본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDCCH"가 "제어 정보"의 일례로 제안된 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
도 2는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다. 도 2의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 2를 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말(10)에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 기지국(20)을 포함할 수 있다. 예를 들어, 기지국(20)은 gNB(next generation-Node B) 및/또는 eNB(evolved-NodeB)를 포함할 수 있다. 예를 들어, 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 예를 들어, 기지국은 단말(10)과 통신하는 고정된 지점(fixed station)일 수 있고, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 2의 실시 예는 gNB만을 포함하는 경우를 예시한다. 기지국(20)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(20)은 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(20)은 NG-C 인터페이스를 통해 AMF(access and mobility management function)(30)와 연결될 수 있고, NG-U 인터페이스를 통해 UPF(user plane function)(30)와 연결될 수 있다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(layer 1, 제 1 계층), L2(layer 2, 제 2 계층), L3(layer 3, 제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 3은 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 도 3의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 3의 (a)는 Uu 통신을 위한 사용자 평면(user plane)의 무선 프로토콜 스택(stack)을 나타내고, 도 3의 (b)는 Uu 통신을 위한 제어 평면(control plane)의 무선 프로토콜 스택을 나타낸다. 도 3의 (c)는 SL 통신을 위한 사용자 평면의 무선 프로토콜 스택을 나타내고, 도 3의 (d)는 SL 통신을 위한 제어 평면의 무선 프로토콜 스택을 나타낸다.
도 3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리 계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층, SDAP(Service Data Adaptation Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 4는 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다. 도 4의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 4를 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(u)에 따라 슬롯 별 심볼의 개수(Nslot
symb), 프레임 별 슬롯의 개수(Nframe,u
slot)와 서브프레임 별 슬롯의 개수(Nsubframe,u
slot)를 예시한다.
SCS (15*2u) |
Nslot
symb
|
Nframe,u
slot
|
Nsubframe,u
slot
|
15KHz (u=0) |
14 |
10 |
1 |
30KHz (u=1) |
14 |
20 |
2 |
60KHz (u=2) |
14 |
40 |
4 |
120KHz (u=3) |
14 |
80 |
8 |
240KHz (u=4) |
14 |
160 |
16 |
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
SCS (15*2u) |
Nslot
symb
|
Nframe,u
slot
|
Nsubframe,u
slot
|
60KHz (u=2) |
12 |
40 |
4 |
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation |
Corresponding frequency range |
Subcarrier Spacing (SCS) |
FR1 |
450MHz - 6000MHz |
15, 30, 60kHz |
FR2 |
24250MHz - 52600MHz |
60, 120, 240kHz |
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation |
Corresponding frequency range |
Subcarrier Spacing (SCS) |
FR1 |
410MHz - 7125MHz |
15, 30, 60kHz |
FR2 |
24250MHz - 52600MHz |
60, 120, 240kHz |
도 5는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다. 도 5의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 5를 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
이하, BWP(Bandwidth Part) 및 캐리어에 대하여 설명한다.
BWP(Bandwidth Part)는 주어진 뉴머놀로지에서 PRB(physical resource block)의 연속적인 집합일 수 있다. PRB는 주어진 캐리어 상에서 주어진 뉴머놀로지에 대한 CRB(common resource block)의 연속적인 부분 집합으로부터 선택될 수 있다.
예를 들어, BWP는 활성(active) BWP, 이니셜(initial) BWP 및/또는 디폴트(default) BWP 중 적어도 어느 하나일 수 있다. 예를 들어, 단말은 PCell(primary cell) 상의 활성(active) DL BWP 이외의 DL BWP에서 다운 링크 무선 링크 품질(downlink radio link quality)을 모니터링하지 않을 수 있다. 예를 들어, 단말은 활성 DL BWP의 외부에서 PDCCH, PDSCH(physical downlink shared channel) 또는 CSI-RS(reference signal)(단, RRM 제외)를 수신하지 않을 수 있다. 예를 들어, 단말은 비활성 DL BWP에 대한 CSI(Channel State Information) 보고를 트리거하지 않을 수 있다. 예를 들어, 단말은 활성 UL BWP 외부에서 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 전송하지 않을 수 있다. 예를 들어, 하향링크의 경우, 이니셜 BWP는 (PBCH(physical broadcast channel)에 의해 설정된) RMSI(remaining minimum system information) CORESET(control resource set)에 대한 연속적인 RB 세트로 주어질 수 있다. 예를 들어, 상향링크의 경우, 이니셜 BWP는 랜덤 액세스 절차를 위해 SIB(system information block)에 의해 주어질 수 있다. 예를 들어, 디폴트 BWP는 상위 계층에 의해 설정될 수 있다. 예를 들어, 디폴트 BWP의 초기 값은 이니셜 DL BWP일 수 있다. 에너지 세이빙을 위해, 단말이 일정 기간 동안 DCI를 검출하지 못하면, 단말은 상기 단말의 활성 BWP를 디폴트 BWP로 스위칭할 수 있다.
한편, BWP는 SL에 대하여 정의될 수 있다. 동일한 SL BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 SL 채널 또는 SL 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 SL 채널 또는 SL 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, SL BWP는 Uu BWP와 별도로 정의될 수 있으며, SL BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 SL BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. 예를 들어, 단말은 Uu BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. SL BWP는 캐리어 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 SL BWP가 캐리어 내에서 활성화될 수 있다.
도 6은 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다. 도 6의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 도 6의 실시 예에서, BWP는 세 개라고 가정한다.
도 6을 참조하면, CRB(common resource block)는 캐리어 밴드의 한 쪽 끝에서부터 다른 쪽 끝까지 번호가 매겨진 캐리어 자원 블록일 수 있다. 그리고, PRB는 각 BWP 내에서 번호가 매겨진 자원 블록일 수 있다. 포인트 A는 자원 블록 그리드(resource block grid)에 대한 공통 참조 포인트(common reference point)를 지시할 수 있다.
BWP는 포인트 A, 포인트 A로부터의 오프셋(Nstart
BWP) 및 대역폭(Nsize
BWP)에 의해 설정될 수 있다. 예를 들어, 포인트 A는 모든 뉴머놀로지(예를 들어, 해당 캐리어에서 네트워크에 의해 지원되는 모든 뉴머놀로지)의 서브캐리어 0이 정렬되는 캐리어의 PRB의 외부 참조 포인트일 수 있다. 예를 들어, 오프셋은 주어진 뉴머놀로지에서 가장 낮은 서브캐리어와 포인트 A 사이의 PRB 간격일 수 있다. 예를 들어, 대역폭은 주어진 뉴머놀로지에서 PRB의 개수일 수 있다.
이하, V2X 또는 SL 통신에 대하여 설명한다.
SLSS(Sidelink Synchronization Signal)는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC(Cyclic Redundancy Check)를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
도 7은 본 개시의 일 실시 예에 따른, V2X 또는 SL 통신을 수행하는 단말을 나타낸다. 도 7의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 7을 참조하면, V2X 또는 SL 통신에서 단말이라는 용어는 주로 사용자의 단말을 의미할 수 있다. 하지만, 기지국과 같은 네트워크 장비가 단말 사이의 통신 방식에 따라 신호를 송수신하는 경우, 기지국 또한 일종의 단말로 간주될 수도 있다. 예를 들어, 단말 1은 제 1 장치(100)일 수 있고, 단말 2는 제 2 장치(200)일 수 있다.
예를 들어, 단말 1은 일련의 자원의 집합을 의미하는 자원 풀(resource pool) 내에서 특정한 자원에 해당하는 자원 단위(resource unit)를 선택할 수 있다. 그리고, 단말 1은 상기 자원 단위를 사용하여 SL 신호를 전송할 수 있다. 예를 들어, 수신 단말인 단말 2는 단말 1이 신호를 전송할 수 있는 자원 풀을 설정 받을 수 있고, 상기 자원 풀 내에서 단말 1의 신호를 검출할 수 있다.
여기서, 단말 1이 기지국의 연결 범위 내에 있는 경우, 기지국이 자원 풀을 단말 1에게 알려줄 수 있다. 반면, 단말 1이 기지국의 연결 범위 밖에 있는 경우, 다른 단말이 단말 1에게 자원 풀을 알려주거나, 또는 단말 1은 사전에 설정된 자원 풀을 사용할 수 있다.
