WO2022267299A1 - 一种节能和力学性能优良的纸面石膏板及其制备方法 - Google Patents

一种节能和力学性能优良的纸面石膏板及其制备方法 Download PDF

Info

Publication number
WO2022267299A1
WO2022267299A1 PCT/CN2021/129444 CN2021129444W WO2022267299A1 WO 2022267299 A1 WO2022267299 A1 WO 2022267299A1 CN 2021129444 W CN2021129444 W CN 2021129444W WO 2022267299 A1 WO2022267299 A1 WO 2022267299A1
Authority
WO
WIPO (PCT)
Prior art keywords
expanded vermiculite
gypsum
water
phase change
mixture
Prior art date
Application number
PCT/CN2021/129444
Other languages
English (en)
French (fr)
Inventor
王兵
杨正波
陈红霞
王丽
刘文君
Original Assignee
中建材创新科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建材创新科技研究院有限公司 filed Critical 中建材创新科技研究院有限公司
Publication of WO2022267299A1 publication Critical patent/WO2022267299A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • E04B1/90Insulating elements for both heat and sound slab-shaped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/942Building elements specially adapted therefor slab-shaped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials

Definitions

  • This article relates to but not limited to a building material technology, especially to a paper-faced gypsum board with excellent energy-saving and mechanical properties and a preparation method thereof.
  • gypsum is a porous building material, and gypsum board has excellent properties such as light weight, fire resistance, and flame retardancy. It is a commonly used building decoration material and indoor partition wall board.
  • conventional paper-faced gypsum boards (9.5mm, 12mm) have certain limitations in thermal insulation performance. Improving the thermal insulation performance of gypsum board is of great significance to energy saving and improving the comfort of living environment in the cold north.
  • phase change gypsum board will cause a certain degree of decline in the mechanical strength of the substrate.
  • the easy leakage of the phase change material in the core of the phase change gypsum board seriously limits the performance of the phase change paper gypsum board. application.
  • the present application has prepared a functional gypsum board with good performance.
  • the thickness of the plasterboard substrate is 9.5mm to 12mm.
  • the application provides a paper-faced gypsum board, which includes a board core and face-protecting paper.
  • the raw materials of the board core include: gypsum clinker, expanded vermiculite, silica fume, phase change materials, thermal conductivity enhancing materials, reinforcing fibers and polyester Vinyl alcohol;
  • phase change material and the heat conduction enhancing material are located in the interlayer space of the expanded vermiculite.
  • the core material further includes any one or more of foaming agent, starch and water reducing agent.
  • the weight ratio of the water agent, the foaming agent and the starch is (90 to 100): (0.01 to 4): (0.1 to 4): (0.5 to 7): (0.5 to 6): (1 to 15 ):(0 to 3):(0 to 0.3):(0 to 0.05):(0.3 to 5);
  • the weight ratio of the water agent, the foaming agent and the starch can be (90 to 100): (0.01 to 4): (0.1 to 4): (0.5 to 7): (0.5 to 6): (1 to 15):(0.3 to 3):(0 to 0.3):(0 to 0.05):(0.3 to 5);
  • the weight ratio of the water agent and the foaming agent to the starch can be (90 to 100): (0.01 to 4): (0.1 to 3): (0.5 to 5): (0.5 to 5): (1 to 15):(0.3 to 3):(0.01 to 0.3):(0.01 to 0.05):(0.3 to 0.9).
  • the expanded vermiculite is expanded vermiculite passing through a 60 mesh sieve
  • the pore size distribution of the expanded vermiculite is 0.01 ⁇ m to 50 ⁇ m;
  • the average particle size of the gypsum clinker is 80 mesh to 100 mesh;
  • the melting point of the phase change material is 20°C to 50°C;
  • the average length of the thermal conductivity enhancement material is 10 ⁇ m to 100 ⁇ m; the average diameter of the thermal conductivity enhancement material is 0.1 nm to 1000 nm, preferably the average length is 10 ⁇ m to 50 ⁇ m, and the average diameter is preferably 100 nm to 600 nm;
  • the average length of the reinforcing fibers is 1 mm to 10 mm, and the average diameter is 5 ⁇ m to 10 ⁇ m; the average length of the reinforcing fibers may be 1 mm to 5 mm, and the average diameter may be 5 ⁇ m to 10 ⁇ m.
  • the phase change material is selected from any one or more of emulsified paraffin, polyethylene glycol and lauric acid; the melting point of the polyethylene glycol can be 30°C to 50°C, and the molecular weight Not more than 2000; the melting point of the paraffin wax can be 20°C to 41°C;
