WO2022265456A1 - 손가락 운동 측정을 위한 장치 - Google Patents

손가락 운동 측정을 위한 장치 Download PDF

Info

Publication number
WO2022265456A1
WO2022265456A1 PCT/KR2022/008640 KR2022008640W WO2022265456A1 WO 2022265456 A1 WO2022265456 A1 WO 2022265456A1 KR 2022008640 W KR2022008640 W KR 2022008640W WO 2022265456 A1 WO2022265456 A1 WO 2022265456A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
motion
hand
wrist
wearing
Prior art date
Application number
PCT/KR2022/008640
Other languages
English (en)
French (fr)
Inventor
문성곤
박병걸
Original Assignee
주식회사 네오펙트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 네오펙트 filed Critical 주식회사 네오펙트
Publication of WO2022265456A1 publication Critical patent/WO2022265456A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators

Definitions

  • the present invention relates to a device for measuring finger motion, and more particularly, improves fit for a finger by facilitating bending of a finger joint, and facilitates extension and contraction of a bent portion when bending of a finger joint occurs. It relates to a device for measuring finger motion capable of reducing damage to a sensor module.
  • a conventional finger rehabilitation treatment device includes a body portion covering the palm and the back of the hand like a glove, and finger portions extending to correspond to each finger in the body portion.
  • Each finger portion is formed in a finger-shaped planar pattern, and includes an inner finger portion connected at the palm side corresponding to the finger and an outer finger portion connected at the back of the hand corresponding to the finger.
  • the finger part is wrapped around the finger through the inner finger part and the outer finger part. are formed in the width direction of the finger portion. Therefore, the wearer of the glove-type finger rehabilitation treatment device undergoes rehabilitation treatment in a state in which wrinkles are formed in the width direction in the inner finger part by the bending angle of the finger joint.
  • the finger part deteriorates the fit to the finger, thereby reducing the operability of the finger, and there is a problem that the bending angle of the finger joint cannot be accurately sensed. .
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a device for measuring finger motion and a method for manufacturing the same, which can accurately measure bending motion of a finger joint.
  • Another object of the present invention is to provide a device for measuring finger motion and a method of manufacturing the same, which can improve fit to a finger by reducing resistance caused by a wearable unit and a motion measuring unit.
  • an apparatus for measuring finger motion includes a back of the hand wearable part worn on the back of the hand; a finger wearing portion extending to one side from the back of the hand wearing portion; a wrist wearing unit worn on a wrist; a finger motion detection sensor coupled to the finger wearing unit to detect motion information of a finger; a back of the hand motion detection sensor that is disposed on the back of the hand wearing part and detects motion information on the back of the hand; a wrist motion detection sensor disposed on the wrist wearable unit to detect motion information of the wrist; and a control module capable of calculating a motion of at least one of the finger, the back of the hand, and the wrist using at least one piece of motion information transmitted from the finger motion detection sensor, the back of the hand motion detection sensor, and the wrist motion detection sensor.
  • a device for motion measurement may be provided.
  • an apparatus for measuring finger motion that can be transmitted to a terminal and displayed on the terminal can be provided with the motion information of the finger, wrist motion information, and motion information of the back of the hand calculated by the control module.
  • At least one of the finger movement detection sensor, the back of the hand movement detection sensor, and the wrist movement detection sensor may be provided as an IMU sensor for measuring finger movement.
  • a plurality of finger movement detection sensors may be provided, and a device for measuring finger movement may be provided that is coupled to a plurality of finger wearing parts provided to be disposed on each finger.
  • control module compares the motion information of at least one finger transmitted from the plurality of finger motion detection sensors with the motion information of the back of the hand transmitted from the back of the hand motion detection sensor to determine at least one of the fingers, the back of the hand, and the wrist.
  • An apparatus for measuring finger motion capable of calculating motion may be provided.
  • control module compares the motion information of at least one finger transmitted from the plurality of finger motion detection sensors with the movement information of the back of the hand transmitted from the wrist motion detection sensor, and determines the movement of at least one of the fingers, the back of the hand, and the wrist.
  • An apparatus for measuring finger motion capable of calculating ? may be provided.
  • a device for measuring finger motion includes a back of the hand wearing part worn on the back of the hand, a finger wearing part extending to one side from the back of the hand wearing part, and a finger coupled to the finger wearing part to sense the motion of the finger.
  • a motion sensor a control module disposed on the back of the hand worn part and connected to the finger motion sensor, a wrist worn part disposed on the other side of the back of the hand worn part, formed on the finger worn part and connected to the back of the hand worn part, and having one or more bent parts.
  • 1 connection part and a second connection part connecting the control module and the wrist wearable part and having one or more bent parts.
  • the device for measuring finger motion may further include a first wire electrically connecting the finger motion sensor and the control module, and the first wire may have one or more bent portions.
  • the device for measuring the finger motion may further include a first wire cover surrounding the finger motion detection sensor and the first wire.
  • the device for measuring finger motion may further include a sensor cover surrounding the finger motion detection sensor inside the first wire cover.
  • the device for measuring the finger motion may further include a second wire electrically connecting the control module and the wrist wearable part, and the second wire may have one or more bent parts.
  • the device for measuring finger motion may further include a second wire cover surrounding the second wire.
  • the thumb wearable portion worn on the thumb includes a wrist connection portion disposed between the back of the hand wearable portion and the first connection portion, and the wrist connection portion may have one or more bent portions.
  • a device for measuring a finger motion includes a first wearable band coupled to the waist connection portion and having a plurality of rings formed along the longitudinal direction, and a first wearable band formed on the back of the hand wearable portion and fixing one of the plurality of rings. It further includes a band hanger, the first band hanger extends to one side, and may have a width decreasing toward the distal end.
  • the device for measuring the motion of the finger may further include a motion sensor for detecting motion of the back of the hand disposed on the back of the hand wearable part and detecting the movement of the back of the hand.
  • the device for measuring a finger motion may further include a wrist motion detection sensor that is disposed on the wrist wearable part and detects a motion of the wrist.
  • control module may receive at least one of motion data of each finger, motion data of the back of the hand, and motion data of the wrist detected by the finger motion detection sensor, the back of the hand motion detection sensor, and the wrist motion detection sensor.
  • control module may calculate the bending state of the finger according to at least one of motion data of each finger, motion data of the back of the hand, and motion data of the wrist.
  • the device for measuring finger motion is coupled to a wrist wearable part and a second wearable band formed with a plurality of rings along the length direction, formed at the distal end of the second wearable band, and using any one of the plurality of rings. It further includes a second hanger band for fixing, and the second hanger band extends to one side, and the width may decrease toward the distal end.
  • the device for measuring finger motion further includes a battery disposed in the wrist wearable part, a first wire connecting the finger motion detection sensor and the control module, and a second wire connecting the control module and the wrist wearable part, wherein the first Each of the wire and the second wire may have one or more bent portions, and the battery may be connected to the finger movement detection sensor and the control module through the first wire and the second wire to supply power.
  • manufacturing a sensor assembly by injecting the sensor cover to position the sensor therein; Manufacturing a first wire cover; assembling the sensor assembly to the first wire cover; manufacturing a second wire cover having a shape corresponding to that of the first wire cover; forming a wire assembly by assembling the first wire cover and the second wire cover to which the sensor assembly is assembled; and heating the wire assembly to form a silicone molding on the wire assembly.
  • the manufacturing method of the sensor module in which the injection time of the sensor cover is shorter than the time of heating the wire assembly, may be provided.
  • the manufacturing method of the sensor module may be provided in which the injection time of the sensor cover is within 5 seconds.
  • a method of manufacturing a sensor module may be provided in which the time for heating the wire assembly is between 7 minutes and 20 minutes.
  • the manufacturing method of the sensor module may be provided where the injection temperature of the sensor cover is between 150°C and 250°C.
  • the temperature for heating the wire assembly may be provided with a method of manufacturing a sensor module between 150 ° C and 250 ° C.
  • first wire cover and the second wire cover may be provided with a method of manufacturing a sensor module having different hardness.
  • the wire assembly may be provided with a manufacturing method of a sensor module having one or more bent parts.
  • the device for measuring the motion of the finger may include: a back of the hand wearing part worn on the back of the hand;
  • a finger wearing portion extending to one side from the back of the hand wearing portion; a sensor module that is coupled to the finger wearer and detects a motion of the finger;
  • the control module disposed on the back of the hand and connected to the sensor module;
  • a wrist wearing unit disposed on the other side of the back of the hand wearing unit; a first connection part formed on the finger wearing part, connected to the back of the hand wearing part, and having one or more bent parts; and a second connection portion connecting the control module and the wrist wearable portion and having one or more bent portions.
  • the embodiments of the present invention not only improves the fit of the finger due to the ease of bending the finger joint, but also has the effect of enabling the bending angle of the finger joint to be precisely sensed, and can be particularly used for finger rehabilitation exercise. there is.
  • the embodiments of the present invention it is possible to reduce damage to the sensor when manufacturing the motion measuring unit, and since the sensor is easy to protect even when the device for measuring finger motion is used, the durability of the device for measuring finger motion can be obtained.
  • the sensor assembly is molded by injection during manufacture of the sensor module, it can be manufactured in a uniform shape, and the time required for the manufacturing process of the sensor module can be shortened.
  • the sensor module can be rapidly manufactured, the time during which the sensor is exposed to a high-temperature environment can be reduced during manufacturing of the sensor module, thereby improving the reliability of the manufacturing process of the sensor module.
  • FIG. 1 is a perspective view of a device for measuring finger motion according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a device for measuring finger motion according to an embodiment of the present invention.
  • FIG 3 is a perspective view of a wearing unit of a device for measuring finger motion according to an embodiment of the present invention.
  • Figure 4 is a perspective view showing the bottom surface of the device for measuring finger motion according to an embodiment of the present invention.
  • Fig. 5 is an explanatory diagram showing the structure of a finger.
  • FIG. 6 is a perspective view of a sensor module included in an apparatus for measuring finger motion according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of manufacturing the sensor module shown in FIG. 6 .
  • FIG. 8 is a diagram schematically illustrating a manufacturing method of the sensor module shown in FIG. 6 .
  • FIG. 9 is a diagram showing the structure of a conventional sensor module.
  • FIG. 1 is a perspective view of a device for measuring finger motion according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a device for measuring finger motion according to an embodiment of the present invention
  • FIG. 4 is a perspective view showing a bottom surface of the device for measuring finger motion according to an embodiment of the present invention.
  • a device 1 for measuring finger motion includes a wearing unit 10 and a motion measuring unit 20 .
  • the wearing unit 10 includes a back of the hand wearing portion 12 having a shape corresponding to the back of the hand, and a finger wearing portion 11: 11a formed extending from the back of the hand wearing portion 12 and having a shape corresponding to the wearer's fingers. ⁇ 11e).
  • the back of the hand wearing part 12 is a part worn on the back of the wearer's hand.
  • Wearing part 12 on the back of the hand includes a flat plate part 120, a plurality of couplers 121, an extension part 122 protruding from the flat part 120, and a first band hook 123 formed on the extension part. .
  • the flat plate part 120 is formed in a wide plate shape to cover the back of the hand, and is molded of a synthetic material with excellent elasticity.
  • the flat plate part 120 may be molded of a silicon material. Silicone is harmless to the human body and is suitable as a material for the wearing unit 10 because of its excellent wearing comfort.