일반적으로 자원 풀은 복수의 자원 단위로 구성될 수 있고, 각 단말은 하나 또는 복수의 자원 단위를 선택하여 자신의 SL 신호 전송에 사용할 수 있다.
이하, SL에서 자원 할당(resource allocation)에 대하여 설명한다.
도 8은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 8의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 8의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 8의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 8의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 8의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 8의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 기지국은 단말 1에게 PDCCH(예, DCI(Downlink Control Information)) 또는 RRC 시그널링(예, Configured Grant Type 1 또는 Configured Grant Type 2)를 통해 자원 스케줄링을 수행할 수 있고, 단말 1은 상기 자원 스케줄링에 따라 단말 2와 V2X 또는 SL 통신을 수행할 수 있다. 예를 들어, 단말 1은 PSCCH(Physical Sidelink Control Channel)를 통해 SCI(Sidelink Control Information)를 단말 2에게 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH(Physical Sidelink Shared Channel)를 통해 단말 2에게 전송할 수 있다.
도 8의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 그리고, 자원 풀 내에서 자원을 스스로 선택한 단말 1은 PSCCH를 통해 SCI를 단말 2에게 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH를 통해 단말 2에게 전송할 수 있다.
예를 들어, 단말은 다른 단말에 대한 SL 자원 선택을 도울 수 있다. 예를 들어, NR 자원 할당 모드 2에서, 단말은 SL 전송을 위한 설정된 그랜트(configured grant)를 설정받을 수 있다. 예를 들어, NR 자원 할당 모드 2에서, 단말은 다른 단말의 SL 전송을 스케줄링할 수 있다. 예를 들어, NR 자원 할당 모드 2에서, 단말은 블라인드 재전송을 위한 SL 자원을 예약할 수 있다.
예를 들어, NR 자원 할당 모드 2에서, 제 1 단말은 SCI를 이용하여 SL 전송의 우선 순위를 제 2 단말에게 지시할 수 있다. 예를 들어, 제 2 단말은 상기 SCI를 디코딩할 수 있고, 제 2 단말은 상기 우선 순위를 기반으로 센싱 및/또는 자원 (재)선택을 수행할 수 있다. 예를 들어, 상기 자원(재)선택 절차는, 제 2 단말이 자원 선택 윈도우에서 후보 자원을 식별하는 단계 및 제 2 단말이 식별된 후보 자원 중에서 (재)전송을 위한 자원을 선택하는 단계를 포함할 수 있다. 예를 들어, 자원 선택 윈도우는 단말이 SL 전송을 위한 자원을 선택하는 시간 간격(time interval)일 수 있다. 예를 들어, 제 2 단말이 자원 (재)선택을 트리거한 이후, 자원 선택 윈도우는 T1 ≥ 0에서 시작할 수 있고, 자원 선택 윈도우는 제 2 단말의 남은 패킷 지연 버짓(remaining packet delay budget)에 의해 제한될 수 있다. 예를 들어, 제 2 단말이 자원 선택 윈도우에서 후보 자원을 식별하는 단계에서, 제 2 단말이 제 1 단말로부터 수신한 SCI에 의해 특정 자원이 지시되고 및 상기 특정 자원에 대한 L1 SL RSRP 측정값이 SL RSRP 임계값을 초과하면, 상기 제 2 단말은 상기 특정 자원을 후보 자원으로 결정하지 않을 수 있다. 예를 들어, SL RSRP 임계값은 제 2 단말이 제 1 단말로부터 수신한 SCI에 의해 지시되는 SL 전송의 우선 순위 및 제 2 단말이 선택한 자원 상에서 SL 전송의 우선 순위를 기반으로 결정될 수 있다.
예를 들어, 상기 L1 SL RSRP는 SL DMRS(Demodulation Reference Signal)를 기반으로 측정될 수 있다. 예를 들어, 자원 풀 별로 시간 영역에서 하나 이상의 PSSCH DMRS 패턴이 설정되거나 사전에 설정될 수 있다. 예를 들어, PDSCH DMRS 설정 타입 1 및/또는 타입 2는 PSSCH DMRS의 주파수 영역 패턴과 동일 또는 유사할 수 있다. 예를 들어, 정확한 DMRS 패턴은 SCI에 의해 지시될 수 있다. 예를 들어, NR 자원 할당 모드 2에서, 전송 단말은 자원 풀에 대하여 설정된 또는 사전에 설정된 DMRS 패턴 중에서 특정 DMRS 패턴을 선택할 수 있다.
예를 들어, NR 자원 할당 모드 2에서, 센싱 및 자원 (재)선택 절차를 기반으로, 전송 단말은 예약 없이 TB(Transport Block)의 초기 전송을 수행할 수 있다. 예를 들어, 센싱 및 자원 (재)선택 절차를 기반으로, 전송 단말은 제 1 TB와 연관된 SCI를 이용하여 제 2 TB의 초기 전송을 위한 SL 자원을 예약할 수 있다.
예를 들어, NR 자원 할당 모드 2에서, 단말은 동일한 TB(Transport Block)의 이전 전송과 관련된 시그널링을 통해, 피드백 기반의 PSSCH 재전송을 위한 자원을 예약할 수 있다. 예를 들어, 현재 전송을 포함하여 하나의 전송에 의해 예약되는 SL 자원의 최대 개수는 2개, 3개 또는 4개일 수 있다. 예를 들어, 상기 SL 자원의 최대 개수는 HARQ 피드백이 인에이블되는지 여부와 관계 없이 동일할 수 있다. 예를 들어, 하나의 TB에 대한 최대 HARQ (재)전송 횟수는 설정 또는 사전 설정에 의해 제한될 수 있다. 예를 들어, 최대 HARQ (재)전송 횟수는 최대 32일 수 있다. 예를 들어, 상기 설정 또는 사전 설정이 없으면, 최대 HARQ (재)전송 횟수는 지정되지 않은 것일 수 있다. 예를 들어, 상기 설정 또는 사전 설정은 전송 단말을 위한 것일 수 있다. 예를 들어, NR 자원 할당 모드 2에서, 단말이 사용하지 않는 자원을 해제하기 위한 HARQ 피드백이 지원될 수 있다.
예를 들어, NR 자원 할당 모드 2에서, 단말은 SCI를 이용하여 상기 단말에 의해 사용되는 하나 이상의 서브채널 및/또는 슬롯을 다른 단말에게 지시할 수 있다. 예를 들어, 단말은 SCI를 이용하여 PSSCH (재)전송을 위해 상기 단말에 의해 예약된 하나 이상의 서브채널 및/또는 슬롯을 다른 단말에게 지시할 수 있다. 예를 들어, SL 자원의 최소 할당 단위는 슬롯일 수 있다. 예를 들어, 서브채널의 사이즈는 단말에 대하여 설정되거나 미리 설정될 수 있다.
도 9는 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다. 도 9의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 9의 (a)는 브로드캐스트 타입의 SL 통신을 나타내고, 도 9의 (b)는 유니캐스트 타입의 SL 통신을 나타내며, 도 9의 (c)는 그룹캐스트 타입의 SL 통신을 나타낸다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
이하, HARQ(Hybrid Automatic Repeat Request) 절차에 대하여 설명한다.
SL 유니캐스트 및 그룹캐스트의 경우, 물리 계층에서의 HARQ 피드백 및 HARQ 컴바이닝(combining)이 지원될 수 있다. 예를 들어, 수신 단말이 자원 할당 모드 1 또는 2로 동작하는 경우, 수신 단말은 PSSCH를 전송 단말로부터 수신할 수 있고, 수신 단말은 PSFCH(Physical Sidelink Feedback Channel)를 통해 SFCI(Sidelink Feedback Control Information) 포맷을 사용하여 PSSCH에 대한 HARQ 피드백을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-ACK을 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 단말은 HARQ-NACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-NACK을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 전송 단말에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 그리고, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 단말은 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 단말은 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, SL HARQ 피드백이 그룹캐스트에 대하여 인에이블될 때, 수신 단말은 TX-RX(Transmission-Reception) 거리 및/또는 RSRP(Reference Signal Received Power)를 기반으로 HARQ 피드백을 전송 단말에게 전송할지 여부를 결정할 수 있다.