  • the thermal conductivity enhancement material is selected from any one or more of carbon network, silicon carbide nanowire, metal nanowire, carbon nanotube and graphene, and the thermal conductivity enhancement material can be silicon carbide thermal conductivity reinforcement materials;
  • the reinforcing fibers are selected from any one or more of carbon fibers, pitch-based carbon fibers, polypropylene fibers, glass fibers, graphene carbon fibers and gypsum whiskers, and the reinforcing fibers can be carbon fibers .
  • the polyvinyl alcohol is selected from polyvinyl alcohol PVA2488, polyvinyl alcohol PVA1788;
  • the foaming agent is an anionic surfactant;
  • the anionic surfactant can be selected from BASF GYP 3550, GYP 2680, SASN 812 or 3110 or sodium lauryl sulfate;
  • the water reducer is selected from any one or more of polycarboxylate water reducers, pyrimidine resin water reducers, and sulfonated polycondensate water reducers;
  • the starch is pregelatinized starch, and the viscosity of the pregelatinized starch may range from 50 mPa ⁇ s to 100 mPa ⁇ s (1# rotor).
  • the application provides a method for preparing the above-mentioned gypsum board, comprising:
  • the amount of water used is the powder after uniform mixing of the gypsum clinker, the silica fume, the expanded vermiculite, the polyvinyl alcohol and the water reducer
  • the water consumption of the standard consistency when determining the amount of water, starch and reinforcing fiber can also be added, and the water consumption of the standard consistency of the mixed powder can be measured;
  • the starch can be uniformly mixed with the gypsum clinker, the silica fume, the water reducing agent and the mixture b in step c.
  • the determination method of the standard consistency water consumption is the determination method of the standard consistency water consumption of the powder in the Chinese national standard GB/T 17669.4-1999.
  • the expanded vermiculite is processed as follows:
  • step III) Filter the mixture c treated in step II) with filter paper, and wash it with deionized water, dry the obtained solid to obtain the treated expanded vermiculite, and combine the thermal conductivity enhancing material, the phase change material and the treated expanded vermiculite Mix well, place at room temperature for 1d to 3d to obtain mixture d;
  • step IV separating the mixture d treated in step IV) to obtain treated expanded vermiculite.
  • the amount ratio of the expanded vermiculite to the supersaturated brine in step 1 is 2g to 50g of expanded vermiculite per liter of supersaturated brine;
  • the salt is an alkali metal salt;
  • the alkali metal Salts may include sodium or lithium salts.
  • the heating temperature in step II is 100-200°C, and the heating time is 4h to 12h; the cooling temperature can be 0°C to -30°C;
  • the constant temperature is 35°C to 45°C
  • the constant pressure is -0.09MPa to 0.01MPa.
  • Figure 1A, Figure 1B, and Figure 1C are expanded vermiculite sheets prepared in Example 1 of the present application. It can be seen from the figures that the pore size distribution of the treated expanded vermiculite is about 0.01 ⁇ m to 50 ⁇ m.
  • the water reducer is a polycarboxylate water reducer, purchased from BASF, PCE541F.F; polyvinyl alcohol was purchased from Kuraray International Trading Shanghai Co., Ltd., PVA2488; foaming agent was purchased from BASF Co., Ltd., an anionic surfactant, GYP 2680.
  • Silica fume is purchased from Elkem China, 200-1000 mesh; the reinforcing fiber is carbon fiber, with an average length of 3mm and an average diameter of 7 ⁇ m; the phase change material is emulsified paraffin, and the phase change temperature is 20°C to 41°C; silicon carbide
  • the average length of the nanowire thermal conductivity enhancing material is 10 ⁇ m to 50 ⁇ m, and the average diameter is 100 nm to 600 nm;
  • the expanded vermiculite is from Lingshou County, Hebei; the starch is pregelatinized starch with a viscosity of 55 mPa.s (1# rotor).
  • the processing method of described expanded vermiculite comprises the steps:
