WO2022267471A1 - 一种基于纤维增强的金属复合构件及其制造方法 - Google Patents

一种基于纤维增强的金属复合构件及其制造方法 Download PDF

Info

Publication number
WO2022267471A1
WO2022267471A1 PCT/CN2022/073968 CN2022073968W WO2022267471A1 WO 2022267471 A1 WO2022267471 A1 WO 2022267471A1 CN 2022073968 W CN2022073968 W CN 2022073968W WO 2022267471 A1 WO2022267471 A1 WO 2022267471A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
fiber
fiber material
local
fracture
Prior art date
Application number
PCT/CN2022/073968
Other languages
English (en)
French (fr)
Inventor
吴宇飞
赵子龙
李鹏达
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2022267471A1 publication Critical patent/WO2022267471A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the technical field of composite materials, in particular to a metal composite component based on fiber reinforcement and a manufacturing method thereof.
  • Metal materials refer to the general designation of materials with metal characteristics composed of metal elements or mainly composed of metal elements, including pure metals, alloys, intermetallic compounds and special metal materials, etc. Metal materials have high temperature resistance, corrosion resistance, High ductility and other characteristics have become indispensable basic materials and important strategic materials for the national economy, people's daily life, national defense work, and scientific and technological development.
  • Necking refers to the phenomenon that the local section of the material is reduced under the action of tensile stress. Due to the small difference in the effective cross-sectional area of the existing metal materials, it is easy to neck and break at the local position when subjected to the tensile stress.
  • the technical problem to be solved by the present invention is to provide a fiber-reinforced metal composite component and its manufacturing method in view of the above-mentioned defects of the prior art, aiming to solve the problem that the existing metal materials are prone to occur at local locations when they are subjected to tensile stress.
  • the embodiment of the present invention provides a fiber-reinforced metal composite component, which is characterized in that it includes: a metal base, the metal base is provided with several grooves at a predetermined angle with the horizontal direction, and several of the The groove is filled with fiber material.
  • the preset angle is 15°-60° or 120°-165°.
  • the ultimate strain of the fiber material is 1% to 15%.
  • the several grooves have the same shape, and the cross-sectional shape of the several grooves is circular, square or rectangular.
  • the metal composite component based on fiber reinforcement several grooves are arranged on the surface of the metal matrix, and the grooves are arranged at equal intervals along the long axis of the metal matrix.
  • a plurality of grooves are arranged inside the metal matrix.
  • the fiber-reinforced metal composite member wherein the preset angle, the amount of fiber material and the stiffness of the fiber material satisfy the formula:
  • is the preset angle
  • a frp is the amount of fiber material
  • E frp is the elastic modulus of fiber material
  • a metal is the initial cross-sectional area of the metal matrix
  • r p0 is the distance from the center of the metal matrix to the center of the fiber material
  • r b0 is the radius of the metal substrate
  • ⁇ y, fracture is the axial locality of the necking
  • ⁇ local ( ⁇ y, fracture ) is the axial fracture strain ⁇ y at the constriction
  • E hardening is the slope of the strengthening segment of the local engineering stress-strain curve of the necking section.
  • an embodiment of the present invention provides a method for manufacturing the above-mentioned fiber-reinforced metal composite component, which includes:
  • a predetermined amount of fiber material is filled in several grooves to obtain a fiber-reinforced metal composite component.
  • the above-mentioned manufacturing method based on fiber-reinforced metal composite components, wherein before the step of opening a number of grooves on the metal matrix with preset angles to the horizontal direction includes:
  • is the preset angle
  • a frp is the amount of fiber material
  • E frp is the elastic modulus of fiber material
  • a metal is the initial cross-sectional area of the metal matrix
  • r p0 is the distance from the center of the metal matrix to the center of the fiber material
  • r b0 is the radius of the metal substrate
  • ⁇ y, fracture is the axial local area of the necking
  • ⁇ local ( ⁇ y, fracture ) is the axial fracture strain ⁇ y at the constriction
  • E hardening is the slope of the strengthening segment of the local engineering stress-strain curve of the necking section.
  • the method for manufacturing a fiber-reinforced metal composite component wherein, before the step of filling the number of grooves with the amount of fiber material, the step includes:
  • Sand blasting is performed on the surfaces of several of the grooves and/or the metal substrate.
  • the metal composite component of the present invention shares the tensile stress action through the fiber materials in several grooves with preset angles, avoiding local necking or necking of the entire metal composite component at different positions, avoiding metal composite The material fractures due to localized necking at one location, improving the deformability of the metal composite.
  • Fig. 1 is a schematic structural view of a fiber-reinforced metal composite component provided by an embodiment of the present invention
  • Fig. 2 is the local engineering stress-strain curve diagram of the necked section corresponding to the metal matrix provided by the embodiment of the present invention
  • Fig. 3 is a side view of a fiber-reinforced metal composite component when several grooves provided by the embodiment of the present invention are arranged inside the metal matrix;
  • Fig. 4 is a graph of stress-strain curves of metal composite components provided in Example 1 and Example 2 of the present invention.
  • the directional indication is only used to explain the position in a certain posture (as shown in the accompanying drawing). If the specific posture changes, the directional indication will also change accordingly.
  • Necking refers to the phenomenon that the local section of the material is reduced under the action of tensile stress. Due to the small difference in the effective cross-sectional area of the existing metal materials, when subjected to the tensile stress, it is easy to neck in the local position and then break, that is, the existing Metal materials have poor resistance to deformation.
  • CFRP Carbon Fiber Reinforced Polymers
  • GFRP Glass Fiber Reinforced Polymers
  • this embodiment provides a fiber-reinforced metal composite component.
  • a plurality of grooves 2 whose direction is at a predetermined angle are filled with fiber materials.
  • the present invention is based on the fact that the deformation of the metal material necking increases but the tensile bearing capacity decreases, while the bearing capacity of the fiber material increases with the increase of its tensile deformation. Undertake the role of tension, where the necking occurs, the increase in the bearing capacity of the fiber material compensates for the decline in the bearing capacity of the metal material, thereby avoiding the occurrence of necking or necking in multiple places, and avoiding local necking in one position of the metal composite component Shrinkage and fracture, improve the deformation capacity of metal composite components.