  • the control module 22 of the motion measurement unit 20 is coupled to the top of the back of the hand wearable part 12 .
  • a plurality of couplers 121 are formed on the flat plate part 120 of the back of the hand wearable part 12, and a coupling protrusion (not shown) formed on the lower part of the control module 22 is inserted into the couplers 121.
  • the first band hanger 123 is a member for fixing the first wear band 118, and a detailed description thereof will be described later.
  • the finger wearing portion 11 is integrally formed on the back of the hand wearing portion 12.
  • the wearing unit 10 is preferably manufactured through injection molding, and the back of the hand wearable part 12 and the finger wearable part 11 are integrally molded.
  • the finger wearing parts 11: 11a to 11e include first connection parts 110: 110a to 110e, joint wearing parts 111: 111a to 111e, and wearing rings 114: 114a to 114b.
  • the first connection part 110 is located on the first joint of the finger and is connected to the flat plate part 120 of the back of the hand wearing part 12, and the length is elastically deformed according to the bending motion of the finger.
  • the device 1 for measuring finger motion can be used as various types of data input devices by detecting the motion of the finger, mainly for patients with neurological disorders in which the motion of the fingers is not free. It can also be used as a rehabilitation device that is worn by a person to measure the motion of the finger, collect data about it, and use it for rehabilitation. Therefore, it is important that the finger is designed to minimize resistance when a patient who has difficulty applying a large amount of force to the finger bends the finger.
  • the first connection portion 110 has one or more bent portions as shown in FIGS. 1 to 4 , and preferably has a meander structure in a meandering and repeating meandering shape. Since the first connection part 110 has one or more bent parts, a large elastic deformation occurs compared to the applied force, thereby minimizing the resistance of the elastic restoring force to the movement of the finger.
  • joint wearing parts 111 located at the first and second nodes of the finger are formed: 111a to 111e.
  • the joint wearable part 111 is preferably formed with joint through-holes 112: 112a to 112e for minimizing the deformation of the finger wearable part 11 with respect to bending of the finger joint to minimize the resistance to the wearer's hand movement.
  • the joint wearing portion 111 The most deformation occurs when the finger is bent, and when the finger wearing portion 11 is located on the finger, the part where the resistance is most likely to occur in the finger wearing portion 11 is the joint wearing portion 111. ) is the corresponding part. Therefore, the joint through-hole 112 is formed in the central portion of the joint wearing portion 111 to detect the bending of the finger but minimize elastic deformation. When the finger is bent, a part of the joint is exposed through the joint through-hole 112, and thus, the elastic deformation of the joint wearing part 111 and the resistance due to the restoring force are minimized.
  • Sensor support portions 113 for supporting the finger movement detection sensors (211: 211a to 211e) are formed in the joint wearing parts (111: 111a to 111e). Since the sensor support part 113 supports the lower part of the finger motion detection sensor 211 , the finger motion detection sensor 211 is stably fixed to the finger wearing part 11 .
  • Wearing rings 114 are formed downward from the end of the joint wearing portion 111 so that the finger wearing portion 11 is fixed to the finger.
  • the wearer's finger is inserted into the wear ring 114 so that the finger wearer 11 can adhere well to the wearer's finger. Since the thickness of each person's fingers is different, it is preferable that the wearing ring 114 has a structure that is easily stretched.
  • one or more bent portions, preferably bending members 115 having a meander structure: 115a to 115e are formed below the wearing ring 114. Through this structure, the elastic deformation of the wearing ring 114 is facilitated.
  • the finger motion detection sensor 211 of the motion measurement unit 20 is coupled to the finger wearer 11, and a coupling groove may be formed in the joint wearer 111 to be coupled thereto.
  • the coupling groove may be formed adjacent to the sensor support 113 .
  • Coupling parts 212 (212a to 212e) provided below the finger motion detection sensor 211 are inserted into the coupling groove and coupled thereto. As shown in FIG. 2, a head is formed at the end of the coupling part 212, so that it is not easily caught after penetrating the coupling groove. Since the finger wearing part 11 has elasticity, it is possible to insert the coupling part 212 into the coupling groove by easily deforming the coupling groove during coupling. Meanwhile, a coupling groove for coupling the finger wearer 11 and the motion measurement unit 20 may be additionally formed in the finger wearer 11 as needed.
  • the above-mentioned finger wearing portion 11 is divided according to the fingers, and includes a thumb wearing portion 11a, an index finger wearing portion 11b, a middle finger wearing portion 11c, a ring finger wearing portion 11d, and a small finger wearing portion. (11e).
  • the structure of the thumb and the other four fingers of a human finger is slightly different.
  • the thumb consists of two joints, and the index finger or little finger consists of three joints.
  • the metatarsal bone has a structure that can easily move, a structure that easily elastically deforms against the movement of the metatarsal bone is required. Therefore, between the back of the hand wearable part and the first connection part 110a of the thumb wearable part 11a, there is at least one bent part, preferably a meander structure, so that it is elastically deformed according to the movement of the waist part of the thumb. It is preferable to further include a waist connection portion 116.
  • a first wearing band 118 may be provided to further improve adhesion of the wearing unit 10 to the hand. As shown in FIG. 3 , the first wearable band 118 is coupled to the wrist joint 116 and a plurality of rings are formed along the longitudinal direction of the first wearable band 118 .
  • a first band hook 123 for fixing any one of a plurality of rings of the first wearing band 118 may be formed on the back of the hand wearable part 12 .
  • the first band hanger 123 is formed on the extension portion 122 extending in the opposite direction to the portion to which the thumb wearing portion 11a is connected in the flat plate portion 120 .
  • the first band hanger 123 is inserted into any one of the plurality of rings of the first wearing band 118 to fix the first wearing band 118 . Therefore, since the first wearable band 118 is bound to pass through the wearer's palm, adhesion between the wearer's hand and the wearer's hand may be further enhanced.
  • the first wearing band 118 is not coupled to the flat plate portion 120 of the back of the hand wearing portion 12, but is connected to the back of the hand of the thumb wearing portion 11a. (116). Therefore, when the first wearable band 118 is fixed to the first band hanger 123, at least a part of the wrist connection portion 116 is deformed together with the first wearable band 118 to form a thumb wearing portion 11a. increases the adhesion with the hand.
  • the first band hanger 123 is inserted by elastically deforming the loop of the first wearing band 118 . At this time, in order for the first band hook 123 to be easily inserted into the ring of the first wearing band 118, the first band hook 123 extends to one side and has a shape in which the width decreases toward the distal end.
  • the back of the hand wearing part 12 includes a plurality of small protrusions 124 and a cushion member 125 formed on the bottom surface.
  • the plurality of small projections 124 are preferably formed in a hemispherical shape, and a passage through which air can flow is formed in the space between the back of the hand wearable part 12 and the back of the hand, so that even if the wearing unit 10 is worn for a long time, the back of the hand remains. It works to keep you from sweating.
  • the cushion member 125 is disposed on the bottom surface of the back of the hand wearable part 12 and is made of a flexible material. Since the cushion member 125 is disposed at a portion where the back of the hand wearing part 12 directly contacts the back of the hand and can act as a buffer, it is possible to improve the feeling of wearing the back of the hand wearing part 12 .
  • the motion measurement unit 20 includes a finger motion detection unit 21 (21a to 21e) for detecting a motion of a finger, a control module 22, a wrist wearing unit 23, a control module 22, and a wrist wearing unit 23. It includes a second connection part 25 connecting the control module 22 and a second wire 24 electrically connecting the wrist wearing part 23 to each other.
  • the finger motion detecting unit 21: 21a to 21e is a first wire electrically connecting the finger motion detecting sensors 211: 211a to 211e, the finger motion detecting sensors 211: 211a to 211e and the control module 22 ( 210: includes 210a to 210e)).
  • the first wire 210 has a built-in wire, and a wire cover made of silicon surrounds the wire therein.
  • a sensor cover (not shown) surrounds the finger movement detection sensor 211 inside the wire cover.
  • the silicone wire cover which has excellent elasticity, protects the electric wire, and since one or more bent parts are deformed and straightened according to the bending of the finger, resistance to finger movement can be minimized.
  • the sensor since the sensor is double-protected by the sensor cover and the wire cover, failure or breakage of the sensor due to an external environment or impact applied from the outside can be reduced. Meanwhile, a detailed manufacturing method for the first wire 210 will be described later.
  • the finger motion detection sensor 211 is disposed on the finger wearable part 11, for example, as shown in FIG. detect movement.
  • the arrangement and number of the finger movement detection sensors 211 are not limited by the above, and the finger movement detection sensors 211 may be additionally disposed on the knuckles as needed.
  • the finger motion detection sensor 211 includes an inertial measurement unit sensor (IMU).
  • IMU inertial measurement unit sensor
  • the IMU sensor may be a 9-axis IMU sensor based on a micro mechanical system (MEMS).
  • the 9-axis IMU sensor includes a 3-axis acceleration sensor, a 3-axis gyroscope sensor, and a 3-axis terrestrial magnetism sensor.
  • the 3-axis acceleration sensor measures the movement inertia (acceleration) of the x-axis, y-axis, and z-axis.
  • the 3-axis gyroscope sensor measures the rotational inertia (angular velocity) of the x-axis, y-axis, and z-axis.
  • the 3-axis geomagnetic sensor measures the azimuth (direction of the earth's magnetism) of the x-axis, y-axis, and z-axis.
  • the first wire 210 has one or more bends, preferably a meander structure. Through this structure, the first wire 210 can be easily expanded and contracted according to the joint motion of the finger, thereby reducing damage.
  • the first wire 210 may have various lengths corresponding to various finger lengths.
  • the first wire 210 corresponding to the length of the finger worn is selected, and the corresponding wire is connected to the finger motion detection sensor 211 and the control module. It can be used by connecting to (22).
  • a guide groove through which the waist wire 213 passes is formed in the wire guide 214, and a separation prevention protrusion is formed to prevent the waist wire 213 from falling out.
  • the lower part of the wire guide 214 is formed with a coupling part having a coupling head. The coupling head passes through the through-hole 117 formed in the hand-waist connection part 116 and then is inserted and fixed into the through-hole 117.
  • the control module 22 is disposed on the back of the hand wearable part 12 and is connected to the finger movement detection sensor 211 and the back of the hand wearable part 12 .
  • the control module 22 includes a housing forming an exterior, a control unit (not shown) disposed inside the housing, a communication module (not shown), and a back hand motion detection sensor (not shown).
  • control module 22 may include only a sensor for detecting movement of the back of the hand, and the control unit may be disposed inside the wrist wearable part 23 .
  • the housing forming the exterior of the control module 22 may be formed of silicon.
  • control module 22 including the control unit is shown as being disposed on the back of the hand wearing unit 12, but is not limited thereto, and the control unit is worn on the wrist instead of the back of the hand wearing unit 12. may be placed in
  • the control unit may perform calculations and processing of various types of information.
  • the control unit is electrically connected to each of the finger movement detection sensors 211 and the first wire 210, electrically connected to the back of the hand movement detection sensor, and the wrist movement detection sensor and the second wire 24 Connected by , the finger motion detection sensor 211 , the back of the hand motion detection sensor, and the movement data of each of the fingers, the wrist, and the back of the hand detected by the wrist motion detection sensor are transmitted and processed.
  • the control unit may be implemented as a computer or a similar device according to hardware or software or a combination thereof to perform calculations and processing of various types of information.
  • it may be a processor that stores and processes data
  • software it may be provided in the form of a program or code that drives a circuit.
  • the control unit may exchange data with the communication unit and the memory. For example, the control unit transmits each movement data of a finger, wrist, and hand to a server or a terminal that is a communication terminal through a communication module.
  • the controller may receive at least one of motion data of each finger, motion data of the back of the hand, and motion data of the wrist detected by the finger motion detection sensor 211, the back of the hand motion detection sensor, and the wrist motion detection sensor. .
  • the controller may calculate the bent state of the wearer's finger according to at least one of the received motion data of each finger, motion data of the back of the hand, and motion data of the wrist.
  • the communication module synchronizes the communication terminal and the device 1 for measuring finger motion according to embodiments of the present invention to enable data communication.
