WO2022268002A1 - 化石燃料热力系统及其二氧化碳减排方法和设备 - Google Patents

化石燃料热力系统及其二氧化碳减排方法和设备 Download PDF

Info

Publication number
WO2022268002A1
WO2022268002A1 PCT/CN2022/099652 CN2022099652W WO2022268002A1 WO 2022268002 A1 WO2022268002 A1 WO 2022268002A1 CN 2022099652 W CN2022099652 W CN 2022099652W WO 2022268002 A1 WO2022268002 A1 WO 2022268002A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
carbon
carbon dioxide
seawater
energy
Prior art date
Application number
PCT/CN2022/099652
Other languages
English (en)
French (fr)
Inventor
彭斯干
Original Assignee
彭斯干
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭斯干 filed Critical 彭斯干
Priority to AU2022299989A priority Critical patent/AU2022299989A1/en
Priority to GBGB2400831.0A priority patent/GB202400831D0/en
Publication of WO2022268002A1 publication Critical patent/WO2022268002A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification

Definitions

  • the invention relates to a fossil fuel thermal system and its carbon dioxide emission reduction method and equipment, which belong to the technical field of clean energy for coping with climate change and the clean transformation technical field of fossil fuel power stations, and are especially suitable for thermal systems of power plants, thermal systems of metallurgical plants, and chemical plants Thermal systems and other industries.
  • Carbon capture The chemical carbon capture method proposed in the early days mainly uses chemical and/or physical solvents and other man-made chemicals to wash and burn the flue gas, but has not been able to get out of the dilemma of economic costs. After the issue of Earth's biodiversity was raised, the challenge of the environmental cost of secondary chemical pollution became more serious; the physical carbon capture method proposed later - oxy-combustion carbon capture technology, also known as the O 2 /CO 2 process, was once considered It is regarded as the most promising new way to solve the problem of large-scale carbon capture, but many years of exploration have shown that there are still many challenges, such as: the cryogenic air separation process for adding large-scale oxygen production consumes a lot of energy and is irreversible, and the actual thermal efficiency is not as good as air combustion The ultra-supercritical advanced thermal system is highly efficient. What's more, the path of reconstructing the oxygen-enriched combustion thermal system not only increases its own cost, but also closes the clean transformation channel of existing fossil energy resources (all of which are air-assisted combustion).
  • Carbon sequestration In the direction of natural carbon sequestration resource utilization, there are structural problems that violate the cost-benefit principle. 93% of the earth's natural carbon sinks are oceans, 98% of terrestrial natural carbon sinks are saline layers, and the remaining carbon sink resources account for a very small proportion. But not to mention the actual deployment, even if it is a pilot demonstration project, it is zero for the ocean and nearly zero for the saline layer. This is related to the fact that the early international collaborative research on marine carbon sequestration (1995-2005) was stopped due to the unresolved issue of the impact of carbon dioxide on the marine ecological environment. However, what is rare is expensive, and for existing experimental demonstration projects that account for a very small portion of carbon sink resources, the cost of carbon reduction is often an order of magnitude higher than the carbon price that the international community can pay.
  • the long-term constraints of the key technical means the lack of large-scale capacity of carbon capture and storage
  • the existing scale of carbon capture and storage is asymmetrical with the scale of carbon emissions from fossil fuels.
  • the emission scale of coal-fired facilities, the main source of carbon dioxide emissions usually tens of millions of tons per year for a power station, and millions of tons per year for a unit (for example, 3 million tons of carbon dioxide per year for a 600MW unit, or 3,000kt).
  • the "large-scale CCS facility standard" that has been proposed is that the industrial capture capacity is not less than 400,000 tons/year
  • the power station capture capacity is not less than 800,000 tons/year
  • the transportation or storage capacity is not less than 400,000 tons/year.
  • the key problem is that most of the existing CCS technologies aim at high capture rate (such as close to 100%) and ultra-high purity of captured products (such as 99.999%), and do not pursue the total amount and scale of carbon capture and storage, and do not solve the problem of power plant scale.
  • the problem of carbon emission reduction is not conducive to the low-carbon and clean energy transformation of coal-fired power stations.
  • the general purpose of the present invention is to open up a clean energy transformation path for the existing fossil energy resources to reduce the total amount of carbon in power plants; for this reason, the first purpose of the present invention is to provide an economically feasible power plant scale oriented by the total amount of carbon reduction
  • the carbon capture scheme, the second purpose is to provide a resource-saving and environmentally friendly power plant-scale carbon sequestration scheme, and the third purpose is to provide a kind of existing high-efficiency fossil energy facilities suitable for supercritical and ultra-supercritical power plants.
  • the present invention provides a clean fossil energy production method, comprising the following steps:
  • carbon dioxide capture of the carbon-containing flue gas is a method of adjusting the temperature and pressure of the carbon-containing flue gas so that the carbon dioxide in the flue gas undergoes a phase change and then separates from the rest of the gas and exports the carbon capture finished product, wherein
  • the temperature adjustment is to use the method of cooling the cooling medium to make the temperature of the carbon-containing flue gas reach the phase transition temperature of carbon dioxide
  • the pressure adjustment is to use the pressurization method to make the pressure of the carbon-containing flue gas reach the phase change corresponding to the carbon dioxide phase transition temperature pressure.
  • the air-supported combustion of fossil fuels is a thermal system with high-efficiency energy conversion, including supercritical and ultra-supercritical air-assisted combustion thermal systems;
  • the carbon dioxide in the flue gas produces a phase change, which means that the carbon dioxide in the flue gas changes from a gaseous state to a non-gaseous state to separate from the rest of the gas.
  • the carbon capture products derived after the phase change include but are not limited to liquid, solid and Liquid-solid mixed carbon dioxide, carbon dioxide hydrate, and mixture with ice and other slurry forms.
  • the mass content of carbon dioxide in the carbon capture product is above 90%, or above 80%, or above 70%, or above 50%, or above 30%.
  • the cooling medium used to regulate the temperature of the carbon-containing flue gas is a natural cooling medium and a process cooling medium added when necessary, wherein the natural cooling medium is taken from natural cooling water and/or air, wherein the natural cooling water includes seawater, fresh water/salt water, And the power station cooling water taken from natural cooling water; wherein the process cooling medium includes liquefied natural gas (LNG) and/or cooling medium of other refrigeration processes; the method of cooling the cooling medium includes adopting scrubber mode and/or heat exchange A method for cooling and/or dehydrating and drying the carbon-containing flue gas by means of a device.
  • LNG liquefied natural gas
  • the pressure regulation of the carbon-containing flue gas is to use a method including a booster fan and an air compressor to compress the carbon-containing flue gas to increase the pressure; the method of pressure regulation includes variable pressure and/or variable flow regulation, wherein Variable pressure adjustment is to change the pressure value of carbon-containing flue gas according to the cooling medium temperature and other conditions to save energy. Variable flow adjustment is to change the flow ratio of carbon-containing flue gas for carbon dioxide capture and bypass discharge into the atmosphere according to needs;
  • the pressure adjustment of the carbon-containing flue gas mentioned above also includes releasing part of the nitrogen gas through the molecular sieve coarse filter relief door to reduce the compression load during the process of increasing the pressure of the carbon-containing flue gas.
  • the temperature and pressure adjustment of the carbon-containing flue gas includes recycling the heat and/or pressure energy generated by the pressure adjustment; wherein, the heat recovery and utilization is generated by increasing the pressure of the carbon-containing flue gas Heat, used to heat the cooler flue gas after exporting carbon dioxide, and/or used in the heater of the thermal system, and/or used in the heat storage device for heat recovery and storage for reuse, the pressure energy generated is recovered and utilized, is Use the pressure energy of the flue gas after exporting carbon dioxide to drive the air turbine generator, and/or drive facilities such as pneumatic pumps, and/or use the method of the pressure flue gas energy storage power generation system to inject the pressure flue gas after the carbon dioxide is exported
  • the energy storage space when needed, releases the pressure flue gas from the energy storage space to drive the air turbine to generate electricity and recover pressure energy; the energy storage space includes energy storage containers and/or geological cavities.
  • Carbon sequestration and/or recycling of the exported carbon capture product wherein the carbon sequestration includes carbon sequestration in a geological saline layer, and injecting the carbon capture product into a geological saline layer, wherein the recycling is to
  • the carbon capture product is used for oil and gas flooding and/or as industrial raw materials; the carbon sequestration and/or recycling is transported elsewhere and/or performed on site.
  • Ocean carbon sequestration is carried out on the exported carbon capture products, and the exported carbon capture products are injected into the ocean water body after being harmless to the marine ecological environment, wherein the harmless treatment is to dissolve the carbon capture products
  • the injection into the ocean water body also includes controlling the injection at different depths in different seasons to adapt to the seasonality of the sensitive biological populations in the injection sea area living habits.
  • the present invention provides a system for performing clean fossil energy production, comprising:
  • Combustion unit boiler, burning fossil fuel to generate carbon-containing flue gas containing carbon dioxide, and heating feed water to generate high-pressure steam; fossil fuel input device, providing fossil fuel for the boiler; air blowing device, providing combustion support for the boiler air; steam turbine power generation device, which converts the kinetic energy of the high-pressure steam into mechanical energy and generates electric energy;
  • the system also includes a pressurized cooling unit, which is configured to adjust the temperature and pressure of the carbon-containing flue gas so that the carbon dioxide in it undergoes a phase change and is separated from the flue gas to become a carbon capture product; wherein: the cooling device is configured so that the temperature of the carbon-containing flue gas reaches the phase transition temperature of carbon dioxide; the pressurizing device is configured to make the pressure of the carbon-containing flue gas the phase transition pressure corresponding to the phase transition temperature; the energy recovery subunit is configured to The heat and/or pressure energy generated during the temperature and pressure adjustment process of carbon flue gas is recovered and utilized, including recovery and storage of heat and/or pressure energy for reuse, so as to reduce the net energy consumption of carbon dioxide capture.
  • the combustion unit is configured as a thermal system that burns fossil fuels to efficiently convert energy
  • the fossil fuels include coal, oil, and natural gas
  • the thermal system that efficiently converts energy includes supercritical and ultra-supercritical water that burns pulverized coal Steam thermal system, and gas-steam combined cycle system.
  • the cooling device of the pressurized cooling unit is configured as a scrubber and/or a heat exchanger using a cooling medium;
  • the cooling medium is a natural cooling medium and/or a process cooling medium;
  • the natural cooling medium is taken from natural Chilled water and/or air, including seawater, fresh/salt water, and power plant cooling water derived from naturally chilled water; process cooling media including liquefied natural gas (LNG) and/or cooling media for other refrigeration processes.
  • LNG liquefied natural gas
  • the pressurization device of the pressurized cooling unit includes a booster fan and an air compressor; the inlet of the pressurization device is provided with a flue gas bypass for changing the flow ratio of the carbon-containing flue gas for carbon dioxide capture and bypass discharge into the atmosphere.
