JP6464594B2 - ノード光スイッチ装置および光スイッチ方法 - Google Patents

ノード光スイッチ装置および光スイッチ方法 Download PDF

Info

Publication number
JP6464594B2
JP6464594B2 JP2014150829A JP2014150829A JP6464594B2 JP 6464594 B2 JP6464594 B2 JP 6464594B2 JP 2014150829 A JP2014150829 A JP 2014150829A JP 2014150829 A JP2014150829 A JP 2014150829A JP 6464594 B2 JP6464594 B2 JP 6464594B2
Authority
JP
Japan
Prior art keywords
optical
node
wavelength
optical switch
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014150829A
Other languages
English (en)
Other versions
JP2016025623A (ja
Inventor
柳町 成行
成行 柳町
田島 章雄
章雄 田島
竹下 仁士
仁士 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2014150829A priority Critical patent/JP6464594B2/ja
Publication of JP2016025623A publication Critical patent/JP2016025623A/ja
Application granted granted Critical
Publication of JP6464594B2 publication Critical patent/JP6464594B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

本発明は、ノード光スイッチ装置および光スイッチ方法に関し、特に、光ノード装置に用いられるノード光スイッチ装置および光スイッチ方法に関する。
近年、スマートフォンに代表される携帯端末の急速な普及と、携帯端末の高度化による高精細画像等の大容量データ通信により、ネットワークに流れるトラフィックは急速な伸びを続けている。具体的には例えば、日本国内の2012年度のブロードバンド契約者の総ダウンロードトラフィックは約1.7テラビット毎秒(Tera bits per second:Tbps)であり、年率約20%の割合で増大を続けているとの報告がある。さらに、2020年にはペタビット毎秒(Peta bits per second:Pbps)程度になるとの予測もある。
このような状況に対し、大容量通信を支えるコアネットワークでは、複数の異なる波長の光信号を1本の光ファイバに多重して伝送する波長分割多重(Wavelength Division Multiplexing:WDM)技術など、大容量化技術の開発が進められてきた。初期のWDM通信では、ノード間をポイント・ツー・ポイント(point−to−point)で結び、ノード内で一旦電気信号に変換した後、再度光信号に変換して次のノードに送信する方式が採用されていた。しかしながら、ノードを通過するトラフィックも一旦電気信号に変換されるため、大容量化が進むネットワークでは、電気スイッチのポート数と電力の増大が著しくなってきた。そのため近年では、ノードを通過するトラフィックは光信号のままカットスルーさせることとした光アドドロップ(Optical Add−Drop Multiplexer:OADM)システムや光クロスコネクト(Optical Cross−Connect:OXC)システム等の技術が開発されている。
上述したファイバ単位での伝送容量の拡張とともに、伝送エリアの拡張も進められている。すなわち、各ノードをリング状に配置する従来のリングネットワークから、複数リングを接続するマルチリングネットワーク、ノードをメッシュ状に配置するメッシュネットワーク等、ネットワークの複雑化が進んでいる。これとともに、カットスルーする光レイヤの複雑化も進んでいる。
一方、携帯端末の普及と画像データのストリーム配信は、突発的なトラフィック変動を発生させる。そのためネットワークには、上述した大容量化とともにトラフィック変動に柔軟に対応することが求められている。こうした新たな要求に対応するため、近年、動的なトラフィック変動に対応するエラスティクネットワーク等の研究開発が進められている。エラスティクネットワークでは、国際電気通信連合(International Telecommunication Union:ITU)電気通信標準化部門(Telecommunication Standardization Sector:ITU−T)で標準化されたグリッドに固定化されていた波長割り当てを柔軟化し、効率的な波長割り当を行うこととしている。このような光レイヤで複雑化するネットワークにおいて、動的かつ柔軟にネットワークを制御するネットワーク制御技術の重要性が高まっている。
このように複雑化するネットワークにおいて、動的かつ柔軟に光パスを収容するノード構成の一例が特許文献1に記載されている。
図16に、特許文献1に記載された関連するノード構成を示す。関連するノード構成は、K本の入力側光ファイバ伝送路2−1〜2−Kと、光クロスコネクト部3と、K本の出力側光ファイバ伝送路4−1〜4−Kとを備える。入力側光ファイバ伝送路2−1〜2−KにはJ個の波長分割多重光信号1−1〜1−Jがそれぞれ入力され、出力側光ファイバ伝送路4−1〜4−KからはJ個の波長分割多重光信号5−1〜5−Jがそれぞれ出力される。さらに、アド/ドロップ機能を実現するために、ドロップ側の光信号終端装置30およびアド側の光信号終端装置31を備えている。
入力側光ファイバ伝送路2−1〜2−Kと光クロスコネクト部3との間には、K本の入力側光ファイバ伝送路2−1〜2−Kからの各波長分割多重光信号を分岐する光カプラ21−1〜21−Kが備えられている。K個の光カプラ21−1〜21−Kによって分岐される各入力側光ファイバ伝送路からの各波長分割多重光信号は、光増幅器31−1〜31−Kでそれぞれ光出力レベルを調整される。その後、1×Lの光カプラ(スターカプラ)32−1〜32−Kによって、受信器35−1〜35−Lの数に相当するL個の波長分割多重光信号に分岐される。