  • the communication module provides the communication terminal with motion data of each finger, wrist, and back of the hand detected by each of the finger motion detection sensors 211, the back of the hand motion detection sensor, and the wrist motion detection sensor, in real time.
  • the communication terminal receives, in real time, the user's hand motion information, for example, motion data of each finger, wrist, and hand, transmitted through the communication module from the device for measuring finger motion according to embodiments of the present invention, and stores and can be dealt with
  • the communication terminal may generate a virtual hand-shaped object corresponding to the received user's hand motion information and display it on a display screen.
  • Wireless and/or wireless communication technologies may be used for the above data communication.
  • Wireless communication methods include near field communication (NFC), wireless USB, ultra wide band (UWB), WiFi, Bluetooth, ZIGBEE, wireless Examples include radio frequency (RF) and infrared data association (IrDA).
  • NFC near field communication
  • UWB ultra wide band
  • WiFi WiFi
  • Bluetooth ZIGBEE
  • wireless Examples include radio frequency (RF) and infrared data association (IrDA).
  • the back of the hand motion detection sensor is disposed inside the control module 22 to detect the motion of the back of the hand.
  • the back of the hand motion detection sensor includes an inertial measurement unit sensor (IMU).
  • the IMU sensor may be a 9-axis IMU sensor based on a micro mechanical system (MEMS), and the 9-axis IMU sensor includes the aforementioned 3-axis acceleration sensor, 3-axis gyroscope sensor, and 3-axis geomagnetic sensor.
  • MEMS micro mechanical system
  • the wrist wearable part 23 includes a main body 230, a wrist motion detection sensor (not shown), a battery (not shown) and a cover 231 for replacing the battery as needed, and a second wearer for wearing on the wearer's wrist.
  • Band 232 is included.
  • the wrist motion detection sensor is disposed inside the wrist wearable part 23 to detect motion of the wrist.
  • the wrist motion detection sensor includes an inertial measurement unit sensor (IMU).
  • the IMU sensor may be a 9-axis IMU sensor based on a micro mechanical system (MEMS), and the 9-axis IMU sensor includes the aforementioned 3-axis acceleration sensor, 3-axis gyroscope sensor, and 3-axis geomagnetic sensor.
  • MEMS micro mechanical system
  • the IMU sensor for detecting motion of the wrist includes downward wrist flexion, upward wrist extension, left wrist flexion (radial flexion), and right wrist flexion ( Ulnar flexion, wrist rotation, etc. can be detected.
  • an acceleration sensor and a gyroscope sensor may be disposed instead of the IMU sensor as a wrist motion detection sensor.
  • the battery supplies power used to operate the device 1 for measuring finger motion.
  • the battery may supply power to each part of the device 1 for measuring finger motion, for example, a finger motion sensor, a back motion sensor, a wrist motion sensor, a control unit, and a communication module.
  • the battery may be a rechargeable battery or a disposable battery.
  • the battery may be a lithium polymer battery, but is not limited thereto.
  • the battery may be built into the main body 230 of the wrist wearable part 23 .
  • the battery may be replaceable.
  • the replaceable battery can be replaced by removing the cover 231 of the wrist wearable part 23 .
  • the second wearable band 232 may further improve adhesion between the wrist wearable part 23 and the wrist. As shown in FIG. 2 , the second wearable band 232 is coupled to the main body 230 of the wrist wearable part 23 and a plurality of rings are formed along the length direction of the second wearable band 232 .
  • a second band hanger 233 for fixing any one of a plurality of rings of the second wearing band 232 is formed at the distal end of the second wearing band 232 .
  • the second band hanger 233 is inserted into any one of the plurality of rings of the second wearing band 232 to fix the second wearing band 232 . Therefore, since the second wearable band 232 is coupled to pass through the wearer's wrist, adhesion between the wrist wearer 23 and the wearer's wrist can be further increased.
  • the second band hanger 233 is inserted by elastically deforming the hook of the second wearing band 232 . At this time, in order for the second band hook 233 to be easily inserted into the ring of the second wearing band 232, the second band hook 233 extends to one side and has a shape in which the width decreases toward the distal end.
  • control module 22 and the wrist wearable part 23 are connected to each other by the second connection part 25, and the control module 22 and the wrist worn part 23 are electrically connected by the second wire 24.
  • the second wire 24 and the second connecting portion 25 have one or more bends, preferably a meander structure.
  • the wearer connects the back of the hand wearing portion 12 and the wrist wearing portion 23 to the first wearing band 118 and the second wearing band, respectively.
  • the second wire 24 and the second connection portion 25 can be easily stretched and damaged even when the joint motion of the wrist is performed while worn on the back of the hand and the wrist of the wearer.
  • the second wire 24 and the second connection portion 25 can easily stretch between the back of the hand wearing portion 12 and the wrist wearing portion 23, the back of the hand wearing portion 12 and the wrist wearing portion 23 )
  • the generation of tension between the second wire 24 and the second connection portion 25 is reduced. For this reason, the back of the hand wearing part 12 and the wrist wearing part 23 may not be easily separated from the hand and wrist.
  • An electric wire is embedded in the second wire 24, and a wire cover made of silicon surrounds the electric wire therein.
  • a wire cover made of silicone material with excellent elasticity protects the electric wire, and one or more bent parts are deformed and unfolded according to the bending of the finger, thereby minimizing resistance to finger movement. Meanwhile, a detailed manufacturing method for the fourth wire 24 will be described later.
  • FIG. 6 is a perspective view of a sensor module included in an apparatus for measuring finger motion according to an embodiment of the present invention.
  • the sensor module 300 includes a sensor assembly 310 , a wire assembly 320 and a mounting part 330 .
  • the sensor assembly 310 of the sensor module 300 may be the above-described finger movement detection sensor, and may be various types of sensors according to use environments.
  • the wire assembly 320 has wires embedded therein, and a wire cover made of silicon surrounds the wires therein.
  • a wire cover made of silicone material with excellent elasticity protects the wire and when deformation such as bending or unfolding of the wire assembly 320 occurs due to an external force, one or more bent portions formed in the wire assembly 320 are easily deformed, so that the external force resistance can be minimized.
  • the mounting part 330 is a part for connecting the sensor module 300 to other equipment.
  • the sensor module 300 is connected to other equipment by fixing the mounting groove 331 formed in the mounting part 330 .
  • FIG. 7 is a flow chart of a manufacturing method of the sensor module shown in FIG. 6,
  • FIG. 8 is a diagram schematically illustrating a manufacturing method of the sensor module shown in FIG. 6, and
  • FIG. 9 shows the structure of a conventional sensor module. it is a drawing
  • a sensor 410 and a wire 420 are connected, and a wire cover 430 is covered on the outside of the wire 420 .
  • the appropriate operating temperature of the sensor is about -40 ° C to about 85 ° C.
  • the wire cover 430 is formed by silicon molding while the sensor 410 and the wire 420 are connected.
  • the sensor 410 is exposed to a high temperature environment for a relatively long time. Due to this, the sensor 410 is exposed to a high-temperature environment and thus receives damage, and correct operation is difficult.
  • it is difficult to manufacture a uniform sensor module, and it takes a long time to manufacture, resulting in poor productivity.
  • the method of manufacturing a sensor module includes manufacturing a sensor assembly by injecting a sensor cover (S1), manufacturing a first wire cover (S2), and attaching the sensor assembly to the first wire cover. Assembling step (S3), manufacturing the second wire cover (S4), assembling the first wire cover and the second wire cover (S5), and heating the wire assembly (S6).
  • a sensor assembly is manufactured by injecting a sensor cover to place a sensor therein (S1).
  • the sensor assembly 310 has a sensor (not shown) embedded therein, and a sensor cover 311 surrounds the sensor therein.
  • a wire connection portion 312 for connecting the sensor and the wire protrudes from the sensor cover 311 . Since the wire connection part 312 is formed when the sensor assembly 310 is manufactured, the sensor and the wire inside the sensor assembly 310 can be easily and quickly connected.
  • the sensor cover 311 is formed by silicone injection. Injection of the sensor cover 311 is performed at a temperature between about 150°C and about 250°C, preferably between about 200°C and about 230°C, more preferably at about 220°C. At this time, the injection time of the sensor cover 311 may be within about 5 seconds, preferably between about 2 seconds and about 3 seconds. Although injection of the sensor cover 311 is performed at a temperature relatively higher than the proper use temperature of the sensor (about -40°C to about 85°C), damage applied to the sensor can be minimized because it is performed in a very short time.
  • a first wire cover is manufactured (S2), and the sensor assembly 310 is assembled to the first wire cover (S3). Since the wire assembly 320 is formed by assembling the first wire cover and the second wire cover, the first wire cover constitutes a part of the wire assembly 320 .
  • the first wire cover may be manufactured by silicone injection.
  • the sensor assembly 310 is located in the sensor arrangement space 322 of the wire assembly 320, and the wire is located in the wire embedding space 321 formed inside the first wire cover. Since the space in which the sensor assembly 310 and the wire are disposed is pre-formed in the first wire cover, connection between the sensor and the wire is easy and quick, and the wire can be easily disposed.
  • a second wire cover is manufactured (S4), and the first wire cover and the second wire cover to which the sensor assembly 310 is assembled are assembled (S5).
  • the second wire cover has a shape corresponding to that of the first wire cover, and the first wire cover and the second wire cover are assembled together to form the wire assembly 320 .
  • Sensor assembly 310 and wires are embedded in wire assembly 320 .
  • the fabricated wire assembly 320 has one or more bent portions, preferably a meander structure.
  • the senor may be double protected through the sensor cover 311 and the wire assembly 320 . Therefore, since the sensor can be less affected by external impact, external temperature, etc. in various environments such as the manufacturing process or use of the sensor module 300, failure, damage, etc. are reduced compared to conventional sensor modules.
  • the first wire cover and the second wire cover may be manufactured to have different hardnesses.
  • the hardness of the upper wire cover among the first wire cover and the second wire cover is lower than the wire It can be lower than the cover. Since more deformation occurs at the top of the wire assembly 320 when the wearer performs a bending motion of the fingers, the hardness of the wire cover located at the top is lowered so that the deformation can easily occur.
  • the wire assembly 320 is heated (S6).
  • silicone molding is formed on the wire assembly 320 to couple the first wire cover and the second wire cover to each other to manufacture the sensor module 300.
  • the temperature at which the wire assembly 320 is heated is between about 150°C and about 250°C, preferably between about 200°C and about 230°C, and more preferably at about 220°C.
  • the time for heating the wire assembly 320 may be between about 7 minutes and about 20 minutes, preferably between about 10 minutes and about 15 minutes. That is, the time for heating the wire assembly 320 is longer than the time for injecting the sensor cover 311 .
  • the heating temperature of the wire assembly 320 is performed at a relatively higher temperature than the proper use temperature of the sensor (about -40°C to about 85°C) and is achieved for a not short time. However, since the sensor is double-protected by the wire assembly 320 and the sensor assembly 310, damage applied to the sensor can be minimized.
  • the sensor assembly 310 surrounding the sensor is molded by injection molding when the sensor module 300 is manufactured, it can be manufactured in a uniform shape, and the manufacturing process of the sensor module 300 can shorten the time required for In addition, since the sensor module 300 can be quickly manufactured, the time the sensor is exposed to a high-temperature environment can be reduced during the manufacturing of the sensor module 300, thereby improving the reliability of the manufacturing process of the sensor module 300. can
  • a method of manufacturing a device for measuring finger motion includes manufacturing a sensor module by the above-described manufacturing method and connecting the sensor module to a control module of the device for measuring finger motion. .
  • the sensor module 300 manufactured by the above-described manufacturing method is prepared, and in the device 1 for measuring finger motion, except for the wearing unit 10 and the finger motion detection units 21: 21a to 21e.
  • the motion measurement unit 20 is separately manufactured and prepared.
  • the device 1 for measuring finger motion is manufactured by connecting the sensor module 300 described above to the control module 22 of the device 1 for measuring finger motion.
  • the present invention relates to a device for measuring finger motion and is industrially applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pain & Pain Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치는 손등에 착용되는 손등 착용부; 상기 손등 착용부에서 일측으로 연장되는 손가락 착용부; 손목에 착용되는 손목 착용부; 상기 손가락 착용부에 결합되어 손가락의 움직임정보를 감지하는 손가락 운동 감지 센서; 상기 손등 착용부에 배치되어 손등의 움직임정보를 감지하는 손등 운동 감지 센서; 상기 손목 착용부에 배치되어 손목의 움직임정보를 감지하는 손목 운동 감지 센서; 및 상기 손가락 운동 감지 센서, 손등 운동 감지 센서 및 상기 손목 운동 감지 센서로부터 전송받은 적어도 하나 이상의 움직임정보를 이용하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는 제어 모듈을 포함하는 손가락 운동 측정을 위한 장치가 제공될 수 있다.

