WO2021077667A1 - 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法 - Google Patents

抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法 Download PDF

Info

Publication number
WO2021077667A1
WO2021077667A1 PCT/CN2020/080323 CN2020080323W WO2021077667A1 WO 2021077667 A1 WO2021077667 A1 WO 2021077667A1 CN 2020080323 W CN2020080323 W CN 2020080323W WO 2021077667 A1 WO2021077667 A1 WO 2021077667A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
heterogeneous
fibers
level
stage
Prior art date
Application number
PCT/CN2020/080323
Other languages
English (en)
French (fr)
Inventor
马衍轩
徐亚茜
李梦瑶
于霞
朱鹏飞
宋晓辉
段玉莹
马巧玲
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to KR1020227007128A priority Critical patent/KR102451554B1/ko
Publication of WO2021077667A1 publication Critical patent/WO2021077667A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0052Mixtures of fibres of different physical characteristics, e.g. different lengths
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/04Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members the elements being stressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/022Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form combined with vibrating or jolting
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used

Definitions

  • the invention belongs to the field of construction, and relates to an explosion-resistant and impact-resistant fiber concrete and a preparation method thereof, in particular to an explosion-resistant and impact-resistant multi-stage heterogeneous fiber prefabricated composite concrete and a preparation method thereof.
  • Invention patent application 201810455234.3 discloses "a concrete prepared by synthetic double helix fibers and a preparation method thereof".
  • the application discloses the preparation of negative Poisson's ratio double helix fiber and a method for preparing concrete by adding a certain amount of double helix fiber.
  • This application incorporates double helix fiber into concrete, which can effectively control the non-structural cracks of concrete, so that double helix fiber concrete has a better reinforcement effect than traditional fiber concrete.
  • the negative Poisson's ratio effect of the double helix fiber structure involved in this application is relatively limited, and the negative Poisson's ratio effect only exists in the double helix fiber structure itself.
  • the chopped double helix fiber is doped into concrete, and the concrete
  • the overall negative Poisson's ratio effect is not obvious, and the impact resistance and explosion resistance of concrete cannot be greatly improved.
  • the application has a narrow range of fiber types, which cannot be applied to all fiber concrete types, and the fiber has unsatisfactory adhesion to the concrete matrix after being treated with unmodified epoxy resin, and it is easy to peel off from the concrete matrix under load. , Reduce the overall performance of concrete.
  • the present invention provides an explosion-resistant and impact-resistant multi-stage heterogeneous fiber precast composite concrete with a significant negative Poisson's ratio effect and a preparation method thereof.
  • the composite concrete optimizes the existing double helix fiber structure and improves its three-dimensional random distribution in the matrix.
  • the strength, toughness, energy consumption modulus and storage modulus of the anti-explosive and anti-impact multi-stage heterogeneous fiber precast composite concrete are greatly improved, and can effectively prevent materials The damage produces fragments and splashes, reducing secondary damage to personnel and building structures.
  • the multi-stage heterogeneous fiber preform with negative Poisson's ratio effect is formed by the warp and weft plain weaving of several multi-stage heterogeneous fibers.
  • the multi-level heterogeneous fiber is formed by winding multi-level auxiliary fibers on a core fiber; the core fiber is a low-modulus fiber, and the multi-level auxiliary fiber is a high-modulus fiber with different elastic moduli.
  • the distance between the core fibers of the adjacent multi-stage heterogeneous fibers is 20mm-100mm.
  • the elastic modulus of the low modulus fiber is 50MPa-50GPa; the elastic modulus of the high modulus fiber is ⁇ 50GPa.
  • the auxiliary fiber is wound on the core fiber in stages; the elastic modulus of the first-level auxiliary fiber is 50GPa-90GPa; the ratio of the elastic modulus of the Nth-level auxiliary fiber to the N-1th-level auxiliary fiber is 1.1-9.6, N is 2-7; the diameter ratio of the core fiber to the first-level auxiliary fiber is 1.5-3.0, the diameter ratio of the N-th auxiliary fiber to the N-1th auxiliary fiber is 0.5-0.9, and the core fiber and the N-th auxiliary fiber have a diameter ratio of 0.5-0.9.
  • the diameter ratio of the secondary fiber is 2.5-15.0, and the N is 2-7; the spiral angle of the first secondary fiber is 2°-8°, and the spiral angle of the N-th secondary fiber is increased compared with that of the N-1 secondary fiber. 3°-15°, the helix angle of the N-th auxiliary fiber is 5-60°, and N is 2-7.
  • the auxiliary fiber adopts a multi-level high modulus fiber with a gradient distribution of helix angle and elastic modulus, which has excellent durability and high tensile strength, can inhibit the propagation of cracks when microcracks occur, and promote the internal stress of concrete. Evenly distributed, thereby improving the compressive strength and impact resistance of concrete.
  • the low modulus fiber can improve the tensile, flexural, and shear properties of the fiber mesh fabric structure and the concrete matrix, and can fully play a role to avoid rapid damage to the matrix when macro cracks occur.
  • the low modulus fiber is polyethylene fiber, polyvinyl alcohol fiber, polyvinyl formal fiber, polyvinyl chloride fiber, polypropylene fiber, polyacrylonitrile fiber, polyamide fiber, polyimide fiber, polyvinyl One or more of ester fibers, polyurethane fibers, cellulose fibers, polytetrafluoroethylene fibers, and polyphenylene sulfide fibers;
  • the high modulus fibers are aramid fibers, polybenzimidazole fibers, polybenzobis Oxazole fiber, polyarylate fiber, ultra-high molecular weight polyethylene fiber, glass fiber, carbon fiber, steel fiber, continuous basalt fiber, silicon carbide fiber, magnesium oxide fiber, alumina fiber, silica fiber, quartz fiber, silicic acid One or more of aluminum fiber, graphene fiber and boron fiber.
  • the ratio of elastic modulus of the N-th level auxiliary fiber to the N-1 level auxiliary fiber is 1.1-7.5, and N is 2-7; the diameter ratio of the core fiber and the first-level auxiliary fiber is 1.5- 2.5, the diameter ratio of the core fiber to the N-th auxiliary fiber is 2.5-10.0, the helix angle of the N-th auxiliary fiber is 10-60°, and the N is 2-7.
  • the anti-blast and impact-resistant concrete is provided with multiple layers of parallel-arranged multi-level heterogeneous fiber preforms.
  • the projected included angle of the multi-level heterogeneous fiber between the adjacent layers of the multi-level heterogeneous fiber preform is 10°-90°.
  • the angle between the plane on which the multi-stage heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 5°-90°.
  • the interlayer spacing of the adjacent multi-stage heterogeneous fiber preforms is 20mm-100mm.
  • the multi-stage heterogeneous fiber prefab structure can maintain good toughness, reduce the development path of concrete cracks, delay the formation and propagation of microscopic cracks in the matrix, thereby enhancing the anti-blast and impact resistance of concrete .
  • the preparation method of the anti-explosive and anti-impact multi-stage heterogeneous fiber prefabricated composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the obtained N-level heterogeneous fiber is woven into a warp-weft plain weaving structure according to the warp and weft direction through a warp-weft plain weaving method, adjacent to the core of the multi-stage heterogeneous fiber
  • the distance between the fibers is 20mm-100mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until the curing is completed to obtain a grade N heterogeneous fiber preform. Is 2-7;
  • Construction preparation of anti-explosive and anti-impact multi-stage heterogeneous fiber precast composite concrete pour the mixed concrete slurry into the mold to a height of 20mm-100mm, and place a layer on the surface of the concrete slurry that has not cured.
  • Lay the multi-stage heterogeneous fiber preform and then repeat the above steps of pouring and laying, vibrating and compacting, curing and forming.
  • the projected included angle of the fibers between each layer of the fiber preform is 10°-90°
  • the interlayer spacing of the adjacent heterogeneous fiber network structure is 20mm-100mm, that is, the explosion-resistant and impact-resistant multi-level difference is obtained.
  • High-quality fiber prefabricated composite concrete is 10°-90°, and the interlayer spacing of the adjacent heterogeneous fiber network structure is 20mm-100mm, that is, the explosion-resistant and impact-resistant multi-level difference is obtained.
  • the epoxy resin is bisphenol A epoxy resin
  • the curing agent is one or more of polyamide, polyester resin, and aliphatic amine curing agent
  • the coupling agent is titanate One or more of coupling agent and silane coupling agent.
  • Anti-explosion and impact resistance principle When the multi-level heterogeneous fiber preform is impacted by non-parallel external forces, the preform tends to be in a straightened state due to the higher elastic modulus and lower breaking elongation of the auxiliary fibers of each level in the preform ; The core fiber tends to be in a spiral state due to its lower elastic modulus and greater elongation. Among them, the diameter of the core fiber is greater than the diameter of the auxiliary fiber.
  • the spiral fiber structure appears to widen in the transverse direction, while the fiber preform shows that the grid latitude and longitude pores shrink; therefore, when cracks occur in the concrete, it not only maintains It improves the integrity of the concrete, prevents the fragmentation of the concrete, and improves the concrete's anti-strong dynamic load performance, structural safety and stability.
  • the multi-stage heterogeneous fiber preform of the present invention adopts a warp and weft flat-woven network of fiber bundles constructed by multi-stage fibers with different elastic modulus, which not only saves cost, but also exerts the advantages of different fibers; through the fiber gradient structure
  • the design increases the mechanical properties such as the storage modulus of the fiber network, and establishes a dynamic fiber linkage mechanism through the latitude and longitude network nodes, so that the multi-stage heterogeneous fiber preform has a more significant negative Poisson's ratio effect.
  • the anti-explosion and impact-resistant concrete through the gradient spiral design of the multi-level auxiliary fibers in the preform and the three-dimensional layered arrangement, makes the negative Poisson's ratio effect of the preform significantly improved and in the matrix Effectively, in the direction of non-parallel loading, it not only greatly improves the static load resistance, such as compression, tensile, and shear resistance of the same mix proportion of plain concrete, but also makes the same proportion of plain concrete's anti-explosion and impact resistance performance Can be increased to 135.4%.
  • the coupling agent is added to the epoxy resin to improve the interface structure of fiber and fiber, fiber and concrete, enhance the bonding force between various interfaces, and make the interface bonding strength
  • the mechanical properties are improved.
