WO2022267452A1 - 定子骨架、磁悬浮轴承、压缩机和空调器 - Google Patents

定子骨架、磁悬浮轴承、压缩机和空调器 Download PDF

Info

Publication number
WO2022267452A1
WO2022267452A1 PCT/CN2022/071227 CN2022071227W WO2022267452A1 WO 2022267452 A1 WO2022267452 A1 WO 2022267452A1 CN 2022071227 W CN2022071227 W CN 2022071227W WO 2022267452 A1 WO2022267452 A1 WO 2022267452A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling channel
stator
channel
cooling
annular base
Prior art date
Application number
PCT/CN2022/071227
Other languages
English (en)
French (fr)
Inventor
龚高
李欣
邓明星
邹志堂
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022267452A1 publication Critical patent/WO2022267452A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/005Cooling of bearings of magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present application relates to the technical field of magnetic suspension, in particular to a stator frame, a magnetic suspension bearing, a compressor and an air conditioner.
  • Magnetic suspension bearing is a kind of bearing that uses electromagnetic force to support the stable suspension operation of the rotor system. Compared with traditional mechanical bearings, magnetic suspension bearings have excellent characteristics such as no friction, no wear, no lubrication, high operating speed, long life and low maintenance costs. The field has broad application prospects.
  • the magnetic levitation rotor runs at a high speed. Due to the existence of the electromagnetic field, the magnetic levitation rotor will cut the magnetic induction line in the electromagnetic field, resulting in a large eddy current loss on the rotor. In addition, the friction between the high-speed rotating magnetic levitation rotor and the air will also cause large wind wear loss. These losses gather on the surface of the magnetic levitation rotor, which will generate a large amount of heat, causing the magnetic levitation rotor to expand and deform.
  • the deformation of the magnetic levitation rotor will destroy the dynamic balance and structural strength of the rotor; and the change of the structural size caused by the deformation of the rotor will lead to the change of the air gap between the magnetic levitation stator and the rotor, which will change the control parameters of the magnetic levitation bearing, which will cause the rotor to run unstable. In severe cases, mechanical equipment will be damaged.
  • the technical problem to be solved in this application is to provide a stator frame, a magnetic suspension bearing, a compressor and an air conditioner, which can effectively dissipate heat from the stator and rotor of the magnetic suspension bearing, and improve the operation reliability of the magnetic suspension bearing.
  • the present application provides a stator skeleton, including an annular base and insulating teeth arranged along the circumferential direction of the annular base, the insulating teeth protrude toward the first end of the annular base, and the annular base is provided with a flow channel
  • the inlet and the first cooling flow channel, the second cooling flow channel is set on the insulated teeth
  • the first cooling flow channel communicates with the flow channel inlet
  • the first cooling flow channel is located on the first end surface of the annular base body
  • the second cooling flow channel The channel communicates with the first cooling channel
  • the second cooling channel communicates with the radial inner side of the insulating tooth portion.
  • the annular base is located on the radially outer side of the insulating tooth portion and is connected to the insulating tooth portion, the first cooling flow channel is an annular flow channel, and the first cooling flow channel is arranged on the radially outer side of the insulating tooth portion, And form a space with the insulating teeth.
  • the side walls on both sides of the first cooling channel have the same height.
  • the insulating tooth part includes tooth slots, and the second cooling channel is arranged on the slot bottom wall of the tooth slots of the insulating tooth part.
  • the groove bottom wall of the second cooling channel is coplanar with the first end surface of the annular base, and the depth of the second cooling channel is the same as that of the first cooling channel.
  • the second cooling channel extends along the radial direction of the insulating teeth; and/or, each insulating tooth is provided with a second cooling channel.
  • a magnetic suspension bearing including a stator frame, at least one stator frame being the above-mentioned stator frame.
  • a magnetic suspension bearing including a stator core and a stator frame arranged on the stator core, at least one stator frame and the stator core form a cooling channel at a matching position, the stator A runner inlet is arranged on the frame, and the runner inlet communicates with the radial inner space of the stator core through the cooling runner.
  • the stator skeleton includes an annular base body and an insulating tooth portion disposed at one end of the annular base body, the annular base body is located radially outside the insulating tooth portion, the annular base body is disposed corresponding to the yoke portion of the stator core, and the insulating tooth portion
  • the cooling channels include a first cooling channel located between the annular base body and the yoke, and a second cooling channel located between the insulated teeth and the stator teeth of the stator core, The first cooling channel communicates with the channel inlet, the first end of the second cooling channel communicates with the first cooling channel, and the second end of the second cooling channel communicates with the radial inner space of the stator teeth.
  • the first cooling channel is arranged on the end surface of the annular base body facing the yoke, and the second cooling channel is arranged on the end surface of the insulating tooth part facing the stator teeth.
  • the first cooling channel is an annular channel, the first cooling channel is spaced radially from the insulated teeth, and the groove bottom wall of the second cooling channel is in common with the first end surface of the annular base. noodle.
  • the first cooling channel is arranged on the end surface of the yoke facing the stator frame
  • the second cooling channel is arranged on the end surface of the stator tooth facing the stator frame.
  • a compressor including the above-mentioned stator frame or the above-mentioned magnetic suspension bearing.
  • an air conditioner including the above-mentioned stator frame or the above-mentioned magnetic suspension bearing.
  • the stator frame provided by the present application includes an annular base and insulating teeth arranged along the circumferential direction of the annular base, the insulating teeth protrude toward the first end of the annular base, and the annular base is provided with a flow channel inlet and a first cooling flow