예를 들어, 그룹캐스트 옵션 1에서 TX-RX 거리 기반 HARQ 피드백의 경우, TX-RX 거리가 통신 범위 요구 사항보다 작거나 같으면, 수신 단말은 PSSCH에 대한 HARQ 피드백을 전송 단말에게 전송할 수 있다. 반면, TX-RX 거리가 통신 범위 요구 사항보다 크면, 수신 단말은 PSSCH에 대한 HARQ 피드백을 전송 단말에게 전송하지 않을 수 있다. 예를 들어, 전송 단말은 상기 PSSCH와 관련된 SCI를 통해 상기 전송 단말의 위치를 수신 단말에게 알릴 수 있다. 예를 들어, 상기 PSSCH와 관련된 SCI는 제 2 SCI일 수 있다. 예를 들어, 수신 단말은 TX-RX 거리를 상기 수신 단말의 위치와 상기 전송 단말의 위치를 기반으로 추정 또는 획득할 수 있다. 예를 들어, 수신 단말은 PSSCH와 관련된 SCI를 디코딩하여, 상기 PSSCH에 사용되는 통신 범위 요구 사항을 알 수 있다.
예를 들어, 자원 할당 모드 1의 경우에, PSFCH 및 PSSCH 사이의 시간은 설정되거나, 미리 설정될 수 있다. 유니캐스트 및 그룹캐스트의 경우, SL 상에서 재전송이 필요하면, 이것은 PUCCH를 사용하는 커버리지 내의 단말에 의해 기지국에게 지시될 수 있다. 전송 단말은 HARQ ACK/NACK의 형태가 아닌 SR(Scheduling Request)/BSR(Buffer Status Report)과 같은 형태로 상기 전송 단말의 서빙 기지국에게 지시(indication)를 전송할 수도 있다. 또한, 기지국이 상기 지시를 수신하지 않더라도, 기지국은 SL 재전송 자원을 단말에게 스케줄링 할 수 있다. 예를 들어, 자원 할당 모드 2의 경우에, PSFCH 및 PSSCH 사이의 시간은 설정되거나, 미리 설정될 수 있다.
예를 들어, 캐리어에서 단말의 전송 관점에서, PSCCH/PSSCH와 PSFCH 사이의 TDM이 슬롯에서 SL를 위한 PSFCH 포맷에 대하여 허용될 수 있다. 예를 들어, 하나의 심볼을 가지는 시퀀스-기반 PSFCH 포맷이 지원될 수 있다. 여기서, 상기 하나의 심볼은 AGC(automatic gain control) 구간이 아닐 수 있다. 예를 들어, 상기 시퀀스-기반 PSFCH 포맷은 유니캐스트 및 그룹캐스트에 적용될 수 있다.
예를 들어, 자원 풀과 연관된 슬롯 내에서, PSFCH 자원은 N 슬롯 구간으로 주기적으로 설정되거나, 사전에 설정될 수 있다. 예를 들어, N은 1 이상의 하나 이상의 값으로 설정될 수 있다. 예를 들어, N은 1, 2 또는 4일 수 있다. 예를 들어, 특정 자원 풀에서의 전송에 대한 HARQ 피드백은 상기 특정 자원 풀 상의 PSFCH를 통해서만 전송될 수 있다.
예를 들어, 전송 단말이 슬롯 #X 내지 슬롯 #N에 걸쳐 PSSCH를 수신 단말에게 전송하는 경우, 수신 단말은 상기 PSSCH에 대한 HARQ 피드백을 슬롯 #(N + A)에서 전송 단말에게 전송할 수 있다. 예를 들어, 슬롯 #(N + A)은 PSFCH 자원을 포함할 수 있다. 여기서, 예를 들어, A는 K보다 크거나 같은 가장 작은 정수일 수 있다. 예를 들어, K는 논리적 슬롯의 개수일 수 있다. 이 경우, K는 자원 풀 내의 슬롯의 개수일 수 있다. 또는, 예를 들어, K는 물리적 슬롯의 개수일 수 있다. 이 경우, K는 자원 풀 내부 및 외부의 슬롯의 개수일 수 있다.
예를 들어, 전송 단말이 수신 단말에게 전송한 하나의 PSSCH에 대한 응답으로, 수신 단말이 PSFCH 자원 상에서 HARQ 피드백을 전송하는 경우, 수신 단말은 설정된 자원 풀 내에서 암시적 메커니즘을 기반으로 상기 PSFCH 자원의 주파수 영역(frequency domain) 및/또는 코드 영역(code domain)을 결정할 수 있다. 예를 들어, 수신 단말은 PSCCH/PSSCH/PSFCH와 관련된 슬롯 인덱스, PSCCH/PSSCH와 관련된 서브채널, 및/또는 그룹캐스트 옵션 2 기반의 HARQ 피드백을 위한 그룹에서 각각의 수신 단말을 구별하기 위한 식별자 중 적어도 어느 하나를 기반으로, PSFCH 자원의 주파수 영역 및/또는 코드 영역을 결정할 수 있다. 그리고/또는, 예를 들어, 수신 단말은 SL RSRP, SINR, L1 소스 ID, 및/또는 위치 정보 중 적어도 어느 하나를 기반으로, PSFCH 자원의 주파수 영역 및/또는 코드 영역을 결정할 수 있다.
예를 들어, 단말의 PSFCH를 통한 HARQ 피드백 전송과 PSFCH를 통한 HARQ 피드백 수신이 중첩되는 경우, 상기 단말은 우선 순위 규칙을 기반으로 PSFCH를 통한 HARQ 피드백 전송 또는 PSFCH를 통한 HARQ 피드백 수신 중 어느 하나를 선택할 수 있다. 예를 들어, 우선 순위 규칙은 적어도 관련 PSCCH/PSSCH의 우선 순위 지시(priority indication)를 기반으로 할 수 있다.
예를 들어, 단말의 복수의 단말에 대한 PSFCH를 통한 HARQ 피드백 전송이 중첩되는 경우, 상기 단말은 우선 순위 규칙을 기반으로 특정 HARQ 피드백 전송을 선택할 수 있다. 예를 들어, 우선 순위 규칙은 적어도 관련 PSCCH/PSSCH의 우선 순위 지시(priority indication)를 기반으로 할 수 있다.
이하, SCI(Sidelink Control Information)에 대하여 설명한다.
기지국이 PDCCH를 통해 단말에게 전송하는 제어 정보를 DCI(Downlink Control Information)라 칭하는 반면, 단말이 PSCCH를 통해 다른 단말에게 전송하는 제어 정보를 SCI라 칭할 수 있다. 예를 들어, 단말은 PSCCH를 디코딩하기 전에, PSCCH의 시작 심볼 및/또는 PSCCH의 심볼 개수를 알고 있을 수 있다. 예를 들어, SCI는 SL 스케줄링 정보를 포함할 수 있다. 예를 들어, 단말은 PSSCH를 스케줄링하기 위해 적어도 하나의 SCI를 다른 단말에게 전송할 수 있다. 예를 들어, 하나 이상의 SCI 포맷(format)이 정의될 수 있다.
예를 들어, 전송 단말은 PSCCH 상에서 SCI를 수신 단말에게 전송할 수 있다. 수신 단말은 PSSCH를 전송 단말로부터 수신하기 위해 하나의 SCI를 디코딩할 수 있다.
예를 들어, 전송 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예를 들어, 2-stage SCI)를 수신 단말에게 전송할 수 있다. 수신 단말은 PSSCH를 전송 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예를 들어, 2-stage SCI)를 디코딩할 수 있다. 예를 들어, (상대적으로) 높은 SCI 페이로드(payload) 크기를 고려하여 SCI 구성 필드들을 두 개의 그룹으로 구분한 경우에, 제 1 SCI 구성 필드 그룹을 포함하는 SCI를 제 1 SCI 또는 1st SCI라고 칭할 수 있고, 제 2 SCI 구성 필드 그룹을 포함하는 SCI를 제 2 SCI 또는 2nd SCI라고 칭할 수 있다. 예를 들어, 전송 단말은 PSCCH를 통해서 제 1 SCI를 수신 단말에게 전송할 수 있다. 예를 들어, 전송 단말은 PSCCH 및/또는 PSSCH 상에서 제 2 SCI를 수신 단말에게 전송할 수 있다. 예를 들어, 제 2 SCI는 (독립된) PSCCH를 통해서 수신 단말에게 전송되거나, PSSCH를 통해 데이터와 함께 피기백되어 전송될 수 있다. 예를 들어, 두 개의 연속적인 SCI는 서로 다른 전송(예를 들어, 유니캐스트(unicast), 브로드캐스트(broadcast) 또는 그룹캐스트(groupcast))에 대하여 적용될 수도 있다.
예를 들어, 전송 단말은 SCI를 통해서, 아래 정보 중에 일부 또는 전부를 수신 단말에게 전송할 수 있다. 여기서, 예를 들어, 전송 단말은 아래 정보 중에 일부 또는 전부를 제 1 SCI 및/또는 제 2 SCI를 통해서 수신 단말에게 전송할 수 있다.
- PSSCH 및/또는 PSCCH 관련 자원 할당 정보, 예를 들어, 시간/주파수 자원 위치/개수, 자원 예약 정보(예를 들어, 주기), 및/또는
- SL CSI 보고 요청 지시자 또는 SL (L1) RSRP (및/또는 SL (L1) RSRQ 및/또는 SL (L1) RSSI) 보고 요청 지시자, 및/또는
- (PSSCH 상의) SL CSI 전송 지시자 (또는 SL (L1) RSRP (및/또는 SL (L1) RSRQ 및/또는 SL (L1) RSSI) 정보 전송 지시자), 및/또는
- MCS(Modulation and Coding Scheme) 정보, 및/또는
- 전송 전력 정보, 및/또는
- L1 데스티네이션(destination) ID 정보 및/또는 L1 소스(source) ID 정보, 및/또는
- SL HARQ 프로세스(process) ID 정보, 및/또는
- NDI(New Data Indicator) 정보, 및/또는
- RV(Redundancy Version) 정보, 및/또는
- (전송 트래픽/패킷 관련) QoS 정보, 예를 들어, 우선 순위 정보, 및/또는
- SL CSI-RS 전송 지시자 또는 (전송되는) SL CSI-RS 안테나 포트의 개수 정보
- 전송 단말의 위치 정보 또는 (SL HARQ 피드백이 요청되는) 타겟 수신 단말의 위치 (또는 거리 영역) 정보, 및/또는
- PSSCH를 통해 전송되는 데이터의 디코딩 및/또는 채널 추정과 관련된 참조 신호(예를 들어, DMRS 등) 정보, 예를 들어, DMRS의 (시간-주파수) 맵핑 자원의 패턴과 관련된 정보, 랭크(rank) 정보, 안테나 포트 인덱스 정보;
예를 들어, 제 1 SCI는 채널 센싱과 관련된 정보를 포함할 수 있다. 예를 들어, 수신 단말은 PSSCH DMRS를 이용하여 제 2 SCI를 디코딩할 수 있다. PDCCH에 사용되는 폴라 코드(polar code)가 제 2 SCI에 적용될 수 있다. 예를 들어, 자원 풀에서, 제 1 SCI의 페이로드 사이즈는 유니캐스트, 그룹캐스트 및 브로드캐스트에 대하여 동일할 수 있다. 제 1 SCI를 디코딩한 이후에, 수신 단말은 제 2 SCI의 블라인드 디코딩을 수행할 필요가 없다. 예를 들어, 제 1 SCI는 제 2 SCI의 스케줄링 정보를 포함할 수 있다.
한편, 본 개시의 다양한 실시 예에서, 전송 단말은 PSCCH를 통해 SCI, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나를 수신 단말에게 전송할 수 있으므로, PSCCH는 SCI, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나로 대체/치환될 수 있다. 그리고/또는, 예를 들어, SCI는 PSCCH, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나로 대체/치환될 수 있다. 그리고/또는, 예를 들어, 전송 단말은 PSSCH를 통해 제 2 SCI를 수신 단말에게 전송할 수 있으므로, PSSCH는 제 2 SCI로 대체/치환될 수 있다.
본 명세서에서, "설정 또는 정의" 워딩은 기지국 또는 네트워크로부터 (사전에 정의된 시그널링 (예를 들어, SIB, MAC 시그널링, RRC 시그널링)을 통해서) (미리) 설정되는 것으로 해석될 수 있다. 예를 들어, "A가 설정될 수 있다"는 "기지국 또는 네트워크가 단말에 대하여 A를 (미리) 설정/정의하는 것 또는 알리는 것"을 포함할 수 있다. 또는, "설정 또는 정의" 워딩은 시스템에 의해 사전에 설정 또는 정의되는 것으로 해석될 수 있다. 예를 들어, "A가 설정될 수 있다"는 "A가 시스템에 의해 사전에 설정/정의되는 것"을 포함할 수 있다.
자원 풀은 SL 전송 및/또는 SL 수신을 위해 사용될 수 있는 시간-주파수 자원의 집합일 수 있다. 단말의 관점에서 볼 때, 자원 풀 내의 시간 도메인 자원은 연속하지 않을 수 있다. 복수의 자원 풀은 하나의 캐리어 내에서 단말에게 (미리) 설정될 수 있다. 물리 계층 관점에서, 단말은 설정된 또는 사전에 설정된 자원 풀을 이용하여 유니캐스트, 그룹캐스트 및 브로드캐스트 통신을 수행할 수 있다.
한편, 차기 시스템에서는, 단말은 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하도록 허용될 수 있다. 본 개시의 실시 예에서, 상기의 상황은 단말이 단일 RF 장치 및/또는 BB(baseband) 장치로 복수의 상이한 RAT 기반의 사이드링크 송수신 동작을 동시에 수행하는 경우로 확장하여 적용될 수 있다. 한편, RAT에 따라서, 사이드링크 송수신 또는 PSCCH 및/또는 PSSCH에 대한 송수신에 대한 파형(waveform) 및/또는 신호 생성 방법 및/또는 DC(direct current) 위치 및/또는 SCS (서브캐리어 간격) 및/또는 서브캐리어 오프셋 및/또는 CP 길이 등이 상이할 수 있다. 좀더 구체적으로, LTE 사이드링크의 경우에, SC-FDMA 또는 DFT-PRECODED OFDM 방식이 사용될 수 있고, SCS는 15kHz일 수 있고, DC 위치는 시스템 대역폭의 중심에 7.5kHz의 서브캐리어 오프셋을 가질 수 있고, CP 길이는 일반(normal) CP와 확장(extended) CP가 허용될 수 있다. 반면에, NR 사이드링크의 경우에는, OFDM 또는 CP-OFDM 방식이 사용될 수 있고, SCS는 (사전) 설정에 따라서 15kHz, 30kHz, 60kHz, 120kHz 등이 허용될 수 있으며, DC 위치는 (사전) 설정에 따라서 SL BWP 또는 RB 그리드 내에 특정 서브캐리어 위치일 수 있거나 SL BWP 또는 RB 그리드 밖의 특정 위치일 수 있으며, 서브캐리어 오프셋은 (사전) 설정에 따라서 +7.5kHz, 0kHz, -7.5kHz가 허용될 수 있고, CP 길이는 일반(normal) CP가 지원될 수 있고 SCS가 60kHz인 경우에 한하여 확장(extended) CP가 지원될 수 있다. 또한, LTE 사이드링크의 경우에, 서브프레임 또는 슬롯 내 모든 심볼이 SL 통신에 사용 가능한 형태인 반면에, NR 사이드링크의 경우에는, (사전) 설정에서 설정되는 시작 SL 심볼 인덱스(이하, SL_SYMBOL_START)로부터 슬롯 내 SL 심볼 개수(이하, SL_SYMBOL_LENGTH) 만큼의 심볼 구간만 SL 통신에 사용 가능한 형태일 수 있다.
한편, LTE SL와 NR SL간에 TTI(transmission time interval)가 상이한 경우에, 단말이 LTE SL과 NR SL을 동시에 전송하면, LTE SL 또는 NR SL 전송 중간에 천이 구간(transient period)이 발생할 수 있다. 단말의 수신 입장에서는, LTE SL 또는 NR SL 수신 중간에 추가적인 AGC가 요구될 수도 있고, 또는 수신 앞 단에서만 수행하는 AGC가 비효율적으로 동작할 수 있다. 좀더 구체적으로, 단말이 LTE SL의 서브프레임 내 첫 심볼에서 AGC를 수행한 경우에, NR SL 전송이 LTE SL 수신 중간에 시작되면, 전체 수신 전력이 갑자기 커짐에 따라서 (AGC에 의해 설정된 최대 수신 전력을 넘어서는) 일부 신호가 클리핑(clipping)될 수 있다.
도 10 및 도 11은 NR SL 전송이 LTE SL 수신 중간에 시작되는 경우에, 일부 신호가 클리핑되는 일 예를 나타낸다. 도 10 및 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 10을 참조하면, 단말은 LTE SL 통신을 위한 자원 풀 내의 서브프레임 A에서 LTE SL 수신을 수행한다고 가정한다. 이 경우, 단말은 서브프레임 A의 시작(예, AGC 심볼)에서 AGC 동작을 수행할 수 있다. 나아가, 단말은 NR SL 통신을 위한 자원 풀 내의 슬롯 B에서 NR SL 수신을 수행한다고 가정한다. 여기서, NR SL 통신을 위한 SCS는 30kHz라고 가정한다. 이 경우, 도 11의 실시 예와 같이 일부 신호가 클리핑될 수 있다.
구체적으로, 도 11을 참조하면, LTE SL 수신을 위해 AGC를 이미 수행한 단말이 LTE SL 수신 도중에 추가로 NR SL 수신을 수행하면, 일부 신호는 상기 AGC에 의해 설정된 최대 수신 전력을 넘어설 수 있다. 이로 인하여, 일부 신호가 클리핑될 수 있다.
또는, 서브프레임 또는 슬롯 내 첫 심볼에서 LTE SL과 NR SL이 모두 존재하는 경우에, 단말은 AGC를 수행할 수 있다. 이 경우, LTE SL 수신 중간에서 NR SL이 더 이상 존재하지 않는 경우에, 상기 단말의 수신 전력이 상대적으로 작아질 수 있으며, 초기 AGC에 의해 맞춰진 양자화(quantization) 레벨이 비효율적일 수 있다. 이에 따라, 양자화 오류가 발생할 수도 있다.
본 개시의 다양한 실시 예에 따라서, 상이한 RAT 기반의 SL 통신이 공존하는 방법 및 이를 지원하는 장치에 대하여 설명한다. 설명의 편의를 위해서, LTE SL 및 NR SL의 공존을 중심으로 설명하지만, 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. 본 개시의 기술적 사상은 상이한 RAT 기반의 통신이 공존하는 경우에도 적용될 수 있다.
예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, 단말은 LTE SL과 NR SL의 TTI가 동일한 것을 기대/결정할 수 있다. 좀더 구체적으로, 예를 들어, 상기 TTI가 동일한 것은 NR SL의 SCS가 LTE SL의 SCS와 동일한 것(예를 들어, 15kHz)을 포함할 수 있다. 예를 들어, 상기 TTI가 동일한 것은 NR SL에 대한 SL BWP 설정에서 SL_SYMBOL_START가 슬롯 내 첫 번째 심볼 (인덱스 값 0) 로 설정되고, 및/또는 SL_SYMBOL_LENGTH가 14로 설정되는 경우일 수 있다. 예를 들어, 상기 TTI가 동일한 것은 NR SL에 대한 자원 풀 설정에서 PSFCH 자원이 설정되지 않는 경우(예를 들어, PSFCH 자원 주기 값이 0)일 수 있다. 예를 들어, 상기 LTE SL에 대한 TTI와 NR SL TTI에 대한 경계는 정렬될 수 있다. 또는, 예를 들어, 상기 LTE SL에 대한 TTI와 NR SL TTI에 대한 경계의 시간 차이는 일정 수준(예를 들어, 32usec 또는 이에 준하는 값 또는 CP 길이) 이하일 수 있다.
도 12는 본 개시의 일 실시 예에 따라, LTE SL과 NR SL의 TTI가 동일한 예를 나타낸다. 도 12의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 12를 참조하면, 단말은 LTE SL의 TTI와 NR SL의 TTI가 동일하다고 기대/결정할 수 있다. 예를 들어, NR SL의 SCS는 15kHz일 수 있다. 예를 들어, NR SL에 대한 SL BWP 설정에서, SL_SYMBOL_START가 슬롯 내 첫 번째 심볼 (인덱스 값 0) 로 설정되고, 및/또는 SL_SYMBOL_LENGTH가 14로 설정될 수 있다. 예를 들어, NR SL에 대한 자원 풀 설정에서, PSFCH 자원은 설정되지 않을 수 있다. 예를 들어, 상기 LTE SL에 대한 TTI와 NR SL TTI에 대한 경계는 정렬될 수 있다. 또는, 예를 들어, 상기 LTE SL에 대한 TTI와 NR SL TTI에 대한 경계의 시간 차이는 일정 수준(예를 들어, 32usec 또는 이에 준하는 값 또는 CP 길이) 이하일 수 있다.
예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, LTE SL에 대한 동기화 소스와 NR SL에 대한 동기화 소스는 동일할 수 있다. 예를 들어, 단말은 LTE SL 동작에 사용하는 동기화 정보(예를 들어, 소스 및/또는 DFN0 위치 및/또는 서브프레임 및/또는 슬롯 및/또는 심볼 및/또는 프레임 경계 등)를 승계하여, NR SL 동작에 사용할 수 있다. 예를 들어, LTE SL에 대한 서브프레임 경계와 NR SL에 대한 서브프레임 경계는 동일할 수 있다. 예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, NR SL의 동기화 소스는 기지국(예를 들어, eNB) 및/또는 GNSS 및/또는 GNSS를 동기화 소스로 갖는 단말 및/또는 기지국(예를 들어, eNB)을 동기화 소스로 갖는 단말일 수 있다.
예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, 단말은 NR SL에 대하여 슬롯 집성(slot aggregation)을 적용할 수 있다. 예를 들어, 상기 슬롯 집성(slot aggregation) 방식에 따르면, 집성된 슬롯(aggregated slots)의 구간은 LTE SL의 서브프레임과 경계(boundary)가 일치할 수 있다. 좀더 구체적으로, 예를 들어, NR SL의 SCS이 30kHz인 경우에, NR SL 송수신은 2 슬롯을 묶은 형태로 수행될 수 있다. 예를 들어, NR SL의 SCS이 60kHz인 경우에, NR SL 송수신은 4 슬롯을 묶은 형태로 수행될 수 있다. 예를 들어, NR SL의 SCS이 120kHz인 경우에, NR SL 송수신은 8 슬롯을 묶은 형태로 수행될 수 있다. 예를 들어, NR SL의 집성된(aggregated) 슬롯의 시작은 LTE SL의 서브프레임의 시작과 일치할 수 있다. 예를 들어, NR SL의 집성된(aggregated) 슬롯의 시작 및 LTE SL의 서브프레임의 시작 사이의 차이 값은 일정 수준(예를 들어, 32usec 또는 이에 준하는 값 또는 CP 길이) 이하일 수 있다. 예를 들어, 단말은 NR SL의 자원 풀 선택 과정의 단위를 슬롯에서 집성된 슬롯(aggregated slots)의 단위로 변경하여, 자원 풀에서 자원 선택을 수행할 수 있다. 예를 들어, NR SL에서 단말의 자원 선택 단위는 집성된 슬롯(aggregated slots)일 수 있다. 이 경우, 예를 들어, 단말은 NR SL 동작 시에 집성된 슬롯(aggregated slots) 내 모든 슬롯을 SL 송신에 사용할 수 있다. 예를 들어, 단말은 NR SL 동작 시에 집성된 슬롯(aggregated slots) 내 모든 슬롯을 SL 송신에 사용하지 않을 수 있다. 예를 들어, 단말은 일부 슬롯만 SL 송신에 사용하는 것을 기대하지 않을 수 있다. 예를 들어, 집성된 슬롯(aggregated slots)에 대하여, PSCCH/PSSCH 구조 및/또는 PSFCH 자원 유무는 모두 동일하게 설정될 수 있다. 예를 들어, PSCCH/PSSCH 자원에 대한 시작 심볼과 끝 심볼은 집성된 슬롯(aggregated slots)에 대하여 모두 동일할 수 있다. 예를 들어, 집성된 슬롯(aggregated slots) 중에서 마지막 슬롯을 제외한 나머지 슬롯에서 TX-RX 스위칭 구간(switching period)을 위하여 비어진 심볼은, 단말이 슬롯 집성(slot aggregation)을 수행하는 경우에, 단말은 TX-RX 스위칭 구간(switching period)에 대응되는 심볼에서 PSCCH/PSSCH 또는 PSFCH 전송을 수행할 수 있다. 예를 들어, 상기 TX-RX 스위칭 구간(switching period)에 대응되는 심볼에서, 단말은 PSCCH/PSSCH 또는 PSFCH 전송에 대한 AGC 심볼의 맵핑을 그대로 승계하여 전송을 수행할 수 있다. 예를 들어, 상기 TX-RX 스위칭 구간(switching period)에 대응되는 심볼에서, 단말은 PSCCH/PSSCH 또는 PSFCH 실제 전송의 마지막 심볼의 맵핑을 그대로 승계하여 전송을 수행할 수 있다. 예를 들어, 상기 TX-RX 스위칭 구간(switching period)에 대응되는 심볼에서, 단말은 더미 데이터(dummy data)를 전송할 수 있다. 예를 들어, 단말은 상기 NR SL에 대한 슬롯 집성(slot aggregation)을 LTE SL에 대한 자원 풀 설정에 따라서 LTE SL 서브프레임과 겹치는 NR SL에 대해서만 적용할 수 있고, 단말은 나머지 NR SL에 대해서 여전히 슬롯 단위로 자원 선택을 수행할 수 있다.
도 13은 본 개시의 일 실시 예에 따라, 단말이 NR SL에 대하여 슬롯 집성(slot aggregation)을 적용하는 방법을 나타낸다. 도 13의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 13을 참조하면, 단말이 NR SL에 대하여 슬롯 집성(slot aggregation)을 수행할 수 있다. 도 13의 실시 예에서, NR SL 통신을 위한 자원 풀과 관련된 SCS는 30kHz라고 가정한다. 이 경우, NR SL 통신을 수행하려는 단말은 하나의 LTE 서브프레임과 중첩하는 2 개의 슬롯을 집성하여 자원 선택을 수행할 수 있다. 예를 들어, NR SL 통신을 수행하려는 단말은 하나의 슬롯에 포함된 자원만을 선택하도록 허용되지 않을 수 있다.
예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, 단말이 NR SL 전송을 위한 자원 선택 시에, 단말은 적어도 LTE SL 서브프레임과 겹치는 NR SL 슬롯들 중에서 가장 앞선 슬롯을 포함하도록 제한될 수 있다. 예를 들어, 상기 자원 선택의 대상이 되는 NR SL 슬롯은 LTE SL 서브프레임 내 AGC 심볼(예를 들어, LTE 서브프레임 내 첫 번째 심볼)과 겹치는 NR SL 슬롯일 수 있다. 예를 들어, 상기 자원 선택의 대상이 되는 NR SL 슬롯은 LTE SL 서브프레임 내 AGC 심볼(예를 들어, LTE 서브프레임 내 첫 번째 심볼)을 포함하는 NR SL 슬롯일 수 있다. 예를 들어, 단말이 NR SL 전송을 위한 자원 선택 시에 LTE SL 서브프레임과 겹치는 NR SL 슬롯 중 첫 번째 슬롯을 선택 자원에 포함하는 경우에 한하여, 단말은 LTE SL 서브프레임과 겹치는 잔여 NR SL 슬롯을 자원 선택 대상에 포함할 수 있다. 예를 들어, NR SL의 SCS가 60kHz인 경우에, LTE SL 서브프레임과 겹치는 NR SL 슬롯이 4 개일 수 있으며, 단말은 상기 4 개의 NR SL 슬롯 중에서 시간상 앞선 첫 번째 슬롯을 자원 선택 대상에 포함할 수 있다. 이 경우, 만약 단말이 상기 첫 번째 슬롯 내의 자원을 PSCCH/PSSCH 전송 자원으로 선택하는 경우에, 단말은 상기 잔여 3 개의 NR SL 슬롯의 전체 또는 일부를 PSCCH/PSSCH 전송 자원으로 선택할 수 있다. 반대로, 예를 들어, 단말이 LTE SL 서브프레임과 겹치는 NR SL 슬롯 4 개 중에서 시간상 앞선 첫 번째 슬롯을 PSCCH/PSSCH 전송 자원으로 선택하지 않는 경우에는, 단말은 상기 잔여 3 개 NR SL 슬롯도 PSCCH/PSSCH 전송을 위한 자원 대상에서 제외할 수 있다. 예를 들어, 단말이 LTE SL 서브프레임과 겹치는 NR SL 슬롯 중에서 첫 번째 슬롯의 자원을 PSCCH/PSSCH 전송을 위해 선택하는 경우에, 단말은 일정 수준 이상으로 LTE SL 서브프레임과 겹치는 나머지 NR SL 슬롯을 PSCCH/PSSCH 전송을 위해 선택할 수 있다. 예를 들어, 상기 일정 수준 이상은 슬롯의 개수 형태로 또는 LTE SL 서브프레임과 겹치는 전체 NR SL 슬롯의 개수 대비 전송에 사용할 NR SL 슬롯의 개수의 최소 비율 형태로 단말에게 (사전에) 설정될 수 있다. 예를 들어, 단말은 상기 NR SL에 대한 자원 선택에 대한 제한 방식을 LTE SL에 대한 자원 풀 설정에 따라서 LTE SL 서브프레임과 겹치는 NR SL에 대해서만 적용할 수 있고, 단말은 나머지 NR SL에 대해서는 상기 제한 방식 없이 자원 선택을 수행할 수 있다.
도 14는 본 개시의 일 실시 예에 따라, 단말이 LTE SL 서브프레임과 겹치는 NR SL 슬롯들 중에서 가장 앞선 슬롯에 포함된 자원을 우선적으로 선택하는 방법을 나타낸다. 도 14의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 14를 참조하면, 단말은 LTE SL 서브프레임과 겹치는 NR SL 슬롯들 중에서 가장 앞선 슬롯에 포함된 자원을 우선적으로 선택할 수 있다. 도 14의 실시 예에서, NR SL 통신을 위한 자원 풀과 관련된 SCS는 30kHz라고 가정한다. 이 경우, 단말은 LTE SL 서브프레임과 겹치는 NR SL 슬롯들 중에서 가장 앞선 슬롯에 포함된 자원을 우선적으로 선택하도록 제한될 수 있다. 부가적으로, 예를 들어, 단말이 NR SL 전송을 위한 자원 선택 시에 LTE SL 서브프레임과 겹치는 NR SL 슬롯 중 첫 번째 슬롯을 선택 자원에 포함하는 경우에 한하여, 단말은 LTE SL 서브프레임과 겹치는 잔여 NR SL 슬롯을 자원 선택 대상에 포함할 수 있다.
예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, LTE SL 동작을 수행하는 단말은 상기 LTE SL이 동작하는 캐리어에서 동작하는 NR SL에 대한 설정(예를 들어, SL BWP에 대한 설정 및/또는 자원 풀에 대한 설정 등)을 제공받을 수 있다. 예를 들어, LTE SL 동작을 수행하는 단말은 (사전) 설정을 통해서 또는 기지국으로부터 NR SL 동작에 대한 TTI 정보(예를 들어, SL_SYMBOL_START 및/또는 SL_SYMBOL_LENGTH) 및/또는 자원 풀에 속하는 슬롯에 대한 정보를 제공받을 수 있다. 이 경우, 예를 들어, LTE SL 동작을 수행하는 단말은 상기 NR SL의 TTI 정보와 자원 풀 정보를 기반으로 LTE SL 수신 시 추가적으로 AGC 동작을 수행할 구간 또는 위치를 설정할 수 있다. 예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, NR SL 동작을 수행하는 단말은 NR SL이 동작하는 캐리어에서 동작하는 LTE SL에 대한 설정 (자원 풀에 속하는 서브프레임에 대한 설정 포함)을 (사전) 설정을 통해서 또는 기지국으로부터 제공받을 수 있다.
한편, 단말이 NR SL에서 자원 선택 과정을 수행 시에, 자원 선택 윈도우 내에 전체 자원의 양 대비 가용 자원의 양의 비율이 (사전에) 설정된 X% 이하 또는 미만인 경우에는, 단말은 RSRP 임계값을 부스팅하여 상기 가용 자원 비율이 X% 이상 또는 초과되도록 할 수 있다. 예를 들어, 단말이 단일 캐리어 또는 셀에서 서로 상이한 RAT(예를 들어, LTE 및/또는 NR)을 기반으로 사이드링크 채널/신호를 송신 및/또는 수신하는 동작을 수행하는 경우에, 단말이 자원 선택 과정을 수행함에 있어서, 가용 자원 비율은 자원 선택 윈도우 내에 LTE SL 서브프레임과 겹치는 첫 번째 슬롯 내의 자원의 전체 개수 대비 LTE SL 서브프레임과 겹치는 첫 번째 슬롯 내의 가용 자원의 양에 대한 비율로 설정될 수 있다.