  • the preset angle, the amount of fiber material and the modulus of elasticity of the fiber material satisfy the formula:
  • is the preset angle
  • a frp is the amount of fiber material
  • E frp is the elastic modulus of fiber material
  • a metal is the initial cross-sectional area of the metal matrix
  • r p0 is the distance from the center of the metal matrix to the center of the fiber material
  • r b0 is the radius of the metal substrate (as shown in Figure 3)
  • ⁇ y, fracture , ⁇ local ( ⁇ y, fracture ) and E hardening are determined by the local engineering stress-strain curve of the necking section corresponding to the metal substrate
  • ⁇ y, fracture is The local axial fracture strain at the necking point
  • ⁇ local ( ⁇ y, fracture ) is the axial fracture strain at the necking point ⁇ y, the local stress of the section corresponding to the fracture
  • E hardening is the local engineering stress-strain curve of the necking section The slope of the strengthening segment.
  • the initial cross-sectional area A metal the initial cross-sectional area A metal , the axial fracture strain ⁇ y at the necked area, fracture , and the local stress of the section ⁇ local ( ⁇ y, fracture ) and the slope of the reinforced section E hardening are known, the elastic modulus E frp of the fiber material, the preset angle ⁇ , and the amount of fiber material A frp can be determined according to the above formula.
  • the initial cross-sectional area Ametal of the metal base 1 refers to the corresponding cross-sectional area when the metal base 1 is not subjected to tensile stress, which is related to the initial cross-sectional shape of the metal base 1,
  • the initial cross-sectional area A metal is the area of a circle
  • the initial cross-sectional shape of the metal base 1 is a rectangle or a square
  • the The initial cross-sectional area A metal is the area of a rectangle or a square.
  • the predetermined angle ⁇ is each The angle between the long axis direction of the groove 2 and the horizontal direction, the preset angle ⁇ between each of the grooves 2 and the horizontal direction is 15°-60° or 120°-165°, each of the grooves 2 and the horizontal direction
  • the preset angle ⁇ in the horizontal direction can be the same, for example, the preset angle ⁇ between each of the grooves 2 and the horizontal direction is 30°, 35° or 45°, etc.; the preset angle ⁇ between each of the grooves 2 and the horizontal direction ⁇ can also be different, for example, three grooves 2 are arranged on the metal substrate 1, the preset angle ⁇ between one groove 2 and the horizontal direction is 30°, and the preset angle ⁇ between the other groove 2 and the horizontal direction is 35°, There is also a preset angle ⁇ between the groove 2 and the horizontal
  • several grooves 2 are arranged inside the metal base 1, and several grooves 2 are provided through one end of the metal base 1, and the filling
  • the fiber materials are inserted into several grooves along one end of the metal matrix 1, and when the metal composite component is subjected to tensile stress and necking occurs, the fiber materials in several grooves 2 at preset angles share the load.
  • the tensile stress also prevents the metal composite material from being partially necked and fractured at one position, and improves the deformation resistance of the metal composite material.
  • the shape of some of the grooves 2 can be set as required, the cross-sectional shape of some of the grooves 2 can be circular, square or rectangular, and the opening width of each of the grooves 2 is 2.5 ⁇ 3.0mm, sandblasting treatment is done on the surface of several grooves 2 in contact with the fiber material, by setting the opening width of the groove 2 within this range and setting the groove 2 on the contact surface of the fiber material
  • the sandblasting layer can make the bond between the fiber material and the grooves 2 more firm, and prevent the fiber material from slipping out of the groove 2 .
  • the volume of the fiber material filled in each of the grooves 2 is equal to the volume of each of the grooves 2, that is, several of the grooves 2 are completely filled with the fiber material, and each of the grooves 2 is completely filled with the fiber material.
  • the sum of the volumes of the grooves 2 is 35%-55% of the volume of the metal base 1 .
  • the elastic modulus of the fiber material is 8-20GPa, and the ultimate strain of the fiber material is 1%-15%.
  • the metal base 1 can be pure metal, alloy, intermetallic compound and special metal material, etc., the metal base 1 can be a circular rib or plate, and the metal base 1 includes the first A metal component 11, a second metal component 12, a third metal component 13, a fourth metal component 14 and a fifth metal component 15, the second metal component 12, the third metal component 13, the fourth metal component 14 and the The five metal components 15 are all set to two, and the two second metal components 12 are respectively connected to the two ends of the first metal component 11, and the two third metal components 13 are respectively connected to the two second metal components. The components 12 are connected, the two fourth metal components 14 are respectively connected to the two third metal components 13, and the two fifth metal components 15 are respectively connected to the two fourth metal components 14.
  • the cross-section of the first metal component 11 is a rectangle
  • the vertical cross-section of the second metal component 12 is a trapezoid
  • the upper base of the trapezoid is connected with the first metal component 11
  • the lower base of the trapezoid is connected with the said first metal component 11.
  • the third metal component 13 is connected
  • the cross section of the third metal component 13 is rectangular
  • several grooves 2 are arranged on the first metal component 11, the second metal component 12 and the third metal component 13 .
  • the outer surface of the fourth metal component 14 is recessed in the direction of the long axis of the metal base
  • the cross section of the fifth metal component 15 is rectangular. fiber material for anchoring.
  • the first metal component 11, the second metal component 12, the third metal component 13, the fourth metal component 14 and the fifth metal component 15 are along the metal
  • the length ratio in the long axis direction of the base is 100:20:4:4:62.
  • the length of the first metal component 11 along the long axis of the metal base is 100 mm
  • the length of the second metal component 12 along the long axis of the metal base is 20 mm
  • the third metal component 13 is 20 mm along the long axis of the metal base.
  • direction length is 4 mm
  • the length of the fourth metal component 14 along the long axis direction of the metal base is 4 mm
  • the length of the fifth metal component 15 along the long axis direction of the metal base is 62 mm.
  • the present invention also proposes a method for manufacturing a fiber-reinforced metal composite component, the method comprising:
  • Step S100 opening a number of grooves on the metal substrate at a preset angle to the horizontal direction, and selecting a fiber material that satisfies a predetermined elastic modulus of the fiber material;