  • the insulated teeth are provided with a second cooling channel, the first cooling channel communicates with the inlet of the channel, the first cooling channel is located on the first end surface of the annular base, the second cooling channel is connected to the first cooling channel The second cooling flow channel is connected to the radial inner side of the insulating tooth portion.
  • the stator frame realizes the delivery of the cooling medium by setting the first cooling channel and the second cooling channel.
  • the cooling medium can It is in direct contact with the stator core to cool the stator core.
  • the second cooling flow channel is connected to the radial inner side of the insulating teeth, the cooling medium can reach the stator-rotor gap through the second cooling flow channel.
  • the rotor is cooled, so that the stator core and the rotor core can be cooled simultaneously by using the cooling channel on the stator frame, which can effectively dissipate heat from the stator and rotor of the magnetic suspension bearing, and improve the operation reliability of the magnetic suspension bearing.
  • Fig. 1 is a schematic structural diagram of a stator frame according to an embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional structure diagram of a magnetic suspension bearing according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of an exploded structure of a magnetic suspension bearing according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a stator core according to an embodiment of the present application.
  • the stator skeleton includes an annular base 1 and insulating teeth 2 arranged along the circumferential direction of the annular base 1; The end protrudes; the annular base 1 is provided with a channel inlet 3 and a first cooling channel 4; the insulating tooth part 2 is provided with a second cooling channel 5; the first cooling channel 4 communicates with the channel inlet 3; A cooling channel 4 is located on the first end surface of the annular base 1 ; a second cooling channel 5 communicates with the first cooling channel 4 , and the second cooling channel 5 communicates with the radial inner side of the insulating tooth portion 2 .
  • the stator frame realizes the delivery of the cooling medium by setting the first cooling channel 4 and the second cooling channel 5 . Since the first cooling channel 4 is located on the first end face of the annular base body 1, when used in conjunction with the stator core 7, the cooling medium can directly contact the stator core 7 to cool the stator core 7; at the same time , since the second cooling channel 5 is connected to the radial inner side of the insulating tooth part 2, the cooling medium can reach the gap between the stator and the rotor through the second cooling channel 5 to cool the rotor, thereby utilizing the cooling flow on the stator frame This way realizes the cooling of the stator core 7 and the rotor core at the same time, thereby effectively dissipating heat from the stator and the rotor of the magnetic suspension bearing, and improving the operation reliability of the magnetic suspension bearing.
  • the cooling flow channel is provided on the top, which will not damage the structure of the stator core 7, so it can avoid affecting the magnetic circuit of the stator core 7, and ensure the working performance of the magnetic suspension bearing.
  • machining the cooling flow channel on the stator frame is easier to implement, lower in cost and higher in processing efficiency than processing the cooling flow channel on the stator core 7 .
  • the annular base 1 is located on the radially outer side of the insulating tooth portion 2 and is connected to the insulating tooth portion 2
  • the first cooling channel 4 is an annular channel
  • the first cooling channel 4 is arranged on the insulating tooth portion 2 radially outside, and form a space with the insulating tooth part 2.
  • the annular base 1 is located radially outside the insulated teeth 2, and the insulated teeth 2 are installed in the tooth slots of the stator core 7, so that the annular base 1 can be installed on the yoke 8 of the stator core 7
  • the end surface of the yoke can be bonded together with the yoke 8, so that the first cooling channel 4 on the annular base 1 forms a closed channel, so that the cooling medium can flow along the first cooling channel 4 toward the circumference of the annular base 1 Direct flow without leakage, ensuring the utilization efficiency of the cooling medium.
  • the first cooling channel 4 is located on the first end surface of the annular base body 1 , that is, the end surface facing the yoke 8 , the cooling medium flows in the first cooling channel 4 and can carry away the yoke of the stator core 7
  • the heat on the part 8 forms an effective heat dissipation to the yoke part of the stator core 7.
  • the height of the side walls on both sides of the first cooling channel 4 is the same, so that the side walls on both sides of the first cooling channel 4 can form a good bonding effect with the yoke 8, and further ensure the annular The effect of the sealing fit between the base body 1 and the yoke 8 .
  • the insulating tooth portion 2 includes tooth grooves, and the second cooling channel 5 is arranged on the groove bottom wall of the tooth grooves of the insulating tooth portion 2 .
  • the stator tooth 9 of the stator core 7 is also installed in the tooth slot of the insulating tooth part 2, and the bottom wall of the slot of the insulating tooth part 2 is opposite to the tooth end surface of the stator tooth 9
  • the wall surface, the second cooling channel 5 is arranged on the groove bottom wall of the insulating tooth part 2, so that the second cooling channel 5 is located between the insulating tooth part 2 and the stator tooth 9, so that the cooling medium can flow from the first cooling flow
  • the channel 4 flows through the second cooling channel 5 , it can form more effective cooling for the stator teeth 9 , further improving the overall cooling effect of the cooling medium on the stator core 7 .
  • the groove bottom wall surface of the second cooling channel 5 is coplanar with the first end surface of the annular base 1, and the depth of the second cooling channel 5 is the same as that of the first cooling channel 4, which can ensure
  • the end surfaces of the annular base 1 and the insulating tooth portion 2 facing the yoke portion 8 have the same height, and can form a good seal with the yoke portion 8 and the stator tooth 9 of the stator core 7 .
  • the second cooling channel 5 extends along the radial direction of the insulating tooth part 2, and the second cooling channel 5 is a through groove, extending radially to the end of the tooth part of the insulating skeleton, and the stator core 7
