WO2022267547A1 - 一种业务光信号的传输方法、网络设备以及光网络 - Google Patents

一种业务光信号的传输方法、网络设备以及光网络 Download PDF

Info

Publication number
WO2022267547A1
WO2022267547A1 PCT/CN2022/079490 CN2022079490W WO2022267547A1 WO 2022267547 A1 WO2022267547 A1 WO 2022267547A1 CN 2022079490 W CN2022079490 W CN 2022079490W WO 2022267547 A1 WO2022267547 A1 WO 2022267547A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
wavelength selection
module
transceiver
Prior art date
Application number
PCT/CN2022/079490
Other languages
English (en)
French (fr)
Inventor
刘晨
米光灿
常泽山
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22827052.6A priority Critical patent/EP4340385A1/en
Publication of WO2022267547A1 publication Critical patent/WO2022267547A1/zh
Priority to US18/541,452 priority patent/US20240113799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/10Packet switching elements characterised by the switching fabric construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present application relates to the technical field of optical fiber communication, and in particular to a method for transmitting service optical signals, network equipment and an optical network.
  • each network device includes multiple transceiver modules.
  • Two transceiver modules can be connected through an optical switch module, and the optical switch module implements crossover of optical signals between the two transceiver modules.
  • the optical switching module can be crossed to the corresponding output port based on the wavelength of the optical signal input through the input port. For this reason, conventionally, a separate wavelength-tunable laser is arranged in each transceiver module, and the transceiver module emits optical signals of different wavelengths through the wavelength-tunable laser.
  • each transceiver module with a wavelength-tunable laser significantly increases the cost, and the time required for wavelength tuning of the wavelength-tunable laser is milliseconds or even seconds, resulting in an increase in network delay.
  • the wavelength of the optical signal output by each transceiver module is independently tuned by the laser. It is easy for the two transceiver modules to be out of sync due to the wavelength tuning, and the output optical signal is transmitted to the same output port by the optical switch module at the same time, causing network congestion or even data transmission. interruption.
  • the present application provides a service optical signal transmission method, network equipment, and optical network, which are used to reduce networking costs and delays, and effectively avoid congestion in optical signal transmission.
  • an embodiment of the present invention provides a method for transmitting service optical signals.
  • the transmission method is applied to network equipment.
  • the network equipment includes a light source module.
  • the light source module is connected to multiple wavelength selection modules, and each wavelength selection module is connected to a first An optical transceiver, and different wavelength selection modules are connected to different first optical transceivers;
  • the light source module transmits M first optical signals to each wavelength selection module, and M is a positive integer greater than 1;
  • the wavelength selection module transfers K channels
  • the second optical signal is transmitted to the first optical transceiver, K is a positive integer less than or equal to M;
  • the first optical transceiver modulates the service electrical signal on each second optical signal to output K service optical signals.
  • the N first optical transceivers and at least one second optical transceiver are connected through at least one optical switching module, and at least one optical switching module is used to transmit K-channel service optical signals from the N first optical transceivers to the at least one second optical transceiver.
  • the wavelength selection module when performing different computing tasks, only needs to change the wavelength of the second optical signal transmitted to the first optical transceiver connected to the selection module, so that the first optical transceiver sends signals to different second optical transceivers.
  • the optical transceiver transmits service optical signals. It can be seen that based on different computing tasks, the first optical transceiver performs data interaction with different second optical transceivers without changing the network architecture of the optical network, which reduces the networking cost.
  • the first optical transceiver directly performs modulation according to the second optical signal from the wavelength selection module, thereby reducing network delay.
  • each wavelength selection module can independently transmit the second optical signal for the first optical transceiver connected respectively, which improves the first optical signal of the M paths output by the light source module.
  • a wavelength resource utilization message of an optical signal can be independently transmitted.
  • multiple first optical transceivers are in one-to-one correspondence with multiple output ports of the same optical switch module, and the first optical transceivers are used to transmit data to corresponding output ports of the optical switch module.
  • Business light signal
  • each wavelength selection module independently allocates wavelengths for the first optical transceivers connected to each other, which can ensure that the service optical signal output by the first optical transceiver can be transmitted to the corresponding second optical transceiver through the crossover of the optical switching module. optical transceiver. It can be ensured that the same output port of the optical switching module can only receive service optical signals from a first optical transceiver corresponding to the output port. Then, service optical signals from different first optical transceivers will not be transmitted to the same output port of the optical switching module, thereby avoiding network congestion.
  • the output port of the optical switch module used to output the service optical signal is related to the wavelength of the service optical signal and the input port of the optical switch module used to receive the service optical signal.
  • the optical switching module determines the output port for outputting the service optical signal according to the input port receiving the service optical signal and the wavelength of the service optical signal, so that the service optical signal output by the first optical transceiver can be transmitted to the corresponding purpose of the second optical transceiver.
  • each wavelength selection module can independently select a target wavelength for the first optical transceiver, and the selected target wavelength is not limited by other wavelength selection modules. It can be known that different wavelength selection modules can send second optical signals with the same wavelength to different first optical transceivers, or different wavelength selection modules can send second optical signals with different wavelengths to different first optical transceivers.
  • the wavelength selection module transmits the second optical signal with the target wavelength to the target output port of the wavelength selection module, the target wavelength is determined according to the routing requirements of the service optical signal, and the target output port There is a corresponding relationship with the target wavelength.
  • the light source module sends M channels of first optical signals to the wavelength selection module respectively, and the wavelength selection module is responsible for transmitting the second optical signal with the target wavelength.
  • the second optical signal of the target wavelength can meet the routing requirement of the service optical signal output by the first optical transceiver.
  • the wavelength selection module does not need to perform an action of querying the corresponding target wavelength and target output port every time a calculation task is performed, which improves the efficiency of optical signal transmission.
  • the wavelength selection module transmitting K channels of second optical signals to the first optical transceiver includes: the wavelength selection module obtains a current allocation list, and the current allocation list includes the target wavelength and the first The corresponding relation of optical transceivers, the target wavelength is a wavelength transmitted to the wavelength selection module; the wavelength selection module transmits the second optical signal with the target wavelength to the first optical transceiver according to the current distribution list.
  • the wavelength selection module when performing different computing tasks, only the wavelength selection module is required to change the wavelength of the second optical signal transmitted to the first optical transceiver, so that the first optical transceiver can transmit service light to different second optical transceivers Signal. Moreover, based on different computing tasks, the first optical transceiver performs data interaction with different second optical transceivers without changing the network architecture of the optical network, which reduces networking costs.
  • the network device includes a control unit connected to the wavelength selection module, and the method further includes: the control unit acquires multiple allocation lists; the control unit acquires routing requirements, and the routing requirements include service optical signals source node and sink node, the source node is connected to the first optical transceiver, and the sink node is connected to the second optical transceiver; the control unit obtains the current allocation list corresponding to the routing requirement, wherein the output of the first optical transceiver has the target The service optical signal of the wavelength is used to transmit to the second optical transceiver through the optical switching module; the control unit sends the current distribution list to the wavelength selection module.
  • the acquisition of the current allocation list by the wavelength selection module includes: acquisition of multiple allocation lists by the wavelength selection module; acquisition of routing requirements by the wavelength selection module, and the routing requirements include source nodes and sinks of service optical signals node, the source node is connected to the first optical transceiver, and the sink node is connected to the second optical transceiver; the wavelength selection module obtains the current allocation list corresponding to the routing requirement, wherein the service light with the target wavelength output by the first optical transceiver The signal is used for transmitting to the second optical transceiver through the optical switch module.
  • the wavelength selection module transmitting the second optical signal with the target wavelength to the first optical transceiver according to the current allocation list includes: the wavelength selection module turns on the wavelength selection according to the current allocation list
  • the output port of the second optical signal includes: the wavelength selection module turns on the wavelength selection according to the current allocation list
  • the wavelength selection module further includes at least one optical filter, and the wavelength selection module transmits K channels of second optical signals to the first optical transceiver including: the wavelength selection module passes at least one The optical filter filters K channels of second optical signals from the M channels of first optical signals.
  • the network device includes a control unit connected to the wavelength selection module, and the light source module transmitting M channels of first optical signals to the wavelength selection module includes: the control unit controls the light source module to output an output signal with a target wavelength of the first optical signal.
  • the light source module can transmit the first optical signal with the target wavelength to the wavelength selection module, it can effectively meet the routing requirements of the first optical transceiver.
  • different wavelength selection modules receive M channels of first optical signals at different times.
  • an embodiment of the present invention provides a network device, the network device includes a light source module, the light source module is connected to multiple wavelength selection modules, each wavelength selection module is connected to a first optical transceiver, and different wavelength selection modules are connected to Different first optical transceivers are connected; the light source module is used to transmit M first optical signals to each wavelength selection module, and M is a positive integer greater than 1; the wavelength selection module is used to transmit K second optical signals to the first wavelength selection module.
  • An optical transceiver, K is a positive integer less than or equal to M; the first optical transceiver is used to modulate the service electrical signal on each second optical signal to output K service optical signals.
  • multiple first optical transceivers are in one-to-one correspondence with multiple output ports of the same optical switch module, and the first optical transceivers are used to transmit data to corresponding output ports of the optical switch module.
  • Business light signal
  • the output port of the optical switch module used to output the service optical signal is related to the wavelength of the service optical signal and the input port of the optical switch module used to receive the service optical signal.
  • the wavelength selection module is specifically configured to transmit the second optical signal having a target wavelength to the first optical transceiver, where the target wavelength is a wavelength transmitted to the wavelength selection module.
  • the wavelength selection module is specifically configured to: obtain the current allocation list, the current allocation list includes the corresponding relationship between the target wavelength and the first optical transceiver, and the target wavelength is transmitted to the wavelength selection module a wavelength of ; transmit the second optical signal with the target wavelength to the first optical transceiver according to the current allocation list.
  • the network device includes a control unit connected to the wavelength selection module, and the control unit is specifically used to: obtain multiple distribution lists; obtain routing requirements, and the routing requirements include the source of the service optical signal A node and a sink node, the source node is connected to the first optical transceiver, and the sink node is connected to the second optical transceiver; the current allocation list corresponding to the routing requirement is obtained, wherein the service light with the target wavelength output by the first optical transceiver The signal is used for transmitting to the second optical transceiver via the optical switching module; sending the current assignment list to the wavelength selection module.
  • the wavelength selection module is specifically used to: obtain multiple allocation lists; obtain routing requirements, the routing requirements include the source node and sink node of the service optical signal, the source node and the first optical The transceiver is connected, and the sink node is connected to the second optical transceiver; the current allocation list corresponding to the routing requirement is obtained, wherein the service optical signal with the target wavelength output by the first optical transceiver is used for transmission to the second optical transceiver via the optical switch module.
  • Two optical transceivers are used to: obtain multiple allocation lists; obtain routing requirements, the routing requirements include the source node and sink node of the service optical signal, the source node and the first optical The transceiver is connected, and the sink node is connected to the second optical transceiver; the current allocation list corresponding to the routing requirement is obtained, wherein the service optical signal with the target wavelength output by the first optical transceiver is used for transmission to the second optical transceiver via the optical switch module.
  • the wavelength selection module is specifically configured to conduct the optical path between the target input port and the target output port of the wavelength selection module according to the current allocation list, and the target input port is used for input The input port of the first optical signal with the target wavelength, and the target output port is an output port for outputting the second optical signal with the target wavelength to the first optical transceiver.
  • the wavelength selection module further includes at least one optical filter, and the wavelength selection module is specifically configured to filter out K channels from M channels of first optical signals through at least one optical filter. second light signal.
  • the network device includes a control unit connected to the wavelength selection module, and the control unit is specifically configured to control the light source module to output the first optical signal with the target wavelength.
  • different wavelength selection modules receive M channels of first optical signals at different times.
  • the embodiment of the present invention provides an optical network
  • the optical network includes a plurality of optical transceivers
  • the plurality of optical transceivers include N first optical transceivers and at least one second optical transceiver, the N first The optical transceiver and at least one second optical transceiver are connected through at least one optical switching module, and the N first optical transceivers are located in the network equipment, and the network equipment is as shown in any one of the above-mentioned second aspects; at least one optical switching module The module is used to transmit K-channel service optical signals from N first optical transceivers to at least one second optical transceiver.
  • the N first optical transceivers and the second optical transceivers are located in the same network device, or the N first optical transceivers and the second optical transceivers are located in different within the network device.
  • Fig. 1 is an example structure diagram of an embodiment of an optical network provided by the present application
  • FIG. 2 is a structural example diagram of the first embodiment of the network device provided by the present application.
  • FIG. 3 is a partial structural example diagram of the second embodiment of the network device provided by the present application.
  • FIG. 4 is a structural example diagram of another embodiment of the optical network provided by the present application.
  • FIG. 5 is a partial structural example diagram of a third embodiment of the network device provided by the present application.
  • FIG. 6 is a structural example diagram of the first embodiment of the filtering module provided by the present application.
  • FIG. 7 is a structural example diagram of a second embodiment of the filtering module provided by the present application.
  • FIG. 8 is an example diagram of an application scenario of an optical network provided by the present application.
  • FIG. 9 is a flow chart of steps in the first embodiment of the method for transmitting service optical signals provided by the present application.
  • FIG. 10 is a flow chart of the steps of the second embodiment of the method for transmitting service optical signals provided by the present application.
  • Fig. 11 is a flow chart of the steps of the third embodiment of the service optical signal transmission method provided by the present application.
  • FIG. 1 is a structural example diagram of an embodiment of the optical network provided in the present application.
  • the optical network shown in this embodiment has the advantages of high switching speed, low optical power loss, low delay, low cost, and no wavelength competition.
  • the optical network shown in this embodiment can be applied to applications such as a data center, a metropolitan area network, a passive optical network (passive optical network, PON), and long-distance transmission, and is not specifically limited in this embodiment.
  • an application of an optical network to a data center is taken as an example, and the optical network may be a data center network (data center network, DCN).
  • the optical network shown in this embodiment includes multiple network devices.
  • the optical network includes a network device 101 , a network device 102 , a network device 103 and a network device 104 as an example.
  • the description of the number and connection manner of the network devices included in the optical network in this embodiment is an optional example and is not limited.
  • the network device shown in this embodiment may also be called a server.
  • the optical network executes services
  • different network devices need to be able to perform data interaction.
  • AI artificial intelligence
  • the optical network shown in this embodiment is used to perform artificial intelligence (artificial intelligence, AI) training services
  • AI training services are A computing power-intensive service
  • data exchange between multiple network devices included in the optical network device is required.
  • any two network devices among network device 101 , network device 102 , network device 103 and network device 104 are connected through an optical switching module.
  • the network device 101 has four ports, the first port of the network device 101 is connected to the optical switch module 111, the second port of the network device 101 is connected to the optical switch module 112, and the third port of the network device 101 is connected to the optical switch module 113 connected, the fourth port of the network device 101 is connected to the optical switch module 114 .
  • the connection relationship between the network device 102 , the network device 103 , and the network device 104 and the optical switch module please refer to the description of the network device 101 , and details are not repeated here.
  • any two network devices can perform data interaction, for example, the data output by the first port of the network device 101 can be transmitted to the first port of the network device 103 through the crossover of the optical switching module 111, so as to realize the network device
  • the purpose of sending data from 101 to network device 103 for the description of data interaction between other network devices, please refer to the description of data interaction between network device 101 and network device 103, and details will not be repeated.
  • the optical switching module shown in this embodiment can be called a wavelength sensitive optical switch (wavelength sensitive optical cross connect, WS-OXC), a reconfigurable optical add drop multiplexer (reconfigurable optical add drop multiplexer, ROADM), a wavelength A cross-connector (wavelength crossconnect, WXC), an optical switching node, or a wavelength switching node, etc., are not specifically limited in this embodiment.
  • Each optical switching module can be implemented based on wavelength division technologies such as wavelength selective switch (wavelength selective switch, WSS), arrayed waveguide grating (arrayed waveguide grating, AWG), arrayed waveguide grating router (arrayed waveguide grating router, AWGR). It can be seen that since the optical switching module is implemented based on wavelength division technology, when the wavelengths of the optical signals received by the optical switching module are different, the optical signals with different wavelengths can be transmitted along different paths in the optical switching module, and then This enables optical signals with different wavelengths to be output through different output ports of the optical switching module.
  • wavelength selective switch wavelength selective switch
  • AWG arrayed waveguide grating router
  • AWGR arrayed waveguide grating router
  • the network device 200 shown in this embodiment includes a light source module 210, and X transceiver modules connected to the light source module 210.
  • the value of X shown in this embodiment is any positive integer greater than or equal to 1, for example, with the light source module 210 connected to the transceiver module 231 and the transceiver module 23X.
  • the transceiver module may include one or more computing nodes.
  • the transceiver module 231 is taken as an example, and the transceiver module 231 includes a computing node 241 .
  • the computing node 241 shown in this embodiment is a node capable of performing computing tasks.
  • the computing node 241 may be a graphics processing unit (graphic processing unit, GPU), a field-programmable gate array (field-programmable gate array, FPGA), application specific integrated circuit (ASIC), system chip (system on chip, SoC), central processing unit (central processor unit, CPU), network processor (network processor, NP), digital signal processing circuit (digital signal processor, DSP), or other integrated chips, or any combination of the above chips or processors, etc.
  • the transceiver module shown in this embodiment includes a wavelength selection module 243 connected to the light source module 210.
  • the connection between the wavelength selection module 243 and the computing node 241 is used as an example for illustration.
  • the independently set control unit means that the control unit is connected to the light source module 210 and each transceiver module respectively.
  • the wavelength selection module 243 included in each transceiver module is connected to an independently configured control unit.
  • the transceiver module further includes one or more first optical transceivers respectively connected to the wavelength selection module 243 and the computing node.
  • the first optical transceiver 242 connected to the computing node 241 and the wavelength selection module 243 .
  • the transceiver module 23X includes a wavelength selection module 246 connected to the light source module 210, a computing node 244 connected to the wavelength selection module 246, and a first optical fiber respectively connected to the computing node 244 and the wavelength selection module 246.
  • connection may specifically refer to the connection between two optical devices (such as the light source module 210 and each transceiver module) through an optical fiber or an optical waveguide (optical waveguide) to realize the transmission of optical signals.
  • the light source module 210 shown in this embodiment is used to send M channels of first optical signals to each wavelength selection module, where the value of M is any positive integer greater than 1.
  • the first optical signal of the M channels is a continuous wave (continuous wave, CW) optical signal.
  • the light source module 210 shown in this embodiment can be connected to each wavelength selection module through an optical fiber. Then, the wavelengths of the M channels of first optical signals sent by the light source module 210 to the wavelength selection modules are different from each other.
  • the M channels of first optical signals The wavelengths of the optical signals are ⁇ 1, ⁇ 2 to ⁇ M, respectively.
  • the light source module 210 shown in this embodiment can be connected to each wavelength selection module through two or more optical fibers, then, the wavelengths of at least some of the first optical signals in the M channels of first optical signals can be the same, The wavelengths of the same two channels of first optical signals may be transmitted to the wavelength selection module through different optical fibers, which is not specifically limited in this embodiment.
  • the implementation of the light source module 210 shown in this embodiment can be referred to as follows:
  • the light source module 210 includes a plurality of lasers with fixed wavelengths. Take the light source module 210 as an example for sending M channels of first optical signals with different wavelengths to each wavelength selection module (such as the wavelength selection module 243). Then, the light source module 210 may include M lasers for outputting different wavelengths. For example, the light source module 210 includes a first laser for outputting a first optical signal with a wavelength of ⁇ 1, and so on, the light source module 210 includes an Mth laser for outputting a first optical signal with a wavelength of ⁇ M.
  • the light source module 210 also includes a beam splitter 211 connected to each laser.
  • the optical splitter 211 shown in this embodiment can also be referred to as a fiber coupler, and the optical splitter 211 is used to split the M first optical signals received from M lasers into multiple parts, each of which includes M first optical signals A light signal.
  • the light source module 210 transmits each of the M channels of first optical signals to a wavelength selection module, so as to ensure that each wavelength selection module can receive the M channels of first optical signals from the light source module 210 .
  • the description of the type of the laser included in the light source module 210 in this embodiment is an optional example without limitation.
  • the laser included in the light source module 210 can also be a wavelength tunable laser, a semiconductor mode-locked Lasers, mode-locked diode lasers, distributed Bragg reflection lasers, fiber-coupled semiconductor lasers, fiber lasers, etc.
  • the M-channel first optical signals output by the semiconductor mode-locked laser are optical frequency combs. It can be seen that the M-channel first optical signals output by the light source module 210 are in A series of comb-shaped spectral lines that are evenly distributed in the frequency domain, have fixed positions, and have an extremely wide spectral range.
  • the description of the optical devices included in the light source module 210 in this embodiment is an optional example, and in other examples, the light source module 210 may also include one or more multiplexers (Multiplexers), and the combiner
  • the wave filter is used for multiplexing the multiple first optical signals to form a multiplexed optical signal, and the multiplexed optical signal can be output through the same output port of the light source module.
  • the multiplexer receives the first optical signal with wavelength ⁇ 1 and the first optical signal with wavelength ⁇ 2, and the multiplexer performs multiplexing on the first optical signal with wavelength ⁇ 1 and the first optical signal with wavelength ⁇ 2 to obtain
  • the multiplexed optical signal, the multiplexed optical signal with the wavelengths ⁇ 1 and ⁇ 2 can be output through the same output port of the light source module 210 to be transmitted to the wavelength selection module.
  • the light source module may further include one or more power dividers, which are used to divide the optical power of the optical signal from the laser into multiple channels of first optical signals with equal or unequal optical power.
  • the light source module may further include an optical power amplifier to amplify the optical power of the first optical signal to be output.
  • the light source module 210 shown in this embodiment has a plurality of output ports, and one or more output ports are connected to the input port of the same wavelength selection module, so as to ensure that the M channels of first optical signals output through one or more output ports can successfully ground to the wavelength selection module.
  • the light source module 210 can adjust the wavelength combination of the first optical signal output by each output port included in the light source module 210 by using the above-mentioned optical device included in the light source module 210 .
  • implementing an output port through a multiplexer can output multiple channels of first optical signals with multiple different wavelengths.
  • realizing different output ports through the wave splitter can output the first optical signals with different wavelengths from the same laser.
  • different output ports can output the first optical signals with the same wavelength and the same or different optical power through the power divider.
  • the optical devices included in the light source module 210 are not limited, as long as each first optical transceiver included in the network device can receive M channels of first optical signals from the light source module 210 .
  • the wavelength selection module shown in this embodiment is used to transmit K channels of second optical signals to the first optical transceiver connected to the wavelength selection module.
  • the K channels of second optical signals output by the wavelength selection module are at least part of the M channels of first optical signals, and the value of K is any positive integer less than or equal to M.
  • the wavelength selection module 243 shown in FIG. 2 transmits K channels of second optical signals to the first optical transceiver 242 .
  • the wavelength selection module 243 has received M channels of first optical signals from the light source module 210, and the wavelength selection module 243 selects the M channels of first optical signals, so that the M channels of first optical signals include The K channels of second optical signals are transmitted to the first optical transceiver 242 .
  • the first optical transceiver 242 is used to transmit the optical signal from the light source module 210 to the second optical transceiver. It can be seen that the first optical transceiver shown in this embodiment serves as the transmitting end of the optical signal, and the second optical transceiver serves as the receiving end of the optical signal. Moreover, the first optical transceiver and the second optical transceiver may be located in the same network device, or the first optical transceiver and the second optical transceiver may be located in two different network devices.
  • Each first optical transceiver receives one or more second optical signals, and the first optical transceiver is used to modulate a service electrical signal on each second optical signal to obtain one or more service optical signals.
  • the first optical transceiver 242 is connected to the computing node 241, and the first optical transceiver 242 can receive K second optical signals from the wavelength selection module 243, and on each second optical signal, Modulate the service electrical signal from the computing node 241 to output K-channel service optical signals.
  • the first optical transceiver 242 receives a second optical signal from the wavelength selection module 243, then the first optical transceiver 242 can modulate a service electrical signal from the computing node 241 on the second optical signal, The first optical transceiver 242 outputs a service optical signal. If the first optical transceiver 242 receives multiple second optical signals from the wavelength selection module 243, then the first optical transceiver 242 can respectively modulate the multiple service electrical signals from the computing node 241 into multiple second optical signals. Above, the first optical transceiver 242 outputs multi-channel service optical signals.
  • the computing node included in the transceiver module sends multiple service electrical signals to the first optical transceiver included in the transceiver module, which can effectively expand the bandwidth output by the computing node, for example, each service electrical signal For 25 switching bandwidth (giga bit per second, Gbps) signals, when the computing node outputs 4 channels of the service electrical signals to the first optical transceiver, data transmission with a bandwidth of 100 Gbps can be realized.
  • Gbps giga bit per second
  • the N first optical transceivers 242 shown in this embodiment include an optical modulator, and the optical modulator is used to modulate a service electrical signal from a computing node on a second optical signal to obtain a service optical signal.
  • the type of the modulator is not limited, for example, the optical modulator may be an acousto-optic modulator, a magneto-optical modulator, an electro-optic modulator, or an electro-absorption modulator, and the like.
  • FIG. 4 is a structural example diagram of another embodiment of the optical network provided by the present application.
  • a plurality of optical transceivers including the first optical transceiver 401, the first optical transceiver 402, the first optical transceiver 403 and the first optical transceiver 404 as the sending end, also includes the first optical transceiver 404 as the receiving end
  • each optical transceiver is respectively connected to the optical switching module 410, based on the optical switching module, data interaction between any first optical transceiver and any second optical transceiver shown in FIG. 4 can be realized.
  • the service optical signal output by the first optical transceiver 401 can be transmitted to the second optical transceiver 407 through the crossover of the optical switching module 410, so as to realize the communication between the first optical transceiver 401 and the second optical transceiver 407. data interaction.
  • the optical switch module 410 can transmit service optical signals with different wavelengths to different a second optical transceiver.
  • the optical switch module 410 has four input ports, namely, input port 411 , input port 412 , input port 413 to input port 414 .
  • the four input ports are respectively connected to the first optical transceiver 401 , the first optical transceiver 402 , the first optical transceiver 403 and the first optical transceiver 404 in a one-to-one correspondence.
  • the optical switching module 410 has four output ports, namely an output port 421 , an output port 422 , an output port 423 and an output port 424 .
  • the four output ports are respectively connected to the second optical transceiver 405 , the second optical transceiver 406 , the second optical transceiver 407 and the second optical transceiver 408 in a one-to-one correspondence. It should be noted that the description of the connection relationship between the optical switch module 410 and multiple optical transceivers shown in FIG. 4 is an optional example and is not limited.
  • different optical transceivers shown in FIG. 4 may be located in different network devices, or, all optical transceivers in FIG. 4 may be located in the same network device, or, some optical transceivers shown in FIG. 4 are located in In one network device, another part of optical transceivers is located in one or more other network devices. It can be known that this embodiment does not limit the number of network devices where all the optical transceivers shown in FIG. 4 are located.
  • the optical switch module 410 is pre-configured with a cross correspondence, which is used to indicate the input port of the optical switch module 410, the wavelength of the service optical signal, and the output port of the optical switch module 410 corresponding relationship. It can be seen that the cross correspondence establishes the correspondence between the wavelength of the service optical signal output by the first optical transceiver, the input port of the optical switch module 410 connected to the first optical transceiver, and the output port of the optical switch module 410 . Moreover, in the cross-correspondence relationship, the output port of the same optical switch module 410 only corresponds to the service optical signal from one optical transceiver, so as to avoid congestion.
  • the optical switch module 410 can transmit the service optical signal input through the input port to the output port corresponding to the input port and the wavelength in the cross-correspondence based on the input port and the wavelength of the service optical signal.
  • the cross-correspondence relationship configured by the optical switch module 410 for the input port 411 can refer to the following Table 1:
  • the service optical signal output by the first optical transceiver 401 needs to have a wavelength of ⁇ 3.
  • the optical switching module 410 receives the service optical signal with the wavelength ⁇ 3 from the first optical transceiver 401 via the input port 411, and the optical switching module 410 crosses the service optical signal with the wavelength ⁇ 3 to the output port 423, and the output port 423 is connected to the second Optical transceiver 407 is connected.
  • the service optical signal from the first optical transceiver 401 and having the wavelength ⁇ 3 can be transmitted to the second optical transceiver 407 through the output port 423 .
  • the service optical signal output by the first optical transceiver 401 needs to have a wavelength of ⁇ 1.
  • the input port 411 of the optical switching module 410 receives the service optical signal with the wavelength ⁇ 1 from the first optical transceiver 401, and the optical switching module 410 crosses the service optical signal with the wavelength ⁇ 1 to the output port 421, and the output port 421 is connected to the second optical Transceiver 405 is connected. It can be seen that the service optical signal from the first optical transceiver 401 and having the wavelength ⁇ 1 can be transmitted to the optical transceiver 405 through the output port 421 , and so on, without limitation.
  • the optical switching module 410 can also configure a cross-correspondence relationship for the input port 412, input port 413, and input port 414.
  • a cross-correspondence relationship for the input port 412, input port 413, and input port 414.
  • the first optical transceiver transmits a service optical signal to the second optical transceiver
  • the wavelength of the second optical signal received by the first optical transceiver can be a preset wavelength (as shown in Table 1 ⁇ 1 ⁇ 4).
  • the wavelength of the second optical signal received by the first optical transceiver 401 is ⁇ 3, so that the first optical transceiver
  • the wavelength of the service optical signal output by 401 is ⁇ 3, so as to ensure that the service optical signal is transmitted to the second optical transceiver 407 through the crossover of the optical switching module 410.
  • the wavelength selection module can transmit the second optical signal with the target wavelength to the first optical transceiver connected to the first optical transceiver according to the routing requirement of the service optical signal output by the first optical transceiver connected thereto.
  • the routing requirement of the service optical signal refers to the source node (ie computing node) that sends out the service electrical signal carried by the service optical signal and the sink node (ie computing node) that needs to receive the service electrical signal.
  • the source node 431 connected to the first optical transceiver 401 is a computing node connected to the first optical transceiver 401 .
  • the source node 432 connected to the first optical transceiver 402 is a computing node connected to the first optical transceiver 402 .
  • the source node 433 connected to the first optical transceiver 403 is a computing node connected to the first optical transceiver 403 .
  • the source node 434 connected to the first optical transceiver 404 is a computing node connected to the first optical transceiver 404 .
  • the sink node 441 connected to the second optical transceiver 405 is a computing node connected to the second optical transceiver 402 .
  • the sink node 442 connected to the second optical transceiver 406 is a computing node connected to the second optical transceiver 406 .
  • the sink node 443 connected to the second optical transceiver 407 is a computing node connected to the second optical transceiver 407 .
  • the sink node 444 connected to the second optical transceiver 408 is a computing node connected to the second optical transceiver 408 .
  • the first optical transceiver may be any optical transceiver included in the network device 200, and the routing requirement of the service optical signal output by the first optical transceiver refers to the source node connected to the first optical transceiver.
  • the service electrical signal needs to be transmitted to the corresponding sink node.
  • the wavelength selection module transmits the second optical signal with the target wavelength to the first optical transceiver connected thereto, so as to meet the routing requirement.
  • the routing requirement of the service optical signal output by the first optical transceiver 401 may refer to that the service electrical signal output by the source node 431 needs to be transmitted to the sink node 443.
  • the wavelength selection module may transmit the second optical signal with a target wavelength of ⁇ 3 to the first optical transceiver 401 according to the routing requirement in combination with Table 1.
  • the first optical transceiver 401 modulates the service electrical signal from the source node 431 on a second optical signal having a target wavelength ⁇ 3 to input the service optical signal to the input port 411 .
  • the optical switching module 410 cross-transmits the service optical signal with the target wavelength ⁇ 3 from the input port 411 to the output port 423 .
  • the second optical transceiver 407 receives the service optical signal through the output port 423 , and the second optical transceiver 407 demodulates the service electrical signal from the service optical signal, and transmits it to the sink node 443 .
  • the wavelength selection module shown in this embodiment can, according to the routing requirement of the service optical signal output by the first optical transceiver connected to it, send to the first optical transceiver the first optical transceiver that meets the corresponding target wavelength of the routing requirement.
  • the second optical signal for the description of the routing requirements of the service optical signals output by the optical transceiver, please refer to the above description of the routing requirements of the first optical transceiver 401, and details will not be repeated.
  • the process of how the wavelength selection module transmits the second optical signal with the target wavelength according to the routing requirements of the service optical signal output by the first optical transceiver connected to it is described below:
  • the wavelength selection module shown in this embodiment includes one or more input ports, and the wavelength selection module receives M channels of first optical signals from the light source module through the one or more input ports.
  • the wavelength selection module includes one or more output ports.
  • the transceiver module includes one or more first optical transceivers
  • the one or more output ports included in the wavelength selection module are connected to the first optical transceivers included in the transceiver module.
  • the transceiver is connected to send the second optical signal to the first optical transceiver included in the transceiver module.
  • the wavelength selection module transmits a second optical signal having a target wavelength of ⁇ 3 to the first optical transceiver 401 according to the routing requirements of the service optical signal output by the first optical transceiver 401, so as to ensure that the first optical transceiver 401 A service optical signal with a target wavelength ⁇ 3 output by an optical transceiver 401 can be successfully transmitted to the second optical transceiver 407 through the crossover of the optical switching module.
  • the structure of the wavelength selection module shown in this embodiment can be several optional structures as shown below:
  • FIG. 5 is a partial structure example diagram of the first embodiment of the transceiver module provided by the present application.
  • the transceiver module includes a wavelength selection module 510 and a first optical transceiver 401 connected to the wavelength selection module 510 .
  • the wavelength selection module 510 includes at least one filtering module and at least one optical switch. This embodiment does not limit the specific description of the filter module and the optical switch included in the wavelength selection module 510.
  • the wavelength selection module 510 includes a filter module 511 and an optical switch 501 connected to the filter module 511.
  • the optical switch 501 shown in this embodiment is used to conduct the optical path between the target first output port and the second output port.
  • the target first output port is one of the plurality of first output ports included in the filter module 511
  • the second output port is an output port included in the wavelength selection module 510 and connected to the first optical transceiver 401 .
  • the filtering module 511 shown in this embodiment is configured to transmit the filtered second optical signal to a plurality of first output ports. It should be clarified that, the description of the quantity and connection manner of the optical switches and filter modules in this embodiment is an optional example and is not limited.
  • the filter module 511 includes an input port 504 connected to the light source module. It can be seen that the filtering module 511 receives M channels of first optical signals from the light source module through the input port 504 .
  • the first output ports included in the filtering module 511 are a first output port 521 , a first output port 522 , a first output port 523 and a first output port 524 . In this embodiment, the number of first output ports included in the filtering module 511 is not limited.
  • the first output ports included in the filtering module 511 are all connected to the optical switch 501 .
  • the filtering module 511 needs to filter output a second optical signal with a target wavelength ⁇ 1. If the second optical signal with the target wavelength ⁇ 1 is output through the target first output port 521, then the optical switch 501 conducts the optical path between the target first output port 521 and the second output port 501, so that the target wavelength ⁇ 1 The second optical signal can be transmitted to the first optical transceiver 401 through the target first output port 521 , the optical switch 501 and the second output port 501 in sequence. It can be seen that the wavelength selection module 510 can control the wavelength selection module 510 to transmit the second optical signal meeting the routing requirement to the first optical transceiver 401 according to the routing requirement of the first optical transceiver 401 .
  • the network device shown in this embodiment further includes a control unit 540 , and the specific location of the control unit 540 is not limited in this embodiment.
  • the control unit 540 is located within the wavelength selection module 510 .
  • the control unit 540 is independently disposed in the network device, and is respectively connected to the light source module and each transceiver module.
  • the control unit 540 may be one or more computing nodes included in the network device, which is not specifically limited in this embodiment.
  • the control unit 540 shown in this embodiment is connected to the filter module 511 and the optical switch 501 respectively.
  • the optical switch 501 shown in this embodiment turns on or off the optical path between each first output port and the second input port 504 .
  • the control unit 540 controls the optical switch 501 to conduct the target first output port 521 and the second output port 521.
  • the optical path between the ports 501, and the optical path between the first output port 522, the first output port 523, and the first output port 524 and the second output port 501 needs to be disconnected, so as to ensure that the first output port 521 of the target output Two optical signals can be successfully transmitted to the second output port 501 .
  • the optical switch shown in this embodiment can be a mechanical optical switch, a micro-electromechanical system (micro electronic mechanical system, MEMS) optical switch, or a free-space element ( For example, a prism), etc.
  • the optical switch 501 in this example can be driven by the control unit 540 to move or change the position, angle, etc. light path.
  • the optical switch 501 in this example can be driven by the control unit 540 to disconnect the optical path between the first output port 522 , the first output port 523 and the first output port 524 and the second output port 501 .
  • the optical switch shown in this embodiment may be a non-mechanical optical switch, for example, the optical switch 501 changes the refraction of the optical path between the target first output port 521 and the second output port 501 under the control of the control unit 540 rate, so as to conduct the optical path between the target first output port 521 and the second output port 501.
  • the control unit 540 can change the refractive index of the optical path between the target first output port 521 and the second output port 501 through electro-optic effect, magneto-optic effect, acousto-optic effect, thermo-optic effect and so on.
  • the optical switch 501 in this example can change the refractive index of the first output port 522 , the first output port 523 , and the optical path between the first output port 524 and the second output port 501 under the control of the control unit 540 .
  • the filtering module 511 shown in this embodiment includes a plurality of cascaded optical filters.
  • the structure of the filtering module 511 will be described below in conjunction with FIG. 6 , wherein FIG. 6 is provided by this application.
  • the filtering module shown in this embodiment includes a first optical filter 601, a second optical filter 602 connected to the first optical filter 601, and a third optical filter 603 and a fourth optical filter 602 respectively connected to the second optical filter 602.
  • Optical filter 604 .
  • each optical filter is a Mach-Zehnder interferometer (mach-zehnder interferometer, MZI) as an example for illustration: in order to realize that each MZI can realize filtering, an interference arm included in each optical filter An electro-optic phase shifter with nanosecond (nano second, NS) level response speed is configured on the top, and each electro-optic phase shifter is connected to the control unit 540 .
  • the two interference arms of the third optical filter 603 are respectively connected to the first output port 521 and the first output port 522, and the two interference arms of the fourth optical filter 604 are respectively connected to the first output port 523 and the first output port 524. connect.
  • the control unit 540 shown in this embodiment can be configured with multiple allocation lists, and different allocation lists include different combinations of target wavelengths.
  • the allocation lists can be referred to in Table 2 below:
  • the allocation list is used to indicate that in order to meet the routing requirements of service optical signals, the target wavelengths of the second optical signals that need to be obtained are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, respectively. Then, it is necessary to perform the first control mode on the wavelength selection module control. Therefore, the wavelength selection module can transmit the second optical signals with the target wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 to the first optical transceiver, so as to meet the routing requirement.
  • the allocation list can also be referred to in Table 3 below:
  • the allocation list is used to indicate that in order to meet the routing requirements of the service optical signal, the target wavelength of the second optical signal that needs to be obtained is ⁇ 2, then, it is necessary to perform the second control mode on the wavelength selection module, so that the wavelength selection module can use
  • the second optical signal with the target wavelength ⁇ 2 is transmitted to the first optical transceiver to satisfy the routing requirement.
  • control unit 540 determines that the target wavelengths of the second optical signal required by the routing requirement of the service optical signal output by the first optical transceiver are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, then the control unit 540 determines that the target wavelengths that can meet the routing requirement
  • the distribution list is Table 2 shown above.
  • the control unit 540 applies a preset first voltage or a first current to the electro-optical phase shifter of the first optical filter 601 according to the instruction of the first control mode.
  • the first optical filter 601 filters second optical signals respectively having target wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 from the multiple first optical signals input through the input port 504 .
  • the wavelengths of the multiple first optical signals input through the input port 504 are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 to ⁇ M
  • the first optical filter 601 obtains four channels respectively having target Second optical signals with wavelengths of ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4.
  • the first optical filter 601 and the second optical filter 602 are cascaded, so the first optical filter 601 can transmit the four channels of second optical signals to the second optical filter 602 .
  • control unit 540 applies a preset second voltage or a second current to the electro-optic phase shifter of the second optical filter 602 according to the instruction of the first control mode.
  • the second optical filter 602 can transmit the second optical signals having target wavelengths of ⁇ 1 and ⁇ 2 to the third optical filter 603, and the second optical filter 602 can also transmit the second optical signals having target wavelengths of ⁇ 3 and ⁇ 4 transmitted to the fourth optical filter 604.
  • control unit applies a preset third voltage or third current to the electro-optical phase shifter of the third optical filter 603 according to the instruction of the first control mode.
  • One interference arm of the third optical filter 603 transmits the second optical signal with the target wavelength ⁇ 1 to the output port 521, and the other interference arm of the third optical filter 603 transmits the second optical signal with the target wavelength ⁇ 2 to the output port 521. port 522.
  • control unit applies a preset fourth voltage or fourth current to the electro-optical phase shifter of the fourth optical filter 604 according to the instruction of the first control mode.
  • One interference arm of the fourth optical filter 604 transmits the second optical signal with the target wavelength ⁇ 3 to the output port 523, and the other interference arm of the fourth optical filter 604 transmits the second optical signal with the target wavelength ⁇ 4 to the output port 523. port 524.
  • control unit 540 controls the optical switch 501 to conduct the optical paths between the first output port 521, the first output port 522, the first output port 523, and the first output port 524 and the second output port 501 respectively, so as to ensure that the first The second optical signals with the target wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 output by the output port 521, the first output port 522, the first output port 523 and the first output port 524 can be successfully transmitted to the first optical transceiver 401 .
  • the control unit 540 controls the optical switch 501 to turn on the first output port 522 and the second output port 522. Light path between ports 501. And disconnect the optical paths between the first output port 521 , the first output port 523 and the first output port 524 and the second output port 501 respectively.
  • the filter module shown in this embodiment can be realized by configuring different control modes.
  • the different control modes shown in this embodiment may indicate the on-off of the optical switch, and for another example, may also indicate the magnitude of the voltage or current loaded by each optical filter.
  • the control unit controls the wavelength selection module through different control modes, so that the wavelength selection module can transmit second optical signals with different wavelengths to the first optical transceiver, so as to meet the needs of different service optical signals output by the first optical transceiver. routing requirements.
  • the wavelength selection module first controls the filtering of the filter module, and then controls the on-off of the optical switch as an example. In other examples, it can also first control the on-off of the optical switch, and then control the filtering of the filter module. , which is not specifically limited in this embodiment.
  • the wavelength selection module may also only include a filter module, and the purpose of transmitting the second optical signal to the target output port is achieved only through the filter module.
  • FIG. 7 is a structural example diagram of the second embodiment of the filtering module provided by the present application.
  • the filtering module shown in this embodiment includes four optical filters.
  • the first optical filter includes a first microring resonator waveguide 701 and a first transmission waveguide 702
  • the second optical filter includes a second microring resonator waveguide 703 and a second transmission waveguide 704
  • the third optical filter includes The third microring resonator waveguide 705 and the third transmission waveguide 706
  • the fourth optical filter includes a fourth microring resonator waveguide 707 and a fourth transmission waveguide 708 .
  • the first microring resonator waveguide 701, the second microring resonator waveguide 703, the third microring resonator waveguide 705, and the fourth microring resonator waveguide 707 are respectively connected to the control unit 540. It should be clarified that this The description of the number of optical filters included in the filtering module in the embodiment is an optional example and is not limited.
  • the first transmission waveguide 702 shown in this example is connected to the first output port 524
  • the second transmission waveguide 704 is connected to the second output port 523
  • the third transmission waveguide 706 is connected to the first output port 522
  • the fourth transmission waveguide 708 is connected to the first output port 522.
  • the first output port 521 is connected.
  • control unit is configured according to the allocation list shown in Table 2:
  • the first microring resonator waveguide 701, the second microring resonator waveguide 703, the third microring resonator waveguide 705, and the fourth microring resonator waveguide are arranged in an array Resonator waveguide 707 .
  • Multiple channels of first optical signals input through the input port 504 can be respectively coupled into the first microring resonator waveguide 701, the second microring resonator waveguide 703, the third microring resonator waveguide 705, and the fourth microring resonator waveguide 707 .
  • the control unit 540 determines that the target wavelengths of the second optical signal required by the routing requirement of the first optical transceiver are ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4, then the control unit 540 determines that the distribution list that can realize the routing requirement is as shown above Table 2.
  • the control unit 540 applies a preset fifth voltage or fifth current to the first microring resonator waveguide 701 according to the instruction of the first control mode, so that the first optical signal with the target wavelength ⁇ 4 has an optical interference effect , so that when the first optical signal with wavelength ⁇ 4 goes back and forth in the first microring resonator waveguide 701, when the optical path is equal to an integer multiple of the wavelength ⁇ 4, a resonance phenomenon will occur, so that the second light with the target wavelength ⁇ 4 During the transmission process of the first microring resonator waveguide 701 , the signal will be coupled into the first transmission waveguide 702 , and then the second optical signal with wavelength ⁇ 4 will be transmitted to the first output port 524 .
  • the control unit 540 loads the preset sixth voltage or sixth current on the second microring resonator waveguide 703 according to the instruction of the first control mode, so that the first optical signal with the target wavelength ⁇ 3 is transmitted to the first Output port 523.
  • the control unit loads the preset seventh voltage or seventh current on the third microring resonator waveguide 705 , so that the second optical signal with the target wavelength ⁇ 2 is transmitted to the first output port 522 .
  • the control unit loads a preset eighth voltage or eighth current on the fourth microring resonator waveguide 707 according to the instruction of the first control mode, so that the second optical signal with the target wavelength ⁇ 1 is transmitted to the first output port 521 .
  • the control unit 540 controls the optical switch 501 to turn on the first output port 522 and the second output port 522.
  • the optical paths between the ports 501 are disconnected, and the optical paths between the first output port 521 , the first output port 523 and the first output port 524 and the second output port 501 are disconnected.
  • the filtering module shown in the example may be implemented by configuring different control modes.
  • the different control modes shown in the example may indicate the on-off of the optical switch, and for another example, may also indicate the magnitude of the voltage or current loaded by each optical filter.
  • the control unit controls the wavelength selection module through different control modes, so as to ensure that the wavelength selection module can transmit second optical signals with different wavelengths to the first optical transceiver, so as to meet the needs of different service optical signals output by the first optical transceiver. routing requirements.
  • the wavelength selection module first controls the filtering of the filter module, and then controls the on-off of the optical switch as an example. In other examples, it can also first control the on-off of the optical switch, and then control the filtering of the filter module. , which is not specifically limited in this embodiment.
  • the wavelength selection module may also only include a filter module, and the purpose of transmitting the second optical signal to the target output port is achieved only through the filter module.
  • the difference between this optional structure 3 and the above optional structure is that the structure of the filtering module shown in this structure is different.
  • the filtering module shown in this example includes a filtering module and an optical distribution module.
  • the filtering module shown in this example For the description of the module, please refer to the structure 2, and the details will not be repeated. It can be seen that the filtering module can filter out the second optical signal with the target wavelength from the multiple first optical signals input from the input port.
  • the filtering module can filter the M channels of first optical signals from the input port to obtain second optical signals respectively having target wavelengths ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the optical distribution module is used to enable the multiple second optical signals filtered by the filtering module to send one or more second optical signals to the first optical transceiver according to the routing requirements of the service optical signals output by the first optical transceiver .
  • the optical distribution module can transmit the second optical signals of the target wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 to the first optical transceiver.
  • the optical distribution module can transmit one channel of the second optical signal having the wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 to the first optical transceiver.
  • the optical distribution module may include one or more MZIs.
  • MZIs For the description of the implementation process of the MZI, refer to the optional structure 1 above. It can be seen that, based on the MZI included in the wavelength selection module, the second optical signal that can meet the routing requirements of the first optical transceiver can be transmitted to the first optical transceiver.
  • FIG. 8 shows the communication relationship between different computing nodes during the process of executing different steps. Taking computing node P0 as an example, the routing table for this scenario can be seen in Table 4 below:
  • the first optical transceiver P0 shown in Table 4 is the first optical transceiver connected to the computing node P0 and the wavelength selection module P0.
  • the second optical transceiver P1 is a second optical transceiver connected to the computing node P1, and so on, and the second optical transceiver P4 is a second optical transceiver connected to the computing node P4.
  • the routing requirement corresponding to the computing node P0 is that the service electrical signal output by the computing node P0 needs to be transmitted to the computing node P1.
  • the computing node P0 transmits the service electrical signal to the first optical transceiver P0.
  • the wavelength selection module P0 transmits the second optical signal with the first wavelength to the first optical transceiver P0.
  • the first optical transceiver P0 modulates the service electrical signal on the second optical signal with the first wavelength, so as to transmit the service optical signal with the first wavelength to the optical switching module.
  • the optical switching module transmits the service optical signal to the second optical transceiver P1, and the second optical transceiver P1 demodulates the service optical signal to obtain a service electrical signal, and the second optical transceiver P1 transmits the service electrical signal to the computing node P1, so as to realize the communication between computing node P0 and computing node P1 in step 1.
  • the routing requirement corresponding to the computing node P0 is that the service electrical signal output by the computing node P0 needs to be transmitted to the computing node P2.
  • the computing node P0 transmits the service electrical signal to the first optical transceiver P0.
  • the wavelength selection module P0 transmits the second optical signal with the second wavelength to the first optical transceiver P0.
  • the first optical transceiver P0 modulates the service electrical signal on the second optical signal with the second wavelength, so as to transmit the service optical signal with the second wavelength to the optical switching module.
  • the optical switching module transmits the service optical signal to the second optical transceiver P2, and the second optical transceiver P2 demodulates the service optical signal to obtain a service electrical signal, and the second optical transceiver P2 transmits the service electrical signal to the computing node P2, to realize the communication between computing node P0 and computing node P2 in step 1.
  • the wavelength of the optical signal can be changed from the first wavelength to the second wavelength, the service optical signal from the first optical transceiver P0 can be changed from being transmitted to the second optical transceiver P1 to being transmitted to the second optical transceiver P2.
  • the different wavelength selection modules shown in this embodiment can also be controlled separately by the computing nodes included in the respective transceiver modules. Taking the example shown in FIG. Node 244 controls.
  • wavelengths of service optical signals output by different first optical transceivers connected to different optical switching modules may be the same.
  • the wavelength of the service optical signal transmitted by the first optical transceiver 242 to the optical switch module 111 and the wavelength of the service optical signal transmitted by the first optical transceiver 245 to the optical switch module 112 may be the same , although the wavelength of the service optical signal output by the first optical transceiver 242 is the same as that of the service optical signal output by the first optical transceiver 245, the two routes of service optical signals will be crossed via two different optical switching modules , avoiding the transmission of the two service optical signals to the same output port of the same optical switching module, and avoiding network congestion.
  • different first optical transceivers transmit service optical signals with the same wavelength to the same optical switch module, and different service optical signals can be input to the optical switch module through different input ports of the optical switch module to avoid multiplex services Optical signals are transmitted to the same output port of the optical switching module, avoiding network congestion. It can be seen that each wavelength selection module can independently select a target wavelength for the first optical transceiver, and the selected target wavelength is not limited by other wavelength selection modules. Since different first optical transceivers can use optical signals with the same target wavelength, the utilization efficiency of the M channels of first optical signals output by the light source module is effectively improved.
  • optical network shown in this embodiment data exchange is performed between the first optical transceiver and the second optical transceiver through the optical switching module.
  • the data interaction between the first optical transceiver and the second optical transceiver is directly performed through optical signals without electro-optic conversion, which effectively reduces the time delay for data interaction between the two optical transceivers.
  • the ports of the optical switching module have no limitation on bandwidth, and the optical switching module can transmit optical signals at a higher rate. Therefore, the optical network shown in this embodiment can provide data exchange with large bandwidth and low delay.
  • the wavelength selection module is required to change the wavelength of the second optical signal transmitted to the first optical transceiver, so that the first optical transceiver can transmit service light to different second optical transceivers
  • the purpose of the signal is to achieve the purpose of data interaction between the first optical transceiver and different second optical transceivers based on different computing tasks, without changing the network architecture of the optical network, and reducing the networking cost.
  • the optical network can use the light source module to unify each wavelength selection module to send M channels of first optical signals, and the wavelength selection module is responsible for transmitting the second optical signal with the corresponding target wavelength to the first optical transceiver according to routing requirements. There is no need to change the wavelength combination of the M channels of first optical signals output by the light source module every time a calculation task is performed, and the light source module does not need to be changed, which reduces networking costs and time delays.
  • the optical network there is no need to independently configure wavelength-tunable lasers in each first optical transceiver, which reduces the cost of the first optical transceiver.
  • the first optical transceiver directly modulates according to the second optical signal from the wavelength selection module, and the first optical transceiver does not need to tune the wavelength, thereby reducing network delay.
  • this embodiment describes the process of performing the transmission method of the service optical signal on the network device as shown in FIG. 9, wherein FIG. 9 shows the service optical signal provided by this application
  • Step 901 the light source module transmits M channels of first optical signals to each wavelength selection module.
  • the light source module shown in this example has pre-configured the wavelength of each first optical signal among the M first optical signals output to each wavelength selection module, and the output port of the light source module through which each first optical signal passes. .
  • the wavelengths of the M first optical signals are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 to ⁇ M respectively, then the wavelengths of the M first optical signals transmitted from the light source module to the wavelength selection module each time are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 to ⁇ M.
  • the light source module shown in this embodiment can transmit M channels of first optical signals to different wavelength selection modules through different output ports of the light source module.
  • the light source module can transmit M channels of first optical signals to different wavelength selection modules in time division through one or more output ports. For example, the light source module 210 determines at the first moment that the transceiver module 231 needs to transmit services, and the light source module 210 transmits M channels of first optical signals to the transceiver module 231 . The light source module determines that the transceiver module 23X needs to transmit services at the second moment, and the light source module 210 transmits M channels of first optical signals to the transceiver module 23X, and the first moment is different from the second moment.
  • the first control unit shown in this embodiment can determine the wavelengths of M channels of first optical signals according to routing requirements of service optical signals output by each first optical transceiver. For example, if the target wavelength that satisfies the routing requirements of a service optical signal output by a first optical transceiver is ⁇ K, then the first control unit controls the M channels of first optical signals output by the light source module to include first light signal.
  • routing requirements please refer to Embodiment 1, and details will not be repeated.
  • the first control unit shown in this embodiment can be independently set inside the network device, or the first control unit shown in this embodiment can include one or more computing nodes included in the network device. For details, please refer to the implementation As shown in Example 1, details are not repeated.
  • Step 902 the first control unit acquires multiple distribution lists.
  • the first control unit shown in this embodiment may pre-configure multiple allocation lists, and different allocation lists are used to indicate different combinations of wavelengths of the second optical signals output by the wavelength selection module.
  • the target wavelengths of the second optical signal output by the wavelength selection module are ⁇ 1, ⁇ 2 , ⁇ 3 and ⁇ 4.
  • the target wavelength of the second optical signal output by the wavelength selection module is ⁇ 2.
  • This embodiment does not limit the execution sequence between step 901 and step 902 .
  • Step 903 the first control unit obtains the target routing requirement.
  • the target routing requirement shown in this embodiment is the routing requirement of the target first optical transceiver, and the target first optical transceiver is one of multiple first optical transceivers included in the network device.
  • the target routing requirement shown in this embodiment means that the wavelength of the second optical signal output by the target wavelength selection module can meet the routing requirement of the service optical signal output by the target first optical transceiver, so as to ensure that the target first optical transceiver The service optical signal output by the optical transceiver can be successfully transmitted to the corresponding sink node.
  • the target first optical transceiver and the second optical transceiver please refer to Embodiment 1, and details will not be repeated.
  • step 902 and step 903 shown in this embodiment is not limited.
  • Step 904 the first control unit obtains the current allocation list corresponding to the target routing requirement.
  • the first control unit shown in this embodiment acquires the current distribution list from the configured multiple distribution lists.
  • the current allocation list is an allocation list that can satisfy the target routing requirement. It can be seen that the current assignment list includes the target wavelength required by the target routing requirement.
  • the target routing requirement is that the target wavelengths required by the target first optical transceiver are ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4
  • the current allocation list corresponding to the target routing requirement is Table 2 shown in Example 1.
  • the wavelength selection module controls the first control mode indicated by the current distribution list, it can ensure that the target wavelengths of the second optical signals output by the wavelength selection module are ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 respectively, so as to satisfy the target routing requirements, and then ensure that the target first optical transceiver can successfully transmit the service optical signal to the corresponding sink node.
  • Step 905 the first control unit sends the current allocation list to the wavelength selection module.
  • the first control unit when the first control unit acquires the current allocation list, the first control unit sends the acquired current allocation list to the wavelength selection module, specifically, the first control unit sends the obtained current allocation list to the wavelength selection module.
  • the included second control unit transmits the current allocation list.
  • Step 906 the wavelength selection module transmits the second optical signal to the target first optical transceiver.
  • the wavelength selection module shown in this embodiment controls the wavelength selection module according to the current allocation list, so as to transmit the second optical signal with the target wavelength to the target first optical transceiver.
  • the second control unit performs control according to the current allocation list, and can transmit the K channels of second optical signals to the target first optical transceiver.
  • the second optical signals of the K channels are part or all of the first optical signals of the M channels.
  • the second control unit included in the wavelength selection module performs control according to the current allocation list shown in Table 2, for example, refer to the control process of the control unit shown in Embodiment 1, and details are not repeated here. It can be seen that the second control unit shown in this embodiment controls the wavelength selection module according to the current allocation list shown in Table 2, so as to ensure that the wavelength selection module can output the second optical signal to the target first optical transceiver.
  • the wavelengths are ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4.
  • the wavelength selection module is controlled by the second control unit located in the wavelength selection module as an example.
  • the wavelength selection module can also be directly controlled by the first control unit, which is not specifically described in this embodiment. limited.
  • Step 907 the target first optical transceiver modulates the service electrical signal on each second optical signal to output the service optical signal.
  • any target first optical transceiver included in the network equipment can modulate the service electrical signal on the K-channel second optical signal from the wavelength selection module to output the K-channel service optical signal.
  • the specific process of modulation on the second optical signal please refer to Embodiment 1 for details, and details will not be repeated in this embodiment.
  • Step 908 the target first optical transceiver transmits the service optical signal to the optical switching component.
  • the optical switching component shown in this embodiment may include one or more optical switching modules.
  • the optical switching component includes optical switching modules 111 , 112 , 113 and 114 .
  • the optical switching component can receive K-channel service optical signals of the target first optical transceiver, for example, the target first optical transceiver can output K-channel service optical signals to an optical switching module through an output port, and for another example, the target The first optical transceiver can respectively output at least one service optical signal to the four optical switching modules through four output ports.
  • the optical switching component can transmit to the corresponding second optical transceiver according to the wavelength of each service optical signal. It can be seen that each second optical transceiver can receive one or more service optical signals.
  • the specific description of the second optical transceiver please refer to the first embodiment, and details will not be repeated.
  • Step 909 the optical switching component transmits the service optical signal to the second optical transceiver.
  • the optical switching modules are wavelength-sensitive optical devices, that is, each optical switching module performs crossover according to the wavelength of the service optical signal to transmit to the corresponding second optical transceiver.
  • the second optical transceiver when the second optical transceiver receives the service optical signal, the second optical transceiver can demodulate the service optical signal to obtain the service electrical signal, and transmit the service electrical signal to the first Two optical transceivers are connected to the computing nodes.
  • the computing node performs corresponding processing according to the service electrical signal.
  • Embodiment 2 The difference between this embodiment and Embodiment 2 is that the main body for obtaining the current allocation list is different.
  • the execution process of the service optical signal transmission method shown in this embodiment can be referred to as shown in FIG.
  • FIG. Provided is a flow chart of the steps of the second embodiment of the service optical signal transmission method.
  • Step 1001 the light source module transmits M channels of first optical signals to each wavelength selection module.
  • step 1001 For the description of the execution process of step 1001 shown in this embodiment, please refer to the step 901 shown in the second embodiment, and the specific execution process will not be repeated.
  • Step 1002 the wavelength selection module acquires multiple distribution lists.
  • the second control unit included in the wavelength selection module shown in this embodiment acquires multiple allocation lists.
  • the description of the specific location of the second control unit please refer to the description shown in Embodiment 2, and details are not repeated here.
  • the description of the process for the second control unit to obtain multiple distribution lists please refer to the description of the process for the first control unit to obtain multiple distribution lists shown in step 902 of the second embodiment, and details will not be repeated in this embodiment.
  • Step 1003 the wavelength selection module obtains the target routing requirement.
  • Step 1004 the wavelength selection module acquires the current allocation list corresponding to the target routing requirement.
  • Step 1005 the wavelength selection module transmits the second optical signal to the target first optical transceiver.
  • the wavelength selection module controls the wavelength selection module according to the current allocation list, so as to transmit the second optical signal with the target wavelength to the target first optical transceiver.
  • the target first optical transceiver is any first optical transceiver included in the network equipment, and the first optical transceiver is connected to the wavelength selection module.
  • the process of the wavelength selection module controlling the wavelength selection module according to the current allocation list please refer to the description of the wavelength selection module control process shown in step 906 of the second embodiment, and details are not repeated here.
  • Step 1006 the target first optical transceiver modulates the service electrical signal on each second optical signal to output the service optical signal.
  • Step 1007 the target first optical transceiver transmits the service optical signal to the optical switching component.
  • Step 1008 the optical switching component transmits the service optical signal to the second optical transceiver.
  • the network equipment needs to dynamically control the wavelength selection module according to the routing requirements of the target first optical transceiver. It can be seen that the routing requirements of the target first optical transceiver are different.
  • the wavelength selection module will be controlled based on different assignment lists. However, the wavelength selection module shown in this embodiment performs preset control, and the wavelength selection module can transmit the second optical signal with the same wavelength to the target first optical transceiver each time.
  • the services shown in this embodiment are described below in conjunction with FIG. 11 The execution process of the optical signal transmission method will be described, wherein FIG. 11 is a flow chart of steps in the third embodiment of the service optical signal transmission method provided by the present application.
  • Step 1101 the light source module transmits M channels of first optical signals to each wavelength selection module.
  • step 1101 For the specific execution process of step 1101 shown in this embodiment, please refer to step 901 shown in the second embodiment, and details are not repeated here.
  • Step 1102 the wavelength selection module acquires a preset allocation list.
  • the second control unit included in the wavelength selection module shown in this embodiment has been pre-configured with a preset allocation list, and the preset allocation list can meet the routing requirements of service optical signals of each first optical transceiver.
  • the preset allocation list please refer to the description of the allocation list shown in Embodiment 1, and details are not repeated here.
  • the wavelength selection module shown in this embodiment can perform fixed control on the wavelength selection module based on the preset assignment list, so as to ensure that the wavelength selection module always outputs the second optical signal with the same target wavelength.
  • the target first optical transceiver connected to the wavelength selection module can always receive the second optical signal with the same wavelength.
  • the target wavelength of the second optical signal received by the target first optical transceiver is always ⁇ K.
  • Step 1103 the wavelength selection module transmits the second optical signal to the target first optical transceiver.
  • the wavelength selection module controls the wavelength selection module according to a preset distribution list, so as to transmit the second optical signal with the target wavelength to the target first optical transceiver.
  • step 1103 For the execution process of step 1103 shown in this embodiment, please refer to the process of controlling the wavelength selection module by the wavelength selection module according to the current allocation list shown in step 1005 of the third embodiment, and details are not repeated here.
  • Step 1104 the target first optical transceiver modulates the service electrical signal on each second optical signal to output the service optical signal.
  • Step 1105 the target first optical transceiver transmits the service optical signal to the optical switching component.
  • Step 1106 the optical switching component transmits the service optical signal to the second optical transceiver.
  • step 1104 to step 1106 For the description of the execution process of step 1104 to step 1106 shown in this embodiment, please refer to the description of the process of step 1006 to step 1008 shown in the third embodiment for details, and details are not repeated here.
  • the optical network shown in this embodiment can provide data exchange with large bandwidth and low delay.
  • the optical network can send M channels of first optical signals to each wavelength selection module through the light source module, and the wavelength selection module is responsible for transmitting the second optical signal with the corresponding target wavelength according to the preset allocation list, without performing calculation tasks every time When , the action of querying the current allocation list is executed, which improves the efficiency of optical signal transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种业务光信号的传输方法、网络设备以及光网络,其用于降低组网成本以及时延,且有效地避免光信号传输的拥塞。所述传输方法应用于网络设备,所述网络设备包括光源模块,所述光源模块连接多个波长选择模块,每个所述波长选择模块连接一个第一光收发器,且不同的所述波长选择模块与不同的所述第一光收发器连接;所述光源模块向每个所述波长选择模块传输M路第一光信号,所述M为大于1的正整数;所述波长选择模块将K路第二光信号传输至所述第一光收发器,所述K为小于或等于所述M的正整数;所述第一光收发器在每路所述第二光信号上调制业务电信号以输出K路业务光信号。

