WO2022268256A1 - Plaque bipolaire et procédé de fonctionnement de plaque bipolaire - Google Patents

Plaque bipolaire et procédé de fonctionnement de plaque bipolaire Download PDF

Info

Publication number
WO2022268256A1
WO2022268256A1 PCT/DE2022/100434 DE2022100434W WO2022268256A1 WO 2022268256 A1 WO2022268256 A1 WO 2022268256A1 DE 2022100434 W DE2022100434 W DE 2022100434W WO 2022268256 A1 WO2022268256 A1 WO 2022268256A1
Authority
WO
WIPO (PCT)
Prior art keywords
embossing depth
depressions
sheet
sheets
area
Prior art date
Application number
PCT/DE2022/100434
Other languages
German (de)
English (en)
Inventor
Sebastian Zwahr
Van Hau Nguyen
Roman Stierhof
Andreas Nendel
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to EP22731479.6A priority Critical patent/EP4360149A1/fr
Priority to CN202280028104.6A priority patent/CN117121241A/zh
Publication of WO2022268256A1 publication Critical patent/WO2022268256A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/006Flat

Definitions

  • the invention relates to a bipolar plate made up of two half sheets according to the preamble of claim 1 .
  • the invention also relates to a method for producing such a bipolar plate.
  • a generic bipolar plate for an electrochemical system is known, for example, from DE 20 2016 107 302 U1.
  • the well-known bipolar plate is made up of half sheets, which are referred to as separator plates.
  • the separator plates have through-openings for passing a medium through.
  • a dividing or collecting area of the separator plates is provided with a plurality of lands forming channels which are in fluid communication with the through-opening.
  • a flow field is formed by the separator plates, which is in fluid connection with the passage opening via the distribution or collection area and has conducting structures for conducting a medium through the flow field.
  • there is a coherent, sunken transition area that is arranged between the distribution or collection area and the flow field.
  • flow-guiding structures within the transition region have a height that is less than the height of structures in the flow field, with the height being measured perpendicular to the planar surface plane of the separator plate.
  • separator plates for electrochemical systems are described in the documents DE 10 2019 217 053 A1, DE 102021 000 629 A1, EP 3 331 076 B1, and WO 2019/22 91 38 A1.
  • EP 3 529 842 B1 discloses a method for producing a separator plate for a fuel cell. As part of this process, a mixture of materials is applies, which contains carbon powder as a main component and also contains various plastic components.
  • the invention is based on the object of further developing bipolar plates for fuel cells compared to the stated prior art, in particular from a manufacturing perspective, with a high degree of process reliability and a compact structure of the end product, i.e. a fuel cell stack having a large number of bipolar plates, being aimed for.
  • bipolar plate having the features of claim 1 .
  • the object is also achieved by a method for producing a bipolar plate according to claim 7.
  • Embodiments and advantages of the invention explained below in connection with the production method also apply analogously to the devices, i.e. the bipolar plate and a plurality of such bipolar plates fuel cell stack.
  • the bipolar plate is made up of two half-sheets lying one on top of the other and has a plurality of media ports, a distribution panel, which is provided for distributing the media flowing through the ports, an active panel, and one arranged between the distribution panel and the active panel, in plan view the half-plates have a transition region that describes a strip-shaped channel structure.
  • each half sheet there are indentations with a normal embossing depth, indentations with a reduced embossing depth and indentations with an increased embossing depth, with the two half sheets being placed one on top of the other in such a way that a channel structure is formed by the various indentations and non-indented areas of the half sheets in between which is always a non-recessed area of one half-sheet over a likewise non-recessed area of the other half-sheet, so that a stripe pattern of the non-recessed areas is given.
  • Different depression areas are arranged alternately between the strips formed by the non-depressed areas, namely a normally pronounced depression area in which both half-sheets have the normal embossing depth, a modified depression area of the first type in which the first half-metal sheet has the increased embossing depth and the second half-metal sheet has the reduced embossing depth, a further normally pronounced indentation area, and a modified indentation area of the second type, in which the first half sheet has the reduced embossing depth and the second half sheet has the increased embossing depth.