Description

손가락 운동 측정을 위한 장치
본 발명은 손가락 운동 측정을 위한 장치에 관한 것으로, 더욱 상세하게는 손가락 관절 굽힘의 용이성에 의해 손가락에 대한 피트성을 향상시킬 뿐만 아니라 손가락 관절의 굽힘이 발생할 때 절곡된 부분의 신축을 용이하게 하여 센서 모듈의 파손을 줄일 수 있는 손가락 운동 측정을 위한 장치에 관한 것이다.
뇌졸중이나 파킨슨병 등의 경우 병세에 따라 여러 가지 다양한 신체적 변화가 나타나며 예컨대 손과 발이 마비되고 오그라드는 현상이 발생한다. 이러한 손의 마비와 손가락이 오그라드는 현상을 지속적으로 방치하면 근육이나 관절이 점차 굳어져 움직일 때 통증을 느끼게 되고 신경이 회복되어도 정상적인 활동에 지장을 초래할 수 있다.
또한, 위에서 설명한 특정 병에 의한 경우 이외에도, 불의의 사고에 의해 손가락의 움직임에 장애를 갖게 되는 경우도 많다.
이와 같은 경우에는 마비가 오거나 오그라드는 손이나 발 등을 계속 마사지하거나 움직이게 함으로써 혈액순환과 신경소통을 촉진하여 운동능력을 최대한 유지해주는 것이 매우 중요하다.
종래의 손가락 재활치료 장치는, 장갑과 같이 손바닥 및 손등을 덮는 몸체부와, 몸체부에서 각 손가락들에 대응하도록 신장 형성되는 손가락부들을 포함하여 구성된다.
손가락부는 각각 손가락 형상의 평면 패턴으로 형성되어, 손바닥 측에서 연결되어 손가락에 대응하는 내측 손가락부와, 손등 측에서 연결되어 손가락에 대응하는 외측 손가락부를 포함하여 형성된다.
장갑형의 손가락 재활치료 장치를 착용하여 재활 치료하는 경우 손가락부는 내측 손가락부와 외측 손가락부를 통하여 손가락을 감싸게 되는데, 이때, 손가락 관절에 대응하여, 외측 손가락부는 신장되며, 내측 손가락부는 손가락 굽힘에 의한 주름들을 손가락부의 폭 방향으로 형성한다. 따라서 장갑형의 손가락 재활치료 장치 착용자는 손가락 관절의 굽힘 각도에 의해서 내측 손가락부에서 폭 방향 주름을 형성한 상태로 재활치료를 하게 된다.
즉, 손가락 내측부와 손가락 외측부의 평면 형상의 패턴에 의하여, 손가락부는 손가락에 대한 피트성을 저하시키고, 이로 인하여 손가락의 동작성을 저하시켜 손가락 관절의 굽힘 각도를 정밀하게 감지할 수 없는 문제가 있었다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 정밀한 손가락 관절의 굽힘 운동을 측정할 수 있는 손가락 운동 측정을 위한 장치 및 이의 제조방법을 제공하는 것이다.
또한, 착용 유닛과 운동 측정 유닛에 의한 저항력을 줄여 손가락에 대한 피트성을 향상시킬 수 있는 손가락 운동 측정을 위한 장치 및 이의 제조방법을 제공하는 것이다.
상술한 목적을 달성하기 위해, 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치는, 손등에 착용되는 손등 착용부; 상기 손등 착용부에서 일측으로 연장되는 손가락 착용부; 손목에 착용되는 손목 착용부; 상기 손가락 착용부에 결합되어 손가락의 움직임정보를 감지하는 손가락 운동 감지 센서; 상기 손등 착용부에 배치되어 손등의 움직임정보를 감지하는 손등 운동 감지 센서; 상기 손목 착용부에 배치되어 손목의 움직임정보를 감지하는 손목 운동 감지 센서; 및 상기 손가락 운동 감지 센서, 손등 운동 감지 센서 및 상기 손목 운동 감지 센서로부터 전송받은 적어도 하나 이상의 움직임정보를 이용하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는 제어 모듈을 포함하는 손가락 운동 측정을 위한 장치가 제공될 수 있다.
또한, 상기 제어 모듈에서 산출된 상기 손가락의 움직임정보, 손목의 움직임정보 및 손등의 움직임정보의 정보는 단말기로 전송되어 상기 단말기에서 표시될 수 있는 손가락 운동 측정을 위한 장치가 제공될 수 있다.
또한, 상기 손가락 운동 감지 센서, 상기 손등 운동 감지 센서, 상기 손목 운동 감지 센서 중 적어도 하나는 IMU 센서로 제공되는 손가락 운동 측정을 위한 장치가 제공될 수 있다.
또한, 상기 손가락 운동 감지 센서는 복수개로 제공되며, 각각의 손가락에 배치될 수 있도록 복수 개로 제공되는 손가락 착용부와 각각 결합하는 손가락 운동 측정을 위한 장치가 제공될 수 있다.
또한, 상기 제어 모듈은 복수 개의 상기 손가락 운동 감지 센서로 부터 전송받은 적어도 하나 이상의 손가락의 움직임정보와 상기 손등 운동 감지 센서로부터 전송받은 손등의 움직임정보를 비교하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는 손가락 운동 측정을 위한 장치가 제공될 수 있다.
또한, 상기 제어 모듈은 복수 개의 상기 손가락 운동 감지 센서로부터 전송받은 적어도 하나 이상의 손가락의 움직임정보와 상기 손목 운동 감지 센서로부터 전송받은 손등의 움직임정보를 비교하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는 손가락 운동 측정을 위한 장치가 제공될 수 있다.
또한, 본 발명의 다른 실시예에 따른 손가락 운동 측정을 위한 장치는 손등에 착용되는 손등 착용부, 손등 착용부에서 일측으로 연장되는 손가락 착용부, 손가락 착용부에 결합되어 손가락의 움직임을 감지하는 손가락 운동 감지 센서, 손등 착용부에 배치되고 손가락 운동 감지 센서와 연결되는 제어 모듈, 손등 착용부의 타측에 배치되는 손목 착용부, 손가락 착용부에 형성되어 손등 착용부와 연결되고, 하나 이상의 절곡부를 가지는 제1 연결부 및 제어 모듈과 손목 착용부를 연결하고, 하나 이상의 절곡부를 가지는 제2 연결부를 포함한다.
또한, 손가락 운동을 측정하기 위한 장치는 손가락 운동 감지 센서와 제어 모듈을 전기적으로 연결하는 제1 와이어를 더 포함하고, 제1 와이어는 하나 이상의 절곡부를 가질 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 손가락 운동 감지 센서 및 제1 와이어를 감싸는 제1 와이어 커버를 더 포함할 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 제1 와이어 커버의 내부에서 손가락 운동 감지 센서를 감싸는 센서 커버를 더 포함할 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 제어 모듈과 손목 착용부를 전기적으로 연결하는 제2 와이어를 더 포함하고, 제2 와이어는 하나 이상의 절곡부를 가질 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 제2 와이어를 감싸는 제2 와이어 커버를 더 포함할 수 있다.
또한, 엄지 손가락에 착용되는 엄지 손가락 착용부는 손등 착용부와 제1 연결부의 사이에 배치되는 손허리 연결부를 포함하고, 손허리 연결부는 하나 이상의 절곡부를 가질 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 손허리 연결부에 결합되고 길이 방향을 따라 복수의 고리가 형성되는 제1 착용 밴드, 손등 착용부에 형성되고 복수의 고리 중 어느 하나의 고리를 고정하는 제1 밴드 걸이를 더 포함하고, 제1 밴드 걸이는 일측으로 연장하고, 말단부로 갈수록 폭이 감소할 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 손등 착용부에 배치되어 손등의 움직임을 감지하는 손등 운동 감지 센서를 더 포함할 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 손목 착용부에 배치되어 손목의 움직임을 감지하는 손목 운동 감지 센서를 더 포함할 수 있다.
또한, 제어 모듈은 손가락 운동 감지 센서, 손등 운동 감지 센서 및 손목 운동 감지 센서에서 감지된 각각의 손가락의 운동 데이터, 손등의 운동 데이터 및 손목의 운동 데이터 중 적어도 하나를 전송 받을 수 있다.
또한, 제어 모듈은 각각의 손가락의 운동 데이터, 손등의 운동 데이터 및 손목의 운동 데이터 중 적어도 하나에 따라 손가락의 절곡 상태를 계산할 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 손목 착용부에 결합되고 길이 방향을 따라 복수의 고리가 형성되는 제2 착용 밴드, 제2 착용 밴드의 말단부에 형성되고, 복수의 고리 중 어느 하나의 고리를 고정하는 제2 밴드 걸이를 더 포함하고, 제2 밴드 걸이는 일측으로 연장하고, 말단부로 갈수록 폭이 감소할 수 있다.
또한, 손가락 운동을 측정하기 위한 장치는 손목 착용부에 배치되는 배터리, 손가락 운동 감지 센서와 제어 모듈을 연결하는 제1 와이어 및 제어 모듈과 손목 착용부를 연결하는 제2 와이어를 더 포함하고, 제1 와이어 및 제2 와이어는 각각 하나 이상의 절곡부를 가지고, 배터리는 제1 와이어 및 제2 와이어를 통해 손가락 운동 감지 센서 및 제어 모듈에 연결되어 전력을 공급할 수 있다.
본 발명의 다른 실시예에 따르면, 내부에 센서를 위치시키도록 센서 커버를 사출하여 센서 조립체를 제작하는 단계; 제1 와이어 커버를 제작하는 단계; 상기 센서 조립체를 상기 제1 와이어 커버에 조립하는 단계; 상기 제1 와이어 커버와 대응되는 형상을 가지는 제2 와이어 커버를 제작하는 단계; 상기 센서 조립체가 조립된 상기 제1 와이어 커버와 상기 제2 와이어 커버를 조립하여 와이어 조립체를 형성하는 단계; 및 상기 와이어 조립체에 실리콘 몰딩을 형성하기 위하여 상기 와이어 조립체를 가열하는 단계를 포함하는, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 센서 커버를 사출하는 시간은 상기 와이어 조립체를 가열하는 시간보다 짧은, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 센서 커버를 사출하는 시간은 5초 이내인, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 와이어 조립체를 가열하는 시간은 7분 내지 20분 사이인, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 센서 커버를 사출하는 온도는 150℃ 내지 250℃ 사이인, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 와이어 조립체를 가열하는 온도는 150℃ 내지 250℃ 사이인, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 제1 와이어 커버 및 상기 제2 와이어 커버는 경도가 서로 상이한, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 상기 와이어 조립체는 하나 이상의 절곡부를 구비하는, 센서 모듈의 제조 방법이 제공될 수 있다.
또한, 손가락 운동 측정을 위한 장치의 제조 방법으로서, 상술한 제조 방법에 의해 센서 모듈을 제조하는 단계; 및 상기 센서 모듈을 상기 손가락 운동 측정을 위한 장치의 제어 모듈에 연결하는 단계를 포함하는, 손가락 운동 측정을 위한 장치의 제조 방법이 제공될 수 있다.
또한, 상기 손가락 운동 측정을 위한 장치는, 손등에 착용되는 손등 착용부;
상기 손등 착용부에서 일측으로 연장되는 손가락 착용부; 상기 손가락 착용부에 결합되어 손가락의 움직임을 감지하는 센서 모듈; 상기 손등 착용부에 배치되고 상기 센서 모듈과 연결되는 상기 제어 모듈; 상기 손등 착용부의 타측에 배치되는 손목 착용부; 상기 손가락 착용부에 형성되어 상기 손등 착용부와 연결되고, 하나 이상의 절곡부를 가지는 제1 연결부; 및 상기 제어 모듈과 상기 손목 착용부를 연결하고, 하나 이상의 절곡부를 가지는 제2 연결부를 포함하는, 손가락 운동 측정을 위한 장치의 제조 방법.
본 발명의 실시예들에 따르면, 손가락 관절 굽힘의 용이성에 의해 손가락에 대한 피트성을 향상시킬 뿐만 아니라 손가락 관절의 굽힘 각도가 정밀하게 감지될 수 있도록 하는 효과가 있으며, 특히 손가락 재활 운동에 활용할 수 있다.
또한, 손가락 관절의 굽힘이 발생할 때 와이어의 절곡된 부분의 신축을 용이하게 하여 센서의 파손을 줄일 수 있다.
또한, 본 발명의 실시예들에 따르면, 운동 측정 유닛의 제작 시 센서의 파손을 줄일 수 있으며, 손가락 운동 측정을 위한 장치를 사용하는 경우에도 센서의 보호가 용이하므로 손가락 운동 측정을 위한 장치의 내구성을 획득할 수 있다.
또한, 센서 모듈의 제작 시 센서 조립체를 사출에 의해 성형하기 때문에 일률적인 모양으로 제작할 수 있으며, 센서 모듈의 제작 공정에 소요되는 시간을 단축시킬 수 있다. 또한, 센서 모듈을 신속하게 제작할 수 있으므로, 센서 모듈의 제작 시 센서가 고온의 환경에 노출되는 시간을 감소시킬 수 있어 센서 모듈의 제작 공정에 대한 신뢰성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 사시도이다.
도 2는 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 분리 사시도이다.
도 3은 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 착용 유닛의 사시도이다.
도 4는 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 바닥면을 도시한 사시도이다.
도 5는 손가락의 구조를 나타내는 설명도이다.
도 6은 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치에 구비되는 센서 모듈의 사시도이다.
도 7은 도 6에 도시된 센서 모듈의 제조 방법의 순서도이다.
도 8은 도 6에 도시된 센서 모듈의 제조 방법을 개략적으로 도시한 도면이다.
도 9는 종래의 센서 모듈의 구조를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다", "구비한다", "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 분리 사시도이며, 도 3은 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 착용 유닛의 사시도이고, 도 4는 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치의 바닥면을 도시한 사시도이다.
도 1 내지 도 4를 참조하면, 손가락 운동 측정을 위한 장치(1)는 착용 유닛(10) 및 운동 측정 유닛(20)을 포함한다.
착용 유닛(10)은 손등면에 대응하는 형상을 가지는 손등 착용부(12)와, 손등 착용부(12)에서 연장되어 형성되고, 착용자의 손가락에 대응하는 형상을 가지는 손가락 착용부(11: 11a~11e)를 포함한다.
손등 착용부(12)는 착용자의 손등 위에 착용되는 부분이다. 손등 착용부(12)는 평판부(120), 복수의 결합구(121), 평판부(120)에서 돌출되는 연장부(122) 및 연장부에 형성되는 제1 밴드 걸이(123)를 포함한다.
평판부(120)는 손등을 커버할 수 있도록 넓은 판형으로 형성되고, 탄성이 뛰어난 합성재질로 성형된다. 예를 들어, 평판부(120)는 실리콘 재질로 성형될 수 있다. 실리콘은 인체에도 무해하고, 착용감이 뛰어나 착용 유닛(10)의 재질로 적합하다.
손등 착용부(12)의 상부에는 운동 측정 유닛(20)의 제어 모듈(22)이 결합된다. 이를 위해 손등 착용부(12)의 평판부(120)에는 복수의 결합구(121)가 형성되어 있으며, 제어 모듈(22)의 하부에 형성된 결합돌기(미도시)가 결합구(121)에 삽입되어 결합된다.
제1 밴드 걸이(123)는 제1 착용 밴드(118)를 고정하기 위한 부재이며, 이에 대한 상세한 설명은 후술하기로 한다.
손등 착용부(12)에는 손가락 착용부(11)가 일체로 형성된다. 예를 들어, 착용 유닛(10)은 사출성형을 통해 제작하는 것이 바람직하며, 손등 착용부(12)와 손가락 착용부(11)를 일체로 성형한다.
손가락 착용부(11: 11a~11e)는, 제1 연결부(110: 110a~110e), 관절 착용부(111: 111a~111e) 및 착용 고리(114: 114a~114b)를 포함한다. 제1 연결부(110)는 손가락의 제1 마디 위에 위치하며, 손등 착용부(12)의 평판부(120)와 연결되는 부분으로, 손가락의 굽힘 동작에 따라 길이가 탄성 변형된다.
본 발명의 일 실시예에 따른 손가락 운동을 측정을 위한 장치(1)는 손가락의 운동을 감지하여 여러 형태의 데이터 입력장치로도 사용이 가능하며, 주로 손가락의 운동이 자유롭지 못한 신경 장애를 가진 환자가 착용하여 손가락의 운동을 측정하여 이에 대한 데이터를 수집하고 재활에 활용하는 재활장치로도 사용될 수 있다. 따라서, 손가락에 힘을 크게 가하기 어려운 환자가 손가락을 구부릴 경우에 저항력을 최소화하도록 설계되는 것이 중요하다.
이런 점을 감안하여 제1 연결부(110)는 도 1 내지 도 4에 도시된 바와 같이 하나 이상의 절곡부를 가지고, 바람직하게는 구불구불하게 반복되는 곡류 형상의 미앤더(meander) 구조를 가진다. 제1 연결부(110)가 하나 이상의 절곡부를 가지게 되어 가하는 힘에 비하여 큰 탄성 변형이 생기게 되어 손가락의 움직임에 대한 탄성 복원력의 저항을 최소화할 수 있다.
제1 연결부(110)의 다음에는 손가락의 제1 마디와 제2 마디에 위치하는 관절 착용부(111: 111a~111e)가 형성된다. 관절 착용부(111)는 손가락 관절의 굽힘에 대하여 손가락 착용부(11)의 변형을 최소화하여 착용자의 손 움직임에 대한 저항력을 최소화하기 위한 관절 관통구(112: 112a~112e)가 형성되는 것이 바람직하다.
손가락을 구부리는 동작을 할 경우에 가장 많은 변형이 발생하고, 손가락 착용부(11)가 손가락 등에 위치할 경우 손가락 착용부(11)에서 저항력이 가장 크게 발생할 가능성이 있는 부분은 관절 착용부(111)에 대응하는 부분이다. 따라서, 손가락의 굽힘을 감지하되 탄성 변형을 최소화하기 위하여 관절 착용부(111)의 중앙부에 관절 관통구(112)를 형성한다. 손가락을 구부리는 경우에 관절의 일부가 관절 관통구(112)로 노출되며, 이로 인하여 관절 착용부(111)의 탄성 변형과, 복원력에 의한 저항력이 최소화가 된다.
관절 착용부(111: 111a~111e)에는 손가락 운동 감지 센서(211: 211a~211e)가 지지되는 센서 지지부(113: 113a~113e)가 형성된다. 센서 지지부(113)는 손가락 운동 감지 센서(211)의 하부에서 지지하기 때문에 손가락 운동 감지 센서(211)는 손가락 착용부(11)에 안정적으로 고정된다.
손가락 착용부(11)를 손가락에 고정되도록 관절 착용부(111)의 말단에서 하방으로 착용 고리(114: 114a~114e)가 형성된다. 착용 고리(114)에는 착용자의 손가락이 끼워져 손가락 착용부(11)가 착용자의 손가락에 잘 밀착될 수 있도록 한다. 사람마다 손가락의 굵기가 다르므로, 착용 고리(114)는 용이하게 늘어나는 구조를 가지는 것이 바람직하다. 이를 위해, 전술한 제1 연결부(110)에서 채택한 구조와 마찬가지로 착용 고리(114)의 하방에는 하나 이상의 절곡부, 바람직하게는 미앤더 구조를 가지는 절곡 부재(115: 115a~115e)가 형성된다. 이와 같은 구조를 통해 착용 고리(114)의 탄성 변형을 용이하게 한다.
손가락 착용부(11)에는 운동 측정 유닛(20)의 손가락 운동 감지 센서(211)가 결합되는데, 이들이 결합되기 위하여 관절 착용부(111)에는 결합홈이 형성될 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 결합 홈은 센서 지지부(113)와 인접한 부위에 형성될 수 있다.
결합홈에는 손가락 운동 감지 센서(211)의 하방에 구비된 결합부(212: 212a~212e)가 삽입되어 결합된다. 도 2에 도시된 바와 같이 결합부(212)의 말단에는 헤드가 형성되어 결합홈을 관통한 후 걸려 쉽게 빠지지 않는 구조가 된다. 손가락 착용부(11)는 탄성을 가지므로 결합 시에는 결합홈을 용이하게 변형시킴으로써 결합부(212)를 결합홈에 삽입시킬 수 있다. 한편, 필요에 따라 손가락 착용부(11)에는 손가락 착용부(11)와 운동 측정 유닛(20)을 결합하기 위한 결합홈을 추가로 형성할 수 있다.
전술한 손가락 착용부(11)는 손가락에 따라 나누면, 엄지 손가락 착용부(11a), 검지 손가락 착용부(11b), 중지 손가락 착용부(11c), 약지 손가락 착용부(11d) 및 소지 손가락 착용부(11e)로 분류될 수 있다.
도 5에 도시된 바와 같이 사람의 손가락은 엄지와 나머지 네 손가락의 구조는 약간 다르다. 엄지는 두마디로 이루어져 있고, 검지 내지 소지는 세마디로 이루어져 있다. 엄지의 경우 손허리뼈가 용이하게 움직일 수 있는 구조를 가지고 있으므로, 손허리뼈의 움직임에 대하여 탄성변형이 용이한 구조가 요구된다. 따라서, 손등 착용부와 엄지 손가락 착용부(11a)의 제1 연결부(110a)의 사이에는 엄지손가락의 손허리 부분의 움직임에 따라 탄성 변형되도록 하나 이상의 절곡부, 바람직하게는 미앤더 구조를 가지는 손허리 연결부(116)를 더 포함하는 것이 바람직하다.
착용 유닛(10)의 손과의 밀착성을 더욱 향상시키기 위하여 제1 착용 밴드(118)가 구비될 수 있다. 제1 착용 밴드(118)는 도 3에 도시된 바와 같이 손허리 연결부(116)에 결합되고 제1 착용 밴드(118)의 길이 방향을 따라 복수의 고리가 형성된다.
손등 착용부(12)에는 제1 착용 밴드(118)의 복수의 고리 중 어느 하나의 고리를 고정하기 위한 제1 밴드 걸이(123)가 형성될 수 있다. 제1 밴드 걸이(123)는 평판부(120)에서 엄지 손가락 착용부(11a)가 연결되는 부분과 반대 방향으로 연장되는 연장부(122)에 형성된다. 제1 밴드 걸이(123)는 제1 착용 밴드(118)의 복수의 고리 중 어느 하나에 삽입되어 제1 착용 밴드(118)를 고정시킨다. 따라서 제1 착용 밴드(118)는 착용자의 손바닥을 지나도록 결착되기 때문에 착용 유닛(10)과 착용자의 손과의 밀착성을 더 높일 수 있다.
또한, 엄지 손가락 착용부(11a)와의 밀착성을 높이기 위해 제1 착용 밴드(118)는 손등 착용부(12)의 평판부(120)에 결합되는 것이 아니라 엄지 손가락 착용부(11a)의 손허리 연결부(116)에 결합된다. 따라서, 제1 착용 밴드(118)를 제1 밴드 걸이(123)에 고정하는 경우에 손허리 연결부(116)의 적어도 일부는 제1 착용 밴드(118)와 함께 변형하여 엄지 손가락 착용부(11a)는 손과의 밀착성이 증가한다.
