WO2022265468A1 - 고흡수성 수지의 제조 방법 - Google Patents
고흡수성 수지의 제조 방법 Download PDFInfo
- Publication number
- WO2022265468A1 WO2022265468A1 PCT/KR2022/008693 KR2022008693W WO2022265468A1 WO 2022265468 A1 WO2022265468 A1 WO 2022265468A1 KR 2022008693 W KR2022008693 W KR 2022008693W WO 2022265468 A1 WO2022265468 A1 WO 2022265468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- superabsorbent polymer
- water
- polymer
- particles
- weight
- Prior art date
Links
- 229920000247 superabsorbent polymer Polymers 0.000 title claims abstract description 360
- 238000000034 method Methods 0.000 title claims abstract description 144
- 239000002245 particle Substances 0.000 claims abstract description 247
- 239000011362 coarse particle Substances 0.000 claims abstract description 39
- 230000014759 maintenance of location Effects 0.000 claims abstract description 4
- 229920000642 polymer Polymers 0.000 claims description 183
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 159
- 239000000178 monomer Substances 0.000 claims description 84
- 238000001816 cooling Methods 0.000 claims description 72
- 238000004132 cross linking Methods 0.000 claims description 70
- 239000004094 surface-active agent Substances 0.000 claims description 61
- 238000004519 manufacturing process Methods 0.000 claims description 60
- 238000006116 polymerization reaction Methods 0.000 claims description 60
- 239000003431 cross linking reagent Substances 0.000 claims description 59
- 239000000499 gel Substances 0.000 claims description 59
- 238000001035 drying Methods 0.000 claims description 56
- 239000000203 mixture Substances 0.000 claims description 47
- 238000000889 atomisation Methods 0.000 claims description 45
- 238000002156 mixing Methods 0.000 claims description 37
- 239000000654 additive Substances 0.000 claims description 36
- 239000003505 polymerization initiator Substances 0.000 claims description 35
- 230000002378 acidificating effect Effects 0.000 claims description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 229910010272 inorganic material Inorganic materials 0.000 claims description 24
- 239000011147 inorganic material Substances 0.000 claims description 24
- 230000003472 neutralizing effect Effects 0.000 claims description 24
- 239000002250 absorbent Substances 0.000 claims description 22
- 239000000017 hydrogel Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 230000000996 additive effect Effects 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 13
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 12
- 230000007062 hydrolysis Effects 0.000 claims description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical group [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims description 6
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 5
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 5
- 150000004692 metal hydroxides Chemical class 0.000 claims description 5
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 5
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 4
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 claims description 4
- 239000004927 clay Substances 0.000 claims description 3
- 229910052570 clay Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 235000010265 sodium sulphite Nutrition 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 239000004520 water soluble gel Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 22
- 230000008569 process Effects 0.000 description 63
- 239000010410 layer Substances 0.000 description 35
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 30
- 230000000704 physical effect Effects 0.000 description 28
- -1 amine salt Chemical class 0.000 description 24
- 239000000463 material Substances 0.000 description 22
- 238000006386 neutralization reaction Methods 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 19
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 238000012719 thermal polymerization Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 15
- 230000002776 aggregation Effects 0.000 description 14
- 239000000843 powder Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 238000004220 aggregation Methods 0.000 description 11
- 239000003638 chemical reducing agent Substances 0.000 description 11
- 239000003999 initiator Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 9
- 229920006037 cross link polymer Polymers 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 230000002745 absorbent Effects 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 235000011187 glycerol Nutrition 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000691 measurement method Methods 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 5
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000002504 physiological saline solution Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- ARIWANIATODDMH-AWEZNQCLSA-N 1-lauroyl-sn-glycerol Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)CO ARIWANIATODDMH-AWEZNQCLSA-N 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- ARIWANIATODDMH-UHFFFAOYSA-N Lauric acid monoglyceride Natural products CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 4
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 229910021485 fumed silica Inorganic materials 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 229960000834 vinyl ether Drugs 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 3
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 3
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- MWZJGRDWJVHRDV-UHFFFAOYSA-N 1,4-bis(ethenoxy)butane Chemical compound C=COCCCCOC=C MWZJGRDWJVHRDV-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- NDAJNMAAXXIADY-UHFFFAOYSA-N 2-methylpropanimidamide Chemical compound CC(C)C(N)=N NDAJNMAAXXIADY-UHFFFAOYSA-N 0.000 description 2
- 125000003504 2-oxazolinyl group Chemical class O1C(=NCC1)* 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- PUAHIVMZATZOHW-UHFFFAOYSA-L OC(C(=O)[O-])S(=O)O.[Na+].[Na+].OC(C(=O)[O-])S(=O)O Chemical compound OC(C(=O)[O-])S(=O)O.[Na+].[Na+].OC(C(=O)[O-])S(=O)O PUAHIVMZATZOHW-UHFFFAOYSA-L 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- LBSPZZSGTIBOFG-UHFFFAOYSA-N bis[2-(4,5-dihydro-1h-imidazol-2-yl)propan-2-yl]diazene;dihydrochloride Chemical compound Cl.Cl.N=1CCNC=1C(C)(C)N=NC(C)(C)C1=NCCN1 LBSPZZSGTIBOFG-UHFFFAOYSA-N 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 2
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 2
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- GPHWXFINOWXMDN-UHFFFAOYSA-N 1,1-bis(ethenoxy)hexane Chemical compound CCCCCC(OC=C)OC=C GPHWXFINOWXMDN-UHFFFAOYSA-N 0.000 description 1
- CGXVUIBINWTLNT-UHFFFAOYSA-N 1,2,3-tris(ethenoxy)propane Chemical compound C=COCC(OC=C)COC=C CGXVUIBINWTLNT-UHFFFAOYSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- LXSVCBDMOGLGFA-UHFFFAOYSA-N 1,2-bis(ethenoxy)propane Chemical compound C=COC(C)COC=C LXSVCBDMOGLGFA-UHFFFAOYSA-N 0.000 description 1
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- XDWRKTULOHXYGN-UHFFFAOYSA-N 1,3-bis(ethenoxy)-2,2-bis(ethenoxymethyl)propane Chemical compound C=COCC(COC=C)(COC=C)COC=C XDWRKTULOHXYGN-UHFFFAOYSA-N 0.000 description 1
- TYMYJUHDFROXOO-UHFFFAOYSA-N 1,3-bis(prop-2-enoxy)-2,2-bis(prop-2-enoxymethyl)propane Chemical compound C=CCOCC(COCC=C)(COCC=C)COCC=C TYMYJUHDFROXOO-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- UEIPWOFSKAZYJO-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-[2-(2-ethenoxyethoxy)ethoxy]ethane Chemical compound C=COCCOCCOCCOCCOC=C UEIPWOFSKAZYJO-UHFFFAOYSA-N 0.000 description 1
- CZAVRNDQSIORTH-UHFFFAOYSA-N 1-ethenoxy-2,2-bis(ethenoxymethyl)butane Chemical compound C=COCC(CC)(COC=C)COC=C CZAVRNDQSIORTH-UHFFFAOYSA-N 0.000 description 1
- SAMJGBVVQUEMGC-UHFFFAOYSA-N 1-ethenoxy-2-(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOC=C SAMJGBVVQUEMGC-UHFFFAOYSA-N 0.000 description 1
- FOWNZLLMQHBVQT-UHFFFAOYSA-N 1-ethenoxy-2-[2-(2-ethenoxypropoxy)propoxy]propane Chemical compound C=COCC(C)OCC(C)OCC(C)OC=C FOWNZLLMQHBVQT-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- SUFSXWBMZQUYOC-UHFFFAOYSA-N 2,2-bis(ethenoxymethyl)propane-1,3-diol Chemical compound C=COCC(CO)(CO)COC=C SUFSXWBMZQUYOC-UHFFFAOYSA-N 0.000 description 1
- JHSWSKVODYPNDV-UHFFFAOYSA-N 2,2-bis(prop-2-enoxymethyl)propane-1,3-diol Chemical compound C=CCOCC(CO)(CO)COCC=C JHSWSKVODYPNDV-UHFFFAOYSA-N 0.000 description 1
- BGBCQQVUFOHFST-UHFFFAOYSA-N 2,3-bis(ethenoxy)propan-1-ol Chemical compound C=COC(CO)COC=C BGBCQQVUFOHFST-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- RFIMISVNSAUMBU-UHFFFAOYSA-N 2-(hydroxymethyl)-2-(prop-2-enoxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC=C RFIMISVNSAUMBU-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- AZCYBBHXCQYWTO-UHFFFAOYSA-N 2-[(2-chloro-6-fluorophenyl)methoxy]benzaldehyde Chemical compound FC1=CC=CC(Cl)=C1COC1=CC=CC=C1C=O AZCYBBHXCQYWTO-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- CKSAKVMRQYOFBC-UHFFFAOYSA-N 2-cyanopropan-2-yliminourea Chemical compound N#CC(C)(C)N=NC(N)=O CKSAKVMRQYOFBC-UHFFFAOYSA-N 0.000 description 1
- 125000006040 2-hexenyl group Chemical group 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical compound OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- SPXWGAHNKXLXAP-UHFFFAOYSA-N 2-methylpentane-1,3-diol Chemical compound CCC(O)C(C)CO SPXWGAHNKXLXAP-UHFFFAOYSA-N 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- CARNFEUGBMWTON-UHFFFAOYSA-N 3-(2-prop-2-enoxyethoxy)prop-1-ene Chemical compound C=CCOCCOCC=C CARNFEUGBMWTON-UHFFFAOYSA-N 0.000 description 1
- XSSOJMFOKGTAFU-UHFFFAOYSA-N 3-[2-(2-prop-2-enoxyethoxy)ethoxy]prop-1-ene Chemical compound C=CCOCCOCCOCC=C XSSOJMFOKGTAFU-UHFFFAOYSA-N 0.000 description 1
- ZEWNANDAGSVPKE-UHFFFAOYSA-N 3-[2-[2-(2-prop-2-enoxyethoxy)ethoxy]ethoxy]prop-1-ene Chemical compound C=CCOCCOCCOCCOCC=C ZEWNANDAGSVPKE-UHFFFAOYSA-N 0.000 description 1
- LOTZOIWSPWSBCZ-UHFFFAOYSA-N 3-[2-[2-[2-(2-prop-2-enoxyethoxy)ethoxy]ethoxy]ethoxy]prop-1-ene Chemical compound C=CCOCCOCCOCCOCCOCC=C LOTZOIWSPWSBCZ-UHFFFAOYSA-N 0.000 description 1
- ILRVMZXWYVQUMN-UHFFFAOYSA-N 3-ethenoxy-2,2-bis(ethenoxymethyl)propan-1-ol Chemical compound C=COCC(CO)(COC=C)COC=C ILRVMZXWYVQUMN-UHFFFAOYSA-N 0.000 description 1
- MJIFFWRTVONWNO-UHFFFAOYSA-N 3-oxopent-4-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CCC(=O)C=C MJIFFWRTVONWNO-UHFFFAOYSA-N 0.000 description 1
- FYRWKWGEFZTOQI-UHFFFAOYSA-N 3-prop-2-enoxy-2,2-bis(prop-2-enoxymethyl)propan-1-ol Chemical compound C=CCOCC(CO)(COCC=C)COCC=C FYRWKWGEFZTOQI-UHFFFAOYSA-N 0.000 description 1
- JFMGYULNQJPJCY-UHFFFAOYSA-N 4-(hydroxymethyl)-1,3-dioxolan-2-one Chemical compound OCC1COC(=O)O1 JFMGYULNQJPJCY-UHFFFAOYSA-N 0.000 description 1
- SVYPQURSUBDSIQ-UHFFFAOYSA-N 4-methyl-3-oxopent-4-ene-1-sulfonic acid Chemical compound CC(=C)C(=O)CCS(O)(=O)=O SVYPQURSUBDSIQ-UHFFFAOYSA-N 0.000 description 1
- ZMGMDXCADSRNCX-UHFFFAOYSA-N 5,6-dihydroxy-1,3-diazepan-2-one Chemical class OC1CNC(=O)NCC1O ZMGMDXCADSRNCX-UHFFFAOYSA-N 0.000 description 1
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZMDDERVSCYEKPQ-UHFFFAOYSA-N Ethyl (mesitylcarbonyl)phenylphosphinate Chemical compound C=1C=CC=CC=1P(=O)(OCC)C(=O)C1=C(C)C=C(C)C=C1C ZMDDERVSCYEKPQ-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- JQRRFDWXQOQICD-UHFFFAOYSA-N biphenylen-1-ylboronic acid Chemical compound C12=CC=CC=C2C2=C1C=CC=C2B(O)O JQRRFDWXQOQICD-UHFFFAOYSA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- IMLUMMDFXRZWGY-UHFFFAOYSA-L disodium 2-hydroxy-2-sulfoacetate Chemical compound [Na+].[Na+].[O-]C(=O)C(O)S(O)(=O)=O.[O-]C(=O)C(O)S(O)(=O)=O IMLUMMDFXRZWGY-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- AVIYEYCFMVPYST-UHFFFAOYSA-N hexane-1,3-diol Chemical compound CCCC(O)CCO AVIYEYCFMVPYST-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- OHMBHFSEKCCCBW-UHFFFAOYSA-N hexane-2,5-diol Chemical compound CC(O)CCC(C)O OHMBHFSEKCCCBW-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3021—Milling, crushing or grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/321—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
- B01J20/3219—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/3278—Polymers being grafted on the carrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/01—Processes of polymerisation characterised by special features of the polymerisation apparatus used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2033/00—Use of polymers of unsaturated acids or derivatives thereof as moulding material
- B29K2033/04—Polymers of esters
- B29K2033/08—Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0068—Permeability to liquids; Adsorption
Definitions
- the present invention relates to a method for preparing a superabsorbent polymer. More specifically, it relates to a method for manufacturing a superabsorbent polymer capable of reducing the content of coarse particles having a particle size of more than 850 ⁇ m, improving the moisture content, and exhibiting excellent absorption performance without deviation.
- Super Absorbent Polymer is a synthetic high-molecular substance that has the ability to absorb moisture 500 to 1,000 times its own weight. Material), etc., are named by different names.
- the superabsorbent polymer as described above has begun to be put into practical use as a sanitary tool, and is currently widely used as a material for gardening soil remediation agents, civil engineering and construction waterstop materials, seedling sheets, freshness retainers in the field of food distribution, and steaming. .
- the super absorbent polymer is included in a relatively high ratio, so that the super absorbent polymer particles are inevitably included in multiple layers in the sanitary material.
- the superabsorbent polymer In order for the entire superabsorbent polymer particles included in multiple layers to more efficiently absorb a large amount of liquid such as urine, the superabsorbent polymer basically needs to exhibit high absorption performance as well as a fast absorption rate.
- such a superabsorbent polymer is generally prepared by polymerizing acrylic acid-based monomers to prepare a water-containing gel polymer containing a large amount of moisture, drying the water-containing gel polymer, and pulverizing the water-containing gel polymer into resin particles having a desired particle size. prepared, and then a surface cross-linking reaction may be selectively further performed to improve physical properties.
- the surface crosslinking reaction is performed by spraying a surface crosslinking solution in which a crosslinking agent is added to water on the surface of the superabsorbent polymer, stirring, and then applying heat to react.
- a surface crosslinking solution in which a crosslinking agent is added to water on the surface of the superabsorbent polymer, stirring, and then applying heat to react.
- the surface crosslinking reaction by heating is usually performed at a high temperature of 140 ° C. or higher, most of the water contained in the super absorbent polymer is evaporated, and as a result, the moisture content of the super absorbent polymer finally produced is greatly reduced.
- Such a super absorbent polymer having a low moisture content is prone to surface damage due to inter-particle friction generated during transportation and storage, which ultimately leads to deterioration in physical properties of the super absorbent polymer.
- the amount of fine powder generated increases during the commercialization process using the superabsorbent polymer with low water content, resulting in reduced process stability and productivity, and deteriorat
- a method of increasing the moisture content of the superabsorbent polymer by performing a hydrolysis process after surface crosslinking has been proposed.
- a direct injection method through a line and an injection method using a spray nozzle are mainly used.
- the size of the droplet is large, which causes a problem in that a mixture of large particles with a high moisture content and general particles with a low moisture content is generated.
- the moisture content can be increased evenly, but flow occurs due to the small droplet size, which causes contamination of equipment and foreign matter.
- the smaller the diameter of the nozzle the smaller the size of the droplets generated during spraying.
- the diameter of the nozzle is increased, and in addition to this, when the flow rate is small, spraying is not performed and large droplets are formed.
- the droplet size increases, it is difficult to uniformly and sufficiently add water to the super absorbent polymer, and as a result, deviations in physical properties of the super absorbent polymer occur.
- liquid droplets induce aggregation of the surface-crosslinked polymer particles, resulting in a large amount of coarse particles having a particle diameter exceeding 850 ⁇ m in the finally produced superabsorbent polymer, which causes clogging of the bag filter and occurrence of caking during the process.
- an object of the present invention is to provide a method for manufacturing a super absorbent polymer capable of reducing the content of coarse particles having a particle diameter of more than 850 ⁇ m, improving the moisture content, and exhibiting excellent absorption performance without deviation.
- the spade-type cooler includes a transport space in which the superabsorbent polymer particles having the surface crosslinking layer formed therein are transported, and includes a rotatable body; two nozzles installed in the body to respectively inject cooling air and water into the transfer space; one or more spade-type blades installed on an inner wall of the body so as to be vertically driven to lift the superabsorbent polymer particles on which the surface crosslinking layer is formed in the transfer space from bottom to top; and a driving motor connected to the body to provide a driving force, wherein after scooping up the superabsorbent polymer particles on which the surface crosslinking layer is formed by a spade-type blade within the body, the purifier is rotated by the body.
- the superabsorbent polymer particles on which the surface crosslinking layer is formed are cooled and added by dropping the raised superabsorbent polymer particles in the direction of gravity and bringing them into contact with cooling air and water injected into the transport space of the body part.
- a method for preparing a superabsorbent polymer is provided.
- a superabsorbent polymer produced by the method for producing the superabsorbent polymer is provided.
- the manufacturing method of the super absorbent polymer of the present invention it is possible to provide a super absorbent polymer exhibiting excellent absorbent performance without deviation.
- the generation of coarse particles exceeding 850 ⁇ m in diameter is reduced, thereby minimizing the generation of dust during the manufacturing process, and preventing clogging of the bag filter and preventing caking when manufacturing an absorbent article using the same. fairness can be improved.
- the superabsorbent polymer prepared by the above manufacturing method can be appropriately used for sanitary materials such as diapers, in particular, ultra-thin sanitary materials having a reduced pulp content.
- FIG. 1 is a schematic diagram schematically showing the structure of a side cross-section of a spade-type cooler used in a method for manufacturing a superabsorbent polymer according to the present invention.
- FIG. 2 is a schematic diagram schematically showing the front structure of the spade-type cooler.
- FIG. 3 is a schematic diagram schematically showing the rear structure of the spade-type cooler.
- FIG. 4 is a schematic diagram schematically illustrating a mixing process occurring in the body of a spade-type cooler during cooling and adding steps in the method for manufacturing a superabsorbent polymer according to the present invention.
- room temperature in the present specification means 25 ⁇ 2 °C.
- Step 1 Forming a water-containing gel polymer in which a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent are crosslinked and polymerized (Step 1);
- step 2 preparing hydrous superabsorbent polymer particles by atomizing the hydrogel polymer (step 2);
- step 4 Forming a surface cross-linking layer on at least a part of the surface of the super-absorbent polymer particles by adding and reacting a surface cross-linking agent to the dry super-absorbent polymer particles (step 4);
- step 5 of cooling and adding water to the superabsorbent polymer particles on which the surface crosslinking layer is formed as a result of the above step using a spade-type cooler;
- the spade-type cooler includes a transport space in which the superabsorbent polymer particles having the surface crosslinking layer formed therein are transported, and includes a rotatable body; two nozzles installed in the body to respectively inject cooling air and water into the transfer space; one or more spade-type blades installed on an inner wall of the body so as to be vertically driven to lift the superabsorbent polymer particles on which the surface crosslinking layer is formed in the transfer space from bottom to top; and a driving motor connected to the body to provide a driving force, wherein after scooping up the superabsorbent polymer particles on which the surface crosslinking layer is formed by a spade-type blade within the body, the purifier is rotated by the body.
- the super absorbent polymer particles on which the surface crosslinking layer is formed are cooled and hydrated by dropping the raised super absorbent polymer particles in the direction of gravity and bringing them into contact with cooling air and water injected into the transport space of the body part.
- polymer or “polymer” used in the specification of the present invention means a state in which water-soluble ethylenically unsaturated monomers are polymerized, and may cover all moisture content ranges or particle size ranges.
- the term “superabsorbent polymer” means a crosslinked polymer, or a base resin or water-containing gel polymer in powder form composed of superabsorbent polymer particles in which the crosslinked polymer is pulverized, depending on the context, or the crosslinked polymer or the above-mentioned crosslinked polymer.
- a water-containing gel polymer is used to cover all of those obtained by undergoing additional processes such as drying, pulverization, classification, surface crosslinking, etc. to be in a state suitable for commercialization.
- normal particles refers to particles having a particle size (or particle size) of 150 ⁇ m to 850 ⁇ m among super absorbent polymer particles
- fine powder refers to particles having a particle size of less than 150 ⁇ m among super absorbent polymer particles
- granular means a particle having a particle diameter of more than 850 ⁇ m among super absorbent polymer particles. The particle diameter of such super absorbent polymer particles is determined by the European Disposables and Nonwovens Association (EDANA) standard It can be measured according to the EDANA WSP 220.3 method.
- EDANA European Disposables and Nonwovens Association
- chopping refers to cutting a water-containing gel polymer into small pieces of a millimeter unit in order to increase drying efficiency, and is used separately from pulverization to a level of micrometers or normal particles.
- micronizing refers to pulverizing a water-containing gel polymer to a particle size of several tens to hundreds of micrometers, and is used separately from “chopping”.
- a method for improving physical properties of the superabsorbent polymer a method of forming a surface crosslinking layer by treating the surface of the superabsorbent polymer particle with a surface crosslinking agent and then heating the surface is mainly used.
- the surface crosslinking reaction for forming the surface crosslinking layer is performed at a high temperature, moisture contained in the superabsorbent polymer is evaporated, and as a result, the moisture content of the superabsorbent polymer is greatly reduced.
- the moisture content of the super absorbent polymer is lowered, surface damage is likely to occur due to friction between particles generated during transportation and storage, and as a result, physical properties of the super absorbent polymer are deteriorated.
- the amount of fine powder generated during the process increases, reducing process stability and productivity, and resulting in product quality deterioration.
- the inventors of the present invention have found that the deterioration and deviation of the physical properties of the super absorbent polymer can be prevented and the occurrence of coarse particles can be reduced by uniform hydrolysis treatment of the super absorbent polymer, and when using a spade-type cooler, the super absorbent polymer It was focused on the fact that not only cooling and hydrolysis can be performed simultaneously, but also that uniform treatment can be performed on all superabsorbent polymer particles.
- the superabsorbent polymer prepared by the manufacturing method of the present invention has an increased water content, a low content of coarse particles, excellent water retention properties and absorbency under load, and improved rewet characteristics and absorption rate. can be expressed without deviation.
- Step 1 is a step of forming a water-containing gel polymer in which a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent are crosslinked and polymerized.
- the water-containing gel polymer is prepared by neutralizing at least some of the acid groups of the water-soluble ethylenically unsaturated monomers, and mixing the water-soluble ethylenically unsaturated monomers having acid groups in which at least some of the neutralized acid groups are mixed with an internal crosslinking agent and a polymerization initiator. It may be prepared by a method comprising performing polymerization on the monomer composition to form a hydrogel polymer (Method 1), or containing a water-soluble ethylenically unsaturated monomer having an acidic group, an internal crosslinking agent, and a polymerization initiator.
- Method 1 is to neutralize at least some of the acidic groups in the monomer before polymerization of the water-soluble ethylenically unsaturated monomer, and then carry out a polymerization reaction. By absorption, it can be prepared in the form of a hydrogel polymer having a high moisture content of usually 30% by weight or more.
- Method 2 is a method of forming a polymer by first performing polymerization in a state where the acidic group of the water-soluble ethylenically unsaturated monomer is not neutralized, and then neutralizing the acidic group present in the polymer.
- the polymer formed after polymerization has a low It exhibits functionality and, as a result, exists in a solid state that hardly absorbs water in the monomer composition. However, after the neutralization process, it has functionality and becomes a hydrogel polymer.
- water-soluble components usually generated during the production of polymers are easily eluted when the superabsorbent polymer comes into contact with a liquid. Therefore, when the content of the water-soluble component is high, most of the eluted water-soluble component remains on the surface of the superabsorbent polymer, making the superabsorbent polymer sticky and reducing liquid permeability. Therefore, in terms of liquid permeability, it is important to keep the content of water-soluble components low.
- polymerization is first performed in a state in which the acidic group of the acrylic monomer is not neutralized to form a polymer, and after neutralization, atomization in the presence of a surfactant, or atomization in the presence of a surfactant, followed by neutralization, or atomization
- a large amount of surfactant is present on the surface of the polymer to lower the adhesiveness of the polymer, thereby preventing aggregation between polymer particles.
- the amount of fine powder generated during the process can be significantly reduced.
- method 1 is a step of neutralizing at least a portion of acid groups of a water-soluble ethylenically unsaturated monomer, and a monomer composition comprising a water-soluble ethylenically unsaturated monomer having at least a portion of neutralized acid groups, an internal crosslinking agent, and a polymerization initiator and performing polymerization to form a hydrogel polymer.
- the water-soluble ethylenically unsaturated monomer may be any monomer commonly used in the preparation of super absorbent polymers.
- the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 1 below:
- R is an alkyl group having 2 to 5 carbon atoms including an unsaturated bond
- M' is a hydrogen atom, a monovalent or divalent metal, an ammonium group, or an organic amine salt.
- the monomer may be at least one selected from the group consisting of (meth)acrylic acid and monovalent (alkali) metal salts, divalent metal salts, ammonium salts, and organic amine salts of these acids.
- the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid or 2-(meth)acryloylethanesulfonic acid.
- the water-soluble ethylenically unsaturated monomer has acidic groups, and at least some of the acidic groups may be neutralized by a neutralizing agent.
- the neutralization of at least some acidic groups of the acidic groups of the water-soluble ethylenically unsaturated monomers in Method 1 is performed by using the water-soluble ethylenically unsaturated monomers having acidic groups, an internal crosslinking agent, a polymerization initiator, and a neutralizing agent. It may be carried out during the process of preparing the monomer composition by mixing.
- the monomer composition thus prepared includes a water-soluble ethylenically unsaturated monomer having an acidic group at least partially neutralized, an internal crosslinking agent, and a polymerization initiator.
- the concentration of the water-soluble ethylenically unsaturated monomer having an acidic group is preferably determined appropriately in consideration of the polymerization time and reaction conditions in the subsequent polymerization reaction step.
- the concentration of the water-soluble ethylenically unsaturated monomer in the mixture containing the water-soluble ethylenically unsaturated monomer having an acidic group, an internal crosslinking agent, a polymerization initiator and a neutralizing agent is 20 to 60% by weight, specifically 20% by weight % or more, and may be 60% or less, or 40% or less by weight.
- neutralizing agent one or more kinds of basic materials such as sodium hydroxide, potassium hydroxide, and ammonium hydroxide capable of neutralizing acidic groups may be used.
- the degree of neutralization of the acid groups included in the water-soluble ethylenically unsaturated monomer by the neutralizing agent is referred to as the degree of neutralization of the water-soluble ethylenically unsaturated monomer. If the degree of neutralization is too high, neutralized monomers may be precipitated, making it difficult for the polymerization to proceed smoothly. Conversely, if the degree of neutralization is too low, the polymer's absorbency is greatly reduced and it may exhibit properties such as elastic rubber that are difficult to handle. Accordingly, the degree of neutralization of the water-soluble ethylenically unsaturated monomer is preferably appropriately selected according to the physical properties of the superabsorbent polymer to be implemented.