  • a switchable molecular sieve coarse filter discharge door in the device, which is used to release more nitrogen to reduce the compression load when needed; Changing conditions saves energy by increasing the pressure value of the carbonaceous flue gas.
  • the energy recovery subunit of the pressurized cooling unit includes heat recovery equipment and/or pressure energy recovery equipment, wherein the heat recovery equipment recovers the heat generated by increasing the pressure of carbon-containing flue gas for heating and exporting carbon dioxide
  • the pressure energy Recovery equipment including air turbines driven by the pressure energy of flue gas after exporting carbon dioxide, and/or pneumatic pumps and other equipment.
  • the pressure energy recovery equipment is a power generation system using pressure flue gas energy storage: inject the pressure flue gas after exporting carbon dioxide into the energy storage space, and release the pressure flue gas from the energy storage space to drive the air turbine to generate electricity and recover when necessary Pressure energy;
  • the energy storage space is an energy storage container and/or a geological cavity.
  • the present invention provides a marine carbon sequestration system for clean fossil energy production, which is configured as a facility for marine carbon sequestration of carbon capture products;
  • the carbon capture products include but are not limited to Liquid, solid, and liquid-solid mixed carbon dioxide, carbon dioxide hydrate, and mixtures with ice and other slurry forms;
  • the ocean carbon sequestration is to inject the carbon capture products into the ocean after being harmless to the marine ecological environment Water body;
  • the harmless treatment is to inject the carbon capture finished product into the ocean water body through the ocean carbon sequestration unit;
  • the ocean carbon sequestration unit includes a seawater blending device and a connected seawater adjustment pump, and the seawater adjustment pump
  • the inlet is provided with a filtering device to prevent the entry of marine organisms.
  • the seawater blending device is configured to adjust the carbon capture product to dissolve into the seawater flow input by the seawater pump until the pH value meets the environmental requirements.
  • the discharge of the water body injects into the ocean water body.
  • the discharge device includes a marine carbon discharge pipeline, which is configured to export a plurality of switchable marine carbon discharge pipelines located at different depths of seawater, so as to combine the Or separately open the ocean carbon pipeline.
  • the present invention provides a method for reducing carbon dioxide emissions from flue gas of a fossil fuel thermal system, comprising the steps of:
  • the first flue gas component contains phase-changed carbon dioxide, which is used as a carbon capture product;
  • the second flue gas component contains Gaseous smoke.
  • the flue gas is produced by air-assisted combustion of fossil fuels; or, the mass percentage of carbon dioxide in the flue gas is not higher than 30%; or, the mass percentage of nitrogen in the flue gas is not lower than 70% or, the thermal system is a thermal power plant thermal system, or a metallurgical plant thermal system, or a chemical plant thermal system.
  • the air-assisted combustion is carried out in an air-assisted combustion supercritical thermal system or an air-assisted combustion ultra-supercritical thermal system.
  • gaseous carbon dioxide is transformed into a liquid, and/or solid, and/or carbon dioxide hydrate, and/or a mixture of carbon dioxide and ice.
  • step 1) at least part of the gaseous carbon dioxide in the flue gas undergoes a phase change in one of the following ways:
  • step 1) at least 90%, or at least 80%, or at least 70%, or at least 50%, or at least 30% of the gaseous carbon dioxide in the flue gas undergoes a phase change.
  • step 1) the flue gas is cooled by one or more of the following methods:
  • the cooling medium derived from nature in step i) includes natural seawater, and/or natural fresh water, and/or natural brackish water, and/or air, and/or power station cooling water taken from natural cold water, derived from cooling process
  • the cooling medium used includes liquefied natural gas (LNG).
  • step 1) when pressurizing the flue gas, the heat generated when the flue gas is pressurized is recycled by one or more of the following methods:
  • step 1) the flue gas is pressurized by one or more of the following methods:
  • step 1) the method also includes, when pressurized:
  • Variable pressure regulation configured to change the pressure value according to the temperature of the cooling medium to save energy
  • Variable flow regulation which is configured to change the ratio of the flow rate of the flue gas to be captured and the flow rate of the flue gas bypassed into the atmosphere according to needs.
  • variable pressure adjustment also includes, when the flue gas is pressurized, releasing part of the nitrogen gas through molecular sieve rough filtration to reduce the compression load.
  • step 2) the carbon dioxide and other flue gases in phase change are separated under pressurized state, and the method also includes: recovering and utilizing the pressure energy of other flue gases separated by one or more of the following methods:
  • Energy storage spaces for energy storage include energy storage containers and/or geological cavities.
  • the method also includes: 3) sequestering the carbon capture product in one or more of the following ways:
  • the carbon capture product is used as an industrial feedstock.
  • the present invention provides a method of reducing carbon dioxide emissions from a fossil fuel power plant, comprising:
  • the carbon capture product includes liquid carbon dioxide, and/or solid carbon dioxide, and/or carbon dioxide hydrate, and/or a mixture of carbon dioxide and ice.
  • the mass content of carbon dioxide in the carbon capture product is above 90%, or above 80%, or above 70%, or above 50%, or above 30%.
  • the mixing of the carbon capture product with conditioned seawater is performed in seawater below sea level, or the mixing of the carbon capture product with conditioned seawater is performed above sea level.
  • step 2) the regulating seawater includes passing through intercepting and filtering the seawater flow of marine organisms.
  • step 2) the method further includes controlling the pH value of the discharged seawater by controlling the amount of adjusted seawater.
  • step 3 the method further includes selectively injecting the discharged seawater into ocean water bodies of different depths.
  • the present invention provides a fossil fuel thermal system, comprising:
  • a pressurized cooling unit for receiving flue gas discharged from the combustion unit and pressurizing and cooling said flue gas such that at least part of the gaseous carbon dioxide in said flue gas undergoes a phase change
  • the separation unit is used to receive the flue gas output from the pressurized cooling unit and separate the first flue gas component and the second flue gas component; wherein, the first flue gas component contains carbon dioxide in phase change, and the second flue gas component Contains gaseous fumes.
  • the pressurized cooling unit includes:
  • pressurization means for receiving the flue gas emitted by the combustion unit and for pressurizing said flue gas
  • the cooling device is used for receiving the flue gas output by the pressurizing device and cooling the flue gas so that at least part of the gaseous carbon dioxide in the flue gas undergoes a phase change.
  • the pressurized cooling unit also includes heat recovery equipment comprising one or more of the following:
  • the first heat exchange device is used to heat the second flue gas component separated by the separation unit by using the heat generated when the pressurizing device pressurizes the flue gas;
  • the second heat exchange device is used to use the heat generated when the pressurization device pressurizes the flue gas to supplement the heat of the heater of the thermal system;
  • heat storage device used for absorbing the heat of the flue gas output by the pressurizing device and storing the heat.
  • the pressurized cooling unit also includes a pressure energy recovery device for receiving the second flue gas component separated by the separation unit, and recycling the pressure energy of the second flue gas component.
  • the pressure energy recovery equipment includes one or more of the following:
  • the fossil fuel thermal system further includes a carbon storage unit, configured to receive the first flue gas component output from the separation unit, and transport the first flue gas component to a storage location.
  • the storage place is ocean, and/or saline layer, and/or oil and gas field.
  • the present invention provides a device for reducing carbon dioxide emissions from flue gas of a fossil fuel thermal system, including:
  • the carbon capture unit is used to capture carbon dioxide in the flue gas produced by the combustion of fossil fuels to produce carbon capture products
  • the ocean carbon sequestration unit is used to receive the carbon capture finished product and adjust the seawater, and make the carbon capture finished product mix with the adjusted seawater to generate discharged seawater, and inject the discharged seawater into the ocean.
  • the carbon capture product comprises liquid carbon dioxide, and/or solid carbon dioxide, and/or carbon dioxide hydrate, and/or a mixture of carbon dioxide and ice;
  • the mass content of carbon dioxide in the carbon capture product is above 90%, or above 80%, or above 70%, or above 50%, or above 30%.
  • the ocean carbon storage unit includes:
  • a seawater blending device for receiving the carbon capture product and regulating seawater, and mixing the carbon capture product with the regulated seawater to generate discharged seawater;
  • a discharge device for receiving the discharged seawater and injecting the discharged seawater into the sea.
  • the discharge device includes a marine carbon discharge pipeline for injecting discharged seawater into marine water bodies of different depths.
  • the ocean carbon sequestration unit also includes a filter device for intercepting and filtering marine organisms that regulate seawater.
  • the ocean carbon sequestration unit includes a net cage located below sea level for receiving the carbon capture product and intercepting and filtering marine organisms, and making the adjustment between the carbon capture product and the intercepting and filtering marine organisms Seawater mixed.
  • FIG. 1 is a schematic diagram of implementation steps of the clean fossil energy production method of the present invention in Example 1.
  • Fig. 2 is the clean fossil energy production method and system of the present invention in Example 2, a schematic diagram of an embodiment in a coastal power station, using seawater for cooling, recovering heat energy and pressure energy, and the carbon capture finished product is treated by a discharge sea quality regulator to become legally permitted The emitted bicarbonate ions are then injected into ocean water for ocean carbon sequestration.
  • Fig. 3 is a schematic diagram of an embodiment of the process flow in and around the pressurized cooling unit in the clean fossil energy production method and system of the present invention in embodiment 2.
  • Fig. 4 is the clean fossil energy production method and system of the present invention in embodiment 3, a schematic diagram of an embodiment of deploying a power station above the geological brine layer, using air to cool circulating water, recovering heat energy and pressure energy, and the captured carbon dioxide is directly injected into the geology Saline aquifers for carbon sequestration.
  • Fig. 5 is the clean fossil energy production method and system of the present invention in embodiment 4, a schematic diagram of an embodiment in an onshore power station, using air to cool circulating water, recovering/storing heat energy and pressure energy, and the captured carbon dioxide is transported to the carbon tube network.
  • Fig. 6 is a schematic diagram of the clean fossil energy production method and system of the present invention in Example 5, in a coastal power station, using seawater for cooling, recovering heat energy and pressure energy, and transporting the captured carbon dioxide to the carbon pipe network.
  • Fig. 7 is the clean fossil energy production method and system of the present invention in embodiment 6, a schematic diagram of an embodiment in an onshore power station, using air to cool circulating water, recovering heat energy, and transporting the captured carbon dioxide to the carbon pipe network, using flue gas
  • the energy storage power generation system recovers the flue gas pressure energy.
  • Fig. 8 is a schematic diagram of the clean fossil energy production method and system of the present invention in embodiment 7, a schematic diagram of an embodiment of deploying a power station above the geological cave brine layer, using air to cool circulating water, recovering heat energy, anhydrous carbon separator, and containing soot
  • the gas is pressurized and cooled and injected into the geological cave brine layer, in which carbon dioxide dissolves into the brine layer to realize carbon sequestration, and the remaining insoluble flue gas and cavities form a flue gas energy storage power generation system.
  • Fig. 9 is a schematic diagram of an embodiment of the clean fossil energy production ocean carbon sequestration system in Example 8.
  • the finished carbon capture product is processed by the ocean carbon sequestration unit into bicarbonate ions allowed to be discharged by regulations, and then injected into the ocean water body for ocean carbon sequestration.
  • Fig. 10 is a schematic diagram of another embodiment of the clean fossil energy production marine carbon sequestration system in embodiment 9.
  • the finished carbon capture product is injected into the marine water body through the biological interception net cage in the discharge mixed area, so as to realize the ecologically friendly bicarbonate ion marine carbon sequestration .
  • FIG 11 is a schematic diagram of another embodiment of the clean fossil energy production ocean carbon sequestration system in Example 10.
  • the finished carbon capture product is injected into the ocean water body through the discharge water quality regulator and the discharge mixing zone biological interception cage to realize ecologically friendly carbon dioxide Hydrogen ion ocean carbon sequestration.
  • Embodiment 1 is the basic embodiment of the clean fossil energy production method of the present invention, as shown in accompanying drawing 1, implementation steps include:
  • the carbon dioxide capture of the carbon-containing flue gas is a method of adjusting the temperature and pressure of the carbon-containing flue gas so that the carbon dioxide in the flue gas undergoes a phase change and then is separated from the rest of the gas and exported to a carbon capture product.
  • the temperature adjustment is to use the method of cooling the cooling medium to make the temperature of the carbon-containing flue gas reach the phase transition temperature of carbon dioxide
  • the pressure adjustment is to use the pressurization method to make the pressure of the carbon-containing flue gas reach the phase corresponding to the carbon dioxide phase transition temperature. Change pressure.
  • Embodiment 2 is the embodiment on the basis of embodiment 1.
  • the clean fossil energy production method and system of the present invention are implemented in coastal power stations, using seawater for cooling, recovering heat energy and pressure energy, and capturing carbon dioxide for ocean carbon sequestration.
  • the combustion unit 1 includes a complete air-assisted combustion fossil fuel thermal system, including a boiler 1.1, and the fuel and air required for combustion are supplied by a fuel conveyor 1.7 and a blower 1.8, respectively.
  • the steam generated by the boiler 1.1 drives the steam turbine 1.2 and the steam turbine generator 2 to generate electricity, and the electric power is transmitted to the power distribution transformer 2.2 through the main power output circuit 2.1, and finally the clean electric energy generated is transmitted to the grid through the clean electric energy output circuit 2.6.
  • the steam utilized by the steam turbine 1.2 passes through the condensate feedwater unit 1.3, is cooled into condensate water, and then is input to the boiler 1.1 through the feedwater heater 1.4 to complete the water-steam cycle.
  • the steam is cooled by the condenser in the condensing water supply unit 1.3, and the required cooling water is extracted from the seawater by the circulating cooling water pump 1.5, and discharged into the ocean after cooling.
  • the hot flue gas generated by the combustion of the boiler 1.1 is subjected to dust removal and denitrification/desulfurization treatment by the flue gas purifier 1.9, and then sent to the pressurized cooling unit 3 after passing through the booster induced draft fan 1.10 and the flue gas bypass regulating door 1.11 to adjust the flue gas flow.
  • the flue gas bypass regulating door 1.11 adjusts the flue gas flow by changing the opening degree of the outlet leading to the pressurized cooling unit 3 and the opening degree of the outlet leading to the bypass flue gas exhaust pipe 3.13a.
  • the opening and flow of the outlet leading to the bypass flue gas exhaust pipe 3.13a should be increased. Using the variable flow adjustment mode can improve the economy and practicality of the system.
  • the carbon-containing flue gas produced by air-assisted combustion of fossil fuels is at normal pressure, and the temperature of the flue gas is about 100°C.
  • the flue gas delivered to the pressurized cooling unit 3 increases the pressure through the pressurizing device 3.1 and lowers the temperature through the cooling device 3.3, so that the pressure and temperature of the flue gas reach the range where the carbon dioxide in the flue gas is sufficient to produce a phase change, and then the flue gas
  • the gas is sent to the separation unit 3.5, wherein the pressurizing device 3.1 is a flue gas compressor, and the power required by the pressurizing device 3.1 is supplied by the power distribution transformer 2.2 through the carbon trap power supply circuit 2.3, and the phase changes into non-gaseous carbon dioxide Including liquid, solid, mixed and carbon dioxide hydrate and other slurry forms, with high density, it is exported from the bottom of the separation unit 3.5 along the exporter 3.6 of the carbon capture product, and the carbon dioxide exporter 3.6 has the function of slurry transportation; the separation unit 3.5
  • the rest of the gas is nitrogen-based pressure flue gas (hereinafter referred to as pressure flue gas).
  • the pressure flue gas output from the separation unit 3.5 enters the energy storage container 3.10 after being heated by the first heat exchange device 3.4; the separation unit 3.5 is equipped with a filter Device 3.5a to better separate the pressurized flue gas from the non-gaseous carbon dioxide.
  • the pressurizing device 3.1 of the pressurized cooling unit 3 uses a single-stage booster fan, a multi-stage booster fan, and/or a single-stage air compressor, cascaded air compressors; the output of the booster fan and the air compressor Pressure, including fixed type and adjustable type; the target value of increasing the pressure of carbon-containing flue gas is the phase change pressure of carbon dioxide.
  • phase change pressure values corresponding to the phase change temperature of several pairs of carbon dioxide are: corresponding to the critical liquefaction temperature of 31.2°C Liquefaction pressure 7.38MPa; liquefaction temperature 25°C corresponds to liquefaction pressure 6.4MPa; liquefaction temperature 20°C corresponds to liquefaction pressure 5.73MPa; liquefaction temperature 10°C corresponds to liquefaction pressure 4.5MPa; liquefaction temperature 0°C corresponds to liquefaction pressure 3.48MPa; liquefaction temperature -10°C
  • the corresponding liquefaction pressure is 2.65MPa; the liquefaction temperature-20°C corresponds to the liquefaction pressure 1.96MPa; the liquefaction temperature-25°C corresponds to the liquefaction pressure 1.7MPa; Hydrate slag slurrying temperature -30°C corresponds to a pressure of about 1MPa.
  • the partial pressure of carbon dioxide in the carbon-containing flue gas is about 15%, and the economic feasibility is higher than that of other fossil fuel types.
  • a pressure-adjustable booster fan and/or air compressor is used to adjust the pressure of the carbon-containing flue gas according to the temperature change of the cooling medium, so as to improve the economical availability of the system;
  • Fossil fuel power plants in high latitudes use air as a natural cooling medium, with temperatures as low as -30°C in winter and as high as 20°C in summer, and the temperature range for air as a cooling medium is -30°C to 20°C; surface freshwater and groundwater are used And air and other natural cooling media, the temperature range is -20 °C ⁇ 25 °C.
  • the mass percentage of carbon dioxide is usually not higher than 30%, and the mass percentage of nitrogen is usually not lower than 70%. In this way, 90% of the flue gas can usually be achieved.
  • the above gaseous carbon dioxide undergoes a phase change, and the separated first flue gas component (including the phase-transformed carbon dioxide) usually contains more than 90% of carbon dioxide by mass.
  • the phase-transformed carbon dioxide in the first flue gas component may exist in states such as carbon dioxide, solid carbon dioxide, carbon dioxide hydrate, and a mixture of carbon dioxide and ice.
  • conditions can be controlled so that more than 90% of the gaseous carbon dioxide in the flue gas undergoes a phase change, thereby being captured and stored; or, where applicable, for example, to reduce costs appropriately , the conditions can also be controlled so that at least 80%, or at least 70%, or at least 50%, or at least 30% or more of the gaseous carbon dioxide in the flue gas undergoes a phase change.
  • the conditions can be controlled so that the mass content of carbon dioxide in the first flue gas component (carbon capture product containing phase-changed carbon dioxide) is above 90%, even reaching above 99% (for example, for recycling as a food industry application ), the conditions can also be controlled so that the mass content of carbon dioxide in the first flue gas component is above 80%, or above 70%, or above 50%, or above 30%.
  • the pressurized cooling unit 3 is equipped with a cooling device 3.3, which is used to cool or take away the heat generated during the process of pressurizing the flue gas by the pressurizing device 3.1, so that the temperature of the flue gas after pressurization is lower than the temperature required for phase transition.
  • Scrubbers and/or heat exchangers are adopted; among them, the flue gas cooling water pump 3.14 draws seawater from the sea through the cooling water inlet pipe 3.15 and enters the cooling device 3.3 through the natural cooling medium delivery pipe 3.17, and performs primary cooling on the flue gas to make the flue gas
  • the gas temperature approaches and/or falls to the carbon dioxide phase transition range corresponding to the flue gas pressure, and the cooled seawater is discharged into the sea through the cooling drain pipe 3.16.
  • the process cooling medium transported by the process cooling medium conveyor 3.18 is used for secondary cooling.
  • the cooling device 3.3 is in the form of a scrubber and/or a heat exchanger.
  • the finished carbon capture product in this embodiment is mainly used for carbon sequestration in seawater/salt water, and there is no strict limit on the purity. In particular, ultra-high purity is not required, which can save energy consumption in processes such as dehydration treatment.
  • the natural cooling medium is taken from natural cold seawater, fresh water of rivers and lakes, underground fresh water/salt water, air, and cooling water of power stations.
  • the pressurized cooling unit 3 is also provided with a heat storage device 3.2, which includes a heat storage tank and a heat storage medium, wherein oil and other heat storage media are used to compress a part of the heat energy generated by the pressurization device 3.1 during the process of compressing flue gas.
  • heat energy is also transported to thermal system heaters such as high-pressure and low-pressure feed water heaters 1.4, economizers, air preheaters, etc. through the recovery heat energy loop 2.7; It is directly sent to the thermal system heater through the second heat exchange device.
  • the pressurizing device 3.1 heats the heat energy generated during the flue gas compression process, and also heats the lower temperature pressurized flue gas output by the separation unit 3.5 through the heat conduction tube 3.20 of the first heat exchange device 3.4, so as to recover part of the heat energy of the flue gas compression for use For pressure energy turbine generators 2.4.
  • the pressurized cooling unit 3 is also equipped with a molecular sieve coarse filter discharge door 3.1a, which is equipped with a molecular sieve partition that allows nitrogen molecules to pass through and blocks carbon dioxide molecules, and is configured to open or close or adjust the opening degree in an intermediate pressure environment , when necessary, before the carbon-containing flue gas is compressed to the carbon dioxide phase transition, release more nitrogen through the molecular sieve coarse filter discharge door 3.1a to reduce the partial pressure of nitrogen in the flue gas, increase the partial pressure of carbon dioxide, and compress the flue gas Increased efficiency and reduced energy consumption.
  • the pressure flue gas in the energy storage container 3.10 is output to the pressure energy air turbine 3.12, and the pressure energy turbine 3.12 and the pressure energy turbine generator 2.4 are driven to recover the pressure energy and generate electric energy.
  • the electric transformer 2.2 is incorporated into the clean electric energy output circuit 2.6. After the pressure flue gas drives the air turbine 3.12, it is transported to the exhaust pipe 3.13 and discharged to the atmosphere.
  • the air-assisted combustion fossil fuel thermal system adopts a high-efficiency energy conversion thermal system.
  • the thermal efficiency of the supercritical thermal system including boilers and turbo generators is 39%, and the unit carbon emission is 880g/kWh; the thermal efficiency of the ultra-supercritical thermal system is 45%, and the unit The carbon emission is 740g/kWh; the thermal efficiency of the advanced ultra-supercritical thermal system is 50%, and the unit carbon emission is 670g/kWh.
  • Seawater with a temperature range of 10°C to 28°C is used as the natural cooling medium to perform primary cooling of the flue gas; the raw material LNG, which is heated and gasified to release cold energy from the adjacent LNG generating set, is used as the process cooling medium to perform secondary cooling of the flue gas .
  • Ocean carbon sequestration is carried out on the exported carbon capture products, and the exported carbon capture products are injected into the ocean water body after being harmless to the marine ecological environment.
  • the harmless treatment is to dissolve the carbon capture products into the Intercept and filter the seawater flow of marine organisms, and adjust the pH value to meet the environmental requirements before injecting into the ocean water body; the injection into the ocean water body also includes controlling the injection at different depths in different seasons to adapt to the seasonal life rules of the sensitive biological populations in the injection sea area .
  • the Binhai fossil fuel power station has 5 supercritical coal-fired units and 2 LNG units; the temperature of the carbon-containing flue gas of the 5 coal-fired units is 130°C, and about one-fifth of the cooling water (sea water) used by the steam turbine of the power station is used.
  • a preferred embodiment of the coastal coal-fired power station designed according to the principles provided in this example is to transform the existing coastal coal-fired power station into the clean fossil energy production system of the present invention and implement marine carbon sequestration: the existing coastal coal-fired power station Coal-fired power station with installed capacity of 7 sets of 600MW supercritical coal-fired units, the flue gas volume of a single unit under ECR condition is 1,800,000Nm 3 /h, the coal consumption is 210t/h, and the annual emission of carbon dioxide per unit is 3.3 million tons (3300kt/y ), the whole plant emits 23.1 million tons of carbon dioxide per year (23.1Mt/y); 5 of the coal-fired units are retrofitted with the carbon capture system and ocean carbon sequestration system of the present invention, and the remaining 2 units are transformed into LNG fueled units.
  • the renovation and installation project of the whole plant is divided into three phases: the first phase uses seawater as a natural cooling medium, including seawater for unit cooling, and installs a 10% carbon capture rate system for 5 coal-fired units, capturing and storing 1.65 million tons of carbon dioxide annually ( 1650kt/y); in the second phase, 2 sets of LNG fuel units were put into operation, using LNG by-product cooling capacity as the process cooling medium, and installing a 50% carbon capture rate system for 5 sets of coal-fired units, capturing and storing 8.25 million carbon dioxide annually tons (8250kt/y); in the third phase, the by-product cooling capacity of LNG was further used as the process cooling medium, and the carbon capture rate of 5 coal-fired units was upgraded to 90%.
  • the total amount of carbon dioxide sequestered is 14.85 million tons (14.9Mt/y).
  • Embodiment 3 It is an embodiment based on Embodiment 1. As shown in accompanying drawing 4, it is a clean fossil energy production method and system of the present invention, an embodiment of deploying a power station above the geological saline layer, using air to cool circulating water, and recovering Thermal and pressure energy, the captured CO2 is injected directly into geological saline aquifers for carbon sequestration.
  • the pressurized cooling unit 3 is equipped with a cooling device 3.3, which is cooled by the circulating cooling water that passes through the air cooler (cooling tower) 1.6 and the circulating cooling water pump 1.5 and is output by the condensing water supply unit 1.3, so that the temperature of the flue gas is reduced to the same level as that of the flue gas.
  • This embodiment is deployed in high-latitude regions. Under the condition that the temperature in winter can reach minus 30 degrees, the process cooling medium conveyor 3.18 directly uses low-temperature air instead of low-temperature process cooling medium to perform secondary cooling of carbon-containing flue gas.
  • Carying out carbon sequestration and/or recycling of the exported carbon capture product wherein carbon sequestration is injecting the carbon capture product into a geological brine layer, and/or injecting any geological structure suitable for carbon sequestration; recycling is injecting the carbon capture product
  • the integrated product is used for oil and gas flooding, and/or used as an industrial raw material.
  • the carbon-captured product is repurified; or the carbon-captured product is transported elsewhere, and the transportation method includes pipelines and/or Cars, boats, and for necessary transportation methods, re-purify the carbon capture products.
  • Embodiment 4 As shown in accompanying drawing 5, it is a clean fossil energy production method and system of the present invention, using air cooling circulating water in land power stations, recovering/storing heat energy and pressure energy, and transporting the captured carbon dioxide to the carbon pipe network 6 Example.
  • Embodiment 5 As shown in accompanying drawing 6, it is an embodiment of the clean fossil energy production method and system of the present invention, using seawater cooling in the coastal power station, recovering heat energy and pressure energy, and transporting the captured carbon dioxide to the carbon pipe network 6:
  • Embodiment 6 As shown in accompanying drawing 7, it is an embodiment of the clean fossil energy production method and system of the present invention.
  • air is used to cool circulating water, and a flue gas energy storage power generation system is used to recover flue gas pressure energy and heat energy: the The pressure flue gas after carbon dioxide is exported is injected into the energy storage space, and the pressure flue gas is released from the energy storage space when necessary to drive the air turbine to generate electricity and recover the pressure energy to generate electric energy; the energy storage space is the energy storage container 3.10 and/or the geological cavity 3.11.
  • the pressure flue gas output from the separation unit 3.5 (inverted schematic diagram) is injected into the pressure flue gas storage geological cavity 3.11 through the pressure flue gas storage injection pipe 3.7 and stored.
  • the pressure flue gas stored in the pressure flue gas energy storage geological cavity 3.11 is output through the pressure flue gas energy storage release pipe 3.8, and is heated by the conduction heat of the first heat exchange device 3.4 and/or the heat storage device 3.2 Then enter the energy storage container 3.10, then output to the pressure energy air turbine 3.12, drive the pressure energy turbine 3.12 and the pressure energy turbine generator 2.4 to recover the pressure energy and send out electric energy, and the generated energy passes through the power distribution through the recovery electric energy loop 2.5
  • the transformer 2.2 is incorporated into the clean electric energy output circuit 2.6.
  • the pressure flue gas drives the air turbine 3.12, it is transported to the exhaust pipe 3.13 and discharged to the atmosphere.
  • the pressure flue gas output from the separation unit 3.5 can also be directly output to the energy storage container 3.10 after being heated by the conduction heat of the first heat exchange device 3.4 and/or the heat storage device 3.2 through the straight-through door 3.9.
  • Embodiment 7 It is an embodiment of the clean fossil energy production method and system of the present invention, in which a power station is deployed above the geological cave brine layer.
  • the geological cave brine layer 5.1 includes a brine layer and pressure flue gas energy storage Geological cavity 3.11 uses air to cool circulating water and recover heat energy.
  • Carbon-containing flue gas is pressurized and cooled and injected into the geological cavity saline layer 3.11/5.1.
  • Carbon dioxide dissolves into the saline layer to achieve carbon sequestration, and the remaining insoluble flue gas and cavities form smoke Gas storage power generation system.
  • Embodiment 8 It is an embodiment of the marine carbon sequestration system produced by clean fossil energy.
  • the marine carbon sequestration of the present invention is to make the carbon capture finished product go through bicarbonate ionization treatment, which is not only the marine ecological environment Injection into ocean water after harmless treatment, also known as bicarbonate ion state ocean carbon sequestration;
  • the carbon capture products include but not limited to liquid, solid and liquid-solid mixed carbon dioxide, and carbon dioxide hydrate, and ice Slurry forms such as mixtures;
  • the harmlessness to the marine ecological environment is to process the finished carbon capture product into a form that is allowed to be discharged by regulations, that is, a liquid with a pH value that meets the range of regulations, and then inject it into the ocean water body.
  • the carbon dioxide dissolved in seawater exists in the form of bicarbonate ions within the pH limit range allowed by environmental regulations, that is, in the natural form of dissolved inorganic carbon in seawater, it is safe and stable, and has no impact on the marine ecological environment. harmless.
  • the processing of the finished carbon capture product into a liquid whose pH value meets the legal range is realized by dissolving the finished carbon capture product into a certain amount of seawater. Therefore, the key problem is: it is necessary to prevent the finished product from carbon capture from dissolving into the process. A certain amount of seawater causes biological damage.
  • the carbon capture product is input into the seawater blending device 4.1 through the carbon capture product exporter 3.6, and the pH value is treated to meet the legal range before being injected into the ocean water body;
  • the sea water blending device 4.1 is configured at sea level 4.6 and above and inject the seawater flow drawn from the sea by the seawater pump 4.2, the seawater inlet of the seawater pump 4.2 is provided with a filter device 4.3 to prevent marine organisms from entering; in the seawater blending device 4.1, the carbon After the captured finished product is dissolved into the seawater flow input by the regulating seawater pump 4.6 until the pH value meets the regulatory range, it is injected into the ocean water body through the ocean carbon discharge pipeline 4.4 connected to the ocean water body under atmospheric pressure by relying on the self-weight of the sea water flow.
  • the marine carbon emission pipeline 4.4 connected to the ocean water body is also configured as a plurality of switchable carbon sequestration output pipes whose outlets are located at different seawater depths. According to the fish migration rules in the sea area where they are located, for the purpose of avoiding fish migration channels, At different times and at different depths, combine or separately open ocean carbon emission pipelines 4.4.
  • Embodiment 9 It is another embodiment of the marine carbon sequestration system produced by clean fossil energy.
  • the marine carbon sequestration of the present invention is also called bicarbonate ion state marine carbon sequestration, and the carbon sequestration is integrated into
  • the product bicarbonate ionization process is that the carbon capture product exporter 3.6 is directly connected to the ocean carbon discharge pipeline 4.4, and the outlet of the ocean carbon discharge pipeline 4.4 is set in the middle of the net cage 4.5 for generating seawater discharge and biological interception.
  • the net cage 4.5 is configured as a structure in which seawater can circulate and fish and shrimp cannot enter, and can be replaced by a net cage for underwater culture of marine fish;
  • the discharge mixing zone is an internationally accepted marine discharge management method, defined as The surrounding area of the discharge outlet given by the environmental management department is used as a discharge mixed area, and the emission concentration in the discharge mixed area is allowed to be higher than the standard limit required by environmental regulations.
  • the size of the net cage 4.5 in this embodiment is configured to be less than or equal to the discharge mixing zone given by the environmental management department, and the drainage pH value at the boundary of the net cage 4.5 reaches the standard limit required by environmental regulations.
  • Embodiment 10 It is a schematic diagram of another embodiment of the ocean carbon sequestration system for clean fossil energy production. As shown in Figure 11, the carbon capture product exporter 3.6 is input into the seawater blending device 4.1, and the outlet of the ocean carbon discharge pipeline 4.4 is set at Cage 4.5 in the middle. This embodiment is suitable for situations where a given discharge mixing zone is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明涉及化石燃料热力系统及其二氧化碳减排方法和设备,属于应对气候变化的清洁能源技术和化石燃料发电站清洁能源转型技术领域,尤其适用于超临界、超超临界电站一类高效化石能源设施,改造加装燃烧后规模化碳捕集与封存系统;其中碳捕集是对含碳烟气增压调温以使二氧化碳产生相变后分离的物理碳捕集方法,辅以热能/压力能回收包括烟气储能发电等节能降耗措施;其中碳封存是优先利用海洋、地质盐水层等电站规模封存资源,为现有化石能源资源特别是大中型发电站,提供经济可行包括渐进式的清洁能源转型途径。

Description

化石燃料热力系统及其二氧化碳减排方法和设备 技术领域
本发明涉及化石燃料热力系统及其二氧化碳减排方法和设备,属于应对气候变化的清洁能源技术领域和化石燃料发电站清洁转型技术领域,特别适用于发电厂热力系统、冶金厂热力系统、化工厂热力系统等行业。
背景技术
《巴黎协定》生效以来,联合国IPCC公布的碳排放差距每年都在扩大,这与化石能源清洁转型及其关键支柱碳捕集与封存(Carbon Capture and Storage,CCS),一直未能克服成本与规模的挑战分不开。
碳捕集方面:早期提出的化学碳捕集方法,主要是以化学和/或物理溶剂等人为化学品洗涤燃烧产生的烟气,一直未能走出经济成本的困境,在人为化学品大量使用危害地球生物多样性问题提出后,次生化学污染的环境成本挑战更为严重;后来提出的物理碳捕集方法——富氧燃烧碳捕集技术,也称O 2/CO 2法工艺,曾被视为最有希望解决规模化碳捕集问题的新出路,但多年探索显示仍有诸多挑战,如:新增规模制氧的深冷空分工艺能耗巨大且不可逆,实际热效率尚不及空气助燃超超临界先进热力系统高效,何况,重构富氧燃烧热力系统的路径,既提高了自身成本,又关闭了现有化石能源资源(全部是空气助燃)的清洁转型通道。
碳封存方面:自然碳汇封存资源利用方向上,存在违背成本效益原则的结构性问题。地球自然碳汇93%是海洋,陆地自然碳汇98%是盐水层,其余碳汇资源占比极小。但不要说实际部署,即使是试验示范项目,也对海洋为零,对盐水层近零。这与早期开展的海洋碳封存国际协作研究(1995~2005),因二氧化碳海洋生态环境影响问题未解决而被喊停有关。然而,物以稀为贵,针对占比极小部分碳汇资源的现有试验示范项目,减碳成本比国际社会可支付的碳价,往往高出一个量级。
清洁能源转型方面:长期受制于关键技术手段——碳捕集与封存的规模化能力不足,现有碳捕集封存规模与化石能源的碳排放规模不对称。如二氧化碳主要排放源燃煤设施的排放规模,通常一座电站年排放数千万吨,一台机组年排放数百万吨(如600MW机组年排放二氧化碳300万吨,即3,000kt),而本领域曾提出过的“大规模CCS设施标准”为,工业捕集能力不低于40万吨/年,电站捕集能力不低于80万吨/年,运输或封存能力不低于40万吨/年,而且,尽管所述的“大规模”标准比实际的电站规模小了若干量级,也终因无法实现而被放弃。
关键问题在于,现有CCS技术多以高捕集率(如接近100%)和超高捕集品纯度(如99.999%)为目标,不追求碳捕集封存总量和规模,不解决电站规模的碳减排问题,尤其无助于燃煤电站的低碳清洁能源转型。
然而事实表明:以煤为主的化石能源低碳清洁转型越滞后,人们越离不开化石能源,甚至越离不开燃煤,期盼化石能源整体退出历史舞台越来越没有希望。显然,促使现有燃煤设施大规模减少二氧化碳排放总量,是实现巴黎气候目标的当务之急。
发明内容
本发明总的目的在于,为现有化石能源资源开辟一条电站规模减碳总量的清洁能源转型途径;为此,本发明第一个目的是提供一种减碳总量导向的经济可行电站规模碳捕集方案,第二个目的是提供一种资源节约和环境友好的电站规模碳封存方案,第三个目的是提供一种适于超临界、超超临界电站一类现有高效化石能源设施改造加装的碳捕集与封存方法和系统,以最经济的成本代价实现最大的碳捕集与封存总量;而且,减少化石能源清洁转型过程次生的污染和碳排放也是重要目的。
作为第一个方面,本发明提供了一种清洁化石能源生产方法,包括如下步骤:
以空气助燃化石燃料产生含碳烟气和能源,其中,所产生的含碳烟气进行二氧化碳捕集后其余气体排入大气,所产生的能源在供给二氧化碳捕集所需的净能耗后对外输出清洁能源;所述含碳烟气进行二氧化碳捕集,是对含碳烟气进行温度压力调节以使烟气中的二氧化碳产生相变后与其余气体分离并导出碳捕集成品的方法,其中温度调节是采用冷却介质冷却的方法使所述含碳烟气的温度达到二氧化碳相变温度,压力调节是采用增压的方法使所述含碳烟气的压力达到二氧化碳相变温度对应的相变压力。
进一步的技术方案包括:
所述以空气助燃化石燃料,是优先采用高效率能源转换的热力系统,包括超临界、超超临界空气助燃热力系统;
所述烟气中的二氧化碳产生相变,是烟气中的二氧化碳从气态转变为非气态以与其余气体相分离,所述相变后导出的碳捕集成品,包括但不限于液态、固态和液固混合态二氧化碳,和二氧化碳水合物,及与冰的混合物等渣浆形态。所述碳捕集成品中二氧化碳的质量含量在90%以上,或80%以上,或70%以上,或50%以上,或30%以上。
所述对含碳烟气进行温度调节的冷却介质是自然冷却介质和需要时增加的工艺冷却介质,其中自然冷却介质取自自然冷水和/或空气,其中自然冷水包括海水、淡水/咸水,以及取自自然冷水的发电站冷却水;其中工艺冷却介质包括液化天然气(LNG)和/或其它制冷工艺的冷却介质;所述冷却介质冷却的方法,包括采用涤气器方式和/或热交换器方式使所述含碳烟气降温和/或脱水干燥的方法。
所述对含碳烟气进行压力调节,是使用包括增压风机、空气压缩机压缩含碳烟气增加压力的方法;所述进行压力调节的方式,包括变压力和/或变流量调节,其中变压力调节是根据冷却介质温度等条件改变对含碳烟气增加的压力值以节省能量,变流量调节是根据需要改变含碳烟气进行二氧化碳捕集和旁路排入大气的流量比例;所述对含碳烟气进行压力调节,还包括对含碳烟气增加压力过程中通过分子筛粗滤泄放门泄放部分氮气以降低压缩负荷。
所述对含碳烟气进行温度压力调节,包括对所述压力调节产生的热量和/或压力能量进行回收利用;其中,所产生的热量回收利用,是将增加含碳烟气压力所产生的热量,用于加热导出二氧化碳后的较冷烟气,和/或用于热力系统的加热器,和/或用于热量回收储存以再利用的储热装置,所产生的压力能量回收利用,是利用导出二氧化碳后烟气的压力能驱动空气透平发电机,和/或驱动气动泵等设施,和/或采用压力烟气储能发电系统的方法,将所述导出二氧化碳后的压力烟气注入储能空间,需要时从储能空间释放压力烟气驱动空气透平机发电回收压力能;所述储能空间包括储能容器和/或地质空穴。
对所述导出碳捕集成品进行碳封存和/或回收利用,其中所述碳封存包括地质盐水层碳封存,是将所述碳捕集成品注入地质盐水层,其中所述回收利用,是将所述碳捕集成品用于驱采油气,和/或用作工业原料;所述碳封存和/或回收利用,是运往别处和/或就地进行的。
对所述导出碳捕集成品进行海洋碳封存,使导出的碳捕集成品经过对海洋生态环境 的无害化处理后注入海洋水体,其中,所述无害化处理是使碳捕集成品溶入经过拦截筛滤海洋生物体的海水流,并调节pH值至符合环境要求后注入海洋水体;所述注入海洋水体,还包括控制不同季节注入不同深度,以适应注入海域敏感生物种群的季节性生活规律。
作为第二个方面,本发明提供了一种用于执行清洁化石能源生产的系统,包括:
燃烧单元:锅炉,燃烧化石燃料产生包含二氧化碳的含碳烟气,同时加热给水产生高压蒸汽;化石燃料输入装置,为所述的锅炉提供化石燃料;空气鼓入装置,为所述的锅炉提供助燃空气;汽轮发电装置,将所述高压蒸汽的动能转换为机械能并发出电能;
所述系统还包括加压冷却单元,被配置成对含碳烟气进行温度压力调节以使其中的二氧化碳产生相变后从烟气中分离出来成为碳捕集成品;其中:冷却装置,被配置成使含碳烟气温度达到二氧化碳的相变温度;加压装置,被配置成使含碳烟气的压力为所述相变温度对应的相变压力;能量回收亚单元,被配置成对含碳烟气进行温度压力调节过程产生的热量和/或压力能量进行回收利用,包括对热量和/或压力能量回收储存后再利用,以降低二氧化碳捕集的净能耗。
进一步的技术方案包括:
所述燃烧单元,被配置成燃烧化石燃料高效转换能源的热力系统,所述化石燃料包括煤炭、石油、天然气,所述高效转换能源的热力系统,包括燃烧煤粉的超临界、超超临界水蒸汽热力系统,以及燃气蒸汽联合循环系统。
所述加压冷却单元的冷却装置,被配置成使用冷却介质的涤气器和/或热交换器;所述冷却介质是自然冷却介质和/或工艺冷却介质;所述自然冷却介质取自自然冷水和/或空气,所述自然冷水包括海水、淡水/咸水,以及取自自然冷水的发电站冷却水;所述工艺冷却介质包括液化天然气(LNG)和/或其它制冷工艺的冷却介质。
所述加压冷却单元的加压装置,包括增压风机、空气压缩机;所述增压装置入口设有改变含碳烟气进行二氧化碳捕集和旁路排入大气的流量比例的烟气旁路调节门,装置内设有可开关的分子筛粗滤泄放门,用以在需要时泄放较多氮气降低压缩负荷;所述加压装置被配置成可变压力,以根据冷却介质温度等条件改变对含碳烟气增加的压力值节省能量。
所述加压冷却单元的能量回收亚单元,包括热量回收设备和/或压力能量回收设备, 其中,所述热量回收设备,是回收增加含碳烟气压力所产生的热量,用于加热导出二氧化碳后的较冷烟气的第一热交换装置,和/或用于向热力系统加热器补充热量的第二热交换装置,和/或储存回收热能以再利用的储热装置;所述压力能量回收设备,包括将利用导出二氧化碳后烟气的压力能驱动的空气透平机,和/或气动泵等设备。
所述压力能量回收设备,是采用压力烟气储能的发电系统:将所述导出二氧化碳后的压力烟气注入储能空间,需要时从储能空间释放压力烟气驱动空气透平机发电回收压力能量;所述储能空间是储能容器和/或地质空穴。
作为第三个方面,本发明提供了一种用于清洁化石能源生产的海洋碳封存系统,被配置成对碳捕集成品进行海洋碳封存的设施;所述碳捕集成品,包括但不限于液态、固态和液固混合态二氧化碳,和二氧化碳水合物,及与冰的混合物等渣浆形态;所述海洋碳封存,是使碳捕集成品经过对海洋生态环境的无害化处理后注入海洋水体;所述无害化处理,是使所述碳捕集成品通过海洋碳封存单元注入海洋水体;所述海洋碳封存单元包括海水掺混装置以及连接的调节海水泵,所述调节海水泵的入口设置有防止海洋生物体进入的过滤装置所述海水掺混装置,被配置成调节所述碳捕集成品溶入所述调节海水泵输入的海水流至pH值符合环境要求后,通过联通海洋水体的排放装置注入海洋水体。
进一步技术方案是,所述排放装置包括海洋碳排放管道,被配置成出口位于不同海水深度的多个可开关海洋碳排放管道,以根据所在海域敏感海洋生物种群不同时段不同深度的回避需求,组合或分别开通海洋碳排放管道。
作为第四个方面,本发明提供了一种减少化石燃料热力系统烟气二氧化碳排放的方法,包括如下步骤:
1)加压并冷却化石燃料燃烧产生的烟气使得烟气中的至少部分气态二氧化碳进行相变;
2)从烟气中分离出第一烟气组分和第二烟气组分;其中,第一烟气组分包含相变的二氧化碳,用作碳捕集成品;第二烟气组分包含气态的烟气。
进一步技术方案如下。
所述烟气产生于化石燃料的空气助燃燃烧;或者,所述烟气中二氧化碳的质量百分含量不高于30%;或者,所述烟气中氮气的质量百分含量不低于70%;或者,所述热力系统为火力发电厂热力系统、或冶金厂热力系统、或化工厂热力系统。
所述空气助燃燃烧在空气助燃超临界热力系统或空气助燃超超临界热力系统中进行。
在步骤1)的二氧化碳的相变中,气态二氧化碳转变为液态、和/或固态、和/或二氧化碳水合物、和/或二氧化碳与冰的混合物。
在步骤1)中,通过如下方式中的一种使得烟气中的至少部分气态二氧化碳进行相变:
i)冷却烟气至31.2℃以下,加压烟气至7.38MPa以上;
ii)冷却烟气至25℃以下,加压烟气至6.4MPa以上;
iii)冷却烟气至20℃以下,加压烟气至5.73MPa以上;
iv)冷却烟气至10℃以下,加压烟气至3.48MPa以上;
v)冷却烟气至-10℃以下,加压烟气至2.65MPa以上;
vi)冷却烟气至-20℃以下,加压烟气至1.96MPa以上;
vii)冷却烟气至-25℃以下,加压烟气至1.7MPa以上;
viii)冷却烟气至-30℃以下,加压烟气至1.5MPa以上。
在步骤1)中,烟气中至少90%,或至少80%,或至少70%,或至少50%,或至少30%的气态二氧化碳进行相变。
在步骤1)中,通过如下方式中的一种或几种冷却烟气:
i)与来源于自然界和/或冷却工艺的冷却介质进行热交换;
ii)用来源于自然界和/或冷却工艺的液态的冷却介质洗涤烟气。
步骤i)中的来源于自然界的冷却介质包括自然海水、和/或自然淡水、和/或自然咸水、和/或空气、和/或取自自然冷水的发电站冷却水,来源于冷却工艺的冷却介质包括液化天然气(LNG)。
在步骤1)中,加压所述烟气时,通过如下方式中的一种或几种回收利用烟气加压时产生的热量:
i)加热步骤2)中分离出的其他烟气;
ii)用于热力系统的加热器;
iii)将热量储存到储热装置。
在步骤1)中,通过如下方式中的一种或几种加压烟气:
i)通过增压风机加压;
ii)通过空气压缩机加压。
在步骤1)中,所述方法还包括,加压时进行:
i)变压力调节,被配置为根据冷却介质温度来改变压力值以节省能量;和/或
ii)变流量调节,被配置为根据需要来改变需要捕集的烟气的流量和旁路排入大气的烟气的流量的比例。
所述变压力调节还包括,在加压烟气时,通过分子筛粗滤泄放部分氮气以降低压缩负荷。
在步骤2)中,在加压状态下分离相变的二氧化碳与其他烟气,所述方法还包括:通过如下方式中的一种或几种回收利用分离出的其他烟气的压力能:
i)驱动空气透平发电机;
ii)驱动气动泵;
iii)加压状态下存储分离出的第二烟气组分以储能。
用于储能的储能空间包括储能容器和/或地质空穴。
所述方法还包括:3)通过如下方式中的一种或几种封存所述的碳捕集成品:
i)将二氧化碳注入盐水层;
ii)将二氧化碳注入油田或气田以增加油或气的产量;
iii)将二氧化碳注入海洋;
和/或,将所述的碳捕集成品用作工业原料。
作为第五个方面,本发明提供了一种减少化石燃料发电厂的二氧化碳排放的方法,包括:
1)捕集化石燃料燃烧产生的烟气中的二氧化碳,生成碳捕集成品;
2)将碳捕集成品与调节海水混合后产生排放海水;
3)将排放海水注入海洋。
进一步技术方案如下。
所述碳捕集成品包括液态二氧化碳、和/或固态二氧化碳、和/或二氧化碳水合物、和/或二氧化碳与冰的混合物。
所述碳捕集成品中二氧化碳的质量含量在90%以上,或80%以上,或70%以上,或50%以上,或30%以上。
碳捕集成品与调节海水的混合在海平面以下的海水中进行,或者,碳捕集成品与调 节海水的混合在海平面以上进行。
在步骤2)中,所述调节海水包括经过拦截筛滤海洋生物体的海水流。
在步骤2)中,所述方法还包括,通过控制调节海水的量来控制排放海水的pH值。
在步骤3)中,所述方法还包括,选择性地将排放海水注入不同深度的海洋水体。
作为第六个方面,本发明提供了一种化石燃料热力系统,包括:
燃烧单元,用于化石燃料的燃烧;
加压冷却单元,用于接受燃烧单元排放的烟气以及加压并冷却所述烟气,使得所述烟气中的至少部分气态二氧化碳进行相变;
分离单元,用于接受加压冷却单元输出的烟气并分离第一烟气组分和第二烟气组分;其中,第一烟气组分包含相变的二氧化碳,第二烟气组分包含气态的烟气。
进一步技术方案如下。
所述加压冷却单元包括:
加压装置,用于接受燃烧单元排放的烟气以及加压所述烟气;
冷却装置,用于接受加压装置输出的烟气以及冷却所述烟气,使得所述烟气中的至少部分气态二氧化碳进行相变。
所述加压冷却单元还包括热量回收设备,所述热量回收设备包括以下中的一种或多种:
i)第一热交换装置,用于利用加压装置加压烟气时产生的热量来加热所述分离单元分离出的第二烟气组分;
ii)第二热交换装置,用于利用加压装置加压烟气时产生的热量来补充热力系统加热器的热量;
iii)储热装置,用于吸收加压装置输出的烟气的热量并储热。
所述加压冷却单元还包括压力能量回收设备,用于接受所述分离单元分离的第二烟气组分,并回收利用第二烟气组分的压力能。
所述压力能量回收设备包括以下中的一种或多种:
i)空气透平机;
ii)气动泵;
iii)储能容器;
iv)将第二烟气组分输送到地质空穴的设施。
所述化石燃料热力系统还包括碳封存单元,用于接受所述分离单元输出的第一烟气组分,并将所述第一烟气组分输送到封存场所。
所述封存场所为海洋、和/或盐水层、和/或油气田。
作为第七个方面,本发明提供了一种用于减少化石燃料热力系统烟气二氧化碳排放的设备,包括:
碳捕集单元,用于捕集化石燃料燃烧产生的烟气中的二氧化碳,生成碳捕集成品;
海洋碳封存单元,用于接受所述碳捕集成品以及调节海水,并使得所述碳捕集成品与调节海水混合,生成排放海水,并将所述排放海水注入海洋。
进一步技术方案如下。
所述碳捕集成品包括液态二氧化碳、和/或固态二氧化碳、和/或二氧化碳水合物、和/或二氧化碳与冰的混合物;
或者,所述碳捕集成品中二氧化碳的质量含量在90%以上,或80%以上,或70%以上,或50%以上,或30%以上。
所述海洋碳封存单元包括:
调节海水泵,用于将调节海水提取到海平面以上;
海水掺混装置,用于接受所述碳捕集成品以及调节海水,并使得所述碳捕集成品与调节海水混合,生成排放海水;
排放装置,用于接受所述排放海水,并将所述排放海水注入海洋。
所述排放装置包括用于将排放海水注入不同深度的海洋水体的海洋碳排放管道。
所述海洋碳封存单元还包括过滤装置,用于拦截筛滤调节海水的海洋生物体。
所述海洋碳封存单元包括位于海平面以下的网箱,用于接受所述碳捕集成品以及拦截筛滤海洋生物体,并使得所述碳捕集成品与拦截筛滤海洋生物体后的调节海水混合。
本发明技术原理和效果:
技术原理,主要是,空气助燃后气体分离的物理方式碳捕集:充分利用二氧化碳的物理性质,对空气助燃含碳烟气调节温度和压力,即致冷加压,使烟气中的二氧化碳从气态相变为非气态后与其余气体分离并导出相变二氧化碳的捕集成品,由于二氧化碳在 常压下不能液化,因此致冷并加压可使二氧化碳的相变范围包括所有非气态,即液体、固态和混合体,以及二氧化碳水合物,与氮气为主的其余气体能够分离得更好,致冷优先利用自然冷水和/或空气作为冷却介质,以可负担的成本代价实现电站规模碳捕集;其次是,回收碳捕集过程部分能量以节能降耗:对含碳烟气温度压力调节过程的热量和/或压力能量进行回收,包括采用烟气储能发电,以及回收利用于热力系统节能降耗,以降低碳捕集实际能耗;再就是,优先利用规模优势自然碳汇:利用占地球自然碳汇约98%的海洋、盐水层碳封存资源,这些封存资源适于本发明非气态碳捕集成品直接注入封存,实现经济可行的电站规模碳封存;而且全生命周期无人工化学品介入,克服了化学品降解的环境成本挑战。
技术效果:使电站规模碳捕集与封存方案可以负担,使现有超临界、超超临界电站一类化石能源设施可以逐步改造加装碳捕集与封存系统,而且减少了化石能源清洁转型过程次生的污染和碳排放。
附图说明
图1是实施例1中的本发明清洁化石能源生产方法的实施步骤示意图。
图2是实施例2中的本发明清洁化石能源生产方法及系统,在滨海电站的实施例示意图,使用海水冷却,回收热能和压力能,碳捕集成品经排海水质调节器处理成为法规允许排放的碳酸氢根离子态后注入海洋水体进行海洋碳封存。
图3是实施例2中的本发明清洁化石能源生产方法及系统中的加压冷却单元内及周边工艺流程实施例示意图。
图4是实施例3中的本发明清洁化石能源生产方法及系统,在地质盐水层上方部署电站的实施例示意图,使用空气冷却循环水,回收热能和压力能,所捕集的二氧化碳直接注入地质盐水层进行碳封存。
图5是实施例4中的本发明清洁化石能源生产方法及系统,在陆上电站的实施例示意图,使用空气冷却循环水,回收/储存热能和压力能,所捕集的二氧化碳输往碳管网。
图6是实施例5中的本发明清洁化石能源生产方法及系统,在滨海电站的实施例示意图,使用海水冷却,回收热能和压力能,捕集的二氧化碳输往碳管网。
图7是实施例6中的本发明清洁化石能源生产方法及系统,在陆上电站的实施例示意图,使用空气冷却循环水,回收热能,所捕集的二氧化碳输往碳管网,采用烟气储能 发电系统回收烟气压力能。
图8是实施例7中的本发明清洁化石能源生产方法及系统,在地质空穴盐水层上方部署电站的实施例示意图,使用空气冷却循环水,回收热能,无液碳分离器,含碳烟气增压降温注入地质空穴盐水层,其中,二氧化碳溶入盐水层实现碳封存,其余不溶烟气和空穴形成烟气储能发电系统。
图9是实施例8中的清洁化石能源生产海洋碳封存系统实施例示意图,碳捕集成品经海洋碳封存单元处理成为法规允许排放的碳酸氢根离子态后注入海洋水体进行海洋碳封存。
图10是实施例9中的清洁化石能源生产海洋碳封存系统又一实施例示意图,碳捕集成品经排放混合区生物拦截网箱注入海洋水体,实现生态环境友好的碳酸氢根离子海洋碳封存。
图11是实施例10中的清洁化石能源生产海洋碳封存系统再一实施例示意图,碳捕集成品经排海水质调节器和排放混合区生物拦截网箱注入海洋水体,实现生态环境友好的碳酸氢根离子海洋碳封存。
附图中的图号标记及对像名称为:
1—燃烧单元,1.1—锅炉,1.2—汽轮机,1.3—凝汽给水单元,1.4—给水加热器,1.5—循环冷却水泵,1.6—空气冷却器(冷却塔),1.7—燃料输送机,1.8—送风机,1.9—烟气净化器(含除尘脱硝/脱硫),1.10—增压引风机,1.11—烟气旁路调节门,2—汽轮发电机,2.1—主电源输出回路,2.2—配电变电器,2.3—碳捕集器供电回路,2.4—压力能透平发电机,2.5—回收电能回路,2.6—清洁电能输出回路,2.7—回收热能回路,3—加压冷却单元,3.1—加压装置,3.1a—分子筛粗滤泄放门,3.2—储热装置,3.3—冷却装置(自然冷却介质/工艺冷却介质),3.4—第一热交换装置,3.5—分离单元,3.5a—过滤器,3.6—碳捕集成品导出器(渣浆输送),3.7—压力烟气储能注入管,3.8—压力烟气储能释出管,3.9—直通门,3.10—储能容器,3.11—地质空穴,3.12—压力能空气透平机,3.13—排气筒,3.13a—旁路烟气排气筒,3.14—烟气冷却水泵,3.15—冷却进水管,3.16—冷却排水管,3.17—自然冷却介质输送管,3.18—工艺冷却介质输送器,3.19—限压阀,3.20—热传导管,4—海洋,4.1—海水掺混装置,4.2—调节海水泵,4.3—过滤装置,4.4—海洋碳排放管道,4.5—网箱,4.6—海面,5—地质盐水层,5.1—空穴地质盐水层,5.2 —岸基,6—二氧化碳管网。
具体实施方式
结合附图对实施本发明进一步说明如下。
实施例1:是本发明清洁化石能源生产方法的基本实施例,如附图1所示,实施步骤包括:
以空气助燃化石燃料产生含碳烟气和能源,其中,所产生的含碳烟气进行二氧化碳捕集后其余气体排入大气,所产生的能源在供给二氧化碳捕集所需的净能耗后对外输出清洁能源;所述含碳烟气进行二氧化碳捕集,是对含碳烟气进行温度压力调节以使烟气中的二氧化碳产生相变后与其余气体分离并导出的碳捕集成品的方法,其中温度调节是采用冷却介质冷却的方法使所述含碳烟气的温度达到二氧化碳相变温度,压力调节是采用增压的方法使所述含碳烟气的压力达到二氧化碳相变温度对应的相变压力。
实施例2:是实施例1基础上的实施例。如附图2和附图11所示,在滨海电站实施本发明清洁化石能源生产方法及系统,使用海水冷却,回收热能和压力能,捕集的二氧化碳进行海洋碳封存。其中,燃烧单元1包括有完整的空气助燃化石燃料热力系统,其中有锅炉1.1,燃烧需要的燃料和空气分别由燃料输送机1.7和送风机1.8供给。锅炉1.1产生的蒸汽驱动汽轮机1.2和汽轮发电机2进行发电,电力经主电源输出回路2.1输送到配电变电器2.2,最终产生清洁电能经清洁电能输出回路2.6输往电网。汽轮机1.2利用后的蒸汽经凝汽给水单元1.3,冷却成凝结水后经给水加热器1.4输入到锅炉1.1,完成水-蒸汽循环。蒸汽经凝汽给水单元1.3中的凝汽器冷却,所需要的冷却水由循环冷却水泵1.5从海水中抽取,完成冷却后重新排入海洋。锅炉1.1燃烧产生的热烟气经烟气净化器1.9进行除尘脱硝/脱硫处理,然后通过增压引风机1.10并经烟气旁路调节门1.11调节烟气流量后输送到加压冷却单元3。烟气旁路调节门1.11依靠改变通往加压冷却单元3的出口开度,和通往旁路烟气排气筒3.13a的出口开度调节烟气流量。需要减少通往加压冷却单元3的烟气流量时,要增大通往旁路烟气排气筒3.13a的出口开度和流量。使用变流量调节方式运行,可以提高系统经济性和实用性,例如,在冷却介质温度升高到压力增加能耗过高经济性过差时,打开旁路调节门1.11和/或增加开度,分流部分烟气通过旁路烟气排气筒3.13a直接排往大气(已经过烟气净化器1.9净化的烟气),和/或联接排气筒3.13排入大气。
空气助燃化石燃料产生的含碳烟气是常压,烟温约100℃,要使烟气中的二氧化碳气体在常压下产生相变,不能液化,只能冷却降温成为固态干冰,要使二氧化碳液化,和/或成为二氧化碳水合物,需要增加含碳烟气的压力,这样能使相变范围扩大到包括液化、固化,以及水合物,以使更多的二氧化碳易于分离。因此,输送到加压冷却单元3的烟气,经过加压装置3.1增加压力和经过冷却装置3.3降低温度,使烟气的压力和温度达到烟气中二氧化碳足以产生相变的范围,然后将烟气输送到分离单元3.5,其中,加压装置3.1为烟气压缩机,加压装置3.1所需要的电力由配电变电器2.2经碳捕集器供电回路2.3供应,相变为非气态的二氧化碳包括液态、固态、混合态及二氧化碳水合物等渣浆形态,密度较高,从分离单元3.5下方沿碳捕集成品导出器3.6导出,二氧化碳导出器3.6具有渣浆输送功能;分离单元3.5中的其余气体是以氮气为主的压力烟气(下称压力烟气),从分离单元3.5输出的压力烟气经第一热交换装置3.4加热后进入储能容器3.10;分离单元3.5中配置有过滤器3.5a以使压力烟气与非气态二氧化碳更好地分离。
加压冷却单元3的加压装置3.1,使用单级增压风机,多级增压风机,和/或单级空气压缩机,级联空气压缩机;所述增压风机、空气压缩机的输出压力,包括固定式和可调式;所述增加含碳烟气压力的目标值,是二氧化碳的相变压力,已知几对二氧化碳相变温度对应的相变压力值为:临界液化温度31.2℃对应液化压力7.38MPa;液化温度25℃对于液化压力6.4MPa;液化温度20℃对应液化压力5.73MPa;液化温度10℃对应液化压力4.5MPa;液化温度0℃对应液化压力3.48MPa;液化温度-10℃对应液化压力2.65MPa;液化温度-20℃对应液化压力1.96MPa;液化温度-25℃对应液化压力1.7MPa;液化温度-30℃对应液化压力1.5MPa,固化温度-78℃,以及现有技术提出水合物渣浆化温度-30℃对应压力约1MPa。在燃煤电站实施时,含碳烟气中二氧化碳分压较高约15%,经济可行性相对其它化石燃料种类较高。对含碳烟气进行压力调节,是采用压力可调式增压风机和/或空气压缩机,根据冷却介质的温度变化,对所述含碳烟气进行变压力调节,以提高系统经济实用性;高纬度地区化石燃料电站,采用空气作为自然冷却介质,冬季气温低达-30℃,夏季气温高达20℃,以空气作为冷却介质的温度变化范围为-30℃~20℃;采用地表淡水和地下水和空气等多项自然冷却介质,温度变化范围为-20℃~25℃。对于空气助燃化石燃料燃烧产生的烟气,二氧化碳的质量百分含量通常不高于30%,氮气的质量百分含量通常不低于70%,通过这样的方式,通常可以实现烟气中90%以上的气态二氧化碳进行相变,分离出的第一烟气组分(包含相变的二氧化碳) 通常含有质量含量90%以上的二氧化碳。第一烟气组分中相变的二氧化碳可能以二氧化碳、固态二氧化碳、二氧化碳水合物、二氧化碳与冰的混合物等状态存在。为了大规模碳捕集和封存的目的,可以控制条件使得烟气中90%以上的气态二氧化碳进行相变,从而被捕集和封存;或者,在其它适用的场合,例如,为了适当地降低成本,也可以控制条件使得烟气中或至少80%,或至少70%,或至少50%,或至少30%以上的气态二氧化碳进行相变。另外,可以控制条件使得第一烟气组分(含有相变的二氧化碳的碳捕集成品)中二氧化碳的质量含量在90%以上,甚至是达到99%以上(例如,为了回收作为食品工业的应用),也可以控制条件使得第一烟气组分中二氧化碳的质量含量在80%以上,或70%以上,或50%以上,或30%以上。
加压冷却单元3中配置有冷却装置3.3,用于冷却即带走加压装置3.1加压烟气过程中产生的热量,使烟气在加压后的温度低于相变所需要的温度。采用涤气器和/或热交换器方式;其中,烟气冷却水泵3.14经冷却进水管3.15从大海抽取海水通过自然冷却介质输送管3.17输入冷却装置3.3,对烟气进行一级冷却,使烟气温度接近和/或降到与烟气压力对应的二氧化碳相变范围,完成冷却后的海水经冷却排水管3.16排入大海。在需要进一步降低烟温时,利用工艺冷却介质输送器3.18输送的工艺冷却介质进行二级冷却。冷却装置3.3为涤气器和/或热交换器方式,对于含水量较高的化石燃料烟气,冷却时会有一定量凝结水析出,在需要时通过冷却装置3.3的疏水管道将水排出系统;本实施例碳捕集成品主要用于海水/盐水碳封存,对纯度没有严格限制,特别是不要求超高纯度,可以节省脱水处理等工艺能耗。自然冷却介质在实施例中取自自然的冷水海水,河流湖泊的淡水,地下的淡水/咸水,以及取自空气,也有取自发电站冷却水。
加压冷却单元3中还设置有储热装置3.2,储热装置包括储热罐及储热介质,其中采用油类等储热介质,对加压装置3.1压缩烟气过程产生的热能中的一部分进行储存和输送,还通过回收热能回路2.7将热能输送到热力系统加热器如高压、低压给水加热器1.4,省煤器、空预器等;加压装置3.1压缩烟气过程产生的热能也可以直接通过第二热交换装置输送到热力系统加热器。加压装置3.1对烟气压缩过程产生的热能,还通过第一热交换装置3.4的热传导管3.20对分离单元3.5输出的较低温度的压力烟气进行加热,以回收烟气压缩的部分热能用于压力能透平发电机2.4。加压冷却单元3中还配置有分子筛粗滤泄放门3.1a,其中配置有允许氮气分子通过而阻隔二氧化碳分子的分子筛隔板,并被配置为在中间压力环境可以打开或关闭或调节开度,需要时在含碳烟气被压缩到二氧 化碳相变之前,通过分子筛粗滤泄放门3.1a泄放较多氮气,以减少烟气中的氮气分压,提高二氧化碳分压,使烟气压缩的效率提高、能耗降低。储能容器3.10中的压力烟气输出到压力能空气透平机3.12,驱动压力能透平机3.12和压力能透平发电机2.4回收压力能发出电能,所发电能经回收电能回路2.5通过配电变电器2.2并入清洁电能输出回路2.6。压力烟气驱动空气透平机3.12后输至排气筒3.13排往大气。
空气助燃化石燃料热力系统,采用高效率能源转换热力系统,包括锅炉和汽轮发电机的超临界热力系统热效率为39%,单位碳排放880g/kWh;超超临界热力系统热效率为45%,单位碳排放740g/kWh;先进超超临界热力系统热效率为50%,单位碳排放670g/kWh。采用温度变化范围10℃~28℃的海水作为自然冷却介质,对烟气进行一级冷却;利用邻近LNG发电机组升温气化释放冷能的原料LNG,作为工艺冷却介质对烟气进行二级冷却。
对所述导出碳捕集成品进行海洋碳封存,使导出的碳捕集成品经过对海洋生态环境的无害化处理后注入海洋水体,所述无害化处理是使碳捕集成品溶入经过拦截筛滤海洋生物体的海水流,并调节pH值至符合环境要求后注入海洋水体;所述注入海洋水体,还包括控制不同季节注入不同深度,以适应注入海域敏感生物种群的季节性生活规律。
本实施例滨海化石燃料电站,建有5台超临界燃煤机组,2台LNG机组;5台燃煤机组的含碳烟气烟温130℃,采用电站汽轮机冷却水(海水)约五分之一水量,洗涤冷却/干燥(同时脱除99%二氧化硫)燃煤机组全部含碳烟气,使温度下降为常温,进一步采用相邻LNG机组待升温气化的LNG燃料作为辅助工艺冷却介质继续冷却含碳烟气至-100℃以下,同时对含碳烟气进行变压力调节使烟气中的二氧化碳液化;在含碳烟气温度足够低时可将烟气压力调节为大气压,从含碳烟气中分离导出二氧化碳固体干冰,以节省烟气增压能耗。
根据本实施例提供的原理所设计的滨海燃煤电站的一种优选的具体实施方式是,将现有滨海燃煤电站改造为本发明清洁化石能源生产系统并实施海洋碳封存:现有滨海燃煤电站,装机为7台600MW超临界燃煤机组,单台机组ECR工况烟气量为1,800,000Nm 3/h,燃煤消耗量为210t/h,单机年排放二氧化碳330万吨(3300kt/y),全厂年排放二氧化碳2310万吨(23.1Mt/y);对其中5台燃煤机组改造加装本发明碳捕集系统和海洋碳封存系统,其余2台机组改造为LNG燃料机组。全厂改造加装工程分三期进行:第一期利用自然冷却介质海水,包括机组冷却海水,为5台燃煤机组加装10% 碳捕集率系统,年捕集封存二氧化碳165万吨(1650kt/y);第二期2台LNG燃料机组投运,利用LNG副产冷量作为工艺冷却介质,为5台燃煤机组加装50%碳捕集率系统,年捕集封存二氧化碳825万吨(8250kt/y);第三期进一步利用LNG副产冷量作为工艺冷却介质,将5台燃煤机组改造提升碳捕集率到90%,全厂全部改造加装完成后,年捕集封存二氧化碳总量为1485万吨(14.9Mt/y)。
实施例3:是实施例1基础上的实施例,如附图4所示,是本发明清洁化石能源生产方法及系统,在地质盐水层上方部署电站的实施例,使用空气冷却循环水,回收热能和压力能,所捕集的二氧化碳直接注入地质盐水层进行碳封存。
加压冷却单元3中配置有冷却装置3.3,利用经过空气冷却器(冷却塔)1.6和循环冷却水泵1.5并经凝汽给水单元1.3输出的循环冷却水进行冷却,使烟气温度降到与烟气压力对应的二氧化碳相变范围,取自自然冷水的循环冷却水属于自然冷却介质;在烟气压力较低需要进一步降低烟温时,利用工艺冷却介质输送器3.18输送的工艺冷却介质进行二级冷却。本实施例部署在高纬度地区,在冬季气温可达零下30度的条件下,工艺冷却介质输送器3.18直接取用低温空气代替低温的工艺冷却介质对含碳烟气进行二级冷却。
对所述导出碳捕集成品进行碳封存和/或回收利用,其中碳封存是将碳捕集成品注入地质盐水层,和/或注入任何适于碳封存的地质结构;回收利用是将碳捕集成品用于驱采油气,和/或用作工业原料,对于有需要的具体用途,对所述碳捕集成品进行再提纯;或将碳捕集成品运往别处,运输方式包括管道和/或车、船,对于有需要的运输方式,对所述碳捕集成品进行再提纯。
实施例4:如附图5,是本发明清洁化石能源生产方法及系统,在陆上电站使用空气冷却循环水,回收/储存热能和压力能,所捕集的二氧化碳输往碳管网6的实施例。
实施例5:如附图6,是本发明清洁化石能源生产方法及系统,在滨海电站使用海水冷却,回收热能和压力能,捕集的二氧化碳输往碳管网6的实施例:
实施例6:如附图7,是本发明清洁化石能源生产方法及系统,在陆上电站,使用空气冷却循环水,采用烟气储能发电系统回收烟气压力能和热能的实施例:将导出二氧化碳后的压力烟气注入储能空间,需要时从储能空间释放压力烟气驱动空气透平机发电回收压力能量发出电能;所述储能空间是储能容器3.10和/或地质空穴3.11。具体地,从分离单元3.5(示意图倒置)输出的压力烟气经压力烟气储能注入管3.7注入压力烟气储能 地质空穴3.11并储存。需要发电时,压力烟气储能地质空穴3.11储存的压力烟气经压力烟气储能释出管3.8输出,并经热第一热交换装置3.4和/或储热装置3.2的传导热量加热后进入储能容器3.10,然后输出到压力能空气透平机3.12,驱动压力能透平机3.12和压力能透平发电机2.4回收压力能发出电能,所发电能经回收电能回路2.5通过配电变电器2.2并入清洁电能输出回路2.6。压力烟气驱动空气透平机3.12后输至排气筒3.13排往大气。另外,从分离单元3.5输出的压力烟气还可以通过直通门3.9经第一热交换装置3.4和/或储热装置3.2的传导热量加热后直接输出到储能容器3.10。
实施例7:是本发明清洁化石能源生产方法及系统,在地质空穴盐水层上方部署电站的实施例,如附图8所示,地质空穴盐水层5.1包括盐水层和压力烟气储能地质空穴3.11,使用空气冷却循环水,回收热能,含碳烟气增压降温注入地质空穴盐水层3.11/5.1中,二氧化碳溶入盐水层实现碳封存,其余不溶烟气和空穴形成烟气储能发电系统。
实施例8:是清洁化石能源生产的海洋碳封存系统实施例,如附图9所示,本发明所述海洋碳封存,是使碳捕集成品经过碳酸氢根离子化处理,既海洋生态环境无害化处理后注入海洋水体,也称碳酸氢根离子态海洋碳封存;所述碳捕集成品,包括但不限于液态、固态和液固混合态二氧化碳,和二氧化碳水合物,及与冰的混合物等渣浆形态;所述对海洋生态环境的无害化,是将碳捕集成品处理成法规允许排放的形态,即pH值符合法规范围的液体,然后注入海洋水体。由于在通常环境法规允许排放的pH限值范围内,溶入海水的二氧化碳是以碳酸氢根离子形态存在,即以溶解性无机碳在海水中的自然形态存在,因此安全稳定,对海洋生态环境无害。所述将碳捕集成品处理成pH值符合法规范围的液体,是使碳捕集成品溶入一定量海水实现的,因此,关键问题在于:需要防止碳捕集成品溶入过程,对所述一定量海水造成生物损害。为此,本实施例使碳捕集成品通过碳捕集成品导出器3.6输入海水掺混装置4.1,处理成pH值符合法规范围后注入海洋水体;所述海水掺混装置4.1被配置在海平面4.6以上并注入由调节海水泵4.2从海洋中抽取的海水流,所述调节海水泵4.2抽取海水的入口设置有防止海洋生物体进入的过滤装置4.3;在海水掺混装置4.1中,所述碳捕集成品溶入所述调节海水泵4.6输入的海水流至pH值符合法规范围后,依靠所述海水流的自重,在大气压力下通过联通海洋水体的海洋碳排放管道4.4注入海洋水体。所述联通海洋水体的海洋碳排放管道4.4,还被配置成出口位于不同海水深度的多个可开关碳封存输出管,根据所在海域鱼类回游规律,以规避鱼类回游通道为目的,在不同时段不同深度,组合或分别开通海洋碳 排放管道4.4。
实施例9:是清洁化石能源生产的海洋碳封存系统又一实施例,如附图10所示,本发明所述海洋碳封存,也称碳酸氢根离子态海洋碳封存,所述碳捕集成品碳酸氢根离子化过程是,碳捕集成品导出器3.6直接连通海洋碳排放管道4.4,将海洋碳排放管道4.4的出口,设置在用于生成排放海水及生物拦截的网箱4.5中间。所述网箱4.5,被配置成海水可以流通鱼虾不能进入的结构,可以采用现有海洋鱼类水下养殖用的网箱代替;所述排放混合区是国际通行的海洋排放管理方式,定义为环境管理部门给定的排放口周边区域作为排放混合区,允许排放混合区内的排放浓度高于环境法规要求的标准限值。为此,本实施例网箱4.5的大小,被配置为小于等于环境管理部门给定的排放混合区,并使网箱4.5边界处的排水pH值,达到环境法规要求的标准限值。
实施例10:是清洁化石能源生产海洋碳封存系统再一实施例示意图,如附图11所示,碳捕集成品导出器3.6输入海水掺混装置4.1,海洋碳排放管道4.4的出口,设置在网箱4.5中间。本实施例适合给定排放混合区较小的场合。
本发明的权利要求保护范围不限于上述实施例。