  • the tooth end surface of the stator tooth 9 forms a channel structure with good sealing performance, which can guide the cooling medium to spray vertically along the radial direction to the surface of the bearing rotor assembly 10 while cooling the stator tooth 9, so as to realize the cooling of the rotor assembly 10, thereby improving the magnetic suspension.
  • the operational reliability of the bearing is provided.
  • each insulating tooth portion 2 is provided with a second cooling channel 5, and each second cooling channel 5 communicates with the annular first cooling channel 4, so that the first cooling channel 4 can pass through the The cooling medium is delivered to each second cooling channel 5 to form a more comprehensive cooling of the rotor assembly 10 .
  • a plurality of second cooling channels 5 may also be evenly arranged in the circumferential direction, and the number of the second cooling channels 5 is less than the number of the insulating teeth 2 .
  • there is one flow channel inlet 3, one first cooling flow channel 4, and the second cooling flow channels 5 are arranged at intervals along the circumferential direction of the insulating tooth portion 2, along the circumferential direction away from the flow channel inlet 3 direction, the flow cross section at the inlet position of the second cooling channel 5 increases gradually.
  • the above-mentioned limitation can be used to make the airflows distributed to each second cooling channel 5 consistent, thereby improving the performance of the rotor. Cooling uniformity of the assembly 10.
  • the passage cross section at the inlet position of the second cooling channel 5 increases progressively, either in width or in depth, or in both span and depth.
  • the above-mentioned first cooling channel 4 is, for example, an annular groove.
  • the above-mentioned second cooling channel 5 is, for example, a straight groove, or an arc groove, or a guide groove of other shapes.
  • the magnetic suspension bearing includes a stator frame 6 , at least one stator frame 6 is the above-mentioned stator frame.
  • one end of the stator core 7 is provided with the aforementioned stator frame 6 , and the other end is provided with a common stator frame.
  • stator frames 6 are respectively provided at both ends of the stator core 7 .
  • the magnetic suspension bearing includes a stator core 7, a stator skeleton 6, a bearing coil and a rotor assembly 10.
  • the stator core 7 is an annular tooth groove structure, and a plurality of stator teeth 9 and stator slots are staggered along the circumference.
  • the frame 6 is an injection molded part similar in structure to the stator core 7, and has a plurality of slot insulations corresponding to the stator slots of the stator core 7.
  • the stator frame 6 is set outside the end face of the stator core 7, and the stator core 7 can be
  • the stator slot is completely covered to form an insulating layer between the bearing coil and the stator core 7; the bearing coil passes through the slot of the stator frame 6 and the stator core 7, and is wound on the slot insulation, and the bearing coil is passed into
  • the controllable current can provide controllable magnetic attraction force for the radial magnetic suspension bearing, and act on the rotor assembly 10 to realize the levitation control of the rotor assembly 10 .
  • the magnetic suspension bearing includes a stator core 7 and a stator frame 6 arranged on the stator core 7, at least one stator frame 6 and the stator core 7 are in a matching position A cooling channel is formed.
  • the stator frame 6 is provided with a runner inlet 3; the runner inlet 3 communicates with the radial inner space of the stator core 7 through the cooling runner.
  • the cooling medium enters the cooling channel through the channel inlet 3, and in the process of flowing along the cooling channel, it can flow through the mating end surface of the stator frame 6 and the stator core 7, and the stator core 7 It is cooled, and finally enters the radially inner space of the stator core 7 through the cooling channel, and cools the rotor assembly 10 radially inner of the stator core 7 .
  • the stator core 7 and the rotor assembly 10 can be cooled at the same time, so a good cooling effect can be provided for the magnetic suspension bearing, and the operation reliability of the magnetic suspension bearing can be improved.
  • the stator skeleton 6 includes an annular base body 1 and an insulating tooth portion 2 arranged at one end of the annular base body 1; the annular base body 1 is located radially outside the insulating tooth portion 2, and the annular base body 1 corresponds to the The yoke 8 is set; the insulated teeth 2 are set corresponding to the teeth of the stator core 7; the cooling channels include the first cooling channel 4 between the annular base 1 and the yoke 8, and the insulated teeth 2 and the stator The second cooling channel 5 between the stator teeth 9 of the iron core 7; the first cooling channel 4 communicates with the channel inlet 3, the first end of the second cooling channel 5 communicates with the first cooling channel 4, and the first cooling channel 4 communicates with the first cooling channel 4. The second end of the second cooling channel 5 communicates with the radial inner space of the stator tooth 9 .
  • the first cooling channel 4 is arranged on the end surface of the annular base 1 facing the yoke 8 ; the second cooling channel 5 is arranged on the end surface of the insulating tooth part 2 facing the stator teeth 9 .
  • both the first cooling channel 4 and the second cooling channel 5 are arranged on the stator frame 6 .
  • the first cooling channel 4 is an annular channel.
  • the first cooling channel 4 forms a radial distance from the insulating tooth portion 2 ; the groove bottom wall surface of the second cooling channel 5 is coplanar with the first end surface of the annular base 1 .
  • the first cooling channel 4 is arranged on the end surface of the yoke 8 facing the stator frame 6 ; the second cooling channel 5 is arranged on the end surface of the stator tooth 9 facing the stator frame 6 .
  • both the first cooling channel 4 and the second cooling channel 5 are provided on the stator core 7 .
  • the compressor includes the above-mentioned stator frame or the above-mentioned magnetic suspension bearing.
  • the air conditioner includes the above-mentioned stator frame or the above-mentioned magnetic suspension bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本申请提供一种定子骨架、磁悬浮轴承、压缩机和空调器。该定子骨架包括环形基体(1)和设置在环形基体(1)的一端的绝缘齿部(2),环形基体(1)上设置有流道进口(3)和第一冷却流道(4),绝缘齿部(2)上设置有第二冷却流道(5),第一冷却流道(4)与流道进口(3)连通,第一冷却流道(4)位于环形基体(1)设置绝缘齿部(2)的端面上,第二冷却流道(5)与第一冷却流道(4)连通,第二冷却流道(5)连通至绝缘齿部(2)的径向内侧。根据本申请的定子骨架,能够对磁悬浮轴承的定子和转子进行有效散热,提高磁悬浮轴承运行可靠性。