Description

一种业务光信号的传输方法、网络设备以及光网络
本申请要求于2021年6月21日提交中国国家知识产权局、申请号202110687761.9、申请名称为“一种业务光信号的传输方法、网络设备以及光网络”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信技术领域,尤其涉及一种业务光信号的传输方法、网络设备以及光网络。
背景技术
数据中心级联多个网络设备,每个网络设备包括多个收发模块,两个收发模块之间可通过光交换模块连接,由光交换模块实现对两个收发模块之间的光信号的交叉。光交换模块能够基于经由输入端口输入的光信号的波长,交叉至对应的输出端口。为此,现有在每个收发模块内配置单独的波长可调的激光器,收发模块通过该波长可调的激光器出射不同波长的光信号。
但是,每个收发模块配置波长可调激光器使得成本显著上升,且波长可调的激光器调谐波长所需时间在毫秒甚至秒级,导致网络时延增加。每个收发模块输出的光信号的波长依靠激光器独立调谐,易出现两个收发模块由于波长调谐不同步,输出的光信号同时被光交换模块传输至同一输出端口,使得网络出现拥塞甚至数据传输出现中断。
发明内容
本申请提供了一种业务光信号的传输方法、网络设备以及光网络,其用于降低组网成本以及时延,且有效地避免光信号传输的拥塞。
第一方面,本发明实施例提供了一种业务光信号的传输方法,传输方法应用于网络设备,网络设备包括光源模块,光源模块连接多个波长选择模块,每个波长选择模块连接一个第一光收发器,且不同的波长选择模块与不同的第一光收发器连接;光源模块向每个波长选择模块传输M路第一光信号,M为大于1的正整数;波长选择模块将K路第二光信号传输至第一光收发器,K为小于或等于M的正整数;第一光收发器在每路第二光信号上调制业务电信号以输出K路业务光信号。其中,N个第一光收发器和至少一个第二光收发器之间通过至少一个光交换模块连接,至少一个光交换模块用于将来自N个第一光收发器的K路业务光信号传输至该至少一个第二光收发器。
可见,在执行不同的计算任务时,仅需要波长选择模块改变传输至该选择模块所连接的第一光收发器的第二光信号的波长,以使该第一光收发器向不同的第二光收发器传输业务光信号。可见,第一光收发器基于计算任务的不同,与不同的第二光收发器进行数据交互的目的,无需改变光网络的网络架构,降低了组网成本。
无需在各第一光收发器独立配置波长可调的激光器,降低了第一光收发器的成本。第一光收发器直接根据来自波长选择模块的第二光信号进行调制,降低了网络时延。
而且因每个第一光收发器均连接一个波长选择模块,每个波长选择模块能够独立的为各自连接的第一光收发器传输第二光信号,提高了光源模块所输出的M路的第一光信号的 波长资源的利用消息。
基于第一方面,一种可选地实现方式中,多个第一光收发器与同一光交换模块的多个输出端口一一对应,第一光收发器用于向光交换模块对应的输出端口传输业务光信号。
可见,由每个波长选择模块独立为各自连接的第一光收发器进行波长的分配,可保证第一光收发器所输出的业务光信号能够经由光交换模块的交叉,传输至对应的第二光收发器。可保证光交换模块的同一输出端口,仅接收来自该输出端口对应的一个第一光收发器的业务光信号。那么,来自不同的第一光收发器的业务光信号就不会传输至光交换模块的同一输出端口上,避免了网络拥塞。
基于第一方面,一种可选地实现方式中,用于输出业务光信号的光交换模块的输出端口,与业务光信号的波长以及用于接收业务光信号的光交换模块的输入端口相关。
可见,光交换模块根据接收业务光信号的输入端口以及该业务光信号的波长,确定用于输出该业务光信号的输出端口,以实现第一光收发器输出的业务光信号能够传输至对应的第二光收发器的目的。
基于第一方面,一种可选地实现的方式中,每个波长选择模块能够独立为第一光收发器选择目标波长,选择的目标波长不受其他波长选择模块的限制。可知,不同的波长选择模块可向不同的第一光收发器发送波长相同的第二光信号,或,不同的波长选择模块可向不同的第一光收发器发送波长不同的第二光信号。
可见,因不同的第一光收发器可使用具有相同波长的第二光信号,有效地提高了光源模块所输出的M路第一光信号的利用效率。
基于第一方面,一种可选地实现方式中,波长选择模块将具有目标波长的第二光信号传输至波长选择模块的目标输出端口,目标波长根据业务光信号的路由需求确定,目标输出端口与目标波长具有对应关系。
可见,通过光源模块分别向波长选择模块发送M路第一光信号,由波长选择模块负责传输具有目标波长的第二光信号。该目标波长的第二光信号能够满足第一光收发器输出的业务光信号的路由需求。而且波长选择模块无需在每次执行计算任务时,执行查询对应目标波长和目标输出端口的动作,提高了光信号传输的效率。
基于第一方面,一种可选地实现方式中,波长选择模块将K路第二光信号传输至第一光收发器包括:波长选择模块获取当前分配列表,当前分配列表包括目标波长以及第一光收发器的对应关系,目标波长为传输至波长选择模块的一个波长;波长选择模块根据当前分配列表将具有目标波长的第二光信号传输至第一光收发器。
可见,在执行不同的计算任务时,仅需要波长选择模块改变传输至第一光收发器的第二光信号的波长,可使得该第一光收发器向不同的第二光收发器传输业务光信号。而且第一光收发器基于计算任务的不同,与不同的第二光收发器进行数据交互的过程中,无需改变光网络的网络架构,降低了组网成本。
基于第一方面,一种可选地实现方式中,网络设备包括与波长选择模块连接的控制单元,方法还包括:控制单元获取多个分配列表;控制单元获取路由需求,路由需求包括业务光信号的源节点和宿节点,源节点与第一光收发器连接,宿节点与第二光收发器连接; 控制单元获取与路由需求对应的当前分配列表,其中,第一光收发器输出的具有目标波长的业务光信号,用于经由光交换模块传输至第二光收发器;控制单元向波长选择模块发送当前分配列表。
基于第一方面,一种可选地实现方式中,波长选择模块获取当前分配列表包括:波长选择模块获取多个分配列表;波长选择模块获取路由需求,路由需求包括业务光信号的源节点和宿节点,源节点与第一光收发器连接,宿节点与第二光收发器连接;波长选择模块获取与路由需求对应的当前分配列表,其中,第一光收发器输出的具有目标波长的业务光信号,用于经由光交换模块传输至第二光收发器。
基于第一方面,一种可选地实现方式中,波长选择模块根据当前分配列表将具有目标波长的第二光信号传输至第一光收发器包括:波长选择模块根据当前分配列表导通波长选择模块的目标输入端口和目标输出端口之间的光路,目标输入端口为用于输入具有目标波长的第一光信号的输入端口,目标输出端口为用于向第一光收发器输出具有目标波长的第二光信号的输出端口。
基于第一方面,一种可选地实现方式中,波长选择模块还包括至少一个光滤波器,波长选择模块将K路第二光信号传输至第一光收发器包括:波长选择模块通过至少一个光滤波器从M路第一光信号中滤波出K路第二光信号。
基于第一方面,一种可选地实现方式中,网络设备包括与波长选择模块连接的控制单元,光源模块向波长选择模块传输M路第一光信号包括:控制单元控制光源模块输出具有目标波长的第一光信号。
可见,因光源模块能够向波长选择模块传输具有目标波长的第一光信号,能够有效地满足该第一光收发器的路由需求。
基于第一方面,一种可选地实现方式中,不同的波长选择模块于不同的时刻接收M路第一光信号。
第二方面,本发明实施例提供了一种网络设备,网络设备包括光源模块,光源模块连接多个波长选择模块,每个波长选择模块连接一个第一光收发器,且不同的波长选择模块与不同的第一光收发器连接;光源模块用于向每个波长选择模块传输M路第一光信号,M为大于1的正整数;波长选择模块用于将K路第二光信号传输至第一光收发器,K为小于或等于M的正整数;第一光收发器用于在每路第二光信号上调制业务电信号以输出K路业务光信号。
本方面所示的有益效果的说明,请参见上述第一方面所示,不做赘述。
基于第二方面,一种可选地实现方式中,多个第一光收发器与同一光交换模块的多个输出端口一一对应,第一光收发器用于向光交换模块对应的输出端口传输业务光信号。
基于第二方面,一种可选地实现方式中,用于输出业务光信号的光交换模块的输出端口,与业务光信号的波长以及用于接收业务光信号的光交换模块的输入端口相关。
基于第二方面,一种可选地实现方式中,波长选择模块具体用于将具有目标波长的第二光信号传输至第一光收发器,目标波长为传输至波长选择模块的一个波长。
基于第二方面,一种可选地实现方式中,波长选择模块具体用于:获取当前分配列表, 当前分配列表包括目标波长以及第一光收发器的对应关系,目标波长为传输至波长选择模块的一个波长;根据当前分配列表将具有目标波长的第二光信号传输至第一光收发器。
基于第二方面,一种可选地实现方式中,网络设备包括与波长选择模块连接的控制单元,控制单元具体用于:获取多个分配列表;获取路由需求,路由需求包括业务光信号的源节点和宿节点,源节点与第一光收发器连接,宿节点与第二光收发器连接;获取与路由需求对应的当前分配列表,其中,第一光收发器输出的具有目标波长的业务光信号,用于经由光交换模块传输至第二光收发器;向波长选择模块发送当前分配列表。
基于第二方面,一种可选地实现方式中,波长选择模块具体用于:获取多个分配列表;获取路由需求,路由需求包括业务光信号的源节点和宿节点,源节点与第一光收发器连接,宿节点与第二光收发器连接;获取与路由需求对应的当前分配列表,其中,第一光收发器输出的具有目标波长的业务光信号,用于经由光交换模块传输至第二光收发器。
基于第二方面,一种可选地实现方式中,波长选择模块具体用于,根据当前分配列表导通波长选择模块的目标输入端口和目标输出端口之间的光路,目标输入端口为用于输入具有目标波长的第一光信号的输入端口,目标输出端口为用于向第一光收发器输出具有目标波长的第二光信号的输出端口。
基于第二方面,一种可选地实现方式中,波长选择模块还包括至少一个光滤波器,波长选择模块具体用于,通过至少一个光滤波器从M路第一光信号中滤波出K路第二光信号。
基于第二方面,一种可选地实现方式中,网络设备包括与波长选择模块连接的控制单元,控制单元具体用于控制光源模块输出具有目标波长的第一光信号。
基于第二方面,一种可选地实现方式中,不同的波长选择模块于不同的时刻接收M路第一光信号。
第三方面,本发明实施例提供了一种光网络,光网络包括多个光收发器,多个光收发器包括N个第一光收发器和至少一个第二光收发器,N个第一光收发器和至少一个第二光收发器之间通过至少一个光交换模块连接,N个第一光收发器位于网络设备内,网络设备如上述第二方面任一项所示;至少一个光交换模块用于将来自N个第一光收发器的K路业务光信号,传输至至少一个第二光收发器。
本方面有益效果的说明,请参见第一方面所示,不做赘述。
基于第三方面,一种可选地实现方式中,N个第一光收发器和第二光收发器位于同一网络设备内,或,N个第一光收发器和第二光收发器位于不同的网络设备内。
附图说明
图1为本申请所提供的光网络的一种实施例结构示例图;
图2为本申请所提供的网络设备的第一种实施例结构示例图;
图3为本申请所提供的网络设备的第二种实施例部分结构示例图;
图4为本申请所提供的光网络的另一种实施例结构示例图;
图5为本申请所提供的网络设备的第三种实施例部分结构示例图;
图6为本申请所提供的滤波模块的第一种实施例结构示例图;
图7为本申请所提供的滤波模块的第二种实施例结构示例图;
图8为本申请所提供的光网络的一种应用场景示例图;
图9为本申请所提供的业务光信号的传输方法的第一种实施例步骤流程图;
图10为本申请所提供的业务光信号的传输方法的第二种实施例步骤流程图;
图11为本申请所提供的业务光信号的传输方法的第三种实施例步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
以下首先结合图1所示对本申请所应用的光网络的结构进行说明,其中,图1为本申请所提供的光网络的一种实施例结构示例图。
本实施例所示的光网络具有高交换速度、低光功率损耗、低时延、低成本、以及没有波长竞争等优势。本实施例所示的光网络可应用至数据中心、城域网、无源光纤网络(passive optical network,PON)、长距传输等应用,具体在本实施例中不做限定。本实施例以光网络应用至数据中心为例,该光网络可为数据中心网络(data center network,DCN)。
如图1所示,本实施例所示的光网络包括多个网络设备,图1所示以光网络包括网络设备101、网络设备102、网络设备103以及网络设备104为例。需明确地是,本实施例对光网络所包括的网络设备的数量以及连接方式的说明,为可选地示例,不做限定。本实施例所示的网络设备也可称之为服务器。
光网络在执行业务时,需要不同的网络设备之间能够进行数据交互,例如,若本实施例所示的光网络用于执行人工智能(artificial intelligence,AI)训练业务,可知,AI训练业务是一种算力密集型业务,为实现AI训练业务,需要光网络设备包括的多个网络设备之间进行数据交互。
为实现多个网络设备之间的数据交互,如图1所示,网络设备101、网络设备102、网络设备103以及网络设备104中,任意两个网络设备之间均通过光交换模块连接。例如,网络设备101具有四个端口,网络设备101的第一端口与光交换模块111连接、网络设备101的第二端口与光交换模块112连接,网络设备101的第三端口与光交换模块113连接,网络设备101的第四端口与光交换模块114连接。网络设备102、网络设备103以及网络设备104与光交换模块的连接关系的说明,请参见网络设备101的说明,不做赘述。可知,任意两个网络设备均能够进行数据交互,例如,网络设备101的第一端口所输出的数据,能够经由光交换模块111的交叉,传输至网络设备103的第一端口,以实现网络设备101向网络设备103发送数据的目的,对其他网络设备之间进行数据交互的说明,请参见网络设备101和网络设备103之间进行数据交互的说明,具体不做赘述。
还需明确的是,本实施例对光交换模块的数量的说明以及光交换模块与每个网络设备 的端口之间的连接关系的说明,为可选地示例,不做限定。本实施例所示的光交换模块可称之为波长敏感的光交换机(wavelength sensitive optical cross connect,WS-OXC)、可重构光分插复用器(reconfigurable optical add drop multiplexer,ROADM)、波长交叉连接器(wavelength crossconnect,WXC)、光交换节点、或波长交换节点等,具体在本实施例中不做限定。各光交换模块可基于波长选择开关(wavelength selective switch,WSS)、阵列波导光栅(arrayed waveguide grating,AWG)、阵列波导光栅路由器(arrayed waveguide grating router,AWGR)等波分技术实现。可知,因光交换模块基于波分技术实现,那么光交换模块所接收到的光信号的波长不同的情况下,可以使具有不同波长的光信号在光交换模块内沿不同的路径进行传输,进而使得具有不同波长的光信号能够通过光交换模块的不同的输出端口输出。
基于图1所示的光网络,以下结合图2所示对本申请所示的光网络所包括的各网络设备的结构进行说明,其中,图2为本申请所提供的网络设备的第一种实施例结构示例图。
本实施例所示的网络设备200包括光源模块210,与光源模块210连接的X个收发模块,本实施例所示的X的取值为大于或等于1的任意正整数,例如,与光源模块210连接的收发模块231以及收发模块23X。
收发模块可包括一个或多个计算节点,本实施例以收发模块231为例,该收发模块231包括一个计算节点241。本实施例所示的计算节点241为能够进行计算任务的节点,例如,计算节点241可为图形处理器(graphic processing unit,GPU)、现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(network processor,NP)、数字信号处理电路(digital signal processor,DSP)、或其它集成芯片,或者上述芯片或者处理器的任意组合等。
本实施例所示的收发模块中包括与光源模块210连接的波长选择模块243,本实施例以波长选择模块243与计算节点241连接为例进行示例性说明,在其他示例中,若网络设备内包括独立设置的控制单元,独立设置的控制单元是指该控制单元分别与光源模块210以及各个收发模块连接,对控制单元的实现方式的说明,请参见计算节点241的实现方式的说明,具体不做赘述。在此示例下,各收发模块所包括的波长选择模块243与独立设置的控制单元连接。
收发模块还包括分别与波长选择模块243和计算节点连接的一个或多个第一光收发器。例如,收发模块231中,与计算节点241和波长选择模块243连接的第一光收发器242。同样地,在收发模块23X中,包括与光源模块210连接的波长选择模块246,与该波长选择模块246连接的计算节点244,还包括分别与计算节点244以及波长选择模块246连接的第一光收发器245。
上述所示的“连接”具体可指,两个光器件(例如光源模块210和每个收发模块)之间,通过光纤或光波导(optical waveguide)连接,以实现光信号的传输。
以下对本实施例所示的网络设备所包括的各个光器件进行说明:
首先对光源模块210的结构进行说明:
本实施例所示的光源模块210用于向每个波长选择模块发送M路的第一光信号,该M的取值为大于1的任意正整数。其中,M路的第一光信号为连续波(continuous wave,CW)光信号。本实施例所示的光源模块210与每个波长选择模块可通过一个光纤连接,那么,光源模块210向波长选择模块所发送的M路第一光信号的波长互不相同,该M路第一光信号的波长分别为λ1、λ2至λM。又如,本实施例所示的光源模块210与每个波长选择模块可通过两个或两个以上的光纤连接,那么,M路第一光信号中可至少部分第一光信号的波长相同,相同的两路第一光信号的波长可通过不同的光纤传输至波长选择模块,具体在本实施例中不做限定。本实施例所示的光源模块210的实现方式可参见如下所示:
如图3所示,其中,图3为本申请所提供的网络设备的第二种实施例部分结构示例图。光源模块210包括多个固定波长的激光器,以光源模块210用于向每个波长选择模块(如波长选择模块243)发送波长互不相同的M路的第一光信号为例,那么,光源模块210可包括M个用于输出不同波长的激光器。如光源模块210包括用于输出波长为λ1的第一光信号的第一激光器,依次类推,光源模块210包括用于输出波长为λM的第一光信号的第M激光器。该光源模块210还包括与每个激光器连接的分光器211。本实施例所示的分光器211还可称之为光纤耦合器,该分光器211用于将从M个激光器接收到的M路第一光信号分光成多份,每份均包括M路第一光信号。光源模块210将每份M路第一光信号传输至一个波长选择模块,从而保证每个波长选择模块均能够接收到来自光源模块210的M路第一光信号。本实施例对光源模块210所包括的激光器的类型的说明为可选地示例,不做限定,例如,在其他示例中,光源模块210所包括的激光器还可为波长可调激光器、半导体锁模激光器、锁模二极管激光器、分布布拉格反射激光器、光纤耦合半导体激光器、光纤激光器等。在光源模块210包括的激光器为半导体锁模激光器的情况下,半导体锁模激光器所输出的M路第一光信号为光学频率梳,可知,光源模块210所输出的M路第一光信号为在频域上分布均匀、位置固定且光谱范围极宽的一系列梳状谱线。
需明确的是,本实施例对光源模块210所包括的光器件的说明为可选地示例,在其他示例中,该光源模块210还可包括一个或多个合波器(Multiplexer),该合波器用于将多路第一光信号进行合波以形成合波后光信号,该合波后光信号能够经由光源模块的同一输出端口输出。例如,合波器接收波长为λ1的第一光信号、波长为λ2的第一光信号,合波器对波长为λ1的第一光信号、波长为λ2的第一光信号进行合波以获取合波后光信号,该具有波长λ1以及λ2的合波后光信号能够经由光源模块210的同一输出端口输出,以传输至波长选择模块。又如,光源模块还可包括一个或多个功率分配器(power divider),该功率分配器用于将来自激光器的光信号的光功率分成光功率相等或不相等的多路第一光信号。又如,光源模块还可包括光功率放大器,以对待输出的第一光信号的光功率进行放大。
本实施例所示的光源模块210具有多个输出端口,一个或多个输出端口与同一波长选择模块的输入端口连接,以保证经由一个或多个输出端口输出的M路第一光信号能够成功地传输至波长选择模块。
可知,光源模块210通过所包括的上述光器件,能够调整光源模块210所包括的每个输出端口所输出的第一光信号的波长组合。例如,通过合波器实现一个输出端口能够输出 具有多个不同波长的多路第一光信号。又如,通过分波器实现不同的输出端口能够输出来自同一激光器的具有不同波长的第一光信号。又如,通过功率分配器实现不同的输出端口能够输出同一波长,且光功率相同或不相同的第一光信号。本实施例对光源模块210所包括的光器件不做限定,只要网络设备所包括的每个第一光收发器均能够接收到来自光源模块210的M路的第一光信号即可。
以下对本实施例所示的波长选择模块的具体结构进行说明:
本实施例所示的波长选择模块用于将K路第二光信号传输至与该波长选择模块所连接的第一光收发器。其中,波长选择模块所输出的K路第二光信号,为M路的第一光信号中的至少部分,则K的取值为小于或等于M的任意正整数。例如,图2所示的波长选择模块243,将K路第二光信号传输至第一光收发器242。具体地,波长选择模块243已接收到来自光源模块210的M路的第一光信号,波长选择模块243对该M路的第一光信号进行选择,以将M路第一光信号所包括的K路第二光信号传输至第一光收发器242。第一光收发器242用于向第二光收发器传输来自光源模块210的光信号。可见,本实施例所示的第一光收发器作为光信号的发送端,第二光收发器作为光信号的接收端。而且,第一光收发器和第二光收发器可位于同一网络设备内,或,第一光收发器和第二光收发器可位于不同的两个网络设备内。
每个第一光收发器接收到一路或多路第二光信号,该第一光收发器用于在每路第二光信号上调制业务电信号以获取一路或多个业务光信号。例如图2所示,该第一光收发器242与计算节点241连接,第一光收发器242能够接收来自波长选择模块243的K路第二光信号,并在每路第二光信号上,调制来自计算节点241的业务电信号以输出K路业务光信号。
可见,若第一光收发器242接收来自波长选择模块243的一路第二光信号,那么,第一光收发器242能够将来自计算节点241的一路业务电信号调制在该第二光信号上,该第一光收发器242输出一路业务光信号。若第一光收发器242接收来自波长选择模块243的多路第二光信号,那么,第一光收发器242能够将来自计算节点241的多路业务电信号分别调制在多路第二光信号上,第一光收发器242输出多路业务光信号。可见,对于一个收发模块,该收发模块所包括的计算节点向该收发模块所包括的第一光收发器发送多路业务电信号,能够有效地扩展计算节点输出的带宽,例如每路业务电信号为25交换带宽(giga bit per second,Gbps)信号,当计算节点向第一光收发器输出4路该业务电信号时,可以实现100Gbps带宽的数据传输。
本实施例所示的N个第一光收发器242包括光调制器,该光调制器用于在第二光信号上调制来自计算节点的业务电信号以获取业务光信号,本实施例所示光调制器的类型不做限定,例如,光调制器可为声光调制器、磁光调制器、电光调制器或电吸收调制器等。
以下结合图4所示对光交换模块进行说明,其中,图4为本申请所提供的光网络的另一种实施例结构示例图。
如图4所示,多个光收发器,包括作为发送端的第一光收发器401、第一光收发器402、第一光收发器403以及第一光收发器404,还包括作为接收端的第二光收发器405、第二光收发器406、第二光收发器407以及第二光收发器408。其中,各光收发器分别与光交换模 块410连接,基于该光交换模块,能够实现图4所示的任意第一光收发器和任意第二光收发器之间的数据交互。例如,第一光收发器401所输出的业务光信号,经由光交换模块410的交叉,能够传输至第二光收发器407,以实现第一光收发器401和第二光收发器407之间的数据交互。由图1所示的说明可知,该光交换模块410的同一输入端口所接收到的业务光信号的波长不同的情况下,该光交换模块410能够将具有不同波长的业务光信号传输至不同的第二光收发器。
例如,光交换模块410具有四个输入端口,即输入端口411、输入端口412、输入端口413至输入端口414。这四个输入端口分别与第一光收发器401、第一光收发器402、第一光收发器403以及第一光收发器404一一对应连接。该光交换模块410具有四个输出端口,即输出端口421、输出端口422、输出端口423以及输出端口424。这四个输出端口分别与第二光收发器405、第二光收发器406、第二光收发器407以及第二光收发器408一一对应连接。需明确的是,图4所示的光交换模块410与多个光收发器之间的连接关系的说明为可选地示例,不做限定。
可选地,图4所示的不同的光收发器可位于不同的网络设备内,或,图4的所有光收发器可位于同一网络设备内,或,图4所示的部分光收发器位于一个网络设备内,另一部分光收发器位于一个或多个其他网络设备内,可知,本实施例对图4所示的所有光收发器所位于的网络设备的数量不做限定。
以光交换模块410为WS-OXC为例,光交换模块410预先配置交叉对应关系,该交叉对应关系用于指示光交换模块410的输入端口、业务光信号的波长与光交换模块410的输出端口的对应关系。可见,该交叉对应关系建立了第一光收发器所输出的业务光信号的波长、该第一光收发器连接的光交换模块410的输入端口,与光交换模块410的输出端口的对应关系。而且该交叉对应关系中,同一光交换模块410的输出端口,仅对应来自一个光收发器的业务光信号,以避免拥塞。基于该交叉对应关系,经由输入端口输入的业务光信号,光交换模块410能够基于该输入端口以及业务光信号的波长,传输至交叉对应关系中与该输入端口以及波长对应的输出端口。例如,光交换模块410针对输入端口411所配置的交叉对应关系可参考如下的表1所示:
表1
输入端口 业务光信号的波长 输出端口
411 λ1 输出端口421
411 λ2 输出端口422
411 λ3 输出端口423
411 λ4 输出端口424
可知,为保证第一光收发器401输出的业务光信号,能够传输至第二光收发器407,那么,需要第一光收发器401输出的业务光信号具有的波长为λ3。光交换模块410经由输入端口411接收来自第一光收发器401的具有波长λ3的业务光信号,光交换模块410将波长为λ3的业务光信号交叉至输出端口423,该输出端口423与第二光收发器407连接。可知,来自第一光收发器401的,且具有波长λ3的业务光信号,能够经由输出端口423传输 至第二光收发器407。同样地,为保证光收发器401输出的业务光信号,能够传输至光收发器405,那么,需要第一光收发器401输出的业务光信号具有的波长为λ1。光交换模块410输入端口411接收来自第一光收发器401的具有波长λ1的业务光信号,光交换模块410将波长为λ1的业务光信号交叉至输出端口421,该输出端口421与第二光收发器405连接。可知,来自第一光收发器401的,且具有波长λ1的业务光信号,能够经由输出端口421传输至光收发器405,依次类推,不做限定。
光交换模块410还可针对输入端口412、输入端口413以及输入端口414配置交叉对应关系,具体说明请参见针对输入端口411所配置的交叉对应关系的说明,不做赘述。
基于图4所示的说明可知,第一光收发器为向第二光收发器传输业务光信号,第一光收发器接收到的第二光信号的波长可以为预设波长(如表1中的λ1~λ4)。例如,若第一光收发器401输出的业务光信号,传输至第二光收发器407,那么,第一光收发器401接收的第二光信号的波长为λ3,使得该第一光收发器401输出的业务光信号的波长为λ3,进而保证业务光信号经由光交换模块410的交叉以传输至第二光收发器407,以下对如何实现第一光收发器能够接收到波长特定的第二光信号的方式进行说明:
如图2所示,波长选择模块能够根据与其连接的第一光收发器所输出的业务光信号的路由需求,向该第一光收发器传输具有目标波长的第二光信号。该业务光信号的路由需求是指,发出该业务光信号所承载的业务电信号的源节点(即计算节点)以及需要接收该业务电信号的宿节点(即计算节点)。结合图4所示,与第一光收发器401连接的源节点431为与该第一光收发器401连接的计算节点。同样地,与第一光收发器402连接的源节点432为与该第一光收发器402连接的计算节点。与第一光收发器403连接的源节点433为与该第一光收发器403连接的计算节点。与第一光收发器404连接的源节点434为与该第一光收发器404连接的计算节点。与第二光收发器405连接的宿节点441为与该第二光收发器402连接的计算节点。同样地,与第二光收发器406连接的宿节点442为与该第二光收发器406连接的计算节点。与第二光收发器407连接的宿节点443为与该第二光收发器407连接的计算节点。与第二光收发器408连接的宿节点444为与该第二光收发器408连接的计算节点。
其中,该第一光收发器可为网络设备200所包括的任一光收发器,该第一光收发器所输出的业务光信号的路由需求是指,与该第一光收发器连接的源节点的业务电信号需要传输至对应的宿节点。波长选择模块向与其连接的第一光收发器传输具有目标波长的第二光信号,以满足该路由需求。例如,以第一光收发器为第一光收发器401为例,该第一光收发器401所输出的业务光信号的路由需求可指,源节点431输出的业务电信号需要传输至宿节点443。波长选择模块可根据该路由需求,结合表1所示向该第一光收发器401传输具有目标波长为λ3的第二光信号。第一光收发器401将来自源节点431的业务电信号调制在具有目标波长λ3的第二光信号上以向输入端口411输入业务光信号。光交换模块410将来自输入端口411的具有目标波长λ3的业务光信号交叉传输至输出端口423。该第二光收发器407经由该输出端口423接收该业务光信号,第二光收发器407从该业务光信号解调出业务电信号,并传输至宿节点443。
可知,本实施例所示的波长选择模块,能够根据其连接的第一光收发器所输出的业务光信号的路由需求,向该第一光收发器发送满足该路由需求对应的目标波长的第二光信号,对该光收发器所输出的业务光信号的路由需求的说明,请参见上述对第一光收发器401的路由需求的说明,具体不做赘述。
以下对波长选择模块如何根据其连接的第一光收发器所输出的业务光信号的路由需求,传输具有目标波长的第二光信号的过程进行说明:
本实施例所示的波长选择模块包括一个或多个输入端口,波长选择模块通过该一个或多个输入端口接收来自光源模块的M路第一光信号。波长选择模块包括一个或多个输出端口,在收发模块包括一个或多个第一光收发器的情况下,波长选择模块所包括的一个或多个输出端口与该收发模块所包括的第一光收发器连接,以向收发模块所包括的第一光收发器发送第二光信号。
例如图4所示,该波长选择模块根据第一光收发器401所输出的业务光信号的路由需求,向该第一光收发器401传输具有目标波长为λ3的第二光信号,以保证第一光收发器401输出的具有目标波长λ3的业务光信号,经由光交换模块的交叉,能够成功传输至该第二光收发器407。为此,本实施例所示的波长选择模块的结构可为如下所示的几种可选结构:
可选结构1
如图5所示,其中,图5为本申请所提供的收发模块的第一种实施例部分结构示例图。收发模块包括波长选择模块510以及与该波长选择模块510连接的第一光收发器401。波长选择模块510包括至少一个滤波模块以及至少一个光开关。本实施例对波长选择模块510所包括的滤波模块以及光开关的具体说明不做限定,本实施例以波长选择模块510包括一个滤波模块511和与该滤波模块511连接的一个光开关501。本实施例所示的光开关501用于导通目标第一输出端口和第二输出端口之间的光路。其中,目标第一输出端口为滤波模块511所包括的多个第一输出端口中的一个,第二输出端口为波长选择模块510所包括的,与第一光收发器401连接的输出端口。本实施例所示的滤波模块511用于向多个第一输出端口传输滤波后的第二光信号。需明确的是,本实施例对光开关以及滤波模块的数量以及连接方式的说明为可选地示例,不做限定。
具体如图5所示,滤波模块511包括输入端口504,该输入端口504与光源模块连接。可知,滤波模块511经由该输入端口504接收来自光源模块的M路的第一光信号。滤波模块511所包括的第一输出端口为第一输出端口521、第一输出端口522、第一输出端口523以及第一输出端口524。本实施例对滤波模块511所包括的第一输出端口的数量不做限定。滤波模块511所包括的第一输出端口均与光开关501连接。
若根据第一光收发器401输出的业务光信号的路由需求确定需要向第一光收发器401发送具有目标波长λ1的第二光信号,滤波模块511需要在M路第一光信号中,滤波出具有目标波长λ1的第二光信号。若该具有目标波长λ1的第二光信号经由目标第一输出端口521输出,那么,光开关501导通目标第一输出端口521和第二输出端口501之间的光路,以使具有目标波长λ1的第二光信号能够依次经由目标第一输出端口521、光开关501以及第二输出端口501传输至第一光收发器401。可知,波长选择模块510能够根据第一光收发 器401的路由需求,控制波长选择模块510能够将满足该路由需求的第二光信号,传输至第一光收发器401。
本实施例所示的网络设备还包括控制单元540,本实施例对控制单元540的具体设置位置不做限定。例如,控制单元540位于波长选择模块510内。又如,控制单元540独立设置于网络设备内,且分别与光源模块、以及各收发模块连接。又如,该控制单元540可为网络设备所包括的一个或多个计算节点等,具体在本实施例中不做限定。本实施例对控制单元540的具体实现方式可参见上述所示的对计算节点的实现方式的说明,具体不做赘述。本实施例所示的控制单元540分别与滤波模块511和光开关501连接。
本实施例所示的光开关501在控制单元540的控制下,导通或断开各第一输出端口和第二输入端口504之间的光路。例如,若本实施例所示需要目标第一输出端口521输出的第二光信号传输至第二输出端口501,那么,控制单元540控制光开关501导通目标第一输出端口521和第二输出端口501之间的光路,并需要断开第一输出端口522、第一输出端口523以及第一输出端口524与第二输出端口501之间的光路,以保证目标第一输出端口521输出的第二光信号能够成功地传输至第二输出端口501。
本实施例对光开关的具体实现方式不做限定,例如,本实施例所示的光开关可为机械式光开关、微机电系统(micro electronic mechanical system,MEMS)光开关、自由空间的元件(例如棱镜)等,本示例下的光开关501可在控制单元540的驱动下,移动或改变光开关501的位置、角度等,以导通目标第一输出端口521和第二输出端口501之间的光路。本示例下的光开关501可在控制单元540的驱动下,以断开第一输出端口522、第一输出端口523以及第一输出端口524与第二输出端口501之间的光路。又如,本实施例所示的光开关可为非机械式光开关,例如,光开关501在控制单元540的控制下改变目标第一输出端口521和第二输出端口501之间的光路的折射率,以导通目标第一输出端口521和第二输出端口501之间的光路。其中,控制单元540可通过电光效应、磁光效应、声光效应、热光效应等来改变目标第一输出端口521和第二输出端口501之间的光路的折射率。又如,本示例下的光开关501可在控制单元540的控制下改变第一输出端口522、第一输出端口523以及第一输出端口524与第二输出端口501之间的光路的折射率。
以滤波模块511为例,本实施例所示的滤波模块511包括多个级联的光滤波器,以下结合图6所示对滤波模块511的结构进行说明,其中,图6为本申请所提供的滤波模块的第一种实施例结构示例图。
本实施例所示的滤波模块包括第一光滤波器601,与第一光滤波器601连接的第二光滤波器602,与第二光滤波器602分别连接第三光滤波器603和第四光滤波器604。本实施例以各光滤波器均为马赫增德尔干涉仪(mach-zehnder interferometer,MZI)为例进行示例性说明:为实现每个MZI能够实现滤波,每个光滤波器所包括的一个干涉臂上配置具有纳秒(nano second,NS)级响应速度的电光相移器,且每个电光相移器均与控制单元540连接。第三光滤波器603的两个干涉臂分别与第一输出端口521以及第一输出端口522连接,第四光滤波器604的两个干涉臂分别与第一输出端口523以及第一输出端口524连接。
本实施例所示的控制单元540可配置多个分配列表,不同的分配列表包括了不同的目标波长的组合,例如,分配列表可参见如下的表2所示:
表2
Figure PCTCN2022079490-appb-000001
该分配列表用于指示,为满足业务光信号的路由需求,需要获取的第二光信号的目标波长分别为λ1、λ2、λ3以及λ4,那么,就需要对波长选择模块进行第一控制模式的控制。从而使得波长选择模块能够将具有目标波长λ1、λ2、λ3以及λ4的第二光信号传输给第一光收发器,以满足该路由需求。
又如,该分配列表还可参见如下表3所示:
表3
目标波长 控制模式
λ2 第二控制模式
该分配列表用于指示,为满足业务光信号的路由需求,需要获取的第二光信号的目标波长为λ2,那么,就需要对波长选择模块进行第二控制模式,从而使得波长选择模块能够将具有目标波长λ2的第二光信号传输给第一光收发器,以满足该路由需求。
需明确地是,本实施例对各分配列表所包括的目标波长的数量以及具体波长不做限定,只要不同的分配列表能够满足不同的路由需求即可。以下对控制单元如何根据如表2所示的分配列表,进行配置的过程进行示例性说明:
首先,控制单元540确定第一光收发器输出的业务光信号的路由需求所要求的第二光信号的目标波长为λ1、λ2、λ3以及λ4,那么,控制单元540确定能够实现该路由需求的分配列表为上述所示的表2。
其次,控制单元540根据第一控制模式的指示,在第一光滤波器601的电光相移器加载预设的第一电压或第一电流。第一光滤波器601从经由输入端口504输入的多路第一光信号中,滤波出分别具有目标波长λ1、λ2、λ3以及λ4的第二光信号。例如,经由输入端口504输入的多路第一光信号的波长为λ1、λ2、λ3、λ4至λM,该第一光滤波器601从M路的第一光信号中,获取四路分别具有目标波长为λ1、λ2、λ3以及λ4的第二光信号。第一光滤波器601与第二光滤波器602级联,那么,第一光滤波器601可将该四路第二光信号传输至第二光滤波器602。
其次,控制单元540根据第一控制模式的指示,在第二光滤波器602的电光相移器加载预设的第二电压或第二电流。第二光滤波器602能够将具有目标波长为λ1以及λ2的第二光信号传输至第三光滤波器603,第二光滤波器602还能够将具有目标波长为λ3以及λ4的第二光信号传输至第四光滤波器604。
再次,控制单元根据该第一控制模式的指示,在第三光滤波器603的电光相移器加载 预设的第三电压或第三电流。第三光滤波器603的一个干涉臂将具有目标波长λ1的第二光信号传输至输出端口521,第三光滤波器603的另一个干涉臂将具有目标波长λ2的第二光信号传输至输出端口522。
再次,控制单元根据该第一控制模式的指示,在第四光滤波器604的电光相移器加载预设的第四电压或第四电流。第四光滤波器604的一个干涉臂将具有目标波长λ3的第二光信号传输至输出端口523,第四光滤波器604的另一个干涉臂将具有目标波长λ4的第二光信号传输至输出端口524。
最后,控制单元540控制光开关501导通第一输出端口521、第一输出端口522、第一输出端口523以及第一输出端口524分别与第二输出端口501之间的光路,以保证第一输出端口521、第一输出端口522、第一输出端口523以及第一输出端口524所输出的具有目标波长λ1、λ2、λ3以及λ4的第二光信号能够成功的传输至第一光收发器401。
可选地,在其他示例中,若第一光收发器401的路由需求仅需要具有目标波长λ2的第二光信号,则控制单元540控制光开关501导通第一输出端口522和第二输出端口501之间的光路。并断开第一输出端口521、第一输出端口523以及第一输出端口524分别与第二输出端口501之间的光路。
可见,本实施例所示的滤波模块为实现满足第一光收发器的不同的路由需求的目的,可通过配置不同的控制模式的方式实现。其中,本实施例所示的不同的控制模式可指示光开关的通断,又如,还可指示各光滤波器所加载的电压或电流的大小等。控制单元对波长选择模块通过不同的控制模式进行控制,可实现波长选择模块能够向第一光收发器传输具有不同的波长的第二光信号,以满足第一光收发器输出的业务光信号不同的路由需求。
本示例以波长选择模块先控制滤波模块的滤波,随后再控制光开关的通断为例进行示例性说明,在其他示例中,也可先控制光开关的通断,随后再控制滤波模块的滤波,具体在本实施例中不做限定。
可选地,在其他示例中,波长选择模块中,也可仅包括滤波模块,仅通过滤波模块实现将第二光信号传输至目标输出端口的目的。
可选结构2
本可选结构2相对于可选结构1所示的区别在于,本结构所示的滤波模块的结构是不同的,本结构所示的滤波模块的结构可参见图7所示。其中,图7为本申请所提供的滤波模块的第二种实施例结构示例图。本实施例所示的滤波模块包括四个光滤波器。其中,第一光滤波器包括第一微环谐振腔波导701以及第一传输波导702,第二光滤波器包括第二微环谐振腔波导703以及第二传输波导704,第三光滤波器包括第三微环谐振腔波导705以及第三传输波导706,第四光滤波器包括第四微环谐振腔波导707以及第四传输波导708。其中,第一微环谐振腔波导701、第二微环谐振腔波导703、第三微环谐振腔波导705以及第四微环谐振腔波导707分别与控制单元540连接,需明确的是,本实施例对滤波模块所包括的光滤波器的数量的说明为可选地示例,不做限定。
本示例所示的第一传输波导702与第一输出端口524连接,第二传输波导704与第二输出端口523连接,第三传输波导706与第一输出端口522连接,第四传输波导708与第 一输出端口521连接。
以下对控制单元如何根据如表2所示的分配列表,进行配置的过程进行示例性说明:
首先,靠近经由输入端口504输入多路第一光信号的位置,排列设置第一微环谐振腔波导701、第二微环谐振腔波导703、第三微环谐振腔波导705以及第四微环谐振腔波导707。经由输入端口504输入多路第一光信号能够分别耦合入第一微环谐振腔波导701、第二微环谐振腔波导703、第三微环谐振腔波导705以及第四微环谐振腔波导707。控制单元540确定第一光收发器的路由需求所要求的第二光信号的目标波长为λ1、λ2、λ3以及λ4,那么,控制单元540确定能够实现该路由需求的分配列表为上述所示的表2。
其次,控制单元540根据第一控制模式的指示,在第一微环谐振腔波导701加载预设的第五电压或第五电流,从而使得具有目标波长λ4的第一光信号出现光的干涉效应,以使得具有波长λ4的第一光信号在第一微环谐振腔波导701中往返一次的光程等于该波长λ4的整数倍时,会发生谐振现象,从而使得具有目标波长λ4的第二光信号在第一微环谐振腔波导701传输过程中,会耦合至第一传输波导702内,进而将具有波长λ4的第二光信号传输至第一输出端口524。依次类推,控制单元540根据第一控制模式的指示,在第二微环谐振腔波导703加载预设的第六电压或第六电流,从而使得具有目标波长λ3的第一光信号传输至第一输出端口523。控制单元根据第二控制模式的指示,在第三微环谐振腔波导705加载预设的第七电压或第七电流,从而使得具有目标波长λ2的第二光信号传输至第一输出端口522。控制单元根据第一控制模式的指示,在第四微环谐振腔波导707加载预设的第八电压或第八电流,从而使得具有目标波长λ1的第二光信号传输至第一输出端口521。
可选地,在其他示例中,若第一光收发器401的路由需求仅需要具有目标波长λ2的第二光信号,则控制单元540控制光开关501导通第一输出端口522和第二输出端口501之间的光路,而断开第一输出端口521、第一输出端口523以及第一输出端口524分别与第二输出端口501之间的光路。
可见,示例所示的滤波模块为实现满足第一光收发器的不同的路由需求的目的,可通过配置不同的控制模式的方式实现。其中,示例所示的不同的控制模式可指示光开关的通断,又如,还可指示各光滤波器所加载的电压或电流的大小等。控制单元对波长选择模块通过不同的控制模式进行控制,以保证波长选择模块能够向第一光收发器传输具有不同的波长的第二光信号,以满足第一光收发器输出的业务光信号不同的路由需求。
本示例以波长选择模块先控制滤波模块的滤波,随后再控制光开关的通断为例进行示例性说明,在其他示例中,也可先控制光开关的通断,随后再控制滤波模块的滤波,具体在本实施例中不做限定。
可选地,在其他示例中,波长选择模块中,也可仅包括滤波模块,仅通过滤波模块实现将第二光信号传输至目标输出端口的目的。
可选结构3
本可选结构3相对于上述可选结构所示的区别在于,本结构所示的滤波模块的结构是不同的,本示例所示的滤波模块包括滤波模块和光分配模块,本示例所示的滤波模块的说明请详见结构2所示,具体不做赘述,可知,滤波模块能够将来自输入端口输入的多路第 一光信号中,滤波出具有目标波长的第二光信号。例如,滤波模块能够将来自输入端口的M路第一光信号中,滤波出分别具有目标波长λ1、λ2、λ3以及λ4的第二光信号。该光分配模块用于使得滤波模块滤波出的多路第二光信号,能够按照第一光收发器输出的业务光信号的路由需求,向第一光收发器发送一路或多路第二光信号。例如,光分配模块能够将目标波长λ1、λ2、λ3以及λ4的第二光信号均传输至第一光收发器。又如,光分配模块能够将具有波长λ1、λ2、λ3以及λ4中的一路第二光信号传输至第一光收发器。光分配模块可包括一个或多个MZI,对MZI实现过程的说明可参见上述可选结构1所示。可知,基于波长选择模块所包括的MZI,能够向第一光收发器传输能够满足该第一光收发器的路由需求的第二光信号。
以下对本实施例所示的光网络的应用场景进行说明:
若本实施例所示的光网络应用于AI训练场景,执行AI训练需要多个计算步骤的迭代运算,例如图8所示,其中,图8为本申请所提供的光网络的一种应用场景示例图。图8所示的P0至P7,表示用于执行计算任务的8个计算节点。步骤一、步骤二以及步骤三代表执行该计算任务所需要执行的三个步骤。图8所示表示了执行不同的步骤的过程中,不同的计算节点之间的通信关系。以计算节点P0为例,实现本场景的路由表可参见下述表4所示:
表4
Figure PCTCN2022079490-appb-000002
表4所示的第一光收发器P0为与计算节点P0以及波长选择模块P0连接的第一光收发器。第二光收发器P1为与计算节点P1连接的第二光收发器,依次类推,第二光收发器P4为与计算节点P4连接的第二光收发器。
例如,执行步骤一的过程中,计算节点P0对应的路由需求为,计算节点P0输出的业务电信号需要传输至计算节点P1。为此,计算节点P0将业务电信号传输至第一光收发器P0。波长选择模块P0将具有第一波长的第二光信号传输至第一光收发器P0。第一光收发器P0将业务电信号调制在具有第一波长的第二光信号上,以向光交换模块传输具有该第一波长的业务光信号。该光交换模块向第二光收发器P1传输该业务光信号,第二光收发器P1再将该业务光信号解调出业务电信号,第二光收发器P1该业务电信号传输至计算节点P1,以实现在步骤一中,计算节点P0和计算节点P1之间的通信。
在执行步骤二的过程中,计算节点P0对应的路由需求为,计算节点P0输出的业务电信号需要传输至计算节点P2。为此,计算节点P0将业务电信号传输至第一光收发器P0。波长选择模块P0将具有第二波长的第二光信号传输至第一光收发器P0。第一光收发器P0将业务电信号调制在具有第二波长的第二光信号上,以向光交换模块传输具有该第二波长的业务光信号。该光交换模块向第二光收发器P2传输该业务光信号,第二光收发器P2再将该业务光信号解调出业务电信号,第二光收发器P2该业务电信号传输至计算节点P2, 以实现在步骤一中,计算节点P0和计算节点P2之间的通信。
可见,在执行计算任务时,若需要不同的两个计算节点之间进行交互通信,仅需要改变光信号的波长即可实现,无需改变光网络的架构以及光网络所包括的任一光器件的架构。如将第二光信号的波长由第一波长改变至第二波长,可实现来自第一光收发器P0的业务光信号,由传输至第二光收发器P1改变至传输至第二光收发器P2。
本实施例所示的不同的波长选择模块也可由各自的收发模块所包括的计算节点进行分别控制,以图2所示为例,波长选择模块243由计算节点241控制,波长选择模块246由计算节点244控制。可选地,与不同的光交换模块连接的不同的第一光收发器输出的业务光信号的波长可相同。结合图1和图2所示,第一光收发器242向光交换模块111所传输的业务光信号的波长和第一光收发器245向光交换模块112所传输的业务光信号的波长可相同,虽然第一光收发器242所输出的业务光信号和第一光收发器245所输出的业务光信号的波长相同,但是,这两路业务光信号会经由不同的两个光交换模块进行交叉,避免了这两路业务光信号传输至同一光交换模块的同一输出端口上,避免了网络拥塞。或者,不同的第一光收发器向同一光交换模块传输波长相同的业务光信号,不同的业务光信号可经由该光交换模块的不同的输入端口输入至该光交换模块,以避免多路业务光信号传输至该光交换模块的同一输出端口,避免了网络拥塞。可见,每个波长选择模块能够独立为第一光收发器选择目标波长,选择的目标波长不受其他波长选择模块的限制。因不同的第一光收发器可使用具有相同目标波长的光信号,有效地提高了光源模块所输出的M路第一光信号的利用效率。
可知,本实施例所示的光网络,第一光收发器和第二光收发器之间通过光交换模块进行数据交互。具体地,第一光收发器和第二光收发器之间直接通过光信号进行数据交互,无需进行电光转换,有效地降低了两个光收发器之间进行数据交互的时延。而且光交换模块的端口对带宽无限制,光交换模块可传输更高速率的光信号,因此,本实施例所示的光网络可以提供大带宽、低时延的数据交互。
在光网络执行不同的计算任务时,仅需要波长选择模块改变传输至第一光收发器的第二光信号的波长,可实现该第一光收发器向不同的第二光收发器传输业务光信号的目的,以实现第一光收发器基于计算任务的不同,与不同的第二光收发器进行数据交互的目的,无需改变光网络的网络架构,降低了组网成本。
该光网络可通过光源模块统一每个波长选择模块发送M路第一光信号,由波长选择模块负责根据路由需求传输具有对应目标波长的第二光信号给该第一光收发器。无需在每次执行计算任务时,改变光源模块所输出的M路第一光信号的波长组合,无需改变光源模块,降低了组网成本和时延。
该光网络无需在各第一光收发器独立配置波长可调的激光器,降低了第一光收发器的成本。第一光收发器直接根据来自波长选择模块的第二光信号进行调制,无需第一光收发器对波长进行调谐,降低了网络时延。
实施例二
基于实施例一所示的对网络设备的结构的说明,本实施例结合图9所示对网络设备执行业务光信号的传输方法的过程进行说明,其中,图9为本申请所提供的业务光信号的传输方法的第一种实施例步骤流程图:
步骤901、光源模块向每个波长选择模块传输M路第一光信号。
对光源模块和波长选择模块的结构的说明,请详见实施例一所示,具体在本实施例中不做赘述。本示例所示的光源模块已预先配置向每个波长选择模块输出的M路第一光信号中,每路第一光信号的波长,以及每路第一光信号所经由的光源模块的输出端口。例如,M路第一光信号的波长分别为λ1、λ2、λ3、λ4至λM,那么,每次光源模块向波长选择模块传输的M路第一光信号的波长均为λ1、λ2、λ3、λ4至λM。本实施例所示的光源模块可通过光源模块不同的输出端口向不同的波长选择模块传输M路第一光信号。或者,光源模块可通过一个或多个输出端口,分时向不同的波长选择模块传输M路第一光信号。例如,光源模块210在第一时刻确定收发模块231需要传输业务,光源模块210向收发模块231传输M路第一光信号。光源模块在第二时刻确定收发模块23X需要传输业务,光源模块210向收发模块23X传输M路第一光信号,该第一时刻与该第二时刻互不相同。
本实施例所示的第一控制单元可根据各个第一光收发器输出的业务光信号的路由需求确定M路第一光信号的波长。例如,满足一个第一光收发器输出的业务光信号的路由需求的目标波长为λK,那么,第一控制单元控制光源模块所输出的M路第一光信号中,包括具有该目标波长λK的第一光信号。对路由需求的具体说明,请参见实施例一所示,不做赘述。本实施例所示的第一控制单元可为独立设置于网络设备内部,或者,本实施例所示的第一控制单元可包括网络设备所包括的一个或多个计算节点,具体说明请参见实施例一所示,具体不做赘述。
步骤902、第一控制单元获取多个分配列表。
本实施例所示的第一控制单元可预先配置多个分配列表,不同的分配列表用于指示波长选择模块所输出的第二光信号的波长不同的组合。例如,参见实施例一的表2和表3所示的两个不同的分配列表可知,在表2所示的分配列表中,波长选择模块所输出的第二光信号的目标波长为λ1、λ2、λ3以及λ4。而在表3所示的分配列表中,波长选择模块所输出的第二光信号的目标波长为λ2,具体说明可参见实施例一所示,具体不做赘述。
本实施例对步骤901和步骤902之间的执行时序不做限定。
步骤903、第一控制单元获取目标路由需求。
本实施例所示的目标路由需求为目标第一光收发器的路由需求,该目标第一光收发器为网络设备所包括的多个第一光收发器中的一个。本实施例所示的目标路由需求是指,目标波长选择模块所输出的第二光信号的波长,能够满足目标第一光收发器输出的业务光信号的路由需求,以保证目标第一光收发器所输出的业务光信号能够成功传输至对应的宿节点,对目标第一光收发器和第二光收发器的具体说明,请参见实施例一所示,具体不做赘述。
本实施例所示对步骤902和步骤903之间的执行时序不做限定。
步骤904、第一控制单元获取与目标路由需求对应的当前分配列表。
本实施例所示的第一控制单元,在已配置的多个分配列表中获取当前分配列表。其中,当前分配列表为能够满足该目标路由需求的分配列表。可知,当前分配列表包括目标路由需求所要求的目标波长。继续参见步骤903所示的示例,在目标路由需求为目标第一光收发器所要求的目标波长为λ1、λ2、λ3以及λ4的情况下,可知,与该目标路由需求对应的当前分配列表为实施例一所示的表2。波长选择模块在该当前分配列表所指示的第一控制模式进行控制的情况下,能够保证波长选择模块输出的第二光信号的目标波长分别为λ1、λ2、λ3以及λ4,以满足该目标路由需求,进而保证该目标第一光收发器能够成功将业务光信号传输至对应的宿节点。
步骤905、第一控制单元向波长选择模块发送当前分配列表。
本实施例中,第一控制单元在获取到该当前分配列表的情况下,第一控制单元向波长选择模块发送已获取的该当前分配列表,具体地,第一控制单元向该波长选择模块内所包括的第二控制单元发送该当前分配列表。
步骤906、波长选择模块向目标第一光收发器传输第二光信号。
具体地,本实施例所示的波长选择模块根据当前分配列表对波长选择模块进行控制,以将具有目标波长的第二光信号传输至目标第一光收发器。
可知,若当前分配列表所指示的第二光信号为K路,那么,第二控制单元根据当前分配列表进行控制,能够将K路第二光信号传输至目标第一光收发器。其中,K路第二光信号为M路第一光信号的部分或全部。
波长选择模块所包括的第二控制单元如何根据例如表2所示的当前分配列表进行控制的过程,可参见实施例一所示的控制单元的控制过程,具体不做赘述。可知,本实施例所示的第二控制单元对波长选择模块根据表2所示的当前分配列表进行控制,以保证该波长选择模块能够向目标第一光收发器输出的第二光信号的目标波长为λ1、λ2、λ3以及λ4。
本实施例以位于波长选择模块内的第二控制单元对波长选择模块进行控制为例,在其他示例中,也可由第一控制单元直接对波长选择模块进行控制,具体在本实施例中不做限定。
步骤907、目标第一光收发器在每路第二光信号上调制业务电信号以输出业务光信号。
可知,网络设备所包括的任一目标第一光收发器,能够对来自波长选择模块的K路第二光信号进行调制业务电信号以输出K路业务光信号,对目标第一光收发器在第二光信号上调制的具体过程的说明,请详见实施例一所示,具体在本实施例中不做赘述。
步骤908、目标第一光收发器向光交换组件传输业务光信号。
本实施例所示的光交换组件可包括一个或多个光交换模块,对光交换模块的具体说明,请详见实施例一所示,具体不做赘述。例如图1所示,光交换组件包括光交换模块111、112、113以及114。该光交换组件能够接收到目标第一光收发器的K路业务光信号,例如,目标第一光收发器能够通过一个输出端口,向一个光交换模块输出K路业务光信号,又如,目标第一光收发器能够通过四个输出端口,分别向四个光交换模块输出至少一路业务光信号。光交换组件能够根据每路业务光信号的波长,传输至对应的第二光收发器。可知,每个第二光收发器能够接收到一路或多路业务光信号,对第二光收发器的具体说明,请详见 实施例一所示,具体不做赘述。
步骤909、光交换组件向第二光收发器传输业务光信号。
由实施例一所示可知,光交换模块为波长敏感性光器件,即各光交换模块是根据业务光信号的波长进行交叉,以传输至对应的第二光收发器。本实施例中,在第二光收发器接收到业务光信号的情况下,第二光收发器能够对业务光信号进行解调以获取业务电信号,并将该业务电信号传输给与该第二光收发器连接的计算节点。计算节点根据该业务电信号进行对应的处理。
本实施例所示的有益效果的说明,请参见实施例一所示,具体不做赘述。
实施例三
本实施例相对于实施例二的区别在于,获取当前分配列表的主体不同,本实施例所示的业务光信号的传输方法的执行过程可参见图10所示,其中,图10为本申请所提供的业务光信号的传输方法的第二种实施例步骤流程图。
步骤1001、光源模块向每个波长选择模块传输M路第一光信号。
本实施例所示的步骤1001的执行过程的说明,请参见实施例二所示的步骤901所示,具体执行过程不做赘述。
步骤1002、波长选择模获取多个分配列表。
本实施例所示的波长选择模所包括的第二控制单元获取多个分配列表。其中,第二控制单元的具体位置的说明,请参见实施例二所示的说明,具体不做赘述。第二控制单元获取多个分配列表的过程的说明,请参见实施例二的步骤902所示的第一控制单元获取多个分配列表的过程的说明,具体在本实施例中不做赘述。
步骤1003、波长选择模块获取目标路由需求。
波长选择模块的第二控制单元获取路由需求的过程,请参见实施例二的步骤903所示的第一控制单元获取路由需求的过程的说明,具体不做赘述。
步骤1004、波长选择模块获取与目标路由需求对应的当前分配列表。
波长选择模块的第二控制单元获取与目标路由需求对应的当前分配列表的过程,请详见实施例二的步骤904所示的第一控制单元获取与目标路由需求对应的当前分配列表的过程的说明,具体不做赘述。
步骤1005、波长选择模块向目标第一光收发器传输第二光信号。
具体地,波长选择模块根据当前分配列表对波长选择模块进行控制,以将具有目标波长的第二光信号传输至目标第一光收发器。该目标第一光收发器为网络设备所包括的任一第一光收发器,且该第一光收发器与该波长选择模块连接,对目标第一光收发器的具体说明,请参见实施例二所示,具体不做赘述。波长选择模块根据当前分配列表对波长选择模块进行控制的过程的说明,请参见实施例二的步骤906所示的波长选择模块控制的过程的说明,具体不做赘述。
步骤1006、目标第一光收发器在每路第二光信号上调制业务电信号以输出业务光信号。
步骤1007、目标第一光收发器向光交换组件传输业务光信号。
步骤1008、光交换组件向第二光收发器传输业务光信号。
本实施例所示的步骤1006至步骤1008的执行过程的说明,请参见实施例二所示的步骤907至909的执行过程的说明,具体不做赘述。
本实施例所示的有益效果的说明,请参见实施例一所示,具体不做赘述。
实施例四
在实施例二和实施例三中,网络设备均需要根据目标第一光收发器的路由需求对波长选择模块进行动态的控制,可见,在目标第一光收发器的路由需求不同,那么,对波长选择模块会基于不同的分配列表进行控制。而本实施例所示的波长选择模块进行预设控制,波长选择模块每次能够向目标第一光收发器传输波长相同的第二光信号,以下结合图11所示对本实施例所示的业务光信号的传输方法的执行过程进行说明,其中,图11为本申请所提供的业务光信号的传输方法的第三种实施例步骤流程图。
步骤1101、光源模块向每个波长选择模块传输M路第一光信号。
本实施例所示的步骤1101的具体执行过程,请参见实施例二所示的步骤901所示,具体不做赘述。
步骤1102、波长选择模块获取预设分配列表。
本实施例所示的波长选择模块所包括的第二控制单元已预先配置预设分配列表,该预设分配列表能够满足各第一光收发器的业务光信号的路由需求。对波长选择模块所包括的第二控制单元的说明,请参见实施例三所示的说明,具体不做赘述。该预设分配列表的说明,请参见实施例一所示的分配列表的说明,具体不做赘述。本实施例所示的波长选择模块基于该预设分配列表,能够对波长选择模块进行固定的控制,以保证对于该波长选择模块,始终输出具有相同目标波长的第二光信号。进而保证网络设备中,与该波长选择模块连接的目标第一光收发器始终能够接收到波长相同的第二光信号。例如,目标第一光收发器所接收到的第二光信号的目标波长,始终为λK。
步骤1103、波长选择模块向目标第一光收发器传输第二光信号。
具体地,该波长选择模块根据预设分配列表对波长选择模块进行控制,以将具有目标波长的第二光信号传输至目标第一光收发器。
本实施例所示的步骤1103的执行过程,请参见实施例三的步骤1005所示的波长选择模块根据当前分配列表对波长选择模块进行控制的过程,具体不做赘述。
步骤1104、目标第一光收发器在每路第二光信号上调制业务电信号以输出业务光信号。
步骤1105、目标第一光收发器向光交换组件传输业务光信号。
步骤1106、光交换组件向第二光收发器传输业务光信号。
本实施例所示的步骤1104至步骤1106的执行过程的说明,请详见实施例三所示的步骤1006至步骤1008的过程的说明,具体不做赘述。
可知,本实施例所示的传输方法,目标第一光收发器和第二光收发器之间通过光交换模块进行数据交互。目标第一光收发器和第二光收发器之间直接通过光信号进行数据交互,无需进行电光转换,有效地降低了两个光收发器之间进行数据交互的时延。而且光交换模 块的端口对带宽无限制,光交换模块可传输更高速率的光信号,因此,本实施例所示的光网络可以提供大带宽、低时延的数据交互。
该光网络可通过光源模块分别向每路波长选择模块发送M路第一光信号,由波长选择模块负责根据预设分配列表传输具有对应目标波长的第二光信号,无需在每次执行计算任务时,执行查询当前分配列表的动作,提高了光信号传输的效率。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (24)

  1. 一种业务光信号的传输方法,其特征在于,所述传输方法应用于网络设备,所述网络设备包括光源模块,所述光源模块连接多个波长选择模块,每个所述波长选择模块连接一个第一光收发器,且不同的所述波长选择模块与不同的所述第一光收发器连接;
    所述光源模块向每个所述波长选择模块传输M路第一光信号,所述M为大于1的正整数;
    所述波长选择模块将K路第二光信号传输至所述第一光收发器,所述K为小于或等于所述M的正整数;
    所述第一光收发器在每路所述第二光信号上调制业务电信号以输出K路业务光信号。
  2. 根据权利要求1所述的传输方法,其特征在于,所述多个第一光收发器与同一光交换模块的多个输出端口一一对应,所述第一光收发器用于向所述光交换模块对应的所述输出端口传输所述业务光信号。
  3. 根据权利要求2所述的传输方法,其特征在于,用于输出所述业务光信号的所述光交换模块的输出端口,与所述业务光信号的波长以及用于接收所述业务光信号的所述光交换模块的输入端口相关。
  4. 根据权利要求1至3任一项所述的传输方法,其特征在于,所述波长选择模块将K路第二光信号传输至所述第一光收发器包括:
    所述波长选择模块将具有目标波长的所述第二光信号传输至所述波长选择模块的目标输出端口,所述目标波长根据所述业务光信号的路由需求确定,所述目标输出端口与所述目标波长具有对应关系。
  5. 根据权利要求1至3任一项所述的传输方法,其特征在于,所述波长选择模块将K路第二光信号传输至所述第一光收发器包括:
    所述波长选择模块获取当前分配列表,所述当前分配列表包括目标波长以及所述第一光收发器的对应关系,所述目标波长为传输至所述波长选择模块的一个波长;
    所述波长选择模块根据所述当前分配列表将具有所述目标波长的所述第二光信号传输至所述第一光收发器。
  6. 根据权利要求5所述的传输方法,其特征在于,所述网络设备包括与所述波长选择模块连接的控制单元,所述方法还包括:
    所述控制单元获取多个分配列表;
    所述控制单元获取路由需求,所述路由需求包括所述业务光信号的源节点和宿节点,所述源节点与所述第一光收发器连接,所述宿节点与第二光收发器连接;
    所述控制单元获取与所述路由需求对应的所述当前分配列表,其中,所述第一光收发器输出的具有所述目标波长的所述业务光信号,用于经由所述光交换模块传输至所述第二光收发器;
    所述控制单元向所述波长选择模块发送所述当前分配列表。
  7. 根据权利要求5所述的传输方法,其特征在于,所述波长选择模块获取当前分配列表包括:
    所述波长选择模块获取多个分配列表;
    所述波长选择模块获取路由需求,所述路由需求包括所述业务光信号的源节点和宿节点,所述源节点与所述第一光收发器连接,所述宿节点与第二光收发器连接;
    所述波长选择模块获取与所述路由需求对应的所述当前分配列表,其中,所述第一光收发器输出的具有所述目标波长的所述业务光信号,用于经由所述光交换模块传输至所述第二光收发器。
  8. 根据权利要求5至7任一项所述的传输方法,其特征在于,所述波长选择模块根据所述当前分配列表将具有所述目标波长的所述第二光信号传输至所述第一光收发器包括:
    所述波长选择模块根据所述当前分配列表导通所述波长选择模块的目标输入端口和目标输出端口之间的光路,所述目标输入端口为用于输入具有所述目标波长的所述第一光信号的输入端口,所述目标输出端口为用于向所述第一光收发器输出具有所述目标波长的第二光信号的输出端口。
  9. 根据权利要求1至8任一项所述的传输方法,其特征在于,所述波长选择模块还包括至少一个光滤波器,所述波长选择模块将K路第二光信号传输至所述第一光收发器包括:
    所述波长选择模块通过所述至少一个光滤波器从所述M路第一光信号中滤波出所述K路第二光信号。
  10. 根据权利要求4至8任一项所述的传输方法,其特征在于,所述网络设备包括与所述波长选择模块连接的控制单元,所述光源模块向所述波长选择模块传输M路第一光信号包括:
    所述控制单元控制所述光源模块输出具有所述目标波长的所述第一光信号。
  11. 根据权利要求1至10任一项所述的传输方法,其特征在于,不同的所述波长选择模块于不同的时刻接收所述M路第一光信号。
  12. 一种网络设备,其特征在于,所述网络设备包括光源模块,所述光源模块连接多个波长选择模块,每个所述波长选择模块连接一个第一光收发器,且不同的所述波长选择模块与不同的所述第一光收发器连接;
    所述光源模块用于向每个所述波长选择模块传输M路第一光信号,所述M为大于1的正整数;
    所述波长选择模块用于将K路第二光信号传输至所述第一光收发器,所述K为小于或等于所述M的正整数;
    所述第一光收发器用于在每路所述第二光信号上调制业务电信号以输出K路业务光信号。
  13. 根据权利要求12所述的网络设备,其特征在于,所述多个第一光收发器与同一光交换模块的多个输出端口一一对应,所述第一光收发器用于向所述光交换模块对应的所述输出端口传输所述业务光信号。
  14. 根据权利要求12或13所述的网络设备,其特征在于,用于输出所述业务光信号的所述光交换模块的输出端口,与所述业务光信号的波长以及用于接收所述业务光信号的所述光交换模块的输入端口相关。
  15. 根据权利要求12至14任一项所述的网络设备,其特征在于,所述波长选择模块具体用于将具有目标波长的所述第二光信号传输至所述第一光收发器,所述目标波长为传输至所述波长选择模块的一个波长。
  16. 根据权利要求12至14任一项所述的网络设备,其特征在于,所述波长选择模块具体用于:
    获取当前分配列表,所述当前分配列表包括目标波长以及所述第一光收发器的对应关系,所述目标波长为传输至所述波长选择模块的一个波长;
    根据所述当前分配列表将具有所述目标波长的所述第二光信号传输至所述第一光收发器。
  17. 根据权利要求16所述的网络设备,其特征在于,所述网络设备包括与所述波长选择模块连接的控制单元,所述控制单元具体用于:
    获取多个分配列表;
    获取路由需求,所述路由需求包括所述业务光信号的源节点和宿节点,所述源节点与所述第一光收发器连接,所述宿节点与第二光收发器连接;
    获取与所述路由需求对应的所述当前分配列表,其中,所述第一光收发器输出的具有所述目标波长的所述业务光信号,用于经由所述光交换模块传输至所述第二光收发器;
    向所述波长选择模块发送所述当前分配列表。
  18. 根据权利要求16所述的网络设备,其特征在于,所述波长选择模块具体用于:
    获取多个分配列表;
    获取路由需求,所述路由需求包括所述业务光信号的源节点和宿节点,所述源节点与所述第一光收发器连接,所述宿节点与第二光收发器连接;
    获取与所述路由需求对应的所述当前分配列表,其中,所述第一光收发器输出的具有所述目标波长的所述业务光信号,用于经由所述光交换模块传输至所述第二光收发器。
  19. 根据权利要求16至18任一项所述的网络设备,其特征在于,所述波长选择模块具体用于,根据所述当前分配列表导通所述波长选择模块的目标输入端口和目标输出端口之间的光路,所述目标输入端口为用于输入具有所述目标波长的所述第一光信号的输入端口,所述目标输出端口为用于向所述第一光收发器输出具有所述目标波长的第二光信号的输出端口。
  20. 根据权利要求12至19任一项所述的网络设备,其特征在于,所述波长选择模块还包括至少一个光滤波器,所述波长选择模块具体用于,通过所述至少一个光滤波器从所述M路第一光信号中滤波出所述K路第二光信号。
  21. 根据权利要求15至19任一项所述的网络设备,其特征在于,所述网络设备包括与所述波长选择模块连接的控制单元,所述控制单元具体用于控制所述光源模块输出具有所述目标波长的所述第一光信号。
  22. 根据权利要求12至21任一项所述的网络设备,其特征在于,不同的所述波长选择模块于不同的时刻接收所述M路第一光信号。
  23. 一种光网络,其特征在于,所述光网络包括多个光收发器,所述多个光收发器包括 N个第一光收发器和至少一个第二光收发器,所述N个第一光收发器和所述至少一个第二光收发器之间通过至少一个光交换模块连接,所述N个第一光收发器位于网络设备内,所述网络设备如权利要求12至权利要求22任一项所述;
    所述至少一个光交换模块用于将来自所述N个第一光收发器的K路业务光信号,传输至所述至少一个第二光收发器。
  24. 根据权利要求23所述的光网络,其特征在于,所述N个第一光收发器和所述第二光收发器位于同一所述网络设备内,或,所述N个第一光收发器和所述第二光收发器位于不同的网络设备内。
PCT/CN2022/079490 2021-06-21 2022-03-07 一种业务光信号的传输方法、网络设备以及光网络 WO2022267547A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22827052.6A EP4340385A1 (en) 2021-06-21 2022-03-07 Transmission method for service optical signal, and network device and optical network
US18/541,452 US20240113799A1 (en) 2021-06-21 2023-12-15 Service optical signal transmission method, network device, and optical network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110687761.9A CN115515030A (zh) 2021-06-21 2021-06-21 一种业务光信号的传输方法、网络设备以及光网络
CN202110687761.9 2021-06-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/541,452 Continuation US20240113799A1 (en) 2021-06-21 2023-12-15 Service optical signal transmission method, network device, and optical network

Publications (1)

Publication Number Publication Date
WO2022267547A1 true WO2022267547A1 (zh) 2022-12-29

Family

ID=84499268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079490 WO2022267547A1 (zh) 2021-06-21 2022-03-07 一种业务光信号的传输方法、网络设备以及光网络

Country Status (4)

Country Link
US (1) US20240113799A1 (zh)
EP (1) EP4340385A1 (zh)
CN (1) CN115515030A (zh)
WO (1) WO2022267547A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121357A (ja) * 1992-10-09 1994-04-28 Nippon Telegr & Teleph Corp <Ntt> 光スイッチ回路
US20030194235A1 (en) * 2002-04-11 2003-10-16 Alcatel Generator of optical data carrier signals with selectable carrier wavelengths
CN103609083A (zh) * 2013-05-13 2014-02-26 华为技术有限公司 接收设备及光交换网装置
CN107332623A (zh) * 2017-06-06 2017-11-07 烽火通信科技股份有限公司 一种twdm‑pon远端设备光发送机的实现方法
US20200343680A1 (en) * 2019-04-24 2020-10-29 Microsoft Technology Licensing, Llc Wavelength switchable laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121357A (ja) * 1992-10-09 1994-04-28 Nippon Telegr & Teleph Corp <Ntt> 光スイッチ回路
US20030194235A1 (en) * 2002-04-11 2003-10-16 Alcatel Generator of optical data carrier signals with selectable carrier wavelengths
CN103609083A (zh) * 2013-05-13 2014-02-26 华为技术有限公司 接收设备及光交换网装置
CN107332623A (zh) * 2017-06-06 2017-11-07 烽火通信科技股份有限公司 一种twdm‑pon远端设备光发送机的实现方法
US20200343680A1 (en) * 2019-04-24 2020-10-29 Microsoft Technology Licensing, Llc Wavelength switchable laser

Also Published As

Publication number Publication date
CN115515030A (zh) 2022-12-23
US20240113799A1 (en) 2024-04-04
EP4340385A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US9164300B2 (en) Reconfigurable optical networks
CN105637821B (zh) 混合电路-分组交换机
US9571218B2 (en) Power efficient subcarrier aggregator and subcarrier combiner for multi-direction variable optical transceiver
CN111181653B (zh) 波分复用偏振无关反射调制器
EP3407511B1 (en) Reconfigurable optical transmitter
US7200299B1 (en) Adding and dropping wavelength-channels
EP2359513A2 (en) Wavelength division multiplexing transmission equipment
JP3593291B2 (ja) 波長多重ネットワーク
US10505659B2 (en) Reconfigurable interconnected nodes
WO2022267547A1 (zh) 一种业务光信号的传输方法、网络设备以及光网络
WO2022267542A1 (zh) 一种业务光信号的传输方法、网络设备以及光网络
JP6738311B2 (ja) ネットワークノード
JP2002262319A (ja) 光通信網および光パスクロスコネクト装置
Testa et al. Silicon photonics for telecom and datacom applications
JP2017083529A (ja) 多波長変調器
Xiao et al. Experimental demonstration of SiPh Flex-LIONS for bandwidth-reconfigurable optical interconnects
JP3818448B2 (ja) 光クロスコネクト装置
Fayyaz et al. Performance analysis of optical interconnects’ architectures for data center networks: Do you have a subtitle? If so, write it here
Giannoulis et al. Integrated Photonic Filters in Support of Converged 5G Mobile Fronthaul & Midhaul Transport Layers
EP4318989A1 (en) Optical communication system, and optical communication method
US10820071B2 (en) Reconfigurable interconnected nodes
WO2024038542A1 (en) Optical switch and switching system
JP6464594B2 (ja) ノード光スイッチ装置および光スイッチ方法
Melle Photonic integrated circuits: A technology update
Ju et al. Contenionless ROADM architecture and extention for control plane in elastic optical path network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022827052

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022827052

Country of ref document: EP

Effective date: 20231212

NENP Non-entry into the national phase

Ref country code: DE