- the degree of neutralization of the water-soluble ethylenically unsaturated monomer is 50 to 90 mol%, more specifically 50 mol% or more, or 60 mol% or more, or 65 mol% or more, and 90 mol% or less , or 85 mol% or less, or 80 mol% or less, or 75 mol% or less.
- the term 'internal cross-linking agent' used herein is a term used to distinguish it from a surface cross-linking agent for cross-linking the surface of superabsorbent polymer particles described later, and in the present invention, the internal cross-linking agent is the above-described water-soluble ethylenically unsaturated It serves to form a polymer containing a cross-linked structure by introducing a cross-link between the unsaturated bonds of the monomers.
- the crosslinking proceeds without surface or internal distinction, but when the surface crosslinking process of the superabsorbent polymer particles described below proceeds, the surface of the finally prepared superabsorbent polymer particles may have a newly crosslinked structure by the surface crosslinking agent, A structure crosslinked by the internal crosslinking agent may be maintained inside the superabsorbent polymer particle.
- one or more of a multifunctional acrylate-based compound, a multifunctional allyl-based compound, and a multifunctional vinyl-based compound may be used.
- ethylene glycol diallyl ether diethylene glycol diallyl ether, triethylene glycol diallyl ether, tetraethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether , tripropylene glycol diallyl ether, polypropylene glycol diallyl ether, butanediol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, pentaerythritol tetraallyl ether , dipentaerythritol diallyl ether, dipentaerythritol triallyl ether, dipentaerythritol tetraallyl ether, dipentaerythritol pentaallyl
- polyfunctional vinyl compound specifically, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, polyethylene glycol divinyl ether, propylene glycol divinyl ether, Tripropylene glycol divinyl ether, polypropylene glycol divinyl ether, butanediol divinyl ether, butylene glycol divinyl ether, hexanediol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol divinyl ether, dipentaerythritol trivinyl ether, dipentaerythritol tetravinyl ether, dipentaerythritol pentavinyl pentavinyl
- polyfunctional allyl-based compound and the polyfunctional vinyl-based compound two or more unsaturated groups included in the molecule are bonded to unsaturated bonds of water-soluble ethylenically unsaturated monomers or unsaturated bonds of other internal crosslinking agents, respectively, to form a crosslinked structure during polymerization.
- cross-linking can be stably maintained even during the neutralization process after the polymerization reaction described above. Accordingly, the gel strength of the superabsorbent polymer produced can be increased, process stability can be increased in the discharge process after polymerization, and the amount of water-soluble content can be minimized.
- the internal crosslinking agent may be used in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer.
- the internal crosslinking agent is 0.01 parts by weight or more, or 0.05 parts by weight or more, or 0.1 parts by weight or more, and 5 parts by weight or less, or 3 parts by weight or less, or 2 parts by weight or less, based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. parts by weight or less, or 1 part by weight or less, or 0.7 parts by weight or less.
- the content of the internal cross-linking agent is too low, cross-linking does not occur sufficiently, making it difficult to realize an appropriate level of strength, and if the content of the upper internal cross-linking agent is too high, the internal cross-linking density increases, making it difficult to realize a desired water retention capacity.
- the polymer formed using the internal crosslinking agent has a three-dimensional network structure in which main chains formed by polymerization of the water-soluble ethylenically unsaturated monomers are crosslinked by the internal crosslinking agent.
- water retention capacity and absorbency under pressure which are various physical properties of the superabsorbent polymer, can be significantly improved compared to the case of a two-dimensional linear structure that is not additionally crosslinked by an internal crosslinking agent.
- the polymerization initiator is appropriately selected according to the polymerization method.
- a thermal polymerization initiator is used when the thermal polymerization method is used, a photopolymerization initiator is used when the photopolymerization method is used, and thermal polymerization is used when the hybrid polymerization method (a method using both heat and light) is used. Both an initiator and a photopolymerization initiator can be used. However, even with the photopolymerization method, since a certain amount of heat is generated by light irradiation such as ultraviolet irradiation, and a certain amount of heat is generated as the polymerization reaction progresses, which is an exothermic reaction, a thermal polymerization initiator may be additionally used.
- any compound capable of forming radicals by light such as ultraviolet light may be used without limitation in its configuration.
- photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine, and alpha-aminoketone ( ⁇ -aminoketone) may be used at least one selected from the group consisting of.
- specific examples of the acylphosphine include diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl (2,4,6- Trimethylbenzoyl) phenylphosphinate etc. are mentioned. More various photoinitiators are well described in "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" p115, a book by Reinhold Schwalm, and are not limited to the above examples.
- thermal polymerization initiator at least one selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
- persulfate-based initiators include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), and ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) and the like
- examples of the azo-based initiator include 2,2-azobis-(2-amidinopropane) dihydrochloride, 2 ,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoyl azo)isobutyronitrile (2-(carbamoylazo)isobutylonitril), 2,2-azobis[
- the polymerization initiator may be used in an amount of 2 parts by weight or less based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may be slowed and a large amount of residual monomer may be extracted into the final product, which is not preferable. Conversely, when the concentration of the polymerization initiator is higher than the above range, the polymer chain constituting the network is shortened, which is not preferable because the physical properties of the resin may be deteriorated, such as an increase in the content of water-soluble components and a decrease in absorbency under pressure.
- a reducing agent forming a redox couple with the polymerization initiator may be further added.
- the polymerization initiator and the reducing agent when added to the polymer solution, they react with each other to form radicals.
- the formed radical reacts with the monomer, and since the oxidation-reduction reaction between the polymerization initiator and the reducing agent is very reactive, polymerization is initiated even when only a small amount of the polymerization initiator and the reducing agent are added, and there is no need to increase the process temperature, so low-temperature polymerization is possible. It is possible, and the change in physical properties of the polymer solution can be minimized.
- the polymerization reaction using the oxidation-reduction reaction may occur smoothly even at a temperature near or below room temperature (25° C.).
- the polymerization reaction may be carried out at a temperature of 5°C or more and 25°C or less, or 5°C or more and 20°C or less.
- a persulfate-based polymerization initiator is used as the polymerization initiator
- sodium metabisulfite Na 2 S 2 O 5
- TMEDA tetramethyl ethylenediamine
- FeSO 4 iron(II) sulfate
- FeSO 4 /EDTA iron(II) sulfate and EDTA
- sodium formaldehyde sulfoxylate Na formaldehyde sulfoxylate
- disodium 2-hydroxy-2-sulfinoacetate disodium 2-hydroxy-2-sulfinoacteate
- potassium persulfate is used as the polymerization initiator, and disodium 2-hydroxy-2-sulfinoacetate is used as the reducing agent; Ammonium persulfate is used as a polymerization initiator and tetramethylethylenediamine is used as a reducing agent; Sodium persulfate may be used as a polymerization initiator, and sodium formaldehyde sulfoxylate may be used as a reducing agent.
- a hydrogen peroxide-based initiator ascorbic acid; Sucrose; sodium sulfite (Na 2 SO 3 ) sodium metabisulfite (Na 2 S 2 O 5 ); tetramethyl ethylenediamine (TMEDA); a mixture of iron(II) sulfate and EDTA (FeSO 4 /EDTA); sodium formaldehyde sulfoxylate; Disodium 2-hydroxy-2-sulfinoacteate; And one or more selected from the group consisting of disodium 2-hydroxy-2-sulfoacetate (Disodium 2-hydroxy-2-sulfoacteate) may be used.
- additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant may be further added as needed.
- the monomer composition for example, may be in a solution state dissolved in a solvent such as water, and the solid content, that is, the concentration of the monomer, internal crosslinking agent, and polymerization initiator in the monomer composition in such a solution state depends on the polymerization time and reaction It may be appropriately adjusted in consideration of conditions and the like.
- the solids content in the monomer composition may be 10 to 80% by weight, or 15 to 60% by weight, or 30 to 50% by weight.
- the gel effect phenomenon that occurs in the polymerization reaction of a high-concentration aqueous solution is used to eliminate the need to remove unreacted monomers after polymerization, while increasing the pulverization efficiency when pulverizing the polymer, which will be described later. It can be advantageous to adjust.
- any solvent capable of dissolving the above-described raw materials may be used without limitation in its composition.
- the solvent water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1,4-butanediol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate , methyl ethyl ketone, acetone, methyl amyl ketone, cyclohexanone, cyclopentanone, diethylene glycol monomethyl ether, diethylene glycol ethyl ether, toluene, xylene, butyrolactone, carbitol, methyl cellosolve acetate, N,N-dimethylacetamide, or mixtures thereof, and the like may be used.
- the polymerization process for the monomer composition may be carried out without any particular limitation in configuration, as long as the water-containing gel polymer can be formed by thermal polymerization, photopolymerization, or co-polymerization.
- the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source.
- thermal polymerization it can be carried out in a reactor having an agitation shaft such as a kneader, and in the case of photopolymerization, a movable It can be run in a reactor with a conveyor belt or in a flat bottomed vessel.
- the polymerization method as described above can form a polymer having a wide molecular weight distribution without a high molecular weight according to a relatively short polymerization reaction time (eg, 1 hour or less).
- the water-containing gel polymer obtained by thermal polymerization by supplying hot air to a reactor such as a kneader equipped with an agitation shaft or heating the reactor is directed to the outlet of the reactor according to the shape of the agitation shaft provided in the reactor.
- the discharged water-containing gel polymer may be in the form of several centimeters to several millimeters.
- the size of the obtained water-containing gel polymer may vary depending on the concentration and injection speed of the monomer composition to be injected, and a water-containing gel polymer having a weight average particle diameter of 2 to 50 mm can be obtained.
- the form of a water-containing gel polymer that is usually obtained may be a sheet-like water-containing gel polymer having the width of a belt.
- the thickness of the polymer sheet varies depending on the concentration and injection rate or amount of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer sheet having a thickness of about 0.5 to about 5 cm can be obtained. Do. When the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, production efficiency is low, which is undesirable. When the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction does not occur evenly over the entire thickness due to the excessively thick thickness. may not be
- polymerization in a reactor having a conventional conveyor belt and a stirring shaft is carried out in a continuous manner by supplying a new monomer composition to the reactor while the polymerization product is moving, so that polymers having different polymerization rates are mixed. It is difficult to achieve uniform polymerization throughout the composition, and overall physical properties may be deteriorated.
- polymerization of the monomer composition may be performed in a batch type reactor.
- the polymerization reaction when carried out in a batch reactor, the polymerization reaction is carried out for a longer period of time, for example, 3 hours or more, than when polymerization is carried out continuously in a reactor equipped with a conveyor belt.
- a longer period of time for example, 3 hours or more
- monomers are not easily precipitated even when polymerization is performed for a long time, and thus, it is advantageous to perform polymerization for a long time.
- polymerization in the batch type reactor may use a thermal polymerization method, and accordingly, a thermal polymerization initiator is used as the polymerization initiator.
- the thermal polymerization initiator is as described above.
- method 2 of preparing a water-containing gel polymer polymerization is performed on a monomer composition including a water-soluble ethylenically unsaturated monomer having an acidic group, an internal crosslinking agent, and a polymerization initiator, and the water-soluble ethylenically unsaturated monomer having the acidic group and the internal
- the steps of forming a crosslinked polymerized polymer with a crosslinking agent and forming a hydrogel polymer by neutralizing at least some of the acid groups of the polymer may be performed.
- Method 2 the preparation of the monomer composition and polymerization of the monomer composition may be performed in the same manner as in Method 1, except that a water-soluble ethylenically unsaturated monomer whose acidic group is not neutralized is used in the preparation of the monomer composition.
- the polymerization reaction in Method 2 may be specifically carried out in a batch type reactor.
- a thermal polymerization initiator may be used as the polymerization initiator.
- polymerization may be initiated by adding a reducing agent together with the initiator.
- the step of preparing a water-containing gel polymer by neutralizing at least some of the acid groups of the cross-linked polymer may be performed by adding a neutralizing agent to the cross-linked polymer and reacting.
- neutralizing agent basic materials such as sodium hydroxide, potassium hydroxide, and ammonium hydroxide capable of neutralizing acidic groups may be used.
- the degree of neutralization of the polymer which refers to the degree of neutralization by the neutralizing agent among the acid groups included in the polymer
- the concentration of the carboxyl group on the surface of the particle is too low, making it difficult to properly perform surface crosslinking in the subsequent process. Absorption under pressure and liquid permeability may decrease.
- the neutralization degree of the polymer is too low, the polymer's absorbency is greatly reduced, and it may exhibit properties such as elastic rubber that are difficult to handle. Accordingly, it is preferable to appropriately select the degree of neutralization of the polymer according to the physical properties of the superabsorbent polymer to be realized.
- the degree of neutralization of the polymer is 50 to 90 mol%, more specifically 50 mol% or more, or 60 mol% or more, or 65 mol% or more, and 90 mol% or less, or 85 mol% or less % or less, or 80 mole % or less, or 75 mole % or less.
- the polymer prepared according to Method 1 and Method 2 is in the form of a hydrogel, and has a water content of 30 to 80% by weight, more specifically, 30% by weight or more, or 35% by weight or more, or 40% by weight or more, and 80% by weight % or less, or 75 wt% or less, or 70 wt% or less.
- the moisture content of the hydrogel polymer is too low, it may not be effectively pulverized because it is difficult to secure an appropriate surface area in the subsequent grinding step, and if the water content of the hydrogel polymer is too high, the pressure applied in the subsequent grinding step is increased and pulverized to a desired particle size. hard to do
- the water-containing gel polymer prepared by the manufacturing method according to the present invention has a moisture content that satisfies the above-mentioned range conditions, and is suitable for the subsequent atomization process.
- moisture content refers to a value obtained by subtracting the weight of the dry polymer from the weight of the hydrogel polymer as the content of moisture with respect to the total weight of the hydrogel polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to moisture evaporation in the polymer in the process of raising the temperature of the polymer in the crumb state through infrared heating and drying.
- the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then maintaining it at 180 ° C. The total drying time is set to 40 minutes including 5 minutes of the temperature raising step, and the moisture content is measured. Specific measurement methods and conditions are as described in the following experimental examples.
- step 2 is a step of preparing hydrous superabsorbent polymer particles by atomizing the hydrogel polymer prepared in step 1 above.
- the water-containing gel polymer is not chopped to a millimeter size, but chopped to several tens to hundreds of micrometers and aggregated at the same time. That is, this is a step of preparing secondary agglomerated particles in which a plurality of primary particles cut to a size of several tens to hundreds of micrometers are agglomerated by imparting appropriate adhesiveness to the water-containing gel polymer.
- the water-containing superabsorbent polymer particles, which are secondary agglomerated particles prepared in this step have a normal particle size distribution and a significantly increased surface area, so that the absorption rate can be remarkably improved.
- the step of preparing the water-containing superabsorbent polymer particles by atomizing the polymer may be performed 2 or more times, more specifically, 2 to 4 times.
- the atomization step is performed by an atomization device, and the atomization device includes a body portion including a transport space in which a polymer is transported; a screw member rotatably installed inside the transfer space to move the polymer; a driving motor providing rotational driving force to the screw member; a cutter member installed in the body to pulverize the polymer; and a perforated plate having a plurality of holes and discharging the polymer pulverized by the cutter member to the outside of the body.
- the hole size provided in the perforated plate of the atomization device may be 1 mm to 10 mm, or 1 to 6 mm.
- the atomization step may be performed in the presence of a surfactant.
- the surfactant is adsorbed or bonded to the surface of the water-containing gel polymer to lower the tackiness of the surface of the water-containing gel polymer and, as a result, to control the aggregation of the pulverized water-containing gel polymers.
- a conventional chopping process for water-containing gel polymers formed particles at the level of several mm or several cm. Although the surface area of the water-containing gel polymer can be increased to some extent by this chopping process, it is difficult to expect an effect that can effectively improve the absorption rate. Therefore, in order to improve the absorption rate, a method of increasing the surface area by kneading by increasing the mechanical force in the chopping step has been proposed. One amorphous single particle was formed, and the water-soluble component was rather increased by excessive kneading or crushing.
- the atomization process for the water-containing gel polymer is performed in the presence of a surfactant, so that a large amount of the surfactant is present on the surface of the water-containing gel polymer.
- the surfactant present on the surface of the water-containing gel polymer lowers the high adhesiveness of the polymer, thereby preventing the polymer from excessively aggregating and controlling the aggregation state to a desired level.
- the water-containing gel polymer can be pulverized to a size of several millimeters to hundreds of micrometers, and subsequent pulverization and drying processes can be performed under milder conditions. Therefore, it is possible to significantly reduce the amount of fine powder generated during the manufacturing process.
- the surfactant penetrates the inside of the water-containing gel polymer rather than existing at the interface of the water-containing gel polymer due to the high water content of the water-containing gel polymer, and the surfactant plays its role. Chances are you won't be able to do enough.
- the present invention has solved this problem by using the atomization device having a characteristic structure as described above.
- the hydrophobic functional group included in the surfactant can increase the apparent density of the super absorbent polymer by imparting hydrophobicity to the surface of the pulverized super absorbent polymer particles to relieve frictional force between the particles.
- the contained hydrophilic functional group is also bonded to the superabsorbent polymer particles to prevent a decrease in surface tension of the superabsorbent polymer.
- the superabsorbent polymer prepared by the manufacturing method according to the present invention can exhibit a high bulk density while exhibiting an equivalent level of surface tension compared to the superabsorbent polymer without using a surfactant.
- a compound represented by Formula 2 or a salt thereof may be used, but the present invention is not limited thereto:
- a 1 , A 2 and A 3 are each independently a single bond, carbonyl; , or , with the proviso that at least one of these is carbonyl or , wherein m1, m2, and m3 are each independently an integer from 1 to 8, are each connected to an adjacent oxygen atom, are each connected to adjacent R 1 , R 2 and R 3 ,
- R 1 , R 2 and R 3 are each independently hydrogen, straight or branched chain alkyl having 6 to 18 carbon atoms or straight or branched chain alkenyl having 6 to 18 carbon atoms;
- n is an integer from 1 to 9;
- the surfactant is mixed with the polymer and added so that the atomization step can be easily performed without agglomeration.
- the surfactant represented by Chemical Formula 2 is a nonionic surfactant and has excellent surface adsorption performance by hydrogen bonding even with an unneutralized polymer, and thus is suitable for realizing a desired aggregation control effect.
- anionic surfactants other than nonionic surfactants when mixed with polymers neutralized with neutralizing agents such as NaOH and Na 2 SO 4 , they are adsorbed via Na+ ions ionized at the carboxyl substituents of the polymers, When mixed with an unneutralized polymer, there is a problem in that adsorption efficiency for the polymer is relatively lowered due to competition with the anion of the carboxyl substituent of the polymer.
- the hydrophobic functional group is a terminal functional group R 1 , R 2 , R 3 portion (if not hydrogen)
- the hydrophilic functional group is a glycerol-derived portion in the chain and a terminal hydroxyl group (A n is a single bond, and at the same time
- the glycerol-derived moiety and the terminal hydroxyl group serve to improve adsorption performance to the polymer surface as a hydrophilic functional group. Accordingly, aggregation of the superabsorbent polymer particles can be effectively suppressed.
- the hydrophobic functional groups R 1 , R 2 , and R 3 moieties are each independently a straight-chain or branched-chain alkyl having 6 to 18 carbon atoms or a straight-chain or branched-chain having 6 to 18 carbon atoms. It is alkenyl.
- R 1 , R 2 , R 3 moieties are alkyl or alkenyl having less than 6 carbon atoms
- R 1 , R 2 , R 3 moieties are alkyl or alkenyl having more than 18 carbon atoms
- the mobility of the surfactant is reduced and may not be effectively mixed with the polymer, and the cost of the surfactant increases Due to this, there may be a problem of increasing the unit price of the composition.
- R 1 , R 2 , R 3 are hydrogen or, in the case of straight-chain or branched-chain alkyl having 6 to 18 carbon atoms, 2-methylhexyl, n-heptyl, 2-methylheptyl, n-octyl, n -nonyl, n-decanyl, n-undecanyl, n-dodecanyl, n-tridecanyl, n-tetradecanyl, n-pentadecanyl, n-hexadecanyl, n-heptadecanyl, or n - May be octadecanyl, or in the case of straight or branched chain alkenyl having 6 to 18 carbon atoms, 2-hexenyl, 2-heptenyl, 2-octenyl, 2-nonenyl, n-decenyl, 2- undekenyl, 2-dodekenyl, 2-
- the surfactant may be selected from compounds represented by Formulas 2-1 to 2-14 below:
- the surfactant may be used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the water-containing gel polymer. If the surfactant is used too little, it is not evenly adsorbed on the surface of the polymer, and re-agglomeration of the particles after grinding may occur. It can be.
- the surfactant is 0.01 parts by weight or more, or 0.015 parts by weight or more, or 0.1 parts by weight or more based on 100 parts by weight of the polymer, and 5 parts by weight or less, or 3 parts by weight or less, or 2 parts by weight or less, or 1 part by weight or less, or 0.5 parts by weight or less may be used.
- the method of mixing these surfactants into the polymer is not particularly limited as long as it can evenly mix them into the polymer, and can be appropriately adopted and used.
- the surfactant may be mixed in a dry method, dissolved in a solvent and then mixed in a solution state, or the surfactant may be melted and then mixed.
- the surfactant may be mixed in a solution state dissolved in a solvent.
- solvents can be used without limitation, including inorganic solvents and organic solvents, but water is most appropriate considering the ease of the drying process and the cost of the solvent recovery system.
- the solution may be mixed by putting the surfactant and the polymer in a reaction tank, putting the polymer in a mixer and spraying the solution, or continuously supplying and mixing the polymer and the solution to a continuously operated mixer. .
- the process of neutralizing at least some of the acidic groups of the polymer in Method 2 of Step 1 and the process of atomizing the polymer in the presence of the surfactant are sequentially or alternately. , or can be performed simultaneously.
- a neutralizing agent is added to the polymer to neutralize the acid group first, and then a surfactant is added to the neutralized polymer to atomize the polymer mixed with the surfactant, or a neutralizer and a surfactant are added to the polymer at the same time to neutralize and atomize the polymer.
- the surfactant may be added first and the neutralizing agent may be added later.
- the neutralizing agent and the surfactant may be alternately introduced.
- micronization may be performed by first adding a surfactant, followed by neutralization by adding a neutralizing agent, and further adding a surfactant to the neutralized water-containing gel polymer to further perform an atomization process.
- the surfactant when added, at least some or a significant amount of the surfactant may be present on the surface of the water-containing superabsorbent polymer particles.
- the fact that the surfactant is present on the surface of the hydrous superabsorbent polymer particle means that at least a part or a significant amount of the surfactant is adsorbed or bound to the surface of the hydrous superabsorbent polymer particle.
- the surfactant may be physically or chemically adsorbed on the surface of the hydrous superabsorbent polymer particles.
- the hydrophilic functional group of the surfactant may be physically adsorbed to the hydrophilic portion of the surface of the hydrous superabsorbent polymer particle by an intermolecular force such as dipole-dipole interaction.
- the hydrophilic part of the surfactant is physically adsorbed on the surface of the water-containing super absorbent polymer particles and covers the surface, and the hydrophobic part of the surfactant is not adsorbed on the surface of the resin particle, so that the water-containing super absorbent polymer particle is a kind of A surfactant may be coated in the form of a micelle structure.
- the surfactant is not added during the polymerization process of the water-soluble ethylenically unsaturated monomer, but added during the atomization step after polymer formation, so when the surfactant is added during the polymerization process and the surfactant exists inside the polymer In comparison, it can faithfully perform its role as a surfactant, and pulverization and aggregation occur simultaneously to obtain particles with a large surface area in the form of agglomerated fine particles.
- the superabsorbent polymer particles and the surfactant are mixed and chopped and aggregated in the form of secondary agglomerated particles. Resin particles can be produced.
- the "water-containing superabsorbent polymer particles” are particles having a water content (moisture content) of about 30% by weight or more, and the water-containing gel polymer is chopped and aggregated into particles without a drying process. It may have a moisture content of %. More specifically, it is 30 wt% or more, or 35 wt% or more, or 40 wt% or more, and 80 wt% or less, or 75 wt% or less, or 70 wt% or less.
- one or more additives selected from among metal hydroxides and metal salts may be selectively added in addition to the surfactant during the atomization step.
- the metal hydroxide acts to impart absorption capacity by forming osmotic pressure during the atomization process.
- alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and any one or a mixture of two or more of these may be used.
- the metal salt serves to remove residual monomers during the atomization process.
- alkali metal sulfates such as sodium sulfite, sodium persulfate, and potassium persulfate
- ammonium sulfate-based compounds such as ammonium persulfate, and any one or a mixture of two or more of these may be used.
- the additive may be used in an amount of 0.01 to 20 parts by weight based on 100 parts by weight of the water-containing gel polymer. When the additives are used too little, the effect of using the additives is insignificant, and when the additives are used too much, physical properties of the finally manufactured superabsorbent polymer may deteriorate. More specifically, the additive is 0.01 parts by weight or more, 0.05 parts by weight or more, or 0.1 parts by weight or more, and 20 parts by weight or less, or 15 parts by weight or less, or 13 parts by weight or less, or 10 parts by weight or less, based on 100 parts by weight of the water-containing gel polymer. It may be used in parts by weight or less, or 6 parts by weight or less.
- the additive may be mixed with the polymer in a dry method, dissolved in a solvent and then mixed in a solution state, mixed in a dispersed state in a dispersion medium, or mixed with the polymer after being melted.
- the additives may be introduced identically or differently to each other in each atomization step.
- the atomization step may include: a first atomization step of primary atomization of the water-containing gel polymer using the atomization device under conditions where no surfactant and additives are introduced; a second atomization step of secondarily atomizing the firstly atomized water-containing gel polymer using the atomization device under the condition of adding metal hydroxide; a third atomization step of performing tertiary atomization of the second atomized water-containing gel polymer using the atomization device under the condition of introducing a metal salt;
- a fourth atomization step may be performed in which the tertiary atomized water-containing gel polymer is subjected to the fourth atomization using the atomization device under the input condition of the surfactant.
- the amounts of surfactants and additives introduced in each step are
- the atomization step is performed in the above way, the same level of particle size distribution as that of the product after drying can be implemented, and thus the generation of fine particles can be further reduced.
- the manufacturing method according to the present invention may not include an additional grinding step after the atomization process.
- an additional classification step may not be included. That is, it is possible to manufacture a superabsorbent polymer having a particle diameter applicable to the product without additional grinding and classification steps.
- pulverization may be additionally performed or a classification process may be additionally performed, depending on the purpose and necessity to which the product is applied.
- step 3 is a step of preparing dried super absorbent polymer particles by drying the water-containing super absorbent polymer particles.
- the drying step is generally performed until the moisture content of the super absorbent polymer is less than 10% by weight.
- the moisture content of the super absorbent polymer after drying is 10% by weight or more, more specifically, 10 to 20% by weight, or 10 to 15% by weight based on the total weight of the dry superabsorbent polymer particles. % by weight.
- the drying may be performed at 80 to 250° C. for 5 minutes to 80 minutes. If the drying temperature is too low, the drying time may be prolonged and processability may deteriorate, and if the drying temperature is too high, the water content of the superabsorbent polymer particles may be excessively low, resulting in cracking during the subsequent process. More specifically, the drying is at least 80 ° C, or at least 100 ° C, or at least 120 ° C, at a temperature of 250 ° C or less, or 180 ° C or less, or 150 ° C or less, 5 minutes or more, or 20 minutes or more, and 80 minutes It may be performed for a time period of less than or equal to 60 minutes.