본 개시의 실시 예에서, 상이한 RAT 기반의 SL 동작 시 AGC 문제를 완화하기 위한 상기 방식(들)은 LTE SL이 동작하는 주파수 영역과 NR SL이 동작하는 주파수 영역이 일정 수준 이하로 인접한 경우 또는 서로 겹치는 경우에 한정될 수 있다.
본 개시의 실시 예에서는 동일 캐리어에 LTE SL과 NR SL이 동시 동작하는 경우에 대한 것을 설명하였으나, 그 외 다른 RAT 기반의 SL 또는 V2X와 NR SL이 동시 동작하는 환경이나 서로 상이한 전송 파라미터(예를 들어, SCS 및/또는 서브캐리어 오프셋 및/또는 DC 위치 등)를 사용하는 NR SL이 동시에 동작하는 환경에 대해서도, 본 개시의 기술적 사상이 확장하여 적용될 수 있다.
본 개시의 실시 예에서, NR SL 동작에서 자원 선택 과정은 자원 재선택 및/또는 프리엠션(pre-emption) 동작을 포함할 수 있다. 또는, 단말은 자원 선택, 자원 재선택, 프리엠션에 대하여 상기 실시 예 중에서 서로 상이한 방식을 선택하여 동작할 수 있다.
본 개시의 다양한 실시 예에 따르면, 상이한 RAT 기반의 통신이 효율적으로 공존할 수 있다. 예를 들어, 단말은 LTE SL 서브프레임과 중첩되는 복수의 NR SL 슬롯들 중에서 가장 앞서는 NR SL 슬롯을 우선적으로 선택함으로써, 상술한 클리핑 문제가 발생하는 것을 방지할 수 있다. 이를 통해서, 상이한 RAT 기반의 통신의 신뢰성이 보장될 수 있다.
도 15는 본 개시의 일 실시 예에 따라, 단말이 LTE SL 서브프레임과 중첩되는 복수의 NR SL 슬롯들 중에서 가장 앞서는 NR SL 슬롯을 우선적으로 선택함으로써, 클리핑 문제가 발생하지 않는 예를 나타낸다. 도 15의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 15를 참조하면, 단말이 LTE SL 서브프레임과 중첩되는 복수의 NR SL 슬롯들 중에서 가장 앞서는 NR SL 슬롯을 우선적으로 선택하는 경우에, 수신 단말은 LTE SL 신호 및 NR SL 신호를 모두 고려하여 AGC를 수행할 수 있다. 이 경우, LTE SL 신호가 전송되는 도중에 NR SL 신호의 전송이 중단되더라도, 클리핑 문제는 발생하지 않을 수 있고, 수신 단말은 LTE SL 신호 및 NR SL 신호를 각각 디코딩할 수 있다. 따라서, 상이한 RAT 기반의 통신의 신뢰성이 보장될 수 있다.
도 16은 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다. 도 16의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 16을 참조하면, 단계 S1610에서, 제 1 장치는 LTE(Long Term Evolution) SL(sidelink) 통신을 위한 제 1 자원 풀과 관련된 정보를 획득할 수 있다. 단계 S1620에서, 제 1 장치는 NR SL 통신을 위한 제 2 자원 풀과 관련된 정보를 획득할 수 있다. 단계 S1630에서, 제 1 장치는 제 1 슬롯에서 자원 선택을 트리거할 수 있다. 단계 S1640에서, 제 1 장치는 상기 제 1 슬롯 및 PDB(packet delay budget)를 기반으로 선택 윈도우를 결정할 수 있다. 단계 S1650에서, 제 1 장치는 센싱을 기반으로 상기 선택 윈도우 내의 상기 제 2 자원 풀에 속하는 슬롯들 내에서 제 1 SL 자원을 선택할 수 있다. 예를 들어, 상기 제 1 SL 자원은 상기 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
예를 들어, 상기 제 1 서브프레임의 시작과 중첩되는 상기 제 1 SL 자원이 선택되는 것을 기반으로, 상기 제 1 장치는 상기 제 1 서브프레임과 시간 영역에서 중첩되는 제 2 SL 자원을 선택하도록 허용될 수 있다. 예를 들어, 상기 제 2 SL 자원은 상기 제 1 서브프레임의 시작과 시간 영역에서 중첩되지 않는 슬롯에 포함된 자원일 수 있다.
예를 들어, 상기 제 1 자원 풀 내 제 2 서브프레임의 시작과 시간 영역에서 중첩되는 제 3 SL 자원이 선택되지 않는 것을 기반으로, 상기 제 1 장치는 상기 제 2 서브프레임과 시간 영역에서 중첩되는 제 4 SL 자원을 선택하도록 허용되지 않을 수 있다. 예를 들어, 상기 제 4 SL 자원은 상기 제 2 서브프레임의 시작과 시간 영역에서 중첩되지 않는 슬롯에 포함된 자원일 수 있다.
예를 들어, 상기 제 1 서브프레임의 시작은 상기 제 1 서브프레임 내 첫 번째 심볼일 수 있다.
예를 들어, 상기 제 1 SL 자원은 복수의 집성된(aggregated) SL 자원들을 포함할 수 있다. 예를 들어, 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 시작은 상기 제 1 서브프레임의 시작과 정렬될 수 있고, 및 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 끝은 상기 제 1 서브프레임의 끝과 정렬될 수 있다. 예를 들어, 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 시작 및 상기 제 1 서브프레임의 시작 사이의 차이는 임계치 이하일 수 있고, 및 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 끝 및 상기 제 1 서브프레임의 끝 사이의 차이는 상기 임계치 이하일 수 있다.
예를 들어, 상기 LTE SL 통신을 위한 TTI(transmission time interval)는 상기 NR SL 통신을 위한 TTI와 동일할 수 있다. 예를 들어, 상기 NR SL 통신과 관련된 SCS(sub-carrier spacing)는 15kHz일 수 있고, 및 상기 제 2 자원 풀과 관련된 SL BWP(bandwidth part) 설정은 0으로 설정된 SL 시작 심볼 정보 및 14로 설정된 SL 심볼 길이 정보를 포함할 수 있다. 예를 들어, 상기 제 2 자원 풀에서 PSFCH(physical sidelink feedback channel) 자원의 주기는 0으로 설정될 수 있다.