제1 밴드 걸이(123)는 제1 착용 밴드(118)의 고리를 탄성적으로 변형시켜 삽입된다. 이때, 제1 밴드 걸이(123)가 제1 착용 밴드(118)의 고리에 쉽게 삽입되기 위하여 제1 밴드 걸이(123)는 일측으로 연장하고 말단부로 갈수록 폭이 감소하는 형상을 가진다.
도 4에 도시된 바와 같이, 손등 착용부(12)는 바닥면에 형성되는 다수개의 작은 돌기(124)와 쿠션 부재(125)를 포함한다. 다수개의 작은 돌기(124)는 반구형으로 성형되는 것이 바람직하며, 손등 착용부(12)와 손등의 사이 공간에 공기가 통할 수 있는 통로를 형성하여 착용 유닛(10)을 오래 착용하고 있어도, 손등에 땀이 차지 않도록 하는 역할을 한다. 쿠션 부재(125)는 손등 착용부(12)의 바닥면에 배치되고 유연한 소재로 제작된다. 쿠션 부재(125)는 손등 착용부(12)가 손등과 직접적으로 접촉하는 부위에 배치되어 완충 작용을 할 수 있으므로 손등 착용부(12)의 착용감을 향상시킬 수 있다.
운동 측정 유닛(20)은 손가락의 움직임을 감지하는 손가락 운동 감지부(21: 21a~21e), 제어 모듈(22), 손목 착용부(23), 제어 모듈(22)과 손목 착용부(23)를 연결하는 제2 연결부(25) 및 제어 모듈(22)과 손목 착용부(23)를 전기적으로 연결하는 제2 와이어(24)를 포함한다.
손가락 운동 감지부(21: 21a~21e)는 손가락 운동 감지 센서(211: 211a~211e), 손가락 운동 감지 센서(211: 211a~211e)와 제어 모듈(22)을 전기적으로 연결하는 제1 와이어(210: 210a~210e))를 포함한다.
제1 와이어(210)는 내부에 전선이 내장되고, 외부에는 실리콘 재질의 와이어 커버가 내부의 전선을 감싸고 있다. 또한, 센서 커버(미도시)는 와이어 커버의 내부에서 손가락 운동 감지 센서(211)를 감싸고 있다. 탄성이 뛰어난 실리콘의 와이어 커버가 전선을 보호하고 손가락의 구부러짐에 따라 하나 이상의 절곡부가 변형되어 펴지게 되므로 손가락 운동에 대한 저항력을 최소화할 수 있다. 또한, 센서는 센서 커버 및 와이어 커버에 의해 이중으로 보호되기 때문에, 외부의 환경이나 외부에서 가해지는 충격 등에 의한 센서의 고장, 파손 등이 감소될 수 있다. 한편, 제1 와이어(210)에 대한 상세한 제작 방법은 후술하기로 한다.
손가락 운동 감지 센서(211)는 손가락 착용부(11)에 배치되며, 예를 들어 도 1에 도시된 바와 같이, 손가락 운동 감지 센서(211)는 손가락 착용부(11)의 말단부에 배치되어 손가락의 운동을 감지한다. 다만, 손가락 운동 감지 센서(211)의 배치 및 개수는 상술한 바에 의해 한정되지 않으며, 필요에 따라 손가락 운동 감지 센서(211)는 손가락 마디에 추가적으로 배치될 수도 있다.
손가락 운동 감지 센서(211)는 IMU 센서(inertial measurement unit sensor)를 포함한다.
IMU 센서는 MEMS(micro mechanical system) 기반의 9축 IMU 센서일 수 있다. 9축 IMU 센서는 3축 가속도 센서(acceleration sensor)와, 3축 자이로스코프 센서(gyroscope sensor)와, 3축 지자기 센서(terrestrial magnetism sensor)를 포함한다. 3축 가속도 센서는 x축, y축, z축의 이동관성(가속도)을 측정한다. 3축 자이로스코프 센서는 x축, y축, z축의 회전관성(각속도)을 측정한다. 3축 지자기 센서는 x축, y축, z축의 방위각(지자기의 방향)을 측정한다.
제1 와이어(210)는 하나 이상의 절곡부, 바람직하게는 미앤더 구조를 가진다. 이와 같은 구조를 통해 제1 와이어(210)는 손가락의 관절 운동에 따라 신축이 용이하게 되어 파손이 경감될 수 있다.
한편, 제1 와이어(210)는 다양한 손가락 길이에 대응하여 다양한 길이를 가질 수 있다. 이로써, 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치(1)에서 착용되는 손가락 길이에 대응하는 제1 와이어(210)를 선택하여, 해당 와이어를 손가락 운동 감지 센서(211)와 제어 모듈(22)에 연결하여 사용할 수 있다.
와이어 가이드(214)에는 손허리 와이어(213)가 통과하는 가이드 홈이 형성되어 있으며 손허리 와이어(213)가 빠지지 않도록 이탈 방지 돌기가 형성된다. 와이어 가이드(214)의 하부에는 결합 헤드를 가지는 결합부가 형성되어 있다. 결합 헤드는 손허리 연결부(116)에 형성된 관통공(117)를 관통한 다음 관통공(117)에 끼움 고정된다.
제어 모듈(22)은 손등 착용부(12)에 배치되고 손가락 운동 감지 센서(211), 손등 착용부(12)와 연결된다. 제어 모듈(22)은 외관을 형성하는 하우징, 하우징의 내부에 배치되는 제어부(미도시), 통신 모듈(미도시), 손등 운동 감지 센서(미도시)를 포함한다.
다만, 본 발명의 사상은 이에 한정되는 것은 아니며, 제어 모듈(22)은 손등 운동 감지 센서만 배치되고, 제어부는 손목 착용부(23)의 내부에 배치될수도 있다. 이와 같이 제어 모듈(22)의 내부에 손등 운동 감지 센서만을 배치하는, 손등 운동 감지 센서의 손등의 움직임정보의 감지 성능을 높일 수 있다. 이때, 제어 모듈(22)의 외관을 형성하는 하우징은 실리콘으로 형성될 수 있다.
본 발명의 실시예들에서 제어부가 포함되는 제어 모듈(22)은 손등 착용부(12)에 배치되는 것으로 도시되어 있지만 이에 한정되지 않고, 제어부는 손등 착용부(12) 대신 손목 착용부(23)에 배치될 수도 있다.
제어부는, 각종 정보의 연산 및 처리를 수행할 수 있다. 예를 들어, 제어부는 각각의 손가락 운동 감지 센서(211)와 제1 와이어(210)에 의해 전기적으로 연결되고, 손등 운동 감지 센서와 전기적으로 연결되며, 손목 운동 감지 센서와 제2 와이어(24)에 의해 연결되어, 손가락 운동 감지 센서(211), 손등 운동 감지 센서 및 손목 운동 감지 센서에서 감지된 손가락, 손목 및 손등 각각의 운동 데이터를 전송 받아 처리한다.
제어부는 각종 정보의 연산 및 처리를 수행할 수 있도록 하드웨어나 소프트웨어 또는 이들의 조합에 따라 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로는 데이터를 저장 및 처리하는 프로세서일 수 있고, 소프트웨어적으로는 회로를 구동시키는 프로그램이나 코드 형태로 제공될 수 있다. 또한, 제어부는 통신부 및 메모리와 데이터를 교환할 수 있다. 예를 들어, 제어부는 손가락, 손목 및 손등의 각 움직임 데이터를 통신 모듈을 통해 통신 단말인 서버, 단말기 등으로 전송한다.
예를 들어, 제어부는 손가락 운동 감지 센서(211), 손등 운동 감지 센서 및 손목 운동 감지 센서에서 감지된 각각의 손가락의 움직임 데이터, 손등의 움직임 데이터 및 손목의 움직임 데이터 중 적어도 하나를 전송 받을 수 있다. 제어부는 전송 받은 각각의 손가락의 움직임 데이터, 손등의 움직임 데이터 및 손목의 움직임 데이터 중 적어도 하나에 따라 착용자의 손가락의 절곡 상태를 계산할 수 있다.
통신 모듈은 통신 단말과 본 발명의 실시예들에 따른 손가락 운동 측정을 위한 장치(1)가 데이터 통신이 가능하도록 동기화된다. 통신 모듈은 각각의 손가락 운동 감지 센서(211)와, 손등 운동 감지 센서와, 손목 운동 감지 센서에서 감지된 손가락, 손목 및 손등 각각의 움직임 데이터를 실시간으로 통신 단말에 제공하게 된다. 통신 단말은 본 발명의 실시예들에 따른 손가락 운동 측정을 위한 장치로부터 통신 모듈을 통해 전송된 사용자의 손 동작 정보, 예를 들어, 손가락, 손목 및 손등 각각의 운동 데이터를 실시간으로 수신, 저장 및 처리할 수 있다. 예를 들어, 통신 단말은 수신된 사용자의 손 동작 정보에 상응하는 가상의 손 모양 객체를 생성하여 디스플레이 화면을 통해 표시할 수 있다.
상술한 데이터 통신을 위하여 유선 및/또는 무선 통신 기술이 이용될 수 있다. 무선 통신 방식으로는 근거리 무선 통신(near field communication, NFC), 무선 유에스비(wireless USB), 울트라와이드밴드(ultra wide band, UWB), 와이파이(WiFi), 블루투스(bluetooth), 지그비(ZIGBEE), 무선 주파수 통신(radio frequency, RF), 및 적외선 통신(infrared data association, IrDA)을 예로 들 수 있다.
손등 운동 감지 센서는 손등의 운동을 감지하도록 제어 모듈(22)의 내부에 배치된다. 손등 운동 감지 센서는 IMU 센서(inertial measurement unit sensor)를 포함한다. IMU 센서는 MEMS(micro mechanical system) 기반의 9축 IMU 센서일 수 있으며, 9축 IMU 센서는 전술한 3축 가속도 센서와, 3축 자이로스코프 센서와, 3축 지자기 센서를 포함한다.
손목 착용부(23)는 본체(230), 손목 운동 감지 센서(미도시), 배터리(미도시) 및 필요에 따라 배터리를 교체하기 위한 커버(231), 착용자의 손목에 착용하기 위한 제2 착용 밴드(232)를 포함한다.
손목 운동 감지 센서는 손목의 운동을 감지하도록 손목 착용부(23)의 내부에 배치된다. 손목 운동 감지 센서는 IMU 센서(inertial measurement unit sensor)를 포함한다. IMU 센서는 MEMS(micro mechanical system) 기반의 9축 IMU 센서일 수 있으며, 9축 IMU 센서는 전술한 3축 가속도 센서와, 3축 자이로스코프 센서와, 3축 지자기 센서를 포함한다.
따라서, 손목의 운동을 감지하는 IMU 센서는, 아래쪽 방향으로의 손목 구부림(flexion), 위쪽 방향으로의 손목 폄(extension), 왼쪽 방향으로의 손목 구부림(Radial flexion), 오른쪽 방향으로의 손목 구부림(Ulnar flexion), 손목 회전(rotation) 등을 감지할 수 있다. 여기서, 손목 운동 감지 센서로서 IMU 센서 대신, 가속도 센서 및 자이로스코프 센서가 배치될 수 있다.
배터리는 손가락 운동을 측정하기 위한 장치(1)가 동작하는데 이용되는 전력을 공급한다. 배터리는 손가락 운동을 측정하기 위한 장치(1)의 각 부품, 예를 들어 손가락 운동 감지 센서, 손등 운동 감지 센서, 손목 운동 감지 센서, 제어부 및 통신 모듈 등에 전력을 공급할 수 있다. 배터리는 충전이 가능한 배터리이거나, 일회용 배터리일 수 있다. 예를 들어, 배터리는 리튬폴리머 배터리일 수 있으나 이에 제한되지 않는다. 또한, 배터리는 손목 착용부(23)의 본체(230)에 내장될 수 있다. 또는, 배터리는 교체 가능할 수 있다. 예를 들어, 교체 가능한 배터리는 손목 착용부(23)의 커버(231)를 제거하여 교체할 수 있다.
