-21 | 2021-06-21 | 塗装評価装置及び塗装評価方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022269302A1 true WO2022269302A1 (ja) | 2022-12-29 |
Family
ID=84544201
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2021/000416 WO2022269302A1 (ja) | 2021-06-21 | 2021-06-21 | 塗装評価装置及び塗装評価方法 |
PCT/IB2022/000312 WO2022269342A1 (ja) | 2021-06-21 | 2022-06-13 | 塗装評価装置及び塗装評価方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2022/000312 WO2022269342A1 (ja) | 2021-06-21 | 2022-06-13 | 塗装評価装置及び塗装評価方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240230547A1 (ja) |
EP (2) | EP4361613A4 (ja) |
JP (2) | JPWO2022269302A1 (ja) |
CN (2) | CN117501108A (ja) |
WO (2) | WO2022269302A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4989984A (en) * | 1989-11-08 | 1991-02-05 | Environmental Research Institute Of Michigan | System for measuring optical characteristics of curved surfaces |
JPH06160300A (ja) * | 1992-11-17 | 1994-06-07 | Nissan Motor Co Ltd | ウェット鮮映性測定装置 |
JPH0796228A (ja) * | 1993-09-27 | 1995-04-11 | Nissan Motor Co Ltd | 塗装処理装置及び塗装処理方法 |
JPH08122035A (ja) * | 1994-10-24 | 1996-05-17 | Nissan Motor Co Ltd | 塗装品質解析装置 |
JPH09262533A (ja) * | 1996-03-27 | 1997-10-07 | Nissan Motor Co Ltd | 塗装品質解析装置 |
JP2006266728A (ja) | 2005-03-22 | 2006-10-05 | Honda Motor Co Ltd | 塗膜外観の評価方法及び塗装物 |
CN110146034A (zh) * | 2019-06-20 | 2019-08-20 | 本钢板材股份有限公司 | 一种基于表面波纹度的冷轧薄钢板表面质量的判别方法 |
US20190287237A1 (en) * | 2016-12-01 | 2019-09-19 | Autaza Tecnologia LTDA-EPP | Method and system for automatic quality inspection of materials and virtual material surfaces |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07109405B2 (ja) * | 1989-06-26 | 1995-11-22 | 日産自動車株式会社 | 塗装鮮映性測定方法 |
JP4534795B2 (ja) * | 2005-02-25 | 2010-09-01 | トヨタ自動車株式会社 | 塗膜評価装置及び方法 |
JP2006308476A (ja) * | 2005-04-28 | 2006-11-09 | Tokyo Seimitsu Co Ltd | 表面粗さ/形状測定装置 |
JP2014149286A (ja) * | 2013-01-31 | 2014-08-21 | Nireco Corp | 面粗さ測定装置 |
DE102015118551A1 (de) * | 2015-10-29 | 2017-05-04 | Basf Coatings Gmbh | Verfahren zum Ermitteln von Texturparametern eines Lacks |
JP6787396B2 (ja) * | 2016-04-08 | 2020-11-18 | コニカミノルタ株式会社 | 光学測定装置、画像の生成方法および画像の生成プログラム |
US11002676B2 (en) * | 2018-04-09 | 2021-05-11 | Hunter Associates Laboratory, Inc. | UV-VIS spectroscopy instrument and methods for color appearance and difference measurement |
-
2021
- 2021-06-21 WO PCT/IB2021/000416 patent/WO2022269302A1/ja active Application Filing
- 2021-06-21 JP JP2023529139A patent/JPWO2022269302A1/ja active Pending
- 2021-06-21 US US18/572,255 patent/US20240230547A1/en active Pending
- 2021-06-21 CN CN202180099260.7A patent/CN117501108A/zh active Pending
- 2021-06-21 EP EP21946909.5A patent/EP4361613A4/en active Pending
-
2022
- 2022-06-13 CN CN202280041949.9A patent/CN117480383A/zh active Pending
- 2022-06-13 WO PCT/IB2022/000312 patent/WO2022269342A1/ja active Application Filing
- 2022-06-13 EP EP22826649.0A patent/EP4361614A1/en active Pending
- 2022-06-13 JP JP2023529142A patent/JPWO2022269342A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4989984A (en) * | 1989-11-08 | 1991-02-05 | Environmental Research Institute Of Michigan | System for measuring optical characteristics of curved surfaces |
JPH06160300A (ja) * | 1992-11-17 | 1994-06-07 | Nissan Motor Co Ltd | ウェット鮮映性測定装置 |
JPH0796228A (ja) * | 1993-09-27 | 1995-04-11 | Nissan Motor Co Ltd | 塗装処理装置及び塗装処理方法 |
JPH08122035A (ja) * | 1994-10-24 | 1996-05-17 | Nissan Motor Co Ltd | 塗装品質解析装置 |
JPH09262533A (ja) * | 1996-03-27 | 1997-10-07 | Nissan Motor Co Ltd | 塗装品質解析装置 |
JP2006266728A (ja) | 2005-03-22 | 2006-10-05 | Honda Motor Co Ltd | 塗膜外観の評価方法及び塗装物 |
US20190287237A1 (en) * | 2016-12-01 | 2019-09-19 | Autaza Tecnologia LTDA-EPP | Method and system for automatic quality inspection of materials and virtual material surfaces |
CN110146034A (zh) * | 2019-06-20 | 2019-08-20 | 本钢板材股份有限公司 | 一种基于表面波纹度的冷轧薄钢板表面质量的判别方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4361613A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240230547A1 (en) | 2024-07-11 |
JPWO2022269302A1 (ja) | 2022-12-29 |
EP4361613A4 (en) | 2024-05-29 |
CN117480383A (zh) | 2024-01-30 |
EP4361614A1 (en) | 2024-05-01 |
CN117501108A (zh) | 2024-02-02 |
JPWO2022269342A1 (ja) | 2022-12-29 |
EP4361613A1 (en) | 2024-05-01 |
WO2022269342A1 (ja) | 2022-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6635690B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP6537237B2 (ja) | 情報処理装置および方法 | |
TWI607412B (zh) | 多維度尺寸量測系統及其方法 | |
US20100310128A1 (en) | System and Method for Remote Measurement of Displacement and Strain Fields | |
Marcin et al. | Hierarchical, three‐dimensional measurement system for crime scene scanning | |
JP6894672B2 (ja) | 情報処理装置、情報処理方法、プログラム | |
US9990724B2 (en) | Image recording simulation in a coordinate measuring machine | |
Silvester et al. | A critical assessment of the potential for structure‐from‐motion photogrammetry to produce high fidelity 3D dental models | |
JP7330970B2 (ja) | コンピュータ生成された参照物体を有するマシンビジョンシステム | |
JP2005509877A (ja) | コンピュータ視覚システムの較正方法及びそのシステム | |
JP5599849B2 (ja) | レンズ検査装置及びその方法 | |
JP2018005542A (ja) | 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体 | |
JP2017044596A (ja) | 膜厚測定装置および膜厚測定方法 | |
Sebar et al. | A trustable 3D photogrammetry approach for cultural heritage | |
WO2022269302A1 (ja) | 塗装評価装置及び塗装評価方法 | |
JP7179439B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP2012068257A (ja) | 反射特性を分析するための方法 | |
Kholkhujaev et al. | Non-contact articulated robot-integrated gap and flushness measurement system for automobile assembly | |
Javaid et al. | Studies on the Metrological Need and Capabilities of 3D Scanning Technologies | |
KR102039902B1 (ko) | 원격 기자재 정도 검사 시스템 및 방법 | |
Sara et al. | 3Dino: Configuration for a Micro-Photogrammetric Survey: Applying Dino-Lite microscope for the digitalization of a cuneiform tablet | |
TWI408343B (zh) | 用來預估待測物件相關資訊之方法及其相關攝像裝置 | |
Irgenfried et al. | Image formation simulation for computer-aided inspection planning of machine vision systems | |
WO2022269300A1 (ja) | 塗装評価装置及び塗装評価方法 | |
WO2022269301A1 (ja) | 塗装評価装置及び塗装評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21946909 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023529139 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180099260.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18572255 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021946909 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021946909 Country of ref document: EP Effective date: 20240122 |