WO2022269302A1 - 塗装評価装置及び塗装評価方法 - Google Patents

塗装評価装置及び塗装評価方法 Download PDF

Info

Publication number
WO2022269302A1
WO2022269302A1 PCT/IB2021/000416 IB2021000416W WO2022269302A1 WO 2022269302 A1 WO2022269302 A1 WO 2022269302A1 IB 2021000416 W IB2021000416 W IB 2021000416W WO 2022269302 A1 WO2022269302 A1 WO 2022269302A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
surface roughness
evaluation
shape
painted
Prior art date
Application number
PCT/IB2021/000416
Other languages
English (en)
French (fr)
Inventor
翔太 山崎
孝宏 垣内
健太郎 弓削
森 長山
義貴 上原
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to CN202180099260.7A priority Critical patent/CN117501108A/zh
Priority to PCT/IB2021/000416 priority patent/WO2022269302A1/ja
Priority to EP21946909.5A priority patent/EP4361613A4/en
Priority to JP2023529139A priority patent/JPWO2022269302A1/ja
Priority to US18/572,255 priority patent/US20240230547A1/en
Priority to JP2023529142A priority patent/JPWO2022269342A1/ja
Priority to PCT/IB2022/000312 priority patent/WO2022269342A1/ja
Priority to EP22826649.0A priority patent/EP4361614A1/en
Priority to CN202280041949.9A priority patent/CN117480383A/zh
Publication of WO2022269302A1 publication Critical patent/WO2022269302A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • G01N2021/0125Apparatus with remote processing with stored program or instructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Definitions

  • the present invention relates to a coating evaluation device and a coating evaluation method.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a coating evaluation apparatus capable of accurately evaluating the sharpness of a coated surface even when the coated surface is curved. and to provide a coating evaluation method.
  • a coating evaluation device and a coating evaluation method acquire shape information representing the curved shape of a coated surface and surface roughness information representing the surface roughness of the coated surface, and obtain shape information and surface roughness. Using an evaluation model that outputs an evaluation value of sharpness of a painted surface in response to an input containing information, an evaluation value corresponding to a combination of shape information and surface roughness information is estimated.
  • FIG. 1 is a block diagram showing the configuration of a coating evaluation device according to one embodiment of the present invention.
  • FIG. 2 is a flow chart showing processing of the coating evaluation device according to one embodiment of the present invention.
  • the coating evaluation apparatus includes a shape obtaining section 11 , a surface roughness obtaining section 17 and a controller 100 .
  • the coating evaluation device may include the material acquisition unit 13 , the image acquisition unit 21 and the output unit 400 .
  • the shape acquisition unit 11 , the material acquisition unit 13 , the surface roughness acquisition unit 17 , the image acquisition unit 21 and the output unit 400 are connected to the controller 100 .
  • the shape acquisition unit 11 acquires shape information representing the curved shape of the painted surface to be evaluated for coating. More specifically, the shape acquisition unit 11 may acquire design data of the painted surface as shape information.
  • design data includes CAD (Computer-aided design) data.
  • the design data is not limited to this as long as it represents the degree of curvature (curvature) of the coated surface and the degree of inclination of the coated surface with respect to a surface roughness acquisition unit described later.
  • the shape acquisition unit 11 may acquire the stored design data of the painted surface from a database (not shown), or may acquire the design data of the painted surface from an external connection device (not shown) via a wired/wireless network. may be acquired. In addition, the shape acquisition unit 11 may acquire design data based on user input.
  • the shape acquisition unit 11 may acquire measurement data obtained by measuring the coated surface as shape information.
  • the shape acquisition unit 11 may be a 3D scanner.
  • the material acquisition unit 13 acquires material information of the painted surface. More specifically, the material acquisition unit 13 acquires information such as the type and color of the member as the material information of the coated surface.
  • the material acquisition unit 13 may acquire the stored material information of the painted surface from a database (not shown), or may acquire the material information of the painted surface from an external connection device (not shown) via a wired/wireless network. may be acquired. Alternatively, the material acquisition unit 13 may acquire material information based on user input.
  • the surface roughness acquisition unit 17 acquires surface roughness information representing the surface roughness of the coated surface. More specifically, the surface roughness acquisition unit 17 may acquire the surface roughness obtained by measuring the coated surface as the surface roughness information.
  • the surface roughness acquisition unit 17 may be a laser microscope.
  • the surface roughness acquisition unit 17 may acquire surface roughness information of the painted surface stored from a database (not shown), or may acquire surface roughness information from an externally connected device (not shown) via a wired or wireless network. It is also possible to acquire the surface roughness information of the coated surface.
  • the shape acquisition unit 11 may acquire surface roughness information based on user input.
  • the image acquisition unit 21 acquires a captured image of the painted surface to be evaluated for painting. More specifically, the image acquisition unit 21 is a digital camera equipped with a solid-state imaging device such as CCD or CMOS, and acquires a digital image by imaging the coated surface.
  • a solid-state imaging device such as CCD or CMOS
  • the image acquisition unit 21 captures an image of the painted surface to be evaluated for painting by setting the focal length, the angle of view of the lens, the vertical and horizontal angles of the camera, and the like.
  • the controller 100 is a general-purpose computer equipped with a CPU (Central Processing Unit), memory, storage device, input/output unit, and the like.
  • CPU Central Processing Unit
  • a computer program (painting evaluation program) is installed in the controller 100 to function as a paint evaluation device.
  • the controller 100 functions as a plurality of information processing circuits provided in the coating evaluation apparatus.
  • a plurality of information processing circuits provided in the coating evaluation apparatus by software is shown. It is also possible to configure Also, a plurality of information processing circuits may be configured by individual hardware.
  • the controller 100 includes an evaluation model setting section 120 , an evaluation value estimation section 130 and a position specifying section 140 .
  • the evaluation model setting unit 120 sets an evaluation model that outputs an evaluation value of sharpness of a painted surface for inputs including shape information and surface roughness information.
  • the evaluation model is generated by machine learning based on teacher data consisting of a set of shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface, and an evaluation value of sharpness of the evaluated painted surface. Learning model.
  • the evaluation value of sharpness is determined by, for example, at least one of the smoothness of the painted surface, the ratio of diffuse reflection to the reflected light on the painted surface, and the resolution of the image reflected on the painted surface. is an indicator.
  • the evaluation value of sharpness of the evaluated painted surface is a numerical value previously given to the evaluated painted surface by another sharpness evaluation method.
  • the evaluation model setting unit 120 may set an evaluation model that outputs an evaluation value of sharpness of a painted surface in response to inputs including material information, shape information, and surface roughness information.
  • the evaluation model is teacher data consisting of a set of material information of the evaluated painted surface, shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface, and an evaluation value of clarity of the evaluated painted surface. is a learning model generated by machine learning based on
  • Techniques for generating learning models by machine learning include, for example, neural networks, support vector machines, Random Forest, XGBoost, LightGBM, PLS regression, Ridge regression, and Lasso regression. is mentioned.
  • a method of generating a learning model by machine learning is not limited to the examples given here.
  • the evaluation model setting unit 120 may set an evaluation model by performing machine learning based on teacher data acquired from a database (not shown).
  • the evaluation model may be stored in advance in a database (not shown), and the evaluation model setting unit 120 may set the evaluation model acquired from the database.
  • the evaluation model may be configured by a neural network including an input layer and an output layer. More specifically, a neural network typically has an input layer, multiple hidden layers, and an output layer, each layer (input layer, hidden layer, output layer) containing multiple neurons. .
  • the input layer includes shape information representing the curved shape of the painted surface and surface roughness information representing the surface roughness of the painted surface as input data processed via each hidden layer. Also, the neurons in the output layer are assigned the sharpness evaluation values of the painted surface assigned to the input data by the neural network. That is, the output data output from the output layer is the evaluation value of the sharpness of the painted surface.
  • the neural network that constitutes the evaluation model reproduces teacher data consisting of a set of shape information representing the curved shape of the painted surface, surface roughness information representing the surface roughness of the painted surface, and an evaluation value for the clarity of the painted surface. yes, be trained. That is, when input data consisting of a set of shape information and surface roughness information included in the training data is input, machine learning is trained to output the evaluation value of the sharpness of the painted surface as output data. be.
  • machine learning based on teacher data is performed to generate an evaluation model that outputs an evaluation value for the sharpness of the painted surface in response to input including shape information and surface roughness information.
  • the evaluation value estimation unit 130 uses the set evaluation model to estimate an evaluation value corresponding to a combination of shape information and surface roughness information. More specifically, the set evaluation model is based on teacher data consisting of a set of shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface, and an evaluation value of sharpness of the evaluated painted surface. In the case of a learning model generated by machine learning, the evaluation value estimation unit 130 inputs shape information and surface roughness information to the evaluation model. Then, the evaluation value estimating section 130 sets the value output from the evaluation model as the evaluation value corresponding to the combination of the shape information and the surface roughness information. The evaluation value corresponding to the combination of the shape information and the surface roughness information is an estimated evaluation value regarding the sharpness of the painted surface.
  • the set evaluation model is teaching data in which the material information of the evaluated painted surface, the shape information of the evaluated painted surface, the surface roughness information of the evaluated painted surface, and the evaluation value of the clarity of the evaluated painted surface are combined. If the learning model is generated by machine learning based on the evaluation model, the evaluation value estimation unit 130 inputs shape information, surface roughness information, and material information to the evaluation model. Then, the evaluation value estimating section 130 sets the value output from the evaluation model as the evaluation value corresponding to the combination of the shape information, the surface roughness information, and the material information. An evaluation value corresponding to the combination of shape information, surface roughness information, and material information is an estimated evaluation value relating to sharpness of the painted surface.
  • the position specifying unit 140 associates the captured image and the shape information with the surface roughness information, and records the position on the painted surface from which the surface roughness information was acquired. More specifically, the captured image and the shape information when the surface roughness information is obtained are linked to the surface roughness information and recorded in a database (not shown) or the like. Thereby, the position on the painted surface when the surface roughness information is acquired is specified.
  • the output unit 400 outputs the estimated evaluation value regarding the sharpness of the painted surface.
  • step S102 the surface roughness acquisition unit 17 acquires surface roughness information representing the surface roughness of the coated surface to be evaluated for coating. Further, the shape acquisition unit 11 acquires shape information representing the curved shape of the painted surface. In addition, the material acquisition unit 13 acquires material information of the coated surface. The image acquisition unit 21 acquires a captured image of the coated surface.
  • step S104 the position specifying unit 140 acquires surface roughness information by associating the captured image and shape information with the surface roughness information and recording the position on the coating surface where the surface roughness information was acquired. Identify the actual position on the painted surface.
  • step S111 the evaluation value estimation unit 130 estimates an evaluation value corresponding to a combination of shape information and surface roughness information using the set evaluation model.
  • step S113 the output unit 400 outputs the evaluation value estimated by the evaluation value estimation unit 130.
  • the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment include shape information representing the curved shape of the coated surface and surface roughness information representing the surface roughness of the coated surface. , and using an evaluation model that outputs an evaluation value for the sharpness of the painted surface in response to input including shape information and surface roughness information, evaluates the evaluation value corresponding to the combination of shape information and surface roughness information presume.
  • the evaluation model includes the shape information of the evaluated painted surface, the surface roughness information of the evaluated painted surface, and the sharpness of the evaluated painted surface. It may be a learning model generated by machine learning based on teacher data having a set of evaluation values. As a result, it is possible to accurately evaluate the sharpness of the painted surface using the evaluation model generated from the teaching data on the evaluated painted surface having various curved surface shapes.
  • the evaluation value of the sharpness of the painted surface is the smoothness of the painted surface, the ratio of diffuse reflection to the reflected light on the painted surface, It may be an index determined by at least one of resolution of an image reflected on a painted surface. In this way, criteria for evaluating sharpness of painted surfaces are specified.
  • the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment may acquire the design data of the coated surface as shape information, or the measurement data obtained by measuring the coated surface. may be acquired as shape information. Accordingly, it is possible to accurately evaluate the sharpness of the painted surface in consideration of the curved shape of the painted surface.
  • the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment acquire the captured image of the coated surface, associate the captured image and shape information with the surface roughness information, and acquire the surface roughness information. It may also record the position on the painted surface. Thereby, the position on the painted surface when the surface roughness information is acquired is specified. In addition, it is possible to accurately evaluate the sharpness of the painted surface.
  • the coating evaluation apparatus, coating evaluation method, and coating evaluation program acquire material information of the painted surface, and determine the freshness of the painted surface with respect to the input including the material information, the shape information, and the surface roughness information.
  • An evaluation model that outputs an evaluation value of image quality may be used to estimate an evaluation value corresponding to a combination of shape information, surface roughness information, and material information.
  • the evaluation model includes material information of the evaluated painted surface, shape information of the evaluated painted surface, surface roughness information of the evaluated painted surface,
  • the learning model may be a learning model generated by machine learning based on teacher data having a set of evaluation values of sharpness of the painted surface that has been evaluated. As a result, it is possible to accurately evaluate the sharpness of the painted surface by using the evaluation model generated from the teaching data on the evaluated painted surface composed of various curved surface shapes and various materials.
  • the evaluation model used in the coating evaluation device, coating evaluation method, and coating evaluation program according to the present embodiment may be configured by a neural network including an input layer and an output layer.
  • a neural network including an input layer and an output layer.
  • shape information representing the curved shape of the painted surface and surface roughness information representing the surface roughness of the painted surface, input data to be input to the input layer, and an evaluation value of the sharpness of the painted surface, and the output data output from the output layer may be learned in association with each other.
  • the evaluation model used in the coating evaluation device, the coating evaluation method, and the coating evaluation program according to the present embodiment includes shape information representing the curved shape of the coated surface, surface roughness information representing the surface roughness of the coated surface, and coating Acquire training data consisting of evaluation values for the clarity of the surface, perform machine learning based on the training data, and evaluate the clarity of the painted surface for input including shape information and surface roughness information. may be generated by configuring to output
  • an evaluation model that expresses the relationship between the shape information and surface roughness information of the painted surface and the evaluation value of the sharpness of the painted surface.
  • Processing circuitry includes programmed processors, electrical circuits, etc., as well as devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions. etc. are also included.
  • ASICs application specific integrated circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

塗装評価装置及び塗装評価方法は、塗装面の湾曲形状を表す形状情報、及び、塗装面の表面粗さを表す面粗度情報を取得し、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを用いて、形状情報及び面粗度情報の組合せに対応する評価値を推定する。

Description

塗装評価装置及び塗装評価方法
 本発明は、塗装評価装置及び塗装評価方法に関する。
 塗膜の表面うねりのうち、波長1mm~10mmのうねりの振幅の大きさを選択的に測定し、この測定結果の大小によって塗膜の表面の塗膜外観を評価する発明が知られている(特許文献1)。
特開2006−266728号公報
 特許文献1に記載された発明によれば、塗装面が曲面である場合に、選択的に測定するうねりの振幅に誤差が生じてしまい、塗装面の鮮映性の評価を行う際の精度が低下してしまうおそれがあるという課題がある。
 本発明は、上記問題に鑑みてなされたものであり、その目的とするところは、塗装面が曲面である場合であっても塗装面の鮮映性を精度よく評価することができる塗装評価装置及び塗装評価方法を提供することにある。
 本発明の一態様に係る塗装評価装置及び塗装評価方法は、塗装面の湾曲形状を表す形状情報、及び、塗装面の表面粗さを表す面粗度情報を取得し、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを用いて、形状情報及び面粗度情報の組合せに対応する評価値を推定する。
 本発明によれば、塗装面が曲面である場合であっても塗装面の鮮映性を精度よく評価することができる。
図1は、本発明の一実施形態に係る塗装評価装置の構成を示すブロック図である。 図2は、本発明の一実施形態に係る塗装評価装置の処理を示すフローチャートである。
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。
 [塗装評価装置の構成]
 図1を参照して、本実施形態に係る塗装評価装置の構成例を説明する。図1に示すように、塗装評価装置は、形状取得部11と、面粗度取得部17と、コントローラ100とを備える。その他、塗装評価装置は、材質取得部13と、画像取得部21と、出力部400とを備えるものであってもよい。形状取得部11、材質取得部13、面粗度取得部17、画像取得部21、出力部400は、コントローラ100と接続される。
 形状取得部11は、塗装評価の対象となる塗装面の湾曲形状を表す形状情報を取得する。より具体的には、形状取得部11は、塗装面の設計データを形状情報として取得するものであってもよい。例えば、設計データとして、CAD(Computer−aided design)データが挙げられる。設計データは、塗装面の湾曲の程度(曲率)、後述する面粗度取得部に対する塗装面の傾きの程度を表すものであればこれに限定されない。
 形状取得部11は、図示しないデータベースから、記憶されている塗装面の設計データを取得するものであってもよいし、図示しない外部接続機器から有線・無線のネットワークを介して塗装面の設計データを取得するものであってもよい。その他、形状取得部11は、ユーザの入力に基づいて設計データを取得するものであってもよい。
 また、形状取得部11は、塗装面を計測して得られた計測データを形状情報として取得するものであってもよい。例えば、形状取得部11として、3Dスキャナが挙げられる。
 材質取得部13は、塗装面の材質情報を取得する。より具体的には、材質取得部13は、塗装面の材質情報として、部材の種類、色などの情報を取得する。材質取得部13は、図示しないデータベースから、記憶されている塗装面の材質情報を取得するものであってもよいし、図示しない外部接続機器から有線・無線のネットワークを介して塗装面の材質情報を取得するものであってもよい。その他、材質取得部13は、ユーザの入力に基づいて材質情報を取得するものであってもよい。
 面粗度取得部17は、塗装面の表面粗さを表す面粗度情報を取得する。より具体的には、面粗度取得部17は、塗装面を計測して得られた面粗度を面粗度情報として取得するものであってもよい。例えば、面粗度取得部17として、レーザ顕微鏡が挙げられる。
 その他、面粗度取得部17は、図示しないデータベースから、記憶されている塗装面の面粗度情報を取得するものであってもよいし、図示しない外部接続機器から有線・無線のネットワークを介して塗装面の面粗度情報を取得するものであってもよい。その他、形状取得部11は、ユーザの入力に基づいて面粗度情報を取得するものであってもよい。
 画像取得部21は、塗装評価の対象となる塗装面の撮像画像を取得する。より具体的には、画像取得部21は、CCD、CMOS等の固体撮像素子を備えたデジタルカメラであり、塗装面を撮像してデジタル画像を取得する。
 画像取得部21は、焦点距離、レンズの画角、カメラの垂直方向及び水平方向の角度などが設定されることにより、塗装評価の対象となる塗装面を撮像する。
 コントローラ100は、CPU(Central Processing Unit)、メモリ、記憶装置、入出力部などを備える汎用のコンピュータである。
 コントローラ100には、塗装評価装置として機能させるためのコンピュータプログラム(塗装評価プログラム)がインストールされている。コンピュータプログラムを実行することにより、コントローラ100は塗装評価装置が備える複数の情報処理回路として機能する。
 なお、ここでは、ソフトウェアによって塗装評価装置が備える複数の情報処理回路を実現する例を示すが、もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して情報処理回路を構成することも可能である。また、複数の情報処理回路を個別のハードウェアにより構成してもよい。
 コントローラ100は、評価モデル設定部120と、評価値推定部130と、位置特定部140とを備える。
 評価モデル設定部120は、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを設定する。ここで、評価モデルは、評価済塗装面の形状情報、評価済塗装面の面粗度情報、評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルである。
 ここで、鮮映性の評価値とは、例えば、塗装面の平滑度、塗装面での反射光に占める拡散反射の割合、塗装面に映りこむ像の解像度、の少なくとも1つによって決定される指標である。評価済塗装面の鮮映性の評価値は、評価済塗装面に対して事前に他の鮮映性の評価手法によって与えられた数値である。
 なお、評価モデル設定部120は、材質情報、形状情報、面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを設定するものであってもよい。この場合、評価モデルは、評価済塗装面の材質情報、評価済塗装面の形状情報、評価済塗装面の面粗度情報、評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルである。
 機械学習によって学習モデルを生成する手法としては、例えば、ニューラルネットワーク、サポートベクターマシン、Random Forest、XGBoost、LightGBM、PLS回帰、Ridge回帰、Lasso回帰のうち,1つまたは2つ以上の組み合わせを用いる手法が挙げられる。機械学習によって学習モデルを生成する手法は、ここに挙げた例に限定されない。
 評価モデル設定部120は、図示しないデータベースから取得した教師データに基づいて機械学習を行って評価モデルを設定するものであってもよい。また、図示しないデータベースに評価モデルを事前に記憶させておき、評価モデル設定部120は、データベースから取得した評価モデルを設定するものであってもよい。
 なお、評価モデルは、入力層及び出力層を含むニューラルネットワークによって構成されたものであってもよい。より具体的には、ニューラルネットワークは、典型的には、入力層と、複数の隠れ層と、出力層とを有し、各層(入力層、隠れ層、出力層)は、複数のニューロンを含む。
 入力層は、各隠れ層を介して処理される入力データとして、塗装面の湾曲形状を表す形状情報及び塗装面の表面粗さを表す面粗度情報を含む。また、出力層のニューロンは、ニューラルネットワークによって入力データに割り当てられた、塗装面の鮮映性の評価値を割り当てられる。すなわち、出力層から出力される出力データは、塗装面の鮮映性の評価値となる。
 評価モデルを構成するニューラルネットワークは、塗装面の湾曲形状を表す形状情報、塗装面の表面粗さを表す面粗度情報、塗装面の鮮映性の評価値を組とする教師データを再現するよう、訓練される。すなわち、教師データに含まれる、形状情報、面粗度情報を組とする入力データが入力された際に、塗装面の鮮映性の評価値を出力データとして出力するよう、機械学習によって訓練される。
 このように、教師データに基づく機械学習を行って、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルが生成される。
 評価値推定部130は、設定された評価モデルを用いて、形状情報及び面粗度情報の組合せに対応する評価値を推定する。より具体的には、設定された評価モデルが、評価済塗装面の形状情報、評価済塗装面の面粗度情報、評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルである場合、評価値推定部130は、評価モデルに形状情報及び面粗度情報を入力する。そして、評価値推定部130は、評価モデルから出力された値を、形状情報及び面粗度情報の組合せに対応する評価値とする。形状情報及び面粗度情報の当該組合せに対応する評価値は、塗装面の鮮映性に関する推定された評価値である。
 設定された評価モデルが、評価済塗装面の材質情報、評価済塗装面の形状情報、評価済塗装面の面粗度情報、評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルである場合、評価値推定部130は、評価モデルに、形状情報、面粗度情報、材質情報を入力する。そして、評価値推定部130は、評価モデルから出力された値を、形状情報、面粗度情報、材質情報の組合せに対応する評価値とする。形状情報、面粗度情報、材質情報の当該組合せに対応する評価値は、塗装面の鮮映性に関する推定された評価値である。
 位置特定部140は、撮像画像及び形状情報を面粗度情報に紐づけて、面粗度情報を取得した塗装面上の位置を記録する。より具体的には、面粗度情報を取得した際の撮像画像及び形状情報を、面粗度情報に紐づけて、図示しないデータベースなどに記録する。これにより、面粗度情報を取得した際の塗装面上の位置が特定される。
 出力部400は、塗装面の鮮映性に関する推定された評価値を出力する。
 [塗装評価装置の処理手順]
 次に、本実施形態に係る塗装評価装置の処理手順を、図2のフローチャートを参照して説明する。なお、図2のフローチャートで示される処理が開始される前に、評価モデル設定部120によって評価モデルが既に設定されているものとする。
 ステップS102において、面粗度取得部17は、塗装評価の対象となる塗装面の表面粗さを表す面粗度情報を取得する。また、形状取得部11は、塗装面の湾曲形状を表す形状情報を取得する。その他、材質取得部13は、塗装面の材質情報を取得する。画像取得部21は、塗装面の撮像画像を取得する。
 ステップS104において、位置特定部140は、撮像画像及び形状情報を面粗度情報に紐づけて、面粗度情報を取得した塗装面上の位置を記録することで、面粗度情報を取得した際の塗装面上の位置を特定する。
 ステップS111において、評価値推定部130は、設定された評価モデルを用いて、形状情報及び面粗度情報の組合せに対応する評価値を推定する。
 ステップS113において、出力部400は、評価値推定部130によって推定された評価値を出力する。
 [実施形態の効果]
 以上詳細に説明したように、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムは、塗装面の湾曲形状を表す形状情報、及び、塗装面の表面粗さを表す面粗度情報を取得し、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを用いて、形状情報及び面粗度情報の組合せに対応する評価値を推定する。
 これにより、塗装面が曲面である場合であっても塗装面の鮮映性を精度よく評価することができる。また、評価モデルによって評価値を推定するため、塗装面の鮮映性を評価するための専用の機器や熟練者を必要とせず、塗装面の鮮映性を評価する際のコストを削減できる。
 また、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムにおいて、評価モデルは、評価済塗装面の形状情報、評価済塗装面の面粗度情報、評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルであってもよい。これにより、種々の曲面形状を有する評価済塗装面に関する教師データから生成された評価モデルによって、塗装面の鮮映性を精度よく評価することができる。
 さらに、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムにおいて、塗装面の鮮映性の評価値は、塗装面の平滑度、塗装面での反射光に占める拡散反射の割合、塗装面に映りこむ像の解像度、の少なくとも1つによって決定される指標であってもよい。このように、塗装面の鮮映性の評価の基準が明示される。
 また、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムは、塗装面の設計データを形状情報として取得するものであってもよいし、塗装面を計測して得られた計測データを形状情報として取得するものであってもよい。これにより、塗装面の湾曲形状を考慮して、塗装面の鮮映性を精度よく評価することができる。
 さらに、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムは、塗装面の撮像画像を取得し、撮像画像及び形状情報を面粗度情報に紐づけて、面粗度情報を取得した塗装面上の位置を記録するものであってもよい。これにより、面粗度情報を取得した際の塗装面上の位置が特定される。また、塗装面の鮮映性を精度よく評価することができる。
 また、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムは、塗装面の材質情報を取得して、材質情報、形状情報、面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力する評価モデルを用いて、形状情報、面粗度情報、材質情報の組合せに対応する評価値を推定するものであってもよい。塗装面の形状情報、面粗度情報に加えて、さらに塗装面の材質情報を塗装面の鮮映性の評価に用いることで、塗装面の鮮映性を精度よく評価することができる。
 さらに、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムにおいて、評価モデルは、評価済塗装面の材質情報、評価済塗装面の形状情報、評価済塗装面の面粗度情報、評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルであってもよい。これにより、種々の曲面形状、種々の材質で構成された評価済塗装面に関する教師データから生成された評価モデルによって、塗装面の鮮映性を精度よく評価することができる。
 また、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムで使用される評価モデルは、入力層及び出力層を含むニューラルネットワークによって構成されるものであってもよい。ここで、塗装面の湾曲形状を表す形状情報及び塗装面の表面粗さを表す面粗度情報を含み、入力層に入力される入力データと、塗装面の鮮映性の評価値を含み、出力層から出力される出力データと、を互いに関連付けて学習させたものであってもよい。
 これにより、塗装面の形状情報及び面粗度情報と、塗装面の鮮映性の評価値の間に成立する関係を表現できる。その結果、塗装面の鮮映性を評価するための専用の機器や熟練者を必要とせず、塗装面の鮮映性を評価する際のコストを削減できる。
 さらに、本実施形態に係る塗装評価装置、塗装評価方法、塗装評価プログラムで使用される評価モデルを、塗装面の湾曲形状を表す形状情報、塗装面の表面粗さを表す面粗度情報、塗装面の鮮映性の評価値を組とする教師データを取得し、教師データに基づく機械学習を行って、形状情報及び面粗度情報を含む入力に対して塗装面の鮮映性の評価値を出力するよう構成することで生成してもよい。これにより、塗装面の形状情報及び面粗度情報と、塗装面の鮮映性の評価値の間に成立する関係を表現する評価モデルを得ることができる。
 上述の実施形態で示した各機能は、1又は複数の処理回路によって実装されうる。処理回路には、プログラムされたプロセッサや、電気回路などが含まれ、さらには、特定用途向けの集積回路(ASIC)のような装置や、記載された機能を実行するよう配置された回路構成要素なども含まれる。
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 11  形状取得部
 13  材質取得部
 17  面粗度取得部
 21  画像取得部
 100 コントローラ
 120 評価モデル設定部
 130 評価値推定部
 140 位置特定部
 400 出力部

Claims (12)

  1.  塗装面の湾曲形状を表す形状情報を取得する形状取得部と、
     前記塗装面の表面粗さを表す面粗度情報を取得する面粗度取得部と、
     コントローラと、を備える塗装評価装置であって、
     前記コントローラは、
     前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報及び前記面粗度情報の組合せに対応する評価値を推定すること
    を特徴とする塗装評価装置。
  2.  請求項1に記載の塗装評価装置であって、
     前記評価モデルは、
     評価済塗装面の形状情報、前記評価済塗装面の面粗度情報、前記評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルであること
    を特徴とする塗装評価装置。
  3.  請求項1又は2に記載の塗装評価装置であって、
     前記塗装面の鮮映性の評価値は、前記塗装面の平滑度、前記塗装面での反射光に占める拡散反射の割合、前記塗装面に映りこむ像の解像度、の少なくとも1つによって決定される指標であること
    を特徴とする塗装評価装置。
  4.  請求項1~3のいずれか一項に記載の塗装評価装置であって、
     前記形状取得部は、前記塗装面の設計データを前記形状情報として取得すること
    を特徴とする塗装評価装置。
  5.  請求項1~4のいずれか一項に記載の塗装評価装置であって、
     前記形状取得部は、前記塗装面を計測して得られた計測データを前記形状情報として取得すること
    を特徴とする塗装評価装置。
  6.  請求項1~5のいずれか一項に記載の塗装評価装置であって、
     前記塗装面の撮像画像を取得する画像取得部を更に備え、
     前記コントローラは、
     前記撮像画像及び前記形状情報を前記面粗度情報に紐づけて、前記面粗度情報を取得した前記塗装面上の位置を記録すること
    を特徴とする塗装評価装置。
  7.  請求項1~6のいずれか一項に記載の塗装評価装置であって、
     前記塗装面の材質情報を取得する材質取得部を更に備え、
     前記コントローラは、
     前記材質情報、前記形状情報、前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報、前記面粗度情報、前記材質情報の組合せに対応する評価値を推定すること
    を特徴とする塗装評価装置。
  8.  請求項7に記載の塗装評価装置であって、
     前記評価モデルは、
     評価済塗装面の前記材質情報、前記評価済塗装面の形状情報、前記評価済塗装面の面粗度情報、前記評価済塗装面の鮮映性の評価値を組とする教師データに基づく機械学習によって生成された学習モデルであること
    を特徴とする塗装評価装置。
  9.  塗装面の湾曲形状を表す形状情報を取得し、
     前記塗装面の表面粗さを表す面粗度情報を取得し、
     前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報及び前記面粗度情報の組合せに対応する評価値を推定すること
    を特徴とする塗装評価方法。
  10.  塗装面の湾曲形状を表す形状情報を取得する形状取得部と、
     前記塗装面の表面粗さを表す面粗度情報を取得する面粗度取得部と、
    を制御するコンピュータに、
     前記形状取得部を用いて前記形状情報を取得するステップと、
     前記面粗度取得部を用いて前記面粗度情報を取得するステップと、
     前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを用いて、前記形状情報及び前記面粗度情報の組合せに対応する評価値を推定するステップと、
    を実行させるための塗装評価プログラム。
  11.  入力層及び出力層を含むニューラルネットワークによって構成された評価モデルであって、
     塗装面の湾曲形状を表す形状情報及び前記塗装面の表面粗さを表す面粗度情報を含み、前記入力層に入力される入力データと、
     前記塗装面の鮮映性の評価値を含み、前記出力層から出力される出力データと、
    を互いに関連付けて学習させたこと
    を特徴とする評価モデル。
  12.  塗装面の湾曲形状を表す形状情報、前記塗装面の表面粗さを表す面粗度情報、前記塗装面の鮮映性の評価値を組とする教師データを取得し、
     前記教師データに基づく機械学習を行って、前記形状情報及び前記面粗度情報を含む入力に対して前記塗装面の鮮映性の評価値を出力する評価モデルを生成すること
    を特徴とする評価モデル生成方法。
PCT/IB2021/000416 2021-06-21 2021-06-21 塗装評価装置及び塗装評価方法 WO2022269302A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202180099260.7A CN117501108A (zh) 2021-06-21 2021-06-21 涂装评价装置和涂装评价方法
PCT/IB2021/000416 WO2022269302A1 (ja) 2021-06-21 2021-06-21 塗装評価装置及び塗装評価方法
EP21946909.5A EP4361613A4 (en) 2021-06-21 2021-06-21 PAINT EVALUATION DEVICE AND PAINT EVALUATION METHOD
JP2023529139A JPWO2022269302A1 (ja) 2021-06-21 2021-06-21
US18/572,255 US20240230547A1 (en) 2021-06-21 2021-06-21 Coating evaluation device and coating evaluation method
JP2023529142A JPWO2022269342A1 (ja) 2021-06-21 2022-06-13
PCT/IB2022/000312 WO2022269342A1 (ja) 2021-06-21 2022-06-13 塗装評価装置及び塗装評価方法
EP22826649.0A EP4361614A1 (en) 2021-06-21 2022-06-13 Coating evaluation device and coating evaluation method
CN202280041949.9A CN117480383A (zh) 2021-06-21 2022-06-13 涂装评价装置和涂装评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/000416 WO2022269302A1 (ja) 2021-06-21 2021-06-21 塗装評価装置及び塗装評価方法

Publications (1)

Publication Number Publication Date
WO2022269302A1 true WO2022269302A1 (ja) 2022-12-29

Family

ID=84544201

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2021/000416 WO2022269302A1 (ja) 2021-06-21 2021-06-21 塗装評価装置及び塗装評価方法
PCT/IB2022/000312 WO2022269342A1 (ja) 2021-06-21 2022-06-13 塗装評価装置及び塗装評価方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/000312 WO2022269342A1 (ja) 2021-06-21 2022-06-13 塗装評価装置及び塗装評価方法

Country Status (5)

Country Link
US (1) US20240230547A1 (ja)
EP (2) EP4361613A4 (ja)
JP (2) JPWO2022269302A1 (ja)
CN (2) CN117501108A (ja)
WO (2) WO2022269302A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989984A (en) * 1989-11-08 1991-02-05 Environmental Research Institute Of Michigan System for measuring optical characteristics of curved surfaces
JPH06160300A (ja) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd ウェット鮮映性測定装置
JPH0796228A (ja) * 1993-09-27 1995-04-11 Nissan Motor Co Ltd 塗装処理装置及び塗装処理方法
JPH08122035A (ja) * 1994-10-24 1996-05-17 Nissan Motor Co Ltd 塗装品質解析装置
JPH09262533A (ja) * 1996-03-27 1997-10-07 Nissan Motor Co Ltd 塗装品質解析装置
JP2006266728A (ja) 2005-03-22 2006-10-05 Honda Motor Co Ltd 塗膜外観の評価方法及び塗装物
CN110146034A (zh) * 2019-06-20 2019-08-20 本钢板材股份有限公司 一种基于表面波纹度的冷轧薄钢板表面质量的判别方法
US20190287237A1 (en) * 2016-12-01 2019-09-19 Autaza Tecnologia LTDA-EPP Method and system for automatic quality inspection of materials and virtual material surfaces

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109405B2 (ja) * 1989-06-26 1995-11-22 日産自動車株式会社 塗装鮮映性測定方法
JP4534795B2 (ja) * 2005-02-25 2010-09-01 トヨタ自動車株式会社 塗膜評価装置及び方法
JP2006308476A (ja) * 2005-04-28 2006-11-09 Tokyo Seimitsu Co Ltd 表面粗さ/形状測定装置
JP2014149286A (ja) * 2013-01-31 2014-08-21 Nireco Corp 面粗さ測定装置
DE102015118551A1 (de) * 2015-10-29 2017-05-04 Basf Coatings Gmbh Verfahren zum Ermitteln von Texturparametern eines Lacks
JP6787396B2 (ja) * 2016-04-08 2020-11-18 コニカミノルタ株式会社 光学測定装置、画像の生成方法および画像の生成プログラム
US11002676B2 (en) * 2018-04-09 2021-05-11 Hunter Associates Laboratory, Inc. UV-VIS spectroscopy instrument and methods for color appearance and difference measurement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989984A (en) * 1989-11-08 1991-02-05 Environmental Research Institute Of Michigan System for measuring optical characteristics of curved surfaces
JPH06160300A (ja) * 1992-11-17 1994-06-07 Nissan Motor Co Ltd ウェット鮮映性測定装置
JPH0796228A (ja) * 1993-09-27 1995-04-11 Nissan Motor Co Ltd 塗装処理装置及び塗装処理方法
JPH08122035A (ja) * 1994-10-24 1996-05-17 Nissan Motor Co Ltd 塗装品質解析装置
JPH09262533A (ja) * 1996-03-27 1997-10-07 Nissan Motor Co Ltd 塗装品質解析装置
JP2006266728A (ja) 2005-03-22 2006-10-05 Honda Motor Co Ltd 塗膜外観の評価方法及び塗装物
US20190287237A1 (en) * 2016-12-01 2019-09-19 Autaza Tecnologia LTDA-EPP Method and system for automatic quality inspection of materials and virtual material surfaces
CN110146034A (zh) * 2019-06-20 2019-08-20 本钢板材股份有限公司 一种基于表面波纹度的冷轧薄钢板表面质量的判别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4361613A4

Also Published As

Publication number Publication date
US20240230547A1 (en) 2024-07-11
JPWO2022269302A1 (ja) 2022-12-29
EP4361613A4 (en) 2024-05-29
CN117480383A (zh) 2024-01-30
EP4361614A1 (en) 2024-05-01
CN117501108A (zh) 2024-02-02
JPWO2022269342A1 (ja) 2022-12-29
EP4361613A1 (en) 2024-05-01
WO2022269342A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6635690B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP6537237B2 (ja) 情報処理装置および方法
TWI607412B (zh) 多維度尺寸量測系統及其方法
US20100310128A1 (en) System and Method for Remote Measurement of Displacement and Strain Fields
Marcin et al. Hierarchical, three‐dimensional measurement system for crime scene scanning
JP6894672B2 (ja) 情報処理装置、情報処理方法、プログラム
US9990724B2 (en) Image recording simulation in a coordinate measuring machine
Silvester et al. A critical assessment of the potential for structure‐from‐motion photogrammetry to produce high fidelity 3D dental models
JP7330970B2 (ja) コンピュータ生成された参照物体を有するマシンビジョンシステム
JP2005509877A (ja) コンピュータ視覚システムの較正方法及びそのシステム
JP5599849B2 (ja) レンズ検査装置及びその方法
JP2018005542A (ja) 画像処理装置、撮像装置、画像処理方法、画像処理プログラム、および、記憶媒体
JP2017044596A (ja) 膜厚測定装置および膜厚測定方法
Sebar et al. A trustable 3D photogrammetry approach for cultural heritage
WO2022269302A1 (ja) 塗装評価装置及び塗装評価方法
JP7179439B2 (ja) 情報処理装置、情報処理方法及びプログラム
JP2012068257A (ja) 反射特性を分析するための方法
Kholkhujaev et al. Non-contact articulated robot-integrated gap and flushness measurement system for automobile assembly
Javaid et al. Studies on the Metrological Need and Capabilities of 3D Scanning Technologies
KR102039902B1 (ko) 원격 기자재 정도 검사 시스템 및 방법
Sara et al. 3Dino: Configuration for a Micro-Photogrammetric Survey: Applying Dino-Lite microscope for the digitalization of a cuneiform tablet
TWI408343B (zh) 用來預估待測物件相關資訊之方法及其相關攝像裝置
Irgenfried et al. Image formation simulation for computer-aided inspection planning of machine vision systems
WO2022269300A1 (ja) 塗装評価装置及び塗装評価方法
WO2022269301A1 (ja) 塗装評価装置及び塗装評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946909

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529139

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180099260.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18572255

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021946909

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021946909

Country of ref document: EP

Effective date: 20240122