Description

定子骨架、磁悬浮轴承、压缩机和空调器
相关申请
本申请要求2021年06月21日申请的,申请号为202110688318.3,名称为“定子骨架、磁悬浮轴承、压缩机和空调器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及磁悬浮技术领域,尤其涉及一种定子骨架、磁悬浮轴承、压缩机和空调器。
背景技术
磁悬浮轴承是一种利用电磁力支承转子系统稳定悬浮运行的轴承。相较于传统的机械轴承,磁悬浮轴承具有无摩擦、无磨损、无需润滑、运行转速高、寿命长及维护成本低等优良特性,在高速电机、高速电主轴、高速飞轮储能系统等高速传动领域具有广泛的应用前景。
磁悬浮转子运行转速高,由于电磁场存在,磁悬浮转子将在电磁场中做切割磁感线运动,从而在转子上产生较大的涡流损耗。此外,高速旋转的磁悬浮转子与空气摩擦也会产生较大的风磨损耗。这些损耗汇集在磁悬浮转子表面,将产生大量的热,使得磁悬浮转子膨胀变形。磁悬浮转子的变形会破坏转子的动平衡以及结构强度;并且转子变形引起的结构尺寸的改变,会导致磁悬浮定、转子的气隙变化,使得磁悬浮轴承控制参数发生改变,进而引发转子运行失稳,严重的情况将导致机械设备损毁。
发明内容
因此,本申请要解决的技术问题在于提供一种定子骨架、磁悬浮轴承、压缩机和空调器,能够对磁悬浮轴承的定子和转子进行有效散热,提高磁悬浮轴承运行可靠性。
为了解决上述问题,本申请提供一种定子骨架,包括环形基体和沿环形基体的周向排布的绝缘齿部,绝缘齿部朝环形基体的第一端凸出,环形基体上设置有流道进口和第一冷却流道,绝缘齿部上设置有第二冷却流道,第一冷却流道与流道进口连通,第一冷却流道位于环形基体的第一端端面上,第二冷却流道与第一冷却流道连通,第二冷却流道连通至绝缘齿部的径向内侧。
在其中一个实施例中,环形基体位于绝缘齿部的径向外侧,并与绝缘齿部连接,第一冷却流道为环形流道,第一冷却流道设置在绝缘齿部的径向外侧,并与绝缘齿部形成间隔。
在其中一个实施例中,第一冷却流道两侧的侧壁高度相同。
在其中一个实施例中,绝缘齿部包括齿槽,第二冷却流道设置在绝缘齿部的齿槽的槽底壁上。
在其中一个实施例中,第二冷却流道的槽底壁壁面与环形基体的第一端端面共面,第二冷却流道的深度与第一冷却流道的深度相同。
在其中一个实施例中,第二冷却流道沿绝缘齿部的径向延伸;和/或,各绝缘齿部上均设置有第二冷却流道。
在其中一个实施例中,流道进口为一个,第一冷却流道为一个,第二冷却流道沿绝缘齿部的周向间隔排布,沿着远离流道进口的周向方向,第二冷却流道的进口位置通流截面递增。
根据本申请的另一方面,提供了一种磁悬浮轴承,包括定子骨架,至少一个定子骨架为上述的定子骨架。
根据本申请的另一方面,提供了一种磁悬浮轴承,包括定子铁芯和设置在定子铁芯上的定子骨架,至少一个定子骨架与定子铁芯在配合位置处形成有冷却流道,该定子骨架上设置有流道进口,流道进口经冷却流道与定子铁芯的径向内侧空间连通。
在其中一个实施例中,定子骨架包括环形基体和设置在环形基体的一端的绝缘齿部,环形基体位于绝缘齿部的径向外侧,环形基体对应于定子铁芯的轭部设置,绝缘齿部对应于定子铁芯的齿部设置,冷却流道包括位于环形基体和轭部之间的第一冷却流道,以及位于绝缘齿部和定子铁芯的定子齿之间的第二冷却流道,第一冷却流道与流道进口连通,第二冷却流道的第一端与第一冷却流道连通,第二冷却流道的第二端与定子齿的径向内侧空间连通。
在其中一个实施例中,第一冷却流道设置在环形基体朝向轭部的端面上,第二冷却流道设置在绝缘齿部朝向定子齿的端面上。
在其中一个实施例中,第一冷却流道为环形流道,第一冷却流道与绝缘齿部形成径向间隔,第二冷却流道的槽底壁壁面与环形基体的第一端端面共面。
在其中一个实施例中,第一冷却流道设置在轭部朝向定子骨架的端面上,第二冷却流道设置在定子齿朝向定子骨架的端面上。
根据本申请的另一方面,提供了一种压缩机,包括上述的定子骨架或上述的磁悬浮轴承。
根据本申请的另一方面,提供了一种空调器,包括上述的定子骨架或上述的磁悬浮轴承。