  • the properties of the fiber surface are similar to the concrete matrix, which greatly improves the fiber's reinforcement, toughness and crack resistance.
  • the tensile strength and shear strength of concrete can reach 26.5MPa and 17.8MPa respectively.
  • the mechanical strength has been greatly improved.
  • Figure 1 is a schematic diagram of the structure of a tertiary heterogeneous fiber, in which: a is a core fiber, b 1 is a primary secondary fiber, b 2 is a secondary secondary fiber, b 3 is a tertiary secondary fiber, and ⁇ is a secondary fiber and core fiber Inter-helix angle, D is the diameter of the core fiber, and d is the diameter of the auxiliary fiber.
  • Figure 2 is a schematic diagram of the deformation of the tertiary heterogeneous fiber under stress, in which: A 1 is the front view of the tertiary heterogeneous fiber in the free initial state, A 2 is the radial cross-sectional view of the tertiary heterogeneous fiber in the free initial state, and B 1 is the maximum The front view of the third-level heterogeneous fiber in the stress state, and B 2 is the radial cross-sectional view of the third-level heterogeneous fiber in the maximum stress state.
  • Figure 3 is a schematic diagram of the fiber warp and weft plain weaving structure in the multi-level heterogeneous fiber preform, where x and y are the distances between the core fibers of the multi-level heterogeneous fiber.
  • the secondary heterogeneous fiber preform with negative Poisson's ratio effect is flat-woven by several secondary heterogeneous fibers in warp and weft.
  • the secondary heterogeneous fiber is formed by winding multi-level auxiliary fibers on a core fiber; the core fiber is a low modulus fiber, and the secondary auxiliary fiber is a high modulus fiber with different elastic moduli.
  • the distance between the core fibers of adjacent secondary heterogeneous fibers is 20 mm.
  • the low modulus fibers are polyvinyl alcohol fibers; polyvinyl alcohol fibers: long fibers, fiber bundles with a diameter of 450 ⁇ m, elongation at break of 7%, modulus of elasticity of 43 GPa, density of 1.30 g/cm 3 , and Good acid and alkali resistance.
  • the first-level auxiliary fiber is aramid fiber, the elastic modulus is 50 Gpa, the diameter is 150 ⁇ m, and the helix angle is 6°;
  • the second-level auxiliary fiber is aluminum silicate fiber, the elastic modulus is 480 GPa, and the diameter is 75 ⁇ m, The helix angle is 15°.
  • the anti-explosion and anti-impact concrete is provided with multiple layers of secondary heterogeneous fiber preforms arranged in parallel.
  • the projected included angle of the multi-level heterogeneous fiber between the adjacent layers of the second-level heterogeneous fiber preform is 30°.
  • the angle between the plane on which the secondary heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 45°.
  • the layer spacing of the adjacent secondary heterogeneous fiber preforms is 70 mm.
  • the preparation method of the anti-explosive and anti-impact secondary heterogeneous fiber precast composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the obtained secondary heterogeneous fiber is woven into a warp and weft plain weaving structure according to the warp and weft direction through the warp and weft plain weaving method, adjacent to the core of the secondary heterogeneous fiber
  • the distance between the fibers is 20 mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until curing is completed to obtain a secondary heterogeneous fiber preform.
  • Construction preparation of anti-explosive and anti-impact multi-stage heterogeneous fiber prefabricated composite concrete pour the concrete slurry, which is designed and mixed according to the C100 mix ratio, into the mold to a height of 70mm, and there is no surface solidified concrete slurry Pave the second-level heterogeneous fiber preform on the surface, and then repeat the above steps of pouring and laying, vibrating and compacting, curing and forming.
  • Example 2 The difference from Example 1 is that
  • the low modulus fiber is polyethylene fiber; polyethylene fiber: bundled monofilament, fiber bundle with a diameter of 380 ⁇ m, elastic modulus of 4000 MPa, elongation at break of 15%, and density of 0.91 g/cm 3 .
  • the first-level auxiliary fiber is aramid fiber, the elastic modulus is 85 GPa, the diameter is 243 ⁇ m, and the helix angle is 7°; the second-level auxiliary fiber is ultra-high molecular weight polyethylene fiber, the elastic modulus is 130 GPa, and the diameter is
  • the third-level auxiliary fiber is steel fiber and carbon fiber, and the elastic modulus of steel fiber is 210 GPa, the elastic modulus of carbon fiber is 200 GPa, and the diameter of steel fiber and carbon fiber is 135 ⁇ m.
  • the helix angles of carbon fiber and steel fiber are both 30°.
  • the anti-explosion and anti-impact concrete is provided with a multi-layer parallel arrangement of three-stage heterogeneous fiber preforms.
  • the projected included angle of the multi-level heterogeneous fiber between the adjacent layers of the three-level heterogeneous fiber preform is 50°.
  • the angle between the plane on which the tertiary heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 60°.
  • the interlayer spacing of the adjacent tertiary heterogeneous fiber preforms is 100 mm.
  • the preparation method of the anti-explosive and anti-impact tertiary heterogeneous fiber precast composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the curing treatment of the first-level heterogeneous fiber embryo structure the coupling agent and the curing agent are separately added to the epoxy resin and fully stirred, wherein the amount of the coupling agent is 0.5% of the mass of the epoxy resin, and the curing agent The mass ratio with epoxy resin is 1.0:1.2; then the first-level heterogeneous fiber embryo structure prepared in step (1) is immersed in it, and heated to 55°C, so that the first-level heterogeneous fiber embryo structure is fully impregnated and then pulled out and cured System, stand still until curing is completed to obtain a first-level heterogeneous fiber structure; wherein, the epoxy resin is a bisphenol A epoxy resin; the curing agent is a polyester resin; the coupling agent is a titanate coupling Coupling agent.
  • the obtained tertiary heterogeneous fiber is woven into a warp and weft plain weaving structure according to the warp and weft direction through the warp and weft plain weaving method, adjacent to the core of the tertiary heterogeneous fiber
  • the distance between the fibers is 50 mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until curing is completed to obtain a tertiary heterogeneous fiber preform.
  • Construction preparation of anti-explosive and anti-impact tertiary heterogeneous fiber precast composite concrete pour the concrete slurry which is designed and mixed according to the C100 mix ratio into the mold to a height of 100mm, and the concrete slurry that has not cured on the surface appears A layer of multi-level heterogeneous fiber preform is laid on the surface, and then the above steps of pouring and laying are repeated, vibrating and compacting, and curing and forming.
  • Example 3 The difference from Example 1 is that
  • the low modulus fiber is polypropylene fiber; polypropylene fiber: bundled monofilament long fiber, fiber bundle with diameter of 410 ⁇ m, density of 0.91g/cm 3 , elastic modulus of 3500MPa, and elongation at break of 17% , Flexible chain fiber, strong acid and alkali resistance.
  • the first-level auxiliary fiber is polyarylate fiber, the elastic modulus is 50Gpa, the diameter is 270 ⁇ m, and the helix angle is 5°;
  • the second-level auxiliary fiber is polybenzodioxazole fiber, the elastic modulus is 56Gpa, The diameter is 220 ⁇ m and the helix angle is 12°;
  • the third-level auxiliary fiber is ultra-high molecular weight polyethylene fiber, the elastic modulus is 65Gpa, the diameter is 143 ⁇ m, and the helix angle is 18°;
  • the fourth-level auxiliary fiber is oxidized Aluminum fiber, elastic modulus is 460Gpa, diameter is 125 ⁇ m, helix angle is 30°.
  • the anti-explosive and anti-impact concrete is provided with a multi-layer parallel arrangement of four-stage heterogeneous fiber preforms.
  • the projected included angle of the multi-level heterogeneous fiber between the adjacent layers of the four-level heterogeneous fiber preform is 70°.
  • the angle between the plane on which the four-stage heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 90°.
  • the interlayer distance between adjacent four-stage heterogeneous fiber preforms is 20 mm.
  • the preparation method of the anti-explosive and anti-shock four-stage heterogeneous fiber prefabricated composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the curing treatment of the first-level heterogeneous fiber embryo structure the coupling agent and the curing agent are respectively added to the epoxy resin and fully stirred, wherein the amount of the coupling agent is 0.1% of the mass of the epoxy resin, and the curing agent The mass ratio with epoxy resin is 1.0:0.9; then the first-level heterogeneous fiber embryo structure prepared in step (1) is immersed in it, and heated to 60°C, so that the first-level heterogeneous fiber embryo structure is fully impregnated and pulled out for curing The system is left to stand until curing is completed to obtain a first-level heterogeneous fiber structure; wherein the epoxy resin is bisphenol A epoxy resin; the curing agent is an aliphatic amine curing agent; the coupling agent is titanium Ester coupling agent.
  • the obtained fourth-level heterogeneous fiber is woven into a warp-weft plain weaving structure according to the warp and weft direction through a warp-weft plain weaving method, adjacent to the core of the fourth-grade heterogeneous fiber
  • the distance between the fibers is 80 mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until the curing is completed to obtain a four-level heterogeneous fiber preform.
  • Construction preparation of composite concrete with anti-explosion and impact-resistant four-stage heterogeneous fiber prefabricated body pour the concrete slurry, which is designed and mixed according to the C100 mix ratio, into the mold to a height of 20mm, and no surface solidified concrete slurry appears. A four-level heterogeneous fiber preform is laid on the surface, and then the above steps of pouring and laying are repeated, vibrating and compacting, and curing and forming.
  • Example 4 The difference from Example 1 is that
  • the low modulus fiber is polyester fiber; polyester fiber: diameter is 668 ⁇ m, density is 1.38 g/cm 3 , elastic modulus is 13.50 GPa, elongation at break is 21%, and it is a flexible chain fiber.
  • the first-level auxiliary fiber is aramid fiber, the elastic modulus is 50 Gpa, the diameter is 230 ⁇ m, and the helix angle is 7°;
  • the second-level auxiliary fiber is quartz fiber, the elastic modulus is 78 Gpa, the diameter is 126 ⁇ m, and the helix angle Is 10°,
  • the third-level auxiliary fiber is polyarylate fiber, the elastic modulus is 87 Gpa, the diameter is 91 ⁇ m, and the helix angle is 24°, the fourth-level auxiliary fiber is basalt fiber, and the elastic modulus is 110 Gpa,
  • the diameter is 78 ⁇ m and the helix angle is 35°;
  • the fifth-level auxiliary fiber is alumina fiber, the elastic modulus is 460 Gpa, the diameter is 70 ⁇ m, and the helix angle is 50°.
  • Five layers of multi-level heterogeneous fiber preforms arranged in parallel are arranged in the anti-explosion and anti-impact concrete.
  • the projected included angle of the multi-level heterogeneous fiber between adjacent layers of the five-level heterogeneous fiber preform is 90°.
  • the angle between the plane on which the five-stage heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 5°.
  • the interlayer spacing of the adjacent five-level heterogeneous fiber preforms is 40 mm.
  • the preparation method of the anti-explosive and anti-impact five-stage heterogeneous fiber prefabricated composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the curing treatment of the first-level heterogeneous fiber embryo structure the coupling agent and the curing agent are respectively added to the epoxy resin and fully stirred, wherein the amount of the coupling agent is 1.0% of the mass of the epoxy resin, and the curing agent The mass ratio with epoxy resin is 1.0:1.1; then the first-level heterogeneous fiber embryo structure prepared in step (1) is immersed in it, and heated to 70°C, so that the first-level heterogeneous fiber embryo structure is fully impregnated and then pulled out and cured System, stand still until curing is completed to obtain a first-level heterogeneous fiber structure; wherein the epoxy resin is bisphenol A epoxy resin; the curing agent is polyamide; the coupling agent is titanate coupling Agent.
  • step (2) Processing and preparation of five-level heterogeneous fiber structure: the heterogeneous fiber obtained in step (2) is used as the primary structure, and steps (1) and (2) are repeated according to the helix angle of the five-level structure to prepare A five-level heterogeneous fiber structure is obtained.
  • the obtained fifth-level heterogeneous fiber is woven into a warp-weft plain weaving structure according to the warp and weft direction through a warp-weft plain weaving method, adjacent to the core of the fifth-grade heterogeneous fiber
  • the distance between the fibers is 100 mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until the curing is completed to obtain a five-level heterogeneous fiber preform.
  • Construction and preparation of composite concrete with anti-explosive and impact-resistant five-grade heterogeneous fiber prefabricated body pour the concrete slurry, which is designed and mixed according to the C100 mix ratio, into the mold to a height of 40mm, and there is no surface solidified concrete slurry. A five-level heterogeneous fiber preform is laid on the surface, and then the pouring and laying steps are repeated, vibrating and compacting, and curing and forming.
  • Example 5 The difference from Example 1 is that
  • the distance between the core fibers of adjacent sixth-level heterogeneous fibers is 40 mm.
  • the low modulus fiber is polyvinyl alcohol fiber; polyamide fiber: long fiber, diameter is 480 ⁇ m, elongation at break is 23%, elastic modulus is 5.25 GPa, and density is 1.14 g/cm 3 .
  • the first-level auxiliary fiber is aramid fiber, the elastic modulus is 71 Gpa, the diameter is 283 ⁇ m, and the helix angle is 7°;
  • the second-level auxiliary fiber is polyarylate fiber, the elastic modulus is 120 Gpa, and the diameter is 224 ⁇ m, The helix angle is 15°;
  • the third-level auxiliary fiber is steel fiber, the elastic modulus is 210Gpa, the diameter is 180 ⁇ m, and the helix angle is 25°;
  • the fourth-level auxiliary fiber is silicon carbide fiber, and the elastic modulus is 290Gpa ,
  • the diameter is 144 ⁇ m, the helix angle is 34°;
  • the fifth-level auxiliary fiber is alumina fiber, the elastic modulus is 375Gpa, the diameter is 115 ⁇ m, and the helix angle is 40°;
  • the sixth-level auxiliary fiber is aluminum silicate
  • the fiber has a modulus of elasticity of 480Gpa, a diameter
  • the anti-explosive and anti-impact concrete is provided with a multi-layer parallel arrangement of six-stage heterogeneous fiber preforms.
  • the projected included angle of the multi-level heterogeneous fiber between adjacent layers of the six-level heterogeneous fiber preform is 10°.
  • the angle between the plane on which the six-stage heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 30°.
  • the layer spacing of adjacent six-level heterogeneous fiber preforms is 50 mm.
  • the preparation method of the anti-explosive and anti-impact six-stage heterogeneous fiber prefabricated composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the obtained sixth-level heterogeneous fiber is woven into a warp-weft plain weaving structure according to the warp and weft direction through a warp-weft plain weaving method, adjacent to the core of the sixth-grade heterogeneous fiber
  • the distance between the fibers is 40 mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until the curing is completed to obtain a six-level heterogeneous fiber preform;
  • Construction preparation of composite concrete with anti-explosion and impact-resistant six-grade heterogeneous fiber prefabricated body pour the concrete slurry, which is designed and mixed according to the C100 mix ratio, into the mold to a height of 50mm, and there is no surface solidified concrete slurry. Lay a six-level heterogeneous fiber preform on the surface, and then repeat the above steps of pouring and laying, vibrating and compacting, and curing and forming.
  • Example 6 The difference from Example 1 is that
  • the seventh-level heterogeneous fiber preform with a negative Poisson's ratio effect the distance between the core fibers of adjacent seventh-level heterogeneous fibers is 60 mm.
  • the low modulus fiber is a polyimide fiber; wherein the elastic modulus is 12 GPa, the density is 2.35 g/cm 3 , the diameter is 600 ⁇ m, and the elongation at break is 29%.
  • the first-level auxiliary fiber is alkali-resistant glass fiber, the elastic modulus is 73 Gpa, the diameter is 300 ⁇ m, and the helix angle is 5°;
  • the second-level auxiliary fiber is ultra-high molecular weight polyethylene fiber, the elastic modulus is 100 Gpa, and the diameter is 5°.
  • the third-level auxiliary fiber is silicon carbide fiber, the modulus of elasticity is 176Gpa, the diameter is 150 ⁇ m, and the helix angle is 25°;
  • the fourth-level auxiliary fiber is steel fiber, the elastic modulus The amount is 200Gpa, the diameter is 125 ⁇ m, and the helix angle is 32°;
  • the fifth-level auxiliary fiber is carbon fiber, the elastic modulus is 240Gpa, the diameter is 100 ⁇ m, and the helix angle is 40°;
  • the sixth-level auxiliary fiber is alumina
  • the fiber has an elastic modulus of 350 Gpa, a diameter of 75 ⁇ m, and a helix angle of 50°;
  • the seventh-level auxiliary fiber is a silicon carbide fiber with an elastic modulus of 460 Gpa, a diameter of 40 ⁇ m, and a helix angle of 60°.
  • the anti-explosive and anti-impact concrete is provided with multiple layers of parallel-arranged seven-grade heterogeneous fiber preforms.
  • the projection angle of the seven-level heterogeneous fiber between the adjacent layers of the multi-level heterogeneous fiber preform is 45°.
  • the angle between the plane on which the grade 7 heterogeneous fiber preform is located and the direction of the impact load resisted by the concrete is 75°.
  • the layer spacing of the adjacent seven-level heterogeneous fiber preforms is 80 mm.
  • the method for preparing the anti-explosive and anti-shock seven-grade heterogeneous fiber precast composite concrete with a significant negative Poisson's ratio effect includes the following steps:
  • the curing treatment of the first-level heterogeneous fiber embryo structure the coupling agent and the curing agent are respectively added to the epoxy resin and fully stirred, wherein the amount of the coupling agent is 3.0% of the mass of the epoxy resin, and the curing agent
  • the mass ratio with epoxy resin is 1.0:0.8; then the first-level heterogeneous fiber embryo structure prepared in step (1) is immersed in it, and heated to 80°C, so that the first-level heterogeneous fiber embryo structure is fully impregnated and then pulled out and cured
  • the system is allowed to stand until curing is completed to obtain a first-level heterogeneous fiber structure; wherein the epoxy resin is a bisphenol A epoxy resin; the curing agent is an aliphatic amine curing agent; the coupling agent is a silane Coupling agent.
  • Knitting preparation of the seven-level heterogeneous fiber preform the obtained seven-level heterogeneous fiber is woven into a warp-weft plain weaving structure according to the warp and weft direction through the warp-weft plain weaving method, adjacent to the core of the seventh-grade heterogeneous fiber The distance between the fibers is 60 mm, and then the curing system described in step (2) is fully coated on all the warp and weft junctions of the warp and weft plain weave structure, and it is allowed to stand until the curing is completed to obtain a grade 7 heterogeneous fiber preform.
  • Construction preparation of composite concrete with anti-explosive and shock-resistant seven-grade heterogeneous fiber prefabricated body pour the concrete slurry, which is designed and mixed according to the C100 mix ratio, into the mold to a height of 80mm, and there is no surface solidified concrete slurry A seven-level heterogeneous fiber preform is laid on the surface, and then the pouring and laying steps are repeated, vibrating and compacting, and curing and forming.
  • the low modulus fiber is polypropylene fiber
  • the high modulus fiber is steel fiber.
  • polypropylene fiber bundled monofilament long fiber with a diameter of 350 ⁇ m, a density of 0.91g/cm 3 , a melting point of 168°C, a tensile strength of 360MPa, a modulus of elasticity of 3700MPa, and an elongation at break of 16%. It is a flexible chain fiber. Strong acid and alkali resistance. Steel fiber: diameter 150 ⁇ m, density 7.80g/cm 3 , tensile strength 1200MPa, elastic modulus 200GPa, elongation at break 3.2%.
  • the above-mentioned double helix chopped fiber with a mass percentage of 6.5% is fully and uniformly mixed with C100 concrete to prepare explosion-resistant and impact-resistant concrete.
  • Poisson's ratio test The digital speckle correlation method is used in conjunction with the test calculation of the universal science experiment machine, and the loading speed of the mechanics experiment machine is 5mm/min.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Poisson's ratio -4.32 -5.77 -6.98 -7.55 -8.65 -9.35 -10.64
  • the Poisson's ratio of the concrete prepared by the double helix fiber in the comparative example is 0.2, which shows that although the double helix fiber has an obvious negative Poisson's ratio effect, it cannot be fully reflected in the reinforced concrete.
  • the negative Poisson's ratio of the concrete prepared in Examples 1-6 is 0.17 ⁇ -0.36, indicating that the concrete of the present invention has a good negative Poisson's ratio effect of the fiber preform itself and the rules of the multi-stage fiber preform in the concrete.
  • the arrangement can greatly reduce the Poisson's ratio of concrete, and realize the preparation of negative Poisson's ratio concrete in a true sense, thereby solving the problem of anti-blast and impact-resistant concrete preparation, and has important engineering value and social significance.
  • the concrete prepared in Examples 1-6 has a compressive strength of 110.5-126.9MPa, a tensile strength of 18.7-26.5MPa, and a shear strength of 11.1-17.8MPa, which are both equal to those of the comparative example.
  • the explosion and impact strength of the concrete can be increased by 135.4%, and the 10m/s impact energy absorption can reach 350kJ/m 3 or more; it shows that the concrete has truly realized the explosion and impact resistance function. This is mainly achieved through the gradient spiral design and three-dimensional layered arrangement of the multi-level auxiliary fibers in the preform, so that the negative Poisson's ratio effect of the preform is significantly improved and effectively exerted in the matrix.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Woven Fabrics (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法。该抗爆抗冲击混凝土中设置多层平行排布的多级异质纤维预制体。多级异质纤维预制体由若干根多级异质纤维经纬平织而成。该多级异质纤维由多级辅纤维在芯纤维上缠绕而成;所述芯纤维为低模量纤维,所述多级辅纤维为不同弹性模量的高模量纤维。该抗爆抗冲击混凝土,通过预制体中多级辅纤维的梯度式螺旋设计以及三维层状排布,使得预制体的负泊松比效应显著提高并在基体中有效发挥。

Description

抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法 技术领域
本发明属于建筑领域,涉及一种抗爆抗冲击纤维混凝土及其制备方法,具体地说,涉及一种抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法。
背景技术
近年来,国内外爆炸事故频繁发生,对建筑物和人的生命财产造成严重的威胁。这是由于爆炸事故发生时间短,遭受冲击载荷非常大,且变化时间非常快,难以做出有效的应对措施以降低伤害。通常来说,高强混凝土的弹性模量大、脆性较大、延展性低,在爆炸时会产生体积大且数量多的碎片,造成一定的伤害。在混凝土中掺入纤维,可以增加结构或构件的强度和延性,避免在爆炸发生时爆炸碎片飞溅。
从材料角度进行研究,改善建筑结构材料的防护抗爆性能,使混凝土朝着高韧性、高延性方向发展,进而改善结构抗爆炸局部破坏性能;目前的常用手段是在混凝土中掺入韧性良好的纤维材料改变混凝土低韧性强度和脆性状态,形成新的复合材料。现有技术中,大多在纤维增强混凝土中掺入单一纤维来解决这个问题。但由于纤维本身的特性,对纤维混凝土混凝土的阻裂性与抗冲击性仍存在一定的不足;如碳纤维本身具有很高的韧性和延展性,应用在混凝土中可以显著提高混凝土的韧性以及抗拉强度等,但碳纤维在受到局部冲击时表现为脆性,故当只有单种碳纤维增强混凝土在抗冲击性能方面存在一定的局限性;此外,纤维在混凝土中,纤维的杂乱分布对于纤维混凝土特定方向及内部结构的抗冲击性能研究存在一定的困难。
发明专利申请201810455234.3公开了“一种利用合成双螺旋纤维制备的混凝土及其制备方法”。该申请公开了负泊松比双螺旋纤维的制备,以及掺加一定量的双螺旋纤维制备混凝土的方法。该申请将双螺旋纤维掺入混凝土中,能有效控制混凝土的非结构性裂缝,使双螺旋纤维混凝土比传统纤维混凝土具有更好的增强效果。然而,该申请所涉及的双螺旋纤维结构的负泊松比效应较为有限,且负泊松比效应仅仅存在于双螺旋纤维结构本身,将所述短切双螺旋纤维掺杂在混凝土中,混凝土整体负泊松比效应并不明显,不能实现混凝土的抗冲击性、抗爆性能的大幅度提升。此外,该申请对于纤维种类的范围较窄,未能适用所有纤维混凝土类型,且纤维经未改性环氧树脂处理后与混凝土基体的粘结性能不理想,在荷载作用下易与混凝土基体剥离,降低混凝土综合性能。
发明内容
针对现有技术中抗爆抗冲击混凝土所存在的问题,本发明提供了一种具备显著负泊松比效应的抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法。所述复合混凝土优化了现有的双螺旋纤维结构,并改善了其在基体中三维随机分布的状况。与现有抗爆抗冲击混凝土相比,所述抗爆抗冲击多级异质纤维预制体复合混凝土的强度、韧性、耗能模量与储能模量均大幅度提高,且可有效防止材料损伤产生碎片飞溅,减少对人员及建筑结构的二次伤害。
本发明的技术方案:
具备负泊松比效应的多级异质纤维预制体由若干根多级异质纤维经纬平织而成。所述多级异质纤维由多级辅纤维在芯纤维上缠绕而成;所述芯纤维为低模量纤维,所述多级辅纤维为不同弹性模量的高模量纤维。相邻所述多级异质纤维的芯纤维之间的距离为20mm-100mm。所述低模量纤维的弹性模量为50MPa-50GPa;所述高模量纤维的弹性模量为≥50GPa。所述辅纤维分级缠绕在芯纤维上;所述一级辅纤维弹性模量为50GPa-90GPa;所述第N级辅纤维与第N-1级辅纤维的弹性模量比为1.1-9.6,N为2-7;所述芯纤维与一级辅纤维的直径比为1.5-3.0,第N级辅纤维直径与第N-1级辅纤维的直径比为0.5-0.9,芯纤维与第N级辅纤维的直径比为2.5-15.0,N为2-7;所述第一级辅纤维螺旋角度为2°-8°,第N级辅纤维较第N-1级辅纤维的螺旋角度增加3°-15°,第N级辅纤维螺旋角度为5-60°,N为2-7。所述辅纤维采用螺旋角与弹性模量均呈梯度分布的多级高模量纤维,具有优良的耐久性和高抗拉强度,能够在微裂纹产生时抑制裂缝的扩展,促进混凝土内应力的均匀分布,从而提高混凝土的抗压强度和抗冲击性。而作为芯纤维的低模量纤维,其柔韧性可以提高纤维网织物结构及混凝土基体的抗拉、抗弯、抗剪性能,并在宏观裂缝产生时充分发挥作用避免基体快速损伤。
其中,所述低模量纤维为聚乙烯纤维、聚乙烯醇纤维、聚乙烯醇缩甲醛纤维、聚氯乙烯纤维、聚丙烯纤维、聚丙烯腈纤维、聚酰胺纤维、聚酰亚胺纤维、聚酯纤维、聚氨酯纤维、纤维素纤维、聚四氟乙烯纤维和聚苯硫醚纤维中的一种或多种;所述高模量纤维为芳纶纤维、聚苯并咪唑纤维、聚苯并二恶唑纤维、聚芳酯纤维、超高分子量聚乙烯纤维、玻璃纤维、碳纤维、钢纤维、连续玄武岩纤维、碳化硅纤维、氧化镁纤维、氧化铝纤维、二氧化硅纤维、石英纤维、硅酸铝纤维、石墨烯纤维和硼纤维中的一种或多种。
优选的是,所述第N级辅纤维与第N-1级辅纤维的弹性模量比为1.1-7.5,N为2-7;所述芯纤维与一级辅纤维的直径比为1.5-2.5,芯纤维与第N级辅纤维的直径比为2.5-10.0,第N级辅纤维螺旋角度为10-60°,N为2-7。
抗爆抗冲击混凝土中设置多层平行排布的多级异质纤维预制体。相邻所述各层多级异质纤维预制体间多级异质纤维的投影夹角为10°-90°。所述多级异质纤维预制体所在的平面与混 凝土所抵抗的冲击载荷的方向之间的夹角为5°-90°。相邻所述多级异质纤维预制体的层间距为20mm-100mm。当混凝土存在较大开裂位移条件时,多级异质纤维预制体结构能够使其保持良好韧性,减少混凝土裂纹的发展路径,延迟基体微观裂缝的形成和扩展,从而增强混凝土的抗爆抗冲击性能。
所述具有显著负泊松比效应的抗爆抗冲击多级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构;
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的0.1%-5.0%,所述固化剂和环氧树脂的质量比为1.0:0.8-1.0:1.2;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至50℃-80℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;
(3)多级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述N级结构的螺旋角度,重复步骤(1)和步骤(2),制备得到N级异质纤维结构,N为2-7;
(4)多级异质纤维预制体的编织制备:将所得N级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述多级异质纤维的芯纤维之间的距离为20mm-100mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得N级异质纤维预制体,N为2-7;
(5)抗爆抗冲击多级异质纤维预制体复合混凝土的施工制备:将搅拌完成的混凝土浆料浇筑至模具中至高度为20mm-100mm,在未出现表面固化的混凝土浆料表面一层铺设多级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。其中,各层纤维预制体间纤维的投影夹角为10°-90°,相邻所述异质纤维网状结构的层间距为20mm-100mm,即得到所述的抗爆抗冲击多级异质纤维预制体复合混凝土。
其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为聚酰胺、聚酯树脂、脂肪族胺类固化剂中的一种或多种;所述偶联剂为钛酸酯偶联剂、硅烷偶联剂中的一种或多种。根据上述方法制备的抗爆抗冲击混凝土,改善了异质纤维之间以及异质纤维与混凝土基体间的界面结构与性能,实现了多级异质纤维预制体的负泊松比效应在混凝土基体中的极大限度发挥,从而提高了基体材料的抗爆抗冲击能力。
抗爆抗冲击原理:当多级异质纤维预制体受到非平行外力冲击作用时,由于预制体中各级辅纤维的弹性模量较高且断裂伸长率较低,故趋向为伸直状态;而芯纤维则由于弹性模量 较低且伸长率较大变,从而趋向为螺旋状态。其中,芯纤维的直径大于辅纤维直径,在应力作用下螺旋纤维结构表现为在横向方向变宽,而纤维预制体则表现为网格经纬向孔隙缩小;因此当混凝土中产生裂缝时,不但保持了混凝土的完整性,还防止混凝土的碎片化,提高混凝土的抗强动载性能、结构安全性与稳定性。
本发明的有益效果:
(1)本发明所述的多级异质纤维预制体,采用多级不同弹性模量的纤维构筑的纤维束经纬平织网络,不仅节省造价,还可发挥不同纤维的优点;通过纤维梯度结构的设计,增加了纤维网的储能模量等力学性能,并通过经纬网络节点建立了纤维动态联动机制,从而使得所述多级异质纤维预制体具有更加显著的负泊松比效应。
(2)本发明将所述的抗爆抗冲击混凝土,通过预制体中多级辅纤维的梯度式螺旋设计以及三维层状排布,使得预制体的负泊松比效应显著提高并在基体中有效发挥,在非平行荷载作用方向上,不但大幅度提高了相同配合比素混凝土的抗压、抗拉、抗剪等抗静载力学性能,而且使相同配合比素混凝土的抗爆抗冲击性能可提高至135.4%。
(3)本发明所述的混凝土制备方法中,将偶联剂加入环氧树脂中,改善了纤维与纤维、纤维与混凝土的界面结构,增强各类界面间的结合力,使界面粘结强度等力学性能得到提高。同时,还使得纤维表面的性状与混凝土基体相近,从而大幅提高了纤维的增强、增韧和阻裂能力。其中,混凝土抗拉强度与抗剪强度可分别达到26.5MPa、17.8MPa,与普通混凝土相比,力学强度得到了大幅度提高。
附图说明
附图1为三级异质纤维结构示意图,其中:a为芯纤维,b 1为一级辅纤维,b 2为二级辅纤维,b 3为三级辅纤维,θ为辅纤维与芯纤维间螺旋角度,D为芯纤维直径,d为辅纤维直径。
附图2为三级异质纤维受力变形示意图,其中:A 1为自由初始状态三级异质纤维主视图,A 2为自由初始状态三级异质纤维径向剖面图,B 1为最大应力状态三级异质纤维主视图,B 2为最大应力状态三级异质纤维径向剖面图。
附图3为多级异质纤维预制体中纤维经纬平织结构示意图,其中,x、y为多级异质纤维的芯纤维之间的距离。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1:
具备负泊松比效应的二级异质纤维预制体,由若干根二级异质纤维经纬平织而成。所述二级异质纤维由多级辅纤维在芯纤维上缠绕而成;所述芯纤维为低模量纤维,所述二级辅纤 维为不同弹性模量的高模量纤维。相邻所述二级异质纤维的芯纤维之间的距离为20mm。所述低模量纤维为聚乙烯醇纤维;聚乙烯醇纤维:长纤维,直径为450μm的纤维束,断裂伸长率为7%,弹性模量为43GPa,密度为1.30g/cm 3,有良好的耐酸碱性。
所述一级辅纤维是芳纶纤维,弹性模量为50Gpa,直径为150μm,螺旋角为6°;所述第二级辅纤维是硅酸铝纤维,弹性模量为480GPa,直径为75μm,螺旋角为15°。
所述抗爆抗冲击混凝土中设置多层平行排布的二级异质纤维预制体。相邻所述各层二级异质纤维预制体间多级异质纤维的投影夹角为30°。所述二级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷的方向之间的夹角为45°。相邻所述二级异质纤维预制体的层间距为70mm。
所述具有显著负泊松比效应的抗爆抗冲击二级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构。
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的2.0%,所述固化剂和环氧树脂的质量比为1.0:0.8;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至65℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为聚酰胺;所述偶联剂为硅烷偶联剂。
(3)二级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述二级结构的螺旋角度,重复步骤(1)和步骤(2),制备二级异质纤维结构。
(4)二级异质纤维预制体的编织制备:将所得二级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述二级异质纤维的芯纤维之间的距离为20mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得二级异质纤维预制体。
(5)抗爆抗冲击多级异质纤维预制体复合混凝土的施工制备:将按照C100配合比设计搅拌完成的混凝土浆料浇筑至模具中至高度为70mm,在未出现表面固化的混凝土浆料表面一层铺设二级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。
实施例2:与实施例1不同的是,
具备负泊松比效应的三级异质纤维预制体,相邻所述三级异质纤维的芯纤维之间的距离为50mm。所述低模量纤维为聚乙烯纤维;聚乙烯纤维:束状单丝,直径为380μm的纤维束, 弹性模量为4000MPa,断裂伸长率为15%,密度为0.91g/cm 3
所述一级辅纤维是芳纶纤维,弹性模量为85GPa,直径为243μm,螺旋角为7°;所述第二级辅纤维为超高分子量聚乙烯纤维,弹性模量为130GPa,直径为151μm,螺旋角为15°;所述第三级辅纤维是钢纤维和碳纤维,其中,钢纤维的弹性模量为210GPa,碳纤维的弹性模量为200GPa,钢纤维和碳纤维的直径均为135μm,碳纤维和钢纤维的螺旋角均为30°。
所述抗爆抗冲击混凝土中设置多层平行排布的三级异质纤维预制体。相邻所述各层三级异质纤维预制体间多级异质纤维的投影夹角为50°。所述三级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷的方向之间的夹角为60°。相邻所述三级异质纤维预制体的层间距为100mm。
所述具有显著负泊松比效应的抗爆抗冲击三级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构。
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的0.5%,所述固化剂和环氧树脂的质量比为1.0:1.2;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至55℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为聚酯树脂;所述偶联剂为钛酸酯偶联剂。
(3)三级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述三级结构的螺旋角度,重复步骤(1)和步骤(2),制备三级异质纤维结构。
(4)三级异质纤维预制体的编织制备:将所得三级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述三级异质纤维的芯纤维之间的距离为50mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得三级异质纤维预制体。
(5)抗爆抗冲击三级异质纤维预制体复合混凝土的施工制备:将按照C100配合比设计搅拌完成的混凝土浆料浇筑至模具中至高度为100mm,在未出现表面固化的混凝土浆料表面一层铺设多级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。
实施例3:与实施例1不同的是,
具备负泊松比效应的四级异质纤维预制体,相邻所述四级异质纤维的芯纤维之间的距离为80mm。所述低模量纤维为聚丙烯纤维;聚丙烯纤维:束状单丝长纤维,直径为410μm的 纤维束,密度为0.91g/cm 3,弹性模量为3500MPa,断裂伸长率为17%,柔性链纤维,耐酸碱性强。
所述一级辅纤维是聚芳酯纤维,弹性模量为50Gpa,直径为270μm,螺旋角为5°;所述第二级辅纤维是聚苯并二恶唑纤维,弹性模量为56Gpa,直径为220μm,螺旋角为12°;所述第三级辅纤维是超高分子量聚乙烯纤维,弹性模量为65Gpa,直径为143μm,螺旋角为18°;所述第四级辅纤维是氧化铝纤维,弹性模量为460Gpa,直径为125μm,螺旋角为30°。
所述抗爆抗冲击混凝土中设置多层平行排布的四级异质纤维预制体。相邻所述各层四级异质纤维预制体间多级异质纤维的投影夹角为70°。所述四级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷的方向之间的夹角为90°。相邻所述四级异质纤维预制体的层间距为20mm。
所述具有显著负泊松比效应的抗爆抗冲击四级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构。
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的0.1%,所述固化剂和环氧树脂的质量比为1.0:0.9;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至60℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为脂肪族胺类固化剂;所述偶联剂为钛酸酯偶联剂。
(3)四级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述四级结构的螺旋角度,重复步骤(1)和步骤(2),制备得到四级异质纤维结构。
(4)四级异质纤维预制体的编织制备:将所得四级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述四级异质纤维的芯纤维之间的距离为80mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得四级异质纤维预制体。
(5)抗爆抗冲击四级异质纤维预制体复合混凝土的施工制备:将按照C100配合比设计搅拌完成的混凝土浆料浇筑至模具中至高度为20mm,在未出现表面固化的混凝土浆料表面一层铺设四级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。
实施例4:与实施例1不同的是,
具备负泊松比效应的五级异质纤维预制体,相邻所述五级异质纤维的芯纤维之间的距离 为100mm。所述低模量纤维为聚酯纤维;聚酯纤维:直径为668μm,密度1.38g/cm 3,弹性模量为13.50GPa,断裂伸长率为21%,为柔性链纤维。
所述一级辅纤维是芳纶纤维,弹性模量为50Gpa,直径为230μm,螺旋角为7°;所述第二级辅纤维为石英纤维,弹性模量为78Gpa,直径为126μm,螺旋角为10°,所述第三级辅纤维为聚芳酯纤维,弹性模量为87Gpa,直径为91μm,螺旋角为24°,所述第四级辅纤维是玄武岩纤维,弹性模量为110Gpa,直径为78μm,螺旋角为35°;所述第五级辅纤维为氧化铝纤维,弹性模量为460Gpa,直径为70μm,螺旋角为50°。
所述抗爆抗冲击混凝土中设置五层平行排布的多级异质纤维预制体。相邻所述各层五级异质纤维预制体间多级异质纤维的投影夹角为90°。所述五级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷的方向之间的夹角为5°。相邻所述五级异质纤维预制体的层间距为40mm。
所述具有显著负泊松比效应的抗爆抗冲击五级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构。
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的1.0%,所述固化剂和环氧树脂的质量比为1.0:1.1;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至70℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为聚酰胺;所述偶联剂为钛酸酯偶联剂。
(3)五级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述五级结构的螺旋角度,重复步骤(1)和步骤(2),制备得到五级异质纤维结构。
(4)五级异质纤维预制体的编织制备:将所得五级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述五级异质纤维的芯纤维之间的距离为100mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得五级异质纤维预制体。
(5)抗爆抗冲击五级异质纤维预制体复合混凝土的施工制备:将按照C100配合比设计搅拌完成的混凝土浆料浇筑至模具中至高度为40mm,在未出现表面固化的混凝土浆料表面一层铺设五级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。
实施例5:与实施例1不同的是,
具备负泊松比效应的六级异质纤维预制体,相邻所述六级异质纤维的芯纤维之间的距离为40mm。所述低模量纤维为聚乙烯醇纤维;聚酰胺纤维:长纤维,直径为480μm,断裂伸长率为23%,弹性模量为5.25GPa,密度为1.14g/cm 3
所述一级辅纤维是芳纶纤维,弹性模量为71Gpa,直径为283μm,螺旋角为7°;所述第二级辅纤维为聚芳酯纤维,弹性模量为120Gpa,直径为224μm,螺旋角为15°;所述第三级辅纤维是钢纤维,弹性模量为210Gpa,直径为180μm,螺旋角为25°;所述第四级辅纤维是碳化硅纤维,弹性模量为290Gpa,直径为144μm,螺旋角为34°;所述第五级辅纤维是氧化铝纤维,弹性模量为375Gpa,直径为115μm,螺旋角为40°;所述第六级辅纤维是硅酸铝纤维,弹性模量为480Gpa,直径为100μm,螺旋角为50°。所述抗爆抗冲击混凝土中设置多层平行排布的六级异质纤维预制体。相邻所述各层六级异质纤维预制体间多级异质纤维的投影夹角为10°。所述六级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷的方向之间的夹角为30°。相邻所述六级异质纤维预制体的层间距为50mm。
所述具有显著负泊松比效应的抗爆抗冲击六级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构;
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的5.0%,所述固化剂和环氧树脂的质量比为1.0:1.0;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至50℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为聚酯树脂;所述偶联剂为硅烷偶联剂。
(3)六级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述六级结构的螺旋角度,重复步骤(1)和步骤(2),制备得到六级异质纤维结构;
(4)六级异质纤维预制体的编织制备:将所得六级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述六级异质纤维的芯纤维之间的距离为40mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得六级异质纤维预制体;
(5)抗爆抗冲击六级异质纤维预制体复合混凝土的施工制备:将按照C100配合比设计搅拌完成的混凝土浆料浇筑至模具中至高度为50mm,在未出现表面固化的混凝土浆料表面一层铺设六级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。
实施例6:与实施例1不同的是,
具备负泊松比效应的七级异质纤维预制体,相邻所述七级异质纤维的芯纤维之间的距离为60mm。所述低模量纤维为聚酰亚胺纤维;其中,弹性模量为12GPa,密度为2.35g/cm 3,直径为600μm,断裂伸长率29%。
所述一级辅纤维是耐碱玻璃纤维,弹性模量为73Gpa,直径为300μm,螺旋角为5°;所述第二级辅纤维为超高分子量聚乙烯纤维,弹性模量为100Gpa,直径为200μm,螺旋角为14°;所述第三级辅纤维是碳化硅纤维,弹性模量为176Gpa,直径为150μm,螺旋角为25°;所述第四级辅纤维是钢纤维,弹性模量为200Gpa,直径为125μm,螺旋角为32°;所述第五级辅纤维是碳纤维,弹性模量为240Gpa,直径为100μm,螺旋角为40°;所述第六级辅纤维是氧化铝纤维,弹性模量为350Gpa,直径为75μm,螺旋角为50°;所述第七级辅纤维是碳化硅纤维,弹性模量为460Gpa,直径为40μm,螺旋角为60°。
所述抗爆抗冲击混凝土中设置多层平行排布的七级异质纤维预制体。相邻所述各层多级异质纤维预制体间七级异质纤维的投影夹角为45°。所述七级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷的方向之间的夹角为75°。相邻所述七级异质纤维预制体的层间距为80mm。
所述具有显著负泊松比效应的抗爆抗冲击七级异质纤维预制体复合混凝土的制备方法:包括以下步骤:
(1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构;
(2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的3.0%,所述固化剂和环氧树脂的质量比为1.0:0.8;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至80℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置直至完成固化,获得一级异质纤维结构;其中,所述环氧树脂为双酚A环氧树脂;所述固化剂为脂肪族胺类固化剂;所述偶联剂为硅烷偶联剂。
(3)七级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述七级结构的螺旋角度,重复步骤(1)和步骤(2),制备得到七级异质纤维结构。
(4)七级异质纤维预制体的编织制备:将所得七级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,相邻所述七级异质纤维的芯纤维之间的距离为60mm,然后将步骤(2)所述的固化体系充分涂覆在经纬平织结构所有经纬交接点,静置直至完成固化,获得七级异质纤维预制体。
(5)抗爆抗冲击七级异质纤维预制体复合混凝土的施工制备:将按照C100配合比设计 搅拌完成的混凝土浆料浇筑至模具中至高度为80mm,在未出现表面固化的混凝土浆料表面一层铺设七级异质纤维预制体,然后重复上述浇筑与铺设步骤,振捣密实,养护成型。
对照实施例1:
长度为2.5mm的双螺旋纤维中,低模量纤维为聚丙烯纤维,高模量纤维为钢纤维。其中,聚丙烯纤维:束状单丝长纤维,直径350μm,密度0.91g/cm 3,熔点168℃,抗拉强度360MPa,弹性模量3700MPa,断裂伸长率为16%,为柔性链纤维,耐酸碱性强。钢纤维:直径150μm,密度为7.80g/cm 3,抗拉强度1200MPa,弹性模量200GPa,断裂伸长率为3.2%。将质量百分比为6.5%的上述双螺旋短切纤维与C100混凝土充分均匀拌合,制备得到抗爆抗冲击混凝土。
将对照实施例1与实施例1-6制备的样品分别进行相应的力学性能测试。
(1)泊松比值的测试:采用数字散斑相关方法配合万能力学实验机测试计算,力学实验机加载速度为5mm/min。
(2)纤维力学性能测试:应用万能力学试验机,采用5mm/min的拉伸速度,纤维长度为250mm。
(3)混凝土试块抗压强度测试:依据《普通混凝土力学性能试验方法标准》GB/T50081-2002,应用万能力学试验机,试块尺寸为150mm×150mm×150mm。
(4)混凝土抗拉强度测试:依据《普通混凝土力学性能试验方法标准》GB/T50081-2002,应用万能力学试验机,试块尺寸为150mm×150mm×150mm。
(5)混凝土抗剪强度测试:按照《CECS13-89钢纤维混凝土试验方法》,应用万能力学试验机,试块尺寸为100mm×100mm×400mm。
(6)混凝土抗冲击强度测试:采用100mm霍普金森压杆实验装置,试件尺寸为Φ98mm×50mm,加载速度分别为3m/s、10m/s、20m/s,试验采用波形整形技术以保证应力均匀性。
表1对照实施例1双螺旋纤维与实施例1-6制备的纤维预制体的参数
纤维预制体 对照实施例1 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
泊松比值 -4.32 -5.77 -6.98 -7.55 -8.65 -9.35 -10.64
表2对照实施例1与实施例1-6制备的抗爆抗冲击混凝土的参数
Figure PCTCN2020080323-appb-000001
由表1可知,实施例1-6制备的纤维预制体的负泊松比为-5.77~-10.64,而对照实施例所述的双螺旋纤维的负泊松比为-4.32。由此可知,与现有技术中的双螺旋纤维相比,本申请所述的多级纤维预制体的负泊松效应更加显著;而且随着纤维预制体中辅纤维级数的增加,负泊松效应也逐步增加。
由表2可知,对照实施例采用双螺旋纤维制备的混凝土的泊松比为0.2,这说明,尽管双螺旋纤维具有明显的负泊松比效应,但却不能在其增强的混凝土上充分体现。而实施例1-6制备的混凝土,其负泊松比为0.17~-0.36,说明本发明所述混凝土通过纤维预制体本身良好的负泊松比效应以及多级纤维预制体在混凝土内部的规则排布,可大幅度降低混凝土的泊松比值,并在真正意义上实现了负泊松比混凝土的制备,从而解决了抗爆抗冲击混凝土制备的难题,具有重要的工程价值与社会意义。
此外,由表2可知,实施例1-6制备的混凝土,抗压强度为110.5-126.9MPa,抗拉强度为18.7-26.5MPa,抗剪强度为11.1-17.8MPa,与对照实施例相比均明显提高;尤其是抗拉强度和抗剪强度,可增加一倍以上,抗静载力学性能得到了大幅度提高。同时,混凝土的抗爆抗冲击强度增幅可达135.4%,10m/s冲击能量吸收达到350kJ/m 3以上;说明所述混凝土真正实现了抗爆抗冲击功能。这主要是通过预制体中多级辅纤维的梯度式螺旋设计以及三维层状排布而实现,使得预制体的负泊松比效应显著提高并在基体中得到了有效发挥。

Claims (10)

  1. 具备负泊松比效应的多级异质纤维预制体,其特征在于:所述纤维预制体由若干根多级异质纤维经纬平织而成;所述多级异质纤维由多级辅纤维在芯纤维上缠绕而成;所述芯纤维为低模量纤维,所述多级辅纤维包括依次缠绕在芯纤维上的弹性模量不同的高模量纤维;所述多级辅纤维中的一级辅纤维弹性模量为50GPa-90GPa;第N级辅纤维与第N-1级辅纤维的弹性模量比为1.1-9.6,N=2-7;所述芯纤维与一级辅纤维的直径比为1.5-3.0,芯纤维与第N级辅纤维的直径比为2.5-15.0,第N级辅纤维与第N-1级辅纤维的直径比为0.5-0.9,N为2-7;所述第一级辅纤维螺旋角度为2°-8°,第N级辅纤维的螺旋角度较第N-1级辅纤维增加3°-15°,第N级辅纤维螺旋角度为5-60°,N为2-7。
  2. 根据权利要求1所述的具备负泊松比效应的多级异质纤维预制体,其特征在于:相邻所述多级异质纤维的芯纤维之间的距离为20mm-100mm;所述低模量纤维的弹性模量为50MPa-50GPa;所述高模量纤维的弹性模量为≥50GPa;第N级辅纤维与第N-1级辅纤维的弹性模量比为1.1-7.5,N为2-7;所述芯纤维与一级辅纤维的直径比为1.5-2.5,芯纤维与第N级辅纤维的直径比为2.5-10.0,第N级辅纤维螺旋角度为10-60°,N为2-7。
  3. 根据权利要求2所述的具备负泊松比效应的多级异质纤维预制体,其特征在于:所述低模量纤维为聚乙烯纤维、聚乙烯醇纤维、聚乙烯醇缩甲醛纤维、聚氯乙烯纤维、聚丙烯纤维、聚丙烯腈纤维、聚酰胺纤维、聚酰亚胺纤维、聚酯纤维、聚氨酯纤维、纤维素纤维、聚四氟乙烯纤维和聚苯硫醚纤维中的一种或多种;所述高模量纤维为芳纶纤维、聚苯并咪唑纤维、聚苯并二恶唑纤维、聚芳酯纤维、超高分子量聚乙烯纤维、玻璃纤维、碳纤维、钢纤维、连续玄武岩纤维、碳化硅纤维、氧化镁纤维、氧化铝纤维、二氧化硅纤维、石英纤维、硅酸铝纤维、石墨烯纤维和硼纤维中的一种或多种。
  4. 采用如权利要求1-3所述的抗爆抗冲击多级异质纤维预制体复合混凝土,其特征在于:所述抗爆抗冲击混凝土中设置多层平行排布的多级异质纤维预制体。
  5. 根据权利要求4所述的抗爆抗冲击多级异质纤维预制体复合混凝土,其特征在于:相邻所述各层多级异质纤维预制体间多级异质纤维的投影夹角为10°-90°。
  6. 根据权利要求4所述的抗爆抗冲击多级异质纤维预制体复合混凝土,其特征在于:所述各层多级异质纤维预制体所在的平面与混凝土所抵抗的冲击载荷方向之间的夹角为5°-90°。
  7. 根据权利要求4-6中任意一项所述的抗爆抗冲击多级异质纤维预制体复合混凝土,其特征在于:相邻所述多级异质纤维预制体的层间距为20mm-100mm。
  8. 如权利要求4-7所述的抗爆抗冲击多级异质纤维预制体复合混凝土的制备方法,其特征在于:所述制备的具体方法为:
    (1)一级异质纤维胚结构的加工制备:按照所述一级结构的螺旋角度,将所述作为一级 辅纤维的高模量纤维缠绕在作为芯纤维的低模量纤维上,制备得到一级异质纤维胚结构;
    (2)一级异质纤维胚结构的固化处理:将偶联剂和固化剂分别加入到环氧树脂中充分搅拌,其中偶联剂的量为环氧树脂质量的0.1%-5.0%,所述固化剂和环氧树脂的质量比为1.0:0.8-1.0:1.2;然后将步骤(1)制备的一级异质纤维胚结构浸入其中,加热至50℃-80℃,使一级异质纤维胚结构充分浸渍后提拉出固化体系,静置,直至固化完成,得到一级异质纤维结构;
    (3)多级异质纤维结构的加工制备:将步骤(2)所得的异质纤维作为一级结构,按照所述N级结构的螺旋角度,依次重复步骤(1)和步骤(2),得到N级异质纤维结构,N为2-7;
    (4)多级异质纤维预制体的编织制备:将所得N级异质纤维,按照经纬方向,通过经纬平织方法,编织成为经纬平织结构,然后将步骤(2)所述固化体系充分涂覆在经纬平织结构的所有经纬交接点,静置,直至完成固化,得到N级异质纤维预制体,N为2-7;
    (5)抗爆抗冲击多级异质纤维预制体复合混凝土的施工制备:将搅拌完成的混凝土浆料浇筑至模具中至高度为20mm-100mm,在混凝土浆料表面铺设一层多级异质纤维预制体;然后重复上述浇筑与铺设步骤,振捣密实,养护成型,即得到所述的抗爆抗冲击多级异质纤维预制体复合混凝土。
  9. 根据权利要求8所述的抗爆抗冲击多级异质纤维预制体复合混凝土的制备方法,其特征在于:步骤(4)中相邻所述多级异质纤维的芯纤维之间的距离为20mm-100mm;步骤(5)中各层所述的纤维预制体间纤维的投影夹角为10°-90°,相邻所述异质纤维网状结构的层间距为20mm-100mm。
  10. 根据权利要求8或9所述的抗爆抗冲击多级异质纤维预制体复合混凝土的制备方法,其特征在于:所述环氧树脂为双酚A环氧树脂;所述固化剂为聚酰胺、聚酯树脂、脂肪族胺类固化剂中的一种或多种;所述偶联剂为钛酸酯偶联剂、硅烷偶联剂中的一种或多种。
PCT/CN2020/080323 2019-10-25 2020-03-20 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法 WO2021077667A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227007128A KR102451554B1 (ko) 2019-10-25 2020-03-20 방폭 및 방충격 다단 이질 섬유 프리폼 복합 콘크리트 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911020722.2 2019-10-25
CN201911020722.2A CN111003959B (zh) 2019-10-25 2019-10-25 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法

Publications (1)

Publication Number Publication Date
WO2021077667A1 true WO2021077667A1 (zh) 2021-04-29

Family

ID=70110877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080323 WO2021077667A1 (zh) 2019-10-25 2020-03-20 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法

Country Status (3)

Country Link
KR (1) KR102451554B1 (zh)
CN (1) CN111003959B (zh)
WO (1) WO2021077667A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4286620A1 (en) * 2022-05-30 2023-12-06 Likal s.r.o. Sliding mandrel for cement-concrete covers
US11873637B2 (en) 2022-02-15 2024-01-16 Joon Bu Park Bricks exhibiting negative Poisson's ratio

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3622159B1 (en) * 2017-05-08 2023-05-03 Lutron Technology Company LLC Variable-stiffness roller shade tube
CN114075048B (zh) * 2020-08-18 2022-07-12 江苏苏博特新材料股份有限公司 一种端部具有微纤化结构的混凝土用增强聚合物纤维
CN112661464A (zh) * 2021-01-22 2021-04-16 宁波海格拉新材料科技有限公司 一种液晶聚芳酯纤维增强混凝土及其制备方法
CN116330758B (zh) * 2022-03-01 2024-03-01 山东土工侠信息科技有限公司 一种水泥毯及其制作方法与应用
CN118009871B (zh) * 2024-04-09 2024-06-04 西南石油大学 一种玄武岩纤维耐高温传感器的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578301A (en) * 1983-08-23 1986-03-25 Lambeg Industrial Research Association Fabric reinforced cement structure
WO2010070505A2 (en) * 2008-12-18 2010-06-24 Kimberly-Clark Worldwide, Inc. Moisture sensitive auxetic material
US20160040962A1 (en) * 2012-07-13 2016-02-11 Blast Control Systems, L.L.C. Blast Control Blanket
CN106495592A (zh) * 2016-11-07 2017-03-15 青岛理工大学 具有负泊松比效应的纤维增强多孔防爆混凝土及制备
CN106630818A (zh) * 2016-11-07 2017-05-10 青岛理工大学 具有负泊松比效应的防爆多孔混凝土及其制备方法
CN107119363A (zh) * 2017-05-08 2017-09-01 东华大学 一种稳定结构拉胀复合纱及其制备装置、方法及用途
CN108558312A (zh) * 2018-05-14 2018-09-21 东南大学 一种利用合成双螺旋纤维制备的混凝土及其制备方法
WO2019081766A1 (en) * 2017-10-27 2019-05-02 Technische Universität Berlin AUXETIC STRUCTURE AND METHOD FOR MANUFACTURING ANETICAL STRUCTURE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9905145D0 (en) * 1999-03-06 1999-04-28 Bolton Inst Higher Education Auxetic materials
FR2828894B1 (fr) * 2001-08-24 2004-01-02 Schappe Sa Fil resistant a la coupure, destine notamment a la realisation de vetements de protection
US8772187B2 (en) * 2007-06-21 2014-07-08 University Of Massachusetts Auxetic fabric structures and related fabrication methods
JP2010150310A (ja) * 2008-12-24 2010-07-08 Toray Ind Inc エポキシ樹脂組成物、繊維強化複合材料およびその製造方法
CN106499121B (zh) * 2016-11-07 2018-12-11 青岛理工大学 具有负泊松比效应的防爆钢筋混凝土及其制备方法
CN106517941B (zh) * 2016-11-07 2018-12-11 青岛理工大学 空胞体结构以及其用于制备防爆多孔混凝土的方法
CN107400947B (zh) * 2017-07-04 2020-07-31 东华大学 一种环锭纺的负泊松比纱及其复合纺纱装置、方法与用途
CN107443829A (zh) * 2017-09-12 2017-12-08 吉林大学 缝合连接的麻纤维编织增强发泡夹层结构复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578301A (en) * 1983-08-23 1986-03-25 Lambeg Industrial Research Association Fabric reinforced cement structure
WO2010070505A2 (en) * 2008-12-18 2010-06-24 Kimberly-Clark Worldwide, Inc. Moisture sensitive auxetic material
US20160040962A1 (en) * 2012-07-13 2016-02-11 Blast Control Systems, L.L.C. Blast Control Blanket
CN106495592A (zh) * 2016-11-07 2017-03-15 青岛理工大学 具有负泊松比效应的纤维增强多孔防爆混凝土及制备
CN106630818A (zh) * 2016-11-07 2017-05-10 青岛理工大学 具有负泊松比效应的防爆多孔混凝土及其制备方法
CN107119363A (zh) * 2017-05-08 2017-09-01 东华大学 一种稳定结构拉胀复合纱及其制备装置、方法及用途
WO2019081766A1 (en) * 2017-10-27 2019-05-02 Technische Universität Berlin AUXETIC STRUCTURE AND METHOD FOR MANUFACTURING ANETICAL STRUCTURE
CN108558312A (zh) * 2018-05-14 2018-09-21 东南大学 一种利用合成双螺旋纤维制备的混凝土及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11873637B2 (en) 2022-02-15 2024-01-16 Joon Bu Park Bricks exhibiting negative Poisson's ratio
EP4286620A1 (en) * 2022-05-30 2023-12-06 Likal s.r.o. Sliding mandrel for cement-concrete covers

Also Published As

Publication number Publication date
CN111003959B (zh) 2020-11-24
KR20220034921A (ko) 2022-03-18
KR102451554B1 (ko) 2022-10-06
CN111003959A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021077667A1 (zh) 抗爆抗冲击多级异质纤维预制体复合混凝土及其制备方法
Ranjbar et al. Fiber-reinforced geopolymer composites: A review
WO2021077669A1 (zh) 抗爆抗冲击负泊松比梯度复合阻尼材料及其制备方法
WO2021077668A1 (zh) 抗爆抗冲击多级异质纤维预制体复合材料及其制备方法
Dong et al. A review of the research and application progress of new types of concrete-filled FRP tubular members
CN110776291A (zh) 超高分子量聚乙烯纤维增强超高延性混凝土及其制备方法
CN110627442B (zh) 纤维网格增强混杂纤维高强和高延性水泥基复合材料检查井井盖及制备
Naghibdehi et al. Behaviour of functionally graded reinforced-concrete beams under cyclic loading
Attar et al. Experimental investigation of flexural and shear strengthening of RC beams using fiber-reinforced self-consolidating concrete jackets
CN105859228B (zh) 一种复合增强碱激发矿渣砂浆板及其制备方法
CN114057456A (zh) 多尺度增强的轻质高延性水泥基复合材料及其制备方法
CN103132654B (zh) 一种frp筋材端头螺母的制造方法
CN105946311B (zh) 一种超高韧性抗冲击防暴复合板及其制备方法
CN108661197B (zh) 一种抗航弹侵彻的钢管陶瓷球玄武岩纤维混凝土防护板
CN105837101A (zh) 连续碳纤维织物增强碱激发矿渣砂浆板及制备方法
CN108868180B (zh) 一种采用逐层后退铺网的trc薄板梁侧加固法
Abdel-Rahman et al. An Overview of Fiber Reinforced Concrete, FRC and Fibers Properties and Current Applications
Shaikh et al. Comparative study between fibre reinforced concrete (Glass, Jute, Steel Fibre) with traditional concrete
Hussien et al. Experimental investigation on RC columns confined by jacket with geopolymer adhesive
CN212332039U (zh) 一种快凝快硬高强水泥基防弹板
CN118008707A (zh) 一种复合材质抗裂高强预制组合风电塔筒及其制造方法
Hussien et al. Behavior of square RC columns confined with geopolymer adhesive jacket: Experimental study
Govindhan et al. Performance of HYBRID fibres in concrete
Abdallah et al. Repairing of RC beams fail in shear by usingfiber self consolidating concrete thin jacket
Al-Tikrite et al. of RPC Circular Columns under Different Loading Conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227007128

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879237

Country of ref document: EP

Kind code of ref document: A1