WO2022267356A1 - 外腔激光器 - Google Patents

外腔激光器 Download PDF

Info

Publication number
WO2022267356A1
WO2022267356A1 PCT/CN2021/135604 CN2021135604W WO2022267356A1 WO 2022267356 A1 WO2022267356 A1 WO 2022267356A1 CN 2021135604 W CN2021135604 W CN 2021135604W WO 2022267356 A1 WO2022267356 A1 WO 2022267356A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
laser
focusing lens
light
cavity surface
Prior art date
Application number
PCT/CN2021/135604
Other languages
English (en)
French (fr)
Inventor
涂文凯
Original Assignee
苏州旭创科技有限公司
铜陵旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司, 铜陵旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Publication of WO2022267356A1 publication Critical patent/WO2022267356A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • the utility model relates to the field of optical communication, in particular to an external cavity laser.
  • Wavelength tunable lasers are the core components of coherent optical transmitters.
  • the development trend of tunable lasers is that the package is getting smaller and smaller, the optical power is getting higher and higher, and the power consumption is getting lower and lower.
  • a self-focusing lens is usually added in the resonator cavity, and one cavity surface of the resonator cavity is set at the plane end of the self-focusing lens.
  • the self-focusing lens focuses the beam emitted by the gain chip onto the cavity surface.
  • the second is that due to size limitations, there is a phenomenon that the beam waist output by the self-focusing lens and the laser collimator lens do not match. In order to ensure the output power of the resonator, it is necessary to change the curvature of the self-focusing lens, resulting in the length of the self-focusing lens There will be great changes, but due to the limitation of the overall length and size, it is generally difficult to match.
  • the third is that the production of self-focusing lenses generally has a tolerance in the length direction. This tolerance has a great impact on the beam, and it is easy to cause a mismatch between the spot after the collimator lens and the spot of the self-focusing lens. The tolerance of the length dimension will directly lead to resonance. Decrease in the output power of the cavity.
  • the purpose of the utility model is to solve the existing laser resonant cavity size is long, the focal point of the self-focusing lens does not match the beam waist of the collimating lens, and the length tolerance of the self-focusing lens is large, which affects the output power of the resonant cavity.
  • the utility model provides an external cavity laser, including a resonant cavity, the resonant cavity includes a first cavity surface and a second cavity surface; a gain chip is arranged in the resonant cavity; the gain chip and the A focusing lens is also provided between the second cavity surfaces; the light beam emitted by the gain chip is converged to the second cavity surface through the focusing lens, and between the first cavity surface and the second cavity surface Inter-resonance; wherein, there is a gap between the focusing lens and the second cavity surface.
  • the external cavity laser further includes a housing; the housing has an accommodation cavity, and the resonant cavity, the gain chip, and the focusing lens are arranged in the accommodation cavity.
  • the external cavity laser further includes an isolator, the second cavity surface is a laser cavity exit surface, and the isolator is located in the laser light path output by the second cavity surface.
  • the second cavity surface is provided on a side of the isolator adjacent to the resonant cavity; or, the external cavity laser further includes a partial reflection mirror, and the second cavity surface is located on the partial reflection mirror.
  • the first cavity surface is disposed at an end surface of the gain chip away from the gain chip.
  • the laser also includes a collimator lens and an adjustable filter, the collimator lens and the adjustable filter are located between the gain chip and the focusing lens, and the light beam emitted by the gain chip passes through After being collimated by the collimating lens, it is incident on the tunable filter, and the wavelength of the output laser of the external cavity laser is tuned through the tunable filter.
  • the laser further includes a light monitoring component, which is used to monitor the light extraction efficiency of the external cavity laser.
  • the light monitoring component includes a light monitoring detector and a beam splitter located between the focusing lens and the second cavity surface, and the beam splitter divides the light in the resonant cavity into a main beam and a beam splitter.
  • light beam, the main light beam resonates in the resonant cavity, and the sub-beams are incident into the optical monitoring detector.
  • the external cavity laser also includes a coupling lens and an optical fiber
  • the housing is provided with an optical interface and an electrical interface; one end of the optical fiber is arranged in the optical interface; the coupling lens will transmit from the resonant cavity
  • the output laser is coupled into the optical fiber and transmitted to the outside of the external cavity laser through the optical fiber.
  • the laser further includes a semiconductor cooler and a thermistor, and the gain chip and the thermistor are arranged on the semiconductor cooler.
  • the technical effect of the utility model is that, in the resonant cavity, the independent focusing lenses are arranged on the cavity surface, and through the coupling focusing lens, the light focus falls on the second cavity surface, thereby increasing the coupling tolerance without affecting the resonance At the same time, it can effectively shorten the length of the cavity, which is beneficial to miniaturized packaging, or use the saved space for the tunable filter to increase the interval between the internal components of the tunable filter, thereby reducing the phenomenon of thermal crosstalk, and Further improve the dimming performance of the tunable filter.
  • Fig. 1 is a side view of the external cavity laser provided by Embodiment 1 of the present invention.
  • Fig. 2 is a top view of the external cavity laser provided by Embodiment 1 of the present invention.
  • Fig. 3 is a side view of the external cavity laser provided by Embodiment 2 of the present invention.
  • Fig. 4 is a top view of the external cavity laser provided by Embodiment 2 of the present invention.
  • Gain chip 1. Gain chip; 2. Collimating lens; 3. Adjustable filter; 4. Focusing lens; 5. Optical monitoring component; 6. Isolator; 7. Coupling lens; 8. Optical fiber; 9. Semiconductor refrigerator; 10 , thermistor;
  • Conductive substrate 111. Base.