  • step (2) Place the mixture of expanded vermiculite and water prepared in step (1) on an electric heater (160°C), stir while heating (replenish deionized water regularly), after 8 hours, cool to room temperature, and then gradually cool down to -10°C, after 8 hours, in one embodiment, it can be placed on the electric heating plate again, and the cycle is repeated several times until the particle size of expanded vermiculite d50 ⁇ 0.45 ⁇ m;
  • step (3) filter the vermiculite mixture prepared in step (2) with filter paper, and wash the vermiculite with deionized water;
  • the pore size distribution of the expanded vermiculite is about 0.01 ⁇ m to 50 ⁇ m.
  • 1g silicon carbide nanowire thermal conductivity enhancement material is evenly dispersed in 20g emulsified paraffin wax (phase change melting point is 20 °C to 41 °C), and then the expanded vermiculite nanosheet (the vermiculite on the filter paper that has been dried in the above step (4) ) and the emulsified paraffin are thoroughly mixed, placed at room temperature for 1d, and then placed at constant temperature (temperature is 40 ⁇ 2°C) and constant pressure (vacuum degree is -0.09MPa to 0.01MPa) for 20 minutes; Under the action of capillary force and surface tension, emulsified paraffin is immersed into the pores of expanded vermiculite.
  • phase change melting point is 20 °C to 41 °C
  • the expanded vermiculite is transferred to the filter paper, and the emulsified paraffin leaked from the surface of the expanded vermiculite is removed in a drying oven higher than the melting point of the phase change material (60° C.). Continue to change the filter paper until no traces of leakage are observed.
  • Example 1 The difference from Example 1 is that the phase change material encapsulated in the expanded vermiculite nanosheets is polyethylene glycol, the melting point of the polyethylene glycol is 30°C to 50°C, and the molecular weight is not more than 2000; the amount of the polyethylene glycol Same as the amount of phase change material used in Example 1.
  • Example 1 The difference with Example 1 is that the addition of silica fume in the formula is 20g.
  • Example 1 The difference from Example 1 is that the amount of carbon fiber added in the formula is 1g.
  • Example 2 The difference from Example 1 is that the addition amount of expanded vermiculite in the formula is different. During the preparation of the gypsum board, the added amount of the expanded vermiculite nanosheets was 10 g.
  • Example 1 The difference between this comparative example and Example 1 is that no expanded vermiculite phase-change material is involved in the raw material of the paper surface gypsum board (not related to: the expanded vermiculite left on the filter paper after the expanded vermiculite is processed through the step (4) of Example 1 , emulsified paraffin and silicon carbide nanowire thermal conductivity enhancement materials).
  • Example 1 The difference between this comparative example and Example 1 is that it does not involve emulsified paraffin and silicon carbide nanowire thermal conductivity enhancing materials.
  • Example 1 The difference between this comparative example and Example 1 is that it does not involve the silicon carbide nanowire thermal conductivity enhancing material.
  • Example 1 The difference between this comparative example and Example 1 is that emulsified paraffin is not involved.
  • Example 1 The difference between this comparative example and Example 1 is that expanded vermiculite is not involved, and silicon carbide nanowires and emulsified paraffin are added in the process of preparing gypsum board.
  • Board breaking load test According to the Chinese national standard GB/T9775-2008 standard method, the breaking load of the gypsum boards prepared in the examples and comparative examples was tested, and the results are shown in Table 1.
  • Fire stability test according to the Chinese national standard GB/T9775-2008 "Paper Gypsum Board” method test the fire stability of the gypsum board prepared in the embodiment and the comparative example, the fire stability of the embodiment and the comparison The proportions are basically the same, and the fire stability of some examples is even better than that of the comparative examples.
  • the gypsum boards prepared in the examples of the present application also have the performance of reducing indoor noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本申请提供了一种纸面石膏板,包括板芯和护面纸,所述板芯的原料包括石膏熟料、膨胀蛭石、硅灰、相变材料、导热增强材料、增强纤维和聚乙烯醇;所述相变材料和导热增强材料位于所述膨胀蛭石的层间空间内;本申请提供了一种保温性能良好且相变材料不易泄露的石膏板。