예를 들어, 상기 LTE SL 통신을 위한 동기화 기준과 상기 NR SL 통신을 위한 동기화 기준은 동일할 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 제 1 장치(100)의 프로세서(102)는 LTE(Long Term Evolution) SL(sidelink) 통신을 위한 제 1 자원 풀과 관련된 정보를 획득할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 NR SL 통신을 위한 제 2 자원 풀과 관련된 정보를 획득할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 제 1 슬롯에서 자원 선택을 트리거할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 상기 제 1 슬롯 및 PDB(packet delay budget)를 기반으로 선택 윈도우를 결정할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 센싱을 기반으로 상기 선택 윈도우 내의 상기 제 2 자원 풀에 속하는 슬롯들 내에서 제 1 SL 자원을 선택할 수 있다. 예를 들어, 상기 제 1 SL 자원은 상기 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하도록 설정된 제 1 장치가 제공될 수 있다. 예를 들어, 상기 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, LTE(Long Term Evolution) SL(sidelink) 통신을 위한 제 1 자원 풀과 관련된 정보를 획득하고; NR SL 통신을 위한 제 2 자원 풀과 관련된 정보를 획득하고; 제 1 슬롯에서 자원 선택을 트리거하고; 상기 제 1 슬롯 및 PDB(packet delay budget)를 기반으로 선택 윈도우를 결정하고; 및 센싱을 기반으로 상기 선택 윈도우 내의 상기 제 2 자원 풀에 속하는 슬롯들 내에서 제 1 SL 자원을 선택할 수 있다. 예를 들어, 상기 제 1 SL 자원은 상기 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 1 장치를 제어하도록 설정된 프로세싱 장치(processing device)가 제공될 수 있다. 예를 들어, 상기 프로세싱 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, LTE(Long Term Evolution) SL(sidelink) 통신을 위한 제 1 자원 풀과 관련된 정보를 획득하고; NR SL 통신을 위한 제 2 자원 풀과 관련된 정보를 획득하고; 제 1 슬롯에서 자원 선택을 트리거하고; 상기 제 1 슬롯 및 PDB(packet delay budget)를 기반으로 선택 윈도우를 결정하고; 및 센싱을 기반으로 상기 선택 윈도우 내의 상기 제 2 자원 풀에 속하는 슬롯들 내에서 제 1 SL 자원을 선택할 수 있다. 예를 들어, 상기 제 1 SL 자원은 상기 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 제 1 장치로 하여금: LTE(Long Term Evolution) SL(sidelink) 통신을 위한 제 1 자원 풀과 관련된 정보를 획득하게 하고; NR SL 통신을 위한 제 2 자원 풀과 관련된 정보를 획득하게 하고; 제 1 슬롯에서 자원 선택을 트리거하게 하고; 상기 제 1 슬롯 및 PDB(packet delay budget)를 기반으로 선택 윈도우를 결정하게 하고; 및 센싱을 기반으로 상기 선택 윈도우 내의 상기 제 2 자원 풀에 속하는 슬롯들 내에서 제 1 SL 자원을 선택하게 할 수 있다. 예를 들어, 상기 제 1 SL 자원은 상기 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
도 17은 본 개시의 일 실시 예에 따라, 제 2 장치가 무선 통신을 수행하는 방법을 나타낸다. 도 17의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 17을 참조하면, 단계 S1710에서, 제 2 장치는 제 1 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, 제 2 SCI(sidelink control information) 및 PSSCH(physical sidelink shared channel)의 스케줄링을 위한, 제 1 SCI를 제 1 장치로부터 수신할 수 있다. 단계 S1720에서, 제 2 장치는 상기 제 1 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 데이터를 상기 제 1 장치로부터 수신할 수 있다. 예를 들어, NR SL 통신을 위한 제 2 자원 풀 내에서 선택된 상기 제 1 SL 자원은 LTE(Long Term Evolution) SL 통신을 위한 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
예를 들어, 상기 제 1 서브프레임의 시작과 중첩되는 상기 제 1 SL 자원이 선택되는 것을 기반으로, 상기 제 1 장치는 상기 제 1 서브프레임과 시간 영역에서 중첩되는 제 2 SL 자원을 선택하도록 허용될 수 있다. 예를 들어, 상기 제 2 SL 자원은 상기 제 1 서브프레임의 시작과 시간 영역에서 중첩되지 않는 슬롯에 포함된 자원일 수 있다.
예를 들어, 상기 제 1 자원 풀 내 제 2 서브프레임의 시작과 시간 영역에서 중첩되는 제 3 SL 자원이 선택되지 않는 것을 기반으로, 상기 제 1 장치는 상기 제 2 서브프레임과 시간 영역에서 중첩되는 제 4 SL 자원을 선택하도록 허용되지 않을 수 있다. 예를 들어, 상기 제 4 SL 자원은 상기 제 2 서브프레임의 시작과 시간 영역에서 중첩되지 않는 슬롯에 포함된 자원일 수 있다.
예를 들어, 상기 제 1 서브프레임의 시작은 상기 제 1 서브프레임 내 첫 번째 심볼일 수 있다.
예를 들어, 상기 제 1 SL 자원은 복수의 집성된(aggregated) SL 자원들을 포함할 수 있다. 예를 들어, 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 시작은 상기 제 1 서브프레임의 시작과 정렬될 수 있고, 및 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 끝은 상기 제 1 서브프레임의 끝과 정렬될 수 있다. 예를 들어, 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 시작 및 상기 제 1 서브프레임의 시작 사이의 차이는 임계치 이하일 수 있고, 및 상기 복수의 집성된 SL 자원들을 포함하는 상기 제 1 SL 자원의 끝 및 상기 제 1 서브프레임의 끝 사이의 차이는 상기 임계치 이하일 수 있다.
예를 들어, 상기 LTE SL 통신을 위한 TTI(transmission time interval)는 상기 NR SL 통신을 위한 TTI와 동일할 수 있다. 예를 들어, 상기 NR SL 통신과 관련된 SCS(sub-carrier spacing)는 15kHz일 수 있고, 및 상기 제 2 자원 풀과 관련된 SL BWP(bandwidth part) 설정은 0으로 설정된 SL 시작 심볼 정보 및 14로 설정된 SL 심볼 길이 정보를 포함할 수 있다. 예를 들어, 상기 제 2 자원 풀에서 PSFCH(physical sidelink feedback channel) 자원의 주기는 0으로 설정될 수 있다.
예를 들어, 상기 LTE SL 통신을 위한 동기화 기준과 상기 NR SL 통신을 위한 동기화 기준은 동일할 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 제 2 장치(200)의 프로세서(202)는 제 1 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, 제 2 SCI(sidelink control information) 및 PSSCH(physical sidelink shared channel)의 스케줄링을 위한, 제 1 SCI를 제 1 장치로부터 수신하도록 송수신기(206)를 제어할 수 있다. 그리고, 제 2 장치(200)의 프로세서(202)는 상기 제 1 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 데이터를 상기 제 1 장치로부터 수신하도록 송수신기(206)를 제어할 수 있다. 예를 들어, NR SL 통신을 위한 제 2 자원 풀 내에서 선택된 상기 제 1 SL 자원은 LTE(Long Term Evolution) SL 통신을 위한 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 2 장치가 제공될 수 있다. 예를 들어, 상기 제 2 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, 제 2 SCI(sidelink control information) 및 PSSCH(physical sidelink shared channel)의 스케줄링을 위한, 제 1 SCI를 제 1 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어하고; 및 상기 제 1 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 데이터를 상기 제 1 장치로부터 수신하도록 상기 하나 이상의 송수신기를 제어할 수 있다. 예를 들어, NR SL 통신을 위한 제 2 자원 풀 내에서 선택된 상기 제 1 SL 자원은 LTE(Long Term Evolution) SL 통신을 위한 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 2 장치를 제어하도록 설정된 프로세싱 장치(processing device)가 제공될 수 있다. 예를 들어, 상기 프로세싱 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, 제 1 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, 제 2 SCI(sidelink control information) 및 PSSCH(physical sidelink shared channel)의 스케줄링을 위한, 제 1 SCI를 제 1 장치로부터 수신하고; 및 상기 제 1 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 데이터를 상기 제 1 장치로부터 수신할 수 있다. 예를 들어, NR SL 통신을 위한 제 2 자원 풀 내에서 선택된 상기 제 1 SL 자원은 LTE(Long Term Evolution) SL 통신을 위한 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 제 2 장치로 하여금: 제 1 SL(sidelink) 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, 제 2 SCI(sidelink control information) 및 PSSCH(physical sidelink shared channel)의 스케줄링을 위한, 제 1 SCI를 제 1 장치로부터 수신하게 하고; 및 상기 제 1 SL 자원을 기반으로, 상기 PSSCH를 통해서, 상기 제 2 SCI 및 데이터를 상기 제 1 장치로부터 수신하게 할 수 있다. 예를 들어, NR SL 통신을 위한 제 2 자원 풀 내에서 선택된 상기 제 1 SL 자원은 LTE(Long Term Evolution) SL 통신을 위한 제 1 자원 풀 내 제 1 서브프레임의 시작과 시간 영역(time domain)에서 중첩되는 슬롯에 포함된 자원일 수 있다.
본 개시의 다양한 실시 예는 상호 결합될 수 있다.
이하 본 개시의 다양한 실시 예가 적용될 수 있는 장치에 대하여 설명한다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 18은 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다.
도 18을 참조하면, 본 개시의 다양한 실시 예가 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
여기서, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 19는 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 19를 참조하면, 제 1 무선 기기(100)와 제 2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제 1 무선 기기(100), 제 2 무선 기기(200)}은 도 18의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제 1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제 1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제 1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제 2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제 2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 20은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다.
도 20을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 20의 동작/기능은 도 19의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 20의 하드웨어 요소는 도 19의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 19의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 19의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 19의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 20의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 20의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 19의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 21은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 18 참조).
도 21을 참조하면, 무선 기기(100, 200)는 도 19의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 19의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204)를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 19의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 18, 100a), 차량(도 18, 100b-1, 100b-2), XR 기기(도 18, 100c), 휴대 기기(도 18, 100d), 가전(도 18, 100e), IoT 기기(도 18, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 18, 400), 기지국(도 18, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 21에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제 1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 21의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 22는 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 22를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 21의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 23은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 23을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 21의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.