Claims (20)

  1. 一种减少化石燃料热力系统烟气二氧化碳排放的方法,其特征在于,包括如下步骤:
    1)加压并冷却化石燃料燃烧产生的烟气使得烟气中的至少部分气态二氧化碳进行相变;
    2)从烟气中分离出第一烟气组分和第二烟气组分;其中,第一烟气组分包含相变的二氧化碳,用作碳捕集成品;第二烟气组分包含气态的烟气。
  2. 如权利要求1所述的方法,其特征在于,所述烟气产生于化石燃料的空气助燃燃烧;或者,所述烟气中二氧化碳的质量百分含量不高于30%;或者,所述烟气中氮气的质量百分含量不低于70%;或者,所述热力系统为火力发电厂热力系统、或冶金厂热力系统、或化工厂热力系统。
  3. 如权利要求1所述的方法,其特征在于,在步骤1)的二氧化碳的相变中,气态二氧化碳转变为液态、和/或固态、和/或二氧化碳水合物、和/或二氧化碳与冰的混合物。
  4. 如权利要求1所述的方法,其特征在于,在步骤1)中,通过如下方式中的一种使得烟气中的至少部分气态二氧化碳进行相变:
    i)冷却烟气至31.2℃以下,加压烟气至7.38MPa以上;
    ii)冷却烟气至25℃以下,加压烟气至6.4MPa以上;
    iii)冷却烟气至20℃以下,加压烟气至5.73MPa以上;
    iv)冷却烟气至10℃以下,加压烟气至3.48MPa以上;
    v)冷却烟气至-10℃以下,加压烟气至2.65MPa以上;
    vi)冷却烟气至-20℃以下,加压烟气至1.96MPa以上;
    vii)冷却烟气至-25℃以下,加压烟气至1.7MPa以上;
    viii)冷却烟气至-30℃以下,加压烟气至1.5MPa以上;
    或者,在步骤1)中,烟气中至少90%,或至少80%,或至少70%,或至少50%,或至少30%的气态二氧化碳进行相变。
  5. 如权利要求1所述的方法,其特征在于,在步骤1)中,加压所述烟气时,通过如下方式中的一种或几种回收利用烟气加压时产生的热量:
    i)加热步骤2)中分离出的其他烟气;
    ii)用于热力系统的加热器;
    iii)将热量储存到储热装置。
  6. 如权利要求1所述的方法,其特征在于,在步骤2)中,在加压状态下分离相变的二氧化碳与其他烟气,所述方法还包括:通过如下方式中的一种或几种回收利用分离出的其他烟气的压力能:
    i)驱动空气透平发电机;
    ii)驱动气动泵;
    iii)加压状态下存储分离出的第二烟气组分以储能。
  7. 如权利要求1所述的方法,其特征在于,所述方法还包括:3)通过如下方式中的一种或几种封存所述的碳捕集成品:
    i)将二氧化碳注入盐水层;
    ii)将二氧化碳注入油田或气田以增加油或气的产量;
    iii)将二氧化碳注入海洋;
    和/或,将所述的碳捕集成品用作工业原料。
  8. 一种减少化石燃料发电厂的二氧化碳排放的方法,其特征在于,包括:
    1)捕集化石燃料燃烧产生的烟气中的二氧化碳,生成碳捕集成品;
    2)将碳捕集成品与调节海水混合后产生排放海水;
    3)将排放海水注入海洋。
  9. 如权利要求8所述的方法,其特征在于,所述碳捕集成品包括液态二氧化碳、和/或固态二氧化碳、和/或二氧化碳水合物、和/或二氧化碳与冰的混合物;或者,所述碳捕集成品中二氧化碳的质量含量在90%以上,或80%以上,或70%以上,或50%以上,或30%以上。
  10. 如权利要求8所述的方法,其特征在于,在步骤2)中,所述调节海水包括经过拦截筛滤海洋生物体的海水流。
  11. 一种化石燃料热力系统,其特征在于,包括:
    燃烧单元,用于化石燃料的燃烧;
    加压冷却单元,用于接受燃烧单元排放的烟气以及加压并冷却所述烟气,使得所述烟气中的至少部分气态二氧化碳进行相变;
    分离单元,用于接受加压冷却单元输出的烟气并分离第一烟气组分和第二烟气组分;其中,第一烟气组分包含相变的二氧化碳,第二烟气组分包含气态的烟气。
  12. 根据权利要求11所述的化石燃料热力系统,其特征在于,所述加压冷却单元包括:
    加压装置,用于接受燃烧单元排放的烟气以及加压所述烟气;
    冷却装置,用于接受加压装置输出的烟气以及冷却所述烟气,使得所述烟气中的至少部分气态二氧化碳进行相变。
  13. 根据权利要求11所述的化石燃料热力系统,其特征在于,所述加压冷却单元还包括热量回收设备,所述热量回收设备包括以下中的一种或多种:
    i)第一热交换装置,用于利用加压装置加压烟气时产生的热量来加热所述分离单元分离出的第二烟气组分;
    ii)第二热交换装置,用于利用加压装置加压烟气时产生的热量来补充热力系统加热器的热量;
    iii)储热装置,用于吸收加压装置输出的烟气的热量并储热。
  14. 根据权利要求11所述的化石燃料热力系统,其特征在于,所述加压冷却单元还包括压力能量回收设备,用于接受所述分离单元分离的第二烟气组分,并回收利用第二烟气组分的压力能。
  15. 根据权利要求14所述的化石燃料热力系统,其特征在于,所述压力能量回收设备包括以下中的一种或多种:
    i)空气透平机;
    ii)气动泵;
    iii)储能容器;
    iv)将第二烟气组分输送到地质空穴的设施。
  16. 根据权利要求11所述的化石燃料热力系统,其特征在于,所述化石燃料热力系统还包括碳封存单元,用于接受所述分离单元输出的第一烟气组分,并将所述第一烟气组分输送到封存场所。
  17. 一种用于减少化石燃料热力系统烟气二氧化碳排放的设备,其特征在于,包括:
    碳捕集单元,用于捕集化石燃料燃烧产生的烟气中的二氧化碳,生成碳捕集成品;
    海洋碳封存单元,用于接受所述碳捕集成品以及调节海水,并使得所述碳捕集成品 与调节海水混合,生成排放海水,并将所述排放海水注入海洋。
  18. 根据权利要求17所述的设备,其特征在于,所述海洋碳封存单元包括:
    调节海水泵,用于将调节海水提取到海平面以上;
    海水掺混装置,用于接受所述碳捕集成品以及调节海水,并使得所述碳捕集成品与调节海水混合,生成排放海水;
    排放装置,用于接受所述排放海水,并将所述排放海水注入海洋。
  19. 根据权利要求18所述的设备,其特征在于,所述海洋碳封存单元还包括过滤装置,用于拦截筛滤调节海水的海洋生物体。
  20. 根据权利要求17所述的设备,其特征在于,所述海洋碳封存单元包括位于海平面以下的网箱,用于接受所述碳捕集成品以及拦截筛滤海洋生物体,并使得所述碳捕集成品与拦截筛滤海洋生物体后的调节海水混合。
PCT/CN2022/099652 2021-06-23 2022-06-19 化石燃料热力系统及其二氧化碳减排方法和设备 WO2022268002A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022299989A AU2022299989A1 (en) 2021-06-23 2022-06-19 Fossil fuel thermodynamic system and carbon dioxide emission reduction method and device thereof
GBGB2400831.0A GB202400831D0 (en) 2021-06-23 2022-06-19 Fossil fuel thermodynamic system and carbon dioxide emission reduction method and device thereof

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/101739 2021-06-23
CN2021101739 2021-06-23
CNPCT/CN2021/105685 2021-07-12
CN2021105685 2021-07-12
CN2021106057 2021-07-13
CNPCT/CN2021/106057 2021-07-13
CNPCT/CN2021/122736 2021-10-09
CN2021122736 2021-10-09
CN2021133771 2021-11-27
CNPCT/CN2021/133771 2021-11-27
CNPCT/CN2022/090827 2022-04-30
CN2022090827 2022-04-30

Publications (1)

Publication Number Publication Date
WO2022268002A1 true WO2022268002A1 (zh) 2022-12-29

Family

ID=84545143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099652 WO2022268002A1 (zh) 2021-06-23 2022-06-19 化石燃料热力系统及其二氧化碳减排方法和设备

Country Status (3)

Country Link
AU (1) AU2022299989A1 (zh)
GB (1) GB202400831D0 (zh)
WO (1) WO2022268002A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188924A (ja) * 1989-12-19 1991-08-16 Mitsubishi Heavy Ind Ltd 排ガスの海中投棄方法
JPH054043A (ja) * 1991-06-27 1993-01-14 Chubu Electric Power Co Inc 炭酸ガスの処理装置
CN101666573A (zh) * 2009-09-21 2010-03-10 华北电力大学 Co2分离压缩一体化方法
CN101858685A (zh) * 2010-05-26 2010-10-13 华北电力大学 Co2分离-液化-提纯系统及方法
US20160195270A1 (en) * 2015-01-06 2016-07-07 Alstom Technology Ltd Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
CN106803597A (zh) * 2015-11-26 2017-06-06 彭斯干 零碳排放化石燃料发电方法及装置系统
CN107081045A (zh) * 2017-04-14 2017-08-22 中国石油化工股份有限公司 一种捕集烟气中二氧化碳的方法及其专用设备
CN112516614A (zh) * 2020-11-17 2021-03-19 天津大学合肥创新发展研究院 一种动力装置烟气二氧化碳减排系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188924A (ja) * 1989-12-19 1991-08-16 Mitsubishi Heavy Ind Ltd 排ガスの海中投棄方法
JPH054043A (ja) * 1991-06-27 1993-01-14 Chubu Electric Power Co Inc 炭酸ガスの処理装置
CN101666573A (zh) * 2009-09-21 2010-03-10 华北电力大学 Co2分离压缩一体化方法
CN101858685A (zh) * 2010-05-26 2010-10-13 华北电力大学 Co2分离-液化-提纯系统及方法
US20160195270A1 (en) * 2015-01-06 2016-07-07 Alstom Technology Ltd Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
CN106803597A (zh) * 2015-11-26 2017-06-06 彭斯干 零碳排放化石燃料发电方法及装置系统
CN107081045A (zh) * 2017-04-14 2017-08-22 中国石油化工股份有限公司 一种捕集烟气中二氧化碳的方法及其专用设备
CN112516614A (zh) * 2020-11-17 2021-03-19 天津大学合肥创新发展研究院 一种动力装置烟气二氧化碳减排系统

Also Published As

Publication number Publication date
AU2022299989A1 (en) 2024-02-08
GB202400831D0 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
CN109441574B (zh) 用于调峰的近零碳排放整体煤气化联合发电工艺
CN103993920B (zh) 一种利用冷能的海岛供能系统
CN106401749B (zh) 一种基于igcc的近零排放燃煤发电系统及方法
US9217423B2 (en) Energy storage system using supercritical air
US20110042968A1 (en) Method and plant for combined production of electric energy and water
CN203906025U (zh) 一种海岛供能系统
WO2003040531A1 (fr) Systeme de turbine a gaz comprenant un systeme ferme entre le gaz combustible et le gaz de combustion au moyen d'une couche de charbon souterraine
EP1827656A1 (en) Method for removing and recovering co2 from an exhaust gas
US11035260B1 (en) System, apparatus, and method for energy conversion
CN109337715B (zh) 一种生物质气化发电系统及方法
CN209586452U (zh) 一种喷射膨胀复合式压缩空气储能系统
CN103912385B (zh) 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统
WO2020000787A1 (zh) 低碳排放化石能源产生方法及装置
CN113175687A (zh) 一种烟气二氧化碳捕集提纯系统及方法
CN216986969U (zh) 一种碳捕集利用和co2储能发电一体化系统
CN112392626A (zh) 用于柴油机的余热综合能量回收装置
CN114046172B (zh) 基于二氧化碳工艺和模块化设计的煤火治理利用系统及方法
CN214700775U (zh) 一种烟气二氧化碳捕集提纯系统
US20110314816A1 (en) Nonfractionalized biomass-fueled refrigerant-based cogeneration
WO2014104023A1 (ja) 火力発電システム
CN110159370A (zh) 一种带捕碳装置的燃煤发电系统及方法
WO2022268002A1 (zh) 化石燃料热力系统及其二氧化碳减排方法和设备
US11446587B2 (en) Liquid natural gas processing
CN209875312U (zh) 适用于低温环境的热力发电系统
CN209412156U (zh) 生物质气化发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022299989

Country of ref document: AU

Ref document number: AU2022299989

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022299989

Country of ref document: AU

Date of ref document: 20220619

Kind code of ref document: A