これにより、各入力側光ファイバ伝送路からの波長多重化信号は、ファイバ選択スイッチ33−1〜33−Lの各々に接続される。ファイバ選択スイッチは、K個の入力側光ファイバ伝送路の中から、いずれか1つのファイバの波長分割多重光信号を選択する。ファイバ選択スイッチは、K入力1出力のスイッチによって構成できる。K本すべての入力側光ファイバ伝送路からの波長分割光信号がファイバ選択スイッチ33−1に与えられるが、例えば入力側光ファイバ伝送路2−1の波長分割多重光信号1−1、36、37だけが、ファイバ選択スイッチ33−1によって選択される。選択された波長分割多重光信号38−1は、光可変フィルタ(チューナブルフィルタ)34−1に与えられ、さらに所望の波長の光信号39−1のみが選択される。光可変フィルタは、複数の波長を含む波長分割多重光信号から、所望の波長のみを選択する。
図17に、ファイバ選択スイッチ33−1〜33−Lを構成するA入力1出力(A×1)のスイッチの構成を示す。A入力1出力を持つA×1スイッチは、A個の入力信号の中から1個の信号を抽出する能力を持ち、基本エレメントである1×2スイッチ40を組み合わせて構成できる。
このような構成とすることにより、関連するノード構成によれば、波長無依存(カラーレス:Colorless)、方路無依存(ディレクションレス:Directionless)、および衝突回避(コンテンションレス:Contentionless)という3特性(CDC)を実現することができるとされている。
特開2014−010437号公報(段落[0007]〜[0020]、図3、図4)
上述した関連するノード構成に用いられる光信号終端装置30は、光カプラ、ファイバ選択スイッチ、および光可変フィルタを備える。そして、光カプラが受信器の数に相当する個数の波長分割多重光信号に分岐し、ファイバ選択スイッチがいずれか1つのファイバの波長分割多重光信号を選択する構成としている。そのため、関連するノード構成において取り出す(ドロップする)所望の光信号が含まれる波長分割多重光信号以外の、別のファイバからの波長分割多重光信号は使用されないので、分岐による損失が生じる。
このように、CDC(Colorless、Directionless、Contentionless)機能に対応した光ノード装置においては、光ノード装置の損失が増大するという問題点があった。
本発明の目的は、上述した課題である、CDC機能に対応した光ノード装置においては、光ノード装置の損失が増大する、という課題を解決するノード光スイッチ装置および光スイッチ方法を提供することにある。
本発明のノード光スイッチ装置は、光パスを終端する光ノード装置に用いられるノード光スイッチ装置であって、波長多重光信号を受け付けるノード光スイッチと、ノード光スイッチを制御する制御部、を有し、ノード光スイッチは、波長多重光信号を所定の分岐比で分岐し、分岐した各波長多重光信号から所望の波長信号を選択して出力し、制御部は、光パスの属性に応じて分岐比を設定する。
本発明の光スイッチ方法は、光パスを切り換える光スイッチ方法であって、波長多重光信号を受け付け、波長多重光信号を分岐する際の分岐比を、光パスの属性に応じて設定し、分岐比で分岐した各波長多重光信号から所望の波長信号を選択する。
本発明のノード光スイッチ装置および光スイッチ方法によれば、CDC(Colorless、Directionless、Contentionless)機能に対応した光ノード装置の損失の増大を抑制することができる。
本発明の第1の実施形態に係るノード光スイッチ装置の構成を示すブロック図である。 本発明の第1の実施形態に係る光ノード装置が用いられる光ネットワークの構成を模式的に示す概略図である。 本発明の第1の実施形態に係る光ノード装置の構成を示すブロック図である。 本発明の第2の実施形態に係るノード光スイッチ装置が備えるノード光スイッチの構成を示すブロック図である。 本発明の第2の実施形態に係るノード光スイッチが備えるスプリッタの構成を示すブロック図である。 本発明の第2の実施形態に係るノード光スイッチ装置およびそれを用いた光ノード装置の動作を説明するためのフローチャートである。 本発明の第2の実施形態に係る光ノード装置の動作を説明するための光ノード装置の構成を示すブロック図である。 本発明の第2の実施形態に係る光ノード装置の動作を説明するためのノード光スイッチの構成を示すブロック図である。 本発明の第2の実施形態に係る光ノード装置の動作を説明するためのスプリッタの構成を示すブロック図である。 関連する光ノード装置の別の動作を説明するための光ネットワークの構成を模式的に示す概略図である。 本発明の第2の実施形態に係る光ノード装置の別の動作を説明するための光ネットワークの構成を模式的に示す概略図である。 関連する光ノード装置のさらに別の動作を説明するための光ネットワークの構成を模式的に示す概略図である。 本発明の第2の実施形態に係る光ノード装置のさらに別の動作を説明するための光ネットワークの構成を模式的に示す概略図である。 本発明の第3の実施形態に係るノード光スイッチ装置およびそれを用いた光ノード装置の構成を示すブロック図である。 本発明の第3の実施形態に係るノード光スイッチ装置の動作を説明するためのノード光スイッチの構成を示すブロック図である。 関連するノードの構成を示すブロック図である。 関連するノードで用いられるA入力1出力スイッチの構成を示すブロック図である。
以下に、図面を参照しながら、本発明の実施形態について説明する。
〔第1の実施形態〕
図1は、本発明の第1の実施形態に係るノード光スイッチ装置1100の構成を示すブロック図である。ノード光スイッチ装置1100は、光パスを終端する光ノード装置に用いられ、波長多重光信号を受け付けるノード光スイッチ1110、およびノード光スイッチ1110を制御する制御部1120を有する。
ノード光スイッチ1110は、波長多重光信号S110を所定の分岐比で分岐し、分岐した各波長多重光信号から所望の波長信号S120を選択して出力する。制御部1120は、光パスの属性に応じて分岐比を設定する。
このように、本実施形態によるノード光スイッチ装置1100においては、制御部1120がノード光スイッチ1110の分岐比を光パスの属性に応じて設定する構成としている。
また、本実施形態による光パスを切り換える光スイッチ方法ではまず、波長多重光信号を受け付け、波長多重光信号を分岐する際の分岐比を、光パスの属性に応じて設定する。そして、この分岐比で分岐した各波長多重光信号から所望の波長信号を選択する。
このような構成としたことにより、波長多重光信号を、光ノード装置が所望の光パスを終端するために必要な個数にだけ分岐することが可能になる。そのため、分岐による損失を最小とすることができる。その結果、本実施形態によるノード光スイッチ装置1100および光スイッチ方法によれば、光ノード装置の損失の増大を抑制することができる。
次に、本実施形態によるノード光スイッチ装置1100を用いた光ノード装置について説明する。
図2に、本実施形態による光ノード装置が用いられる光ネットワーク5000の構成を模式的に示す。光ネットワーク5000は、例えば16個のノードN1〜N16がメッシュ状に接続された4×4のメッシュネットワーク5100、および光ネットワーク管理装置5200から構成される。各ノードN1〜N16には本実施形態による光ノード装置1000が配置しており、各ノード間は光伝送路5120により結ばれている。
光ネットワーク管理装置5200はクライアントからのパス設定要求を受け付けて経路探索を行う。そして、経路探索の結果に基づいて、各ノードに対して光ノード装置におけるスイッチの切り換え等の指示を行う。図2では、4×4のメッシュネットワークを例として示したが、これに限らず、リングネットワーク、マルチリングネットワーク等の他の構成の光ネットワークであっても、本実施形態による光ノード装置を用いることができる。
図3に、本実施形態による光ノード装置1000の構成を示す。光ノード装置1000は、上述したノード光スイッチ装置1100、ネットワーク光スイッチ1200、波長可変トランスポンダ1300、およびノード制御部1400を有する。
ネットワーク光スイッチ1200は、光ネットワークを構成する光伝送路5120およびノード光スイッチ装置1100と接続している。ネットワーク光スイッチ1200は光伝送路5120から受け取る波長多重光信号を、光のまま波長単位で経路を切り換え、光伝送路へ再度送出する。それとともに、このノードで光伝送路5120から分岐する波長多重光信号を波長単位で切り換えて分岐・挿入ポートに出力する。また、このノードで光伝送路5120へ挿入する波長多重光信号を分岐・挿入ポートで受け付け、波長単位で切り換えて光伝送路5120に送出する。
ネットワーク光スイッチ1200として、波長選択スイッチを用いることができる。波長選択スイッチは例えば、光ファイバからの波長多重光信号をグレーティングで分波し、MEMS(Micro Electro Mechanical Systems)で構成したマイクロミラーを用いて任意のグレーティングに再度入力して合波する構成とすることができる。このような構成とすることにより、波長単位で経路切り換えを実現することが可能である。
ノード光スイッチ装置1100は、光伝送路側ポート1101の任意のポートとトランスポンダ側ポート1102の任意のポートを波長単位で接続する。また、波長可変トランスポンダ1300は、ノード光スイッチ装置1100のトランスポンダ側ポート1102と接続しており、任意の波長の光信号を受信または送信する。
このような構成とすることにより、本実施形態の光ノード装置1000によれば、波長無依存(カラーレス:Colorless)、方路無依存(ディレクションレス:Directionless)、および衝突回避(コンテンションレス:Contentionless)という3特性(CDC)を実現することができる。
ここで、本実施形態の光ノード装置1000が備えるノード制御部1400は、光ネットワークを管理する光ネットワーク管理装置からの指示を受け付け、ノード光スイッチ装置1100、ネットワーク光スイッチ1200、および波長可変トランスポンダ1300を制御する。このとき、ノード制御部1400は、光ネットワーク管理装置から光パスの属性を含む光パス設定要求を取得し、取得した光パスの属性をノード光スイッチ装置1100が備える制御部1120に通知する。
上述したように本実施形態のノード光スイッチ装置1100によれば、光ノード装置1000が所望の光パスを終端するために必要な個数にだけ分岐することが可能になるので、分岐による損失を最小とすることができる。その結果、本実施形態によるノード光スイッチ装置1100およびそれを用いた光ノード装置1000によれば、CDC(Colorless、Directionless、Contentionless)機能に対応した光ノード装置の損失の増大を抑制することができる。
〔第2の実施形態〕
次に、本発明の第2の実施形態について説明する。本実施形態によるノード光スイッチ装置は、第1の実施形態に係るノード光スイッチ装置1100と同様に、ノード光スイッチ1110および制御部1120を有する。
図4に、本発明の第2の実施形態に係るノード光スイッチ1110の構成を示す。ノード光スイッチ1110は、波長多重光信号を分岐する分岐比が可変な複数のスプリッタ100と、複数のスプリッタ100がそれぞれ分岐した波長多重光信号の中から一を選択する分岐比が可変なセレクタ200を備える。さらに、スプリッタ100とセレクタ200を接続する光導波路300と、セレクタ200が選択した波長多重光信号のうち、所望の一波長の光信号を通過させる波長可変フィルタ400を備える。
ノード光スイッチ1110は、図4に示すように、スプリット・アンド・セレクト方式によるスイッチ構成である。そのため、任意のポートからの波長多重光信号を方路制約、波長制約、波長競合なく切り換えることが可能である。すなわち、ノード光スイッチ1110によれば、波長無依存(カラーレス:Colorless)、方路無依存(ディレクションレス:Directionless)、および衝突回避(コンテンションレス:Contentionless)という3特性(CDC)を実現することができる。
図4では、ノード光スイッチ1110の動作を説明するために、8入力8出力(8×8)のスイッチ構成を示す。しかし、入出力ポート数はこれに限られない。