Description

一种节能和力学性能优良的纸面石膏板及其制备方法 技术领域
本文涉及但不限于一种建筑材料技术,尤指一种特别涉及但不限于一种节能和力学性能优良的纸面石膏板及其制备方法。
背景技术
众所周知,石膏是一种多孔性的建筑材料,石膏板具有轻质、防火、阻燃等优良的性能,是常用的建筑装饰装修材料和室内隔墙板材。但常规的纸面石膏板(9.5mm、12mm)在保温性能上有一定的局限性。在天气寒冷的北方提高石膏板的保温性能对节能、改善人居环境舒适性具有重要的意义。
相变石膏板因相变材料的掺入会造成基板的力学强度出现一定程度的下降,同时采用相变石膏板板芯中的相变材料的容易泄露,严重限制了相变纸面石膏板的应用。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请制备了性能良好的功能型石膏板。石膏板基板厚度为9.5mm至12mm。
本申请提供了一种纸面石膏板,包括板芯和护面纸,所述板芯的原料包括:石膏熟料、膨胀蛭石、硅灰、相变材料、导热增强材料、增强纤维和聚乙烯醇;
所述相变材料和导热增强材料位于所述膨胀蛭石的层间空间内。
在一种实施方式中,所述板芯原料还包括发泡剂、淀粉和减水剂中的任意一种或更多种。
在一种实施方式中,所述石膏熟料、所述导热增强材料、所述增强纤维、所述膨胀蛭石、所述硅灰、所述相变材料、所述聚乙烯醇、所述减水剂、所述发泡剂和所述淀粉的重量比为(90至100):(0.01至4):(0.1至4):(0.5至7):(0.5 至6):(1至15):(0至3):(0至0.3):(0至0.05):(0.3至5);
在一种实施方式中,所述石膏熟料、所述导热增强材料、所述增强纤维、所述膨胀蛭石、所述硅灰、所述相变材料、所述聚乙烯醇、所述减水剂、所述发泡剂和所述淀粉的重量比可以为(90至100):(0.01至4):(0.1至4):(0.5至7):(0.5至6):(1至15):(0.3至3):(0至0.3):(0至0.05):(0.3至5);
在一种实施方式中,所述石膏熟料、所述导热增强材料、所述增强纤维、所述膨胀蛭石、所述硅灰、所述相变材料、所述聚乙烯醇、所述减水剂和所述发泡剂和所述淀粉的重量比可以为(90至100):(0.01至4):(0.1至3):(0.5至5):(0.5至5):(1至15):(0.3至3):(0.01至0.3):(0.01至0.05):(0.3至0.9)。
在一种实施方式中,所述膨胀蛭石为过60目筛的膨胀蛭石;
在一种实施方式中,所述膨胀蛭石孔径分布为0.01μm至50μm;
在一种实施方式中,所述石膏熟料的平均粒度为80目至100目;
在一种实施方式中,所述相变材料的熔点为20℃至50℃;
在一种实施方式中,所述导热增强材料的平均长度为10μm至100μm;所述导热增强材料的平均直径在0.1nm至1000nm,优选平均长度为10μm至50μm,优选平均直径为100nm至600nm;
在一种实施方式中,所述增强纤维的平均长度为1mm至10mm,平均直径为5μm至10μm;所述增强纤维的平均长度可以为1mm至5mm,平均直径可以为5μm至10μm。
在一种实施方式中,所述相变材料选自乳化石蜡、聚乙二醇和月桂酸中的任意一种或更多种;所述聚乙二醇的熔点可以为30℃至50℃,分子量不大于2000;所述石蜡的熔点可以为20℃至41℃;
在一种实施方式中,所述导热增强材料选自炭网络、碳化硅纳米线、金属纳米线、碳纳米管和石墨烯中的任意一种或更多种,导热增强材料可以为碳化硅导热增强材料;
在一种实施方式中,所述增强纤维选自碳纤维、沥青基碳纤维、聚丙烯纤维、玻璃纤维、石墨烯碳纤维和石膏晶须中的任意一种或更多种,所述增强纤维可以为碳纤维。
在一种实施方式中,所述聚乙烯醇选自聚乙烯醇PVA2488、聚乙烯醇PVA1788;
在一种实施方式中,所述发泡剂为阴离子表面活性剂;所述阴离子表面活性剂可以选自巴斯夫
Figure PCTCN2021129444-appb-000001
GYP 3550、
Figure PCTCN2021129444-appb-000002
GYP 2680、
Figure PCTCN2021129444-appb-000003
SASN 812或3110或十二烷基硫酸钠;
在一种实施方式中,所述减水剂选自聚羧酸系减水剂、嘧胺树脂类减水剂、磺酸化缩聚物减水剂中的任意一种或更多种;
在一种实施方式中,所述淀粉为预糊化淀粉,所述预糊化淀粉的粘度范围可以为:50mPa·s至100mPa·s(1#转子)。
又一方面,本申请提供了上述纸面石膏板的制备方法,包括:
a)将所述增强纤维分散在水中,加入所述聚乙烯醇,得到混合物a;
b)将所述膨胀蛭石与所述混合物a、所述发泡剂混合均匀得到混合物b;
c)将所述石膏熟料、所述硅灰、所述减水剂与所述混合物b混合均匀,得到石膏料浆,石膏料浆干燥后得到石膏板芯;
在一种实施方式中,步骤a中,所述水的用量为所述石膏熟料、所述硅灰、所述膨胀蛭石、所述聚乙烯醇和所述减水剂混合均匀后的粉体的标准稠度用水量;确定水的用量时还可以加入淀粉和增强纤维,测量混合后的粉体的标准稠度用水量;
所述淀粉可以在步骤c中与所述石膏熟料、所述硅灰、所述减水剂与所述混合物b混合均匀。
所述标准稠度用水量的测定方法为中国国家标准GB/T 17669.4-1999中粉体的标准稠度用水量的测定方法。
在一种实施方式中,所述膨胀蛭石经过如下处理:
I)将所述膨胀蛭石与过饱和盐水混合均匀,得到混合物c;
II)将混合物c升温至100℃以上,再降温至0℃以下,直至所述膨胀蛭石的粒径d50≤0.45μm;所述升温和所述降温可以循环两次以上;
III)将经过步骤II)处理的混合物c用滤纸过滤,并用去离子水水洗, 将得到的固体进行干燥得到处理后的膨胀蛭石,将导热增强材料、相变材料和处理后的膨胀蛭石混合均匀,在室温下放置1d至3d得到混合物d;
IV)将混合物d在恒温恒压条件下保存5min至40min;
V)将经过步骤IV)处理的混合物d进行分离,得到经过处理的膨胀蛭石。
在一种实施方式中,步骤I中所述膨胀蛭石与所述过饱和盐水的用量比为每升过饱和盐水中膨胀蛭石2g至50g;所述盐为碱金属盐;所述碱金属盐可以包括钠盐或锂盐。
在一种实施方式中,步骤II中所述升温的温度为100-200℃,所述升温时间为4h至12h;所述降温的温度可以为0℃至-30℃;
在一种实施方式中,步骤IV中,所述恒温为35℃至45℃,恒压为-0.09MPa至0.01MPa。
本申请拓宽了石膏板的使用范围和功能。优势体现在:
有效防止石膏基材中的相变材料的泄露,提高石膏板的耐高温性能,并且力学性能并未因相变材料的加入而降低,是一种力学性能和保温性能优良的石膏板;
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的其他优点可通过在说明书中所描述的方案来发明实现和获得。
附图概述
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1A、图1B、图1C为本申请实施例1制备的膨胀蛭石片,从图中可以看出,处理后的膨胀蛭石孔径分布约为0.01μm至50μm。
详述
下文对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1
本实施例中,减水剂为聚羧酸减水剂,购自巴斯夫公司,
Figure PCTCN2021129444-appb-000004
PCE541F.F;聚乙烯醇购自可乐丽国际贸易上海有限公司,PVA2488;发泡剂购自巴斯夫有限公司,为一种阴离子表面活性剂,
Figure PCTCN2021129444-appb-000005
GYP 2680。硅灰购自埃肯中国公司,200-1000目;增强纤维为碳纤维,平均长度为3mm,平均直径为7μm;所述相变材料为乳化石蜡,相变温度为20℃至41℃;碳化硅纳米线导热增强材料平均长度为10μm至50μm,平均直径为100nm至600nm;所述膨胀蛭石来自河北灵寿县;所述淀粉为预糊化淀粉,粘度为55mPa.s(1#转子)。
所述膨胀蛭石的处理方法包括如下步骤:
(1)将蛭石破碎后制成高膨胀率膨胀蛭石(过60目筛),将高膨胀率膨胀蛭石用去离子水清洗后和NaCl过饱和溶液(蛭石重量:NaCl过饱和溶液=20g/L)混合得到膨胀蛭石和水的混合液;
(2)将步骤(1)制备得的膨胀蛭石和水的混合液置于电热(160℃)上,边加热边搅拌(定期补充去离子水),8h后,冷却至室温,然后逐渐降温至-10℃,8h后,在一种实施方式中可以再置于电热板上,反复循环多次,直至膨胀蛭石粒径d50≤0.45μm;
(3)将步骤(2)制得的蛭石混合物用滤纸进行过滤,并使用去离子水水洗蛭石;
(4)将滤纸上的蛭石置于烘箱干燥,备用,此时膨胀蛭石的孔径分布约为0.01μm至50μm。
以下为石膏板的制备过程:
将1g碳化硅纳米线导热增强材料均匀分散在20g乳化石蜡(相变熔点为20℃至41℃)中,然后将膨胀蛭石纳米片(上述步骤(4)中经过干燥的滤纸上的蛭石)与乳化石蜡充分混合均匀,在室温下放置1d,然后置于在恒温(温度为40±2℃),恒压(真空度为-0.09MPa至0.01MPa)的条件下,维持20分钟;在毛细管力和表面张力作用下,乳化石蜡被浸入到膨胀蛭石的孔隙中。然后将膨胀蛭石转移到滤纸上,在高于相变材料熔点(60℃)的干燥箱中除去膨胀蛭石表面渗漏的乳化石蜡。持续更换滤纸,直到观察不到渗漏 痕迹。
根据标准稠度用水量(将上述1000g脱硫石膏熟料、10g硅灰、20g膨胀蛭石纳米片相变材料、1g聚乙烯醇、6g淀粉、0.5g减水剂、3g碳纤维混合均匀,测试标准稠度用水量)称量拌合水。在水中加入3g碳纤维分散均匀,再加入1g聚乙烯醇和搅拌均匀;然后将上述制备的膨胀蛭石纳米片倒入混合液中,搅拌均匀。然后再加入0.2g发泡剂。最后将1000g脱硫石膏熟料(过80目筛)、10g硅灰、0.5g减水剂、6g淀粉倾倒入上述溶液中,搅拌均匀,制备得到石膏料浆,石膏料浆与护面纸搭接粘牢成型即得纸面石膏板湿板,经干燥(160℃条件下烘0.5h,110℃条件下烘1h,然后45℃条件下烘干至恒重)后即得纸面石膏板。
实施例2
与实施例1区别在于膨胀蛭石纳米片中封装的相变材料为聚乙二醇,所述聚乙二醇的熔点为30℃至50℃,分子量不大于2000;所述聚乙二醇用量与实施例1中相变材料用量相同。
实施例3
与实施例1区别在于配方中硅灰的添加量为20g。
实施例4
与实施例1区别在于配方中碳纤维添加量为1g。
实施例5
与实施例1区别在于配方中膨胀蛭石的添加量不同。在制备石膏板过程中,膨胀蛭石纳米片的加入量为10g。
对比例1
本对比例和实施例1的区别在于纸面石膏板原料中不涉及膨胀蛭石相变材料(不涉及:膨胀蛭石经过实施例1步骤(4)处理后在滤纸上留下的膨胀蛭石、乳化石蜡和碳化硅纳米线导热增强材料)。
对比例2
本对比例与实施例1的区别在于,不涉及乳化石蜡和碳化硅纳米线导热增强材料。
对比例3
本对比例与实施例1的区别在于,不涉及碳化硅纳米线导热增强材料。
对比例4
本对比例与实施例1的区别在于,不涉及乳化石蜡。
对比例5
本对比例与实施例1的区别在于,不涉及膨胀蛭石,将碳化硅纳米线和乳化石蜡在制备石膏板的过程中加入。
性能测试
1.板材断裂载荷测试:依据中国国家标准GB/T9775-2008标准方法测试实施例和对比例中制备石膏板的断裂载荷,结果在表1中示出。
表1实施例和对比例中制得产品的力学性能测试
Figure PCTCN2021129444-appb-000006
2、耐火稳定性测试:依据中国国家标准GB/T9775-2008《纸面石膏板》方法测试实施例和对比例中制备出的石膏板的遇火稳定性,实施例的遇火稳定性与对比例的基本相同,部分实施例的遇火稳定性甚至优于对比例的遇火稳定性。
3、本申请实施例和对比例1、对比例2、对比例4制备的石膏板均不存在相变材料漏液的情况,但是对比例1、2和4不具备减小室内温度波动的效 果(根据本领域常规的测试方法);对比例3和5虽然一定程度上具备减小室内温度波动的效果,但是相变材料泄露严重,无法长期应用。
4、本申请实施例制备的纸面石膏板与现有普通纸面石膏板相比还具备降低室内噪音的性能。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种纸面石膏板,包括板芯和护面纸,所述板芯的原料包括:石膏熟料、膨胀蛭石、硅灰、相变材料、导热增强材料、增强纤维和聚乙烯醇;
    所述相变材料和导热增强材料位于所述膨胀蛭石的层间空间内。
  2. 根据权利要求1所述的纸面石膏板,其中,所述板芯的原料还包括发泡剂、淀粉和减水剂中的任意一种或更多种。
  3. 根据权利要求2所述的纸面石膏板,其中,所述石膏熟料、所述导热增强材料、所述增强纤维、所述膨胀蛭石、所述硅灰、所述相变材料、所述聚乙烯醇、所述减水剂、所述发泡剂和所述淀粉的重量比为(90至100):(0.01至4):(0.1至4):(0.5至7):(0.5至6):(1至15):(0至3):(0至0.3):(0至0.05):(0.3至5);
    所述石膏熟料、所述导热增强材料、所述增强纤维、所述膨胀蛭石、所述硅灰、所述相变材料、所述聚乙烯醇、所述减水剂、所述发泡剂和所述淀粉的重量比可以为(90至100):(0.01至4):(0.1至4):(0.5至7):(0.5至6):(1至15):(0.3至3):(0至0.3):(0至0.05):(0.3至5);
    所述石膏熟料、所述导热增强材料、所述增强纤维、所述膨胀蛭石、所述硅灰、所述相变材料、所述聚乙烯醇、所述减水剂和所述发泡剂和所述淀粉的重量比可以为(90至100):(0.01至4):(0.1至3):(0.5至5):(0.5至5):(1至15):(0.3至3):(0.01至0.3):(0.01至0.05):(0.3至0.9)。
  4. 根据权利要求3所述的纸面石膏板,其中,所述膨胀蛭石为过60目筛的膨胀蛭石;
    所述膨胀蛭石孔径分布可以为0.01μm至50μm;
    所述石膏熟料的平均粒度可以为80目至100目;
    所述相变材料的熔点可以为20℃至50℃;
    所述导热增强材料的平均长度可以为10μm至100μm;所述导热增强材料的平均直径在0.1nm至1000nm,平均长度还可以为10μm至50μm,平均直径还可以为100nm至600nm;
    所述增强纤维的平均长度可以为1mm至10mm,平均直径可以为5μm至10μm;所述增强纤维的平均长度还可以为1mm至5mm,平均直径还可以为5μm至10μm。
  5. 根据权利要求1至4中任一项所述的纸面石膏板,其中,
    所述相变材料选自乳化石蜡、聚乙二醇和月桂酸中的任意一种或更多种;所述聚乙二醇的熔点可以为30℃至50℃,分子量不大于2000;所述石蜡的熔点可以为20℃至41℃;
    所述导热增强材料可以选自炭网络、碳化硅纳米线、金属纳米线、碳纳米管和石墨烯中的任意一种或更多种,导热增强材料可以为碳化硅导热增强材料;
    所述增强纤维可以选自碳纤维、沥青基碳纤维、聚丙烯纤维、玻璃纤维、石墨烯碳纤维和石膏晶须中的任意一种或更多种,所述增强纤维可以为碳纤维。
  6. 根据权利要求2至4中任一项所述的纸面石膏板,其中,所述聚乙烯醇选自聚乙烯醇PVA2488、聚乙烯醇PVA1788;
    所述发泡剂可以为阴离子表面活性剂;所述阴离子表面活性剂可以选自巴斯夫
    Figure PCTCN2021129444-appb-100001
    GYP 3550、
    Figure PCTCN2021129444-appb-100002
    GYP 2680、
    Figure PCTCN2021129444-appb-100003
    SASN 812或3110或十二烷基硫酸钠;
    所述减水剂可以选自聚羧酸系减水剂、嘧胺树脂类减水剂、磺酸化缩聚物减水剂中的任意一种或更多种;
    所述淀粉可以为预糊化淀粉,所述预糊化淀粉的粘度范围可以为:50mPa·s至100mPa·s。
  7. 根据权利要求2至6中任一项所述的纸面石膏板的制备方法,包括:
    a)将所述增强纤维分散在水中,加入所述聚乙烯醇,得到混合物a;
    b)将所述膨胀蛭石与所述混合物a、所述发泡剂混合均匀得到混合物b;
    c)将所述石膏熟料、所述硅灰、所述减水剂与所述混合物b混合均匀,得到石膏料浆,石膏料浆干燥后得到石膏板芯;
    步骤a中,所述水的用量可以为所述石膏熟料、所述硅灰、所述膨胀蛭石、所述聚乙烯醇和所述减水剂混合均匀后的粉体的标准稠度用水量;确定水的用量时还可以加入淀粉和增强纤维,测量混合后的粉体的标准稠度用水量;
    所述淀粉在步骤c中与所述石膏熟料、所述硅灰、所述减水剂与所述混合物b混合均匀。
  8. 根据权利要求7所述的纸面石膏板的制备方法,其中,所述膨胀蛭石经过如下处理:
    I)将所述膨胀蛭石与过饱和盐水混合均匀,得到混合物c;
    II)将混合物c升温至100℃以上,再降温至0℃以下,直至所述膨胀蛭石的粒径d50≤0.45μm;所述升温和所述降温可以循环两次以上;
    III)将经过步骤II)处理的混合物c用滤纸过滤,并用去离子水水洗,将得到的固体进行干燥得到处理后的膨胀蛭石,将导热增强材料、相变材料和处理后的膨胀蛭石混合均匀,在室温下放置1d至3d得到混合物d;
    IV)将混合物d在恒温恒压条件下保存5min至40min;
    V)将经过步骤IV)处理的混合物d进行分离,得到经过处理的膨胀蛭石。
  9. 根据权利要求8所述的纸面石膏板的制备方法,其中,步骤I中所述膨胀蛭石与所述过饱和盐水的用量比为每升过饱和盐水中膨胀蛭石2g至50g;所述盐为碱金属盐;所述碱金属盐可以包括钠盐或锂盐。
  10. 根据权利要求8或9所述的纸面石膏板的制备方法,其中,步骤II中所述升温的温度为100-200℃,所述升温时间为4h至12h;所述降温的温度可以为0℃至-30℃;
    步骤IV中,所述恒温可以为35℃至45℃,恒压可以为-0.09MPa至0.01MPa。
PCT/CN2021/129444 2021-06-25 2021-11-09 一种节能和力学性能优良的纸面石膏板及其制备方法 WO2022267299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110711364.0 2021-06-25
CN202110711364.0A CN113404175A (zh) 2021-06-25 2021-06-25 一种纸面石膏板及其制备方法

Publications (1)

Publication Number Publication Date
WO2022267299A1 true WO2022267299A1 (zh) 2022-12-29

Family

ID=77679429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129444 WO2022267299A1 (zh) 2021-06-25 2021-11-09 一种节能和力学性能优良的纸面石膏板及其制备方法

Country Status (2)

Country Link
CN (1) CN113404175A (zh)
WO (1) WO2022267299A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404175A (zh) * 2021-06-25 2021-09-17 中建材创新科技研究院有限公司 一种纸面石膏板及其制备方法
CN113501701B (zh) * 2021-06-25 2022-10-18 中建材创新科技研究院有限公司 一种节能、阻燃、防水和隔音性能优良的石膏板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059817A (zh) * 2012-12-27 2013-04-24 东南大学 复合定型相变材料、制备方法及利用该相变材料制备的储热砂浆
CN107056210A (zh) * 2017-04-01 2017-08-18 华东理工大学 一种储能增强型纸面石膏板、其制备方法和应用
WO2017160907A1 (en) * 2016-03-16 2017-09-21 Georgia-Pacific Gypsum Llc Gypsum based compositions and processes for making and using same
US20180119417A1 (en) * 2016-11-01 2018-05-03 United States Gypsum Company Fire resistant gypsum board comprising expandable graphite and related methods and slurries
CN110105923A (zh) * 2019-05-13 2019-08-09 中国地质大学(北京) 同时增强膨胀蛭石基复合相变材料稳定性和导热率的方法
CN112707708A (zh) * 2020-12-29 2021-04-27 中建材创新科技研究院有限公司 一种纸面石膏板及其制备方法
CN113404175A (zh) * 2021-06-25 2021-09-17 中建材创新科技研究院有限公司 一种纸面石膏板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101549981A (zh) * 2008-04-01 2009-10-07 北新集团建材股份有限公司 相变蓄能纸面石膏板及其制备方法
CN103015540B (zh) * 2012-12-14 2014-08-27 天津大学 建筑用相变蓄能板及其制造方法
CN105647482B (zh) * 2016-01-20 2018-10-30 福州大学 一种三元脂肪酸/改性膨胀蛭石复合相变储能材料
KR102368887B1 (ko) * 2017-03-29 2022-03-04 주식회사 케이씨씨 흡음 석고보드 조성물, 이를 이용한 흡음 석고보드 및 이의 제조방법
CN110105924A (zh) * 2019-05-13 2019-08-09 中国地质大学(北京) 一种水合盐-多孔矿物复合相变储能材料的制备方法
CN112167335A (zh) * 2020-10-13 2021-01-05 和县万谷粮油有限责任公司 一种改善仓储环境下稻谷易产生裂纹的加工工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059817A (zh) * 2012-12-27 2013-04-24 东南大学 复合定型相变材料、制备方法及利用该相变材料制备的储热砂浆
WO2017160907A1 (en) * 2016-03-16 2017-09-21 Georgia-Pacific Gypsum Llc Gypsum based compositions and processes for making and using same
US20180119417A1 (en) * 2016-11-01 2018-05-03 United States Gypsum Company Fire resistant gypsum board comprising expandable graphite and related methods and slurries
CN107056210A (zh) * 2017-04-01 2017-08-18 华东理工大学 一种储能增强型纸面石膏板、其制备方法和应用
CN110105923A (zh) * 2019-05-13 2019-08-09 中国地质大学(北京) 同时增强膨胀蛭石基复合相变材料稳定性和导热率的方法
CN112707708A (zh) * 2020-12-29 2021-04-27 中建材创新科技研究院有限公司 一种纸面石膏板及其制备方法
CN113404175A (zh) * 2021-06-25 2021-09-17 中建材创新科技研究院有限公司 一种纸面石膏板及其制备方法

Also Published As

Publication number Publication date
CN113404175A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2022267299A1 (zh) 一种节能和力学性能优良的纸面石膏板及其制备方法
CN101788096B (zh) 一种纳米级隔热毯
WO2022267305A1 (zh) 一种节能、阻燃、防水和隔音降噪性能优良的石膏板及其制备方法
CN110451860A (zh) 一种节能耐高温混凝土及其制备方法
Yuan et al. Effect of nano-MgO on thermal and mechanical properties of aluminate cement composite thermal energy storage materials
CN108558344B (zh) 一种硅气凝胶防火、防水、环保保温膏的制备方法
CN113185237A (zh) 一种纳米增强相变抗冻混凝土拌合料及其制备方法
CN112062515A (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN107954742A (zh) 微孔轻质耐火砖及其制备方法
CN113620637B (zh) 一种相变蓄能储热材料及其制备方法
CN102807326B (zh) 一种聚合物改性的低温泡沫玻璃保温材料及其制备方法
Zhang et al. Thermal energy storage performance of hierarchical porous kaolinite geopolymer based shape-stabilized composite phase change materials
CN108017397A (zh) 含石英砂的耐火砖及其制备方法
CN114057448A (zh) 一种聚乙烯粉轻质泡沫混凝土及其制备方法
CN109305793A (zh) 一种松脂岩保温材料及其制备方法
KR20160046951A (ko) 상변화 물질을 이용하여 축열성이 증가된 경량 콘크리트 및 이의 제조방법
CN109867505B (zh) 一种纳米勃姆石增强的相变石膏材料及其制备方法
WO2019019577A1 (zh) 一种埃洛石土聚水泥及其制作方法
CN106565251A (zh) 一种高强度轻质耐火纤维及其制备方法
CN108002851A (zh) 含莫来石的耐火砖及其制备方法
CN111689725B (zh) 一种相变保温水泥砂浆材料
CN113185310A (zh) 一种添加漂珠的铝硅系浇注料及其制备方法
CN110577409B (zh) 一种建筑室内蓄能保温材料及其制备方法
CN115784690B (zh) 改善3d打印各向异性的耐高温eps混凝土材料及其制备方法
CN113756110B (zh) 一种低导热抗压的装饰贴片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946781

Country of ref document: EP

Kind code of ref document: A1