제2 착용 밴드(232)는 손목 착용부(23)와 손목과의 밀착성을 더욱 향상시킬 수 있다. 제2 착용 밴드(232)는 도 2에 도시된 바와 같이 손목 착용부(23)의 본체(230)에 결합되고 제2 착용 밴드(232)의 길이 방향을 따라 복수의 고리가 형성된다.
제2 착용 밴드(232)의 말단부에는 제2 착용 밴드(232)의 복수의 고리 중 어느 하나의 고리를 고정하기 위한 제2 밴드 걸이(233)가 형성된다. 제2 밴드 걸이(233)는 제2 착용 밴드(232)의 복수의 고리 중 어느 하나에 삽입되어 제2 착용 밴드(232)를 고정시킨다. 따라서 제2 착용 밴드(232)는 착용자의 손목을 지나도록 결착되기 때문에 손목 착용부(23)와 착용자의 손목과의 밀착성을 더 높일 수 있다.
제2 밴드 걸이(233)는 제2 착용 밴드(232)의 고리를 탄성적으로 변형시켜 삽입된다. 이때, 제2 밴드 걸이(233)가 제2 착용 밴드(232)의 고리에 쉽게 삽입되기 위하여 제2 밴드 걸이(233)는 일측으로 연장하고 말단부로 갈수록 폭이 감소하는 형상을 가진다.
한편, 제어 모듈(22)과 손목 착용부(23)는 제2 연결부(25)에 의해 서로 연결되고, 제어 모듈(22)과 손목 착용부(23)는 제2 와이어(24)에 의해 전기적으로 연결된다. 제2 와이어(24) 및 제2 연결부(25)는 하나 이상의 절곡부, 바람직하게는 미앤더 구조를 가진다.
제2 와이어(24) 및 제2 연결부(25)가 하나 이상의 절곡부를 가지기 때문에, 착용자가 손등 착용부(12)와 손목 착용부(23)를 각각 제1 착용 밴드(118)와 제2 착용 밴드(232)를 통해 착용자의 손등 및 손목에 착용한 상태에서 손목의 관절 운동을 수행하여도 제2 와이어(24) 및 제2 연결부(25)의 신축이 용이하게 되어 파손이 경감될 수 있다.
또한, 제2 와이어(24) 및 제2 연결부(25)가 손등 착용부(12) 및 손목 착용부(23) 사이에서 신축이 용이하게 발생할 수 있으므로 손등 착용부(12) 및 손목 착용부(23) 사이에서 제2 와이어(24) 및 제2 연결부(25)에 의한 장력의 발생이 감소한다. 이 때문에 손등 착용부(12) 및 손목 착용부(23)는 손 및 손목으로부터 쉽게 이탈하지 않을 수 있다.
제2 와이어(24)는 내부에 전선이 내장되고, 외부에는 실리콘 재질의 와이어 커버가 내부의 전선을 감싸고 있다. 탄성이 뛰어난 실리콘 재질의 와이어 커버가 전선을 보호하고 손가락의 구부러짐에 따라 하나 이상의 절곡부가 변형되어 펴지게 되므로 손가락 운동에 대한 저항력을 최소화할 수 있다. 한편, 제4 와이어(24)에 대한 상세한 제작 방법은 후술하기로 한다.
도 6은 본 발명의 일 실시예에 따른 손가락 운동 측정을 위한 장치에 구비되는 센서 모듈의 사시도이다.
도 6을 참조하면, 센서 모듈(300)은 센서 조립체(310), 와이어 조립체(320) 및 장착부(330)를 포함한다.
센서 모듈(300)의 센서 조립체(310)는 전술한 손가락 운동 감지 센서일 수 있으며, 사용 환경에 따라 다양한 종류의 센서일 수 있다.
와이어 조립체(320)는 내부에 전선이 내장되고, 외부에는 실리콘 재질의 와이어 커버가 내부의 전선을 감싸고 있다. 탄성이 뛰어난 실리콘 재질의 와이어 커버가 전선을 보호하고 외력에 의해 와이어 조립체(320)가 구부러지거나 펴지는 등의 변형이 발생하는 경우에 와이어 조립체(320)에 형성된 하나 이상의 절곡부가 쉽게 변형되므로 외력에 대한 저항력을 최소화할 수 있다.
장착부(330)는 센서 모듈(300)을 다른 장비에 연결하기 위한 부분이다. 예를 들어, 장착부(330)에 형성된 장착 홈(331)을 고정시킴으로써 센서 모듈(300)을 다른 장비에 연결한다.
도 7은 도 6에 도시된 센서 모듈의 제조 방법의 순서도이고, 도 8은 도 6에 도시된 센서 모듈의 제조 방법을 개략적으로 도시한 도면이고, 도 9는 종래의 센서 모듈의 구조를 도시한 도면이다.
먼저 도 9를 참조하여 종래의 센서 모듈의 구조에 대하여 살펴본다. 종래의 센서 모듈의 구조는 센서(410)와 와이어(420)가 연결되어 있으며, 와이어(420)의 외부에 와이어 커버(430)가 피복되어 있다.
일반적으로 센서의 적정 사용 온도는 약 -40℃내지 약 85℃이다. 종래의 경우에는 센서(410)와 와이어(420)가 연결된 상태에서 와이어 커버(430)가 실리콘 몰딩에 의해 형성된다. 실리콘 몰딩의 형성 시 센서(410)는 고온의 환경에서 비교적 장시간 노출된다. 이로 인하여, 센서(410)는 고온의 환경에서 노출되기 때문에 데미지를 받게 되며, 올바른 작동이 어려운 문제가 있다. 또한, 이와 같은 제조 방법에 의하면 일률적인 센서 모듈의 제작이 어려울 뿐만 아니라 제작에 장시간이 소요되어 생산성이 나쁜 단점이 있다.
도 7 및 도 8을 참조하면, 센서 모듈의 제조 방법은 센서 커버를 사출하여 센서 조립체를 제작하는 단계(S1), 제1 와이어 커버를 제작하는 단계(S2), 센서 조립체를 제1 와이어 커버에 조립하는 단계(S3), 제2 와이어 커버를 제작하는 단계(S4), 제1 와이어 커버와 제2 와이어 커버를 조립하는 단계(S5) 및 와이어 조립체를 가열하는 단계(S6)를 포함한다.
먼저, 내부에 센서를 위치시키도록 센서 커버를 사출하여 센서 조립체를 제작한다(S1).
도 8에 도시된 바와 같이, 센서 조립체(310)는 내부에 센서(미도시)가 내장되어 있으며, 외부에는 센서 커버(311)가 내부의 센서를 감싸고 있다. 또한, 센서와 와이어를 연결하기 위한 와이어 연결부(312)가 센서 커버(311)로부터 돌출 형성된다. 센서 조립체(310)의 제작 시 와이어 연결부(312)가 형성되어 있으므로, 센서 조립체(310) 내부의 센서와 와이어를 쉽고 빠르게 연결할 수 있다.
센서 커버(311)는 실리콘 사출에 의해 형성된다. 센서 커버(311)의 사출은 약 150℃ 내지 약 250℃ 사이의 온도, 바람직하게는 약 200℃ 내지 약 230℃사이의 온도, 더욱 바람직하게는 약 220℃에서 수행된다. 이때, 센서 커버(311)를 사출하는 시간은 약 5초 이내, 바람직하게는 약 2초 내지 약 3초 사이일 수 있다. 센서 커버(311)의 사출은 센서의 적정 사용 온도(약 -40℃내지 약 85℃)보다 비교적 높은 온도에서 수행되나, 매우 짧은 시간에 이루어지기 때문에 센서에 가해지는 데미지는 최소화할 수 있다.
다음으로, 제1 와이어 커버를 제작하고(S2), 센서 조립체(310)를 제1 와이어 커버에 조립한다(S3). 와이어 조립체(320)는 제1 와이어 커버와 제2 와이어 커버가 조립되어 형성되므로, 제1 와이어 커버는 와이어 조립체(320)의 일부를 구성한다. 제1 와이어 커버는 실리콘 사출에 의해 제작될 수 있다.
도 8에 도시된 바와 같이, 센서 조립체(310)는 와이어 조립체(320)의 센서 배치공간(322)에 위치되고, 와이어는 제1 와이어 커버의 내부에 형성된 와이어 내장 공간(321)에 위치된다. 제1 와이어 커버에는 센서 조립체(310)와 와이어가 배치되는 공간이 미리 형성되기 때문에, 센서와 와이어의 연결이 쉽고 빠르며, 와이어의 배치 또한 쉽게 이루어질 수 있다.
다음으로, 제2 와이어 커버를 제작하고(S4), 센서 조립체(310)가 조립된 상기 제1 와이어 커버와 상기 제2 와이어 커버를 조립한다(S5). 제2 와이어 커버는 제1 와이어 커버와 대응되는 형상을 가지고, 제1 와이어 커버와 제2 와이어 커버가 서로 조립되어 와이어 조립체(320)를 형성한다. 센서 조립체(310)와 와이어는 와이어 조립체(320)에 내장된다. 제작된 와이어 조립체(320)는 하나 이상의 절곡부, 바람직하게는 미앤더 구조를 구비한다.
이로 인하여, 센서는 센서 커버(311)와 와이어 조립체(320)를 통해 이중으로 보호될 수 있다. 따라서, 센서는 센서 모듈(300)의 제조 과정이나 사용하는 경우 등의 다양한 환경에서 외부의 충격, 외부의 온도 등에 영향을 적게 받을 수 있으므로, 종래의 센서 모듈에 비해 고장, 파손 등이 감소한다.
한편, 제1 와이어 커버 및 제2 와이어 커버는 경도가 서로 상이하게 제작할 수 있다. 예를 들어, 상술한 손가락 운동 측정을 위한 장치(1)에 센서 모듈(300)이 연결되는 경우에 제1 와이어 커버 및 제2 와이어 커버 중 상부에 위치하는 와이어 커버의 경도를 하부에 위치하는 와이어 커버보다 낮게 할 수 있다. 착용자가 손가락의 굽힘 운동을 할 경우에 와이어 조립체(320)의 상부에서 변형이 더 많이 발생하기 때문에, 상부에 위치하는 와이어 커버의 경도를 낮게 하여 변형이 쉽게 일어날 수 있게 한다.
다음으로, 와이어 조립체(320)를 가열한다(S6). 와이어 조립체(320)를 가열함으로써 와이어 조립체(320)에 실리콘 몰딩을 형성하여 제1 와이어 커버와 제2 와이어 커버를 서로 결합시켜 센서 모듈(300)을 제조한다.
와이어 조립체(320)를 가열하는 온도는 약 150℃ 내지 약 250℃ 사이의 온도, 바람직하게는 약 200℃ 내지 약 230℃ 사이의 온도, 더욱 바람직하게는 약 220℃이다. 이때, 와이어 조립체(320)를 가열하는 시간은 약 7분 내지 약 20분 사이, 바람직하게는 약 10분 내지 약 15분 사이일 수 있다. 즉, 센서 커버(311)를 사출하는 시간보다 와이어 조립체(320)를 가열하는 시간이 길다.
와이어 조립체(320)를 가열하는 온도는 센서의 적정 사용 온도(약 -40℃내지 약 85℃)보다 비교적 높은 온도에서 수행되고 짧지 않은 시간 동안 이루어진다. 그러나, 센서는 와이어 조립체(320) 및 센서 조립체(310)에 의해 이중으로 보호되기 때문에 센서에 가해지는 데미지는 최소화할 수 있다.
상술한 센서 모듈(300)의 제조 방법은 센서 모듈(300)의 제작 시 센서를 감싸는 센서 조립체(310)를 사출에 의해 성형하기 때문에 일률적인 모양으로 제작할 수 있으며, 센서 모듈(300)의 제작 공정에 소요되는 시간을 단축시킬 수 있다. 또한, 센서 모듈(300)을 신속하게 제작할 수 있으므로, 센서 모듈(300)의 제작 시 센서가 고온의 환경에 노출되는 시간을 감소시킬 수 있어 센서 모듈(300)의 제작 공정에 대한 신뢰성을 향상시킬 수 있다.
본 발명의 다른 실시예에 따른 손가락 운동 측정을 위한 장치의 제조 방법은 상술한 제조 방법에 의해 센서 모듈을 제조하는 단계 및 센서 모듈을 손가락 운동 측정을 위한 장치의 제어 모듈에 연결하는 단계를 포함한다.
예를 들어, 상술한 제조 방법에 의해 제작된 센서 모듈(300)을 준비하고, 손가락 운동 측정을 위한 장치(1)에서 착용 유닛(10)과 손가락 운동 감지부(21: 21a~21e)를 제외한 운동 측정 유닛(20)을 별도로 제작하여 준비한다. 다음으로, 상술한 센서 모듈(300)을 손가락 운동 측정을 위한 장치(1)의 제어 모듈(22)에 연결하여 손가락 운동 측정을 위한 장치(1)를 제조한다.
이상으로 첨부된 도면을 참조하여 본 발명의 실시예들을 더욱 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예로 국한되는 것은 아니고, 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 손가락 운동 측정을 위한 장치에 관한것으로 산업상 이용가능하다.

Claims (20)

  1. 손등에 착용되는 손등 착용부;
    상기 손등 착용부에서 일측으로 연장되는 손가락 착용부;
    손목에 착용되는 손목 착용부;
    상기 손가락 착용부에 결합되어 손가락의 움직임정보를 감지하는 손가락 운동 감지 센서;
    상기 손등 착용부에 배치되어 손등의 움직임정보를 감지하는 손등 운동 감지 센서;
    상기 손목 착용부에 배치되어 손목의 움직임정보를 감지하는 손목 운동 감지 센서; 및
    상기 손가락 운동 감지 센서, 손등 운동 감지 센서 및 상기 손목 운동 감지 센서로부터 전송받은 적어도 하나 이상의 움직임정보를 이용하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는 제어 모듈을 포함하는
    손가락 운동 측정을 위한 장치.
  2. 제1항에 있어서,
    상기 제어 모듈에서 산출된 상기 손가락의 움직임정보, 손목의 움직임정보 및 손등의 움직임정보의 정보는 단말기로 전송되어 상기 단말기에서 표시될 수 있는
    손가락 운동 측정을 위한 장치.
  3. 제1항에 있어서,
    상기 손가락 운동 감지 센서, 상기 손등 운동 감지 센서, 상기 손목 운동 감지 센서 중 적어도 하나는 IMU 센서로 제공되는
    손가락 운동 측정을 위한 장치.
  4. 제3항에 있어서,
    상기 손가락 운동 감지 센서는 복수개로 제공되며, 각각의 손가락에 배치될 수 있도록 복수 개로 제공되는 손가락 착용부와 각각 결합하는
    손가락 운동 측정을 위한 장치.
  5. 제4항에 있어서,
    상기 제어 모듈은 복수 개의 상기 손가락 운동 감지 센서로 부터 전송받은 적어도 하나 이상의 손가락의 움직임정보와 상기 손등 운동 감지 센서로부터 전송받은 손등의 움직임정보를 비교하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는
    손가락 운동 측정을 위한 장치.
  6. 제4항에 있어서,
    상기 제어 모듈은 복수 개의 상기 손가락 운동 감지 센서로부터 전송받은 적어도 하나 이상의 손가락의 움직임정보와 상기 손목 운동 감지 센서로부터 전송받은 손등의 움직임정보를 비교하여 상기 손가락, 손등 및 손목 중 적어도 하나의 움직임을 산출할 수 있는
    손가락 운동 측정을 위한 장치.
  7. 손등에 착용되는 손등 착용부;
    상기 손등 착용부에서 일측으로 연장되는 손가락 착용부;
    상기 손가락 착용부에 결합되어 손가락의 움직임을 감지하는 손가락 운동 감지 센서;
    상기 손등 착용부에 배치되고 상기 손가락 운동 감지 센서와 연결되는 제어 모듈;
    상기 손등 착용부의 타측에 배치되는 손목 착용부;
    상기 손가락 착용부에 형성되어 상기 손등 착용부와 연결되고, 하나 이상의 절곡부를 가지는 제1 연결부; 및
    상기 제어 모듈과 상기 손목 착용부를 연결하고, 하나 이상의 절곡부를 가지는 제2 연결부를 포함하는, 손가락 운동 측정을 위한 장치.
  8. 제7항에 있어서,
    상기 손가락 운동 감지 센서와 상기 제어 모듈을 전기적으로 연결하는 제1 와이어를 더 포함하고,
    상기 제1 와이어는 하나 이상의 절곡부를 가지는, 손가락 운동 측정을 위한 장치.
  9. 제8항에 있어서,
    상기 손가락 운동 감지 센서 및 상기 제1 와이어를 감싸는 제1 와이어 커버를 더 포함하는, 손가락 운동 측정을 위한 장치.
  10. 제3항에 있어서,
    상기 제1 와이어 커버의 내부에서 상기 손가락 운동 감지 센서를 감싸는 센서 커버를 더 포함하는,
  11. 제7항에 있어서,
    상기 제어 모듈과 상기 손목 착용부를 전기적으로 연결하는 제2 와이어를 더 포함하고,
    상기 제2 와이어는 하나 이상의 절곡부를 가지는, 손가락 운동 측정을 위한 장치.
  12. 제11항에 있어서,
    상기 제2 와이어를 감싸는 제2 와이어 커버를 더 포함하는, 손가락 운동 측정을 위한 장치.
  13. 제7항에 있어서,
    엄지 손가락에 착용되는 엄지 손가락 착용부는 상기 손등 착용부와 상기 제1 연결부의 사이에 배치되는 손허리 연결부를 포함하고,
    상기 손허리 연결부는 하나 이상의 절곡부를 가지는, 손가락 운동 측정을 위한 장치.
  14. 제13항에 있어서,
    상기 손허리 연결부에 결합되고 길이 방향을 따라 복수의 고리가 형성되는 제1 착용 밴드;
    상기 손등 착용부에 형성되고 상기 복수의 고리 중 어느 하나의 고리를 고정하는 제1 밴드 걸이를 더 포함하고,
    상기 제1 밴드 걸이는 일측으로 연장하고, 말단부로 갈수록 폭이 감소하는, 손가락 운동 측정을 위한 장치.
  15. 제7항에 있어서,
    상기 손등 착용부에 배치되어 손등의 움직임을 감지하는 손등 운동 감지 센서를 더 포함하는, 손가락 운동 측정을 위한 장치.
  16. 제15항에 있어서,
    상기 손목 착용부에 배치되어 손목의 움직임을 감지하는 손목 운동 감지 센서를 더 포함하는, 손가락 운동 측정을 위한 장치.
  17. 제16항에 있어서,
    상기 제어 모듈은 상기 손가락 운동 감지 센서, 상기 손등 운동 감지 센서 및 상기 손목 운동 감지 센서에서 감지된 각각의 손가락의 운동 데이터, 손등의 운동 데이터 및 손목의 운동 데이터 중 적어도 하나를 전송 받는, 손가락 운동 측정을 위한 장치.
  18. 제17항에 있어서,
    상기 제어 모듈은 각각의 손가락의 운동 데이터, 손등의 운동 데이터 및 손목의 운동 데이터 중 적어도 하나에 따라 손가락의 절곡 상태를 계산하는, 손가락 운동 측정을 위한 장치.
  19. 제7항에 있어서,
    상기 손목 착용부에 결합되고 길이 방향을 따라 복수의 고리가 형성되는 제2 착용 밴드;
    상기 제2 착용 밴드의 말단부에 형성되고, 상기 복수의 고리 중 어느 하나의 고리를 고정하는 제2 밴드 걸이를 더 포함하고,
    상기 제2 밴드 걸이는 일측으로 연장하고, 말단부로 갈수록 폭이 감소하는, 손가락 운동 측정을 위한 장치.
  20. 제7항에 있어서,
    상기 손목 착용부에 배치되는 배터리;
    상기 손가락 운동 감지 센서와 상기 제어 모듈을 연결하는 제1 와이어; 및
    상기 제어 모듈과 상기 손목 착용부를 연결하는 제2 와이어를 더 포함하고,
    상기 제1 와이어 및 상기 제2 와이어는 각각 하나 이상의 절곡부를 가지고,
    상기 배터리는 상기 제1 와이어 및 상기 제2 와이어를 통해 상기 손가락 운동 감지 센서 및 상기 제어 모듈에 연결되어 전력을 공급하는, 손가락 운동 측정을 위한 장치.
PCT/KR2022/008640 2021-06-18 2022-06-17 손가락 운동 측정을 위한 장치 WO2022265456A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210079079 2021-06-18
KR10-2021-0079079 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022265456A1 true WO2022265456A1 (ko) 2022-12-22

Family

ID=84527248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008640 WO2022265456A1 (ko) 2021-06-18 2022-06-17 손가락 운동 측정을 위한 장치

Country Status (1)

Country Link
WO (1) WO2022265456A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230037640A1 (en) * 2019-12-27 2023-02-09 Sony Group Corporation Measurement device and measurement method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140143557A (ko) * 2013-06-07 2014-12-17 주식회사 아이런 수지 및 수부 재활운동장치
KR101541082B1 (ko) * 2015-01-23 2015-08-03 주식회사 네오펙트 손 재활 운동 시스템 및 방법
KR20160027516A (ko) * 2014-09-01 2016-03-10 주식회사 토마토헬스케어 재활치료용 손가락 운동기구
KR20200024180A (ko) * 2020-02-20 2020-03-06 주식회사 네오펙트 손가락 운동 측정 장치
KR20210025844A (ko) * 2019-08-28 2021-03-10 주식회사 네오펙트 손 재활 운동장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140143557A (ko) * 2013-06-07 2014-12-17 주식회사 아이런 수지 및 수부 재활운동장치
KR20160027516A (ko) * 2014-09-01 2016-03-10 주식회사 토마토헬스케어 재활치료용 손가락 운동기구
KR101541082B1 (ko) * 2015-01-23 2015-08-03 주식회사 네오펙트 손 재활 운동 시스템 및 방법
KR20210025844A (ko) * 2019-08-28 2021-03-10 주식회사 네오펙트 손 재활 운동장치
KR20200024180A (ko) * 2020-02-20 2020-03-06 주식회사 네오펙트 손가락 운동 측정 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230037640A1 (en) * 2019-12-27 2023-02-09 Sony Group Corporation Measurement device and measurement method, and program

Similar Documents

Publication Publication Date Title
WO2020162698A1 (ko) 손 재활 운동장치
WO2016117758A1 (ko) 손 재활 운동 시스템 및 방법
WO2018147643A2 (ko) 흉부측정기, 척추 측만증 교정시스템, 원격척추 진단시스템 및 웨어러블 측정기
US9483123B2 (en) Systems, articles, and methods for gesture identification in wearable electromyography devices
US9999391B2 (en) Wearable electromyogram sensor system
KR101226169B1 (ko) 생체신호계측 장착구 및 장착식 동작보조장치
WO2016182181A1 (ko) 웨어러블 디바이스 및 웨어러블 디바이스의 피드백 제공 방법
WO2017034090A1 (ko) 스마트 인터렉션 장치
WO2022265456A1 (ko) 손가락 운동 측정을 위한 장치
WO2019059723A1 (ko) 손가락 움직임 보조장치
CN108670244A (zh) 一种柔性组合式可穿戴生理及心理状态监测装置
US20190050052A1 (en) Hand worn interface device
EP3506988A1 (en) Motion assistance apparatus
JP2012501020A (ja) 調整可能な仮想現実システム
WO2019054621A1 (ko) 헤드 마운트 디스플레이 장치
WO2019093637A1 (ko) 전자 장치 및 이를 포함하는 충전 모듈 시스템
WO2017086661A1 (ko) 생체신호 센싱패치 및 이를 구비한 생체신호 모니터링 장치
WO2020159057A1 (ko) 소프트 센서 내장형 장갑 및 이의 제조 방법
KR102263214B1 (ko) 손 재활 운동장치
KR101675577B1 (ko) 근경도 센서 모듈
Gupta et al. All knitted and integrated soft wearable of high stretchability and sensitivity for continuous monitoring of human joint motion
WO2014189242A1 (ko) 건강 관리용 디지털 의류 및 이를 이용한 독거 노인 관리 시스템
WO2020162700A1 (ko) 손 재활 운동장치
KR20190010219A (ko) 체온측정장치
WO2019045526A1 (ko) 신축성 저항 소자를 이용한 자세 모니터링 장치, 이를 이용한 자세 모니터링 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22825379

Country of ref document: EP

Kind code of ref document: A1