図4に示した構成では、ノード光スイッチ1110は光伝送路側ポート1101からの波長多重光信号を分岐する1:8のスプリッタ100、および各スプリッタ100からの分岐された波長多重光信号のうち1つを選択する8:1セレクタ200を備える。さらに、スプリッタ100とセレクタ200を接続する光導波路300、およびセレクタ200からの波長多重光信号のうち、任意の1波長を抜き出してトランスポンダ側ポート1102に出力する波長可変フィルタ400を備える。なお、ここでは、トランスポンダ側ポート1102へ任意の波長を抜き出すために波長可変フィルタ400を用いることとしたが、これに限らず、デジタルコヒーレント受信技術を用いることとしてもよい。
ノード光スイッチ1110に用いるスイッチ素子として、MEMS光スイッチ、LCOS(Liquid Crystal On Slicon)光スイッチ、PLC(Planar Lightwave Circuit)光スイッチ、およびシリコンフォトニクス光スイッチ等を用いることができる。ここで、MEMS光スイッチは、シリコン基板上に形成したマイクロミラーの角度を変化させることにより光路を切り換える。LCOS光スイッチは、シリコン基板上に形成した液晶層の屈折率を変化させて入射光の反射角を変えることにより光路を切り換える。PLC光スイッチは、シリコン基板上に石英光導波路でマッハツェンダ干渉計を構成し光の通過/非通過を制御する。そして、シリコンフォトニクス光スイッチは、シリコン基板上にシリコン光導波路でマッハツェンダ(Mach−Zehnder:MZ)干渉計を構成し光の通過/非通過を制御する。
図5に、スプリッタ100の構成を示す。図5では、PLC光スイッチやシリコンフォトニクス光スイッチで用いられるMZ干渉計光スイッチ110を用いた1入力8出力(1:8)であるスプリッタ100の構成を示す。
MZ干渉計型光スイッチ110は、2個の光カプラ111、112、光カプラ間を結ぶ等長のスプリッタ光導波路113、およびスプリッタ光導波路113の屈折率を変化させる位相シフタ114を備える。入力された光信号は前段の光カプラ111で2分岐(50:50)され、後段の光カプラ112で再度合流される。このとき、位相シフタ114が非駆動である場合には、MZ干渉計型光スイッチ110のクロスポートから100%の光信号が出力される。一方、位相シフタ114を駆動すると、スプリッタ光導波路113を導波する光信号の速度が変化し、後段の光カプラ112で合流される際に位相差が生じる。この位相差を調整することにより、バーポートから100%の光信号を出力することができる。また、位相差を変化させることにより、バーポートおよびクロスポートに50%ずつ光信号を出力することも可能である。
すなわち、すべてのMZ干渉計型光スイッチ110を100%出力に設定にすると、入力ポートと出力ポートは1対1(1:1)で接続されることになる。一方、すべてのMZ干渉計型光スイッチ110を50%出力に設定すると、入力の1ポートに対して出力は8ポートとなるため1対8(1:8)で接続されることとなる。同様に、1対2(1:2)、1対4(1:4)で接続する構成も可能であり、任意の分岐比で接続することができる。なお、スプリッタ100の入力ポートと出力ポートを入れ換えることにより、8対1(8:1)のセレクタ200を実現することができる。
なお、位相シフタ114にはヒータ等を用いて光導波路の屈折率を変化させる熱光学効果型や、光導波路に電圧を印可することにより屈折率を変化させる電気光学効果型がある。しかし、PLC光スイッチに用いられる石英光導波路やシリコンフォトニクス光スイッチに用いられるシリコン光導波路は電気光学効果による屈折率変化が小さいため、熱光学効果型の位相シフタを用いることが望ましい。
次に、本実施形態によるノード光スイッチ装置1100およびそれを用いた光ノード装置1000の動作について説明する。図6に、本実施形態によるノード光スイッチ装置1100およびそれを用いた光ノード装置1000の動作を説明するためのフローチャートを示す。
ここでは、図2に示した光ネットワーク5000を例として説明する。光ネットワーク管理装置5200はクライアントからのパス設定の要求を受け付ける(ステップS210)。このとき、光ネットワーク管理装置5200は、ノード光スイッチ装置1100が備えるノード光スイッチ1110の分岐比を考慮して経路探索を行う(ステップS220)。そして、このときの経路探索の結果に基づいて、ノード光スイッチ装置1100にスイッチの切り換え等の指示を行う(ステップS230)。
次に、光ノード装置1000が備えるノード制御部1400(図3参照)は、光ネットワーク管理装置5200の指示に従って所望のポートが接続されるように、光ノード装置1000の各装置を制御する。すなわち、ノード光スイッチ装置1100、ネットワーク光スイッチ1200、および波長可変トランスポンダ1300に対して、ポートの切り換えを指示する(ステップS240)。
ここでは一例として、光ノード装置1000が、図7に示すように、光伝送路1から波長λ1の光信号を波長可変トランスポンダ1に分岐し、光伝送路1から波長λ2の光信号を可変波長トランスポンダ2に分岐する動作を説明する。まず、ネットワーク光スイッチ1200は光伝送路1からの波長多重光信号(λ1、λ2、・・・、λn)を受け付け、波長λ1、λ2の光信号のみを抽出して分岐・挿入ポート1へ出力する(図6のステップS250)。
次に、ノード光スイッチ装置1100が備えるノード光スイッチ1110は、ネットワーク光スイッチ1200の分岐・挿入ポート1からの波長多重光信号(λ1、λ2)を光伝送路側ポート1101のポート1で受け付ける。このときノード光スイッチ1110は、図8に示すように、波長λ1の光信号を波長可変トランスポンダ1が接続されているトランスポンダ側ポート1102のポート1に接続し、波長λ2の光信号を波長可変トランスポンダ2が接続されているポート2に接続するように制御する(図6のステップS260)。
ノード光スイッチ1110が備えるスプリッタ100のこのときの動作を、図9を用いて説明する。この場合の例では、1ポート入力に対して2ポート出力であるため、スプリッタ100は2分岐の動作を行う。ポート1から入力された波長多重光信号(λ1、λ2)は、1段目スイッチ素子101をクロスポートに100%出力するように設定することにより、クロスポートのみに出力される。同様に、2段目スイッチ素子102をクロスポートに100%出力するように設定し、3段目スイッチ素子103をクロスポートに50%出力、バーポートに50%出力するように分岐比を設定する(図6のステップS270)。これにより、出力ポート1および出力ポート2に波長多重光信号(λ1、λ2)がそれぞれ出力される。
次に、波長可変フィルタ400を設定する(図6のステップS280)ことにより、可変波長フィルタ400の出力ポート1に波長λ1の光信号が、出力ポート2に波長λ2の光信号が出力される。
以上の動作により、ノード光スイッチ装置1100から波長可変トランスポンダ1に波長λ1の光信号を、波長可変トランスポンダ2に波長λ2の光信号をそれぞれ出力することができる。
なお、上述の説明では、ノード光スイッチ1110が2分岐の動作をする場合を例として示したが、4分岐、8分岐の動作も同様に行うことが可能である。また、任意の波長可変トランスポンダ1300から任意の光伝送路5120への挿入動作も、同様にして行うことができる。
以上説明したように、本実施形態のノード光スイッチ1110によれば、光ノード装置が所望の光パスを終端するために必要な個数にだけ、波長多重光信号を分岐することが可能になる。そのため、分岐による損失を最小とすることができる。その結果、CDC(Colorless、Directionless、Contentionless)機能に対応した光ノード装置の損失の増大を抑制することができる。
次に、本実施形態によるノード光スイッチ装置1100を用いた光ノード装置1000の動作について、さらに詳細に説明する。本実施形態によるノード光スイッチ装置1100は分岐比を任意に設定することができるので、以下に述べるように光パスを効率的に収容することが可能である。
まず図10を用いて、分岐比を考慮せずに光パスを収容する場合について説明する。図10では、光ネットワークの構成が4×4のメッシュネットワークである場合を例として説明する。ここで、ノード1(N1)からの光パスは、分岐損失による光信号のS/N(signal/noise)比の劣化により到達距離が制限される。図10では、光パスが8分岐で到達できる範囲を3×3の範囲(実線部)とし、4分岐で到達できる範囲を4×4の範囲(点線部)としている。
図10に示した光ネットワークの構成において、ノード1(N1)からノード10(N10)へ8パスの要求、ノード1(N1)からノード14(N14)へ2パスの要求があった場合について説明する。この場合、ノード1(N1)のファイバ1にノード14(N14)向けの光パスを1パス収容すると、ファイバ1は4分岐に限定されるので8分岐とすることはできない。そのため、ファイバ1にノード10(N10)向けの光パスは残り3パスしか収容できないことになる。
ファイバ2についても同様である。したがって、ファイバ1とファイバ2の合計では、ノード10(N10)向けの光パスを6パス、ノード14(N14)向けの光パスを2パスしか収容できないことになる。そのため、パス設定要求のうち残りのノード10(N10)向け光パスの2パスを収容するためにファイバ3が必要となる。すなわち、合計で3本のファイバを使用する必要がある。
次に、本実施形態によるノード光スイッチ装置1100を備えた光ノード装置1000によって光パスを設定する場合について、図11を用いて説明する。光ネットワークの構成およびパス要求は上述した場合と同様である。
ここで、本実施形態によるノード光スイッチ装置1100は、制御部が光パスの属性に応じてノード光スイッチの分岐比を設定する。以下では、光パスの属性は光パスの到達距離であり、光パスの到達距離が光パスのホップ数に基づいて定まる場合について説明する。
この場合、図11に示すように、本実施形態による光ノード装置1000は、ファイバ1に光パスのホップ数が大きい、すなわち光パス間の距離が長いノード14(N14)向けのパスを収容する。そして、ファイバ2に光パスのホップ数が小さい、すなわち光パス間の距離が短いノード10(N10)向けのパスをまとめて収容することができる。これにより、2本のファイバですべてのパス設定要求を収容することが可能になる。
上述したように、本実施形態のノード光スイッチ装置1100は、ノード光スイッチの分岐比を光パスのホップ数に基づいて定まる光パスの到達距離に応じて設定する構成としている。このような構成としたことにより、本実施形態のノード光スイッチ装置1100を備えた光ノード装置1000によれば、効率的に光パスを収容することが可能になる。
上記実施形態では、ノード光スイッチ装置1100が、ノード光スイッチの分岐比を光パスのホップ数に基づいて定まる光パスの到達距離に応じて設定する構成について説明した。しかし、ノード光スイッチ装置1100の構成はこれに限られない。以下では、ノード光スイッチ装置1100が、ノード光スイッチの分岐比を光パスの信号フォーマットに基づいて定まる光パスの到達距離に応じて設定する構成について説明する。
ここでは、光ネットワークの構成が、ノード1(N1)からノード9(N9)がメッシュ状に接続された3×3メッシュネットワークである場合を例として説明する。そして、光ノード装置1000が備える波長可変トランスポンダ1300(図3参照)は、異なる信号フォーマットを送受信できるものが混在している構成としている。ここで、信号フォーマットには例えば、DP−QPSK(Dual Polarization−Quadrature Phase Shift Keying)および16−QAM(Quadrature Amplitude Modulation)などが含まれる。
ここで、ノード1(N1)からの光パスは、分岐損失による光信号のS/N(signal/noise)比の劣化により到達距離が制限される。図12では、信号フォーマットとしてDP−QPSKを用いた場合、光パスは8分岐で3×3の範囲に到達可能であり、信号フォーマットとして16−QAMを用いた場合、光パスは4分岐で3×3の範囲に到達可能であるとしている。図12に示した光ネットワークの構成において、ノード1(N1)からノード8(N8)へ、信号フォーマットがDP-QPSKの光パスについて6パス、信号フォーマットが16−QAMの光パスについて2パスの要求があった場合について説明する。
まず図12を用いて、分岐比を考慮せずに光パスを収容する場合について説明する。この場合、ノード1(N1)のファイバ1に16−QAMの光パスを1パス収容すると、ファイバ1は4分岐に限定されるので8分岐とすることはできない。そのため、ファイバ1にはDP−QPSKの光パスであっても残り3パスしか収容できないことになる。ファイバ2についても同様である。したがって、ファイバ1とファイバ2の合計では、ノード8(N8)向けの光パスでDP−QPSKによる光パスを6パス、16−QAMによる光パスを2パスしか収容できないことになる。そのため、パス設定要求のうち残りのノード8(N8)向け16−QAMによる光パスの1パスを収容するためにファイバ3が必要となる。すなわち、合計で3本のファイバを使用する必要がある。
次に、本実施形態によるノード光スイッチ装置1100を備えた光ノード装置1000によって光パスを設定する場合について、図13を用いて説明する。光ネットワークの構成およびパス要求は上述した場合と同様である。
ここで、本実施形態のノード光スイッチ装置1100は、ノード光スイッチの分岐比を光パスの信号フォーマットに基づいて定まる光パスの到達距離に応じて設定する。この場合、光ノード装置1000は図13に示すように、ファイバ1にDP−QPSKの光パスを、ファイバ2に16−QAMの光パスをまとめて収容することができる。これにより、2本のファイバですべてのパス設定要求を収容することが可能になる。
上述したように、本実施形態によるノード光スイッチ装置1100は、ノード光スイッチの分岐比を光パスの信号フォーマットに基づいて定まる光パスの到達距離に応じて設定する構成としている。このような構成としたことにより、本実施形態のノード光スイッチ装置1100を備えた光ノード装置1000によれば、効率的に光パスを収容することが可能になる。
〔第3の実施形態〕
次に、本発明の第3の実施形態について説明する。図14は、本発明の第3の実施形態に係るノード光スイッチ装置2100およびそれを用いた光ノード装置2000の構成を示すブロック図である。
本実施形態によるノード光スイッチ装置2100は、光パスを終端する光ノード装置に用いられ、波長多重光信号を受け付けるノード光スイッチ1110、および制御部1120を有する。ノード光スイッチ1110は、波長多重光信号を所定の分岐比で分岐し、分岐した各波長多重光信号から所望の波長信号を選択して出力する。
ノード光スイッチ装置2100はさらに、ノード光スイッチ1110の前段および後段の少なくとも一方に配置した光増幅器2110を有する。図14では、光増幅器2110がノード光スイッチ1110の前段に配置している場合を示す。
制御部1120は、ノード光スイッチ1110および光増幅器2110を制御する。具体的には、制御部1120は光パスの属性に応じてノード光スイッチ1110の分岐比を設定するとともに、このときの分岐比に応じて光増幅器2110の増幅率を設定する。
光ノード装置2000は、上述したノード光スイッチ装置2100、ネットワーク光スイッチ1200、波長可変トランスポンダ1300、およびノード制御部1400を有する。ノード光スイッチ装置2100以外の構成は、第1および第2の実施形態における光ノード装置1000と同様であるので、それらの説明は省略する。
次に、本実施形態によるノード光スイッチ装置2100の動作について、図15を用いて説明する。図15は、ノード光スイッチ装置2100が備えるノード光スイッチ1110の構成を示すブロック図である。
ここでは光信号が、図15に示したようにノード光スイッチ1110に入出力する場合を例として説明する。すなわち、ノード光スイッチ1110の光伝送路側ポート1101に波長λ1からλ3の光信号が、ポート4に波長λ4の光信号が入力される。そしてトランスポンダ側ポート1102のポート1に波長λ1の光信号が、ポート2にλ2、ポート3にλ3、そしてポート5に波長λ4の光信号がそれぞれ出力される。
図14に示したように、光信号は光伝送路5120、ネットワーク光スイッチ1200、およびノード光スイッチ装置2100を通過し、波長可変トランスポンダ1300に入力される。この経路中で、光信号は各デバイスが有する透過損失により減衰する。また、波長可変トランスポンダ1300は所定のダイナミックレンジ(例えば0dBm〜−10dBm)を有し、その範囲に入力光の光パワーを収める必要がある。このため、上述した経路中に光増幅器を設置し、損失を補償する必要がある。
このとき、図15に示した例では、波長λ1、λ2、λ3の光信号は3分岐されるが、波長λ4の光信号は分岐されないので分岐損失が異なる。ここで、本実施形態のノード光スイッチ装置2100は、制御部1120が分岐比に応じて光増幅器2110の増幅率を設定する構成としている。そのため、本実施形態のノード光スイッチ装置2100によれば、光増幅器2110で補償する光量を最小化することができ、光ノード装置2000の省電力化を図ることが可能となる。
上述したように、本実施形態のノード光スイッチ装置2100は、制御部1120が光パスの属性に応じてノード光スイッチ1110の分岐比を設定するとともに、このときの分岐比に応じて光増幅器2110の増幅率を設定する構成としている。これにより、CDC(Colorless、Directionless、Contentionless)機能に対応した光ノード装置の損失の増大を抑制することができるとともに、光ノード装置の省電力化を図ることが可能となる。
本発明は上記実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
1000、2000 光ノード装置
1100、2100 ノード光スイッチ装置
1101 光伝送路側ポート
1102 トランスポンダ側ポート
1110 ノード光スイッチ
1120 制御部
1200 ネットワーク光スイッチ
1300 波長可変トランスポンダ
1400 ノード制御部
2110 光増幅器
5000 光ネットワーク
5100 メッシュネットワーク
5120 光伝送路
5200 光ネットワーク管理装置
100 スプリッタ
101 1段目スイッチ素子
102 2段目スイッチ素子
103 3段目スイッチ素子
110 MZ干渉計型光スイッチ
111、112 光カプラ
113 スプリッタ光導波路
114 位相シフタ
200 セレクタ
300 光導波路
400 波長可変フィルタ
1−1〜1−J、5−1〜5−J、36、37、38−1 波長分割多重光信号
2−1〜2−K 入力側光ファイバ伝送路
3 光クロスコネクト部
4−1〜4−K 出力側光ファイバ伝送路
21−1〜21−K 光カプラ
30、31 光信号終端装置
31−1〜31−K 光増幅器
32−1〜32−K 光カプラ
33−1〜33−L ファイバ選択スイッチ
34−1 光可変フィルタ
35−1〜35−L 受信器
40 1×2スイッチ

Claims (10)

  1. 光パスを終端する光ノード装置に用いられるノード光スイッチ装置であって、
    波長多重光信号を受け付けるノード光スイッチと、
    前記ノード光スイッチを制御する制御部、を有し、
    前記ノード光スイッチは、前記波長多重光信号を所定の分岐比で分岐し、分岐した各波長多重光信号から所望の波長信号を選択して出力し、
    前記制御部は、前記光パスの属性に応じて前記分岐比を設定し、
    前記ノード光スイッチの前段および後段の少なくとも一方に配置した光増幅器をさらに有し、
    前記制御部は、前記分岐比に応じて前記光増幅器の増幅率を設定する
    ード光スイッチ装置。
  2. 光パスを終端する光ノード装置に用いられるノード光スイッチ装置であって、
    波長多重光信号を受け付けるノード光スイッチと、
    前記ノード光スイッチを制御する制御部、を有し、
    前記ノード光スイッチは、前記波長多重光信号を所定の分岐比で分岐し、分岐した各波長多重光信号から所望の波長信号を選択して出力し、
    前記制御部は、前記光パスの属性に応じて前記分岐比を設定し、
    前記ノード光スイッチは、
    前記波長多重光信号を分岐する分岐比が可変な複数のスプリッタと、
    前記複数のスプリッタがそれぞれ分岐した波長多重光信号の中から一を選択する分岐比が可変なセレクタと、
    前記スプリッタと前記セレクタを接続する光導波路と、
    前記セレクタが選択した波長多重光信号のうち、所望の一波長の光信号を通過させる波長可変フィルタ、とを備える
    ード光スイッチ装置。
  3. 前記光パスの属性は、前記光パスの到達距離である
    請求項1または2に記載したノード光スイッチ装置。
  4. 前記光パスの到達距離は、前記光パスのホップ数に基づいて定まる
    請求項に記載したノード光スイッチ装置。
  5. 前記光パスの到達距離は、前記光パスの信号フォーマットに基づいて定まる
    請求項に記載したノード光スイッチ装置。
  6. 光パスを終端する光ノード装置に用いられるノード光スイッチ装置であって、波長多重光信号を受け付けるノード光スイッチと、前記ノード光スイッチを制御する制御部、を有し、前記ノード光スイッチは、前記波長多重光信号を所定の分岐比で分岐し、分岐した各波長多重光信号から所望の波長信号を選択して出力し、前記制御部は、前記光パスの属性に応じて前記分岐比を設定するノード光スイッチ装置と、
    光ネットワークを構成する光伝送路および前記ノード光スイッチ装置と接続するネットワーク光スイッチと、
    前記ノード光スイッチ装置と接続する波長可変トランスポンダと、
    前記ノード光スイッチ装置、前記ネットワーク光スイッチ、および前記波長可変トランスポンダを制御するノード制御部、とを有し、
    前記ノード制御部は、前記光ネットワークを管理する光ネットワーク管理装置から、前記光パスの属性を含む光パス設定要求を取得し、取得した前記光パスの属性を前記制御部に通知する
    光ノード装置。
  7. 前記光パスの属性は、前記光パスの到達距離であり、
    前記光パスの到達距離は、前記光パスのホップ数および前記光パスの信号フォーマットのいずれかに基づいて定まる
    請求項6に記載した光ノード装置。
  8. 請求項1からのいずれか一項に記載したノード光スイッチ装置と、
    光ネットワークを構成する光伝送路および前記ノード光スイッチ装置と接続するネットワーク光スイッチと、
    前記ノード光スイッチ装置と接続する波長可変トランスポンダと、
    前記ノード光スイッチ装置、前記ネットワーク光スイッチ、および前記波長可変トランスポンダを制御するノード制御部、とを有し、
    前記ノード制御部は、前記光ネットワークを管理する光ネットワーク管理装置から、前記光パスの属性を含む光パス設定要求を取得し、取得した前記光パスの属性を前記制御部に通知する
    光ノード装置。
  9. 光パスを切り換える光スイッチ方法であって、
    波長多重光信号を受け付け、
    前記波長多重光信号を分岐する際の分岐比を、前記光パスの属性に応じて設定し、
    前記分岐比で分岐した各波長多重光信号から所望の波長信号を選択し、
    前記波長多重光信号を分岐する前に前記波長多重光信号を増幅し、
    前記波長多重光信号を増幅する際の増幅率を前記分岐比に応じて設定する
    スイッチ方法。
  10. 前記光パスの属性は、前記光パスの到達距離であり、
    前記光パスの到達距離は、前記光パスのホップ数および前記光パスの信号フォーマットのいずれかに基づいて定まる
    請求項に記載した光スイッチ方法。
JP2014150829A 2014-07-24 2014-07-24 ノード光スイッチ装置および光スイッチ方法 Active JP6464594B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014150829A JP6464594B2 (ja) 2014-07-24 2014-07-24 ノード光スイッチ装置および光スイッチ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014150829A JP6464594B2 (ja) 2014-07-24 2014-07-24 ノード光スイッチ装置および光スイッチ方法

Publications (2)

Publication Number Publication Date
JP2016025623A JP2016025623A (ja) 2016-02-08
JP6464594B2 true JP6464594B2 (ja) 2019-02-06

Family

ID=55272004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014150829A Active JP6464594B2 (ja) 2014-07-24 2014-07-24 ノード光スイッチ装置および光スイッチ方法

Country Status (1)

Country Link
JP (1) JP6464594B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303710B2 (ja) * 2005-07-15 2009-07-29 富士通株式会社 光伝送装置
JP4739928B2 (ja) * 2005-11-28 2011-08-03 日本電信電話株式会社 波長選択光スイッチおよび波長選択光スイッチモジュール
JP5545212B2 (ja) * 2008-05-26 2014-07-09 日本電気株式会社 波長パス通信ノード装置、波長パス通信制御方法、プログラム、および記録媒体
JP5019296B2 (ja) * 2008-09-19 2012-09-05 日本電信電話株式会社 光通信ノード装置
JP5287993B2 (ja) * 2009-10-07 2013-09-11 日本電気株式会社 光信号送信装置、光信号受信装置、波長多重分離光通信装置および波長パスシステム
JP5858474B2 (ja) * 2012-07-03 2016-02-10 日本電信電話株式会社 光可変フィルタおよび光可変フィルタを用いた光信号終端装置
JP5911104B2 (ja) * 2012-12-26 2016-04-27 Necエンジニアリング株式会社 光多重分離伝送装置、制御方法および光多重分離伝送制御システム

Also Published As

Publication number Publication date
JP2016025623A (ja) 2016-02-08

Similar Documents

Publication Publication Date Title
US20160269809A1 (en) Optical network switching device
US9264167B2 (en) Optical add drop multiplexer
JP5521168B2 (ja) 光伝送装置及び光伝送システム
US20140161454A1 (en) Expandable multicast optical switch
JP2014107709A (ja) 光ドロップ装置、光アド装置および光アド/ドロップ装置
Devarajan et al. Colorless, directionless and contentionless multi-degree ROADM architecture for mesh optical networks
JP4796183B2 (ja) 光伝送装置
US10256936B2 (en) Method and apparatus for optical node construction using software programmable ROADMs
JP2010098544A (ja) 光伝送ネットワークシステム、光伝送装置、及びそれらを用いた通過帯域割り当て方法
US9609401B2 (en) Optical switch, optical transmission device, and optical switching method
Fukutoku Next generation ROADM technology and applications
JP2010103640A (ja) 光中継装置
JP2007243508A (ja) 光信号切替え装置および光信号切替え方法
EP2979382A1 (en) Signal routing
US20140133800A1 (en) Optical switch control method, optical switch control device, and optical transmission system
US9025915B2 (en) Method and module for switching optical signals having different modes of propagation
KR100442663B1 (ko) 광 회선분배 시스템
JP4852491B2 (ja) 光クロスコネクトスイッチ機能部及び光クロスコネクト装置
US9654850B2 (en) Wavelength multiplexer, and method and program for identifying failed portion
JP7136317B2 (ja) 光分岐結合装置及び光分岐結合方法
JP6464594B2 (ja) ノード光スイッチ装置および光スイッチ方法
US20150071635A1 (en) Apparatus and method for effective design of a communication network enabling large-capacity transmission
US10254625B2 (en) Optical signal processing device
JP5340368B2 (ja) 光中継装置
JP2016158230A (ja) 光クロスコネクト装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181224

R150 Certificate of patent or registration of utility model

Ref document number: 6464594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150