  • subtypes of depression areas can also be formed, which can be assigned to the modified depression area of the first type or second type. For example, there are two subtypes that fall under the collective term modified depression area of the first type and two further subtypes that are subsumed under the modified depression area of the second type, so that together with the normally pronounced depression area there are a total of five different expressions of depressions. An even number of different areas of specialization is also possible.
  • the targeted variation of the embossing depth has proven to be suitable for positively influencing the equal distribution of media, in particular a cooling medium, over the entire width of the active field of the bipolar plate.
  • An indentation with a reduced embossing depth is not opposite an indentation with an equally reduced embossing depth, but an indentation with an increased embossing depth is of importance here.
  • strip-shaped sections with a reduced embossing depth are thus arranged alternately on both sides of the central plane of the bipolar plate.
  • the distance between a depression in the first half-sheet and a depression in the second half-sheet lying opposite it is uniform in all three different depression areas.
  • the reduced embossing depth is at least 75% and at most 95% of the full embossing depth, while the increased embossing depth is at least 105% and at most 125% of the normal embossing depth.
  • the amount of the normal embossing depth can correspond to the mean value between the reduced and the increased embossing depth.
  • a fuel cell stack which includes numerous bipolar plates and membrane-electrode assemblies, can be constructed in such a way that only the more pronounced depression areas of the half-sheets make contact with the membrane-electrode assemblies.
  • Variants can also be implemented in which all recessed areas contact the relevant MEA if there is a membrane electrode assembly (MEA) between them.
  • MEA membrane electrode assembly
  • the indentations of increased embossing depth initially touch surface sections of the membrane-electrode assembly if geometrically ideal conditions are present. If increasing pressure is exerted on the half-sheets, as the distance between the half-sheets becomes smaller, contacts can also be produced between the depressions of normal or reduced embossing depth and the membrane electrode arrangement. This can lead to a targeted displacement between adjacent channels, in particular a displacement of at least 10 gm and at most 150 gm. This is associated with a targeted stretching effect, which ultimately reduces channel penetration due to surface pressure, with no major deformations of the membrane-electrode assembly occurring.
  • Forming processes known per se, in particular deep-drawing, are suitable for producing the depressions in the half-sheets.
  • Forming in a continuous process is also possible, i.e. using rotating structured rollers.
  • the half sheets are made of sheet steel, for example, and optionally provided with a coating.
  • FIG. 2 a sectional view of a non-claimed comparative example
  • 3 shows a section through the bipolar plate according to FIG. 1 in an analogous view
  • a fuel cell stack shown only in part, comprises a multiplicity of bipolar plates 1 which are each formed from a first flap plate 2 and a second flap plate 3 .
  • the Flalbbleche 2, 3 of a bipolar plate 1 example, be firmly connected to each other by soldering or welding.
  • the bipolar plates 1 are components of a fuel cell system provided for mobile or stationary use, with regard to the basic function of which reference is made to the prior art cited at the outset.
  • Each half sheet 2, 3 delimits a half cell 4, 5 of a fuel cell.
  • Various media flow into the fuel cells, namely cooling water, hydrogen and air, through a coolant port 6 , a hydrogen port 7 and an air port 8 .
  • the media flow from the ports 6, 7, 8 via a distributor field 9 and a transition area 10 to the active field, designated 11, of the bipolar plate 1.
  • the entire bipolar plate 1 shown only partially in FIG. 1 has a long stretched te rectangular shape, with the ports 6, 7, 8 are on a narrow side and further, not shown, ports on the opposite narrow side to flow from the media are provided.
  • the width of each individual port 6, 7, 8, to be measured in the transverse direction of the bipolar plate 1, is significantly less than the width of the active field 11, which has a rectangular basic shape.
  • the patch panel 9 provides ensure that the various media flows are fanned out over the full width of the active field 11.
  • the partly gaseous, partly liquid media flow essentially in the horizontal direction from right to left.
  • the finished state of the fuel cell stack which comprises a multiplicity of bipolar plates 1, the media mainly flow in the vertical direction.
  • the transition area 10 describes a narrow strip in total, which is directed transversely to the direction of flow of the media.
  • a channel structure denoted by 14 can be seen, which is aligned essentially in the direction of flow of the media, ie in the longitudinal direction of the bipolar plate 1 .
  • a membrane-electrode arrangement 15 which includes a proton-permeable membrane, catalyst layers and gas diffusion layers, is located between the various half-sheets 2, 3 that can be attributed to stacked bipolar plates 1.
  • the membrane is held in position by a frame, which is also referred to as a subgasket and is also part of the membrane-electrode assembly 15 .
  • the frame surrounds the membrane in such a way that the various gaseous fluids, which are on the cathode side and the anode side of the fuel cell, remain separate from one another.
  • each bipolar plate 1 Through the channel structure 14 are within each bipolar plate 1 channels for coolant, ie cooling water or other cooling liquid given.
  • the coolant channels are located above the first half-plate 2 and below the second half-plate 3.
  • the non-recessed areas of each half-sheet 2, 3 are labeled 16.
  • the indentations of normal embossing depth present in the areas 17 are denoted by 12 .
  • depressions 12 of normal embossing depth are to be distinguished from depressions 13 of reduced embossing depth and depressions 20 of increased embossing depth.
  • a fully-embossed indentation region 17 is also spoken of in FIG. 3 .
  • the flap plate 2 has a depression 20 with an increased embossing depth
  • the flap plate 3 has a depression 13 with a reduced embossing depth.
  • the normal embossing depth of the depressions 12 is given with h0, the reduced embossing depth of the depressions 13 with h1 and the increased embossing depth of the depressions 20 with h2.
  • a uniform distance h is given between two opposite depressions 13, 20 of modified embossing depth h1, h2 and between two opposite depressions 12 of normal embossing depth h0.
  • FIG. 3 shows an idealized state within a fully assembled fuel cell stack.
  • the half-sheets 2, 3 lie on the membrane-electrode assembly 15 with pressure.
  • Contact between all the depressions 12, 13, 20 and the membrane-electrode assembly 15 is produced by slight deformation of the membrane-electrode assembly 15 shown in simplified form in FIG. 3 with a rectangular cross-section.
  • All non-recessed areas 16 of the various half-sheets 2, 3 are net angeord in mutually parallel planes. Here are within one and the same fuel cell 1, the non-depressed areas 16 of the different half-plates 2, 3 on each other.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une plaque bipolaire (1) constituée de deux demi-plaques (2, 3) qui se trouvent l'une contre l'autre, comprenant une pluralité d'orifices de support (6, 7, 8), un champ de distribution (9) qui est conçu pour distribuer des milieux s'écoulant à travers les orifices (6, 7, 8), un champ actif (11), et une région de transition (10) qui est disposée entre le champ de distribution (9) et le champ actif (11) et qui décrit une structure de canal en forme de bande (14) dans une vue en plan des demi-plaques (2, 3). Chaque demi-plaque (2, 3) est équipée d'évidements (12) avec une profondeur de gaufrage normale (h0), des évidements (13) avec une profondeur de gaufrage réduite (h1), et des évidements (20) avec une profondeur de gaufrage accrue (h2), les deux demi-plaques (2, 3) se trouvant l'une contre l'autre de telle sorte que les différents évidements (12, 13, 20) et des régions non évidées (16) des demi-plaques (2, 3) entre les évidements forment une structure de canal (14) à l'intérieur de laquelle une région non évidée (16) d'une demi-plaque (2, 3) se trouve constamment au-dessus d'une zone non évidée (16) de l'autre demi-plaque (2, 3) de sorte qu'un motif de bande des zones non évidées (16) soit produit. Différentes régions évidées (17, 18, 19) sont disposées entre les bandes formées par les régions non évidées (16) d'une manière alternée, à savoir une zone évidée (17) qui est gaufrée de manière normale et dans laquelle les deux demi-plaques (2, 3) ont la profondeur de gaufrage normale (h0), une région évidée modifiée (18) d'un premier type dans laquelle la première demi-plaque (2) a la profondeur de gaufrage accrue (h2) et la seconde demi-plaque (3) présente une profondeur de gaufrage réduite (h1), une autre région évidée entièrement gaufrée (17), et une région évidée modifiée (19) d'un second type dans laquelle la première demi-plaque (2) a la profondeur de gaufrage réduite (h1) et la seconde demi-plaque (3) a la profondeur de gaufrage augmentée (h2).
PCT/DE2022/100434 2021-06-22 2022-06-09 Plaque bipolaire et procédé de fonctionnement de plaque bipolaire WO2022268256A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22731479.6A EP4360149A1 (fr) 2021-06-22 2022-06-09 Plaque bipolaire et procédé de fonctionnement de plaque bipolaire
CN202280028104.6A CN117121241A (zh) 2021-06-22 2022-06-09 双极板和用于制造双极板的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021116095.2A DE102021116095A1 (de) 2021-06-22 2021-06-22 Bipolarplatte und Verfahren zur Herstellung einer Bipolarplatte
DE102021116095.2 2021-06-22

Publications (1)

Publication Number Publication Date
WO2022268256A1 true WO2022268256A1 (fr) 2022-12-29

Family

ID=82115580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100434 WO2022268256A1 (fr) 2021-06-22 2022-06-09 Plaque bipolaire et procédé de fonctionnement de plaque bipolaire

Country Status (4)

Country Link
EP (1) EP4360149A1 (fr)
CN (1) CN117121241A (fr)
DE (1) DE102021116095A1 (fr)
WO (1) WO2022268256A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208803A1 (en) * 2008-02-19 2009-08-20 Simon Farrington Flow field for fuel cell and fuel cell stack
US20170279131A1 (en) * 2016-03-24 2017-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Bipolar plate of an electrochemical cell with improved mechanical strength
DE202016107302U1 (de) 2016-12-22 2018-03-27 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
WO2019229138A1 (fr) 2018-05-30 2019-12-05 Reinz-Dichtungs-Gmbh Plaque de séparation pour un système électrochimique
EP3331076B1 (fr) 2015-07-31 2020-05-13 LG Chem, Ltd. Plaque de séparation et empilement de piles à combustible comprenant cette dernière
EP3529842B1 (fr) 2016-10-19 2020-12-02 Fischer Eco Solutions GmbH Procédé de production d'une plaque de séparation destinée à une pile à combustible et procédé de production d'un empilement de piles à combustible avec un tel séparateur
DE102021000629A1 (de) 2021-02-08 2021-03-25 Daimler Truck Fuel Cell GmbH & Co. KG Separatorplatte für eine Brennstoffzelle
DE202020100346U1 (de) * 2020-01-23 2021-04-26 Reinz-Dichtungs-Gmbh Separatorplattenanordnung für ein elektrochemisches System
DE102019217053A1 (de) 2019-11-06 2021-05-06 Robert Bosch Gmbh Separatorplatte, insbesondere für eine Brennstoffzelle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208803A1 (en) * 2008-02-19 2009-08-20 Simon Farrington Flow field for fuel cell and fuel cell stack
EP3331076B1 (fr) 2015-07-31 2020-05-13 LG Chem, Ltd. Plaque de séparation et empilement de piles à combustible comprenant cette dernière
US20170279131A1 (en) * 2016-03-24 2017-09-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Bipolar plate of an electrochemical cell with improved mechanical strength
EP3529842B1 (fr) 2016-10-19 2020-12-02 Fischer Eco Solutions GmbH Procédé de production d'une plaque de séparation destinée à une pile à combustible et procédé de production d'un empilement de piles à combustible avec un tel séparateur
DE202016107302U1 (de) 2016-12-22 2018-03-27 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System
WO2019229138A1 (fr) 2018-05-30 2019-12-05 Reinz-Dichtungs-Gmbh Plaque de séparation pour un système électrochimique
DE102019217053A1 (de) 2019-11-06 2021-05-06 Robert Bosch Gmbh Separatorplatte, insbesondere für eine Brennstoffzelle
DE202020100346U1 (de) * 2020-01-23 2021-04-26 Reinz-Dichtungs-Gmbh Separatorplattenanordnung für ein elektrochemisches System
DE102021000629A1 (de) 2021-02-08 2021-03-25 Daimler Truck Fuel Cell GmbH & Co. KG Separatorplatte für eine Brennstoffzelle

Also Published As

Publication number Publication date
CN117121241A (zh) 2023-11-24
EP4360149A1 (fr) 2024-05-01
DE102021116095A1 (de) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2018114819A1 (fr) Plaque de séparation pour systeme électrochimique
EP2297808B1 (fr) Plaque bipolaire pour un agencement de piles à combustible, en particulier pour l agencement entre deux agencements d électrodes à membranes voisins
DE102018102314B4 (de) Matrizenanordnung für eine prägepresse
DE112009004263B4 (de) Brennstoffzellenseparator und Brennstoffzelle
DE112014004579B4 (de) Separator und Brennstoffzelle
DE102016207906A1 (de) Metallische Platte mit wenigstens einer Messstruktur und Verfahren zur Herstellung einer metallischen Platte mit wenigstens einer Messstruktur
DE102008033210A1 (de) Bipolarplatte für eine Brennstoffzellenanordnung, insbesondere zur Anordnung zwischen zwei benachbarten Membran-Elektroden-Anordnungen
DE102013208450A1 (de) Bipolarplatte, Brennstoffzelllage, Brennstoffzellenstapel und Kraftfahrzeug
WO2022268256A1 (fr) Plaque bipolaire et procédé de fonctionnement de plaque bipolaire
DE102008033209A1 (de) Brennstoffzellenanordnung
DE102015211930A1 (de) Separatorplatte für eine Brennstoffzelle
DE102022112931A1 (de) Bipolarplatte und Verfahren zum Betrieb eines Brennstoffzellensystems
WO2022253384A1 (fr) Plaque bipolaire et procédé pour faire fonctionner un système de pile à combustible
DE102022116193B3 (de) Bipolarplatte und Verfahren zur Herstellung einer Bipolarplatte
DE102022104124B3 (de) Elektrode einer elektrochemischen Zelle und Verfahren zur Herstellung einer Elektrode
DE102021108876A1 (de) Elektrochemisches System
DE102021105712B3 (de) Bipolarplatte für eine Brennstoffzelle und Verfahren zur Herstellung einer Bipolarplatte
DE202022102212U1 (de) Separatorplatte und Anordnung für ein elektrochemisches System und elektrochemisches System
EP4388603A1 (fr) Plaque bipolaire et procédé pour produire une plaque bipolaire
DE102022101801A1 (de) Elektrolyseplatte für die Wasserstoffherstellung und Verfahren zur Herstellung einer Elektrolyseplatte
DE102021102194A1 (de) Dichtungsanordnung für eine Brennstoffzelle und Verfahren zur Herstellung einer Dichtungsanordnung
DE102023102940A1 (de) Bipolarplatte und Brennstoffzelle
WO2023222545A2 (fr) Ensemble plaque conçu pour une cellule électrochimique
DE102021132658A1 (de) Bipolarplatte und Verfahren zum Prägen einer Kanalstruktur
WO2022084136A1 (fr) Empilement de piles à combustible et réacteur électrochimique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22731479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022731479

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022731479

Country of ref document: EP

Effective date: 20240122