  • Step S200 filling a predetermined amount of the fiber material in several grooves to obtain a fiber-reinforced metal composite component.
  • the fiber-reinforced metal composite member in this embodiment, firstly, several grooves with preset angles to the horizontal direction are opened on the metal matrix, and the fiber material that satisfies the elastic modulus of the fiber material is selected, and then Several of the grooves are filled with the amount of the fiber material to obtain a fiber-reinforced metal composite component.
  • a number of grooves with preset angles to the horizontal direction are arranged on the metal base, and fiber materials are filled in the number of grooves, when the metal composite member is subjected to tensile stress and shrinks, it will pass through the preset angle.
  • the fiber materials in several grooves in the groove share the tensile stress effect, avoiding necking or allowing the entire metal composite component to neck in different positions, avoiding local necking and fracture of the metal composite material in one position, and improving the resistance of the metal composite material. Shapeshifting ability.
  • step S100 it also includes:
  • Step M100 obtaining the local engineering stress-strain curve of the necked section corresponding to the metal substrate, and determining the axial fracture strain at the necked area and the axial fractured strain at the necked area according to the local engineering stress-strain curve of the necked section The corresponding local stress of the section and the slope of the strengthening section of the local engineering stress-strain curve of the necked section;
  • Step M200 obtain the initial cross-sectional area of the metal matrix, and determine the elastic modulus of the fiber material according to the initial cross-sectional area, the axial fracture strain at the necking, the local stress of the cross-section, and the slope of the reinforcing section , preset angle and fiber material consumption; wherein, the formula for determining the modulus of elasticity of the fiber material, the preset angle and the fiber material consumption is:
  • is the preset angle
  • a frp is the amount of fiber material
  • E frp is the elastic modulus of fiber material
  • a metal is the initial cross-sectional area of the metal matrix
  • r p0 is the distance from the center of the metal matrix to the center of the fiber material
  • r b0 is the radius of the metal substrate
  • ⁇ y, fracture is the axial local area of the necking
  • ⁇ local ( ⁇ y, fracture ) is the axial fracture strain ⁇ y at the constriction
  • E hardening is the slope of the strengthening segment of the local engineering stress-strain curve of the necking section.
  • the metal matrix to be reinforced when constructing a metal composite member, firstly select the metal matrix to be reinforced, and determine the axial fracture strain at the necking part, the axial fracture strain at the necking part according to the local engineering stress-strain curve of the necking section corresponding to the metal matrix.
  • the local engineering stress-strain curve diagram of the necking section corresponding to the metal matrix the axial fracture strain ⁇ y at the necking place , and fracture refers to the local axial fracture strain at the necking place, and the necking place
  • the axial fracture strain ⁇ y at the constriction the local stress of the section corresponding to the fracture ⁇ local ( ⁇ y, fracture ) refers to the local stress of the section under the axial fracture strain ⁇ y of the metal matrix at the constriction, ⁇ y, fracture, ⁇ y, fracture , ⁇ local ( ⁇ y, fracture ) and the strengthening slope E hardening of the local engineering stress-strain curve of the necked section can be determined from the local engineering stress-strain curve of the necked section corresponding to the metal matrix.
  • the initial cross-sectional area of the metal matrix is further obtained, and according to the initial cross-sectional area, the axial The fracture strain, the local stress of the section and the slope of the reinforcing section determine the elastic modulus of the fiber material, the preset angle and the amount of the fiber material; wherein, the elastic modulus of the fiber material, the preset angle and the fiber
  • the formula for determining the amount of material is:
  • a frp is the amount of fiber material
  • E frp is the elastic modulus of fiber material
  • a metal is the initial cross-sectional area of the metal matrix
  • r p0 is the distance from the center of the metal matrix to the center of the fiber material
  • r b0 is The radius of the metal substrate, ⁇ y, fracture , ⁇ local ( ⁇ y, fracture ) and E hardening are determined by the local engineering stress-strain curve of the metal substrate corresponding to the necking section
  • ⁇ y, fracture is the axial local axis of the necking
  • ⁇ local ( ⁇ y, fracture ) is the axial fracture strain ⁇ y at the constriction
  • E hardening is the slope of the strengthening segment of the local engineering stress-strain curve of the necking section.
  • the surface of the several grooves and/or the metal base is sandblasted. After sand blasting, fiber materials are filled in several grooves, and the fiber materials are fixed.
  • glue can be used to fix the fiber materials in several of the grooves, and the glue can be construction-type structural glue or organic glue such as epoxy glue.
  • a number of grooves at 45° to the horizontal direction are opened on the metal substrate, and the grooves are filled with a large-strain fiber material (LRS-FRP) with an elastic modulus of 8GPa and a limit strain of 10%, to obtain a fiber-reinforced metal Composite member1.
  • LRS-FRP large-strain fiber material
  • a number of grooves at 30° to the horizontal direction are opened on the metal substrate, and the grooves are filled with glass fiber material (GFRP) with an elastic modulus of 55GPa and a limit strain of 3%, to obtain a fiber-reinforced metal composite component 2 .
  • GFRP glass fiber material
  • the present invention discloses a fiber-reinforced metal composite component and its manufacturing method, including: a metal base, a number of grooves with preset angles to the horizontal direction are arranged on the metal base, and the number of grooves are filled with There are fiber materials.
  • the present invention is based on the fact that the deformation of the metal material necking increases and the tensile bearing capacity decreases, while the bearing capacity of the fiber material increases with the increase of its tensile deformation.
  • the fiber material and the metal in several grooves with preset angles share the burden.
  • the increase in the bearing capacity of the fiber material compensates for the decline in the bearing capacity of the metal material, thereby avoiding the occurrence of necking or necking in multiple places, and avoiding local necking of metal composite components at one position And fracture, improve the deformation ability of metal composite components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本发明公开了一种基于纤维增强的金属复合构件及其制造方法,包括:金属基体,金属基体上设置有与水平方向呈预设角度的若干凹槽,若干凹槽内填充有纤维材料。本发明基于金属材料颈缩发生处变形增加但抗拉承载力下降,而纤维材料的承载力随其拉伸变形增加而增加的特性,通过预设角度的若干凹槽中的纤维材料与金属共同承担拉力的作用。在颈缩发生处,通过纤维材料的承载力增强弥补金属材料承载力的下降,从而避免颈缩的发生或在多处发生颈缩,避免金属复合构件在一个位置发生局部颈缩而断裂,提高金属复合构件的变形能力。