  • orientation words such as “up” and “down” usually refer to up and down in the actual use or working state of the device, specifically the drawings in the drawings direction; while “inside” and “outside” refer to the outline of the device.
  • the embodiment of the utility model provides an external cavity laser, including a resonant cavity, the resonant cavity includes a first cavity surface and a second cavity surface, a gain chip and a focusing lens are arranged in the cavity, and the focusing lens is located between the gain chip and the second cavity between faces.
  • the light beam emitted by the gain chip is converged to the second cavity surface by the focusing lens, and resonates between the first cavity surface and the second cavity surface; wherein, the focusing lens and the second cavity surface are separately arranged, and the focusing lens and the second cavity surface There are gaps between the faces.
  • a first cavity surface 11 is provided on a side of the gain chip 1 away from the second cavity surface 61 , and a resonant cavity is formed between the first cavity surface 11 and the second cavity surface 61 .
  • the first cavity surface 11 is a total reflection surface
  • the second cavity surface 61 is a partial reflection surface (laser output cavity surface) as an example for explanation.
  • this embodiment provides an external cavity laser 100, which includes a housing 101, and the housing 101 is provided with an accommodation cavity 102, and the accommodation cavity 102 accommodates: a gain chip 1, The second cavity surface 61 , the first cavity surface 11 and the focusing lens 4 .
  • the external cavity laser 100 further includes one or more of the following: collimating lens 2, tunable filter 3, optical monitoring component 5, isolator 6, coupling lens 7, optical fiber 8, semiconductor refrigerator 9 and thermistor 10.
  • the gain chip 1 is a semiconductor element used as an optical gain medium of the laser 100, wherein the gain chip 1 is a tunable light source (TLS), which emits light.
  • TLS tunable light source
  • the collimating lens 2 is disposed on the light emitting side of the gain chip 1 , and in this embodiment, the collimating lens 2 is disposed on the left side of the gain chip 1 .
  • the collimator lens 2 is used to collimate the light emitted by the gain chip 1 to form parallel light, which can also be called collimated light.
  • the tunable filter 3 (Etalon component) is set on the side of the collimator lens 2 away from the gain chip 1.
  • the tunable filter 3 is set on the collimator lens 2 on the left side.
  • the tunable filter 3 includes an optical etalon, which can control the wavelength of the collimated light, allowing the transmission of collimated light in a specific range of wavelengths, and filtering out collimated light in other wavelength ranges , making the transmitted wavelength light resonate in the resonant cavity, that is, the tunable filter 3 selects the wavelength of the resonant light, so that the output laser is laser with a narrow line width.
  • the focusing lens 4 is arranged on a side of the tunable filter 3 away from the collimator lens 2 , and in this embodiment, the focusing lens 4 is arranged on the left side of the tunable filter 3 .
  • the best coupling state can be achieved by adjusting the position of the focusing lens 4, that is, by adjusting the position of the focusing lens 4, the focus of the light falls on the second part of the resonator 101.
  • the light extraction efficiency of the external cavity laser 100 is optimized, and then the focusing lens 4 is fixed at the optimal coupling position.
  • the light monitoring component 5 includes a light monitoring detector 51 (monitor photo detector, MPD) and a beam splitter 52, and the beam splitter 52 is arranged between the focusing lens 4 and the tunable filter 3 Between, to divide the beam in the resonant cavity into a main beam with relatively high power and a sub-beam with relatively small power, the main beam resonates in the resonant cavity, and the sub-beam is incident on the The light monitors inside the detector 51.
  • the light monitoring detector 51 is used to monitor the output power of the external cavity laser 100 .
  • the proportion of the light splitter 52 is 1-10%, and in this embodiment, it is preferably 2-5%.
  • the light monitoring component 5 can also be arranged outside the gain chip 1 , that is, outside the resonant cavity, so as to realize the monitoring function of the laser.
  • the isolator 6 is disposed outside the second cavity surface 61 , and in this embodiment, the isolator 6 is located on the left side of the focusing lens 4 .
  • the isolator 6 is a one-way light-passing device, which blocks external light beams from entering the resonant cavity of the external cavity laser 100, so as to prevent external light beams from affecting the laser effect in the resonant cavity, while allowing the resonant The laser light generated in the cavity is transmitted outward.
  • the second cavity surface 61 is disposed on the side of the isolator 6 close to the focusing lens 4 , that is, the second cavity surface 61 is disposed on the right end surface of the isolator 6 as shown.
  • the second cavity surface 61 may be an independent partial reflection mirror, as long as the second cavity surface 61 and the focusing lens 4 are separately arranged.
  • the focusing lens 4 is located between the second cavity surface 61 and the first cavity surface 11 to focus the light from the gain chip 1 and the light reflected by the first cavity surface 11 onto the On the second chamber surface 61 .
  • the focusing lens 4 and the second cavity surface 61 are separately disposed, so as to realize optimal coupling of laser light in the external cavity laser 100 .
  • the focal length of the focusing lens 4 is shorter, and the length of the optical path is shorter, thereby reducing the occupied space and making a smaller package, or, Use the saved space for the adjustable filter 3, increase the interval between the internal components of the adjustable filter 3, thereby reducing the phenomenon of thermal crosstalk, so as to further improve the dimming of the adjustable filter 3 performance.
  • the coupling lens 7 is disposed on the downstream optical path of the isolator 6 , and in this embodiment, the coupling lens 7 is disposed on the left side of the isolator 6 .
  • the laser output from the resonator is transmitted outward through the isolator 6 and then coupled through the coupling lens 7 .
  • the housing 101 is provided with an electrical interface and an optical interface, the optical fiber 8 is arranged at the optical interface, and the optical fiber 8 is arranged on the downstream optical path of the coupling lens 7.
  • the optical fiber 8 is located on the left side of the coupling lens 7, and the coupling lens 7 to the gain chip 1 are all located in the housing cavity 102 of the external cavity laser 100, and the housing cavity 102 is a hermetically sealed In the cavity, the optical fiber 8 is matched with the receiving cavity 102 through the optical interface, and the laser output from the resonant cavity is coupled into the optical fiber 8 through the coupling lens 7 and transmitted out by the optical fiber 8 .
  • the collimating lens 2 and the focusing lens 4 have the same optical axis.
  • the basic optical path of light is: the gain chip 1 emits light, the light and the light reflected by the first cavity surface 11 are collimated by the collimator lens 2, and then transmitted Through the focusing lens 4, the focal point converges on the second cavity surface 61, a part of the light is reflected from the focal point to resonate in the resonator, and the other part of the light is emitted outwards, passing through the isolator 6,
  • the coupling lens 7 and the optical fiber 8 realize the outcoupling of the external cavity laser 100 .
  • the focusing lens 4 can be any kind of lens.
  • the focusing lens 4 is preferably a lens with a small back focus, and the focusing lens 4 is used to couple with the second cavity surface 61, so that The focus of the collimated light is located on the second cavity surface 61 to resonate in the resonant cavity.
  • the two cavity surfaces of the resonant cavity, the gain chip, and the collimating lens can be fixed first, so that the beam waist of the collimated beam is located on the second cavity surface, and then by adjusting the The focus lens 4 is used to focus the light on the second cavity surface 61, so that the focus of the focus lens 4 matches the beam waist of the beam collimated by the collimator lens 2, thereby ensuring the output power of the resonant cavity .
  • the focus lens 4 used in this embodiment has a small back focus size, and is easy to match with the beam waist of the collimated beam. At the same time, the length of the optical path from the focus lens to the second cavity surface is at least reduced compared with the prior art 30%, which can further save the space occupied by the entire laser 100, which is beneficial to miniaturization and packaging.
  • the focusing lens 4 Since the focusing lens 4 is actively coupled, the focusing lens 4 itself is not sensitive to thickness tolerances, and this tolerance can be absorbed by coupling, which can ensure that the focus of the focusing lens 4 falls on the second cavity surface 61 superior. It can be seen from the above that the coupling tolerance of the focusing lens 4 is relatively large. Compared with the existing external cavity laser, the coupling tolerance of the external cavity laser 100 proposed in this embodiment can be doubled, and the The processing precision of the focusing lens 4 is relatively low.
  • the semiconductor refrigerator 9 (Thermo Electric Cooler, TEC) is located in the accommodation cavity 102 , and the semiconductor refrigerator 9 has a cooling function to reduce the temperature in the accommodation cavity 102 .
  • TEC Thermo Electric Cooler
  • the thermistor 10 is located in the accommodating cavity 102.
  • the thermistor 10 and the gain chip 1 are arranged adjacent to each other, and both are arranged on a conductive substrate 110.
  • the conductive substrate 110 A base 111 is fixed on the upper surface of the semiconductor cooler 9 , that is, the thermistor 10 and the gain chip 1 are both arranged on the upper surface of the semiconductor cooler 9 .
  • the thermistor 10 is used to monitor and feed back the temperature in the accommodating chamber 102, especially the temperature of the semiconductor gain chip, and cooperates with the semiconductor refrigerator 9 to make the semiconductor gain chip work in a relatively stable environment temperature.
  • the collimating lens 2 is also fixed on the base 111 , that is, the base 111 is arranged between the conductive substrate and the semiconductor refrigerator 9 , and the base 111 plays the role of heat conduction and height adjustment.
  • the base 111 is usually made of silicon material and has a good heat conduction effect.
  • the height of the collimating lens 2 and the height of the gain chip 1 are raised by the base 111 to adjust the light output height of the gain chip 1. That is, the height of the adjustable filter 3 can be consistent with that of the adjustable filter 3, thereby ensuring that the height of the light passing through is consistent.
  • the technical effect of the external cavity laser described in this embodiment is that a second cavity surface 61 is provided on one side of the isolator 6, and a first cavity surface is provided on one side of the gain chip 1, and the second cavity surface and The space between the first cavity surfaces forms a resonant cavity, and a focusing lens 4 is arranged in the resonant cavity, and the focusing lens 4 and the second cavity surface 61 are separately arranged, and after the light is coupled through the focusing lens 4, The focal point falls on the second cavity surface 61, thereby increasing the coupling tolerance without affecting the light output from the receiving cavity 102.
  • this embodiment provides another external cavity laser 200, which includes a housing 201, and the housing 201 is provided with an accommodation cavity 202, and the accommodation cavity 202 accommodates: a gain chip 1.
  • the difference of this embodiment is that, since the type of the focusing lens 4 is not limited, the focusing lens 4 with a longer back focus is used in this embodiment, and the light monitoring The component 5 is disposed between the second cavity surface 61 and the focusing lens 4 . At this time, the optical path between the second cavity surface 61 and the focusing lens 4 is multiplexed, further shortening the overall length of the resonant cavity.
  • the above-mentioned light monitoring assembly 5 includes a light monitoring detector 51 (monitor photo detector, MPD) and spectroscopic sheet 52.
  • the beam splitter 52 is arranged between the focusing lens 4 and the second cavity surface 61, so as to split the light in the resonant cavity into a relatively high-power main beam
  • the sub-beams with relatively small power the main beam resonates in the resonant cavity, and the sub-beams are incident into the light monitoring detector 51 .
  • the proportion of sub-beams is 1-10%, and in this embodiment, preferably 2-5%.
  • the external cavity laser disclosed in the utility model can use any lens as the cavity lens (focusing lens) in the resonant cavity, and the thickness tolerance of the cavity lens can be absorbed by coupling, which increases the coupling of the resonant cavity tolerance, and save the space occupied by the resonant cavity.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种外腔激光器(100,200),包括谐振腔,谐振腔包括第一腔面(11)和第二腔面(61);谐振腔内设有增益芯片(1);增益芯片(1)与第二腔面(61)之间还设有聚焦透镜(4);增益芯片(1)发出的光束经聚焦透镜(4)会聚到第二腔面(61)上,在第一腔面(11)和第二腔面(61)之间谐振;其中,聚焦透镜(4)与第二腔面(61)之间具有间隙。外腔激光器(100,200)可达到增大谐振腔内聚焦透镜(4)的耦合容差,节省谐振腔所占空间,提高谐振腔的出光功率的技术效果。

Description

外腔激光器 技术领域
本实用新型涉及光通信领域,具体涉及一种外腔激光器。
背景技术
长距离传输一直是光通信领域的一个重要难点,利用相干光通信能很好的解决这一问题。波长可调谐激光器是相干光发射机的核心器件。可调谐激光器的发展趋势是封装越来越小,出光功率越来越大,功耗越来越低。
为了提高激光谐振腔腔内耦合的容忍度,降低耦合难度,通常在谐振腔内增加自聚焦透镜,将谐振腔的一个腔面设于自聚焦透镜的平面端。自聚焦透镜将增益芯片发出的光束聚焦到腔面上。上述方案虽然提高了腔内耦合容忍度,降低了耦合难度,但是一般会有三个缺点:第一是自聚焦透镜的焦距较长,导致谐振腔的尺寸无法进一步缩小,不利于激光器的小型化封装。第二是由于尺寸限制,存在自聚焦透镜和激光器准直透镜输出的光束束腰不匹配的现象,为保证谐振腔出光功率,那么需要变化自聚焦透镜的曲率,从而导致该自聚焦透镜的长度会有很大变化,而受整体长度尺寸所限,一般很难匹配。第三是自聚焦透镜制作一般都有长度方向的公差,这个公差对光束影响很大,很容易导致准直透镜后的光斑和自聚焦透镜的光斑不匹配,长度尺寸的公差则会直接导致谐振腔出光功率的下降。
技术问题
本实用新型的目的在于,解决现有的激光器的谐振腔尺寸较长、自聚焦透镜焦点与准直透镜束腰不匹配以及自聚焦透镜长度公差较大进而影响谐振腔的出光功率等技术问题。
技术解决方案
为实现上述目的,本实用新型提供一种外腔激光器,包括谐振腔,所述谐振腔包括第一腔面和第二腔面;所述谐振腔内设有增益芯片;所述增益芯片与所述第二腔面之间还设有聚焦透镜;所述增益芯片发出的光束经所述聚焦透镜会聚到所述第二腔面上,在所述第一腔面和所述第二腔面之间谐振;其中,所述聚焦透镜与所述第二腔面之间具有间隙。
进一步地,所述外腔激光器还包括壳体;所述壳体内具有容纳腔,所述谐振腔、所述增益芯片以及所述聚焦透镜设于所述容纳腔内。
进一步地,所述外腔激光器还包括隔离器,所述第二腔面为激光出腔面,所述隔离器位于所述第二腔面输出的激光光路中。
进一步地,所述第二腔面设于所述隔离器临近所述谐振腔的一面;或者,所述外腔激光器还包括部分反射镜,所述第二腔面位于所述部分反射镜上。
进一步地,所述第一腔面设于所述增益芯片远离所述增益芯片的一端面处。
进一步地,所述激光器还包括准直透镜和可调滤波器,所述准直透镜和所述可调滤波器位于所述增益芯片和所述聚焦透镜之间,所述增益芯片发出的光束经所述准直透镜准直之后入射到所述可调滤波器上,经所述可调滤波器调谐所述外腔激光器输出激光的波长。
进一步地,所述激光器还包括光监测组件,用以监测所述外腔激光器的出光效率。
进一步地,所述光监测组件包括光监测探测器和位于所述聚焦透镜与所述第二腔面之间的分光片,所述分光片将所述谐振腔内的光分为主光束以及分光束,所述主光束在所述谐振腔内谐振,所述分光束入射到所述光监测探测器内。
进一步地,所述外腔激光器还包括耦合透镜和光纤,所述壳体设有光接口和电接口;所述光纤的一端设于所述光接口内;所述耦合透镜将从所述谐振腔输出的激光耦合到所述光纤内,经所述光纤传输到所述外腔激光器之外。
进一步地,所述激光器还包括半导体制冷器和热敏电阻,所述增益芯片和所述热敏电阻设于所述半导体制冷器上。
有益效果
本实用新型的技术效果在于,在谐振腔内设置于腔面各自独立的聚焦透镜,通过耦合聚焦透镜,使光线焦点落于第二腔面上,由此增大耦合容差,且不影响谐振腔的出光效率,同时可有效缩短腔长,利于小型化封装,或将节省的空间用于可调滤波器,加大可调滤波器内部器件之间的间隔,从而减少热串扰的现象,以进一步提升可调滤波器的调光性能。
附图说明
图1是本实用新型实施例1提供的外腔激光器的侧视图;
图2是本实用新型实施例1提供的外腔激光器的俯视图;
图3是本实用新型实施例2提供的外腔激光器的侧视图;
图4是本实用新型实施例2提供的外腔激光器的俯视图。
附图标记说明:
100、外腔激光器;200、外腔激光器;101、壳体;102、容纳腔;201、壳体;202、容纳腔;
1、增益芯片;2、准直透镜;3、可调滤波器;4、聚焦透镜;5、光监测组件;6、隔离器;7、耦合透镜;8、光纤;9、半导体制冷器;10、热敏电阻;
11、第一腔面;
51、光监测探测器;52、分光片;
61、第二腔面;
110、导电基板;111、底座。
本发明的实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本实用新型,并不用于限制本实用新型。在本实用新型中,在未作相反说明的情况下,使用的方位词如“上”和“下”通常是指装置实际使用或工作状态下的上和下,具体为附图中的图面方向;而“内”和“外”则是针对装置的轮廓而言的。
本实用新型实施例提供一种外腔激光器,包括谐振腔,该谐振腔包括第一腔面和第二腔面,谐振腔内设有增益芯片和聚焦透镜,聚焦透镜位于增益芯片与第二腔面之间。增益芯片发出的光束经聚焦透镜会聚到第二腔面上,在第一腔面和第二腔面之间谐振;其中,聚焦透镜与第二腔面各自分立设置,及聚焦透镜与第二腔面之间具有间隙。增益芯片1远离所述第二腔面61的一侧上设置有第一腔面11,所述第一腔面11与所述第二腔面61之间形成谐振腔。下面实施例中,以第一腔面11为全反射面,第二腔面61为部分反射面(激光输出腔面)为例进行解释说明。
以下对其进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
实施例1
如图1、图2所示,本实施例提供一种外腔激光器100,包括壳体101,所述壳体101内设有容纳腔102,所述容纳腔102内容纳有:增益芯片1、第二腔面61、第一腔面11以及聚焦透镜4。示例性地,所述外腔激光器100还包括下列中的一个或多个:准直透镜2、可调滤波器3、光监测组件5、隔离器6、耦合透镜7、光纤8、半导体制冷器9以及热敏电阻10。
在本实施例中,所述增益芯片1是用作所述激光器100的光增益介质的半导体元件,其中,所述增益芯片1是可调谐光源(TLS),其在泵浦源的激励下发出光线。
所述准直透镜2设于所述增益芯片1的出光侧,在本实施例中,所述准直透镜2设于所述增益芯片1的左侧。所述准直透镜2用以将所述增益芯片1发出的光线准直以形成平行光线,亦可称为准直光线。
所述可调滤波器3(Etalon组件)设于所述准直透镜2远离所述增益芯片1的一侧,在本实施例中,所述可调滤波器3设于所述准直透镜2的左侧。示例性地,所述可调滤波器3包括光学标准具,可实现对所述准直光线的波长的调控,允许特定范围波长的准直光线透射,并过滤掉其他波长范围内的准直光线,使透射波长光在谐振腔内谐振,即可调滤波器3对产生谐振的光的波长进行选择,使输出激光为窄线宽激光。
所述聚焦透镜4设于所述可调滤波器3远离所述准直透镜2的一侧,在本实施例中,所述聚焦透镜4设于所述可调滤波器3的左侧。
在外腔激光器100的组装过程中可通过调整聚焦透镜4的位置,来达到最佳的耦合状态,即通过调整所述聚焦透镜4的位置,使得光线的焦点落在所述谐振腔101的第二腔面61上,使得所述外腔激光器100的出光效率最佳,之后再将聚焦透镜4固定在该最佳耦合的位置处。
在本实施例中,所述光监测组件5包括光监测探测器51(monitor photo detector,MPD)和分光片52,所述分光片52设于所述聚焦透镜4与所述可调滤波器3之间,以将所述谐振腔内的光束分为功率相对较大的主光束和功率相对较小的分光束,所述主光束在所述谐振腔内谐振,所述分光束入射到所述光监测探测器51内。所述光监测探测器51用以监测所述外腔激光器100的出光功率。其中,所述分光片52占比在1~10%,在本实施例中,优选为2~5%。
当然,在本申请的其他实施例中,所述光监测组件5还可设于所述增益芯片1的外侧,即设于所述谐振腔之外,均可实现对激光的监测作用。
所述隔离器6设于第二腔面61的外侧,在本实施例中,所述隔离器6位于所述聚焦透镜4的左侧。所述隔离器6是单向通光器件,其阻挡外部光束入射到所述外腔激光器100的谐振腔内,以防止外部光束对所述谐振腔内的激光效果造成影响,同时允许所述谐振腔内产生的激光向外传输。
该实施例中,第二腔面61设于所述隔离器6靠近所述聚焦透镜4的一侧上,即第二腔面61设于图示隔离器6的右侧端面上。
在其他实施例中,所述第二腔面61可为独立的部分反射镜,只要所述第二腔面61与所述聚焦透镜4为各自分立设置即可。
所述聚焦透镜4位于所述第二腔面61以及所述第一腔面11之间,用以将来自所述增益芯片1的光和所述第一腔面11反射的光聚焦到所述第二腔面61上。所述聚焦透镜4与所述第二腔面61为各自分立设置,能实现所述外腔激光器100内激光的最佳耦合。所述聚焦透镜4与所述隔离器6之间具有空气间隔,在组装时通过调整所述聚焦透镜4的位置以调节所述空气间隔沿光轴方向的长度,所述聚焦透镜4将来自所述增益芯片1的光和所述第一腔面11反射的光会聚到所述第二腔面61上,实现激光的最佳耦合。
因为所述聚焦透镜4与所述隔离器6之间具有空气间隔,聚焦透镜4的焦距较短,光路的长度更短,由此减小所占空间,可以制作更小型的封装,或者,可以将节省的空间用于所述可调滤波器3,加大所述可调滤波器3内部器件之间的间隔,从而减少热串扰的现象,以进一步提升所述可调滤波器3的调光性能。
所述耦合透镜7设于所述隔离器6的下游光路上,在本实施例中,所述耦合透镜7设于所述隔离器6的左侧。谐振腔输出的激光通过所述隔离器6向外传输,再经过所述耦合透镜7进行耦合。
所述壳体101设有电接口以及光接口,所述光纤8设于所述光接口处,所述光纤8设于所述耦合透镜7的下游光路上,在本实施例中,所述光纤8设于所述耦合透镜7的左侧,所述耦合透镜7至所述增益芯片1均处于所述外腔激光器100的壳体的容纳腔102内,所述容纳腔102为一气密封装的腔室,所述光纤8与所述容纳腔102通过所述光接口相配接,上述谐振腔输出的激光经耦合透镜7耦合到光纤8内,由光纤8传输出去。
示例性地,所述准直透镜2和所述聚焦透镜4具有同一光轴。
综上所述,在本实施例中,光线的基本光路为:所述增益芯片1发出光线,该光线以及所述第一腔面11反射的光线经所述准直透镜2准直之后,透过所述聚焦透镜4,焦点会聚在所述第二腔面61上,一部分光线从焦点处反射,以在所述谐振器内谐振,另一部分光线向外出射,依次经过所述隔离器6、所述耦合透镜7以及所述光纤8,实现所述外腔激光器100的出光耦合。
所述聚焦透镜4可为任意一种透镜,在本实施例中,所述聚焦透镜4优选后截距小的透镜,所述聚焦透镜4用于与所述第二腔面61进行耦合,使准直光线的焦点位于所述第二腔面61上,以在谐振腔内谐振。在本实施例中,在组装过程中,可先固定好谐振腔的两个腔面及增益芯片、准直透镜等,使准直光束的束腰位于第二腔面上,再通过调整所述聚焦透镜4,将光线聚焦于所述第二腔面61上,使得所述聚焦透镜4的焦点与所述准直透镜2准直后的光束的束腰相匹配,从而保证谐振腔的出光功率。
该实施例采用的聚焦透镜4的后截距尺寸较小,且易于与准直光束的束腰相匹配,同时从聚焦透镜到第二腔面这一段光路的长度相较于现有技术至少缩减30%,可进一步节省整个激光器100所占的空间,利于小型化封装。
由于所述聚焦透镜4为有源耦合,故所述聚焦透镜4本身对厚度公差不敏感,该公差可通过耦合来吸收,可保证所述聚焦透镜4的焦点落到所述第二腔面61上。由上可见,所述聚焦透镜4的耦合容差较大,相较于现有的外腔激光器,本实施例所提出的外腔激光器100的耦合容差能增大一倍,且对所述聚焦透镜4的加工精度要求较低。
示例性地,所述半导体制冷器9(Thermo Electric Cooler,TEC)位于所述容纳腔102内,所述半导体制冷器9具有制冷功能,用以降低所述容纳腔102内的温度。
所述热敏电阻10位于所述容纳腔102内,在本实施例中,所述热敏电阻10与所述增益芯片1相邻设置,均设于一导电基板110上,所述导电基板110通过一底座111固定于所述半导体制冷器9的上表面,即所述热敏电阻10与所述增益芯片1均设于所述半导体制冷器9的上表面。所述热敏电阻10用以监测并反馈所述容纳腔102内的温度,特别是半导体增益芯片的温度,并与所述半导体制冷器9共同作用,以使半导体增益芯片工作在相对稳定的环境温度中。所述准直透镜2也固定于所述底座111上,即所述底座111设于所述导电基板与所述半导体制冷器9之间,所述底座111起到导热和调整高度的作用。所述底座111通常采用硅材料进行制作,具有良好的导热效果,同时通过底座111垫高所述准直透镜2的高度以及所述增益芯片1的高度,调整所述增益芯片1的出光高度,即可与所述可调滤波器3的高度保持一致,进而保证通光高度一致。
本实施例所述外腔激光器的技术效果在于:在隔离器6的一侧上设置第二腔面61,并在增益芯片1的一侧上设置第一腔面,所述第二腔面与所述第一腔面之间的空间形成谐振腔,在所述谐振腔内设置聚焦透镜4,所述聚焦透镜4与所述第二腔面61各自分立设置,光线通过聚焦透镜4耦合后,焦点落于所述第二腔面61上,由此增大耦合容差,且不影响所述容纳腔102出光,光路缩短后可节省空间或可以将减少的空间用于可调滤波器3,以加大所述可调滤波器3内部器件之间的间隔,由此减少热串扰的现象,进而能够提升所述可调滤波器3的调光性能。
实施例2
如图3、图4所示,本实施例提供了另一种外腔激光器200,包括壳体201,所述壳体201内设有容纳腔202,所述容纳腔202内容纳有:增益芯片1、第二腔面61、第一腔面11以及聚焦透镜4、准直透镜2、可调滤波器3、光监测组件5、隔离器6、耦合透镜7、光纤8、半导体制冷器9以及热敏电阻10。
与实施例1相比,本实施例的区别在于,由于所述聚焦透镜4的种类并不受限制,故在本实施例中使用后截距较长的聚焦透镜4,并将所述光监测组件5设置于第二腔面61与所述聚焦透镜4之间。此时,所述第二腔面61与所述聚焦透镜4之间的光路被复用,进一步缩短了谐振腔的整体长度。
具体的,同实施例1,上述光监测组件5包括光监测探测器51(monitor photo detector,MPD)和分光片52。不同的是,该实施例中,所述分光片52设于所述聚焦透镜4与所述第二腔面61之间,以将所述谐振腔内的光分为功率相对较大的主光束和功率相对较小的分光束,所述主光束在所述谐振腔内谐振,所述分光束入射到所述光监测探测器51内。其中,分光束占比在1~10%,在本实施例中,优选为2~5%。
由上可见,本实用新型所公开的外腔激光器可采用任意透镜作为谐振腔内的腔透镜(聚焦透镜),该腔透镜的厚度公差可通过耦合来吸收,增大了所述谐振腔的耦合容差,并节省了所述谐振腔所占的空间。
以上对本实用新型实施例所提供的一种外腔激光器进行了详细介绍,本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本实用新型的限制。

Claims (10)

  1. 一种外腔激光器,包括谐振腔,所述谐振腔包括第一腔面和第二腔面;所述谐振腔内设有增益芯片;其特征在于,所述增益芯片与所述第二腔面之间还设有聚焦透镜;所述增益芯片发出的光束经所述聚焦透镜会聚到所述第二腔面上,在所述第一腔面与所述第二腔面之间谐振;其中,所述聚焦透镜与所述第二腔面之间具有间隙。
  2. 如权利要求1所述的外腔激光器,其特征在于,
    所述外腔激光器还包括壳体;所述壳体内具有容纳腔,所述谐振腔、所述增益芯片以及所述聚焦透镜设于所述容纳腔内。
  3. 如权利要求1所述的外腔激光器,其特征在于,所述外腔激光器还包括隔离器,所述第二腔面为激光出腔面,所述隔离器位于所述第二腔面输出的激光光路中。
  4. 如权利要求3所述的外腔激光器,其特征在于,所述第二腔面设于所述隔离器临近所述谐振腔的一面;
    或者,所述外腔激光器还包括部分反射镜,所述第二腔面位于所述部分反射镜上。
  5. 如权利要求1所述的激光器,其特征在于,
    所述第一腔面设于所述增益芯片远离所述聚焦透镜的一端面处。
  6. 如权利要求1所述的外腔激光器,其特征在于,所述激光器还包括准直透镜和可调滤波器,所述准直透镜和所述可调滤波器位于所述增益芯片和所述聚焦透镜之间,所述增益芯片发出的光束经所述准直透镜准直之后入射到所述可调滤波器上,所述可调滤波器调谐所述外腔激光器输出激光的波长。
  7. 如权利要求1所述的外腔激光器,其特征在于,所述激光器还包括光监测组件,用以监测所述外腔激光器的出光效率。
  8. 如权利要求7所述的外腔激光器,其特征在于,所述光监测组件包括光监测探测器和位于所述聚焦透镜与所述第二腔面之间的分光片,所述分光片将所述谐振腔内的光分为主光束以及分光束,所述主光束在所述谐振腔内谐振,所述分光束入射到所述光监测探测器内。
  9. 如权利要求2所述的外腔激光器,其特征在于,所述外腔激光器还包括耦合透镜和光纤,所述壳体设有光接口和电接口;所述光纤的一端设于所述光接口内;所述耦合透镜将从所述谐振腔输出的激光耦合到所述光纤内,经所述光纤传输到所述外腔激光器之外。
  10. 如权利要求1所述的外腔激光器,其特征在于,所述激光器还包括半导体制冷器和热敏电阻,所述增益芯片和所述热敏电阻设于所述半导体制冷器上。
PCT/CN2021/135604 2021-06-21 2021-12-06 外腔激光器 WO2022267356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121380680.6 2021-06-21
CN202121380680.6U CN215377956U (zh) 2021-06-21 2021-06-21 外腔激光器

Publications (1)

Publication Number Publication Date
WO2022267356A1 true WO2022267356A1 (zh) 2022-12-29

Family

ID=79604134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135604 WO2022267356A1 (zh) 2021-06-21 2021-12-06 外腔激光器

Country Status (2)

Country Link
CN (1) CN215377956U (zh)
WO (1) WO2022267356A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163558A (en) * 1998-05-06 2000-12-19 Fuji Photo Film Co., Ltd. Laser system for rotating amplitude distribution of output light
CN101557076A (zh) * 2009-05-22 2009-10-14 中国科学院国家授时中心 抗振外腔半导体激光器
CN102257686A (zh) * 2008-12-18 2011-11-23 瑞尼斯豪公司 频率可调的激光装置
WO2014000311A1 (zh) * 2012-06-30 2014-01-03 华为技术有限公司 一种外腔激光器
CN109921275A (zh) * 2017-12-13 2019-06-21 深圳新飞通光电子技术有限公司 快速调频的外腔激光器
CN112018597A (zh) * 2020-09-09 2020-12-01 成都天奥电子股份有限公司 外腔半导体激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163558A (en) * 1998-05-06 2000-12-19 Fuji Photo Film Co., Ltd. Laser system for rotating amplitude distribution of output light
CN102257686A (zh) * 2008-12-18 2011-11-23 瑞尼斯豪公司 频率可调的激光装置
CN101557076A (zh) * 2009-05-22 2009-10-14 中国科学院国家授时中心 抗振外腔半导体激光器
WO2014000311A1 (zh) * 2012-06-30 2014-01-03 华为技术有限公司 一种外腔激光器
CN109921275A (zh) * 2017-12-13 2019-06-21 深圳新飞通光电子技术有限公司 快速调频的外腔激光器
CN112018597A (zh) * 2020-09-09 2020-12-01 成都天奥电子股份有限公司 外腔半导体激光器

Also Published As

Publication number Publication date
CN215377956U (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US10181694B2 (en) Optical module
CN104201557B (zh) 一种可调激光器的封装结构及其封装方法
US8259765B2 (en) Passive phase control in an external cavity laser
US7869475B2 (en) Misalignment prevention in an external cavity laser having temperature stabilisation of the resonator and the gain medium
JPWO2003005106A1 (ja) 半導体レーザモジュール及び光増幅器
JP2008504701A (ja) 熱制御式同調可能な外部キャビティレーザ
US20060239319A1 (en) Chip carrier apparatus and method
TWM565944U (zh) 水平式光通訊次組件的散熱結構
JP2000031575A (ja) Ldモジュール
KR20150018963A (ko) 온도 제어 장치를 가진 광송신 모듈 및 그 제조 방법
JP2002252420A (ja) 半導体レーザ素子、半導体レーザモジュールおよびその製造方法ならびに光ファイバ増幅器
JP2000353845A (ja) 半導体レーザモジュール
JP2000133863A (ja) 固体レーザ装置
JP3735064B2 (ja) 半導体レーザモジュール及びその製造方法並びに光増幅器
WO2022267356A1 (zh) 外腔激光器
CA2732912C (en) External cavity laser module comprising a multi-functional optical element
JP2009212176A (ja) 半導体レーザ
KR20070028463A (ko) 열적으로 제어된 외부공동 동조형 레이저
JPH11298068A (ja) 固体レーザ装置の実装基板
JP2000098190A (ja) 半導体レーザユニット、半導体レーザモジュールおよび 半導体レーザ励起固体レーザ装置
WO2007065455A1 (en) Passive phase control in an external cavity laser
JPH0567844A (ja) 半導体レーザモジユール
CN216903718U (zh) 一种波长可调谐的外腔激光器
CN117220122B (zh) 一种面向1.3um的平面波导激光增益模块、激光放大装置
WO2023112993A1 (ja) 光学装置および光学装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946832

Country of ref document: EP

Kind code of ref document: A1