本申请提供的定子骨架,包括环形基体和沿环形基体的周向排布的绝缘齿部,绝缘齿部朝环形基体的第一端凸出,环形基体上设置有流道进口和第一冷却流道,绝缘齿部上设置有第二冷却流道,第一冷却流道与流道进口连通,第一冷却流道位于环形基体的第一端端面上,第二冷却流道与第一冷却流道连通,第二冷却流道连通至绝缘齿部的径向内侧。该定子骨架通过设置第一冷却流道和第二冷却流道,实现冷却介质的输送,由于第一冷却流道位于环形基体的端面上,因此在与定子铁芯配合使用时,能够使得冷却介质直接与定子铁芯接触,对定子铁芯进行冷却,同时,由于第二冷却流道连通至绝缘齿部的径向内侧,因此使得冷却介质能够经第二冷却流道到达定转子间隙处,对转子进行冷却,从而利用定子骨架上的冷却流道同时实现对定子铁芯和转子铁芯的冷却,能够对磁悬浮轴承的定子和转子进行有效散热,提高磁悬浮轴承运行可靠性。
附图说明
图1为本申请一个实施例的定子骨架的结构示意图。
图2为本申请一个实施例的磁悬浮轴承的剖视结构示意图。
图3为本申请一个实施例的磁悬浮轴承的分解结构示意图。
图4为本申请一个实施例的定子铁芯的结构示意图。
具体实施方式
结合参见图1至图4所示,根据本申请的实施例,定子骨架包括环形基体1和沿环形基体1的周向排布的绝缘齿部2;绝缘齿部2朝环形基体1的第一端凸出;环形基体1上设置有流道进口3和第一冷却流道4;绝缘齿部2上设置有第二冷却流道5;第一冷却流道4与流道进口3连通;第一冷却流道4位于环形基体1的第一端端面上;第二冷却流道5与第一冷却流道4连通,第二冷却流道5连通至绝缘齿部2的径向内侧。
该定子骨架通过设置第一冷却流道4和第二冷却流道5,实现冷却介质的输送。由于第一冷却流道4位于环形基体1的第一端端面上,因此在与定子铁芯7配合使用时,能够使得冷却介质直接与定子铁芯7接触,对定子铁芯7进行冷却;同时,由于第二冷却流道5连通至绝缘齿部2的径向内侧,因此使得冷却介质能够经第二冷却流道5到达定转子间隙处,对转子进行冷却,从而利用定子骨架上的冷却流道同时实现对定子铁芯7和转子铁芯的冷却,进而能够对磁悬浮轴承的定子和转子进行有效散热,提高磁悬浮轴承运行可靠 性。
在本实施例中,当将定子骨架安装在定子铁芯7上时,由于定子骨架上已经设置用于对定子铁芯7和转子组件10进行冷却的冷却流道,因此无需在定子铁芯7上开设冷却流道,不会破坏定子铁芯7的结构,因此能够避免对定子铁芯7的磁路造成影响,保证了磁悬浮轴承的工作性能。此外,在定子骨架上加工冷却流道,相比于在定子铁芯7上加工冷却流道,工艺更加容易实现,成本更低,加工效率更高。
在一个实施例中,环形基体1位于绝缘齿部2的径向外侧,并与绝缘齿部2连接,第一冷却流道4为环形流道,第一冷却流道4设置在绝缘齿部2的径向外侧,并与绝缘齿部2形成间隔。在本实施例中,环形基体1位于绝缘齿部2的径向外侧,绝缘齿部2安装在定子铁芯7的齿槽内,因此能够使得环形基体1安装在定子铁芯7的轭部8的端面上,能够与轭部8贴合在一起,从而使得环形基体1上的第一冷却流道4形成封闭的通道,使得冷却介质能够沿着第一冷却流道4向着环形基体1的周向流动,而不会发生泄漏,保证了冷却介质的利用效率。由于第一冷却流道4位于环形基体1的第一端端面上,也即朝向轭部8的端面上,因此冷却介质在第一冷却流道4内流动,能够携带走定子铁芯7的轭部8上的热量,对定子铁芯7的轭部形成有效散热。
在一个实施例中,第一冷却流道4两侧的侧壁高度相同,从而使得第一冷却流道4两侧的侧壁能够与轭部8之间形成良好的贴合效果,进一步保证环形基体1与轭部8之间的密封配合效果。
在一个实施例中,绝缘齿部2包括齿槽,第二冷却流道5设置在绝缘齿部2的齿槽的槽底壁上。当绝缘齿部2安装在齿槽内时,定子铁芯7的定子齿9也安装在绝缘齿部2的齿槽内,绝缘齿部2的槽底壁为与定子齿9的齿端面相对的壁面,将第二冷却流道5设置在绝缘齿部2的槽底壁上,使得第二冷却流道5位于绝缘齿部2与定子齿9之间,从而能够在冷却介质从第一冷却流道4流经第二冷却流道5时,能够对定子齿9形成更加有效的冷却,进一步提高冷却介质对定子铁芯7的整体冷却效果。
在一个实施例中,第二冷却流道5的槽底壁壁面与环形基体1的第一端端面共面,第二冷却流道5的深度与第一冷却流道4的深度相同,能够保证环形基体1以及绝缘齿部2朝向轭部8的端面高度一致,能够与定子铁芯7的轭部8和定子齿9之间均形成良好密封。
在一个实施例中,第二冷却流道5沿绝缘齿部2的径向延伸,第二冷却流道5为通槽,沿着径向延伸至绝缘骨架齿部末端,与定子铁芯7的定子齿9的齿端面形成密封性较好的通道结构,可以在冷却定子齿9的同时,引导冷却介质沿径向垂直喷射至轴承转子组件10表面,实现对转子组件10的冷却,从而提高磁悬浮轴承的运行可靠性。
在一个实施例中,各绝缘齿部2上均设置有第二冷却流道5,各个第二冷却流道5均与环形的第一冷却流道4连通,从而能够通过第一冷却流道4向各个第二冷却流道5输送冷却介质,对转子组件10形成更加全面的冷却。
在一个实施例中,也可以在周向方向上均匀设置多个第二冷却流道5,第二冷却流道5的数量少于绝缘齿部2的数量。
在一个实施例中,流道进口3为一个,第一冷却流道4为一个,第二冷却流道5沿绝缘齿部2的周向间隔排布,沿着远离流道进口3的周向方向,第二冷却流道5的进口位置通流截面递增。在本实施例中,由于距离流道进口3越远,气流阻力越大,流动损失也越大,因此可以通过上述限定,使得分配至各第二冷却流道5的气流流量一致,从而提高转子组件10的冷却均匀性。
第二冷却流道5的进口位置通流截面递增,可以为宽度的递增,也可以为深度的递增,还可以为跨度和深度的同时递增。
上述的第一冷却流道4例如为环形槽。
上述的第二冷却流道5例如为直槽,也可以为弧形槽,或者是其他形状的导流槽。
在一个实施例中,流道进口3也可以为两个或者两个以上,可以沿着环形基体1的周向均匀分布。
结合参见图1至图4所示,根据本申请的实施例,磁悬浮轴承包括定子骨架6,至少一个定子骨架6为上述的定子骨架。
在一个实施例中,定子铁芯7的一端设置有上述的定子骨架6,另一端设置普通的定子骨架。
在一个实施例中,在定子铁芯7的两端分别设置有上述的定子骨架6。
在一个实施例中,磁悬浮轴承包括定子铁芯7、定子骨架6、轴承线圈和转子组件10,定子铁芯7为环形齿槽结构,沿圆周交错分布有多个定子齿9和定子槽,定子骨架6为与定子铁芯7结构相似的注塑件,具有多个与定子铁芯7的定子槽对应的齿槽绝缘,定子骨架6套设于定子铁芯7端面外,可将定子铁芯7的定子槽完全包覆,形成轴承线圈与定子铁芯7之间的绝缘层;轴承线圈穿过定子骨架6与定子铁芯7的槽口,绕制在齿槽绝缘上,轴承线圈内通入可控的电流,可为径向磁悬浮轴承提供可控的磁吸力,作用于转子组件10上,实现转子组件10的悬浮控制。
结合参见图1至图4所示,根据本申请的实施例,磁悬浮轴承包括定子铁芯7和设置在定子铁芯7上的定子骨架6,至少一个定子骨架6与定子铁芯7在配合位置处形成有冷却流道。该定子骨架6上设置有流道进口3;流道进口3经冷却流道与定子铁芯7的径向 内侧空间连通。
在本实施例中,冷却介质经流道进口3进入到冷却流道内,在沿着冷却流道流动的过程中,能够流经定子骨架6与定子铁芯7的配合端面,对定子铁芯7进行冷却,并最终经冷却流道进入到定子铁芯7的径向内侧空间,对定子铁芯7径向内侧的转子组件10进行冷却。通过上述的冷却流道,能够同时对定子铁芯7和转子组件10进行冷却,因此能够为磁悬浮轴承提供良好的冷却效果,提高磁悬浮轴承的运行可靠性。
在一个实施例中,定子骨架6包括环形基体1和设置在环形基体1的一端的绝缘齿部2;环形基体1位于绝缘齿部2的径向外侧,环形基体1对应于定子铁芯7的轭部8设置;绝缘齿部2对应于定子铁芯7的齿部设置;冷却流道包括位于环形基体1和轭部8之间的第一冷却流道4,以及位于绝缘齿部2和定子铁芯7的定子齿9之间的第二冷却流道5;第一冷却流道4与流道进口3连通,第二冷却流道5的第一端与第一冷却流道4连通,第二冷却流道5的第二端与定子齿9的径向内侧空间连通。
在一个实施例中,第一冷却流道4设置在环形基体1朝向轭部8的端面上;第二冷却流道5设置在绝缘齿部2朝向定子齿9的端面上。在本实施例中,第一冷却流道4和第二冷却流道5均设置在定子骨架6上。
在一个实施例中,第一冷却流道4为环形流道。第一冷却流道4与绝缘齿部2形成径向间隔;第二冷却流道5的槽底壁壁面与环形基体1的第一端端面共面。
在一个实施例中,第一冷却流道4设置在轭部8朝向定子骨架6的端面上;第二冷却流道5设置在定子齿9朝向定子骨架6的端面上。在本实施例中,第一冷却流道4和第二冷却流道5均设置在定子铁芯7上。
根据本申请的实施例,压缩机包括上述的定子骨架或上述的磁悬浮轴承。
根据本申请的实施例,空调器包括上述的定子骨架或上述的磁悬浮轴承。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。

Claims (15)

  1. 一种定子骨架,包括环形基体(1)和沿所述环形基体(1)周向排布的绝缘齿部(2),所述绝缘齿部(2)朝所述环形基体(1)的第一端凸出,所述环形基体(1)上设置有流道进口(3)和第一冷却流道(4),所述绝缘齿部(2)上设置有第二冷却流道(5),所述第一冷却流道(4)与所述流道进口(3)连通,所述第一冷却流道(4)位于所述环形基体(1)的第一端端面上,所述第二冷却流道(5)与所述第一冷却流道(4)连通,所述第二冷却流道(5)连通至所述绝缘齿部(2)的径向内侧。
  2. 根据权利要求1所述的定子骨架,其中,所述环形基体(1)位于所述绝缘齿部(2)的径向外侧,并与所述绝缘齿部(2)连接,所述第一冷却流道(4)为环形流道,所述第一冷却流道(4)设置在所述绝缘齿部(2)的径向外侧,并与所述绝缘齿部(2)形成间隔。
  3. 根据权利要求2所述的定子骨架,其中,所述第一冷却流道(4)两侧的侧壁高度相同。
  4. 根据权利要求1所述的定子骨架,其中,所述绝缘齿部(2)包括齿槽,所述第二冷却流道(5)设置在所述绝缘齿部(2)的齿槽的槽底壁上。
  5. 根据权利要求4所述的定子骨架,其中,所述第二冷却流道(5)的槽底壁壁面与所述环形基体(1)的第一端端面共面,所述第二冷却流道(5)的深度与所述第一冷却流道(4)的深度相同。
  6. 根据权利要求1所述的定子骨架,其中,所述第二冷却流道(5)沿所述绝缘齿部(2)的径向延伸;和/或,各所述绝缘齿部(2)上均设置有所述第二冷却流道(5)。
  7. 根据权利要求2所述的定子骨架,其中,所述流道进口(3)为一个,所述第一冷却流道(4)为一个,所述第二冷却流道(5)沿所述绝缘齿部(2)的周向间隔排布,沿着远离所述流道进口(3)的周向方向,所述第二冷却流道(5)的进口位置通流截面递增。
  8. 一种磁悬浮轴承,包括定子骨架(6),其中,至少一个所述定子骨架(6)为权利要求1至7中任一项所述的定子骨架。
  9. 一种磁悬浮轴承,包括定子铁芯(7)和设置在所述定子铁芯(7)上的定子骨架(6),至少一个所述定子骨架(6)与所述定子铁芯(7)在配合位置处形成有冷却流道,所述定子骨架(6)上设置有流道进口(3),所述流道进口(3)经所述冷却流道与所述定子铁芯(7)的径向内侧空间连通。
  10. 根据权利要求9所述的磁悬浮轴承,其中,所述定子骨架(6)包括环形基体(1)和设置在所述环形基体(1)的一端的绝缘齿部(2),所述环形基体(1)位于所述绝缘齿部(2)的径向外侧,所述环形基体(1)对应于所述定子铁芯(7)的轭部(8)设置,所述绝缘齿部(2)对应于所述定子铁芯(7)的齿部设置,所述冷却流道包括位于所述环形基体(1)和所述轭部(8)之间的第一冷却流道(4),以及位于所述绝缘齿部(2)和所述定子铁芯(7)的定子齿(9)之间的第二冷却流道(5),所述第一冷却流道(4)与所述流道进口(3)连通,所述第二冷却流道(5)的第一端与所述第一冷却流道(4)连通,所述第二冷却流道(5)的第二端与所述定子齿(9)的径向内侧空间连通。
  11. 根据权利要求10所述的磁悬浮轴承,其中,所述第一冷却流道(4)设置在所述环形基体(1)朝向所述轭部(8)的端面上,所述第二冷却流道(5)设置在所述绝缘齿部(2)朝向所述定子齿(9)的端面上。
  12. 根据权利要求11所述的磁悬浮轴承,其中,所述第一冷却流道(4)为环形流道,所述第一冷却流道(4)与所述绝缘齿部(2)形成径向间隔,所述第二冷却流道(5)的槽底壁壁面与所述环形基体(1)的第一端端面共面。
  13. 根据权利要求10所述的磁悬浮轴承,其中,所述第一冷却流道(4)设置在所述轭部(8)朝向所述定子骨架(6)的端面上,所述第二冷却流道(5)设置在所述定子齿(9)朝向所述定子骨架(6)的端面上。
  14. 一种压缩机,包括权利要求1至7中任一项所述的定子骨架或权利要求8至13中任一项所述的磁悬浮轴承。
  15. 一种空调器,包括权利要求1至7中任一项所述的定子骨架或权利要求8至13中任一项所述的磁悬浮轴承。
PCT/CN2022/071227 2021-06-21 2022-01-11 定子骨架、磁悬浮轴承、压缩机和空调器 WO2022267452A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110688318.3 2021-06-21
CN202110688318.3A CN113315289A (zh) 2021-06-21 2021-06-21 定子骨架、磁悬浮轴承、压缩机和空调器

Publications (1)

Publication Number Publication Date
WO2022267452A1 true WO2022267452A1 (zh) 2022-12-29

Family

ID=77379924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071227 WO2022267452A1 (zh) 2021-06-21 2022-01-11 定子骨架、磁悬浮轴承、压缩机和空调器

Country Status (2)

Country Link
CN (1) CN113315289A (zh)
WO (1) WO2022267452A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113315289A (zh) * 2021-06-21 2021-08-27 珠海格力电器股份有限公司 定子骨架、磁悬浮轴承、压缩机和空调器
CN117424366B (zh) * 2023-12-19 2024-03-15 珠海格力电器股份有限公司 冷却结构及具有其的电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336677A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 回転電機および車両
CN203491813U (zh) * 2013-10-12 2014-03-19 浙江宇静电机有限公司 工业缝纫机电机的定子绝缘架
CN204145107U (zh) * 2014-09-02 2015-02-04 安徽美芝精密制造有限公司 用于压缩机的绝缘架和具有其的压缩机
JP2016046971A (ja) * 2014-08-26 2016-04-04 トヨタ自動車株式会社 回転電機のステータ
CN106160294A (zh) * 2016-08-09 2016-11-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机电机、电机定子及其电机绝缘骨架
CN113266644A (zh) * 2021-06-21 2021-08-17 珠海格力电器股份有限公司 定子组件、磁悬浮轴承和压缩机
CN113315289A (zh) * 2021-06-21 2021-08-27 珠海格力电器股份有限公司 定子骨架、磁悬浮轴承、压缩机和空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007336677A (ja) * 2006-06-14 2007-12-27 Toyota Motor Corp 回転電機および車両
CN203491813U (zh) * 2013-10-12 2014-03-19 浙江宇静电机有限公司 工业缝纫机电机的定子绝缘架
JP2016046971A (ja) * 2014-08-26 2016-04-04 トヨタ自動車株式会社 回転電機のステータ
CN204145107U (zh) * 2014-09-02 2015-02-04 安徽美芝精密制造有限公司 用于压缩机的绝缘架和具有其的压缩机
CN106160294A (zh) * 2016-08-09 2016-11-23 珠海格力节能环保制冷技术研究中心有限公司 压缩机电机、电机定子及其电机绝缘骨架
CN113266644A (zh) * 2021-06-21 2021-08-17 珠海格力电器股份有限公司 定子组件、磁悬浮轴承和压缩机
CN113315289A (zh) * 2021-06-21 2021-08-27 珠海格力电器股份有限公司 定子骨架、磁悬浮轴承、压缩机和空调器

Also Published As

Publication number Publication date
CN113315289A (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
WO2022267452A1 (zh) 定子骨架、磁悬浮轴承、压缩机和空调器
WO2021114606A1 (zh) 一种带吊挂结构的空水冷大功率永磁牵引电机
JP6059906B2 (ja) アキシャルギャップ型回転電機
WO2021027301A1 (zh) 定子分块、定子组件以及定子组件的冷却系统
CN101814797A (zh) 高速永磁电机定子冷却系统
CN112260485B (zh) 一种双抽交互式高功率密度电机
CN113346678B (zh) 具有多级轴流-离心式通风冷却系统的混合励磁汽轮发电机
WO2023097845A1 (zh) 一种全封闭自通风式电机冷却结构
CN107086713B (zh) 一种高效散热的风冷定转子电机
JP3236643U (ja) デュアルチャンネル高効率放熱構造の高速モータ
CN110768414A (zh) 一种永磁电机的冷却结构
CN113266644A (zh) 定子组件、磁悬浮轴承和压缩机
CN117040196A (zh) 一种双离心-轴流交叠冷却增压式变速抽水蓄能发电电动机通风系统
CN109831054B (zh) 一种具有冷却系统的电机
CN218276240U (zh) 一种油冷电机
KR102048851B1 (ko) 발전기의 팬 주변부 실링 구조
CN214958971U (zh) 定子骨架、磁悬浮轴承、压缩机和空调器
CN114465388A (zh) 一种径向多并行风路内冷式抽水蓄能发电电动机转子
CN112713716B (zh) 一种设有内外冷却风路的封闭式电机及电机机座
CN220653067U (zh) 一种适用于转子及定子冷却的电机
CN216554973U (zh) 定子组件、磁悬浮轴承和压缩机
CN216599176U (zh) 一种径向多并行风路内冷式抽水蓄能发电电动机转子
CN112217305A (zh) 一种大型高速永磁电机转子主轴内循环式冷却结构
CN210536441U (zh) 可有效降低大功率宽转速变频电机温升的双风路结构
CN107086690B (zh) 一种高效散热的电机转子结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22826963

Country of ref document: EP

Kind code of ref document: A1