Description

一种基于纤维增强的金属复合构件及其制造方法 技术领域
本发明涉及复合材料技术领域,尤其涉及的是一种基于纤维增强的金属复合构件及其制造方法。
背景技术
金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称,包括纯金属、合金、金属间化合物和特种金属材料等,金属材料由于具有耐高温性、抗腐蚀性、高延展性等特点,成为国民经济、人民日常生活及国防工作、科学技术发展必不可少的基础材料和重要的战略物资。
颈缩是指在拉应力作用下,材料发生局部截面缩减的现象,现有金属材料由于有效截面积的微小差异,在受到拉应力时,容易在局部位置发生颈缩而断裂。
因此,现有技术还有待改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种基于纤维增强的金属复合构件及其制造方法,旨在解决现有金属材料在受到拉应力时,容易在局部位置发生颈缩而断裂的问题。
本发明解决问题所采用的技术方案如下:
第一方面,本发明实施例提供一种基于纤维增强的金属复合构件,其特征在于,包括:金属基体,所述金属基体上设置有与水平方向呈预设角度的若干凹槽,若干所述凹槽内填充有纤维材料。
所述的基于纤维增强的金属复合构件,其中,所述预设角度为15°~60°或120°~165°。
所述的基于纤维增强的金属复合构件,其中,所述纤维材料的极限应变为1%~15%。
所述的基于纤维增强的金属复合构件,其中,若干所述凹槽的形状相同,若干所述凹槽的横截面形状为圆形、正方形或长方形。
所述的基于纤维增强的金属复合构件,其中,若干所述凹槽设置于所述金属基体表面,且若干所述凹槽沿所述金属基体的长轴方向等间距设置。
所述的基于纤维增强的金属复合构件,其中,若干所述凹槽设置于所述金属基体内部。
所述的基于纤维增强的金属复合构件,其中,所述预设角度、纤维材料用量以及纤维材料刚度满足公式:
Figure PCTCN2022073968-appb-000001
Figure PCTCN2022073968-appb-000002
其中,
Figure PCTCN2022073968-appb-000003
Figure PCTCN2022073968-appb-000004
Figure PCTCN2022073968-appb-000005
,α为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径,ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。
第二方面,本发明实施例提供一种上述所述的基于纤维增强的金属复合构件的制造 方法,其中,包括:
在金属基体上开设与水平方向呈预设角度的若干凹槽,并选择满足预先确定的纤维材料弹性模量的纤维材料;
在若干所述凹槽内填充预先确定的纤维材料用量的所述纤维材料,得到基于纤维增强的金属复合构件。
所述的基于纤维增强的金属复合构件的制造方法,其中,所述在金属基体上开设与水平方向呈预设角度的若干凹槽的步骤之前包括:
获取所述金属基体对应的颈缩截面的局部工程应力应变曲线,根据所述颈缩截面的局部工程应力应变曲线确定颈缩处轴向断裂应变、所述颈缩处轴向断裂应变对应的截面局部应力以及颈缩截面的局部工程应力应变曲线的强化段斜率;
获取所述金属基体的初始横截面面积,根据所述初始横截面面积、所述颈缩处轴向断裂应变、所述截面局部应力以及所述强化段斜率,确定纤维材料弹性模量、预设角度以及纤维材料用量;其中,所述纤维材料的弹性模量、所述预设角度以及所述纤维材料用量的确定公式为:
Figure PCTCN2022073968-appb-000006
Figure PCTCN2022073968-appb-000007
其中,
Figure PCTCN2022073968-appb-000008
Figure PCTCN2022073968-appb-000009
Figure PCTCN2022073968-appb-000010
Figure PCTCN2022073968-appb-000011
α为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径,ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。
所述的基于纤维增强的金属复合构件的制造方法,其中,所述在若干所述凹槽内填充纤维材料用量的所述纤维材料的步骤之前包括:
对若干所述凹槽和/或所述金属基体的表面进行喷砂处理。
本发明的有益效果:本发明的金属复合构件通过预设角度的若干凹槽中的纤维材料共同承担拉应力作用,避免局部的颈缩或整个金属复合构件在不同位置发生颈缩,避免金属复合材料在一个位置发生局部颈缩而断裂,提高金属复合材料的变形能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的基于纤维增强的金属复合构件的结构示意图;
图2是本发明实施例提供的金属基体对应的颈缩截面的局部工程应力应变曲线图;
图3是本发明实施例提供的若干凹槽设置于金属基体内部时,基于纤维增强的金属复合构件的侧视图;
图4是本发明实施例1和实施例2中提供的金属复合构件的应力应变曲线图。
附图中各标记:1、金属基体;2、凹槽;11、第一金属组件;12、第二金属组件;13、第三金属组件;14、第四金属组件;15、第五金属组件。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
颈缩是指在拉应力作用下,材料发生局部截面缩减的现象,现有金属材料由于有效截面积的微小差异,在受到拉应力时,容易在局部位置发生颈缩,然后断裂,即现有金属材料的抗变形能力差。现有方法为了提高金属材料的强度,直接在金属材料外表面包裹碳纤维增强复合材料(Carbon Fibre Reinforced Polymers,CFRP)或玻璃纤维增强塑料(Glass Fiber Reinforced Polymers,GFRP),这种方法虽然可以提高整个金属材料的强度,但当拉伸到纤维材料的极限应变时金属材料外部的纤维材料就都断裂了,金属材料的破坏由纤维材料决定,尽管金属材料的强度提高了,但金属材料的延性并没有提升。
为了解决现有技术的问题,本实施例提供了一种基于纤维增强的金属复合构件,如图1所示,所述金属复合构件包括:金属基体1,所述金属基体1上设置有与水平方向呈预设角度的若干凹槽2,若干所述凹槽2内填充有纤维材料。本发明基于金属材料颈缩发生处变形增加但抗拉承载力下降,而纤维材料的承载力随其拉伸变形增加而增加的特性,通过预设角度的若干凹槽中的纤维材料与金属共同承担拉力的作用,在颈缩发生处,通过纤维材料的承载力增强弥补金属材料承载力的下降,从而避免颈缩的发生或在多处发生颈缩,避免金属复合构件在一个位置发生局部颈缩而断裂,提高金属复合构件的变形能力。
在一具体实现方式中,所述预设角度、纤维材料用量以及纤维材料弹性模量满足公式:
Figure PCTCN2022073968-appb-000012
Figure PCTCN2022073968-appb-000013
其中,
Figure PCTCN2022073968-appb-000014
Figure PCTCN2022073968-appb-000015
Figure PCTCN2022073968-appb-000016
α为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径(如图3所示),ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。如图2所示,为所述金属基体1对应的颈缩截面的局部工程应力应变曲线图,上述公式中的ε y,fracture,σ localy,fracture)和E hardening可从金属基体1对应的颈缩截面的局部工程应力应变曲线确定,对于已知材料和形状的金属基体1,初始横截面面积A metal、颈缩处轴向断裂应变ε y,fracture、截面局部应力σ localy,fracture)以及强化段斜率E hardening都已知,即可根据上述公式确定纤维材料弹性模量E frp、预设角度α、以及纤维材料用量A frp。本实施例中由于在金属基体1上设置与水平方向呈预设角度的若干凹槽2,并在 若干凹槽2中填充纤维材料,当金属复合构件在受到拉应力而产生颈缩时,通过预设角度的若干凹槽2中的纤维材料共同承担拉应力作用,避免颈缩或让整个金属复合构件在不同位置发生颈缩,避免金属复合材料在一个位置发生局部颈缩而断裂,提高金属复合材料的抗变形能力。
在一具体实现方式中,所述金属基体1的初始横截面面积A metal指所述金属基体1未受到拉应力时对应的横截面面积,其与所述金属基体1的初始横截面形状有关,例如,当所述金属基体1的初始横截面形状为圆形时,所述初始横截面面积A metal为圆的面积,当所述金属基体1的初始横截面形状为长方形或正方形时,所述初始横截面面积A metal为长方形或正方形的面积。
继续参照图1所示,若干所述凹槽2设置于所述金属基体1表面,若干所述凹槽2沿所述金属基体1的长轴方向等间距设置,所述预设角度α为各个所述凹槽2的长轴方向与水平方向的夹角,各个所述凹槽2与水平方向的预设角度α为15°~60°或120°~165°,各个所述凹槽2与水平方向的预设角度α可以相同,例如各个所述凹槽2与水平方向的预设角度α均为30°、35°或45°等;各个所述凹槽2与水平方向的预设角度α也可以不同,例如金属基体1上设置有三个凹槽2,一个凹槽2与水平方向的预设角度α为30°,另一个凹槽2与水平方向的预设角度α为35°,还有一个凹槽2与水平方向的预设角度α为45°,或者其中两个凹槽2与水平方向的预设角度α为30°,另一个凹槽2与水平方向的预设角度α为35°。将若干所述凹槽2与水平方向的夹角设置在该范围内,能够使金属复合材料在受到拉应力,若干凹槽2中的纤维材料共同承担拉应力,从而避免颈缩或让整个金属复合构件在不同位置发生颈缩,避免金属复合材料在一个位置发生局部颈缩而断裂。
参照图3所示,在本发明另一实施例中,若干所述凹槽2设置于所述金属基体1内部,且若干所述凹槽2沿所述金属基体1的一端贯穿设置,在填充纤维材料时,将纤维材料沿所述金属基体1的一端插入若干所述凹槽,当金属复合构件受到拉应力而产生颈缩时,通过预设角度的若干凹槽2中的纤维材料共同承担拉应力作用,也避免金属复合材料在一个位置发生局部颈缩而断裂,提高金属复合材料的抗变形能力。
在一具体实施方式中,若干所述凹槽2的形状可以根据需要进行设置,若干所述凹槽2的横截面形状可以为圆形、正方形或长方形,各个所述凹槽2的开口宽度为2.5~3.0mm,若干所述凹槽2与所述纤维材料接触的面上做喷砂处理,通过将凹槽2的开口宽度设置在该范围内以及在凹槽2与纤维材料接触面上设置喷砂层,能够使纤维材料与 若干凹槽2之间粘结更加牢固,避免纤维材料从凹槽2内滑出。
在一具体实施方式中,各个所述凹槽2内填充的所述纤维材料的体积与各个所述凹槽2的体积相等,即若干所述凹槽2被所述纤维材料完全填充,各个所述凹槽2的体积之和为所述金属基体1的体积的35%~55%。所述纤维材料的弹性模量为8~20GPa,所述纤维材料的极限应变为1%~15%,通过预设角度与满足该弹性模量和极限应变的纤维材料相配合,能够限制颈缩区域的变形,使整个金属复合构件上多处发生颈缩,避免金属复合材料在一个位置发生局部颈缩而断裂。
继续参照图1所示,所述金属基体1可以是纯金属、合金、金属间化合物和特种金属材料等,所述金属基体1可以是圆形的筋材或板材,所述金属基体1包括第一金属组件11、第二金属组件12、第三金属组件13、第四金属组件14以及第五金属组件15,所述第二金属组件12、第三金属组件13、第四金属组件14以及第五金属组件15均设置为两个,两个所述第二金属组件12分别与所述第一金属组件11两端连接,两个所述第三金属组件13分别与两个所述第二金属组件12连接,两个所述第四金属组件14分别与两个所述第三金属组件13连接,两个所述第五金属组件15分别与两个所述第四金属组件14连接,所述第一金属组件11的横截面为长方形,所述第二金属组件12的垂直横截面为梯形,所述梯形的上底与所述第一金属组件11连接,所述梯形的下底与所述第三金属组件13连接,第三金属组件13的横截面为长方形,若干所述凹槽2设置于所述第一金属组件11、所述第二金属组件12和所述第三金属组件13上。所述第四金属组件14的外表面向所述金属基底的长轴方向凹陷,所述第五金属组件15的横截面为长方形,通过所述第四金属组件14可以对若干所述凹槽2中的纤维材料进行锚固。
在一具体实施方式中,所述第一金属组件11、所述第二金属组件12、所述第三金属组件13、所述第四金属组件14以及所述第五金属组件15沿所述金属基底长轴方向的长度比为100:20:4:4:62。例如,第一金属组件11沿所述金属基底长轴方向的长度为100mm,第二金属组件12沿所述金属基底长轴方向的长度为20mm,第三金属组件13沿所述金属基底长轴方向的长度为4mm,第四金属组件14沿所述金属基底长轴方向的长度为4mm,第五金属组件15沿所述金属基底长轴方向的长度为62mm。
基于上述纤维增强的金属复合构件,本发明还提出了一种基于纤维增强的金属复合构件的制造方法,所述方法包括:
步骤S100、在金属基体上开设与水平方向呈预设角度的若干凹槽,并选择满足预先确定的纤维材料弹性模量的纤维材料;
步骤S200、在若干所述凹槽内填充预先确定的纤维材料用量的所述纤维材料,得到基于纤维增强的金属复合构件。
具体地,为了制造上述基于纤维增强的金属复合构件,本实施例中首先在金属基体上开设与水平方向呈预设角度的若干凹槽,并选择满足纤维材料弹性模量的纤维材料,然后在若干所述凹槽内填充纤维材料用量的所述纤维材料,得到基于纤维增强的金属复合构件。本实施例中由于在金属基体上设置与水平方向呈预设角度的若干凹槽,并在若干凹槽中填充纤维材料,当金属复合构件在受到拉应力而产生颈缩时,通过预设角度的若干凹槽中的纤维材料共同承担拉应力作用,避免颈缩或让整个金属复合构件在不同位置发生颈缩,避免金属复合材料在一个位置发生局部颈缩而断裂,提高金属复合材料的抗变形能力。
在一具体实施方式中,步骤S100之前还包括:
步骤M100、获取所述金属基体对应的颈缩截面的局部工程应力应变曲线,根据所述颈缩截面的局部工程应力应变曲线确定颈缩处轴向断裂应变、所述颈缩处轴向断裂应变对应的截面局部应力以及颈缩截面的局部工程应力应变曲线的强化段斜率;
步骤M200、获取所述金属基体的初始横截面面积,根据所述初始横截面面积、所述颈缩处轴向断裂应变、所述截面局部应力以及所述强化段斜率,确定纤维材料弹性模量、预设角度以及纤维材料用量;其中,所述纤维材料的弹性模量、所述预设角度以及所述纤维材料用量的确定公式为:
Figure PCTCN2022073968-appb-000017
Figure PCTCN2022073968-appb-000018
其中,
Figure PCTCN2022073968-appb-000019
Figure PCTCN2022073968-appb-000020
Figure PCTCN2022073968-appb-000021
Figure PCTCN2022073968-appb-000022
α为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径,ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。
本实施例中在构造金属复合构件时,首先选择待增强的金属基体,根据所述金属基体对应的颈缩截面的局部工程应力应变曲线确定颈缩处轴向断裂应变、所述颈缩处轴向断裂应变对应的截面局部应力以及颈缩截面的局部工程应力应变曲线的强化段斜率。如图2所示,为所述金属基体对应的颈缩截面的局部工程应力应变曲线图,颈缩处轴向断裂应变ε y,fracture是指颈缩处轴向局部的轴向断裂应变,颈缩处轴向断裂应变ε y,fracture对应的截面局部应力σ localy,fracture)指金属基体在颈缩处轴向断裂应变ε y,fracture下的截面局部应力,ε y,fracture、σ localy,fracture)以及颈缩截面的局部工程应力应变曲线的强化段斜率E hardening可从金属基体对应的颈缩截面的局部工程应力应变曲线确定。
确定颈缩处轴向断裂应变、所述截面局部应力以及所述强化段斜率后,进一步获取所述金属基体的初始横截面面积,并根据所述初始横截面面积、所述颈缩处轴向断裂应变、所述截面局部应力以及所述强化段斜率,确定纤维材料弹性模量、预设角度以及纤维材料用量;其中,所述纤维材料的弹性模量、所述预设角度以及所述纤维材料用量的确定公式为:
Figure PCTCN2022073968-appb-000023
Figure PCTCN2022073968-appb-000024
其中,
Figure PCTCN2022073968-appb-000025
Figure PCTCN2022073968-appb-000026
Figure PCTCN2022073968-appb-000027
α
为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径,ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。
确定纤维材料弹性模量、预设角度以及纤维材料用量后,按照所述预设角度在所述金属基体上开设若干凹槽,并在若干所述凹槽内填充满足所述纤维材料用量和所述纤维材料弹性模量的纤维材料,然后对若干所述凹槽中的纤维材料进行固定,得到基于纤维增强的金属复合构件。
为了使纤维材料粘结更加牢固,本实施例中在若干所述凹槽内填充纤维材料用量的所述纤维材料之前,对若干所述凹槽和/或所述金属基体的表面进行喷砂处理,喷砂处理后在若干所述凹槽内填充纤维材料,并对纤维材料进行固定。在一具体实施例中,可采 用胶水对若干所述凹槽中的纤维材料进行固定,所述胶水可以采用建筑类结构胶水或有机胶水如环氧树脂胶水。
下面通过具体实施例对本发明进行进一步的解释说明。
实施例1
在金属基底上开设与水平方向呈45°的若干凹槽,并在凹槽内填充弹性模量为8GPa,极限应变为10%的大应变纤维材料(LRS-FRP),得到基于纤维增强的金属复合构件1。
实施例2
在金属基底上开设与水平方向呈30°的若干凹槽,并在凹槽内填充弹性模量为55GPa,极限应变为3%的玻璃纤维材料(GFRP),得到基于纤维增强的金属复合构件2。
使用拉力试验机对金属复合构件1、金属复合构件2以及金属基体进行拉力测试,得到如图4所述的应力应变曲线图,从图4可以看出,金属复合构件2的强度相对于金属基底显著提高,但其延性并没有改变,而金属复合构件1的强度和延性相对于金属基体都有显著提高。
综上所述,本发明公开了一种基于纤维增强的金属复合构件及其制造方法,包括:金属基体,金属基体上设置有与水平方向呈预设角度的若干凹槽,若干凹槽内填充有纤维材料。本发明基于金属材料颈缩发生处变形增加抗拉承载力下降,而纤维材料的承载力随其拉伸变形增加而增加的特性,通过预设角度的若干凹槽中的纤维材料与金属共同承担拉力的作用,在颈缩发生处,通过纤维材料的承载力增强弥补金属材料承载力的下降,从而避免颈缩的发生或在多处发生颈缩,避免金属复合构件在一个位置发生局部颈缩而断裂,提高金属复合构件的变形能力。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种基于纤维增强的金属复合构件,其特征在于,包括:金属基体,所述金属基体上设置有与水平方向呈预设角度的若干凹槽,若干所述凹槽内填充有纤维材料。
  2. 根据权利要求1所述的基于纤维增强的金属复合构件,其特征在于,所述预设角度为15°~60°或120°~165°。
  3. 根据权利要求1所述的基于纤维增强的金属复合构件,其特征在于,所述纤维材料的极限应变为1%~15%。
  4. 根据权利要求1所述的基于纤维增强的金属复合构件,其特征在于,若干所述凹槽的形状相同,若干所述凹槽的横截面形状为圆形、正方形或长方形。
  5. 根据权利要求1所述的基于纤维增强的金属复合构件,其特征在于,若干所述凹槽设置于所述金属基体表面,且若干所述凹槽沿所述金属基体的长轴方向等间距设置。
  6. 根据权利要求1所述的基于纤维增强的金属复合构件,其特征在于,若干所述凹槽设置于所述金属基体内部。
  7. 根据权利要求1所述的基于纤维增强的金属复合构件,其特征在于,所述预设角度、纤维材料用量以及纤维材料刚度满足公式:
    Figure PCTCN2022073968-appb-100001
    Figure PCTCN2022073968-appb-100002
    其中,
    Figure PCTCN2022073968-appb-100003
    Figure PCTCN2022073968-appb-100004
    Figure PCTCN2022073968-appb-100005
    α为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径,ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。
  8. 一种如权利要求1~7任一项所述的基于纤维增强的金属复合构件的制造方法,其特征在于,包括:
    在金属基体上开设与水平方向呈预设角度的若干凹槽,并选择满足预先确定的纤维材料弹性模量的纤维材料;
    在若干所述凹槽内填充预先确定的纤维材料用量的所述纤维材料,得到基于纤维增强的金属复合构件。
  9. 根据权利要求8所述的基于纤维增强的金属复合构件的制造方法,其特征在于,所述在金属基体上开设与水平方向呈预设角度的若干凹槽的步骤之前包括:
    获取所述金属基体对应的颈缩截面的局部工程应力应变曲线,根据所述颈缩截面的局部工程应力应变曲线确定颈缩处轴向断裂应变、所述颈缩处轴向断裂应变对应的截面局部应力以及颈缩截面的局部工程应力应变曲线的强化段斜率;
    获取所述金属基体的初始横截面面积,根据所述初始横截面面积、所述颈缩处轴向断裂应变、所述截面局部应力以及所述强化段斜率,确定纤维材料弹性模量、预设角度以及纤维材料用量;其中,所述纤维材料的弹性模量、所述预设角度以及所述纤维材料用量的确定公式为:
    Figure PCTCN2022073968-appb-100006
    Figure PCTCN2022073968-appb-100007
    其中,
    Figure PCTCN2022073968-appb-100008
    Figure PCTCN2022073968-appb-100009
    Figure PCTCN2022073968-appb-100010
    α为预设角度,A frp为纤维材料用量,E frp为纤维材料弹性模量,A metal为所述金属基体的初始横截面面积,r p0为金属基体中心到纤维材料中心的距离,r b0为金属基体的半径,ε y,fracture,σ localy,fracture)和E hardening由金属基体对应的颈缩截面的局部工程应力应变曲线确定,ε y,fracture为颈缩处轴向局部的轴向断裂应变,σ localy,fracture)为颈缩处轴向断裂应变ε y,fracture对应的截面局部应力,E hardening为颈缩截面的局部工程应力应变曲线的强化段斜率。
  10. 根据权利要求8所述的基于纤维增强的金属复合构件的制造方法,其特征在于,所述在若干所述凹槽内填充纤维材料用量的所述纤维材料的步骤之前包括:
    对若干所述凹槽和/或所述金属基体的表面进行喷砂处理。
PCT/CN2022/073968 2021-06-23 2022-01-26 一种基于纤维增强的金属复合构件及其制造方法 WO2022267471A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110699780.3 2021-06-23
CN202110699780.3A CN113283037A (zh) 2021-06-23 2021-06-23 一种基于纤维增强的金属复合构件及其制造方法

Publications (1)

Publication Number Publication Date
WO2022267471A1 true WO2022267471A1 (zh) 2022-12-29

Family

ID=77285576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073968 WO2022267471A1 (zh) 2021-06-23 2022-01-26 一种基于纤维增强的金属复合构件及其制造方法

Country Status (2)

Country Link
CN (1) CN113283037A (zh)
WO (1) WO2022267471A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113283037A (zh) * 2021-06-23 2021-08-20 深圳大学 一种基于纤维增强的金属复合构件及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293734A (ja) * 2000-04-12 2001-10-23 Shin Kobe Electric Mach Co Ltd 金属部品を鋳込み成形した樹脂成形品及びその製造法
CN1873236A (zh) * 2006-05-26 2006-12-06 中国舰船研究设计中心 一种纤维复合材料壳板与金属构件的连接结构
CN202348852U (zh) * 2011-11-07 2012-07-25 中国人民解放军海军工程大学 纤维增强复合材料层合板结构边缘与金属件的连接结构
CN104454854A (zh) * 2014-11-28 2015-03-25 中国人民解放军海军工程大学 复合材料层板与金属件的连接结构
CN107420386A (zh) * 2017-07-31 2017-12-01 中国人民解放军海军工程大学 复合材料与金属件连接结构
CN107740095A (zh) * 2017-10-19 2018-02-27 西安科技大学 金属复合耐磨板
CN113283037A (zh) * 2021-06-23 2021-08-20 深圳大学 一种基于纤维增强的金属复合构件及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293734A (ja) * 2000-04-12 2001-10-23 Shin Kobe Electric Mach Co Ltd 金属部品を鋳込み成形した樹脂成形品及びその製造法
CN1873236A (zh) * 2006-05-26 2006-12-06 中国舰船研究设计中心 一种纤维复合材料壳板与金属构件的连接结构
CN202348852U (zh) * 2011-11-07 2012-07-25 中国人民解放军海军工程大学 纤维增强复合材料层合板结构边缘与金属件的连接结构
CN104454854A (zh) * 2014-11-28 2015-03-25 中国人民解放军海军工程大学 复合材料层板与金属件的连接结构
CN107420386A (zh) * 2017-07-31 2017-12-01 中国人民解放军海军工程大学 复合材料与金属件连接结构
CN107740095A (zh) * 2017-10-19 2018-02-27 西安科技大学 金属复合耐磨板
CN113283037A (zh) * 2021-06-23 2021-08-20 深圳大学 一种基于纤维增强的金属复合构件及其制造方法

Also Published As

Publication number Publication date
CN113283037A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2022267471A1 (zh) 一种基于纤维增强的金属复合构件及其制造方法
Wang et al. Seismic performance of CFRP-retrofitted large-scale rectangular RC columns under lateral loading in different directions
WO2021077667A1 (zh) 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法
EP2256254A2 (en) Connecting member of construction machine
JPS6287466A (ja) セラミツクマトリクスに金属フアイバが一体結合された高靭性セラミツク基複合材
CN201695573U (zh) 一种新型预应力frp复合筋混凝土梁
CN108149848A (zh) Frp预应力筋的复合式锚具及其安装方法
Liang et al. Evaluation of the flexural behavior and serviceability of engineered cementitious composite-coral aggregate concrete beams reinforced with BFRP bars
CN203516979U (zh) 一种圆弧锁闭式复合材料电缆支架
Kong et al. Stress intensity factor of through-wall-cracked steel pipe wrapped with prestressed CFRP composites
CN116738753B (zh) 圆形截面偏心受压构件增大截面加固的承载力计算方法
Romanova et al. Load-bearing capacity of rigid-plastic reinforced shallow shells and plates
CN112417548B (zh) 一种圆钢管混凝土柱截面单向压弯极限承载提高方法
CN109555270A (zh) 一种套管-frp复合筋材及其制作方法
JP6558185B2 (ja) 桁構造体
CN107268887A (zh) 一种钢纤维网格铺层增强混凝土受弯构件
KR20090010734A (ko) 섬유보강콘크리트용 강섬유
CN106088644B (zh) 嵌入式预制梁防腐加固结构
CN107090945A (zh) 一种防错动工字梁、自预应力工字梁及自预应力跨度桥
KR20220116817A (ko) 고성능 강섬유
CN109487699B (zh) 一种钢板托-斜钉组合式界面连接钢-uhpc薄板组合结构体系
CN103726711B (zh) 一种输电线路单体柱式抱杆
TW201344018A (zh) 加勁型frp構件
JPH11128411A (ja) ゴルフクラブ
CN206256365U (zh) 拱桥

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18571564

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE