WO2022268558A1 - Arrêt d'urgence d'un dispositif de tamisage en cas de dysfonctionnement d'une unité d'excitation à balourd - Google Patents

Arrêt d'urgence d'un dispositif de tamisage en cas de dysfonctionnement d'une unité d'excitation à balourd Download PDF

Info

Publication number
WO2022268558A1
WO2022268558A1 PCT/EP2022/066038 EP2022066038W WO2022268558A1 WO 2022268558 A1 WO2022268558 A1 WO 2022268558A1 EP 2022066038 W EP2022066038 W EP 2022066038W WO 2022268558 A1 WO2022268558 A1 WO 2022268558A1
Authority
WO
WIPO (PCT)
Prior art keywords
screening device
cluster
imbalance
exciter unit
imbalance exciter
Prior art date
Application number
PCT/EP2022/066038
Other languages
German (de)
English (en)
Inventor
Guido Leuschen
Original Assignee
Flsmidth A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102021206533.3A external-priority patent/DE102021206533A1/de
Priority claimed from BE20215495A external-priority patent/BE1029527B1/de
Application filed by Flsmidth A/S filed Critical Flsmidth A/S
Publication of WO2022268558A1 publication Critical patent/WO2022268558A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • B07B1/284Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens with unbalanced weights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/42Drive mechanisms, regulating or controlling devices, or balancing devices, specially adapted for screens

Definitions

  • the invention relates to a method for switching off a screening device in a controlled manner in the event of failure or an error message leading to a forced shutdown of an imbalance exciter unit, so that the defective imbalance exciter unit can then be repaired easily and safely and the screening device can be started up again easily.
  • Screen systems with vibration exciters arranged in groups are known from DE 10 2017 218 371 B3 and from DE 10 2018 205 997 A1.
  • This arrangement in groups enables the operation of the screening device to be highly adaptable, which is not possible with the classic linear, elliptical or circular vibrators.
  • This group of screening devices thus enables completely new control schemes.
  • DE 102019 204 845 B3 discloses a method for setting and controlling at least one vibration mode of a screening device.
  • a method for controlling and regulating a screening device is known from DE 10 2019 214 864 B3.
  • DE 41 16 632 A1 discloses a device for detecting errors in the direction of rotation and synchronization.
  • the object of the invention is to provide a method with which a screening device with vibration exciters arranged in groups can initially continue to be operated, albeit to a limited extent, in the event of failure or fault of a vibration exciter, and then all parts of the plant related to the screening device can be shut down in a controlled manner to be able to
  • the method according to the invention is used for the emergency shutdown of a screening device.
  • Corresponding screening devices are used, for example, when mining material, but in particular in combination with an upstream crusher or an upstream mill.
  • the screening device is typically used to separate a coarse fraction and a fine fraction.
  • the coarse fraction runs over the screen, while the fine fraction is guided downwards through the screen.
  • a screening device can also have two screens arranged one above the other. The upper sieve is correspondingly coarse, the lower one is finer. In this case, an additional middle fraction is separated.
  • the screening device has at least four clusters of imbalance exciter units.
  • the imbalance exciter units serve to set the screen of the screening device in motion and thus to move the material to be screened on the screen.
  • Each cluster has at least two imbalance exciter units, each cluster being designed via a coupling point for impinging the screening device with vibrations.
  • the total acceleration resulting from the imbalance exciter units at the coupling point increases due to the joint coupling into a common coupling point transferred to the system, resulting in a variety of control options.
  • the two front clusters are located closer to material application and the two rear clusters are located closer to material discharge.
  • the screening device can have further clusters, for example screening devices can also have six or eight clusters, which are preferably arranged in pairs opposite one another and equidistant from one another.
  • an imbalance exciter unit including the defective imbalance exciter unit is deactivated.
  • the effect is that the number of imbalance exciter units in each cluster is reduced by 1, for example from two imbalance exciter units to one imbalance exciter unit or from three imbalance exciter units to two imbalance exciter units.
  • all clusters are of the same type again and all active imbalance exciter units are fully functional.
  • the screening device can continue to be operated, albeit with a restricted range of functions. Of course, this reduces the energy that can be introduced into the screening device, so that the efficiency is reduced.
  • the controllability of the screening device is also reduced, for example when two imbalance exciter units are reduced to just one imbalance exciter unit, the cluster naturally only has the invariable property of one imbalance exciter unit.
  • the advantage is that the screening device is still functional and controllable, so that at least the material on the screen can still be processed for the purpose of emptying the screen.
  • an upstream crusher or the like can also be emptied first, which would not be the case with a conventional emergency shutdown.
  • the screening device is then empty and can be repaired much more easily, and it is also easier to start up again. This then also applies analogously to the other parts of the plant, for example the aforementioned crusher.
  • the imbalance exciter units are arranged in all clusters in the same spatial arrangement relative to the material application and material discharge.
  • the imbalance exciter unit that is in the same spatial position within the cluster is deactivated is located like the imbalance exciter unit with the defect within the cluster in which it is arranged. This is explained using an example. Assuming that the screening device has four clusters, each with two unbalance exciter units, the material application is on the left, the material discharge is on the right, and the two unbalance exciter units in a cluster on the right and left side by side. If, for example, the left imbalance exciter unit in a cluster were to fail, the left imbalance exciter units would be switched off in all clusters.
  • the screening device still has four running imbalance exciter units, each of which is on the right in the cluster.
  • the screening device can continue to operate in an emergency mode until the screen is empty.
  • the screen can then be stopped and then the defective imbalance exciter unit easily repaired or replaced.
  • this symmetrical shutdown enables simple control in emergency operation.
  • each cluster has three imbalance exciter units, with the two imbalance exciter units still remaining after deactivation being operated at the same speed, in opposite directions of rotation and with a phase offset of 90°. This control enables maximum material transport over the screen so that the screening device is emptied as quickly as possible.
  • the defect in an imbalance exciter unit is determined by detecting a sharp drop in the speed, the power consumption increasing rapidly, and/or a sensor, for example a temperature sensor, detecting a malfunction, for example overheating.
  • each imbalance exciter unit has an initial sensor, a sensor which reports the exact point in time of the position of the sensor to a control system once per revolution.
  • the disadvantage of such an initial sensor compared to incremental encoders or absolute encoders, which can report several positions or the exact position of the unbalance exciter unit to a control system, is the much lower data density, since only one piece of information is available per revolution, which makes control more difficult.
  • This disadvantage is to be accepted, however, since an initial sensor is significantly more robust in comparison to the other sensor types and the initial sensor is arranged on the imbalance exciter unit and thus in the mechanically heavily loaded area of the screening device.
  • the defect in an imbalance exciter unit is detected in that the time span since the last signal is more than twice as long as the expected time interval for one revolution.
  • a control signal is sent to the device feeding the screening device with material to end the application of material to the screening device.
  • the device feeding the screening device with material is a conveyor belt. More preferably, all upstream processes are controlled accordingly and terminated step by step. If, for example, a crusher is charged via a first conveyor belt and the comminuted material is conveyed to the screening device according to the invention via a second conveyor belt, the first conveyor belt is preferably stopped first. The crusher is then stopped as soon as it has run empty, followed by the second conveyor belt. After that, the screening device continues to be operated until it has also run empty. Thus, both the crusher and the screening device are in a state in which they can be easily started up again.
  • the device feeding the screening device with material sends a signal to the screening device about the end of the application of material, the screening device continuing to be operated after the end of the application of material until the screening device is emptied.
  • this can also relate to more than one upstream device, for example the first conveyor belt, the crusher and the second conveyor belt from the example mentioned above.
  • FIG. 1 first example 2 first example after failure
  • FIG. 3 first example in emergency operation
  • FIG. 4 second example
  • FIG. 5 second example after failure
  • FIG. 6 second example in emergency operation
  • Fig. 1 to Fig. 3 shows a first example of a screening device 10.
  • the screening device 10 has a first cluster with a first first imbalance exciter unit 61 and a second first imbalance exciter unit 62, and a second cluster with a first second imbalance exciter unit 71 and a second second Imbalance exciter unit 72 on.
  • the third cluster and the fourth cluster are respectively arranged directly behind the first cluster and the second cluster in this side view.
  • a conveyor belt 50 transports material to the screening device 10.
  • the material is applied to the screen of the screening device. Fine material falls through the screen and is discharged via the fine fraction discharge 40.
  • the coarse fraction is transported to the material outlet 30 via the screen of the screening device 10 .
  • first unbalance exciter unit 61 and the second first unbalance exciter unit run with a phase offset of 90° and in opposite directions at the same speed.
  • first second imbalance exciter unit 71 and the second second imbalance exciter unit 72 are deactivated in Fig. 3 this is shown for the second second imbalance exciter unit 72, the third and fourth clusters cannot be seen.
  • the screening device 10 with the first imbalance exciter unit 61 in the first cluster, the first second imbalance exciter unit 71 in the second cluster, the first third imbalance exciter unit in the third cluster and the first fourth imbalance exciter unit in the fourth cluster can continue to be operated in emergency mode until the material application through the Conveyor belt 50 has ended and the screening device 10 itself has run empty.
  • the second example, as shown in FIGS. 4 to 6, differs from the first example, which is shown in FIGS. 1 to 3, in that each cluster has three imbalance exciter units.
  • first first unbalance exciter unit 61 has one direction of rotation and the second first unbalance exciter unit 62 and the third first unbalance exciter unit 63 have the opposite direction of rotation.
  • the three first imbalance exciter units 61, 62, 63 all have the same phase and
  • the second cluster is operated in the same way.
  • the first second unbalance exciter unit 71 has one direction of rotation and the second second unbalance exciter unit 72 and the third second unbalance exciter unit 73 have the opposite direction of rotation.
  • the three second imbalance exciter units 71, 72, 73 all have the same phase and rotational speed. If, for example, the second first imbalance exciter unit 62 fails, as shown in FIG. 5, then all second nth imbalance exciter units 62, 72 in all clusters are switched off.
  • a phase offset of 90° is set between the first n-th unbalance exciter units 61, 71 and the third n-th unbalance exciter units 63, 73, as shown in FIG. In this way, the transport of material via the screening device 10 is maximized and the loss of power due to the switching off of the second nth imbalance exciter units is reduced.

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

La présente invention concerne un procédé d'arrêt d'urgence d'un dispositif de tamisage (10), le dispositif de tamisage (10) présentant au moins quatre groupes d'unités d'excitation à balourd (61, 62, 63, 71, 72, 73), chaque groupe présentant au moins deux unités d'excitation à balourd, chaque groupe étant conçu respectivement au-dessus d'un point d'accouplement pour soumettre le dispositif de tamisage (10) à des oscillations, deux groupes avant étant disposés plus proches du dépôt de matériau (20), deux groupes arrière étant disposés plus proches de la sortie de matériau (30) ; l'invention est caractérisée en ce qu'en cas de défaillance d'une unité d'excitation à balourd dans chaque groupe, une unité d'excitation à balourd, y compris l'unité d'excitation à balourd défectueuse, est désactivée.
PCT/EP2022/066038 2021-06-24 2022-06-13 Arrêt d'urgence d'un dispositif de tamisage en cas de dysfonctionnement d'une unité d'excitation à balourd WO2022268558A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102021206533.3A DE102021206533A1 (de) 2021-06-24 2021-06-24 Notabschaltung einer Siebvorrichtung bei Fehlfunktion einer Unwuchterregereinheit
BE20215495A BE1029527B1 (de) 2021-06-24 2021-06-24 Notabschaltung einer Siebvorrichtung bei Fehlfunktion einer Unwuchterregereinheit
BEBE2021/5495 2021-06-24
DE102021206533.3 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022268558A1 true WO2022268558A1 (fr) 2022-12-29

Family

ID=82656377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/066038 WO2022268558A1 (fr) 2021-06-24 2022-06-13 Arrêt d'urgence d'un dispositif de tamisage en cas de dysfonctionnement d'une unité d'excitation à balourd

Country Status (1)

Country Link
WO (1) WO2022268558A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116632A1 (de) 1991-05-22 1992-11-26 Matthias Reck Vorrichtung zur drehrichtungs- und synchronisationsfehlererkennung
EP1545803A1 (fr) * 2002-07-31 2005-06-29 Metso Minerals (Tampere) Oy Machine de criblage et son procede de commande
US20150283581A1 (en) * 2012-10-26 2015-10-08 M-I L.L.C. Shaker with automatic motion
DE102017218371B3 (de) 2017-10-13 2018-09-20 Thyssenkrupp Ag Siebsystem mit schwingungsknotenangeordneten Schwingungssystemen
DE102018205997A1 (de) 2018-04-19 2019-10-24 Thyssenkrupp Ag Siebsystem mit genuteten Traversen
DE102019214864B3 (de) 2019-09-27 2020-06-18 Thyssenkrupp Ag Verfahren und Vorrichtung zum Ansteuern und Regeln einer Siebvorrichtung sowie Verwendung
DE102019204845B3 (de) 2019-04-04 2020-07-09 Thyssenkrupp Ag Vorrichtung und Verfahren zum Einstellen und Regeln wenigstens einer Schwingungsmode mittels der Vielzahl von Unwuchterregereinheiten an einer Siebvorrichtung
US20200254489A1 (en) * 2017-10-13 2020-08-13 Thyssenkrupp Industrial Solutions Ag Screening system with vibration-node-arranged vibration systems
DE102021204394B3 (de) 2021-04-30 2021-12-30 Thyssenkrupp Ag Verfahren zur Entfernung von Verstopfungen eines Siebes im laufenden Betrieb
DE102021204393B3 (de) 2021-04-30 2021-12-30 Thyssenkrupp Ag Verfahren zur Entfernung von Verstopfungen eines Siebes im laufenden Betrieb
DE102021204392B3 (de) 2021-04-30 2021-12-30 Thyssenkrupp Ag Verfahren zum Betreiben einer Siebvorrichtung als Kreisschwinger, Ellipsenschwinger oder Linearschwinger in Abhängigkeit von der Feuchte des zu siebenden Materials

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116632A1 (de) 1991-05-22 1992-11-26 Matthias Reck Vorrichtung zur drehrichtungs- und synchronisationsfehlererkennung
EP1545803A1 (fr) * 2002-07-31 2005-06-29 Metso Minerals (Tampere) Oy Machine de criblage et son procede de commande
US20150283581A1 (en) * 2012-10-26 2015-10-08 M-I L.L.C. Shaker with automatic motion
DE102017218371B3 (de) 2017-10-13 2018-09-20 Thyssenkrupp Ag Siebsystem mit schwingungsknotenangeordneten Schwingungssystemen
US20200254489A1 (en) * 2017-10-13 2020-08-13 Thyssenkrupp Industrial Solutions Ag Screening system with vibration-node-arranged vibration systems
DE102018205997A1 (de) 2018-04-19 2019-10-24 Thyssenkrupp Ag Siebsystem mit genuteten Traversen
DE102019204845B3 (de) 2019-04-04 2020-07-09 Thyssenkrupp Ag Vorrichtung und Verfahren zum Einstellen und Regeln wenigstens einer Schwingungsmode mittels der Vielzahl von Unwuchterregereinheiten an einer Siebvorrichtung
DE102019214864B3 (de) 2019-09-27 2020-06-18 Thyssenkrupp Ag Verfahren und Vorrichtung zum Ansteuern und Regeln einer Siebvorrichtung sowie Verwendung
DE102021204394B3 (de) 2021-04-30 2021-12-30 Thyssenkrupp Ag Verfahren zur Entfernung von Verstopfungen eines Siebes im laufenden Betrieb
DE102021204393B3 (de) 2021-04-30 2021-12-30 Thyssenkrupp Ag Verfahren zur Entfernung von Verstopfungen eines Siebes im laufenden Betrieb
DE102021204392B3 (de) 2021-04-30 2021-12-30 Thyssenkrupp Ag Verfahren zum Betreiben einer Siebvorrichtung als Kreisschwinger, Ellipsenschwinger oder Linearschwinger in Abhängigkeit von der Feuchte des zu siebenden Materials

Similar Documents

Publication Publication Date Title
DE102021206533A1 (de) Notabschaltung einer Siebvorrichtung bei Fehlfunktion einer Unwuchterregereinheit
DE102021204393B3 (de) Verfahren zur Entfernung von Verstopfungen eines Siebes im laufenden Betrieb
EP1454747B1 (fr) Dispositif pour la surveillance des processus importants pour la sécurité dans des machines
DE102021204394B3 (de) Verfahren zur Entfernung von Verstopfungen eines Siebes im laufenden Betrieb
DE102005014804A1 (de) Bordnetzsystem für ein Kraftfahrzeug sowie Steuergerät und intelligentes Energieversorgungsgerät für ein Bordnetzsystem eines Kraftfahrzeugs
DE19509150C2 (de) Verfahren zum Steuern und Regeln von Fahrzeug-Bremsanlagen sowie Fahrzeug-Bremsanlage
DE102021204377A1 (de) Verfahren zum Betreiben einer Siebvorrichtung zur Konstanthaltung der Produktqualität bei schwankendem Massestrom
DE102021206531A1 (de) Hoch- und Runterfahren einer Siebvorrichtung mit gruppiert angeordneten Unwuchterregereinheit
DE102021204388A1 (de) Verfahren zur Verwendung möglichst leichter Siebvorrichtungen
EP1313664A1 (fr) Systeme de securite redondant d'un vehicule
EP2874750A2 (fr) Procédé et installation de comminution de matière à broyer à l'aide d'un broyeur à cylindres
BE1029527B1 (de) Notabschaltung einer Siebvorrichtung bei Fehlfunktion einer Unwuchterregereinheit
WO2022268558A1 (fr) Arrêt d'urgence d'un dispositif de tamisage en cas de dysfonctionnement d'une unité d'excitation à balourd
DE4113959A1 (de) Ueberwachungseinrichtung
EP3412804B1 (fr) Procede et dispositif de commande de production dans un battage
DE102021206530A1 (de) Verfahren zum Ansteuern einer Siebvorrichtung und Siebvorrichtung
WO2020201220A1 (fr) Dispositif de tamisage
EP0649591A1 (fr) Dispositif de sécurité d'un mécanisme de réglage du contre-couteau
BE1029525B1 (de) Hoch- und Runterfahren einer Siebvorrichtung mit gruppiert angeordneten Unwuchterregereinheit
EP1740319A1 (fr) Tamiseur vibrant et procede de fonctionnement d'un tamiseur vibrant
DE2702800A1 (de) Sicherheitsschaltung fuer antiblockierregeleinrichtungen von kraftfahrzeugen, insbesondere strassenfahrzeugen
EP2021203B1 (fr) Dispositif comprenant une pluralite de commutateurs electriques, destine en particulier a une voie a levitation magnetique
DE102009027369A1 (de) Verfahren sowie System zur Ansteuerung von mindestens einem Aktuator
WO2016026589A1 (fr) Installation de briquetage à chaud
BE1030008B1 (de) Schwingrinne mit in Clustern angeordneten Unwuchterregereinheiten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22744649

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22744649

Country of ref document: EP

Kind code of ref document: A1