- the drying may be performed in a moving type.
- This moving type drying is distinguished from fixed-bed type drying by the presence/absence of material flow during drying.
- the moving type drying refers to a method of drying the drying body while mechanically stirring it.
- the direction in which the hot air passes through the material may be the same as or different from the circulation direction of the material.
- the material may be circulated inside the dryer and the material may be dried by passing a heat exchanger fluid (heat oil) through a separate pipe outside the dryer.
- heat exchanger fluid heat oil
- fixed-bed drying refers to a method in which hot air passes through the material from the bottom to the top in a state in which the material to be dried is suspended on the floor such as a perforated iron plate through which air can flow.
- the drying step it is preferable to dry by a fluidized drying method in view of preventing aggregation between the water-containing superabsorbent polymer particles to be dried and completing drying within a short period of time.
- Devices capable of drying by this fluid drying method are generally used, such as a horizontal-type mixer dryer, a rotary kiln, a paddle dryer, or a steam tube dryer.
- a fluidized dryer may be used.
- Drying efficiency can be further improved by controlling the rotational speed according to the above fluidized drying method.
- the rotation speed may be 10 rpm or more, or 30 rpm or more, or 50 rpm or more, or 80 rpm or more, and may be 200 rpm or less, or 150 rpm or less, or 120 rpm or less, or 100 rpm or less, and the moisture content of the hydrogel polymer within the above range.
- it is preferably determined by considering drying conditions such as the amount of hydrogel polymer, type of fluidized drying device, drying temperature, and drying time.
- the water content of the dry super absorbent polymer particles is 10% by weight or more, more specifically, 10 to 20% by weight, or 10 to 15% by weight, and as the water content is in the above range, the subsequent process is performed It is possible to prevent or minimize differential generation during
- step 4 is a step of adding a surface crosslinking agent to the dry superabsorbent polymer particles and subjecting them to a surface crosslinking reaction.
- the crosslinked polymer included in the dry superabsorbent polymer particles may be additionally crosslinked with a surface crosslinking agent to form a surface crosslinked layer on at least a part of the surface of the dried superabsorbent polymer particles.
- the surface crosslinking agent any surface crosslinking agent conventionally used in the preparation of the superabsorbent polymer may be used without particular limitation.
- the surface crosslinking agent is ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,2-hexanediol, 1,3-hexanediol, 2- 1 selected from the group consisting of methyl-1,3-propanediol, 2,5-hexanediol, 2-methyl-1,3-pentanediol, 2-methyl-2,4-pentanediol, tripropylene glycol and glycerol more than one polyol; At least one carbonate-based compound selected from the group consisting of ethylene carbonate, propylene carbonate and glycerol carbonate; epoxy compounds such as ethylene glycol diglycidyl ether; oxazoline compounds such
- one or more, two or more, or three or more of the above-described surface cross-linking agents may be used as the surface cross-linking agent.
- ethylene glycol diglycidyl ether and propylene glycol may be mixed and used.
- the surface crosslinking agent may be used in an amount of 0.001 to 5 parts by weight based on 100 parts by weight of the dry superabsorbent polymer particles. More specifically, the surface crosslinking agent is 0.001 parts by weight or more, or 0.01 parts by weight or more, or 0.1 parts by weight or more, or 0.3 parts by weight or more, or 0.4 parts by weight or more based on 100 parts by weight of dry superabsorbent polymer particles, or It may be used in an amount of 5 parts by weight or less, or 3 parts by weight or less, or 1 part by weight or less.
- a superabsorbent polymer exhibiting excellent absorbent properties may be prepared.
- the forming of the surface cross-linking layer may be performed by adding an inorganic material to the surface cross-linking agent. That is, the step of forming a surface crosslinking layer may be performed by additionally crosslinking the surface of the superabsorbent polymer particle in the presence of the surface crosslinking agent and the inorganic material.
- the inorganic material at least one inorganic material selected from the group consisting of silica, clay, alumina, silica-alumina composite, titania, zinc oxide, and aluminum sulfate may be used.
- the inorganic material may be used in a powder form or a liquid form, and in particular, may be used as an alumina powder, a silica-alumina powder, a titania powder, or a nano-silica solution.
- the inorganic material is 0.001 to 1 part by weight, more specifically, 0.001 part by weight or more, or 0.01 part by weight or more, or 0.1 part by weight or more, 1 part by weight or less, or 0.5 part by weight based on 100 parts by weight of dry super absorbent polymer particles. It can be used in an amount below part.
- the structure of the method of mixing the surface crosslinking agent with the superabsorbent polymer particles There is no limitation on the structure of the method of mixing the surface crosslinking agent with the superabsorbent polymer particles.
- a method of mixing the surface crosslinking agent and superabsorbent polymer particles in a reaction tank, spraying the surface crosslinking agent on the superabsorbent polymer particles, or continuously supplying and mixing the superabsorbent polymer particles and the surface crosslinking agent to a continuously operated mixer. method, etc. can be used.
- water and methanol may be additionally mixed and added.
- water and methanol there is an advantage in that the surface crosslinking agent can be evenly dispersed in the superabsorbent polymer particles.
- the amounts of added water and methanol may be appropriately adjusted to induce uniform dispersion of the surface crosslinking agent, prevent agglomeration of the superabsorbent polymer particles, and optimize the surface penetration depth of the crosslinking agent.
- the surface crosslinking process may be performed at a temperature of 80 °C to 250 °C. More specifically, the surface crosslinking process may be performed at a temperature of 100 °C to 220 °C, or 120 °C to 200 °C for 20 minutes to 2 hours, or 40 minutes to 80 minutes. When the above-described surface crosslinking process conditions are satisfied, the surface of the superabsorbent polymer particle is sufficiently crosslinked to increase absorbency under pressure.
- the means for raising the temperature for the surface crosslinking reaction is not particularly limited. It can be heated by supplying a heat medium or directly supplying a heat source.
- a heat medium As the type of heat medium that can be used, steam, hot air, heated fluids such as hot oil, etc. can be used, but are not limited thereto, and the temperature of the heat medium supplied depends on the means of the heat medium, the heating rate, and the target temperature of the heating medium. can be selected appropriately.
- the directly supplied heat source heating through electricity or heating through gas may be mentioned, but is not limited to the above example.
- step 5 is a step of simultaneously cooling and adding water to the superabsorbent polymer particles on which the surface crosslinking layer is formed as a result of step 4, using a spade-type cooler.
- a paddle-type cooler was mainly used for cooling the superabsorbent polymer after the surface crosslinking reaction.
- one or more rotation shafts are provided inside the cooler in the longitudinal direction of the cooler, and a plurality of paddles or paddle-type blades are installed on the rotation shaft, and the paddles rotate according to the rotation of the rotation shaft to cool the cooler. Cooling is performed by stirring and mixing the superabsorbent polymer particles inside with cooling water.
- stirring and mixing are performed by paddles rotating along a rotation axis inside the cooler, stirring and mixing of the superabsorbent polymer particles and the cooling water occur only within a radius of rotation of the paddle.
- a spade-type cooler capable of uniformly cooling the entire surface of the superabsorbent polymer particles on which the surface crosslinking layer is formed and uniformly mixing water and additionally added additives is used.
- the spade-type cooler includes a rotatable body and one or more spade-type blades installed on an inner wall of the body to be vertically driven. Accordingly, when superabsorbent polymer particles having a crosslinked surface layer are injected into the body for cooling and watering, the body rotates, and the spade-type blade rotates and moves up and down according to the rotation of the body. The superabsorbent polymer particles in the body are scooped up from the bottom to the top by the vertical movement of the spade-type blade, and then fall in the direction of gravity as the body rotates.
- the spade-type cooler does not accumulate the super-absorbent polymer particles and moves the super-absorbent polymer particles inside the body up and down while stirring and contacting the cooling air, water, and additives. Therefore, contact and friction between the spade-type blade and the super absorbent polymer particles and between the super absorbent polymer particles can be reduced, and as a result, cracking of the super absorbent polymer particles and consequent deterioration in physical properties can be prevented.
- the spade-type blade has a concave shape such as a spoon or a shovel, such as a part of the spade-type blade, for example, a center or an edge. Accordingly, compared to a paddle with a flat edge, it is advantageous to scoop up the super absorbent polymer particles, and as a result, the contact between the super absorbent polymer particles and the cooling air and water is better for the entire super absorbent polymer particle. can be done uniformly.
- the agglomerated particles can be easily separated by agitating force generated in multiple directions within the body. As a result, it is possible to reduce the content of coarse particles in the super absorbent polymer particles, and to prevent and minimize deviations in physical properties and absorption performance of the super absorbent polymer.
- 1 to 3 are schematic diagrams schematically showing the structures of the side section, front, and rear surfaces of a spade-type cooler used in the method for manufacturing a superabsorbent polymer according to the present invention, respectively.
- 1 to 3 are only examples for explaining the present invention, but the present invention is not limited thereto.
- the spade-type cooler 10 specifically includes a transport space in which the superabsorbent polymer particles having the surface crosslinking layer formed therein are transported, and the rotatable body portion 1 ); two nozzles, i.e., a cooling air input nozzle 2a and a water input nozzle 2b, which are installed in the body 1 and respectively inject cooling air and water into the transfer space; one or more spade-type blades (3) installed on an inner wall of the body so as to be vertically driven to lift the superabsorbent polymer particles on which the surface crosslinking layer is formed in the transfer space from bottom to top; and a drive motor 4 connected to the body portion 1 to provide a driving force, wherein the surface crosslinking layer is formed by vertically driving the spade-shaped blade 3 in the body portion 1.
- the pumped-up superabsorbent polymer particles are dropped in the direction of gravity by the rotation of the body part 1 and brought into contact with cooling air and water injected into the transfer space of the body part 1, Cooling and watering of the superabsorbent polymer particles on which the surface crosslinking layer is formed are performed simultaneously.
- the body part 1 of the spade-type cooler includes a transport space in which superabsorbent polymer particles having a surface crosslinking layer formed therein are transported and flowed.
- the shape of the body portion 1 is not particularly limited, but may be cylindrical or drum-shaped, for example.
- the body part 1 is rotatable, and accordingly, components present in the internal space of the body part can be stirred and mixed by rotation of the body part.
- Rotation of the body part 1 may be performed by rotating the whole body part or a certain part of the body part.
- the entire body portion may be rotated by the driving force transmitted from the driving motor 4 .
- rotation shafts are provided on the outer upper and lower portions of the body unit 1 in the longitudinal direction of the body unit, and when a driving force is transmitted to the rotation shaft from a driving motor, the rotation shaft is rotated by the driving force, and as a result, the body unit The body portion may rotate in a direction perpendicular to the longitudinal direction.
- the body portion when only a certain portion of the body portion rotates, the body portion may be connected to a driving motor and may include a rotating portion rotating by a driving force transmitted from the driving motor and a fixed portion that does not rotate.
- the rotation unit may be located on the upper side of the body into which the surface-crosslinked super absorbent polymer particles and the cooling medium are injected, and the fixing unit may be located on the lower side of the body through which cooled super absorbent polymer particles are discharged.
- the fixing part may be located on the upper side of the body part into which the surface-crosslinked super absorbent polymer particles and the cooling medium are injected, and the rotating part may be located on the lower side where the cooled super absorbent polymer particles are discharged.
- the rotating part 1a may be positioned in the middle of the body, and the fixing part 1b may be positioned on the upper and lower sides of the rotating part 1a, respectively.
- the body part 1 is provided with a super absorbent polymer inlet for inputting the super absorbent polymer particles having a surface crosslinking layer formed thereon, and a super absorbent polymer outlet for discharging the cooled and hydrous super absorbent polymer particles, respectively.
- the location is not particularly limited, and the super absorbent polymer inlet may be provided at one end of the body part, and the super absorbent polymer inlet may be provided at the other end of the body part.
- a super absorbent polymer inlet 1c is provided in the upper region of the body portion 1 so that the super absorbent polymer flows in one direction in the body portion 1, and A superabsorbent polymer outlet 1d may be formed in a lower region of the body portion 1 .
- the spade-type cooler has a discharge plate provided to be connected to the discharge port 1d on the inner wall of the body so as to facilitate discharge of the cooled and water-absorbent polymer particles.
- a discharge plate provided to be connected to the discharge port 1d on the inner wall of the body so as to facilitate discharge of the cooled and water-absorbent polymer particles.
- the cooled and hydrous superabsorbent polymer particles accumulate on the discharge plate, they can be easily discharged through the discharge port due to the inclination of the discharge plate.
- the body part 1 is cooled by mixing and contacting the upper region where the super absorbent polymer inlet 1c for inputting the super absorbent polymer is located, and the super absorbent polymer particles and cooling air and water. and a lower area equipped with a super absorbent polymer discharge port 1d for discharging cooled super absorbent polymer particles.
- the jacket section corresponds to the rotating part 1a
- the upper and lower sections correspond to the fixed part 1b, respectively.
- nozzles for injecting the cooling air and water that is, a nozzle 2a for injecting cooling air and a nozzle 2b for injecting water are installed in the body part 1. Accordingly, the cooling air and water injected through the nozzle are sprayed into the space of the body part.
- the nozzle may be selectively provided with a nozzle opening/closing unit or control unit such as a valve or a switch capable of controlling the input speed or spray rate of cooling air and water, and the input or spray amount.
- the formation positions of the nozzles are not particularly limited.
- the super absorbent polymer inlet side that is, the upper region of the body where the inlet exists, more specifically, the body part. It may be formed on the fixing part 1b located on the upper side.
- spade-type blade 3 installed on the inner wall of the body part 1 so as to be able to move up and down.
- the spade-type blade 3 has a spoon or shovel shape, and drives up and down while rotating together when the body part rotates. Accordingly, the super-absorbent polymer particles present in the transfer space of the body part are pumped from the bottom to the top, and the super-absorbent polymer particles scooped up by the spade-type blade fall by the rotation and gravity of the body part to the inside of the body space. It comes into contact with the introduced cooling air and water and becomes mixed.
- the spade-type blade 3 may be provided at least one, at least two, at least three, or at least four on the inner wall of the body, but is not limited thereto. It may be appropriately determined in consideration of the size of the body portion and the like.
- the driving speed of the spade-type blade is determined according to the rotational speed of the body part.
- a separate driving speed control member may be selectively further included to control the driving speed of the spade-type blade.
- the spade-type cooler 10 includes a driving motor 4 connected to the body 1 to provide a driving force, specifically, a rotational driving force.
- the spade-type cooler 10 includes a super absorbent polymer supply unit (not shown) for storing and supplying super absorbent polymer particles having a surface crosslinking layer formed thereon; a cooling air supply unit (not shown) that stores cooling air and supplies it through a cooling air injection nozzle installed in the body of the cooler; a water supply unit (not shown) for storing water and supplying water through a water injection nozzle installed in the body of the cooler; It is installed in the body of the cooler and may optionally further include at least one of an additive nozzle (not shown) and an additive inlet 1e for additives selectively added during the cooling and adding processes.
- FIG. 4 is a schematic diagram schematically illustrating a mixing process occurring in the body of a spade-type cooler in the cooling and adding steps in the method for manufacturing a superabsorbent polymer according to the present invention. Arrows in FIG. 4 indicate rotation of the body part.
- the spade-type blade 3 in the body of the cooler moves up and down.
- superabsorbent polymer particles are pumped up from the bottom.
- the pumped-up superabsorbent polymer particles fall in the direction of gravity due to the rotation of the body and come into contact with cooling air and water injected into the space of the body through spraying or the like through a nozzle coupled to the body.
- the super absorbent polymer particles are cooled by heat exchange between cooling air and water, and at the same time, the super absorbent polymer particles are hydrated by the water.
- the contact and hydrolysis can be made uniformly with all the super-absorbent polymer particles. Variation in absorption performance can be prevented and minimized.
- the temperature of the cooling air injected into the spade-type cooler is 10° C. to 60° C., and the rate of 0.01 m 3 /h/kg to 0.25 m 3 /h/kg based on 1 kg of the super absorbent polymer having the surface cross-linked layer formed thereon It can be injected through a cooling air injection nozzle installed in the furnace body.
- the temperature of the cooling air is 10°C or higher, or 15°C or higher, or 20°C or higher, or 25°C or higher, or 30°C or higher, and 60°C or lower, or 50°C or lower, or 40°C or lower, or 35°C or lower.
- the temperature of the water is 10 °C to 60 °C, it may be added in an amount of 2 to 20 parts by weight based on 100 parts by weight of the superabsorbent polymer particles on which the surface crosslinking layer is formed.
- a cooling effect and a hydrophobic effect may be exhibited on the superabsorbent polymer particles on which the surface crosslinking layer is formed.
- the temperature of the water is 10 ° C or higher, or 15 ° C or higher, or 20 ° C or higher, or 23 ° C or higher, and 60 ° C or lower, or 50 ° C or lower, or 40 ° C or lower, or 30 ° C or lower, or 27 ° C.
- the water may be added in an amount of 2 parts by weight or more, or 5 parts by weight or more, and 20 parts by weight or less, or 10 parts by weight or less, based on 100 parts by weight of the superabsorbent polymer particles on which the surface crosslinking layer is formed.
- the body part 1 or the rotating part 1a in the body part may be rotated at a speed of 5 to 50 times per minute (or 5 to 50 rpm).
- a rotational speed of one rotation per minute of the body portion or the rotating portion within the body portion corresponds to 1 rpm.
- the superabsorbent polymer particles When rotating under the above conditions, the superabsorbent polymer particles may fall at a speed sufficient to contact cooling air and water. More specifically, the body part or the rotating part within the body part may be rotated at a speed of 5 times or more, or 10 times or more, or 20 times or more, and 50 times or less, or 40 times or less, or 30 times or less per minute.
- the spade-type cooler includes a rotational speed control device (not shown), such as an inverter, which is located between the body and the drive motor and controls the rotational speed of the body or the rotating part within the body. Optionally, more may be provided.
- one or more additives may be further added for improving cooling efficiency, improving water content and physical properties of the superabsorbent polymer during the cooling process.
- the additive may be an inorganic material.
- the additive may be an inorganic material.
- examples include silica, clay, alumina, silica-alumina composites, titania, zinc oxide, aluminum sulfate, and the like, and any one or a mixture of two or more of these may be used.
- the inorganic materials may act as an anti-caking agent that increases the water content of the superabsorbent polymer particles and improves anti-caking efficiency.
- the inorganic material When the inorganic material is further injected, it is installed in the body of the spade-type cooler and introduced through an additive nozzle (not shown) or an additive inlet 1e, which injects the additive into the transfer space of the body, Alternatively, it may be mixed with the super absorbent polymer on which the surface crosslinking layer is formed and introduced through the super absorbent polymer inlet in the form of a mixture.
- inorganic materials were mixed with a blade-type mixer in order to improve water content in the manufacture of superabsorbent polymers.
- the inorganic materials are dry mixed, it is difficult to homogeneously mix them, resulting in variations in physical properties of the superabsorbent polymer.
- wet mixing is performed by adding water during the cooling and watering processes using a spade-type cooler, and as a result, homogeneous mixing with the superabsorbent polymer is possible, and the physical properties of the superabsorbent polymer can be uniformly improved.
- the inorganic material may be added in an amount of 0.02 to 1.0 parts by weight based on 100 parts by weight of the superabsorbent polymer particles on which the surface crosslinking layer is formed. If the input amount of the inorganic material is too small, it is difficult to obtain a sufficient hydrophobic effect according to the input of the inorganic material. On the other hand, if the input amount of the inorganic material is too high, the water content of the superabsorbent polymer may be excessively increased, thereby degrading the absorption performance.
- the inorganic material is 0.02 parts by weight or more, or 0.05 parts by weight or more, or 0.1 parts by weight or more, 1.0 parts by weight or less, or 0.7 parts by weight based on 100 parts by weight of the superabsorbent polymer particles on which the surface crosslinking layer is formed. or less, or may be added in an amount of 0.5 parts by weight or less.
- additives such as a liquid permeability improver and a fluidity improver may be selectively added as additives, but the present invention is not limited thereto.
- the method of introducing the above additive is not particularly limited, and may be introduced through an additive nozzle installed in the body and introducing the additive into the space of the body, or mixed with the superabsorbent polymer.
- the moisture content of the super absorbent polymer finally produced is improved, the content of coarse particles is reduced, and as a result, a higher quality super absorbent polymer product can be manufactured.
- the content of coarse particles having a particle diameter of more than 850 ⁇ m among the cooled and hydrolyzed superabsorbent polymer particles is 3% by weight or less, or 1% by weight or less, or 0.7% by weight or less, or 0.5% by weight or less. % or less, or 0.3% by weight. Since the lower the content of the coarse particles, the lower limit is not particularly limited, but may be, for example, 0.01% by weight or more, or 0.1% by weight or more.
- the content (wt%) of the coarse particles having a particle size of more than 850 ⁇ m is determined by classifying the cooled and hydrous superabsorbent polymer particles by a method such as using a standard molecular sieve according to ASTM regulations, After separating the coarse particles, the weight thereof is measured, and the weight ratio of the coarse particles to the total weight of the cooled and water-absorbent polymer particles is obtained and expressed as a percentage.
- a specific measurement method is as described in the following experimental example.
- the manufacturing method according to the present invention may further include, after the cooling and hydrolysis step, classifying the cooled and hydrolyzed superabsorbent polymer.
- the classification process may be performed according to a conventional method, such as using a standard molecular sieve according to ASTM regulations, and through this classification process, coarse particles having a particle size greater than 850 ⁇ m are separated and removed, and particle sizes of 150 to 850 ⁇ m are separated and removed. Normal particles of the superabsorbent polymer having
- the manufacturing method according to the present invention may further include, after the classifying step, pulverizing the separated coarse particles and mixing the pulverized coarse particles with the normal particles of the superabsorbent polymer separated in the classifying step.
- Grinding of the coarse particles may be performed using a conventional pulverization method, except that the pulverized coarse particles have a particle size equal to that of normal particles.
- a pin mill a hammer mill, a screw mill, a roll mill, a disc mill, or a jog mill
- a pin mill a hammer mill, a screw mill, a roll mill, a disc mill, or a jog mill
- mixing of the pulverized coarse particles and the normal particles of the super absorbent polymer may be performed using a conventional mixing method, and the mixing ratio may be appropriately determined within a range that does not degrade the absorption performance of the super absorbent polymer.
- a superabsorbent polymer prepared by the above manufacturing method is provided.
- the superabsorbent polymer prepared by the above manufacturing method has a high moisture content and a low content of coarse particles having a particle diameter of more than 850 ⁇ m without a separate classification process. As a result, when manufacturing a product using the superabsorbent polymer, the amount of fine powder generated is small.
- the superabsorbent polymer has water retention capacity (CRC) and absorbent capacity under pressure (AUP) that are superior to those of the superabsorbent polymer prepared by the conventional method, at an equivalent or higher level.
- CRC water retention capacity
- AUP absorbent capacity under pressure
- the superabsorbent polymer exhibits a uniform particle size with a narrow particle size distribution, and has a low water-soluble component (EC) content, so it has excellent liquid permeability, rewet characteristics, and absorption rate.
- EC water-soluble component
- the superabsorbent polymer includes a polymer obtained by crosslinking and polymerizing a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent, at least some of the acidic groups of the polymer are neutralized, and the polymer is added through a surface crosslinking agent. It may include a surface crosslinking layer formed on the polymer by crosslinking, and satisfy the following conditions (i) to (iii):
- the superabsorbent polymer has a water content of 1.2% by weight or more, or 1.4% by weight or more, or 1.5% by weight or more, or 1.7% by weight or more, or 1.8% by weight or more, or 1.9% by weight or more, based on the total weight of the superabsorbent polymer. % or more, and 5 wt% or less, or 3 wt% or less, or 2.6 wt% or less, or 2.5 wt% or less, or 2 wt% or less.
- the water content is higher than that of the prior art, surface damage caused by friction between super absorbent polymer particles during the manufacturing process is reduced, and consequently deterioration in physical properties of the super absorbent polymer can be prevented.
- the amount of fine powder generated during the commercialization process using the superabsorbent polymer is reduced, thereby improving process stability and productivity, and improving product quality.
- the water content is the content of moisture with respect to the total weight of the super absorbent polymer.
- the weight loss due to evaporation of water in the super absorbent polymer is measured, and the result is used to It can be calculated according to Equation 1 below.
- Equation 1 The specific measurement method and measurement conditions are described in detail in the following experimental examples.
- Moisture content (% by weight) [(Ao-At) / Ao] X 100
- At is a method in which the temperature is raised from room temperature to 180 ° C and then maintained at 180 ° C, and the total drying time is set to 40 minutes including 5 minutes of the temperature raising step, measured after the drying process is performed, and after drying It is the weight of the super absorbent polymer, and Ao is the weight of the super absorbent polymer before drying.
- the superabsorbent polymer has a centrifugal water retention capacity (CRC) of 30 g/g or more, or 35 g/g or more, for 30 minutes with respect to physiological saline (0.9 wt% aqueous sodium chloride solution), measured according to WSP 241.3 of the EDANA method. g or more, or 36.5 g/g or more, or 37 g/g or more.
- CRC centrifugal water retention capacity
- the superabsorbent polymer is more specifically measured according to the EDANA method WSP 242.3, the average of the absorbency under pressure (0.3AUP) for 1 hour under 0.3psi for physiological saline (0.9% by weight aqueous sodium chloride solution) of the superabsorbent polymer is 29 g/g or more, or 29.3 g/g or more, or 29.5 g/g or more, or 30 g/g or more, and is 40 g/g or less, or 35 g/g or less, or 32 g/g or less.
- the average of the absorbency under pressure (0.3AUP) for 1 hour under 0.3psi for physiological saline (0.9% by weight aqueous sodium chloride solution) of the superabsorbent polymer is 29 g/g or more, or 29.3 g/g or more, or 29.5 g/g or more, or 30 g/g or more, and is 40 g/g or less, or 35 g/g or less, or
- the standard deviation of the absorbency under pressure of 0.3 psi is 1 or less, or 0.7 or less, or 0.5 or less, and the smaller the standard deviation value, the better, so there is no practical lower limit, but is, for example, 0.1 or more, or 0.2 or more.
- the specific measurement method and measurement conditions of the 0.3C AUP will be described in detail in the following experimental examples.
- the superabsorbent polymer has an average anti-caking efficiency (A/C) of 85% or more and a standard deviation of 10 or less, calculated by Equation 2 below. More specifically, the average of the anti-caking efficiency (A/C) is 85% or more, or 90% or more, or 95% or more. The higher the anti-caking efficiency value, the better, so there is no practical upper limit, but it is, for example, 100% or less, or 98% or less.
- the standard deviation of the anti-caking efficiency is more specifically 10 or less, or 9.5 or less, or 9 or less, and the smaller the standard deviation value, the better, so there is no practical lower limit, but is, for example, 1 or more, or 5 or more.
- W 5 is the weight (g) of a petri dish with a diameter of 90 mm and a height of 15 mm
- S 2 is the weight (g) of the Petri dish at the time of measuring S 1 .
- the superabsorbent polymer may be appropriately used for sanitary materials such as diapers, in particular, ultra-thin sanitary materials having a reduced pulp content.
- aqueous hydrogen peroxide solution 1.3 g of 0.3% aqueous hydrogen peroxide solution, 1.5 g of 1% aqueous ascorbic acid solution, and 3.0 g of 2% aqueous solution of 2,2'-azobisamidinopropane dihydrochloride were added, and at the same time, 0.01% of 0.01% of aqueous solution was added as a reducing agent. 1.5 g of an aqueous iron sulfate solution was added and mixed.
- the polymer was polymerized in an oven at 90 ⁇ 2 ° C for about 6 hours to prepare a water-containing gel polymer (moisture content: 70 weight based on the total weight of the water-containing gel polymer). %).
- hydrous superabsorbent polymer particles were obtained (moisture content: 68% by weight of the total weight of the hydrous superabsorbent polymer particles).
- the water-containing superabsorbent polymer particles obtained as a result of the atomization were put into a rotary kiln fluidized dryer (manufactured by ROTARY KILN, WOONGBI MACHINERY CO., LTD.), and then dried while stirring at 150 ° C. for 60 minutes at a speed of 100 rpm to dry solid Water absorbent polymer particles were obtained (moisture content: based on the total weight of dry super absorbent polymer particles: 11% by weight).
- a surface cross-linked superabsorbent polymer was obtained in the same manner as in Preparation Example 1, except that GMS (glycerol monostearate) was used instead of GML as a surfactant when preparing the water-containing gel polymer according to Preparation Example 1. .
- GMS glycerol monostearate
- cooling air is introduced through a nozzle provided inside the cooler. to perform a cooling process.
- the temperature of the cooling air introduced into the cooler is 35° C.
- the input rate is 0.1 m 3 /h/kg based on 1 kg of the surface cross-linked superabsorbent polymer.
- water was injected through a nozzle provided separately inside the cooler, and the watering process was performed simultaneously.
- the temperature of the water was room temperature (25 ⁇ 2 ° C)
- the input amount was 5 parts by weight based on 100 parts by weight of the surface crosslinked superabsorbent polymer
- the rotation speed of the body part was 20 times per minute (20 rpm).
- water and fumed silica (Aerosil200, manufactured by EVONIK) were injected through a nozzle separately provided inside the cooler.
- the temperature of the water to be introduced is room temperature (25 ⁇ 2 ° C), and the amount of water is 5 parts by weight based on 100 parts by weight of the surface crosslinked superabsorbent polymer.
- the fumed silica was added in an amount of 0.1 parts by weight based on 100 parts by weight of the superabsorbent polymer.
- a superabsorbent polymer was prepared in the same manner as in Example 1 except for the conditions described in Table 1 below.
- the surface-crosslinked superabsorbent polymer particles prepared in Preparation Example 1 were put into a paddle-type cooler (NPD-14WTM, manufactured by Nara), and the inside of the paddle-type cooler 5 parts by weight of water at room temperature (25 ⁇ 2°C) is added to the double jacket without nozzles based on 100 parts by weight of the surface cross-linked superabsorbent polymer. was carried out (no silica input).
- the superabsorbent polymer was prepared in the same manner as in Example 1, except that the processes of classification, pulverization of coarse particles, and mixing of the superabsorbent polymer with normal particles were not performed.
- the surface-crosslinked superabsorbent polymer particles prepared in Preparation Example 1 were put into a paddle-type cooler (NPD-14WTM, manufactured by Nara Co., Ltd.) and passed through a nozzle provided inside the paddle-type cooler. 5 parts by weight of water at room temperature (25 ⁇ 2°C) based on 100 parts by weight of the surface cross-linked superabsorbent polymer is put into the double jacket, mixing is performed by driving a paddle at a speed of 10 times per minute (10 rpm), and a cooling process is performed. Except for the above, a superabsorbent polymer was prepared in the same manner as in Example 1 above.
- NPD-14WTM manufactured by Nara Co., Ltd.
- the superabsorbent polymer particles prepared in Preparation Example 1 were put into a paddle-type cooler, and room temperature (25 ⁇ 2 ° C.) of water was added to the double jacket in an amount of 5 parts by weight based on 100 parts by weight of the surface crosslinked superabsorbent polymer, and a cooling process was performed while mixing by driving a paddle at a speed of 10 times per minute (10 rpm).
- the cooled super absorbent polymer particles were put into a Ploughshare-type mixer (CoriMix ® CM, manufactured by Leodige), and fumed silica (Aerosil200, manufactured by EVONIK) was added at 0.1 part by weight based on 100 parts by weight of the super absorbent polymer, and the Ploughshare were mixed by driving at a speed of 200 times per minute (200 rpm).
- the resulting mixture was classified to separate normal particles of the superabsorbent polymer having a particle size of 150 to 850 ⁇ m and coarse particles having a particle size of more than 850 ⁇ m.
- the separated coarse particles were pulverized once using a roll mill, and then mixed with the normal particles of the super absorbent polymer to prepare a super absorbent polymer.
- parts by weight is a relative content ratio based on 100 parts by weight of the surface crosslinked superabsorbent polymer.
- physiological saline or saline means 0.9 wt% sodium chloride (NaCl) aqueous solution.
- the moisture content of the superabsorbent polymers finally prepared in Examples and Comparative Examples was measured.
- the moisture content is the content of water with respect to the total weight of the superabsorbent polymer, and was calculated according to Equation 1 below.
- the weight loss due to evaporation of water in the super absorbent polymer was measured and calculated.
- the drying conditions were maintained at 180 ° C after raising the temperature from room temperature to 180 ° C, and the total drying time was set to 40 minutes including 5 minutes of the temperature raising step.
- the weight of the superabsorbent polymer before and after drying was measured, respectively, and calculated according to Equation 1 below.
- Moisture content (% by weight) [(Ao-At) / Ao] X 100
- At is the weight of the super absorbent polymer after drying
- Ao is the weight of the super absorbent polymer before drying
- the superabsorbent polymer W 0 (g) (about 0.2 g) obtained through Examples and Comparative Examples was uniformly placed in a nonwoven fabric bag, sealed, and then treated with physiological saline (0.9% by weight) at room temperature. submerged in After 30 minutes, water was drained from the bag for 3 minutes under the condition of 250 G using a centrifuge, and the mass W 2 (g) of the bag was measured. Moreover, after carrying out the same operation without using resin, the mass W1 (g) at that time was measured.
- CRC (g/g) ⁇ [W 2 (g) - W 1 (g)]/W 0 (g) ⁇ - 1
- a stainless steel 400 mesh wire mesh was attached to the bottom of a plastic cylinder having an inner diameter of 25 mm.
- superabsorbent polymer W 0 (g) (0.9 g) is uniformly sprayed on a wire mesh, and a piston capable of uniformly applying a load of 0.3 psi thereon is slightly larger than the outer diameter of 25 mm. It is small and has no gaps with the inner wall of the cylinder, so that the vertical movement is not hindered.
- the weight W 3 (g) of the device was measured.
- a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a petro dish having a diameter of 150 mm, and physiological saline solution composed of 0.9% by weight sodium chloride was leveled with the top surface of the glass filter.
- One sheet of filter paper having a diameter of 90 mm was placed thereon.
- the measuring device was placed on a filter paper, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted up and its weight W 4 (g) was measured.
- AUP(g/g) [W 4 (g) - W 3 (g)]/W 0 (g)
- the measurement was repeated 5 times, and the average value and standard deviation were obtained.
- the superabsorbent polymer particles obtained after the cooling and hydrolysis steps were 850 ⁇ m (20 mesh), 600 ⁇ m (30 mesh), 300 ⁇ m (50 mesh), and 150 ⁇ m (100 mesh) of the ASTM standard. After classifying using a standard sieve having a size scale and measuring the weight of coarse particles having a particle diameter of greater than 850 ⁇ m, for the total weight of the cooled and water-absorbent polymer particles The weight ratio of the coarse particles was expressed as a percentage (% by weight).
- Example 1 had a high water content compared to Comparative Example 1, but there was no degradation in absorption performance such as CRC and AUP.
- the content of coarse particles having a particle diameter of greater than 850 ⁇ m was reduced, and better effects were exhibited in terms of CRC and AUP absorption performance.
- Example 2 compared to Comparative Example 3, the content of coarse particles having a particle diameter of greater than 850 ⁇ m was reduced, and excellent effects were exhibited in terms of CRC and AUP absorption performance. In addition, compared to Comparative Example 3, the physical property deviation was small in terms of AUP and A / C efficiency.
- the final super absorbent polymers of Examples and Comparative Examples prepared using inorganic materials were prepared using the following method to prevent caking (A/C , Anti-caking) efficiency was measured.
- the Petri dish containing the superabsorbent polymer sample was placed in a constant temperature and humidity chamber set at a temperature of 40 ° C and a humidity of 80% RH and left for 10 minutes.
- W 5 is the weight (g) of a petri dish with a diameter of 90 mm and a height of 15 mm
- S 2 is the weight (g) of the Petri dish at the time of measuring S 1 .
- the measurement was repeated 5 times, and the average value and standard deviation were obtained.
- Example 2 Example 3
- Example 4 Example 5
- Example 6 Example 7 Comparative Example 3
- Examples 2 to 7 showed significantly increased anti-caking efficiency compared to Comparative Example 3, and the variation in physical properties was also small.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 보다 구체적으로, 입자크기 850㎛ 초과의 조립자 발생량이 감소되고, 함수율이 향상되어 편차 없이 우수한 흡수 성능을 나타낼 수 있는 고흡수성 수지의 제조 방법에 관한 것이다.
Description
본 출원은 2021년 6월 18일자 한국 특허 출원 제10-2021-0079644호 및 2021년 6월 21일자 한국 특허 출원 제10-2021-0080233호 및 2022년 6월 20일자 한국 특허 출원 제10-2022-0074732호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다. 보다 구체적으로, 입경 850㎛ 초과의 조립자 함량이 감소되고, 함수율이 향상되며, 편차 없이 우수한 흡수 성능을 나타낼 수 있는 고흡수성 수지의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제 및 찜질용 등의 재료로 널리 사용되고 있다.
이러한 고흡수성 수지는 주로 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 상기 위생재 내에서, 상기 고흡수성 수지는 펄프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 펄프리스(pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다.
이와 같이, 펄프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되어, 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 많은 양의 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능뿐 아니라 빠른 흡수 속도를 나타낼 필요가 있다.
한편, 이러한 고흡수성 수지는 일반적으로, 아크릴산계 단량체를 중합하여 다량의 수분을 함유한 함수겔 중합체를 제조하는 단계 및 이러한 함수겔 중합체를 건조하고, 원하는 입경을 갖는 수지 입자로 분쇄하는 단계를 거쳐 제조되며, 물성 개선을 위하여 이후 표면 가교 반응이 선택적으로 더 수행될 수 있다.
일반적으로 표면 가교 반응은, 물에 가교제를 첨가한 표면 가교 용액을 고흡수성 수지 표면에 분무하여 교반한 후 열을 가하여 반응시킴으로써 이루어진다. 그러나, 가열에 의한 표면 가교 반응은 통상 140 ℃ 이상의 높은 온도에서 수행되기 때문에, 고흡수성 수지에 포함된 수분의 대부분 증발하게 되고, 결과로서 최종 제조되는 고흡수성 수지의 함수율이 크게 낮아지게 된다. 이와 같이 낮은 함수율의 고흡수성 수지는, 이동 및 보관 과정에서 발생하는 입자간 마찰에 의해 표면 손상이 발생하기 쉽고, 이는 최종적으로 고흡수성 수지의 물성 저하를 초래한다. 또, 낮은 함수율의 고흡수성 수지를 이용한 제품화 공정 동안에 미분 발생량이 증가하여, 공정 안정성 및 생산성이 저하되고, 제품의 품질 저하를 가져오게 된다.
이에, 표면 가교 후 가수 공정을 수행함으로써 고흡수성 수지의 함수율을 높이는 방법이 제안되었다. 고흡수성 수지의 함수율을 향상시키기 위한 가수 방법으로, 주로 라인(line)을 통한 직접 투입 방법과 스프레이 노즐을 이용한 투입 방법이 이용된다. 그러나, 라인을 통하여 투입할 경우, 액적(droplet)의 사이즈가 크고, 이로 인하여 큰 입자로 뭉친 함수율이 높은 덩어리와 함수율이 낮은 일반 입자의 혼합물이 생성되는 문제점이 있다. 또, 스프레이 노즐을 통하여 투입할 경우 고르게 함수율을 증가시킬 수 있으나, 작은 액적 사이즈로 인하여 유동이 발생하고, 기기 오염 및 이물이 발생의 원인이 된다. 특히 노즐의 직경이 작을수록 분무시 발생되는 액적의 크기가 작아지게 되는데, 액적의 크기가 지나치게 작을 경우에는 비산되어 공정 오염을 일으키는 문제가 있다. 또 노즐의 직경을 크게 할 경우, 이에 더하여 유량이 적을 경우에는 분무가 되지 않고, 큰 액적이 형성되게 된다. 그러나 액적의 크기가 증가하면 고흡수성 수지에 대한 균일하고 충분한 가수가 어렵고, 결과로서 고흡수성 수지의 물성 편차가 발생하게 된다. 또 액적이 표면 가교된 중합체 입자끼리의 응집을 유도하여, 최종 제조되는 고흡수성 수지 내 입경 850㎛를 초과하는 조립자가 다량 발생하게 되고, 이는 공정시 백필터 막힘 및 케이킹 발생을 초래한다.
또 표면 가교 후 고흡수성 수지의 함수율을 높이기 위한 또 다른 방법으로 실리카 등의 첨가제를 혼합하는 방법이 제안되었다. 그러나 상기 첨가제의 혼합이 통상 건식 방법으로 이루어지기 때문에 균질 혼합이 어렵고, 결과로서 고흡수성 수지의 물성 및 흡수 성능의 편차를 초래하였다.
이에 따라, 이러한 문제를 근본적으로 해결하여, 조립자의 발생을 감소시키고, 함수율을 증가시켜 편차 없이 우수한 흡수 성능을 나타낼 수 있는 고흡수성 수지의 제조 기술의 개발이 계속적으로 요청되고 있다.
이에 본 발명은 입경 850㎛ 초과의 조립자 함량이 감소되고, 함수율이 향상되며, 편차 없이 우수한 흡수 성능을 나타낼 수 있는 고흡수성 수지의 제조 방법을 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명에 따르면,
산성기를 갖는 수용성 에틸렌계 불포화 단량체와 내부 가교제가 가교 중합된 함수겔 중합체를 형성하는 단계,
상기 함수겔 중합체를 미립화하여 함수 고흡수성 수지 입자를 제조하는 단계,
상기 함수 고흡수성 수지 입자를 건조하여 건조 고흡수성 수지 입자를 제조하는 단계,
상기 건조 고흡수성 수지 입자에 표면가교제를 투입하고 반응시켜, 고흡수성 수지 입자의 표면 중 적어도 일부에 표면가교층을 형성하는 단계, 및
상기 표면가교층이 형성된 고흡수성 수지 입자를 스페이드형 냉각기로 냉각 및 가수하는 단계를 포함하고,
상기 스페이드형 냉각기는, 내부에 상기 표면가교층이 형성된 고흡수성 수지 입자가 이송되는 이송 공간을 포함하며, 회전 가능한 바디부; 상기 바디부에 설치되어, 상기 이송 공간의 내부로 냉각 공기 및 물을 각각 투입시키는 두개의 노즐; 상기 바디부 내벽에 상하 구동이 가능하게 설치되어, 이송 공간 내의 상기 표면가교층이 형성된 고흡수성 수지 입자를 아래에서 위로 퍼 올리는 하나 이상의 스페이드형 블레이드; 및 상기 바디부와 연결되어 구동력을 제공하는 구동모터;를 포함하고, 상기 바디부 내 스페이드형 블레이드에 의해 상기 표면가교층이 형성된 고흡수성 수지 입자를 퍼올린 후, 상기 바디부의 회전에 의해 상기 퍼 올려진 고흡수성 수지 입자를 중력 방향으로 떨어뜨려 바디부의 이송 공간 내부로 투입된 냉각 공기 및 물과 접촉시킴으로써 상기 표면가교층이 형성된 고흡수성 수지 입자에 대한 냉각 및 가수가 이루어지는,
고흡수성 수지의 제조 방법을 제공한다.
또, 본 발명예에 따르면, 상기 고흡수성 수지의 제조 방법에 의해 제조된 고흡수성 수지를 제공한다.
본 발명의 고흡수성 수지의 제조 방법에 따르면, 편차없이 우수한 흡수성능을 나타내는 고흡수성 수지를 제공할 수 있다.
또 고흡수성 수지의 제조 동안에, 입경 850㎛를 초과하는 조립자 발생량이 감소되어, 제조 과정에서의 dust 발생량을 최소화할 수 있고, 또 이를 이용한 흡수성 물품의 제조시 백필터 막힘 방지 및 케이킹 방지 등의 공정성을 향상시킬 수 있다.
이에 따라 상기 제조방법으로 제조된 고흡수성 수지는 기저귀 등 위생재, 특히, 펄프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다.
도 1은 본 발명에 따른 고흡수성 수지의 제조 방법에서 사용되는 스페이드형 냉각기의 측단면의 구조를 개략적으로 나타낸 모식도이다.
도 2는 상기 스페이드형 냉각기의 전면 구조를 개략적으로 나타낸 모식도이다.
도 3은 상기 스페이드형 냉각기의 후면 구조를 개략적으로 나타낸 모식도이다.
도 4는 본 발명에 따른 고흡수성 수지의 제조 방법에서, 냉각 및 가수 단계 동안에 스페이드형 냉각기의 바디부 내에서 일어나는 혼합 공정을 개략적으로 나타낸 모식도이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 다르게 표기하지 않는 한, 본 명세서에서 "상온"은 25±2℃를 의미한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명에 따른 고흡수성 수지의 제조 방법 및 이에 따라 제조된 고흡수성 수지에 대해 보다 상세히 설명하기로 한다.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 발명에 따른 고흡수성 수지의 제조방법은,
산성기를 갖는 수용성 에틸렌계 불포화 단량체와 내부 가교제가 가교 중합된 함수겔 중합체를 형성하는 단계(단계 1);
상기 함수겔 중합체를 미립화하여 함수 고흡수성 수지 입자를 제조하는 단계(단계 2);
상기 함수 고흡수성 수지 입자를 건조하여 건조 고흡수성 수지 입자를 제조하는 단계(단계 3);
상기 건조 고흡수성 수지 입자에 표면가교제를 투입하고 반응시켜, 고흡수성 수지 입자의 표면 중 적어도 일부에 표면가교층을 형성하는 단계(단계 4); 및
상기 단계의 결과로 표면가교층이 형성된 고흡수성 수지 입자를 스페이드형 냉각기(spade-type cooler)로 냉각 및 가수하는 단계(단계 5);를 포함하고,
상기 스페이드형 냉각기는, 내부에 상기 표면가교층이 형성된 고흡수성 수지 입자가 이송되는 이송 공간을 포함하며, 회전 가능한 바디부; 상기 바디부에 설치되어, 상기 이송 공간의 내부로 냉각 공기 및 물을 각각 투입시키는 두개의 노즐; 상기 바디부 내벽에 상하 구동이 가능하게 설치되어, 이송 공간 내의 상기 표면가교층이 형성된 고흡수성 수지 입자를 아래에서 위로 퍼 올리는 하나 이상의 스페이드형 블레이드; 및 상기 바디부와 연결되어 구동력을 제공하는 구동모터;를 포함하고, 상기 바디부 내 스페이드형 블레이드에 의해 상기 표면가교층이 형성된 고흡수성 수지 입자를 퍼올린 후, 상기 바디부의 회전에 의해 상기 퍼 올려진 고흡수성 수지 입자를 중력 방향으로 떨어뜨려 바디부의 이송 공간 내부로 투입된 냉각 공기 및 물과 접촉시킴으로써 상기 표면가교층이 형성된 고흡수성 수지 입자에 대한 냉각 및 가수가 이루어진다.
본 발명의 명세서에 사용되는 용어 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다.
또한, 용어 "고흡수성 수지"는 문맥에 따라 가교 중합체, 또는 상기 가교 중합체가 분쇄된 고흡수성 수지 입자로 이루어진 분말(powder) 형태의 베이스 수지 또는 함수겔 중합체를 의미하거나, 또는 상기 가교 중합체나 상기 함수겔 중합체에 대해 추가의 공정, 예를 들어 건조, 분쇄, 분급, 표면 가교 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다.
또한, 용어 “정상 입자"는 고흡수성 수지 입자 중 150 ㎛ 내지 850 ㎛의 입경(또는 입자 크기)을 갖는 입자를 의미하고, 용어 "미분"은 고흡수성 수지 입자 중 150 ㎛ 미만의 입경을 갖는 입자를 의미한다. 또 용어 "조립자"는 고흡수성 수지 입자 중 850 ㎛ 초과의 입경을 갖는 입자를 의미한다. 이러한 고흡수성 수지 입자의 입경은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정될 수 있다.
또한, 용어 "쵸핑(chopping)"은 건조 효율을 높이기 위해 함수겔 중합체를 밀리미터 단위의 작은 조각으로 절단하는 것으로, 마이크로 미터 또는 정상 입자 수준까지 분쇄하는 것과는 구분되어 사용된다.
또한, 용어 "미립화(micronizing, micronization)"은 함수겔 중합체를 수십 내지 수백 마이크로 미터의 입경으로 분쇄하는 것으로, “쵸핑”과는 구분되어 사용된다.
고흡수성 수지의 물성 개선을 위한 방법으로 고흡수성 수지 입자 표면에 대해 표면 가교제를 처리한 후 가열하여 표면 가교층을 형성하는 방법이 주로 이용되고 있다.
그러나, 표면가교층 형성을 위한 표면 가교 반응이 고온에서 이루어지기 때문에, 고흡수성 수지 내에 포함된 수분이 증발하게 되고, 결과로서 고흡수성 수지의 함수율이 크게 낮아지게 된다. 고흡수성 수지의 함수율이 낮아지면, 이동 및 보관 과정에서 발생하는 입자간 마찰에 의해 표면 손상이 발생하기 쉽고, 결과로서 고흡수성 수지의 물성이 저하되게 된다. 또, 낮은 함수율의 고흡수성 수지를 이용하여 제품화시, 공정 동안에 미분 발생량이 증가하여, 공정 안정성 및 생산성이 저하되고, 제품의 품질 저하를 초래한다.
이를 해결하기 위하여 표면 가교 후 냉각하고, 가수 공정을 수행하거나, 또는 흡습성을 나타내는 무기 물질을 혼합하여 고흡수성 수지의 함수율을 높이는 방법이 제안되었다. 그러나 종래 가수 방법의 경우, 가수 공정 동안에 발생하는 액적이 표면 가교된 고흡수성 수지 입자끼리의 응집을 유도하여, 최종 제조되는 고흡수성 수지 내 큰 입경을 갖는 조립자가 다량 발생하고, 이는 고흡수성 수지의 물성 저하 및 편차를 유발하고, 제품화 공정시 백필터 막힘 및 케이킹 발생을 초래하였다. 또 무기 물질을 혼합하는 방법은, 통상 건식 혼합 방식으로 이루어지기 때문에, 균일 혼합이 이루어지기 어렵고, 결과로서 고흡수성 수지의 물성 및 흡수 성능의 편차를 초래하였다.
이에, 본 발명자들은 고흡수성 수지에 대한 균일한 가수 처리에 의해 고흡수성 수지의 물성 저하 및 편차를 방지하고, 조립자의 발생을 감소시킬 수 있음을 파악하고, 스페이드형 냉각기를 이용할 경우 고흡수성 수지에 대한 냉각과 더불어 가수가 동시에 수행될 수 있을뿐더러, 고흡수성 수지 입자 전체로 균일한 처리가 이루어질 수 있음에 착안하였다.
또, 본 발명의 제조방법으로 제조된 고흡수성 수지는 증가된 함수율을 가지며, 조립자의 함량이 낮고, 보수능, 가압 흡수능과 같은 제반 흡수 물성이 우수하며, 개선된 리웻(rewet) 특성 및 흡수 속도를 편차 없이 나타낼 수 있다.
이하, 본 발명에 따른 고흡수성 수지의 제조 방법에 대해 각 단계 별로 보다 구체적으로 설명하기로 한다.
단계 1
단계 1은 산성기를 갖는 수용성 에틸렌계 불포화 단량체와 내부 가교제가 가교 중합된 함수겔 중합체를 형성하는 단계이다.
구체적으로는 상기 함수겔 중합체는, 수용성 에틸렌계 불포화 단량체의 적어도 일부의 산성기를 중화하는 단계, 및 상기 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 내부 가교제 및 중합 개시제와 혼합하여 제조한 단량체 조성물에 대하여 중합을 수행하여, 함수겔 중합체를 형성하는 단계를 포함하는 방법에 의해 제조될 수도 있고(방법 1), 또는 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 및 중합 개시제를 포함하는 단량체 조성물에 대하여 중합을 수행하여, 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제가 가교 중합된 중합체를 형성하는 단계, 및 상기 중합체의 적어도 일부의 산성기를 중화시켜 함수겔 중합체를 형성하는 단계를 포함하는 방법에 의해 제조될 수도 있다(방법 2).
상기 방법 1은, 수용성 에틸렌계 불포화 단량체의 중합 전 상기 단량체 내 산성기의 적어도 일부를 중화시킨 후, 중합 반응을 수행하는 것으로, 상기 방법 1에 의해 제조된 중합체는 함수성을 가져 주변의 물을 흡수함으로써 통상 30중량% 이상의 높은 함수율을 갖는 함수겔 중합체 형태로 제조될 수 있다.
한편, 상기 방법 2는, 상기 수용성 에틸렌계 불포화 단량체의 산성기가 중화되지 않은 상태에서 중합을 먼저 수행하여 중합체를 형성한 후, 상기 중합체에 존재하는 산성기를 중화시키는 방법으로, 중합 후 형성된 중합체는 낮은 함수성을 나타내며, 결과로서 단량체 조성물 내에서 물을 거의 흡수하지 않은 고체 상태로 존재한다. 그러나, 이후 중화 공정에 의해 함수성을 가지며, 함수겔 중합체가 된다.
또, 방법 2에서, 산성기가 중화되지 않은 상태의 수용성 에틸렌계 불포화 단량체(예, 아크릴산)는 상온에서 액체 상태이며, 용매(물)에 대한 용해도 또는 혼화성(miscibility)이 높기 때문에, 낮은 온도에서도 석출되지 않는다. 이에 따라, 저온에서 장시간 중합이 유리하며, 고분자량을 갖고 분자량 분포가 균일한 중합체를 안정적으로 형성할 수 있다.
또, 통상 중합체의 제조시 발생되는 수가용 성분은, 고흡수성 수지가 액체와 접촉할 때 쉽게 용출된다. 따라서 수가용 성분 함량이 높은 경우, 용출된 수가용 성분이 대부분 고흡수성 수지 표면에 잔류하게 되고, 고흡수성 수지를 끈적끈적하게 하여 통액성이 감소하게 되는 원인이 된다. 따라서, 통액성 측면에서 수가용 성분의 함량을 낮게 유지하는 것이 중요한데, 상기 방법 2에서와 같이, 미중화 상태에서 중합을 먼저 수행할 경우, 보다 긴 체인의 중합체 형성이 가능하며, 중합이나 가교화가 불완전하여 가교화되지 아니한 상태로 존재하는 수가용 성분의 함량을 감소시킬 수 있고, 결과로서 고흡수성 수지의 통액성을 향상시킬 수 있다.
또, 방법 2에서와 같이 아크릴계 단량체의 산성기가 중화되지 않은 상태에서 중합을 먼저 수행하여 중합체를 형성하고, 중화 후 계면 활성제의 존재 하에 미립화하거나, 또는 계면 활성제의 존재 하에 미립화 후 중화하거나, 또는 미립화와 동시에 상기 중합체에 존재하는 산성기를 중화시키는 경우, 계면 활성제가 상기 중합체의 표면에 다량 존재하여 중합체의 점착성을 낮춤으로써, 중합체 입자간 응집을 방지할 수 있다. 결과, 미립화 공정시 정상 입도 수준까지 분쇄할 수 있고, 또 정상 입도 수준까지 분쇄된 다음 건조 공정이 진행되기 때문에, 공정 중 발생하는 미분 발생량을 현저히 감소시킬 수 있다.
이에 따라, 후속의 공정 및 조건을 고려하여 함수겔 중합체 제조를 위한 방법을 상기 방법 1 및 2 중에서 적절히 선택하는 것이 바람직하다.
구체적으로 방법 1은, 수용성 에틸렌계 불포화 단량체의 적어도 일부의 산성기를 중화하는 단계, 및 상기 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 및 중합 개시제를 포함하는 단량체 조성물에 대하여 중합을 수행하여, 함수겔 중합체를 형성하는 단계를 포함한다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
R-COOM'
상기 화학식 1에서,
R은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M'는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
바람직하게는, 상기 단량체는 (메트)아크릴산, 및 이들 산의 1가 (알칼리) 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
이처럼 수용성 에틸렌계 불포화 단량체로 (메트)아크릴산 및/또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산 또는 2-(메타)아크릴아미드-2-메틸 프로판 술폰산, (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트, 폴리에틸렌 글리콜 (메트)아크릴레이트, (N,N)-디메틸아미노에틸 (메트)아크릴레이트, (N,N)-디메틸아미노프로필 (메트)아크릴아미드 등이 사용될 수 있다.
상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기 중 적어도 일부는 중화제에 의해 중화될 수 있다.
본 발명에 따른 제조방법에 있어서, 상기 방법 1에서 상기 수용성 에틸렌계 불포화 단량체의 산성기 중 적어도 일부의 산성기에 대한 중화는, 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 중합 개시제 및 중화제를 혼합하여 단량체 조성물을 제조하는 공정 동안에 진행될 수 있다. 이에 따라 제조되는 단량체 조성물은, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 및 중합 개시제를 포함한다.
상기 중화시 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체는 후속의 중합 반응 단계에서의 중합 시간 및 반응 조건 등을 고려하여, 그 농도를 적절히 결정하는 것이 바람직하다. 일례로, 본 발명에 있어서 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 중합 개시제 및 중화제를 포함하는 혼합물 중 상기 수용성 에틸렌계 불포화 단량체의 농도는, 20 내지 60 중량%, 구체적으로는 20중량% 이상이고, 60중량% 이하, 또는 40중량% 이하일 수 있다.
또, 상기 중화제로는 산성기를 중화시킬 수 있는 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 염기성 물질이 1종 이상 사용될 수 있다.
상기 수용성 에틸렌계 불포화 단량체에 포함된 산성기 중 상기 중화제에 의해 중화된 정도를 일컬어 수용성 에틸렌계 불포화 단량체의 중화도라 한다. 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 이에 따라, 상기 수용성 에틸렌계 불포화 단량체의 중화도는 구현하고자 하는 고흡수성 수지의 물성에 따라 적절히 선택하는 것이 바람직하다. 일례로, 본 발명에 있어서, 상기 수용성 에틸렌계 불포화 단량체의 중화도는 50 내지 90 몰%, 보다 구체적으로는 50몰% 이상, 또는 60몰% 이상, 또는 65몰% 이상이고, 90몰% 이하, 또는 85 몰% 이하, 또는 80몰% 이하, 또는 75몰% 이하일 수 있다.
한편, 본 명세서에서 사용하는 용어 '내부 가교제'는 후술하는 고흡수성 수지 입자의 표면을 가교시키는 위한 표면 가교제와 구분짓기 위해 사용하는 용어로, 본 발명에 있어서 상기 내부 가교제는 상술한 수용성 에틸렌계 불포화 단량체들의 불포화 결합 사이에 가교 결합을 도입하여, 가교 구조를 포함하는 중합체를 형성하는 역할을 한다.
상기 가교는 표면 또는 내부 구분 없이 진행되나, 후술하는 고흡수성 수지 입자의 표면 가교 공정이 진행되는 경우, 최종 제조된 고흡수성 수지 입자의 표면은 표면 가교제에 의해 새로 가교된 구조를 포함할 수 있고, 고흡수성 수지 입자의 내부는 상기 내부 가교제에 의해 가교된 구조가 그대로 유지될 수 있다.
상기 내부 가교제로는, 다관능 아크릴레이트계 화합물, 다관능 알릴계 화합물 및 다관능 비닐계 화합물 중 1종 이상이 사용될 수 있다.
상기 다관능 아크릴레이트계 화합물로는 구체적으로, 에틸렌글리콜 디(메트)아크릴레이트, 디에틸렌글리콜 디(메트)아크릴레이트, 트리에틸렌글리콜 디(메트)아크릴레이트, 테트라에틸렌글리콜 디(메트)아크릴레이트, 폴리에틸렌글리콜 디아크릴레이트, 폴리에틸렌글리콜 디(메트)아크릴레이트, 프로필렌글리콜 디(메트)아크릴레이트, 트리프로필렌글리콜 디(메트)아크릴레이트, 폴리프로필렌글리콜 디(메트)아크릴레이트, 부탄디올 디(메트)아크릴레이트, 부틸렌글리콜 디(메트)아크릴레이트, 헥산디올 디(메트)아크릴레이트, 펜타에리스리톨 디(메트)아크릴레이트, 펜타에리스리톨 트리(메트)아크릴레이트, 펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 디(메트)아크릴레이트, 디펜타에리스리톨 트리(메트)아크릴레이트, 디펜타에리스리톨 테트라(메트)아크릴레이트, 디펜타에리스리톨 펜타(메트)아크릴레이트, 트리메틸롤프로판 디(메트)아크릴레이트, 트리메틸롤프로판 트리(메트)아크릴레이트, 글리세린 디(메트)아크릴레이트, 및 글리세린 트리(메트)아크릴레이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또 상기 다관능 알릴계 화합물로는 구체적으로, 에틸렌글리콜 디알릴 에테르, 디에틸렌글리콜 디알릴 에테르, 트리에틸렌글리콜 디알릴 에테르, 테트라에틸렌글리콜 디알릴 에테르, 폴리에틸렌글리콜 디알릴 에테르, 프로필렌글리콜 디알릴 에테르, 트리프로필렌글리콜 디알릴 에테르, 폴리프로필렌글리콜 디알릴 에테르, 부탄디올 디알릴 에테르, 부틸렌글리콜 디알릴 에테르, 헥산디올 디알릴 에테르, 펜타에리스리톨 디알릴 에테르, 펜타에리스리톨 트리알릴 에테르, 펜타에리스리톨 테트라알릴 에테르, 디펜타에리스리톨 디알릴 에테르, 디펜타에리스리톨 트리알릴 에테르, 디펜타에리스리톨 테트라알릴 에테르, 디펜타에리스리톨 펜타알릴 에테르, 트리메틸롤프로판 디알릴 에테르, 트리메틸롤프로판 트리알릴 에테르, 글리세린 디알릴 에테르, 및 글리세린 트리알릴 에테르 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또 다관능 비닐계 화합물로는 구체적으로, 에틸렌글리콜 디비닐 에테르, 디에틸렌글리콜 디비닐 에테르, 트리에틸렌글리콜 디비닐 에테르, 테트라에틸렌글리콜 디비닐 에테르, 폴리에틸렌글리콜 디비닐 에테르, 프로필렌글리콜 디비닐 에테르, 트리프로필렌글리콜 디비닐 에테르, 폴리프로필렌글리콜 디비닐 에테르, 부탄디올 디비닐 에테르, 부틸렌글리콜 디비닐 에테르, 헥산디올 디비닐 에테르, 펜타에리스리톨 디비닐 에테르, 펜타에리스리톨 트리비닐 에테르, 펜타에리스리톨 테트라비닐 에테르, 디펜타에리스리톨 디비닐 에테르, 디펜타에리스리톨 트리비닐 에테르, 디펜타에리스리톨 테트라비닐 에테르, 디펜타에리스리톨 펜타비닐 에테르, 트리메틸롤프로판 디비닐 에테르, 트리메틸롤프로판 트리비닐 에테르, 글리세린 디비닐 에테르, 및 글리세린 트리비닐 에테르 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 다관능 알릴계 화합물 및 다관능 비닐계 화합물은, 분자 내에 포함되는 2 이상의 불포화 그룹이 수용성 에틸렌계 불포화 단량체들의 불포화 결합, 혹은 다른 내부 가교제의 불포화 결합과 각각 결합하여, 중합 과정에서 가교 구조를 형성할 수 있으며, 분자 내에 에스터 결합(-(C=O)O-)을 포함하는 아크릴레이트계 화합물과는 달리, 전술한 중합 반응 이후 중화 과정에서도 가교 결합을 안정적으로 유지할 수 있다. 이에 따라, 제조되는 고흡수성 수지의 겔 강도가 높아지고, 중합 이후 토출 과정에서 공정 안정성이 높아질 수 있으며, 수가용분 양을 최소화할 수 있다.
이러한 내부 가교제는 상기 수용성 에틸렌계 불포화 단량체 100 중량부에 대하여 0.01 내지 5 중량부로 사용될 수 있다. 예를 들어, 상기 내부 가교제는 수용성 에틸렌계 불포화 단량체 100 중량부에 대하여 0.01 중량부 이상, 또는 0.05 중량부 이상, 또는 0.1 중량부 이상이고, 5 중량부 이하, 또는 3 중량부 이하, 또는 2 중량부 이하, 또는 1 중량부 이하, 또는 0.7 중량부 이하로 사용될 수 있다. 상기 내부 가교제의 함량이 지나치게 낮을 경우 가교가 충분히 일어나지 않아 적정 수준 이상의 강도 구현이 어려울 수 있고, 상부 내부 가교제의 함량이 지나치게 높을 경우 내부 가교 밀도가 높아져 원하는 보수능의 구현이 어려울 수 있다.
상기한 내부 가교제를 이용하여 형성된 중합체는 상기 수용성 에틸렌계 불포화 단량체들이 중합되어 형성된 메인 사슬들이 상기 내부 가교제에 의해 가교되는 형태의 3차원 망상 구조를 갖는다. 이와 같이, 중합체가 3차원 망상 구조를 갖는 경우, 내부 가교제에 의해 추가 가교되지 않은 2차원 선형 구조를 경우에 비하여 고흡수성 수지의 제반 물성인 보수능 및 가압 흡수능이 현저히 향상될 수 있다.
또, 상기 단량체 조성물의 제조시, 중합 개시제는 중합 방법에 따라 적절하게 선택하는 것이 바람직하다.
함수겔 중합체 형성시 열중합 방법을 이용할 경우에는 열중합 개시제를 사용하고, 광중합 방법을 이용할 경우에는 광중합 개시제를 사용하며, 혼성 중합 방법(열 및 광을 모두 사용하는 방법)을 이용할 경우에는 열중합 개시제와 광중합 개시제를 모두 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 광 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 사용할 수도 있다.
상기 광중합 개시제로는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 또 상기 아실포스핀의 구체예로는 디페닐(2,4,6-트리메틸벤조일)포스핀 옥사이드, 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드, 에틸 (2,4,6-트리메틸벤조일)페닐포스핀에이트 등을 들 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
또, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2,2-아조비스-(2-아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
이러한 중합 개시제는 상기 수용성 에틸렌계 불포화 단량체 100 중량부 대비 2 중량부 이하로 사용될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 모노머가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 상기 범위 보다 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.
또, 상기 단량체 조성물 제조시, 상기한 중합개시제와 레독스(Redox) 커플을 이루는 환원제가 더 투입될 수 있다.
구체적으로, 상기 중합개시제와 환원제는 중합체 용액에 투입되었을 때 서로 반응하여 라디칼을 형성한다. 형성된 라디칼은 단량체와 반응하게 되며, 상기 중합개시제와 환원제간의 산화-환원 반응은 반응성이 매우 높으므로, 미량의 중합개시제와 환원제만이 투입되어도 중합이 개시되어 공정 온도를 높일 필요가 없어 저온 중합이 가능하며, 중합체 용액의 물성 변화를 최소화시킬 수 있다.
상기 산화-환원 반응을 이용한 중합 반응은 상온(25℃) 부근 또는 그 이하의 온도에서도 원활히 일어날 수 있다. 일례로 상기 중합 반응은 5℃ 이상 25℃ 이하, 또는 5℃ 이상 20℃ 이하의 온도에서 수행될 수 있다.
상기 중합개시제로 과황산염계 중합개시제가 사용되는 경우, 환원제로는 메타중아황산나트륨(Na2S2O5); 테트라메틸 에틸렌디아민(TMEDA); 황산철(II) (FeSO4); 황산철(II)과 EDTA의 혼합물(FeSO4/EDTA); 소듐폼알데하이드 설폭실레이트(Sodium formaldehyde sulfoxylate); 및 디소듐 2-히드록시-2-설피노아세테이트(Disodium 2-hydroxy-2-sulfinoacteate)로 이루어지는 군에서 선택된 1종 이상이 사용될 수 있다.
또, 상기 중합개시제로서 과황산칼륨이 사용되고, 환원제로는 디소듐 2-히드록시-2-설피노아세테이트이 사용되거나; 중합개시제로서 과황산암모늄이 사용되고, 환원제로서 테트라메틸에틸렌디아민이 사용되거나; 중합개시제로서 과황산나트륨이 사용되고, 환원제로서 소듐폼알데하이드 설폭실레이트이 사용될 수 있다.
또, 상기 중합개시제로서 과산화수소계 개시제가 사용되는 경우, 환원제로는 아스코브산(Ascorbic acid); 수크로오스(Sucrose); 아황산나트륨(Na2SO3) 메타중아황산나트륨(Na2S2O5); 테트라메틸 에틸렌디아민(TMEDA); 황산철(II)과 EDTA의 혼합물(FeSO4/EDTA); 소듐폼알데하이드 설폭실레이트(Sodium formaldehyde sulfoxylate); 디소듐 2-히드록시-2-설피노아세테이트(Disodium 2-hydroxy-2-sulfinoacteate); 및 디소듐 2-히드록시-2-설포아세테이트(Disodium 2-hydroxy-2-sulfoacteate)로 이루어지는 군에서 선택된 1종 이상이 사용될 수 있다.
또, 상기 단량체 조성물 제조시, 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제가 더 투입될 수 있다.
본 발명에 있어서 단량체 조성물은, 예를 들어, 물과 같은 용매에 용해된 용액 상태일 수 있고, 이러한 용액 상태의 단량체 조성물 중의 고형분 함량, 즉 단량체, 내부 가교제 및 중합 개시제의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있다. 예를 들어, 상기 단량체 조성물 내의 고형분 함량은 10 내지 80 중량%, 또는 15 내지 60 중량%, 또는 30 내지 50 중량%일 수 있다. 상기 단량체 조성물이 상기와 같은 범위의 고형분 함량을 갖는 경우, 고농도 수용액의 중합 반응에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다.
이때 사용 가능한 용매로는 전술한 원료 물질들을 용해시킬 수 있는 것이라면 그 구성의 한정 없이 사용될 수 있다. 예를 들어, 상기 용매로는 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 자일렌, 부티로락톤, 카르비톨, 메틸셀로솔브아세테이트, N,N-디메틸아세트아미드, 또는 이들의 혼합물 등 사용될 수 있다.
다음으로, 상기 단량체 조성물에 대한 중합 공정은 열중합, 광중합 또는 혼성 중합하여 함수겔 중합체를 형성할 수 있으면, 특별히 구성의 한정이 없이 진행될 수 있다.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행되거나, 바닥이 납작한 용기에서 진행될 수 있다.
상기와 같은 중합 방법은 대체로 짧은 중합 반응 시간(예를 들어 1시간 이하)에 따라 중합체의 분자량이 크지 않고 넓은 분자량 분포를 갖는 중합체가 형성될 수 있다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50 mm 인 함수겔 중합체가 얻어질 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기 또는 바닥이 납작한 용기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도 또는 주입량에 따라 달라지나, 통상 약 0.5 내지 약 5 cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
또, 종래 컨베이어 벨트를 구비한 반응기 교반축을 가진 반응기에서의 중합은 중합 결과물이 이동하면서 새로운 단량체 조성물이 반응기에 공급되어 연속식으로 중합이 이루어지므로 중합율이 서로 다른 중합체가 섞이게 되며, 이에 따라 단량체 조성물 전체에서 고른 중합이 이루어지기 어려워 전체적인 물성 저하가 일어날 수 있다.
이에 따라 본 발명의 제조방법에 있어서, 상기 단량체 조성물에 대한 중합반응은 배치식 반응기(batch type reactor)에서 수행될 수 있다.
이와 같이 배치식 반응기에서 정치식(fixed-bed type)으로 중합을 진행함에 따라 중합율이 다른 중합체가 섞일 우려가 적고 이에 따라 균일한 품질을 갖는 중합체가 수득될 수 있다.
또한, 배치식 반응기에서 수행할 경우, 컨베이어 벨트를 구비한 반응기에서 연속식으로 중합을 수행하는 경우보다 장시간, 예를 들어 3시간 이상의 시간 동안 중합 반응을 수행한다. 그러나, 상기와 같은 장시간의 중합 반응 시간에도 불구하고, 미중화 상태의 수용성 에틸렌계 불포화 단량체에 대하여 중합을 수행하기 때문에 장시간 중합을 수행하여도 단량체가 잘 석출되지 않으며, 따라서 장시간 중합을 하기에 유리하다.
한편 상기 배치식 반응기에서의 중합은 열중합 방법을 이용할 수 있으며, 이에 따라 상기 중합 개시제는 열중합 개시제를 사용한다. 상기 열중합 개시제는 앞서 설명한 바와 같다.
한편, 함수겔 중합체를 제조하는 방법 2는, 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 및 중합 개시제를 포함하는 단량체 조성물에 대하여 중합을 수행하여, 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제가 가교 중합된 중합체를 형성하는 단계, 및 상기 중합체의 적어도 일부의 산성기를 중화시켜 함수겔 중합체를 형성하는 단계로 수행될 수 있다.
상기 방법 2에 있어서 단량체 조성물의 제조시 산성기가 중화되지 않은 수용성 에틸렌계 불포화 단량체를 사용하는 것을 제외하고는, 방법 1에서와 동일한 방법으로 단량체 조성물의 제조 및 이에 대한 중합 공정이 수행될 수 있다.
또, 상기 방법 2에서의 중합 반응은 구체적으로 배치식 반응기에서 수행될 수 있다. 또, 상기 배치식 반응기에서의 중합은 열중합 방법을 이용함에 따라 상기 중합 개시제로는 열중합 개시제를 사용할 수 있다. 또, 전술한 바와 같이 상기 개시제와 함께 환원제를 투입하여 중합을 개시할 수 있다.
다음으로, 방법 2에 있어서, 상기 가교 중합된 중합체의 적어도 일부의 산성기를 중화시켜 함수겔 중합체를 제조하는 단계는, 상기 가교 중합된 중합체에 대해 중화제를 투입하고 반응시킴으로써 수행될 수 있다.
상기 중화제로는 방법 1에서와 마찬가지로, 산성기를 중화시킬 수 있는 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 염기성 물질이 사용될 수 있다.
또, 상기 중합체에 포함된 산성기 중 상기 중화제에 의해 중화된 정도를 일컫는 중합체의 중화도는, 지나치게 높을 경우 입자 표면의 카르복실기의 농도가 지나치게 낮아 후속 공정에서의 표면 가교가 제대로 수행되기 어렵고, 결과 가압하 흡수 특성 및 통액성이 감소할 수 있다. 반대로 중합체의 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다. 이에 따라, 상기 중합체의 중화도는 구현하고자 하는 고흡수성 수지의 물성에 따라 적절히 선택하는 것이 바람직하다. 일례로, 본 발명에 있어서, 상기 중합체의 중화도는 50 내지 90 몰%, 보다 구체적으로는 50몰% 이상, 또는 60몰% 이상, 또는 65몰% 이상이고, 90몰% 이하, 또는 85 몰% 이하, 또는 80몰% 이하, 또는 75몰% 이하일 수 있다.
상기한 방법 1 및 방법 2에 따라 제조되는 중합체는 함수겔 상태로, 함수율이 30 내지 80 중량%, 보다 구체적으로는 30중량% 이상, 또는 35 중량% 이상, 또는 40 중량% 이상이고, 80중량% 이하, 또는 75 중량% 이하, 또는 70 중량% 이하이다.
상기 함수겔 중합체의 함수율이 지나치게 낮은 경우 이후 분쇄 단계에서 적절한 표면적을 확보하기 어려워 효과적으로 분쇄되지 않을 수 있고, 상기 함수겔 중합체의 함수율이 지나치게 높은 경우 이후 분쇄 단계에서 받는 압력이 증가하여 원하는 입도까지 분쇄시키기 어렵다. 그러나 본 발명에 따른 제조 방법으로 제조된 함수겔 중합체는 상기한 범위 조건을 만족하는 함수율을 가져, 후속의 미립화 공정에 적합하다.
한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 크럼 상태의 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 중량감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 40분으로 설정하여, 함수율을 측정한다. 구체적인 측정 방법 및 조건은 이하 실험예에서 설명하는 바와 같다.
단계 2
다음으로, 단계 2는 상기 단계 1에서 제조한 함수겔 중합체를 미립화하여 함수 고흡수성 수지 입자를 제조하는 단계이다.
상기 단계에서는 함수겔 중합체를 밀리미터 크기로 쵸핑하는 것이 아닌, 수십 내지 수백 마이크로미터 크기로의 세절과 응집이 동시에 이루어지는 단계이다. 즉, 함수겔 중합체에 적절한 점착성을 부여함으로써 수십 내지 수백 마이크로미터 크기로 세절된 1차 입자가 복수개 응집된 2차 응집 입자를 제조하는 단계이다. 이러한 단계로 제조된 2차 응집 입자인 함수 고흡수성 수지 입자는 정상 입도 분포를 가지면서 표면적이 크게 증가하여 흡수 속도가 현저히 개선될 수 있다.
구체적으로, 본 발명의 제조방법에 있어서 상기 중합체를 미립화하여 함수 고흡수성 수지 입자를 제조하는 단계는 2회 이상, 보다 구체적으로는 2 내지 4회 수행될 수 있다.
상기 미립화 단계는 미립화 장치에 의해 수행되며, 상기 미립화 장치는, 내부에 중합체가 이송되는 이송 공간을 포함하는 바디부; 상기 이송 공간의 내부에 회전 가능하게 설치되어 중합체를 이동시키는 스크류 부재; 상기 스크류 부재에 회전 구동력을 제공하는 구동모터; 상기 바디부에 설치되어 상기 중합체를 분쇄하는 커터 부재; 및 상기 커터 부재에 의해 분쇄된 상기 중합체를 상기 바디부의 외부로 배출하며, 다수의 홀(hole)이 형성된 다공판을 포함할 수 있다. 이때, 상기 미립화 장치의 다공판에 구비된 홀 크기는 1 mm 내지 10 mm, 또는 1 내지 6mm 일 수 있다.
또, 상기 미립화 단계는 계면활성제의 존재 하에 수행될 수 있다.
상기 계면활성제는 함수겔 중합체의 표면에 흡착 또는 결합되어, 함수겔 중합체 표면의 점착성을 낮추고, 결과로서 분쇄된 함수겔 중합체끼리의 응집을 제어한다.
종래 함수겔 중합체에 대한 초핑 공정으로 수 mm 또는 수 cm 수준의 입자를 형성하였다. 이러한 초핑 공정에 의해 함수겔 중합체의 표면적이 어느 정도 증가될 수 있으나, 흡수 속도를 유효하게 향상시킬 수 있을 정도의 효과는 기대하기 어려웠다. 이에 흡수 속도 향상을 위하여 쵸핑 단계에서 기계적 힘을 보다 증가하여 혼련시킴으로써 표면적을 증가시키는 방법이 제안되었으나, 이 경우 중합체 특유의 끈적임으로 응집이 과도하게 발생하여, 쵸핑, 건조 및 분쇄 이후 입자 표면만 울퉁불퉁한 무정형 단일 입자가 형성되고, 과도한 혼련 또는 짓이겨짐에 의해 오히려 수가용 성분이 증가되었다.
이에 본 발명에서는 함수겔 중합체에 대한 미립화 공정을 계면 활성제의 존재 하에 수행함으로써, 상기 계면활성제가 상기 함수겔 중합체의 표면에 다량 존재한다. 함수겔 중합체의 표면에 존재하는 계면활성제는 중합체의 높은 점착성을 낮춤으로써, 중합체가 과도하게 응집하지 않는 것을 방지하고, 원하는 수준으로 응집 상태를 조절할 수 있다. 결과, 종래 마이크로미터 단위로 이루어지는 쵸핑 공정과와 달리, 상기 함수겔 중합체를 수 밀리미터에서 수백 마이크로미터의 크기로까지 분쇄할 수 있고, 또, 보다 마일드한 조건에서 후속의 분쇄 및 건조 공정을 수행할 수 있어, 제조 공정 중 발생하는 미분 발생량을 현저히 감소시킬 수 있다.
한편, 계면 활성제의 존재 하에 함수겔 중합체를 미립화할 경우, 함수겔 중합체의 높은 함수성으로 인하여 계면 활성제가 함수겔 중합체의 계면에 존재하기 보다는 함수겔 중합체의 내부에 침투하여 계면 활성제가 그 역할을 충분히 수행하지 못할 가능성이 있다. 이에 대해 본 발명에서는 상술한 바와 같은 특징적 구조의 미립화 장치를 이용함으로써, 이같은 문제점을 해결하였다.
또, 상기 계면 활성제에 포함되어 있는 소수성 작용기 부분은, 분쇄된 고흡수성 수지 입자의 표면에 소수성을 부여하여 입자간 마찰력을 완화시킴으로써, 고흡수성 수지의 겉보기 밀도를 증가시킬 수 있고, 상기 계면 활성제에 포함되어 있는 친수성 작용기 부분 또한 고흡수성 수지 입자에 결합되어 고흡수성 수지의 표면 장력 저하를 방지할 수 있다. 결과, 본 발명에 따른 제조방법으로 제조된 고흡수성 수지는, 계면 활성제를 사용하지 않은 고흡수성 수지와 비교하여, 동등 수준의 표면 장력을 나타내면서도 높은 겉보기 밀도를 나타낼 수 있다.
구체적으로, 상기 계면 활성제로는 하기 화학식 2로 표시되는 화합물 또는 이의 염을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니다:
[화학식 2]
상기 화학식 2에서,
A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐, , 또는 이고, 단, 이들 중 하나 이상은 카보닐 또는 이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고, 은 각각 인접한 산소 원자와 연결되고, 은 인접한 R1, R2 및 R3와 각각 연결되고,
R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
n은 1 내지 9의 정수이다.
상기 계면 활성제는 중합체와 혼합되어 미립화 단계가 응집 현상 없이 용이하게 이루어질 수 있도록 첨가된다.
상기 화학식 2로 표시되는 계면 활성제는 비이온성의 계면 활성제로 미중화된 중합체와도 수소 결합력에 의한 표면 흡착 성능이 우수하며, 이에 따라 목적하는 응집 제어 효과를 구현하기 적합하다. 반면, 비이온성 계면 활성제가 아닌 음이온성 계면 활성제의 경우, NaOH, Na2SO4 등의 중화제로 중화된 중합체와 혼합되는 경우, 중합체의 카르복실기 치환기에 이온화 되어 있는 Na+ 이온을 매개로 하여 흡착되며, 미중화 중합체에 혼합되는 경우, 중합체의 카르복실기 치환기의 음이온과의 경쟁으로 인해 중합체에 대한 흡착 효율이 상대적으로 저하되는 문제가 있다.
구체적으로, 상기 화학식 2로 표시되는 계면 활성제에서 소수성 작용기는 말단 작용기인 R1, R2, R3부분(수소가 아닐 경우)이고, 친수성 작용기는 사슬 내의 글리세롤 유래 부분과, 말단의 수산기(An가 단일 결합이고, 동시에 Rn가 수소일 경우, n=1~3)를 더 포함하는 데, 상기 글리세롤 유래 부분과, 말단의 수산기는 친수성 작용기로 중합체 표면에 대한 흡착 성능을 향상시키는 역할을 한다. 이에 따라, 고흡수성 수지 입자의 응집을 효과적으로 억제할 수 있다.
상기 화학식 2에서, 소수성 작용기인 R1, R2, R3부분(수소가 아닐 경우)는 각각 독립적으로, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이다. 이때, R1, R2, R3부분(수소가 아닐 경우)가 탄소수 6 미만의 알킬 또는 알케닐인 경우 사슬 길이가 짧아 분쇄된 입자들의 응집 제어가 효과적으로 이루어지지 못한다는 문제가 있고, R1, R2, R3부분(수소가 아닐 경우)가 탄소수 18 초과의 알킬 또는 알케닐인 경우 상기 계면 활성제의 이동성(mobility)이 감소되어 중합체와 효과적으로 혼합되지 않을 수 있고, 계면 활성제의 비용 상승으로 인하여 조성물 단가가 높아지는 문제가 있을 수 있다.
바람직하게는, R1, R2, R3은 수소이거나, 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬인 경우, 2-메틸헥실, n-헵틸, 2-메틸헵틸, n-옥틸, n-노닐, n-데카닐, n-운데카닐, n-도데카닐, n-트리데카닐, n-테트라데카닐, n-펜타데카닐, n-헥사데카닐, n-헵타데카닐, 또는 n-옥타데카닐일 수 있으며, 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐인 경우, 2-헥세닐, 2-헵테닐, 2-옥테닐, 2-노네닐, n-데케닐, 2-운데케닐, 2-도데케닐, 2-트리데케닐, 2-테트라데케닐, 2-펜타데케닐, 2-헥사데케닐, 2-헵타데케닐, 또는 2-옥타데케닐일 수 있다.
상기 계면 활성제는 하기 화학식 2-1 내지 화학식 2-14로 표시되는 화합물로부터 선택될 수 있다:
[화학식 2-1]
[화학식 2-2]
[화학식 2-3]
[화학식 2-4]
[화학식 2-5]
[화학식 2-6]
[화학식 2-7]
[화학식 2-8]
[화학식 2-9]
[화학식 2-10]
[화학식 2-11]
[화학식 2-12]
[화학식 2-13]
[화학식 2-14]
한편, 상기 계면 활성제는 상기 함수겔 중합체 100 중량부 대비 0.01 내지 10 중량부로 사용될 수 있다. 상기 계면 활성제가 지나치게 적게 사용되는 경우, 상기 중합체 표면에 골고루 흡착되지 않아 분쇄 후 입자들의 재응집 현상이 발생할 수 있고, 상기 계면 활성제가 지나치게 많이 사용되는 경우 최종 제조된 고흡수성 수지의 제반 물성이 저하될 수 있다. 예를 들어, 상기 계면 활성제는 상기 중합체 100 중량부 대비 0.01 중량부 이상, 또는 0.015 중량부 이상, 또는 0.1 중량부 이상이면서, 5 중량부 이하, 또는 3 중량부 이하, 또는 2 중량부 이하, 또는 1 중량부 이하, 또는 0.5중량부 이하로 사용될 수 있다.
이러한 계면 활성제를 중합체에 혼합하는 방법은, 상기 중합체에 이들을 고르게 혼합할 수 있는 방법이라면 특별히 한정되지 않고, 적절히 채택하여 사용할 수 있다. 구체적으로, 상기 계면 활성제를 건식으로 혼합하거나, 용매에 용해시킨 후 용액 상태로 혼합하거나, 또는 상기 계면 활성제를 용융시킨 다음 혼합할 수 있다.
이 중 예를 들어, 상기 계면 활성제는 용매에 용해된 용액 상태로 혼합될 수 있다. 이때, 용매로는 무기용매 또는 유기용매에 제한없이 모든 종류를 이용할 수 있으나, 건조 과정의 용이성과 용매 회수 시스템의 비용을 생각했을 때 물이 가장 적절하다. 또한, 상기 용액은 상기 계면 활성제와 중합체를 반응조에 넣고 혼합하거나, 믹서에 중합체를 넣고 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 용액을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
한편, 본 발명의 제조방법에 있어서, 상기 단계 1의 방법 2에서 중합체의 적어도 일부의 산성기를 중화시키는 공정과, 상기한 계면활성제의 존재 하에 상기 중합체를 미립화하는 공정은 순차적으로, 또는 교호적으로, 또는 동시에 수행될 수 있다.
즉, 중합체에 중화제를 투입하여 산성기를 먼저 중화시킨 후, 중화된 중합체에 계면 활성제를 투입하여 계면 활성제가 혼합된 중합체를 미립화하거나, 중합체에 중화제와 계면 활성제를 동시에 투입하여 중합체에 대해 중화 및 미립화를 수행할 수도 있다. 또는, 계면 활성제를 먼저 투입하고 중화제를 이후에 투입할 수도 있다. 또는, 중화제와 계면 활성제를 교차하여 번갈아 투입할 수도 있다. 또는, 계면 활성제를 먼저 투입하여 미립화한 뒤, 중화제를 투입하여 중화하고, 중화된 함수겔 중합체에 추가적으로 계면 활성제를 더 투입하여 미립화 공정을 추가로 수행할 수도 있다.
다만, 중합체 전체에 대한 고른 중화를 위하여 중화제의 투입과 미립화 공정 사이에는 일정한 시간 차를 두는 것이 바람직할 수 있다.
한편, 상기 계면활성제의 투입으로, 상기 계면 활성제 중 적어도 일부 내지 상당량은 상기 함수 고흡수성 수지 입자의 표면에 존재할 수 있다.
여기서, 상기 계면 활성제가 함수 고흡수성 수지 입자의 표면에 존재한다는 의미는, 상기 계면 활성제 중 적어도 일부 또는 상당량이 상기 함수 고흡수성 수지 입자의 표면에 흡착 또는 결합되어 있음을 의미한다. 구체적으로, 상기 계면 활성제는 상기 함수 고흡수성 수지 입자의 표면에 물리적으로 또는 화학적으로 흡착되어 있을 수 있다. 보다 구체적으로는, 상기 계면 활성제의 친수성 작용기는 상기 함수 고흡수성 수지 입자 표면의 친수성 부분에 쌍극자-쌍극자 인력(Dipole-dipole interaction)과 같은 분자간 힘에 의해 물리적으로 흡착되어 있을 수 있다. 이와 같이, 상기 계면 활성제의 친수성 부분은 상기 함수 고흡수성 수지 입자의 표면에 물리적으로 흡착되어 표면을 감싸고, 계면 활성제의 소수성 부분은 수지 입자의 표면에 흡착되지 않아, 상기 함수 고흡수성 수지 입자는 일종의 마이셀(micelle) 구조의 형태로서 계면 활성제가 코팅되어 있을 수 있다. 이는 상기 계면 활성제가 상기 수용성 에틸렌계 불포화 단량체의 중합 공정 중에 투입되는 것이 아니라 중합체 형성 이후 미립화 단계에서 투입되기 때문으로, 상기 계면 활성제가 중합 공정 중에 투입되어 중합체 내부에 상기 계면 활성제가 존재하는 경우에 비해 계면 활성제로의 역할을 충실히 수행할 수 있으며, 분쇄와 응집이 동시에 일어나 미세 입자가 응집된 형태로 표면적이 큰 입자가 수득될 수 있다.
이처럼 상기 중합체와 계면활성제를 혼합한 후에, 또는 상기 계면활성제의 존재 하에 상기 중합체를 미립화함으로써, 고흡수성 수지 입자 및 계면활성제가 혼합된 상태에서 세절 및 응집된, 2차 응집 입자 형태의 함수 고흡수성 수지 입자를 제조할 수 있다.
여기서, "함수 고흡수성 수지 입자"는 수분 함량(함수율)이 약 30 중량% 이상인 입자로, 함수겔 중합체가 건조 공정 없이 입자 형태로 세절 및 응집된 것이므로, 상기 함수겔 중합체와 마찬가지로 30 내지 80 중량%의 함수율을 가질 수 있다. 보다 구체적으로는 30중량% 이상, 또는 35 중량% 이상, 또는 40 중량% 이상이고, 80중량% 이하, 또는 75 중량% 이하, 또는 70 중량% 이하이다.
또, 본 발명에 따른 제조방법에 있어서, 상기 미립화 단계시 계면활성제 외에, 금속 수산화물 및 금속염 중 1종 이상의 첨가제가 선택적으로 더 투입될 수 있다.
상기 금속 수산화물은 미립화 공정시 삼투압 형성으로 흡수능력을 부여하는 작용을 한다. 구체적인 예로는 소듐 하이드록사이드, 포타슘 하이드록사이드 등과 같은 알칼리 금속의 수산화물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 금속염은 미립화 공정시 잔류 모노머를 제거하는 작용을 한다. 구체적인 예로는 소듐 설파이트(sodium sulfite), 소듐 퍼설페이트(Sodium persulfate), 포타슘 퍼설페이트(Potassium persulfate) 등과 같은 알칼리금속의 황산염; 또는 암모늄 퍼설페이트(ammonium persulfate) 등의 황산암모늄계 화합물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 첨가제는 상기 함수겔 중합체 100 중량부 대비 0.01 내지 20 중량부로 사용될 수 있다. 상기 첨가제가 지나치게 적게 사용되는 경우, 첨가제 사용에 따른 효과가 미미하고, 또 상기 첨가제가 지나치게 많이 사용되는 경우 최종 제조된 고흡수성 수지의 제반 물성이 저하될 수 있다. 보다 구체적으로 상기 첨가제는 상기 함수겔 중합체 100 중량부 대비 0.01 중량부 이상, 0.05 중량부 이상, 또는 0.1 중량부 이상이면서, 20 중량부 이하, 또는 15중량부 이하, 또는 13 중량부 이하, 또는 10 중량부 이하, 또는 6중량부 이하로 사용될 수 있다.
상기 첨가제는 상기 계면활성제의 투입 방법과 마찬가지로, 건식으로 중합체와 혼합하거나, 용매에 용해시킨 후 용액 상태로 혼합하거나, 분산매에 분산시킨 상태로 혼합하거나, 또는 용융시킨 후 중합체와 혼합할 수 있다.
또, 상기 미립화 단계가 2회 이상 수행될 경우 상기 첨가제는 각각의 미립화 단계별로 서로 동일하거나 상이하게 투입될 수 있다. 일례로 미립화 단계가 4회 수행될 경우, 상기 미립화 단계는, 계면활성제 및 첨가제의 미투입 조건에서 상기 미립화 장치를 이용하여 함수겔 중합체를 1차 미립화 하는 제1 미립화 단계; 금속 수산화물의 투입 조건에서 상기 미립화 장치를 이용하여 상기 1차 미립화된 함수겔 중합체를 2차 미립화하는 제2미립화 단계; 금속염의 투입 조건에서 상기 미립화 장치를 이용하여 상기 2차 미립화된 함수겔 중합체를 3차 미립화하는 제3미립화 단계; 그리고 계면활성제의 투입 조건에서 상기 미립화 장치를 이용하여 상기 3차 미립화된 함수겔 중합체를 4차 미립화하는 제4미립화 단계로 수행될 수 있다. 각 단계별로 투입되는 계면활성제 및 첨가제의 투입량은 앞서 설명한 바와 같으며, 상기 제1 내지 제4미립화 단계의 순서는 변경될 수 있다.
상기와 같은 방법으로 미립화 단계를 진행할 경우, 건조 이후 제품과 동일 수준의 입도 분포가 구현될 수 있고, 이에 따라 미분 발생을 더욱 감소시킬 수 있다.
이에 따라, 본 발명에 따른 제조방법은 상기 미립화 공정 이후 추가적인 분쇄 단계를 포함하지 않을 수 있다. 또한, 미립화 공정 후 수득되는 함수 고흡수성 수지 입자 중 미분 함량이 낮기 때문에 추가적인 분급 단계 또한 포함하지 않을 수 있다. 즉, 추가적인 분쇄 및 분급 단계 없이도 제품에 적용 가능한 입경을 갖는 고흡수성 수지의 제조가 가능하다. 다만, 제품이 적용되는 용도 및 필요에 따라, 미분쇄를 추가적으로 실시하거나, 분급 공정을 추가적으로 실시할 수도 있다.
단계 3
다음으로, 단계 3는 상기 함수 고흡수성 수지 입자를 건조하여 건조 고흡수성 수지 입자를 제조하는 단계이다.
통상의 고흡수성 수지의 제조방법에서, 상기 건조 단계는 고흡수성 수지의 함수율이 10 중량% 미만이 될 때까지 수행되는 것이 일반적이다. 그러나, 본 발명에 따른 제조방법에 있어서는 건조 공정은, 건조 후 고흡수성 수지의 함수율이, 건조 고흡수성 수지 입자 총 중량 기준 10 중량% 이상, 보다 구체적으로는 10 내지 20중량%, 또는 10 내지 15 중량%가 되도록 수행될 수 있다.
이를 위하여 상기 건조는 80 내지 250℃에서 5분 내지 80분 동안 수행될 수 있다. 상기 건조 온도가 지나치게 낮을 경우 건조 시간이 길어져 공정성이 저하될 수 있고, 또 상기 건조 온도가 지나치게 높은 경우, 고흡수성 수지 입자의 함수율이 지나치게 낮아져 후속의 공정 동안에 깨침 등이 초래될 수 있다. 보다 구체적으로 상기 건조는 80℃ 이상, 또는 100℃ 이상, 또는 120℃ 이상이고, 250℃ 이하, 또는 180℃ 이하, 또는 150℃ 이하의 온도에서, 5분 이상, 또는 20분 이상이고, 80분 이하 또는 60분 이하의 시간 동안 수행될 수 있다.
또 상기 건조는 유동식(moving type)으로 수행될 수 있다. 이러한 유동식(moving type) 건조는 정치식(fixed-bed type) 건조와는 건조되는 동안의 물질의 유동 유/무로 구분된다.
상기 유동식(moving type) 건조는 건조체를 기계적으로 교반하면서 건조시키는 방식을 일컫는다. 이때, 열풍이 물질을 통과하는 방향은 물질의 순환 방향과 같을 수도 있고, 상이할 수도 있다. 또는, 물질은 건조기 내부에서 순환하고, 건조기 외부의 별도의 파이프관으로 열매개 유체(열매유)를 통과시켜 물질을 건조시킬 수도 있다. 반면, 정치식(fixed-bed type) 건조는 공기가 통할 수 있는 다공 철판과 같은 바닥에 건조시키고자 하는 물질을 정지시킨 상태에서, 아래에서 위로 열풍이 물질을 통과하여 건조시키는 방식을 일컫는다.
따라서, 상기 건조 단계에서 건조시키고자 하는 함수 고흡수성 수지 입자들간의 응집 현상을 방지하고, 빠른 시간 내 건조를 완료할 수 있다는 측면에서 유동식 건조 방식으로 건조하는 것이 바람직하다.
이러한 유동식 건조 방식에 의해 건조가 가능한 장치로는, 횡형 믹서 건조기 (Horizontal-type Mixer Dryer), 로터리 킬른(Rotary kiln), 패들 드라이어(Paddle Dryer) 또는 스팀 튜브 드라이어(Steam tube dryer) 등 일반적으로 사용하는 유동식 건조기가 사용될 수 있다.
상기한 유동식 건조 방식을 이용함에 따라 회전 속도를 제어함으로써 건조 효율을 더욱 향상시킬 수 있다. 일례로, 상기 회전 속도는 10rpm 이상, 또는 30rpm 이상, 또는 50rpm 이상, 또는 80rpm 이상이고, 200rpm 이하, 또는 150rpm 이하, 또는 120rpm 이하, 또는 100rpm 이하일 수 있으며, 상기한 범위 내에서 함수겔 중합체의 함수율, 함수겔 중합체의 양, 유동식 건조 장치의 종류, 건조 온도, 건조 시간 등 건조 조건을 함께 고려하여 결정되는 것이 바람직하다.
상기한 건조 공정을 통해, 전술한 바와 같이 종래 대비 높은 함수율을 갖는 건조 고흡수성 수지 입자가 수득된다. 구체적으로, 상기 건조 고흡수성 수지 입자의 함수율은 10 중량% 이상, 보다 구체적으로는 10 내지 20중량%, 또는 10 내지 15 중량%이며, 상기한 바와 같은 범위의 함수율을 가짐에 따라, 이후 공정 수행 동안에 미분 발생을 방지 또는 최소화할 수 있다.
단계 4
다음으로 단계 4는, 상기 건조 고흡수성 수지 입자에 표면 가교제를 투입하고 표면 가교 반응시키는 단계이다.
상기 단계에 의해, 상기 건조 고흡수성 수지 입자에 포함되어 있는 가교 중합체가 표면 가교제를 매개로 추가 가교되어, 상기 건조 고흡수성 수지 입자의 표면 중 적어도 일부에 표면 가교층이 형성될 수 있다.
상기 표면 가교제로는 기존부터 고흡수성 수지의 제조에 사용되던 표면 가교제를 별다른 제한 없이 모두 사용할 수 있다. 예를 들어, 상기 표면 가교제는 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올; 에틸렌 카보네이트, 프로필렌 카보네이트 및 글리세롤 카보네이트로 이루어진 군에서 선택된 1 종 이상의 카보네이트계 화합물; 에틸렌글리콜 디글리시딜 에테르 등의 에폭시 화합물; 옥사졸리디논 등의 옥사졸린 화합물; 폴리아민 화합물; 옥사졸린 화합물; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 또는 환상 우레아 화합물; 등을 포함할 수 있다.
구체적으로, 상기 표면 가교제로 상술한 표면 가교제 중 1종 이상, 또는 2종 이상, 또는 3종 이상이 사용될 수 있다. 일례로, 에틸렌글리콜 디글리시딜 에테르 및 프로필렌 글리콜이 혼합 사용될 수 있다.
이러한 표면 가교제는 상기 건조 고흡수성 수지 입자 100 중량부에 대하여 0.001 내지 5중량부로 사용될 수 있다. 보다 구체적으로는, 상기 표면 가교제는 건조 고흡수성 수지 입자 100 중량부에 대하여 0.001중량부 이상, 또는 0.01 중량부 이상, 또는 0.1 중량부 이상, 또는 0.3 중량부 이상, 또는 0.4중량부 이상이고, 또는 5중량부 이하, 또는 3중량부 이하, 또는 1중량부 이하의 함량으로 사용될 수 있다. 표면 가교제의 함량 범위를 상술한 범위로 조절하여 우수한 흡수 제반 물성을 나타내는 고흡수성 수지를 제조할 수 있다.
또한, 상기 표면 가교층을 형성하는 단계는, 상기 표면 가교제에 무기 물질을 추가하여 수행될 수 있다. 즉, 상기 표면가교제 및 무기 물질의 존재 하에서, 상기 고흡수성 수지 입자의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 수행할 수 있다.
이러한 무기 물질로 실리카(silica), 클레이(clay), 알루미나, 실리카-알루미나 복합재, 티타니아, 아연산화물 및 알루미늄 설페이트로 이루어진 군에서 선택된 1 종 이상의 무기 물질을 사용할 수 있다. 상기 무기 물질은 분말 형태 또는 액상 형태로 사용할 수 있으며, 특히 알루미나 분말, 실리카-알루미나 분말, 티타니아 분말, 또는 나노 실리카 용액으로 사용할 수 있다.
상기 무기 물질은 건조 고흡수성 수지 입자 100 중량부에 대하여 0.001 내지 1 중량부, 보다 구체적으로는 0.001중량부 이상, 또는 0.01중량부 이상, 또는 0.1 중량부 이상이고, 1중량부 이하, 또는 0.5중량부 이하의 함량으로 사용될 수 있다.
상기한 표면 가교제를 고흡수성 수지 입자에 혼합하는 방법에 대해서는 그 구성의 한정은 없다. 예를 들어, 표면 가교제와 고흡수성 수지 입자를 반응조에 넣고 혼합하거나, 고흡수성 수지 입자에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 고흡수성 수지 입자와 표면 가교제를 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
상기 표면 가교제와 고흡수성 수지 입자를 혼합 시, 추가로 물 및 메탄올을 함께 혼합하여 첨가할 수 있다. 물 및 메탄올을 첨가하는 경우, 표면 가교제가 고흡수성 수지 입자에 골고루 분산될 수 있는 이점이 있다. 이때, 추가되는 물 및 메탄올의 함량은 표면 가교제의 고른 분산을 유도하고 고흡수성 수지 입자의 뭉침 현상을 방지함과 동시에 가교제의 표면 침투 깊이를 최적화하기 위해 적절하게 조절될 수 있다.
상기 표면 가교 공정은 80℃ 내지 250℃의 온도에서 수행될 수 있다. 보다 구체적으로, 상기 표면 가교 공정은 100℃ 내지 220℃, 또는 120℃ 내지 200℃의 온도에서, 20 분 내지 2 시간, 또는 40 분 내지 80 분 동안 수행될 수 있다. 상술한 표면 가교 공정 조건의 충족 시 고흡수성 수지 입자의 표면이 충분히 가교되어 가압 흡수능이 증가될 수 있다.
상기 표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
단계 5
다음으로 단계 5는, 상기 단계 4의 결과로 표면가교층이 형성된 고흡수성 수지 입자에 대해 스페이드형 냉각기를 이용하여 냉각과 가수를 동시에 수행하는 단계이다.
종래 표면 가교 반응 후 고흡수성 수지에 대한 냉각시 패들형 냉각기(paddle-type cooler)를 주로 사용하였다. 패들형 냉각기는, 냉각기 내부에, 냉각기의 길이 방향으로 1개 이상의 회전 축이 구비되고, 상기 회전 축에 복수개의 패들(paddle) 또는 패들형 블레이드가 설치되어 회전 축의 회전에 따라 패들이 회전하면서 냉각기 내부의 고흡수성 수지 입자를 냉각수와 함께 교반하고, 혼합함으로써, 냉각시킨다. 그러나, 패들형 냉각기는 냉각기 내부의 회전축을 따라 회전하는 패들에 의해 교반 및 혼합이 이루어지기 때문에, 패들의 회전 반경 내에서만 고흡수성 수지 입자와 냉각수의 교반 및 혼합이 일어난다. 결과 고흡수성 수지 입자와 냉각수와의 접촉 및 가수가 고흡수성 수지 입자 전체로 충분히 균일하게 이루어지기 어렵다. 또, 교반 및 혼합 동안에 고흡수성 수지 입자간 응집이 발생하기 쉽고, 결과로서 수득되는 고흡수성 수지 내 850㎛ 초과의 입경을 갖는 조립자 함량이 높고, 고흡수성 수지의 물성 하락 및 편차가 컸다.
이에 대해 본 발명에서는 표면가교층이 형성된 고흡수성 수지 입자에 대해 입자 전체로 균일한 냉각과 가수, 더 나가가 추가 투입되는 첨가제와의 균일 혼합이 가능한 스페이드형 냉각기를 사용한다.
스페이드형 냉각기는, 회전 가능한 바디부와, 상기 바디부의 내벽에 상하 구동이 가능하도록 설치된 1개 이상의 스페이드형 블레이드를 포함한다. 이에 따라 바디부 내로 냉각 및 가수를 위해 투입된 표면가교층이 형성된 고흡수성 수지 입자가 투입되면, 바디부가 회전하고, 상기 바디부의 회전에 따라 스페이드형 블레이드도 함께 회전하면서 상하 구동하게 된다. 상기 스페이드형 블레이드의 상하 구동에 의해 바디부 내의 고흡수성 수지 입자가 아래에서 위로 퍼 올려지고, 이후 상기 바디부의 회전에 따라 중력 방향으로 떨어진다. 이때, 중력방향으로 떨어지는 고흡수성 수지 입자는 바디부 내로 투입되는 냉각 공기 및 물과 접촉하면서 냉각 및 가수가 이루어지기 때문에 입자 전체로 균일한 냉각 및 가수가 가능하다. 또 고흡수성 수지 입자의 물성 개선을 위한 첨가제가 선택적으로 더 투입되는 경우에는, 첨가제와의 균일 혼합도 가능하다.
또, 스페이드형 냉각기는, 종래 패들형 냉각기와 달리, 고흡수성 수지 입자들을 적체하지 않고 바디부 내부의 고흡수성 수지 입자를 상하로 유동시키면서, 냉각 공기, 물 및 첨가제와의 교반 및 접촉이 이루어지기 때문에, 스페이드형 블레이드와 고흡수성 수지 입자 간, 그리고 고흡수성 수지 입자 간의 접촉 및 마찰을 감소시킬 수 있고, 결과로서 고흡수성 수지 입자의 깨짐 및 이에 따른 물성 저하를 방지할 수 있다.
또, 상기 스페이드형 냉각기에 있어서, 스페이드형 블레이드는 스푼(spoon), 또는 삽(shovel)과 같이, 스페이드형 블레이드의 일부분, 예를 들면 중심부 또는 날 끝이 오목한(concave) 형태를 갖는다. 이에 따라, 날 끝이 평평한 패들(paddle)과 비교하여, 고흡수성 수지 입자를 담아 퍼 올리기에 유리하며, 결과로서 고흡수성 수지 입자와, 냉각 공기 및 물과의 접촉이 고흡수성 수지 입자 전체로 보다 균일하게 이루어질 수 있다.
또, 상기 스페이드형 냉각기는, 상기 냉각과 가수 동안에 고흡수성 수지 입자 간 응집이 발생하더라도, 바디부 내에서 다방향으로 발생되는 교반력에 의해 응집된 입자가 용이하게 분리될 수 있다. 결과 고흡수성 수지 입자 내 조립자의 함량을 감소시키고, 또 고흡수성 수지의 물성 및 흡수 성능의 편차를 방지 및 최소화할 수 있다.
도 1 내지 도 3은 본 발명에 따른 고흡수성 수지의 제조방법에서 사용되는 스페이드형 냉각기의 측단면, 전면, 및 후면에서의 구조를 각각 개략적으로 나타낸 모식도이다. 도 1 내지 도 3은 본 발명을 설명하기 위한 일 예일뿐, 본 발명이 이들에 한정되는 것은 아니다.
이하 도 1 내지 도 3을 참조하여 설명하면, 상기 스페이드형 냉각기(10)는, 구체적으로 내부에 상기 표면가교층이 형성된 고흡수성 수지 입자가 이송되는 이송 공간을 포함하며, 회전 가능한 바디부(1); 상기 바디부(1)에 설치되어, 상기 이송 공간의 내부로 냉각 공기 및 물을 각각 투입시키는 두개의 노즐, 즉 냉각 공기 투입용 노즐(2a)과 물 투입용 노즐(2b); 상기 바디부 내벽에 상하 구동이 가능하게 설치되어, 이송 공간 내의 상기 표면가교층이 형성된 고흡수성 수지 입자를 아래에서 위로 퍼 올리는 하나 이상의 스페이드형 블레이드(spade-type blade)(3); 및 상기 바디부(1)와 연결되어 구동력을 제공하는 구동모터(4);를 포함하며, 상기 바디부(1) 내 스페이드형 블레이드(3)의 상하 구동에 의해 상기 표면가교층이 형성된 고흡수성 수지 입자를 퍼올린 후, 상기 바디부(1)의 회전에 의해 상기 퍼 올려진 고흡수성 수지 입자를 중력 방향으로 떨어뜨려 바디부(1)의 이송 공간 내부로 투입된 냉각 공기 및 물과 접촉시킴으로써 상기 표면가교층이 형성된 고흡수성 수지 입자에 대한 냉각과 가수가 동시에 이루어진다.
구체적으로, 상기 스페이드형 냉각기에서의 바디부(1)는 내부에 표면가교층이 형성된 고흡수성 수지 입자가 이송되고 유동하는 이송 공간을 포함한다.
상기 바디부(1)의 형태는 특별히 한정되는 것은 아니나 일례로 원통형 또는 드럼형일 수 있다.
또, 상기 바디부(1)는 회전 가능하며, 이에 따라 바디부의 내부 공간에 존재하는 성분들은 바디부의 회전에 의해 교반 및 혼합될 수 있다.
상기 바디부(1)의 회전은 바디부 전체로 이루어질 수도 있고, 또는 바디부의 일정 부분에서의 회전에 의해 이루어질 수도 있다. 일례로, 상기 구동모터(4)로부터 전달된 구동력에 의해 바디부 전체가 회전할 수 있다. 또 다른 일례로 상기 바디부(1)의 외측 상부 및 하부에 바디부의 길이 방향으로 회전축이 각각 구비되고, 구동 모터로부터 상기 회전축으로 구동력이 전달되면, 구동력에 의해 회전축이 회전하고, 결과로서 바디부의 길이 방향에 수직한 방향으로 바디부가 회전할 수 있다.
또, 상기 바디부의 일정 부분만 회전하는 경우, 상기 바디부는 구동모터와 연결되어, 구동모터로부터 전달된 구동력에 의해 회전하는 회전부와, 회전하지 않는 고정부로 이루어질 수 있다. 일례로, 상기 회전부가 표면가교된 고흡수성 수지 입자 및 냉각 매체가 투입되는 바디부의 상부측에 위치하고, 상기 고정부가 냉각된 고흡수성 수지 입자가 배출되는 바디부의 하부측에 위치할 수 있다. 또는 상기 고정부가 표면가교된 고흡수성 수지 입자 및 냉각 매체가 투입되는 바디부의 상부측에 위치하고, 회전부가 냉각된 고흡수성 수지 입자가 배출되는 하부측에 위치할 수 있다. 또는 도 1에서와 같이, 상기 회전부(1a)가 상기 바디부의 중간 부분에 위치하고, 상기 고정부(1b)가 상기 회전부(1a)의 상부측 및 하부측에 각각 위치할 수 있다.
또, 상기 바디부(1)에는 표면가교층이 형성된 고흡수성 수지 입자의 투입을 위한 고흡수성 수지 투입구, 및 냉각 및 가수된 고흡수성 수지 입자의 배출을 위한 및 고흡수성 수지 배출구가 각각 구비된다. 그 위치는 특별히 한정되지 않으며, 고흡수성 수지 투입구는 상기 바디부의 일 말단에 구비되고, 상기 고흡수성 수지 투입구는 상기 바디부의 다른 일 말단에 구비될 수 있다. 일례로 도 1에 도시된 바와 같이, 바디부(1) 내부의 고흡수성 수지의 흐름이 일 방향으로 이루어질 수 있도록, 바디부(1)의 상부 구역에, 고흡수성 수지 투입구(1c)가, 그리고 바디부(1)의 하부 구역에 고흡수성 수지 배출구(1d)가 형성될 수 있다.
또, 도 1에서와 같이, 상기 스페이드형 냉각기는, 냉각 및 가수된 고흡수성 수지 입자의 배출이 용이하도록, 바디부의 내벽에 상기 배출구(1d) 측으로 경사지며, 배출구와 연결되도록 구비된 배출판이 더 형성될 수 있다. 이 경우, 냉각 및 가수된 고흡수성 수지 입자가 배출판 위에 쌓이게 되면, 배출판의 경사로 인해 배출구로 용이하게 배출될 수 있다.
또 다른 일례로, 상기 바디부(1)는, 고흡수성 수지의 투입을 위한 고흡수성 수지 투입구(1c)가 위치하는 상부 구역, 상기 고흡수성 수지 입자와 냉각 공기 및 물의 혼합 및 접촉에 의해 냉각이 이루어지는 자켓 구역, 그리고 냉각된 고흡수성 수지 입자의 배출을 위한 고흡수성 수지 배출구(1d)가 구비된 하부 구역으로 이루어질 수 있다. 이 경우 상기 자켓 구역이 회전부(1a)에 해당하고, 상기 상부 및 하부 구역이 각각 고정부(1b)에 해당하게 된다.
또 상기 바디부(1)에는, 상기 냉각 공기 및 물의 투입을 위한 각각의 노즐, 즉 냉각 공기 투입용 노즐(2a)과 물 투입용 노즐(2b)이 설치된다. 이에 따라 노즐을 통해 투입되는 냉각 공기 및 물은 바디부의 공간 내로 분무되게 된다. 상기 노즐에는 냉각 공기 및 물의 투입 속도 또는 분무 속도, 및 투입량 또는 분무량을 제어할 수 있는 밸브, 스위치 등의 노즐 개폐 수단 또는 제어 수단이 선택적으로 구비되어 있을 수 있다.
상기 노즐들의 형성 위치는 특별히 한정되는 것은 아니며, 일례로 고흡수성 수지와의 혼합 용이성 및 균일성을 고려하여 고흡수성 수지의 투입구 측, 즉 투입구가 존재하는 바디부의 상부 구역, 보다 구체적으로는 바디부의 상부측에 위치하는 고정부(1b)에 형성될 수 있다.
또, 상기 바디부(1)의 내벽에는 상하 구동이 가능하도록 설치된 스페이드형 블레이드(3)가 존재한다.
상기 스페이드형 블레이드(3)는 스푼 또는 삽 형태를 가지며, 바디부의 회전시 함께 회전하면서 상하 구동한다. 이에 따라 바디부의 이송 공간 내에 존재하는 고흡수성 수지 입자를 아래에서 위로 퍼 올리는 작용을 하며, 스페이드형 블레이드에 의해 퍼올려진 고흡수성 수지 입자는 바디부의 회전 및 중력에 의해 낙하하면서 바디부 공간 내부로 투입되는 냉각 공기 및 물과 접촉하고, 혼합되게 된다.
상기 스페이드형 블레이드(3)는 바디부 내벽에 1개 이상, 또는 2개 이상, 또는 3개 이상, 또는 4개 이상 구비될 수 있으나, 이에 한정되는 것은 아니다. 바디부의 크기 등을 고려하여 적절히 결정될 수 있다.
또, 상기 스페이드형 블레이드는 바디부의 회전에 따라 회전하면서 상하 구동을 하기 때문에, 이에 스페이드형 블레이드의 구동 속도는 바디부의 회전 속도에 따라 결정된다. 그러나, 스페이드형 블레이드의 구동 속도 제어를 위하여 별도의 구동 속도 제어 부재를 선택적으로 더 포함할 수도 있다.
또 상기 스페이드형 냉각기(10)는, 바디부(1)에 연결되어 구동력, 구체적으로는 회전 구동력을 제공하는 구동 모터(4)를 포함한다.
또 상기 스페이드형 냉각기(10)는 표면가교층이 형성된 고흡수성 수지 입자를 저장 및 공급하는 고흡수성 수지의 공급부(미도시); 냉각 공기를 저장하고, 상기 냉각기의 바디부에 설치된 냉각 공기 투입용 노즐에 의해 공급하는 냉각 공기 공급부(미도시); 물을 저장하고, 상기 냉각기의 바디부에 설치된 물 투입용 노즐에 의해 공급하는 물 공급부(미도시); 상기 냉각기의 바디부에 설치되며, 상기 냉각 및 가수 공정 동안에 선택적으로 첨가되는 첨가제를 위한, 첨가제용 노즐(미도시), 또는 첨가제 투입구(1e) 중 1 이상을 선택적으로 더 포함할 수도 있다.
도 4는 본 발명에 따른 고흡수성 수지의 제조방법에 있어서, 냉각 및 가수 단계에서 스페이드형 냉각기의 바디부 내에서의 일어나는 혼합 공정을 개략적으로 나타낸 모식도이다. 도 4에서 화살 표시는 바디부의 회전을 나타낸다.
도 4를 참고하여 설명하면, 상기한 구조의 스페이드형 냉각기에서 고흡수성 수지 투입구를 통해 표면가교된 고흡수성 수지 입자(20)가 투입되면, 냉각기의 바디부내 스페이드형 블레이드(3)의 상하 구동에 의해 고흡수성 수지 입자가 아래에서 위로 퍼 올려진다. 이후 퍼 올려진 고흡수성 수지 입자는 바디부의 회전으로 중력방향으로 떨어지면서 바디부에 결합된 노즐을 통해 바디부 공간 내로 분무 등의 방법으로 투입된 냉각 공기 및 물과 접촉하게 된다. 이때 냉각 공기 및 물과의 열교환으로 고흡수성 수지 입자가 냉각되게 되고, 동시에 상기 물에 의해 고흡수성 수지 입자의 가수가 이루어진다. 특히 본 발명에 따른 스페이드형 냉각기에서는 바디부 내의 고흡수성 수지 입자가 중력에 의해 균일하게 떨어지기 때문에, 상기 접촉 및 가수가 고흡수성 수지 입자 전체로 균일하게 이루어질 수 있으며, 이는 고흡수성 수지의 물성 및 흡수 성능의 편차를 방지 및 최소화할 수 있다.
한편, 상기 스페이드형 냉각기 내로 투입되는 냉각 공기의 온도는 10℃ 내지 60℃이고, 상기 표면가교층이 형성된 고흡수성 수지 투입량 1kg 기준 0.01 m3/h/kg 내지 0.25m3/h/kg의 속도로 바디부에 설치된 냉각 공기 투입 노즐을 통해 투입될 수 있다. 상기한 조건으로 냉각 공기가 투입될 경우 우수한 냉각 효과를 나타낼 수 있다. 보다 구체적으로는 냉각 공기의 온도는 10℃ 이상, 또는 15℃ 이상, 또는 20℃ 이상, 또는 25℃ 이상, 또는 30℃ 이상이고, 60℃ 이하, 또는 50℃ 이하, 또는 40℃ 이하, 또는 35℃ 이하이고, 고흡수성 수지 투입량 1kg 기준 0.01 m3/h/kg 이상, 또는 0.05m3/h/kg 이상 또는 0.1m3/h/kg 이상이고, 0.25m3/h/kg 이하, 또는 0.2m3/h/kg 이하, 또는 0.15m3/h/kg 이하의 속도로 바디부에 설치된 냉각 공기 투입 노즐을 통해 투입될 수 있다.
또, 상기 물의 온도는 10℃ 내지 60℃이고, 상기 표면 가교층이 형성된 고흡수성 수지 입자 100중량부에 대해 2 내지 20중량부의 양으로 투입될 수 있다. 상기한 조건으로 물이 투입될 경우, 상기 표면 가교층이 형성된 고흡수성 수지 입자에 대한 냉각 효과와 더불어 가수 효과를 나타낼 수 있다. 보다 구체적으로는 상기 물의 온도는 10℃ 이상, 또는 15℃ 이상, 또는 20℃ 이상, 또는 23℃ 이상이고, 60℃ 이하, 또는 50℃ 이하, 또는 40℃ 이하, 또는 30℃ 이하, 또는 27℃ 이하이며, 보다 더 구체적으로는 상온(25±2℃)이다. 또 상기 물은 표면 가교층이 형성된 고흡수성 수지 입자 100중량부에 대해 2중량부 이상, 또는 5중량부 이상이고, 20중량부 이하, 또는 10중량부 이하의 양으로 투입될 수 있다.
또 상기 스페이드형 냉각기에 있어서, 상기 바디부(1), 또는 상기 바디부 내 회전부(1a)는 1분당 5 내지 50회의 속도(또는 5 내지 50rpm)로 회전될 수 있다. 한편, 상기 바디부 또는 바디부내 회전부의 1분당 1회의 회전 속도는 1rpm에 해당한다.
상기한 조건으로 회전시 고흡수성 수지 입자가 냉각 공기 및 물과 충분히 접촉할 수 있는 속도로 떨어질 수 있다. 보다 구체적으로는 상기 바디부 또는 상기 바디부 내 회전부는 1분당 5회 이상, 또는 10회 이상, 또는 20회 이상이고, 50회 이하, 또는 40회 이하, 또는 30회 이하의 속도로 회전될 수 있다. 한편, 본 발명에 있어서, 상기 스페이드형 냉각기는, 상기 바디부와 구동 모터 사이에 위치하여, 바디부 또는 바디부 내 회전부의 회전 속도를 제어하는, 인버터 등의 회전 속도 제어 장치(미도시)를 선택적으로 더 구비할 수 있다.
또, 본 발명에 따른 제조방법에 있어서, 상기 냉각 공정시 냉각 효율 향상, 고흡수성 수지의 함수율 및 물성 개선 등을 위한 첨가제가 1종 이상 더 투입될 수 있다.
구체적으로 상기 첨가제는 무기 물질일 수 있다. 구체적인 예로는 실리카, 클레이, 알루미나, 실리카-알루미나 복합재, 티타니아, 아연산화물 또는 알루미늄 설페이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 무기 물질들은 고흡수성 수지 입자의 함수율을 높이고, 케이킹 방지 효율을 향상시키는 안티 케이킹(anti-caking)제로서 작용할 수 있다.
상기 무기 물질이 더 투입될 경우, 상기 스페이드형 냉각기의 바디부에 설치되어 상기 바디부의 이송 공간 내부로 첨가제를 투입시키는, 첨가제용 노즐(미도시), 또는 첨가제 투입구(1e)를 통해 투입되거나, 또는 상기 표면가교층이 형성된 고흡수성 수지와 혼합되어 혼합물의 형태로 고흡수성 수지 투입구를 통해 투입될 수도 있다.
종래 고흡수성 수지의 제조시 함수율 개선을 위하여 무기 물질을 블레이드형 믹서로 혼합하였다. 이 경우, 무기 물질이 건식 혼합됨에 따라 균질 혼합이 어렵고, 결과로서 제조되는 고흡수성 수지의 물성 편차가 발생하였다.
이에 대해 본 발명에서는 스페이드형 냉각기를 이용한 냉각 및 가수 공정 동안에 투입함으로써 습식 혼합이 이루어지며, 결과 고흡수성 수지와의 균질 혼합이 가능하고, 제조되는 고흡수성 수지의 물성을 균일하게 개선시킬 수 있다.
상기 무기 물질은 상기 표면가교층이 형성된 고흡수성 수지 입자 100중량부에 대하여 0.02 내지 1.0중량부로 투입될 수 있다. 무기 물질의 투입량이 지나치게 적으면 무기 물질 투입에 따른 가수 효과를 충분히 얻기 어렵고, 반면 무기 물질 투입량이 지나치게 높으면 고흡수성 수지의 함수량을 지나치게 높여 흡수 성능을 오히려 저하시킬 수 있다. 보다 구체적으로는 상기 무기 물질은 상기 표면가교층이 형성된 고흡수성 수지 입자 100중량부에 대하여 0.02중량부 이상, 또는 0.05중량부 이상, 또는 0.1중량부 이상이고, 1.0중량부 이하, 또는 0.7중량부 이하, 또는 0.5중량부 이하의 양으로 투입될 수 있다.
상기한 물질들 외에도, 첨가제로서 통액성 향상제, 유동성 향상제 등의 첨가제가 선택적으로 더 될 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
상기한 첨가제의 투입 방법은 특별히 한정되지 않으며, 상기 바디부에 설치되어 상기 바디부의 공간 내부로 첨가제를 투입시키는 첨가제용 노즐을 통해 투입되거나, 또는 고흡수성 수지와 함께 혼합되어 투입될 수도 있다.
상기한 냉각 및 가수 단계의 수행으로, 최종 제조되는 고흡수성 수지의 함수율이 향상되고, 조립자의 함량이 감소되며, 결과로서 보다 고품질의 고흡수성 수지 제품을 제조할 수 있다.
구체적으로, 상기 냉각 및 가수 단계 후, 냉각 및 가수된 고흡수성 수지 입자 중 850㎛ 초과의 입경을 갖는 조립자 함량이 3중량% 이하, 또는 1중량% 이하, 또는 0.7중량% 이하, 또는 0.5중량% 이하, 또는 0.3중량%이다. 조립자의 함량이 낮을수록 우수하기에 그 하한 값은 특별히 한정되지 않지만, 일례로 0.01중량% 이상, 또는 0.1중량% 이상일 수 있다.
한편, 상기 850㎛ 초과의 입경을 갖는 조립자의 함량(중량%)은, 냉각 및 가수된 고흡수성 수지 입자를 ASTM 규정에 따른 표준 분자체를 이용하는 등의 방법으로 분급하여 850㎛ 초과의 입경을 갖는 조립자를 분리한 후, 그 중량을 측정하고, 냉각 및 가수된 고흡수성 수지 입자의 총 중량에 대한 상기 조립자의 중량비를 구하여 백분율로 나타낸 것이다. 구체적인 측정방법은 이하 실험예에서 설명하는 바와 같다.
추가 단계
본 발명에 따른 제조방법은, 상기 냉각 및 가수 단계 후, 냉각 및 가수된 고흡수성 수지를 분급하는 단계를 더 포함할 수 있다.
상기 분급 공정은 ASTM 규정에 따른 표준 분자체를 이용하는 등 통상의 방법에 따라 수행될 수 있으며, 이 같은 분급 공정을 통해 850 ㎛ 초과의 입경을 갖는 조립자를 분리 제거하고, 150 내지 850 ㎛의 입경을 갖는 고흡수성 수지의 정상 입자를 수득할 수 있다.
또, 본 발명에 따른 제조방법은, 상기 분급 단계 후, 분리된 조립자를 분쇄하고, 분쇄된 조립자를 상기 분급 단계에서 분리된 고흡수성 수지의 정상입자와 혼합하는 단계를 더 포함할 수 있다.
상기 조립자에 대한 분쇄는 분쇄된 조립자가 정상입자 수준의 입경을 갖도록 수행되는 것을 제외하고는, 통상의 분쇄 방법을 이용하여 수행될 수 있다.
구체적으로는 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 세절기(chopper) 또는 원판식 절단기(Disc cutter) 등의 분쇄기를 이용하여 수행될 수 있으나, 분쇄기가 상술한 예에 한정되지는 않는다.
또는 상기 분쇄기로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수도 있으나, 상술한 예에 한정되는 것은 아니다.
이후 분쇄된 조립자와 고흡수성 수지의 정상입자와의 혼합은 통상의 혼합 방법으로 진행될 수 있으며, 혼합비 또한 고흡수성 수지의 흡수 성능을 저하시키지 않는 범위에서 적절히 결정될 수 있다.
본 발명에 따르면, 상기 제조 방법으로 제조된 고흡수성 수지를 제공한다.
상기 제조 방법으로 제조된 고흡수성 수지는, 높은 함수율을 가지며, 별도의 분급 공정 없이도 850㎛ 초과의 입경을 갖는 조립자 함량이 낮다. 결과, 상기한 고흡수성 수지를 이용한 제품 제조시 미분 발생량이 작다.
또 상기 고흡수성 수지는, 종래 방법으로 제조한 고흡수성 수지 대비, 제반 흡수 물성인 보수능(CRC)과 가압 흡수능(AUP)이 동등 수준 이상으로 우수하다.
또, 상기 고흡수성 수지는 좁은 입경 분포와 함께 균일한 입경을 나타내며, 수가용 성분(EC) 함량이 낮아, 통액성, 리웻(rewet) 특성, 및 흡수 속도 등이 모두 우수하다.
구체적으로, 상기 고흡수성 수지는 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제가 가교 중합된 중합체를 포함하고, 상기 중합체의 산성기 중 적어도 일부는 중화되어 있으며, 표면 가교제를 매개로 상기 중합체가 추가 가교되어 상기 중합체의 상에 형성된 표면 가교층을 포함하고, 하기 (i) 내지 (iii)의 조건을 만족하는 것일 수 있다:
(i) 고흡수성 수지 총 중량에 대하여 함수율이 1.2 중량% 내지 5중량%
(ii) EDANA WSP 241.3에 따라 측정한 원심분리 보수능(CRC): 30 내지 45g/g
(iii) EDANA법 WSP 242.3에 따라 측정한 0.3 psi 가압 흡수능의 평균: 29 내지 40 g/g, 상기 0.3 psi의 가압 흡수능의 표준편차: 1 이하.
상기 고흡수성 수지는, 보다 구체적으로 고흡수성 수지 총 중량에 대하여 함수율이 1.2중량% 이상, 또는 1.4중량% 이상, 또는 1.5중량% 이상, 또는 1.7중량% 이상, 또는 1.8중량% 이상, 또는 1.9중량% 이상이고, 5중량% 이하, 또는 3중량% 이하, 또는 2.6중량% 이하, 또는 2.5중량% 이하, 또는 2중량% 이하이다. 이와 같이 종래 대비 높은 함수율을 가짐에 따라, 제조 공정 중 고흡수성 수지 입자간 마찰에 의한 표면 손상이 감소되고, 이에 따른 고흡수성 수지의 물성 저하를 방지할 수 있다. 또 고흡수성 수지를 이용한 제품화 공정 동안에 미분 발생량이 감소하여, 공정 안정성 및 생산성이 향상되고, 제품의 품질을 개선시킬 수 있다.
상기 함수율은 고흡수성 수지 총 중량에 대해 차지하는 수분의 함량으로, 적외선 가열을 통해 고흡수성 수지의 온도를 올려 건조하는 과정에서 고흡수성 수지 중의 수분 증발에 따른 중량 감소분을 측정하고, 그 결과를 이용하여 하기 수학식 1에 따라 계산할 수 있다. 그 구체적인 측정 방법 및 측정 조건은 이하 실험예에서 상세히 설명한다.
[수학식 1]
함수율(중량%)= [(Ao-At) / Ao] X 100
상기 식에서, At는 상온에서 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도 상승 단계 5분을 포함하여 40분으로 설정하여 건조 공정을 수행한 후 측정한, 건조 후 고흡수성 수지의 중량이고, Ao는 건조 전 고흡수성 수지의 중량이다.
또, 상기 고흡수성 수지는 보다 구체적으로 EDANA 법 WSP 241.3에 따라 측정한, 생리 식염수(0.9 중량% 염화나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 30g/g 이상, 또는 35g/g 이상, 또는 36.5 g/g 이상, 또는 37 g/g 이상이다. 상기 CRC 값이 높을수록 우수하여 실질적인 상한의 제한은 없으나, 일례로, 45 g/g 이하, 또는 40 g/g 이하이다. 상기 CRC의 구체적인 측정 방법 및 측정 조건은 이하 실험예에서 상세히 설명한다.
또, 상기 고흡수성 수지는 보다 구체적으로 EDANA법 WSP 242.3에 따라 측정한, 고흡수성 수지의 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 0.3psi 하에서 1시간 동안의 가압 흡수능(0.3AUP)의 평균이 29 g/g 이상, 또는 29.3 g/g 이상, 또는 29.5 g/g 이상, 또는 30 g/g 이상이고, 40 g/g 이하, 또는 35 g/g 이하, 또는 32 g/g 이하이다. 또, 상기 0.3 psi의 가압 흡수능의 표준편차가 1 이하, 또는 0.7 이하, 또는 0.5 이하이며, 표준 편차 값이 작을수록 우수하여 실질적인 하한의 제한은 없으나, 일례로 0.1 이상, 또는 0.2 이상이다. 상기 0.3C AUP의 구체적인 측정 방법 및 측정 조건은 이하 실험예에서 상세히 설명한다.
또, 고흡수성 수지의 제조시 냉각 및 가수 단계에서 실리카와 같은 무기 물질이 더 투입되는 경우, 높은 케이킹 방지 효율을 나타낼 수 있다.
구체적으로, 상기 고흡수성 수지는 하기 수학식 2로 계산되는 케이킹 방지 효율(A/C)의 평균이 85% 이상이고, 표준 편차가 10 이하이다. 보다 구체적으로는 케이킹 방지 효율(A/C)의 평균이 85% 이상, 또는 90% 이상, 또는 95% 이상이다. 케이킹 방지 효율 값이 높을수록 우수하여 실질적인 상한의 제한은 없으나, 일례로, 100% 이하, 또는 98% 이하이다. 또 상기 케이킹 방지 효율의 표준편차는 보다 구체적으로 10 이하, 또는 9.5 이하, 또는 9 이하이며, 표준편차 값이 작을수록 우수하여 실질적인 하한의 제한은 없으나, 일례로 1 이상, 또는 5 이상이다.
[수학식 2]
상기 식에서,
W5는 지름 90 mm 및 높이 15 mm의 페트리 디쉬의 무게(g)이고,
S1은 W5로 무게가 측정된 페트리 디쉬에 고흡수성 수지 시료 2±0.01 g을 고르게 도포한 후, 상기 시료가 도포된 페트리 디쉬를 온도 40℃ 및 습도 80%RH로 셋팅된 항온항습 챔버 안에 10 분간 방치한 다음 이를 꺼내 A4 용지에 뒤집어 놓고 5 분이 경과된 후 측정한 상기 A4 용지에 떨어진 고흡수성 수지 시료의 무게(g)이고,
S2는 상기 S1을 측정한 시점에서의 페트리 디쉬의 무게(g)이다.
이에 따라 상기한 고흡수성 수지는 기저귀 등 위생재, 특히, 펄프의 함량이 감소된 초박형 위생재 등을 적절하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 다만, 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예들에 의하여 한정되는 것은 아니다.
제조예
1
함수겔 중합체의 제조
교반기, 온도계를 장착한 2L 유리 용기에 아크릴산 100g, 내부가교제인 펜타에리스리톨 알릴 에테르 0.35g, 및 물 226g을 교반하면서 혼합하였다. 이때 반응 온도는 5℃로 유지하였다. 결과의 혼합물에 대해 질소 1000cc/min을 1시간 동안 투입하였다. 이후 중합개시제로, 0.3% 과산화수소 수용액 1.3g, 1% 아스코르브산 수용액 1.5g, 및 2%의 2,2'-아조비스아미디노프로판 디히드로 클로라이드 수용액 3.0g를 투입하고, 동시에 환원제로 0.01%의 황산철 수용액 1.5g을 첨가하고, 혼합하였다. 결과의 혼합물에서 중합 반응이 시작되어 중합체의 온도가 85℃에 도달한 후, 90±2℃의 오븐에서 약 6시간 동안 중합함으로써 함수겔 중합체를 제조하였다(함수율: 함수겔 중합체 총 중량 기준 70 중량%).
함수 고흡수성 수지 입자의 제조
수득한 함수겔 중합체 1000g을, 홀 사이즈(hole size)가 6 mm인 다수의 홀을 포함하는 다공판이 구비된 미립화 장치(Micronizer)(F200, Karl Schnell)를 1500rpm으로 회전시키면서, 4회 통과시켜 미립화하였다. 이때 1회 통과시에는 아무런 첨가제를 투입하지 않았고, 2회 통과시에는 32% NaOH 수용액을 400g 투입하였고, 3회 통과시에는 15%의 Na2SO4 수용액을 37.5g 투입하였으며, 그리고 4회 통과시에는 계면 활성제로서 Glycerol Monolaurate (GML)을 60℃의 물에 용해시킨 수용액(1.5 w%) 형태로 하여, 상기 함수겔 중합체 100 중량부 대비 GML 투입량이 0.4 중량부가 되도록 투입하였다. 결과로서 함수 고흡수성 수지 입자를 수득하였다(함수율: 함수 고흡수성 수지 입자 총 중량 68 중량%).
건조 고흡수성 수지 입자의 제조
상기 미립화의 결과로 수득한 함수 고흡수성 수지 입자를 로터리 킬른 유동식 건조기(ROTARY KILN, WOONGBI MACHINERY CO., LTD.사제)에 투입 후, 150℃에서, 100rpm으로 속도로 60분간 교반하면서 건조시켜 건조 고흡수성 수지 입자를 수득하였다(함수율: 건조 고흡수성 수지 입자 총 중량 기준: 11 중량%).
표면 가교층 형성
다음으로, 상기 건조 고흡수성 수지 입자 100g에 대해, 물 4g, 메탄올 6g, 에틸렌글리콜 디글리시딜 에테르(Glyether® EJ-1030, JSI사제) 0.30g, 프로필렌 글리콜 0.1g 및 알루미늄설페이트 0.2g을 투입하여 제조한 표면가교액을 1분간 혼합하고, 이를 140℃에서 50분간 표면 가교 반응을 진행하여 표면가교된 고흡수성 수지를 얻었다.
제조예 2
상기 제조예 1의 함수겔 중합체의 형성시, 아크릴산 100g, 31.5중량% 수산화나트륨(NaOH) 140g, 폴리에틸렌글리콜 디아크릴레이트 0.20g, 열중합 개시제로서 과황산나트륨 0.12g, 광중합 개시제로서 디페닐(2,4,6-트리메틸벤조일)포스핀 옥사이드 0.01g 및 물 40g을 혼합하여 단량체 조성물을 제조하고, 이를 가로 30cm, 세로 30cm 크기의 사각 반응 용기에 담고, 10mW/cm2의 세기를 갖는 자외선을 조사하여 60초 동안 중합 반응시켜 함수겔 중합체를 제조하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여 표면가교된 고흡수성 수지를 얻었다.
제조예 3
상기 제조예 1에 따른 함수겔 중합체의 제조시 계면활성제로서 GML 대신에 GMS(Glycerol monostearate)를 사용하는 것을 제외하고는, 상기 제조예 1에서와 동일한 방법으로 수행하여 표면가교된 고흡수성 수지를 얻었다.
실시예 1
상기 제조예 1에서 제조한 표면가교된 고흡수성 수지에 대해 하기 표 1에 기재된 조건으로 냉각 공정을 수행하였다.
구체적으로는 상기 제조예에서 제조한, 표면가교된 고흡수성 수지를 도 1에서의 구조를 갖는 스페이드형 냉각기(Spade-type cooler)에 투입한 후, 냉각기 내부에 구비된 노즐을 통해 냉각 공기를 투입하여 냉각 공정을 수행하였다. 이때 상기 냉각기 내로 투입되는 냉각 공기의 온도는 35℃이고, 투입 속도는 표면가교된 고흡수성 수지 1kg 기준 0.1m3/h/kg이다. 또 상기 냉각 공정시 냉각기 내부에 별도 구비된 노즐을 통해 물을 투입하며 가수 공정을 동시에 수행하였다. 이때 물의 온도는 상온(25±2℃)이고, 투입 양은 표면가교된 고흡수성 수지 100중량부 기준 5중량부이며, 그리고 바디부의 회전 속도는 1분당 20회(20rpm)이었다.
결과로 냉각 및 가수된 고흡수성 수지 입자를 회수한 후, 분급하여 입경 150 내지 850㎛의 고흡수성 수지의 정상 입자와, 입경 850㎛ 초과의 조립자로 분리하였다. 분리된 조립자는 롤밀(Roll-mill)을 이용하여 1회 분쇄한 후, 상기 고흡수성 수지의 정상 입자와 혼합하여, 고흡수성 수지를 제조하였다.
실시예 2
하기 표 1에 기재된 바와 같이, 냉각 공정시 냉각기 내로 투입되는 표면가교된 고흡수성 수지와 혼합되도록 별도의 투입구를 통해 첨가제로서 Fumed silica (Aerosil200, EVONIK 사제)를 투입하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 스페이드형 냉각기를 이용하여 냉각 공정을 수행하였다. 이때, 상기 냉각기 내로 투입되는 냉각 공기의 온도는 35℃이고, 투입 속도는 표면가교된 고흡수성 수지 1kg 기준 0.1m3/h/kg이며, 바디부의 회전 속도는 1분당 20회(20rpm)로 하였다. 또 상기 냉각 공정시, 냉각기 내부에 별도로 구비된 노즐을 통하여 물 및 Fumed silica (Aerosil200, EVONIK사제)를 각각 투입하였다. 이때 투입되는 물의 온도는 상온(25±2℃)이고, 투입 양은 표면가교된 고흡수성 수지 100중량부 기준 5중량부이다. 또 상기 Fumed silica는 고흡수성 수지 100중량부에 대하여 0.1중량부의 양으로 투입하였다.
결과로 냉각 및 가수된 고흡수성 수지 입자를 회수한 후, 분급하여 입경 150 내지 850㎛의 고흡수성 수지의 정상 입자와, 입경 850㎛ 초과의 조립자로 분리하였다. 분리된 조립자는 롤밀을 이용하여 1회 분쇄한 후, 상기 고흡수성 수지의 정상 입자와 혼합하여, 고흡수성 수지를 제조하였다.
실시예 3 내지 7
하기 표 1에 기재된 조건으로 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 고흡수성 수지를 제조하였다.
비교예 1
하기 표 1에 기재된 바와 같이, 상기 제조예 1에서 제조한 표면가교된 고흡수성 수지 입자를 패들형 냉각기(paddle-type cooler; NPD-14W™, Nara사제)에 투입하고, 상기 패들형 냉각기 내부의 이중 자켓에 노즐 없이 상온(25±2℃)의 물을 표면가교된 고흡수성 수지 100중량부에 대하여 5중량부로 투입하며, 1분당 10회의 속도(10rpm)로 패들을 구동시켜 혼합하며 냉각 공정을 수행하였다(실리카 투입 없음). 냉각 단계 후, 분급, 조립자 분쇄 및 고흡수성 수지의 정상 입자와의 혼합 공정을 수행하지 않는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고흡수성 수지를 제조하였다.
비교예 2
하기 표 1에 기재된 바와 같이, 상기 제조예 1에서 제조한 표면가교된 고흡수성 수지 입자를 패들형 냉각기(NPD-14W™, Nara사제)에 투입하고, 상기 패들형 냉각기 내부에 구비된 노즐을 통해 상온(25±2℃)의 물을 표면가교된 고흡수성 수지 100중량부에 대하여 5중량부로 이중 자켓에 투입하며, 1분당 10회의 속도(10rpm)로 패들을 구동시켜 혼합하며 냉각 공정을 수행하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 수행하여 고흡수성 수지를 제조하였다.
비교예 3
하기 표 1에 기재된 바와 같이, 상기 제조예 1에서 제조한 고흡수성 수지 입자를 패들형 냉각기에 투입하고, 상기 패들형 냉각기(NPD-14W™, Nara사제) 내부에 구비된 노즐을 통해 상온(25±2℃)의 물을 표면가교된 고흡수성 수지 100중량부에 대하여 5중량부로 이중 자켓에 투입하며, 1분당 10회의 속도(10rpm)로 패들을 구동시켜 혼합하며 냉각 공정을 수행하였다.
완료 후, 냉각된 고흡수성 수지 입자를 Ploughshare-type mixer(CoriMix®CM, Leodige사제)에 투입하고, Fumed silica (Aerosil200, EVONIK사제)를 고흡수성 수지 100중량부에 대하여 0.1중량부로 투입하여, Ploughshare 를 1분당 200회의 속도(200rpm)로 구동시켜 혼합하였다.
결과의 혼합물을 분급하여 입경 150 내지 850㎛의 고흡수성 수지의 정상 입자와, 입경 850㎛ 초과의 조립자로 분리하였다. 분리된 조립자는 롤밀을 이용하여 1회 분쇄한 후, 상기 고흡수성 수지의 정상 입자와 혼합하여, 고흡수성 수지를 제조하였다.
상기 표에서 "중량부"는 표면 가교된 고흡수성 수지 100중량부를 기준으로 한 상대적인 함량비이다.
실험예
1
상기 실시예 및 비교예에서 최종 제조한 고흡수성 수지에 대해 하기와 같은 방법으로 흡수 성능을 평가하였다.
다르게 표기하지 않는 한, 하기 물성 평가는 모두 항온항습(23±1℃, 상대습도 50±10%)에서 진행하였고, 생리식염수 또는 염수는 0.9 중량% 염화나트륨(NaCl) 수용액을 의미한다.
또한, 다르게 표기하지 않는 한, 최종 제조한 고흡수성 수지에 대한 물성 평가는 ASTM 규격의 체로 분급한 150㎛ ~ 850㎛의 입경을 갖는 수지에 대해 수행하였다.
(1) 함수율
상기 실시예 및 비교예에서 최종 제조한 고흡수성 수지에 대해 함수율을 측정하였다. 상기 함수율은 고흡수성 수지 총 중량에 대해 차지하는 수분의 함량으로, 하기 수학식 1에 따라 산출하였다.
구체적으로는, 적외선 가열을 통해 고흡수성 수지의 온도를 올려 건조하는 과정에서 고흡수성 수지 중의 수분 증발에 따른 중량 감소분을 측정하여 계산하였다. 이때, 건조 조건은 상온에서 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도 상승 단계 5분을 포함하여 40분으로 설정하였다. 건조 전/후 고흡수성 수지의 중량을 각각 측정하고, 하기 수학식 1에 따라 계산하였다.
[수학식 1]
함수율(중량%)= [(Ao-At) / Ao] X 100
상기 식에서 At는 건조 후 고흡수성 수지의 중량이고, Ao는 건조 전 고흡수성 수지의 중량이다.
(2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)
상기 실시예 및 비교예에서 최종 제조한 고흡수성 수지의 무하중 하 흡수 배율에 의한 보수능을 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 측정하였다.
구체적으로, 실시예 및 비교예를 통해 각각 얻은 고흡수성 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후, 상온에서 생리식염수(0.9 중량%)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정하였다.
얻어진 각 질량을 이용하여 하기 수학식 3에 따라 CRC(g/g)를 산출하였다.
[수학식 3]
CRC (g/g) = {[W2(g) - W1(g)]/W0(g)} - 1
(3) 가압 흡수능 (AUP: Absorbency under Pressure)
상기 실시예 및 비교예에서 최종 제조한 고흡수성 수지의 0.3 psi의 가압 흡수능을 EDANA법 WSP 242.3에 따라 측정하였다.
구체적으로, 내경 25 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 고흡수성 수지 W0(g) (0.9 g)을 균일하게 살포하고, 그 위에 0.3 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 25 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
얻어진 각 질량을 이용하여 하기 수학식 4에 따라 가압 흡수능(g/g)을 산출하였다.
[수학식 4]
AUP(g/g) = [W4(g) - W3(g)]/W0(g)
상기 측정을 5회 반복하고, 그 평균값 및 표준편차를 구하였다.
(4) 850 ㎛ 초과(#20상)의 입경을 갖는 조립자 함량
실시예 및 비교예에서 냉각 및 가수 단계 후 수득한 고흡수성 수지 입자를 ASTM 규격의 850 ㎛(20 메쉬), 600 ㎛(30 메쉬), 300 ㎛ (50 메쉬), 및 150 ㎛ (100 메쉬)의 크기의 눈금을 갖는 표준 체(sieve)를 이용하여 분급하고, 850 ㎛ 초과의 입경을 갖는 조립자(coarse particle)의 중량을 측정한 후, 상기 냉각 및 가수된 고흡수성 수지 입자의 총 중량에 대한 상기 조립자의 중량비를 백분율로 나타내었다(중량%).
단위 | 실시예 | 비교예 | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | |||
CRC | g/g | 36.7 | 37.2 | 36.9 | 36.5 | 37.2 | 37.7 | 37.1 | 37.1 | 36.6 | 37.4 | |
0.3 AUP | 평균 | g/g | 31.7 | 30.1 | 30.5 | 30.0 | 30.3 | 29.3 | 30.8 | 31.5 | 28.9 | 27.2 |
표준 편차 | 0.3 | 0.7 | 0.3 | 0.3 | 0.2 | 0.5 | 0.4 | 0.3 | 0.4 | 1.2 | ||
함수율 | 중량% | 1.7 | 1.9 | 1.4 | 2.6 | 1.8 | 1.7 | 1.8 | 0.3 | 1.4 | 1.5 | |
조립자 함량 | 중량% | 0.3 | 0.5 | 0.3 | 0.7 | 0.1 | 0.2 | 0.3 | 0.0 | 5.4 | 5.7 |
실험결과, 실시예 1은 비교예 1과 비교하여 높은 함수율을 보유하면서도 CRC 및 AUP 등 흡수 성능의 저하가 없었다. 또 비교예 2와 비교하여 850 ㎛ 초과의 입경을 갖는 조립자 함량이 감소되고, CRC 및 AUP의 흡수 성능 면에서도 보다 우수한 효과를 나타내었다.
또, 실시예 2는 비교예 3과 비교하여 850 ㎛ 초과의 입경을 갖는 조립자 함량이 감소되고, CRC 및 AUP의 흡수 성능 면에서 우수한 효과를 나타내었다. 또 비교예 3과 비교하여 AUP 및 A/C 효율 면에서도 물성 편차가 작았다.
실험예 2
고흡수성 수지의 제조시 무기물질 투입에 따른 케이킹 방지 효과를 평가하기 위하여, 무기 물질을 사용하여 제조한 실시예 및 비교예의 최종 고흡수성 수지에 대해 하기와 같은 방법으로 케이킹 방지(A/C, Anti-caking) 효율을 측정하였다.
<측정 장치>
- 전자저울(정밀도: 0.01 g)
- 항온항습 챔버(온도:40℃, 습도:80%RH)
- 페트리 디쉬(petri dish, ø: 90 mm, 높이: 15 mm)
- 스톱 워치
- A4 용지
<측정방법>
① 먼저, 준비된 페트리 디쉬의 무게(W5)를 측정하였다.
② 다음으로, 무게를 측정한 페트리 디쉬에, 시료로서 상기 실시예 또는 비교예에서 제조한 고흡수성 수지 2±0.01 g을 고르게 도포하였다.
③ 이후, 고흡수성 수지 시료가 담긴 페트리 디쉬를 온도 40℃, 습도 80%RH로 셋팅된 항온항습 챔버에 넣고 10 분간 방치하였다.
④ 10 분 경과 후 항온항습 챔버에서 페트리 디쉬를 꺼내 준비된 A4 용지에 뒤집어놓은 다음 5 분간 방치하였다.
⑤ 5 분 경과 후 A4 용지에 떨어진 고흡수성 수지 시료의 무게(S1) 및 이때의 페트리 디쉬의 무게(S2)를 각각 측정한 다음, 하기 수학식 2에 의해 케이킹 방지 효율을 계산하되, 소수점 첫째자리에서 반올림하여 나타내었다.
[수학식 2]
상기 식에서,
W5는 지름 90 mm 및 높이 15 mm의 페트리 디쉬의 무게(g)이고,
S1은 W5로 무게가 측정된 페트리 디쉬에 고흡수성 수지 시료 2±0.01 g을 고르게 도포한 후, 상기 시료가 도포된 페트리 디쉬를 온도 40℃ 및 습도 80%RH로 셋팅된 항온항습 챔버 안에 10 분간 방치한 다음 이를 꺼내 A4 용지에 뒤집어 놓고 5분이 경과된 후 측정한 상기 A4 용지에 떨어진 고흡수성 수지 시료의 무게(g)이고,
S2는 상기 S1을 측정한 시점에서의 페트리 디쉬의 무게(g)이다.
상기 측정을 5회 반복하고, 그 평균값 및 표준편차를 구하였다.
단위 | 실시예 2 | 실시예 3 | 실시예 4 | 실시예 5 | 실시예 6 | 실시예 7 | 비교예 3 | ||
A/C 효율 | 평균 | % | 93 | 96 | 93 | 95 | 91 | 96 | 66 |
표준 편차 | 7.9 | 6.7 | 9.2 | 7.7 | 9.1 | 6.9 | 27.3 |
실험결과, 실시예 2 내지 7은 비교예 3에 비해 현저히 증가된 케이킹 방지 효율을 나타내었으며, 물성 편차 또한 작았다.
[부호의 설명]
1: 바디부
1a: 회전부
1b: 고정부
1c: 고흡수성 수지 투입구
1d: 고흡수성 수지 배출구
1e: 첨가제 투입구
2a: 냉각 공기 투입용 노즐
2b: 물 투입용 노즐
3: 스페이드형 블레이드
4: 구동 모터
10: 스페이드형 냉각기
20: 고흡수성 수지 입자
Claims (18)
- 산성기를 갖는 수용성 에틸렌계 불포화 단량체와 내부 가교제가 가교 중합된 함수겔 중합체를 형성하는 단계,상기 함수겔 중합체를 미립화하여 함수 고흡수성 수지 입자를 제조하는 단계,상기 함수 고흡수성 수지 입자를 건조하여 건조 고흡수성 수지 입자를 제조하는 단계,상기 건조 고흡수성 수지 입자에 표면가교제를 투입하고 반응시켜, 고흡수성 수지 입자의 표면 중 적어도 일부에 표면가교층을 형성하는 단계, 및상기 표면가교층이 형성된 고흡수성 수지 입자를 스페이드형 냉각기로 냉각 및 가수하는 단계를 포함하고,상기 스페이드형 냉각기는, 내부에 상기 표면가교층이 형성된 고흡수성 수지 입자가 이송되는 이송 공간을 포함하며, 회전 가능한 바디부; 상기 바디부에 설치되어, 상기 이송 공간의 내부로 냉각 공기 및 물을 각각 투입시키는 두개의 노즐; 상기 바디부 내벽에 상하 구동이 가능하게 설치되어, 이송 공간 내의 상기 표면가교층이 형성된 고흡수성 수지 입자를 아래에서 위로 퍼 올리는 하나 이상의 스페이드형 블레이드; 및 상기 바디부와 연결되어 구동력을 제공하는 구동모터;를 포함하고, 상기 바디부 내 스페이드형 블레이드에 의해 상기 표면가교층이 형성된 고흡수성 수지 입자를 퍼올린 후, 상기 바디부의 회전에 의해 상기 퍼 올려진 고흡수성 수지 입자를 중력 방향으로 떨어뜨려 바디부의 이송 공간 내부로 투입된 냉각 공기 및 물과 접촉시킴으로써 상기 표면가교층이 형성된 고흡수성 수지 입자에 대한 냉각 및 가수가 이루어지는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 냉각 공기의 온도는 10℃ 내지 60℃이고, 상기 표면 가교층이 형성된 고흡수성 수지 입자의 투입량 1kg 기준 0.01 m3/h/kg 내지 0.25m3/h/kg의 속도로 냉각기 내로 투입되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 물의 온도는 10℃ 내지 60℃이고, 상기 표면 가교층이 형성된 고흡수성 수지 입자 100중량부에 대해 2 내지 20중량부의 양으로 투입되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 바디부는 1분당 5 내지 50회의 속도로 회전되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 냉각 및 가수 시, 무기 물질이 더 혼합되며,상기 무기 물질은 상기 바디부에 설치되어 상기 바디부의 공간 내부로 첨가제를 투입시키는 첨가제용 노즐을 통해 투입되거나, 또는 고흡수성 수지와 혼합되어 투입되는,고흡수성 수지의 제조 방법.
- 제5항에 있어서,상기 무기 물질은 실리카, 클레이, 알루미나, 실리카-알루미나 복합재, 티타니아, 아연산화물 및 알루미늄 설페이트로 이루어진 군에서 선택되는 1종 이상인,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 함수겔 중합체를 형성하는 단계는,수용성 에틸렌계 불포화 단량체의 적어도 일부의 산성기를 중화하는 단계, 및 상기 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 및 중합 개시제를 포함하는 단량체 조성물에 대하여 중합을 수행하여, 함수겔 중합체를 형성하는 단계로 수행되거나, 또는산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 및 중합 개시제를 포함하는 단량체 조성물에 대하여 중합을 수행하여, 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제가 가교 중합된 중합체를 형성하는 단계, 및 상기 중합체의 적어도 일부의 산성기를 중화시켜 함수겔 중합체를 형성하는 단계로 수행되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 건조는 유동식(moving type)으로 수행되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 건조는 횡형 믹서 건조기(Horizontal-type Mixer Dryer), 로터리 킬른(Rotary kiln), 로터리 드라이어(Rotary Dryer), 패들 드라이어(Paddle Dryer) 또는 스팀 튜브 드라이어(Steam tube dryer)를 이용하여 수행되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 미립화는 미립화 장치에 의해 수행되며,상기 미립화 장치는,내부에 함수겔 중합체가 이송되는 이송 공간을 포함하는 바디부;상기 이송 공간의 내부에 회전 가능하게 설치되어 함수겔 중합체를 이동시키는 스크류 부재;상기 스크류 부재에 회전 구동력을 제공하는 구동모터;상기 바디부에 설치되어 상기 함수겔 중합체를 분쇄하는 커터 부재; 및상기 커터 부재에 의해 분쇄된 상기 함수겔 중합체를 상기 바디부의 외부로 배출하며, 다수의 홀(hole)이 형성된 다공판을 포함하는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 미립화는 2회 이상 수행되는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 미립화는, 계면 활성제의 존재 하에 수행되는,고흡수성 수지의 제조 방법.
- 제12항에 있어서,상기 계면 활성제는 하기 화학식 2로 표시되는 화합물 또는 이의 염을 포함하는,고흡수성 수지의 제조 방법.[화학식 2]상기 화학식 2에서,A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐, , 또는 이고, 단, 이들 중 하나 이상은 카보닐 또는 이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고, 은 각각 인접한 산소 원자와 연결되고, 은 인접한 R1, R2 및 R3와 각각 연결되고,R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,n은 1 내지 9의 정수이다.
- 제1항에 있어서,상기 미립화시 금속 수산화물 및 금속염으로 이루어진 군에서 선택되는 1종 이상의 첨가제가 더 투입되는,고흡수성 수지의 제조 방법.
- 제14항에 있어서,상기 금속 수산화물은 소듐 하이드록사이드 또는 포타슘 하이드록 사이드이고,상기 금속염은 소듐 설파이트, 소듐 퍼설페이트, 포타슘 퍼설페이트 또는 암모늄 퍼설페이트인,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 냉각 및 가수 단계 후, 결과로 수득된 고흡수성 수지 입자 총 중량에 대하여 입경 850㎛ 초과의 조립자 함량이 3중량% 이하인,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 냉각 및 가수 단계 후, 결과로 수득된 고흡수성 수지 입자를 분급하여 입경 850 ㎛ 초과의 조립자와 입경 150 내지 850㎛의 고흡수성 수지의 정상 입자로 분리하고, 분리된 상기 조립자를 분쇄한 후, 상기 고흡수성 수지의 정상 입자와 혼합하는 단계를 더 포함하는,고흡수성 수지의 제조 방법.
- 제1항에 있어서,상기 고흡수성 수지는 하기 (i) 내지 (iii)의 조건을 만족하는,고흡수성 수지의 제조 방법:(i) 함수율: 고흡수성 수지 총 중량 기준, 1.2 내지 5중량%(ii) EDANA WSP 241.3에 따라 측정한 원심분리 보수능: 30 내지 45g/g(iii) EDANA법 WSP 242.3에 따라 측정한 0.3 psi 가압 흡수능의 평균: 29 내지 40 g/g, 상기 0.3 psi의 가압 흡수능의 표준편차: 1 이하.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280006960.1A CN116368173A (zh) | 2021-06-18 | 2022-06-20 | 超吸收性聚合物的制备方法 |
US18/033,296 US20230390735A1 (en) | 2021-06-18 | 2022-06-20 | Preparation method of superabsorbent polymer |
JP2023526437A JP7515959B2 (ja) | 2021-06-18 | 2022-06-20 | 高吸水性樹脂の製造方法 |
EP22825391.0A EP4212578A4 (en) | 2021-06-18 | 2022-06-20 | METHOD FOR PRODUCING A SUPERABSORBENT POLYMER |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210079644 | 2021-06-18 | ||
KR10-2021-0079644 | 2021-06-18 | ||
KR10-2021-0080233 | 2021-06-21 | ||
KR20210080233 | 2021-06-21 | ||
KR10-2022-0074732 | 2022-06-20 | ||
KR1020220074732A KR20220169439A (ko) | 2021-06-18 | 2022-06-20 | 고흡수성 수지의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022265468A1 true WO2022265468A1 (ko) | 2022-12-22 |
Family
ID=84527272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/008693 WO2022265468A1 (ko) | 2021-06-18 | 2022-06-20 | 고흡수성 수지의 제조 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230390735A1 (ko) |
JP (1) | JP7515959B2 (ko) |
WO (1) | WO2022265468A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300425A (ja) * | 2003-03-14 | 2004-10-28 | Nippon Shokubai Co Ltd | 吸水性樹脂粉末の表面架橋処理方法 |
JP5619010B2 (ja) * | 2009-08-27 | 2014-11-05 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 |
KR20150141425A (ko) * | 2014-06-10 | 2015-12-18 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
KR20180127377A (ko) * | 2016-03-31 | 2018-11-28 | 스미토모 세이카 가부시키가이샤 | 흡수성 수지 입자의 제조 장치 |
KR20190077540A (ko) * | 2016-11-16 | 2019-07-03 | 가부시키가이샤 닛폰 쇼쿠바이 | 흡수성 수지 분말의 제조 방법, 그리고 입자상 함수 겔의 건조 장치 및 건조 방법 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5132927B2 (ja) | 2005-12-22 | 2013-01-30 | 株式会社日本触媒 | 吸水性樹脂の製造方法 |
-
2022
- 2022-06-20 JP JP2023526437A patent/JP7515959B2/ja active Active
- 2022-06-20 WO PCT/KR2022/008693 patent/WO2022265468A1/ko active Application Filing
- 2022-06-20 US US18/033,296 patent/US20230390735A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004300425A (ja) * | 2003-03-14 | 2004-10-28 | Nippon Shokubai Co Ltd | 吸水性樹脂粉末の表面架橋処理方法 |
JP5619010B2 (ja) * | 2009-08-27 | 2014-11-05 | 株式会社日本触媒 | ポリアクリル酸(塩)系吸水性樹脂およびその製造方法 |
KR20150141425A (ko) * | 2014-06-10 | 2015-12-18 | 주식회사 엘지화학 | 고흡수성 수지의 제조 방법 |
KR20180127377A (ko) * | 2016-03-31 | 2018-11-28 | 스미토모 세이카 가부시키가이샤 | 흡수성 수지 입자의 제조 장치 |
KR20190077540A (ko) * | 2016-11-16 | 2019-07-03 | 가부시키가이샤 닛폰 쇼쿠바이 | 흡수성 수지 분말의 제조 방법, 그리고 입자상 함수 겔의 건조 장치 및 건조 방법 |
Non-Patent Citations (2)
Title |
---|
"UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER |
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203 |
Also Published As
Publication number | Publication date |
---|---|
JP2023548164A (ja) | 2023-11-15 |
US20230390735A1 (en) | 2023-12-07 |
JP7515959B2 (ja) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022065843A1 (ko) | 생분해성 고흡수성 수지 및 이의 제조 방법 | |
WO2021125872A1 (ko) | 고흡수성 수지 조성물의 제조 방법 | |
WO2022055290A1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
WO2021125871A1 (ko) | 고흡수성 수지 조성물의 제조 방법 | |
WO2022265466A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2021125559A1 (ko) | 고흡수성 수지 조성물 | |
WO2022265472A1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
WO2021071246A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2022265468A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2022265477A1 (ko) | 고흡수성 수지의 함수겔 미립화 장치 | |
WO2022114609A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2023149681A1 (ko) | 고흡수성 수지의 함수겔 미립화 장치 | |
WO2022114610A1 (ko) | 고흡수성 수지 및 이의 제조 방법 | |
WO2022265471A1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
WO2022265459A1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
WO2022265475A1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 | |
WO2023075482A1 (ko) | 고흡수성 수지 조성물 및 이의 제조 방법 | |
WO2021150095A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2023287262A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2024135976A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2024128871A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2024128449A1 (ko) | 고흡수성 수지의 제조방법 | |
WO2024136394A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2022124767A1 (ko) | 고흡수성 수지의 제조 방법 | |
WO2022265473A1 (ko) | 고흡수성 수지의 제조 방법 및 고흡수성 수지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22825391 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022825391 Country of ref document: EP Effective date: 20230413 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023526437 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |