WO2022265030A1 - Procédé de fabrication de film permanent, procédé de fabrication de stratifié, procédé de fabrication de dispositif et film permanent - Google Patents

Procédé de fabrication de film permanent, procédé de fabrication de stratifié, procédé de fabrication de dispositif et film permanent Download PDF

Info

Publication number
WO2022265030A1
WO2022265030A1 PCT/JP2022/023875 JP2022023875W WO2022265030A1 WO 2022265030 A1 WO2022265030 A1 WO 2022265030A1 JP 2022023875 W JP2022023875 W JP 2022023875W WO 2022265030 A1 WO2022265030 A1 WO 2022265030A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pattern
resin composition
acid
permanent film
Prior art date
Application number
PCT/JP2022/023875
Other languages
English (en)
Japanese (ja)
Inventor
広祐 山下
敦 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023530365A priority Critical patent/JPWO2022265030A1/ja
Publication of WO2022265030A1 publication Critical patent/WO2022265030A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a permanent film manufacturing method, a laminate manufacturing method, a device manufacturing method, and a permanent film.
  • Patent Document 1 describes a dispersion solution containing a filler, which is characterized by dispersing the filler in a solvent using a polyimide precursor solution composition.
  • US Pat. No. 5,300,000 discloses a method of forming a low-k organic layer on a semiconductor substrate, comprising a step of removing water from the low-k organic layer performed 0-3 months prior to an initial curing procedure. characterized by a final nitrogen step, forming a metal interconnect structure as an underlying layer; performing the initial effect step on the low-k organic layer; performing the final nitrogen step; and removing water from the low-k organic layer.
  • the obtained permanent film may be required to have excellent adhesion to the metal formed in contact therewith.
  • the present invention provides a method for producing a permanent film that provides a permanent film having excellent adhesion to metal over a long period of time, a method for producing a laminate including the method for producing the permanent film, and a method for producing the permanent film or the lamination. It is an object of the present invention to provide a method for manufacturing a device, including a method for manufacturing a body, and a permanent film obtained by the above method for manufacturing a permanent film.
  • a second resin composition is applied onto the substrate having the first pattern, and a second resin composition layer is formed on at least one of the first pattern and the region between the first patterns.
  • the second resin composition contains a filler,
  • a method for manufacturing a permanent membrane A method for manufacturing a permanent membrane.
  • the filler contained in the second resin composition is at least one filler selected from the group consisting of silica, quartz, glass, ceramics, fluororesins, and liquid crystal polymers, ⁇ 1> Or the manufacturing method of the permanent film as described in ⁇ 2>.
  • ⁇ 5> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 4>, wherein the filler has a dielectric loss tangent of 0.01 or less.
  • ⁇ 6> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 5>, wherein the first resin composition is a negative photosensitive resin composition.
  • the step of obtaining a base material having the first pattern is a step of selectively exposing the first resin composition layer and then developing by solvent development, ⁇ 1> to ⁇ 6>.
  • ⁇ 8> The process according to any one of ⁇ 1> to ⁇ 7>, wherein the step of forming the second pattern is a step of removing part of the second resin composition layer by solvent development.
  • a method for manufacturing a permanent membrane is any one of ⁇ 1> to ⁇ 5>, wherein the first resin composition is a negative photosensitive resin composition.
  • the step of obtaining a base material having the first pattern is a step of selectively exposing the first resin composition layer and then developing by solvent development, ⁇ 1> to ⁇ 6>.
  • ⁇ 9> A step of heating the first pattern and the second resin composition layer after the step of forming the second resin composition layer and before the step of forming the second pattern.
  • the second resin composition contains a resin having a polymerizable group.
  • ⁇ 12> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 11>, wherein the resin contained in the first resin composition is a polyimide precursor or a polybenzoxazole precursor.
  • the resin contained in the first resin composition is a polyimide precursor or a polybenzoxazole precursor.
  • ⁇ 13> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 12>, wherein the resin contained in the second resin composition is a polyimide precursor or a polybenzoxazole precursor.
  • ⁇ 14> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 13>, wherein the second resin composition contains a polymerizable compound having an aromatic group as the polymerizable compound.
  • ⁇ 15> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 14>, wherein the obtained permanent film contains polyimide or polybenzoxazole.
  • ⁇ 16> The permanent film according to any one of ⁇ 1> to ⁇ 15>, wherein the ratio of the coefficient of thermal expansion of the second pattern to the coefficient of thermal expansion of the first pattern is 60% or less.
  • ⁇ 17> The method for producing a permanent film according to any one of ⁇ 1> to ⁇ 16>, wherein the first pattern includes at least one of a hole pattern and a trench pattern.
  • a method for producing a laminate comprising the method for producing a permanent film according to any one of ⁇ 1> to ⁇ 17>.
  • ⁇ 19> A method for manufacturing a device, including the method for manufacturing a permanent film according to any one of ⁇ 1> to ⁇ 17> or the method for manufacturing a laminate according to ⁇ 18>.
  • ⁇ 20> A permanent film obtained by the method for producing a permanent film according to any one of ⁇ 1> to ⁇ 17>.
  • a method for producing a permanent film that provides a permanent film having excellent adhesion to metal for a long period of time a method for producing a laminate including the method for producing the permanent film, and a method for producing the permanent film, or A device manufacturing method including the laminate manufacturing method, and a permanent film obtained by the permanent film manufacturing method are provided.
  • FIG. 1 is a schematic cross-sectional view of a test vehicle used in biased HAST testing; FIG.
  • a numerical range represented by the symbol "to” means a range including the numerical values before and after "to” as lower and upper limits, respectively.
  • the term "process” is meant to include not only independent processes, but also processes that are indistinguishable from other processes as long as the desired effects of the process can be achieved.
  • a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent.
  • alkyl group includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
  • exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams, unless otherwise specified.
  • Light used for exposure includes actinic rays or radiation such as emission line spectra of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • (meth)acrylate means both or either of “acrylate” and “methacrylate”
  • (meth)acrylic means both “acrylic” and “methacrylic”
  • (meth)acryloyl means either or both of “acryloyl” and “methacryloyl”.
  • Me in the structural formulas represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • total solid content refers to the total mass of all components of the composition excluding the solvent.
  • the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured using a gel permeation chromatography (GPC) method, unless otherwise specified, and are defined as polystyrene conversion values.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are, for example, HLC-8220GPC (manufactured by Tosoh Corporation), guard column HZ-L, TSKgel Super HZM-M, TSKgel It can be obtained by connecting Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation) in series. Unless otherwise stated, their molecular weights were determined using THF (tetrahydrofuran) as an eluent.
  • THF tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • detection in GPC measurement uses a UV ray (ultraviolet) wavelength detector of 254 nm.
  • UV ray ultraviolet
  • a third layer or element may be interposed between the reference layer and the other layer, and the reference layer and the other layer need not be in contact with each other.
  • the direction in which the layers are stacked with respect to the base material is referred to as "upper", or when there is a resin composition layer, the direction from the base material to the resin composition layer is referred to as “upper”. and the opposite direction is called “down”.
  • the composition may contain two or more compounds corresponding to each component contained in the composition.
  • the content of each component in the composition means the total content of all compounds corresponding to that component.
  • the temperature is 23° C.
  • the pressure is 101,325 Pa (1 atm)
  • the relative humidity is 50% RH, unless otherwise stated. Combinations of preferred aspects are more preferred aspects herein.
  • the method for producing a permanent film of the present invention includes a step of forming a first resin composition layer on a substrate using a first resin composition to obtain a substrate having a first pattern; A step of applying a second resin composition on a substrate having a pattern of and forming a second resin composition layer on at least one of the first pattern and the area between the first patterns and removing part of the second resin composition layer to form a second pattern in contact with the first pattern, wherein the second resin composition contains a filler.
  • the second pattern containing the filler is formed at least in contact with the first pattern. It is believed that the second pattern containing this filler has a CTE (coefficient of thermal expansion) closer to that of the metal (eg, Cu electrode) than the pattern containing no filler.
  • the second pattern having a CTE close to that of the metal is included between the first pattern and the metal.
  • the difference between the deformation of the second pattern due to heat or the like and the deformation of the metal is reduced, so it is presumed that peeling between the metal and the composite pattern is suppressed even after a long period of time.
  • the fact that separation between the metal and the pattern is unlikely to occur even after a long period of time is also referred to as "high reliability of the pattern".
  • the first pattern does not contain a filler, or if the filler content in the first pattern is less than the filler content in the second pattern, the elongation of the first pattern itself will increase the filler content. It is thought that the pattern will increase more than the pattern in the case of inclusion. Therefore, when the composite pattern is formed and packaged, it is considered that the first pattern acts as a material for relieving mechanical stress. That is, for example, in a device, it is possible to achieve both the two effects of improving adhesion by the second pattern and alleviating mechanical stress by the first pattern.
  • the resin composition is patterned by exposure and development, or by forming a resist pattern on the resin composition and etching the resin composition using the resist pattern as a mask.
  • the area between the patterns in the composite pattern consisting of the first pattern and the second pattern may be narrower than the area between the patterns in the first pattern. can.
  • a fine pattern with a small dimension between patterns can be formed as compared with the case of forming only the first pattern. That is, according to the above aspect, for example, it is possible to reduce the critical dimensions of hole patterns, trench patterns, and the like. Moreover, in addition to the reduction in the dimension between the patterns, the thickness of the pattern itself can be increased as compared with the case where only the first pattern is formed. Therefore, it is also possible to increase the aspect ratio of the pattern.
  • a permanent film for example, an interlayer insulating film
  • the dielectric constant of the second pattern in the permanent film can be lowered.
  • the dielectric constant of the permanent film is lowered, a reduction in propagation delay can be achieved. It is presumed that suppression of an increase in the electrical resistance of the wiring and suppression of a decrease in the electrical resistance of the permanent film are also achieved.
  • the first resin composition contains a resin having a polymerizable group
  • the second resin composition contains a component having a polymerizable group (a resin having a polymerizable group, a polymerizable compound, etc.)
  • Patent Documents 1 and 2 a step of forming a second resin composition layer on at least one of a first pattern and a region between the first patterns, and a second resin composition
  • a step of removing a part of the material layer to form a second pattern in contact with the first pattern is included, and the second resin composition contains a filler.
  • FIG. 1(a) shows an example of a substrate having a first pattern 2 on the substrate 1.
  • FIG. 1(a) a first pattern 2 is formed on a substrate 1, and an inter-pattern region 4 (region where no pattern exists) is formed between two first patterns.
  • FIG. 1(b) shows an example of a state in which a second resin composition layer is formed on the first pattern and in the region between the first patterns.
  • a second resin composition layer 6 is formed on the first pattern 2 and in the region 4 between the patterns.
  • FIG. 1(b) shows a region 8 from which the second resin composition layer is removed when part of the second resin composition layer shown in FIG. 1(b) is removed. A region existing outside the dashed line in FIG. A removal method will be described later.
  • FIG. 1(d) shows an example of a state in which part of the second resin composition layer is removed. The region 8 in FIG. 1(c) is removed, and a composite pattern consisting of a first pattern 2 and a second pattern 10 is formed in FIG. 1(d).
  • FIG. 1(c) shows a region 8 from which the second resin composition layer is removed when part of the second resin composition layer shown in FIG. 1(b) is removed. A region existing outside the dashed line in FIG. A removal method will be described later.
  • FIG. 1(d) shows an example of a state in which part of the second resin composition layer is removed. The region 8 in FIG. 1(c) is removed, and a composite pattern consisting of a first pattern 2 and a second pattern 10 is formed in FIG. 1(
  • the first pattern 2 and the second pattern 10 are shown separately, but these may be integrated by covalent bonding of components contained in each pattern. .
  • the metal layer is in contact with the second pattern 10 in the composite pattern. Since this second pattern 10 contains a filler, the CTE (coefficient of thermal expansion) of the second pattern 10 is closer to the CTE of the metal (eg Cu electrode) than the CTE of the first pattern 2. Conceivable. Therefore, as described above, it is presumed that separation between the metal and the composite pattern is suppressed even after a long period of time.
  • the inter-pattern area 12 of the composite pattern in FIG. 1(d) is narrower than the inter-pattern area 4 in FIG. 1(a).
  • the area between patterns can be narrowed compared to the case where the pattern is formed only by the first pattern. That is, fine patterns can be formed.
  • each step included in the method for producing a permanent film of the present invention will be described in detail.
  • the method for producing a permanent film of the present invention includes a step of forming a first resin composition layer on a substrate using a first resin composition to obtain a substrate having a first pattern ("first (also referred to as "pattern formation step").
  • first also referred to as "pattern formation step”
  • the details of the first resin composition will be described later.
  • the first pattern forming step preferably includes a first layer forming step of applying the first resin composition onto the substrate to form a first resin composition layer.
  • the first pattern forming step includes the first layer forming step, a first exposure step of selectively exposing the layer formed by the first layer forming step, and exposure by the first exposure step. It is more preferable to include a first developing step of developing the coated layer with a developer to form a pattern.
  • the step of obtaining the base material having the first pattern is preferably a step of selectively exposing the first resin composition layer and then developing it by solvent development.
  • Solvent development refers to development using a developer containing an organic solvent, which will be described later. That is, the first resin composition layer is preferably a photosensitive layer subjected to exposure and development, and preferably a photosensitive layer subjected to exposure and development using a developer containing an organic solvent.
  • the first resin composition layer may be a photosensitive layer subjected to positive development (hereinafter also referred to as "positive photosensitive layer"), or a photosensitive layer subjected to negative development.
  • the first pattern forming step includes the first layer forming step, the first exposing step, the first developing step, and the first step of heating the pattern obtained by the first developing step. It is particularly preferred to include at least one of a first post-development exposure step of exposing the pattern obtained by the heating step and the developing step.
  • the first pattern preferably includes at least one of a hole pattern (eg, via pattern) and a trench pattern.
  • a hole pattern for example, a hole pattern with a diameter of 0.5 to 100 ⁇ m can be mentioned, and a hole pattern with a diameter of 3 to 50 ⁇ m is preferable.
  • the shape of the holes is not particularly limited, for example, a hole pattern having a circular shape when viewed from above can be used.
  • the diameter of the hole pattern is the diameter of the circle
  • the diameter of the hole pattern is the circle of the shape of the hole pattern when viewed from above. It means an equivalent diameter (in a shape with a certain area, the diameter of a circle that has the same area as that area).
  • the trench pattern for example, a trench pattern with a trench width of 0.5 to 100 ⁇ m can be mentioned, and a trench pattern with a trench width of 3 to 50 ⁇ m is preferable.
  • the thickness of the first pattern is preferably 1 to 50 ⁇ m, more preferably 2 to 20 ⁇ m, even more preferably 3 to 15 ⁇ m.
  • the method for producing a permanent film of the present invention preferably includes a first layer forming step of applying the first resin composition onto a substrate to form a layer.
  • the type of base material can be appropriately determined according to the application, and includes semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposition films, Magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals, and substrates having metal layers formed by plating, vapor deposition, etc.) ), paper, SOG (Spin On Glass), TFT (Thin Film Transistor) array substrates, mold substrates, plasma display panel (PDP) electrode plates, etc., and are not particularly limited.
  • semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, vapor deposition films, Magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals, and substrates having metal layers formed by plating, vapor deposition, etc.
  • a semiconductor fabrication substrate is particularly preferable, and a silicon substrate, a Cu substrate and a mold substrate are more preferable.
  • these substrates may be provided with a layer such as an adhesion layer or an oxide layer made of hexamethyldisilazane (HMDS) or the like on the surface.
  • HMDS hexamethyldisilazane
  • the shape of the substrate is not particularly limited, and may be circular or rectangular.
  • the diameter is, for example, 100 to 450 mm, preferably 200 to 450 mm.
  • the short side length is, for example, 100 to 1000 mm, preferably 200 to 700 mm.
  • the base material for example, a plate-like base material (substrate), preferably a panel-like base material (substrate) is used.
  • the resin layer or metal layer is the base material. becomes.
  • Coating is preferable as a means for applying the first resin composition onto the substrate.
  • Specific means to be applied include dip coating, air knife coating, curtain coating, wire bar coating, gravure coating, extrusion coating, spray coating, spin coating, slit coating, An inkjet method and the like are exemplified. From the viewpoint of uniformity of layer thickness, spin coating, slit coating, spray coating, or inkjet method is more preferable, and from the viewpoint of uniformity of layer thickness and productivity, spin coating and slit coating methods are preferred.
  • a layer having a desired thickness can be obtained by adjusting the solid content concentration and coating conditions of the first resin composition according to the method.
  • the coating method can be appropriately selected depending on the shape of the substrate. Spin coating, spray coating, inkjet method, etc.
  • slit coating and spray coating are preferable for rectangular substrates.
  • method, inkjet method, and the like are preferred.
  • the spin coating method for example, it can be applied at a rotation speed of 500 to 3,500 rpm for about 10 seconds to 3 minutes.
  • a method of transferring a coating film, which is formed on a temporary support in advance by the application method described above, onto a base material can be applied.
  • the transfer method the manufacturing methods described in paragraphs 0023 and 0036 to 0051 of JP-A-2006-023696 and paragraphs 0096-0108 of JP-A-2006-047592 can also be preferably used in the present invention.
  • a step of removing excess layers at the edge of the substrate may also be performed. Examples of such processes include edge bead rinsing (EBR), back rinsing, and the like.
  • EBR edge bead rinsing
  • a pre-wetting step is adopted in which various solvents are applied to the base material before applying the first resin composition to the base material to improve the wettability of the base material, and then the first resin composition is applied.
  • the first resin composition layer is a step of drying the formed layer for the purpose of removing the solvent after the first layer forming step (after applying the first resin composition on the substrate).
  • First drying step may be provided. That is, the first pattern forming step may include a first drying step of drying the first resin composition layer formed by the first layer forming step. Moreover, the first drying step is preferably performed after the first layer forming step and before the first exposure step.
  • the drying temperature of the first resin composition layer in the first drying step is preferably 50 to 150°C, more preferably 70 to 130°C, even more preferably 90 to 110°C. Moreover, you may dry by pressure reduction.
  • the drying time is exemplified from 30 seconds to 20 minutes, preferably from 1 minute to 10 minutes, more preferably from 2 minutes to 7 minutes.
  • the method for producing a permanent film of the present invention preferably includes a first exposure step of selectively exposing the first resin composition layer formed in the first layer forming step.
  • Selectively exposing means exposing a portion of the layer.
  • the layer is formed into areas that are exposed (exposed areas) and areas that are not exposed (non-exposed areas).
  • the amount of exposure is not particularly defined as long as it can sensitize the first resin composition. is more preferred.
  • the exposure wavelength can be appropriately determined in the range of 190-1,000 nm, preferably 240-550 nm.
  • the exposure wavelength is (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355 nm etc.), (2) metal halide lamp, (3) high pressure mercury lamp, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), broad (three wavelengths of g, h, i-line), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm) ), F2 excimer laser ( wavelength 157 nm), (5) extreme ultraviolet; EUV (wavelength 13.6 nm), (6) electron beam, (7) YAG laser second harmonic 532 nm, third harmonic 355 nm, etc.
  • semiconductor laser wavelength 830 nm, 532 nm, 488 nm, 405 nm, 375 nm, 355
  • the method of exposure is not particularly limited as long as at least a part of the first resin composition layer is exposed, and examples thereof include exposure using a photomask and exposure by a laser direct imaging method. .
  • the first resin composition layer may be subjected to a step of heating after exposure (first post-exposure heating step). That is, the method for producing a permanent film of the present invention may include a first post-exposure heating step of heating the first resin composition layer exposed in the first exposure step.
  • the first post-exposure heating step can be performed after the first exposure step and before the first development step.
  • the heating temperature in the first post-exposure heating step is preferably 50°C to 140°C, more preferably 60°C to 120°C.
  • the heating time in the first post-exposure heating step is preferably 30 seconds to 300 minutes, more preferably 1 minute to 10 minutes.
  • the heating rate in the first post-exposure heating step is preferably 1 to 12° C./min, more preferably 2 to 10° C./min, further preferably 3 to 10° C./min, from the temperature at the start of heating to the maximum heating temperature. preferable. Also, the rate of temperature increase may be appropriately changed during heating.
  • the heating means in the first post-exposure heating step is not particularly limited, and known hot plates, ovens, infrared heaters and the like can be used. Moreover, it is also preferable to carry out the heating in an atmosphere of low oxygen concentration by, for example, flowing an inert gas such as nitrogen, helium or argon.
  • the first resin composition layer after exposure may be subjected to a first development step of developing with a developer to form a pattern. That is, the method for producing a permanent film of the present invention may include a first development step of developing the first resin composition layer exposed in the first exposure step with a developer to form a pattern. . Development removes one of the exposed and unexposed portions of the layer to form a pattern.
  • development in which the non-exposed portion of the layer is removed by the development step is called negative development
  • development in which the exposed portion of the layer is removed by the development step is called positive development.
  • Examples of the developer used in the first development step include a developer containing an alkaline aqueous solution or an organic solvent.
  • basic compounds that the alkaline aqueous solution may contain include inorganic alkalis, primary amines, secondary amines, tertiary amines, and quaternary ammonium salts.
  • TMAH tetramethylammonium hydroxide hydroxide
  • potassium hydroxide sodium carbonate, sodium hydroxide, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-butylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraoctylammonium hydroxide, ethyltrimethylammonium Hydroxide, butyltrimethylammonium hydroxide, methyltriamylammonium hydroxide, dibutyldipentylammonium hydroxide, dimethylbis(2-hydroxyethyl)
  • the content of the basic compound in the developer is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass, more preferably 0.3 to 3% by mass, based on the total mass of the developer. is more preferred.
  • the organic solvent may be an ester such as ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, Methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkyloxyacetate (e.g. methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (e.g.
  • 3-alkyloxypropionate alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (e.g., 3-methoxy methyl propionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.
  • 2-alkyloxypropionate alkyl esters e.g.
  • methyl 2-alkyloxypropionate, 2- ethyl alkyloxypropionate, propyl 2-alkyloxypropionate, etc. e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, 2-ethoxypropionic acid ethyl
  • methyl 2-alkyloxy-2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate e.g.
  • ethers such as diethylene glycol dimethyl ether, tetrahydrofuran, Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene Glycol monoethyl ether acetate
  • the organic solvent can be used singly or in combination of two or more.
  • a developer containing at least one selected from the group consisting of cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferred, and cyclopentanone and ⁇ -butyrolactone. and dimethylsulfoxide is more preferred, and a developer containing cyclopentanone is most preferred.
  • the content of the organic solvent relative to the total weight of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass or more. is more preferable, and 90% by mass or more is particularly preferable. Moreover, the content may be 100% by mass.
  • the developer may further contain other components.
  • Other components include, for example, known surfactants and known antifoaming agents.
  • the method of supplying the developer is not particularly limited as long as the desired pattern can be formed.
  • the type of nozzle is not particularly limited, and straight nozzles, shower nozzles, spray nozzles and the like can be mentioned. From the viewpoint of permeability of the developer, removability of the non-image area, and efficiency in production, a method of supplying the developer with a straight nozzle or a method of continuously supplying the developer with a spray nozzle is preferable.
  • the method of supplying with a spray nozzle is more preferable.
  • the substrate is spun to remove the developer from the substrate.
  • a step of removing from above may be employed, and this step may be repeated multiple times.
  • the method of supplying the developer in the development process includes a process in which the developer is continuously supplied to the base material, a process in which the developer is kept substantially stationary on the base material, and a process in which the developer exceeds the developer on the base material.
  • a process of vibrating with sound waves or the like and a process of combining them can be employed.
  • the development time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the developer during development is not particularly limited, but is preferably 10 to 45°C, more preferably 18 to 30°C.
  • the pattern may be washed (rinsed) with a rinse.
  • a method of supplying the rinse liquid before the developer in contact with the pattern is completely dried may be adopted.
  • the developer is an alkaline aqueous solution
  • water for example, can be used as the rinse.
  • a solvent different from the solvent contained in the developer for example, water, an organic solvent different from the organic solvent contained in the developer
  • the rinse liquid is used as the rinse liquid. be able to.
  • the organic solvent includes esters such as ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, and butyl butyrate. , methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkyloxyacetates (e.g. methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (e.g.
  • 3-alkyloxypropionate alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc. (e.g., 3- methyl methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, etc.
  • 2-alkyloxypropionate alkyl esters e.g.
  • methyl 2-alkyloxypropionate 2 -ethyl alkyloxypropionate, propyl 2-alkyloxypropionate, etc. (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, 2-ethoxypropionate ethyl acid)), methyl 2-alkyloxy-2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate (e.g.
  • ethers such as diethylene glycol dimethyl ether, tetrahydrofuran , ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), Propylene glycol monoethyl ether a
  • the organic solvent can be used singly or in combination of two or more.
  • the organic solvent can be used singly or in combination of two or more.
  • cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, N-methylpyrrolidone, cyclohexanone, PGMEA and PGME are particularly preferred, cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, PGMEA and PGME are more preferred, and cyclohexanone and PGMEA are more preferred. More preferred.
  • the rinse liquid contains an organic solvent
  • the rinse liquid is preferably 50% by mass or more of the organic solvent, more preferably 70% by mass or more of the organic solvent, and 90% by mass or more of the organic solvent. is more preferred. Further, 100% by mass of the rinse liquid may be an organic solvent.
  • the rinse solution may further contain other components.
  • Other components include, for example, known surfactants and known antifoaming agents.
  • Rinse liquid supply method The method of supplying the rinse solution is not particularly limited as long as the desired pattern can be formed. There is a method of continuously supplying the rinsing liquid onto the material using means such as a straight nozzle. From the viewpoint of the permeability of the rinse liquid, the removability of the non-image areas, and the efficiency in manufacturing, there are methods of supplying the rinse liquid using a shower nozzle, a straight nozzle, a spray nozzle, etc., and a continuous supply method using a spray nozzle is preferable. From the viewpoint of the permeability of the rinsing liquid to the image area, the method of supplying the rinsing liquid with a spray nozzle is more preferable.
  • the rinsing step is preferably a step of supplying the rinse liquid to the pattern after the development through a straight nozzle or a step of continuously supplying the rinse liquid, and more preferably a step of supplying the rinse liquid through a spray nozzle.
  • the method of supplying the rinse liquid in the rinse step includes a process in which the rinse liquid is continuously supplied to the base material, a process in which the rinse liquid is kept substantially stationary on the base material, and a process in which the rinse liquid is kept on the base material in a substantially stationary state. A process of vibrating with sound waves or the like and a process of combining them can be adopted.
  • the rinse time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the rinsing liquid during rinsing is not particularly specified, but is preferably 10 to 45°C, more preferably 18 to 30°C.
  • the pattern obtained by the first developing step (the pattern after rinsing when the rinsing step is performed) may be subjected to the first heating step of heating the pattern obtained by the above developing. That is, the method for producing a permanent film of the present invention may include a first heating step of heating the pattern obtained by the first developing step. In addition, in the method for producing a permanent film of the present invention, the pattern obtained by another method without performing the developing step, or the first resin composition layer obtained by the first layer forming step is heated. 1 heating step may be included.
  • the heating temperature (maximum heating temperature) in the first heating step is preferably 50 to 200°C, more preferably 60 to 160°C, still more preferably 70 to 150°C, even more preferably 80 to 140°C, and 90 to 120°C. °C is particularly preferred.
  • Heating in the first heating step is preferably carried out at a temperature rising rate of 1 to 12° C./min from the temperature at the start of heating to the maximum heating temperature.
  • the rate of temperature increase is more preferably 2 to 10°C/min, still more preferably 3 to 10°C/min.
  • By setting the temperature rise rate to 1°C/min or more it is possible to prevent excessive volatilization of the acid or solvent while ensuring productivity.
  • the residual stress of the object can be relaxed.
  • the temperature at the start of heating is preferably 20-120°C, more preferably 20-100°C, and even more preferably 20-80°C.
  • the temperature at the start of heating refers to the temperature at which the process of heating up to the maximum heating temperature is started. For example, it is the temperature of the layer after development (or after rinsing). For example, it is preferable to raise the temperature from a temperature 30 to 200° C. lower than the boiling point of the solvent contained in the first resin composition.
  • the heating time (heating time at the maximum heating temperature) is preferably 30 seconds to 120 minutes, more preferably 60 seconds to 60 minutes, even more preferably 90 seconds to 30 minutes.
  • Heating may be done step by step. Further, cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5°C/min.
  • the first heating step is preferably performed in an atmosphere with a low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium, or argon, or under reduced pressure, in order to prevent decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, more preferably 20 ppm (volume ratio) or less.
  • the heating means in the first heating step is not particularly limited, but includes, for example, a hot plate, an infrared furnace, an electric heating oven, a hot air oven, an infrared oven and the like.
  • the pattern obtained by the first developing step (pattern after rinsing when performing the rinsing step) is replaced with the first heating step or in addition to the first heating step after the developing step. may be subjected to a first post-development exposure step that exposes a pattern of . That is, the method for producing a permanent film of the present invention may include a first post-development exposure step of exposing the pattern obtained by the first development step. The method for producing a permanent film of the present invention may include the first heating step and the first post-development exposure step, or may include only one of the first heating step and the first post-development exposure step.
  • the first post-development exposure step for example, a reaction in which cyclization of a polyimide precursor or the like proceeds by exposure of a photobase generator, or a reaction in which elimination of an acid-decomposable group proceeds by exposure of a photoacid generator. etc. can be promoted.
  • the first post-development exposure step at least part of the pattern obtained in the first development step may be exposed, but it is preferable to expose the entire pattern.
  • the exposure amount in the first post-development exposure step is preferably 50 to 20,000 mJ/cm 2 , more preferably 100 to 15,000 mJ/cm 2 in terms of exposure energy at the wavelength at which the photosensitive compound exhibits sensitivity. is more preferable.
  • the first post-development exposure step can be performed using, for example, the light source in the first exposure step described above, and broadband light is preferably used.
  • the first pattern forming step includes another layer forming step after the first layer forming step, and the layer obtained by the other layer forming step is patterned by exposure, development, etc., and then the pattern is formed. It is also preferable that the step of forming the first pattern by an etching process using the as a mask. Examples of the method of patterning the layer obtained by other layer forming steps by exposure, development, etc. include the same methods as the above-described first exposure step and first development step. Etching can be performed with reference to known methods. Here, the etching may be dry etching or wet etching, but dry etching is preferable. Moreover, the pattern used as the mask may remain or be removed by the etching, but is preferably removed.
  • a second resin composition is applied on the substrate having the first pattern, and at least the area on the first pattern and between the first patterns
  • a step of forming a second resin composition layer on one side is included.
  • the second layer forming step can be performed by the same method as the first layer forming step, except that the second resin composition is applied onto the substrate having the first pattern.
  • a drying process similar to the first drying process may be included as the second drying process.
  • the second resin composition layer can be formed, for example, on the entire surface of the substrate and the first pattern.
  • the second resin composition layer may be formed only on a part of the substrate and the first pattern.
  • the thickness of the second resin composition layer formed in the second layer forming step (the thickness of the layer formed on the first pattern) is preferably 0.1 to 20 ⁇ m, and 1 to 20 ⁇ m. 10 ⁇ m is more preferred.
  • the method for producing a permanent film of the present invention includes a step of removing part of the second resin composition layer to form a second pattern in contact with the first pattern.
  • the second pattern may be in contact with at least part of the first pattern, but is preferably formed so as to cover at least the side surface of the first pattern.
  • the second pattern may be formed on all side surfaces of the first pattern, or the second pattern may be formed only on some side surfaces of the plurality of side surfaces of the first pattern. good too.
  • the second pattern may be formed on the entire upper surface of the first pattern, or the second pattern may be formed only on some of the upper surfaces of the first pattern. good too.
  • the first pattern is formed so as to cover the upper surface and side surfaces thereof.
  • the second resin composition layer it is preferably removed until a part of the substrate is exposed. That is, it is preferable that the region from which the second resin composition layer is removed includes at least a region where the first pattern does not exist.
  • a pattern consisting of the second pattern and the first pattern is also called a composite pattern.
  • the area between the patterns in the composite pattern consisting of the first pattern and the second pattern is narrower than the area between the patterns in the first pattern.
  • the shape of the composite pattern is not particularly limited, but examples thereof include hole patterns (eg, via patterns), trench patterns, and the like.
  • the shape of the composite pattern is preferably similar to the shape of the first pattern described above, except that the regions between the patterns are narrower.
  • Composite patterns can be formed that are shaped like shapes.
  • the composite pattern is preferably a hole pattern with a smaller diameter than the first pattern.
  • the diameter of the composite pattern, which is the hole pattern is preferably reduced by 0.1 ⁇ m or more, more preferably by 0.3 ⁇ m or more, with respect to the diameter of the first pattern, which is the hole pattern. Preferably, it is more preferably reduced by 0.5 ⁇ m or more.
  • a hole pattern with a diameter of 0.5 to 100 ⁇ m can be mentioned, and a hole pattern with a diameter of 3 to 50 ⁇ m is preferred.
  • the definition of the diameter of the hole pattern is as described above.
  • the composite pattern is preferably a trench pattern with a smaller trench width than the first pattern.
  • the trench width of the composite pattern, which is the trench pattern is preferably reduced by 0.1 ⁇ m or more, more preferably by 0.3 ⁇ m or more, with respect to the trench width of the first pattern, which is the trench pattern. is more preferable, and it is even more preferable to reduce by 0.5 ⁇ m or more.
  • a trench pattern with a trench width of 0.5 to 100 ⁇ m can be mentioned, and a trench pattern with a trench width of 3 to 50 ⁇ m is preferred.
  • the second pattern formation step may include a second exposure step of exposing the second resin composition layer.
  • the entire surface of the second resin composition layer may be exposed, or a portion of the second resin composition layer may be selectively exposed.
  • the first resin composition layer may be exposed in addition to the second resin composition layer.
  • the second exposure process can be performed by the same method as the first exposure process.
  • first pattern forming step "first resin composition”, etc. in the first exposure step should be read as "second pattern forming step", "second resin composition”, etc., respectively. shall be
  • the second pattern forming step preferably includes a second developing step of developing the second resin composition layer with a developer to form a pattern.
  • the second development step may be performed after the second preheating step described later.
  • the second pattern formation step may be performed after the second exposure step.
  • the second development process can be performed by the same method as the first development process.
  • first pattern forming step "first resin composition”, etc. in the first development step should be read as “second pattern forming step", "second resin composition”, etc., respectively.
  • the development time in the second development step is preferably 1 minute to 20 minutes, more preferably 2 minutes to 10 minutes.
  • the step of forming the second pattern is preferably a step of removing part of the second resin composition layer by solvent development.
  • Solvent development refers to development using a developer containing an organic solvent.
  • the developer and rinse liquid in the second development process the developer and rinse liquid in the first development process can be used, and preferred embodiments are the same.
  • ⁇ Second preheating step> In the method for producing a permanent film of the present invention, after the step of forming the second resin composition layer and before the step of forming the second pattern, the first pattern and the second resin composition A step of heating the layer (second preheating step) may be included.
  • the second preheating step for example, the solubility of the second resin composition layer in the developer in the second developing step can be adjusted to facilitate formation of the composite pattern.
  • Heating in the second preheating step can be performed, for example, by the same method as in the above-described first heating step.
  • the heating temperature and heating time in the second preheating step may be determined according to the components contained in the second resin composition, the developer used in the second developing step, and the like.
  • the heating temperature is preferably 80 to 180°C, more preferably 90 to 170°C.
  • the method for producing a permanent film of the present invention further includes a heating step (second post-heating step) after the step of forming the second pattern.
  • a heating step second post-heating step
  • the polyimide precursor, the polybenzoxazole precursor, or the like The resin is cyclized to become a resin such as polyimide or polybenzoxazole.
  • cross-linking of unreacted polymerizable groups in a resin or a compound having a polymerizable group other than a resin also progresses.
  • the heating temperature (maximum heating temperature) in the second post-heating step is preferably 50 to 350°C, more preferably 150 to 250°C, still more preferably 160 to 250°C, and particularly preferably 160 to 230°C.
  • the second post-heating step is a step of promoting a cyclization reaction of the polyimide precursor or polybenzoxazole precursor in at least one of the first resin composition layer and the second resin composition layer by heating.
  • Heating in the second post-heating step is preferably carried out from the temperature at the start of heating to the maximum heating temperature at a temperature rising rate of 1 to 12° C./min.
  • the rate of temperature increase is more preferably 2 to 10°C/min, still more preferably 3 to 10°C/min.
  • the temperature from the temperature at the start of heating to the maximum heating temperature at a rate of 1 to 8 ° C./sec, more preferably 2 to 7 ° C./sec, and 3 to 6 °C/sec is more preferred.
  • the temperature at the start of heating is preferably 20°C to 150°C, more preferably 20°C to 130°C, and even more preferably 25°C to 120°C.
  • the temperature at the start of heating refers to the temperature at which the process of heating up to the maximum heating temperature is started.
  • the temperature after developing the second resin composition layer for example, 30 to 200 ° C. lower than the boiling point of the solvent contained in the first resin composition or the second resin composition of the present invention It is preferable to raise the temperature from the temperature.
  • the heating time (heating time at the highest heating temperature) is preferably 5 to 360 minutes, more preferably 10 to 300 minutes, even more preferably 15 to 240 minutes.
  • the heating temperature is preferably 30° C. or higher, more preferably 80° C. or higher, and further preferably 100° C. or higher, from the viewpoint of adhesion between layers. 120° C. or higher is particularly preferred.
  • the upper limit of the heating temperature is preferably 350° C. or lower, more preferably 250° C. or lower, and even more preferably 240° C. or lower.
  • Heating may be done in stages. As an example, the temperature is raised from 25° C. to 120° C. at 3° C./min, held at 120° C. for 60 minutes, heated from 120° C. to 180° C. at 2° C./min, and held at 180° C. for 120 minutes. , may be performed. It is also preferable to carry out the treatment while irradiating ultraviolet rays as described in US Pat. No. 9,159,547. Such a pretreatment step can improve the properties of the layer.
  • the pretreatment step is preferably performed for a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment may be performed in two or more steps.
  • the first pretreatment step may be performed in the range of 100 to 150°C, and then the second pretreatment step may be performed in the range of 150 to 200°C. good. Further, cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5°C/min.
  • the second post-heating step is preferably performed in an atmosphere of low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium, or argon, or under reduced pressure, in order to prevent decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, more preferably 20 ppm (volume ratio) or less.
  • the heating means in the second post-heating step is not particularly limited, but examples thereof include a hot plate, an infrared furnace, an electric heating oven, a hot air oven, an infrared oven and the like.
  • a second post-exposure step may be included instead of or in addition to the second post-heating step.
  • the second post-exposure step can be performed in the same manner as the first post-development exposure step described above.
  • the second resin composition contains a filler. Therefore, the second pattern preferably contains filler.
  • the material, physical properties, etc. of the filler are the same as those of the filler used in the second resin composition described later.
  • the content of the filler in the second pattern is preferably 1% by volume or more, more preferably 10% by volume or more, and preferably 20% by volume or more, relative to the volume of the second pattern. It is particularly preferred, and most preferably 30% by volume or more. Further, it is more preferably 90% by volume or less, still more preferably 80% by volume or less, and most preferably 75% by volume or less with respect to the volume of the second pattern.
  • the content of the filler in the second pattern is preferably 10% by mass or more, more preferably 30% by mass or more, with respect to the total mass of the second pattern.
  • the upper limit of the content is not particularly limited, it is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 75% by mass or less.
  • the composite pattern obtained by the second pattern forming step may be subjected to a metal layer forming step of forming a metal layer on the composite pattern. That is, the method for producing a permanent film of the present invention preferably includes a metal layer forming step of forming a metal layer on the resulting composite pattern (preferably subjected to the second post-heating step).
  • the metal layer is not particularly limited, and existing metal species can be used. Examples include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals. copper and aluminum are more preferred, and copper is even more preferred.
  • the method of forming the metal layer is not particularly limited, and existing methods can be applied. For example, use the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, JP-A-2004-101850, US Pat. can do.
  • photolithography, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), lift-off, electroplating, electroless plating, etching, printing, and a combination thereof can be considered. More specifically, a patterning method combining sputtering, photolithography and etching, and a patterning method combining photolithography and electroplating can be used.
  • a preferred embodiment of plating is electroplating using a copper sulfate or copper cyanide plating solution.
  • the thickness of the metal layer is preferably 0.01 to 50 ⁇ m, more preferably 1 to 10 ⁇ m, at the thickest part.
  • the permanent film (that is, composite pattern) obtained by the method for producing a permanent film of the present invention preferably contains polyimide or polybenzoxazole.
  • at least one of the first pattern and the second pattern forming the permanent film should contain polyimide or polybenzoxazole, but both the first pattern and the second pattern may contain polyimide or polybenzoxazole.
  • An embodiment containing oxazole is also one of the preferred embodiments of the present invention.
  • the permanent film obtained by the manufacturing method of the permanent film of this invention contains a polyimide.
  • at least one of the first pattern and the second pattern that form the permanent film may contain polyimide, but both the first pattern and the second pattern may contain polyimide. It is one of the preferred embodiments of
  • Cyclized resins such as polyimide and polybenzoxazole are excellent in heat resistance, insulation, etc., so that permanent films containing such cyclized resins can be applied to various applications.
  • the use is not particularly limited, but in the case of devices for mounting, use as a material for an insulating film or a sealing material, or as a protective film can be mentioned. It is also used as a base film or coverlay for flexible substrates.
  • the breaking elongation of the composite pattern obtained by the method for producing a permanent film of the present invention is preferably 40% or more, more preferably 50% or more, and even more preferably 60% or more.
  • the film thickness of the first pattern in the composite pattern (permanent film) according to the present invention is preferably 1 to 50 ⁇ m, more preferably 2 to 20 ⁇ m, even more preferably 3 to 15 ⁇ m.
  • the thermal expansion coefficient of the first pattern in the composite pattern according to the present invention is preferably 2 ⁇ 10 ⁇ 6 to 50 ⁇ 10 ⁇ 5 /K, more preferably 1 ⁇ 10 ⁇ 5 to 30 ⁇ 10 ⁇ 5 /K. more preferably 2 ⁇ 10 ⁇ 5 to 20 ⁇ 10 ⁇ 5 /K.
  • the dielectric constant of the first pattern in the composite pattern according to the present invention under the following condition 1 (that is, the dielectric constant measured according to the following condition 1 using the first resin composition) is 4.0 or less.
  • the lower limit of the dielectric constant is not particularly limited, and may be 0 or more.
  • the dielectric loss tangent of the first pattern in the composite pattern according to the present invention under condition 1 below is preferably 0.1 or less, more preferably 0.05 or less, and further preferably 0.01 or less. preferable.
  • the lower limit of the dielectric loss tangent is not particularly limited as long as it is 0 or more.
  • the film thickness of the second pattern in the composite pattern (permanent film) according to the present invention is preferably 0.05 to 15 ⁇ m, more preferably 0.1 to 5 ⁇ m, and 0.2 to 2 ⁇ m. is more preferable.
  • the thermal expansion coefficient of the second pattern in the composite pattern according to the present invention is preferably 0 to 30 ⁇ 10 ⁇ 5 /K, more preferably 1 ⁇ 10 ⁇ 6 to 20 ⁇ 10 ⁇ 5 /K. It is preferably 1 ⁇ 10 ⁇ 5 to 10 ⁇ 10 ⁇ 5 /K, more preferably.
  • the ratio of the film thickness of the second pattern to the film thickness of the first pattern in the composite pattern according to the present invention is represented by (second pattern film thickness)/(first pattern film thickness).
  • the value is preferably 0.0001 to 1, more preferably 0.001 to 0.5, even more preferably 0.01 to 0.1.
  • the difference between the film thickness of the first pattern and the film thickness of the second pattern is preferably 0 to 50 ⁇ m, more preferably 0.01 to 20 ⁇ m, and 1 to 15 ⁇ m. is more preferable.
  • the film thickness of the first pattern and the film thickness of the second pattern may be larger, it is preferable that the film thickness of the second pattern is smaller.
  • the ratio of the thermal expansion coefficient of the second pattern to the thermal expansion coefficient of the first pattern is preferably 80% or less, more preferably 60% or less, and 50%. It is more preferably 40% or less, particularly preferably 40% or less.
  • the ratio is a value calculated by the following formula. (Thermal expansion coefficient of the second pattern)/(Thermal expansion coefficient of the first pattern) ⁇ 100
  • the lower limit of the above ratio is not particularly limited, and may be 0% (below the measurement limit).
  • the difference between the thermal expansion coefficient of the first pattern and the thermal expansion coefficient of the second pattern is preferably 0 to 50 ⁇ 10 ⁇ 5 /K, and 1 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 5 /K is more preferable, and 1 ⁇ 10 ⁇ 5 to 20 ⁇ 10 ⁇ 5 /K is even more preferable.
  • the coefficient of thermal expansion of the first pattern or the coefficient of thermal expansion of the second pattern may be larger, it is preferable that the coefficient of thermal expansion of the first pattern is larger.
  • the ratio of the relative permittivity of the second pattern under the following condition 1 to the relative permittivity of the first pattern under the following condition 1 according to the present invention is: (relative permittivity of the second pattern) / (first pattern is preferably 0.1 to 1, more preferably 0.3 to 0.9, even more preferably 0.5 to 0.8.
  • the difference between the dielectric constant of the first pattern under the following condition 1 and the dielectric constant of the second pattern under the following condition 1 is preferably 0 to 3.0, and 0.1 It is more preferably from 0.2 to 1.0, more preferably from 0.2 to 1.0.
  • either the relative permittivity of the first pattern under condition 1 below or the relative permittivity of the second pattern under condition 1 below may be larger, but the relative permittivity of the first pattern must be larger. is preferred.
  • the ratio of the dielectric loss tangent of the second pattern under the following condition 1 to the dielectric loss tangent of the first pattern according to the present invention under the following condition 1 is (dielectric loss tangent of the second pattern) / (dielectric loss tangent of the first pattern) ) is preferably 0.001 to 1, more preferably 0.005 to 0.5, even more preferably 0.01 to 0.2.
  • the difference between the dielectric loss tangent of the first pattern under the following condition 1 and the dielectric loss tangent of the second pattern under the following condition 1 is preferably 0 to 0.1, and 0.0001 to 0 0.01 is more preferred, and 0.001 to 0.005 is even more preferred.
  • the dielectric loss tangent of the first pattern under condition 1 below or the dielectric loss tangent of the second pattern under condition 1 below may be larger, it is preferable that the dielectric loss tangent of the second pattern is smaller.
  • Fields to which the method for producing a permanent film of the present invention or the permanent film obtained by the method for producing a permanent film of the present invention can be applied include device insulating films, interlayer insulating films for rewiring layers, stress buffer films, and the like. are mentioned.
  • pattern formation by etching of a sealing film, a substrate material (a base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above can be used. For these applications, for example, Science & Technology Co., Ltd.
  • the method for producing a permanent film of the present invention or the permanent film obtained by the method for producing a permanent film of the present invention can be used for production of printing plates such as offset printing plates or screen printing plates, etching of molded parts, electronics, In particular, it can also be used, for example, for the production of protective lacquers and dielectric layers in microelectronics.
  • laminate refers to a structure having a plurality of layers made of the permanent film obtained by the method for producing a permanent film of the present invention.
  • the laminated body is a laminated body including two or more layers made of permanent films, and may be a laminated body in which three or more layers are laminated.
  • all the layers made of the permanent film contained in the laminate may be layers made of the permanent film obtained by the method for producing a permanent film of the present invention. preferable.
  • the method for manufacturing the laminate of the present invention preferably includes the method for manufacturing the permanent film of the present invention, and more preferably includes repeating the method for manufacturing the permanent film of the present invention multiple times.
  • the laminated body of the present invention preferably includes two or more layers of permanent films, and preferably includes a metal layer between any of the layers of the permanent films.
  • the metal layer is preferably formed by the metal layer forming step. That is, it is preferable that the method for manufacturing the laminate of the present invention further includes a metal layer forming step of forming a metal layer on the layer made of the permanent film between the methods for manufacturing the permanent film which are performed multiple times. Preferred aspects of the metal layer forming step are as described above.
  • a laminate including at least a layer structure in which three layers of a layer composed of a first permanent film, a metal layer, and a layer composed of a second permanent film are laminated in this order is preferable. be done.
  • both the layer comprising the first permanent film and the layer comprising the second permanent film are layers comprising a permanent film obtained by the method for producing a permanent film of the present invention.
  • the resin composition used for forming the layer consisting of the first permanent film and the resin composition used for forming the layer consisting of the second permanent film may have the same composition. However, it may be a composition having a different composition.
  • the metal layer in the laminate of the present invention is preferably used as a metal wiring such as a rewiring layer.
  • the method for producing a laminate of the present invention includes a lamination step.
  • the lamination step means that the surface of the composite pattern (permanent film) or metal layer is again subjected to (a) the first pattern formation step, (b) the second layer formation step, and (c) the second pattern formation step. , in that order. If necessary, the above-described second preheating step, second postheating step, and the like may be further performed. In addition, (c) after the second pattern forming step (preferably after the second post-heating step), (d) a metal layer forming step may be included. Needless to say, the lamination step may further include the drying step and the like as appropriate.
  • a surface activation treatment step may be further performed after the (d) metal layer forming step.
  • a plasma treatment is exemplified as the surface activation treatment. Details of the surface activation treatment will be described later.
  • the lamination step is preferably performed 2 to 20 times, more preferably 2 to 9 times.
  • resin layer (permanent film)/metal layer/resin layer (permanent film)/metal layer/resin layer (permanent film)/metal layer, the number of resin layers (permanent film) is 2 or more and 20 or less.
  • the structure is preferable, and the structure with 2 to 9 layers is more preferable.
  • Each of the layers described above may have the same composition, shape, thickness, etc., or may differ from each other.
  • a permanent film by the method for producing a permanent film of the present invention after providing the metal layer so as to cover the metal layer. Specifically, (a) the first pattern forming step, (b) the second layer forming step, (c) the second pattern forming step, and (d) the metal layer forming step are repeated in this order. be done.
  • the permanent film and the metal layer obtained by the method for producing the permanent film of the present invention are formed. They can be stacked alternately.
  • the method for producing a laminate of the present invention preferably includes a surface activation treatment step of surface activating at least part of the metal layer and the permanent film.
  • the surface activation treatment step is usually performed after the metal layer formation step, but after the second pattern formation step (c) (preferably after the second post-heating step), the permanent film is surface-activated.
  • the metal layer forming step may be performed.
  • the surface activation treatment may be performed only on at least a portion of the metal layer, may be performed on at least a portion of the permanent film, or may be performed on at least a portion of both the metal layer and the permanent film.
  • the surface activation treatment is preferably performed on at least part of the metal layer, and it is preferable to perform the surface activation treatment on part or all of the area of the metal layer on which a permanent film is to be formed.
  • the surface activation treatment is preferably performed on at least part of the metal layer, and it is preferable to perform the surface activation treatment on part or all of the area of the metal layer on which a permanent film is to be formed.
  • the surface activation treatment include plasma treatment of various source gases (oxygen, hydrogen, argon, nitrogen, nitrogen/hydrogen mixed gas, argon/oxygen mixed gas, etc.), corona discharge treatment, and CF 4 /O 2 . , NF 3 /O 2 , SF 6 , NF 3 , NF 3 /O 2 etching treatment, surface treatment by ultraviolet (UV) ozone method, immersion in hydrochloric acid aqueous solution to remove the oxide film, and then amino groups and thiol groups.
  • various source gases oxygen, hydrogen, argon, nitrogen, nitrogen/hydrogen mixed gas, argon/oxygen mixed gas, etc.
  • corona discharge treatment corona discharge treatment
  • NF 3 /O 2 , SF 6 , NF 3 , NF 3 /O 2 etching treatment surface treatment by ultraviolet (UV) ozone method, immersion in hydrochloric acid aqueous solution to remove the oxide film, and then amino groups
  • the treatment is selected from immersion treatment in an organic surface treatment agent containing at least one compound and mechanical surface roughening treatment using a brush.
  • Plasma treatment is preferred, and oxygen plasma treatment using oxygen as a raw material gas is particularly preferred.
  • the energy is preferably 500-200,000 J/m 2 , more preferably 1000-100,000 J/m 2 , most preferably 10,000-50,000 J/m 2 .
  • the present invention also discloses a method of making a device comprising the method of making the permanent film of the invention or the method of making the laminate of the invention.
  • Devices include semiconductor devices, electronic devices, and the like.
  • Specific examples of devices using the permanent film obtained by the method for producing a permanent film of the present invention for forming an interlayer insulating film for a rewiring layer include the description and figures in paragraphs 0213 to 0218 of JP-A-2016-027357. 1, the contents of which are incorporated herein.
  • first resin composition and second resin composition Components contained in the resin composition according to the present invention are described in detail below.
  • the first resin composition and the second resin composition may be the same composition or different compositions.
  • the second resin composition contains a filler, but the first resin composition is a composition that does not contain a filler, or the content of the filler in the first resin composition is in the second resin composition It is also preferable to employ a composition with a lower filler content.
  • the content of the filler with respect to the total solid content of the first resin composition can be, for example, 5% by mass or less.
  • the content is preferably 3% by mass or less, more preferably 1% by mass or less.
  • the lower limit of the content is not particularly limited, and may be 0% by mass.
  • the ratio represented by (filler content relative to the total solid content of the first resin composition)/(filler content relative to the total solid content of the second resin composition) is 0.10 or less.
  • can also be The ratio is preferably 0.06 or less, more preferably 0.02 or less.
  • the lower limit of the ratio is not particularly limited, and may be 0.
  • the first resin composition may contain a filler.
  • the first resin composition is preferably a negative photosensitive resin composition.
  • a negative photosensitive resin composition is a composition used for forming a negative photosensitive layer.
  • the first resin composition is preferably a composition containing a resin and at least one of a photopolymerization initiator and a photoacid generator, and is a composition containing a resin and a photopolymerization initiator. More preferably, it is a resin containing a resin, a photopolymerization initiator, and a polymerizable compound.
  • the resin contained in the first resin composition is preferably a polyimide precursor or a polybenzoxazole precursor.
  • the second resin composition is preferably a thermosetting resin composition.
  • the second resin composition preferably contains a thermal polymerization initiator.
  • the second resin composition preferably contains a resin having a polymerizable group.
  • the polymerizable group is preferably a group capable of forming polymerization with the resin contained in the first resin composition or the polymerizable compound.
  • the first resin composition contains a radically polymerizable compound
  • the second resin composition preferably contains a resin having a radically polymerizable group.
  • the resin contained in the second resin composition is preferably a polyimide precursor or a polybenzoxazole precursor.
  • the resin contained in the first resin composition and the resin contained in the second resin composition are the same type of resin. It is also preferable that for example, there is a mode in which both the resin contained in the first resin composition and the resin contained in the second resin composition are polyimide precursors. When both the resin contained in the first resin composition and the resin contained in the second resin composition are polyimide precursors, the elongation at break of the obtained permanent film is considered to be improved.
  • the second resin composition preferably contains a polymerizable compound having an aromatic group as a polymerizable compound.
  • the dielectric constant of the second pattern is lowered, and it may be possible to suppress an increase in the electrical resistance of the wiring, suppress a decrease in the electrical resistance of the permanent film, reduce the propagation delay, and the like. .
  • the dielectric constant of the second resin composition under condition 1 below is preferably 4.0 or less, more preferably 3.5 or less, and even more preferably 3.0 or less.
  • the lower limit of the dielectric constant is not particularly limited, and may be 0 or more.
  • the dielectric loss tangent of the second resin composition under condition 1 below is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.002 or less.
  • the lower limit of the dielectric loss tangent is not particularly limited as long as it is 0 or more.
  • Condition 1 The composition was applied to a silicon wafer having an oxide film (SiO 2 ) formed on the surface to a thickness of 15 ⁇ m, dried at 100° C. for 5 minutes, and heated at 230° C.
  • the dielectric constant and dielectric loss tangent of a single film of the composition prepared by immersing it in hydrogen fluoride are measured.
  • the dielectric constant and dielectric loss tangent can be measured according to JIS (Japanese Industrial Standards) R 1641 "Measuring method for microwave dielectric properties of fine ceramic substrates".
  • first resin composition simply refers to both the first resin composition and the second resin composition.
  • total solid content shall be read as “total solid content excluding filler” in the second resin composition unless there is a description that a filler is included.
  • first resin composition contains a filler
  • total solid content excluding filler is also used.
  • the second resin composition according to the present invention contains a filler.
  • the first resin composition according to the present invention may contain a filler.
  • the filler may be an organic filler or an inorganic filler.
  • the filler contained in the second resin composition is preferably at least one filler selected from the group consisting of silica, quartz, glass, ceramics, fluororesin, and liquid crystal polymer.
  • silica include fused silica, precipitated silica, fumed silica, colloidal silica, synthetic silica, and the like.
  • Ceramics include alumina, zirconia, barium titanate, hydroxyapatite, silicon nitride, silicon carbide, fluorite, magnesite (magnesium carbonate), perovskite (calcium titanate), talc, mica, kaolin, bentonite, pyroferrite, etc. mentioned.
  • Fluorine resins include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride/propylene hexafluoride copolymer, and ethylene/tetrafluoroethylene copolymer. coalescence, ethylene/chlorotrifluoroethylene copolymer, and the like.
  • Liquid crystal polymers include aromatic polyesters and the like. Also, these materials may be used in combination. For example, fluororesin particles coated with silica can also be used.
  • the shape of the filler is not particularly limited, and fibrous, plate-like, scale-like, rod-like, spherical, tube-like, curved plate-like, needle-like and the like can be used without any particular limitation.
  • the filler is preferably at least one filler selected from the group consisting of hollow particles and porous particles.
  • the porosity is preferably 15 to 99.5%, more preferably 30 to 98%, and 40 to 92%. More preferred.
  • the dielectric constant of the filler is preferably 10 or less, and is preferably 1.0 to 5.0. More preferably, it is still more preferably 2.0 to 4.0. From the viewpoint of suppressing an increase in the electrical resistance of the wiring, suppressing a decrease in the electrical resistance of the permanent film, etc., the dielectric loss tangent of the filler is preferably 0.01 or less, more preferably 0.005 or less. , 0.002 or less. The lower limit of the dielectric loss tangent is not particularly limited, and may be zero. The dielectric constant and dielectric loss tangent are calculated from the compound itself according to JIS (Japanese Industrial Standards) C 2138:2007.
  • the particle size of the filler is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.2 ⁇ m or less.
  • the volume average particle size of the filler is preferably 0.002 ⁇ m or more, more preferably 0.01 ⁇ m or more, and even more preferably 0.02 ⁇ m or more. The particle size is calculated by the method described in Examples below.
  • the filler may contain a particulate mixture in which at least two types of particle groups with different particle sizes are mixed.
  • the "particle size" of a certain particle group is also determined by the same method as the "particle size” of the filler. With this configuration, the smaller particles are embedded between the larger particles, reducing the spacing between the fillers and thus increasing the number of contact points compared to only single-diameter fillers, thus increasing the thermal conductivity. improve sexuality. For example, when two types of particle groups with different particle sizes are mixed, two peaks are observed in the particle size distribution of the filler containing these particle groups. Therefore, by confirming the number of peaks in the particle size distribution of the filler, it is possible to confirm how many types of particle groups with different particle diameters are included in the particulate mixture that is the filler.
  • the peak particle size ratio (the ratio of particle sizes corresponding to peak apexes) between at least two peaks is preferably 1.5 to 50. .
  • the lower limit is preferably 2 or more, more preferably 4 or more.
  • the upper limit is preferably 40 or less, more preferably 20 or less. If the peak ratio is within the above range, it becomes easy for the small-diameter filler to occupy the space between the large-diameter fillers while preventing the large-diameter filler from becoming coarse particles.
  • the peak intensity ratio of the peak with large particle size to the peak with small particle size is preferably 0.2 to 5.0.
  • the lower limit is preferably 0.2 or more, more preferably 0.5 or more.
  • the upper limit is preferably 5.0 or less, more preferably 3.0 or less.
  • the filler may be electrically insulating, semiconducting, or conductive, but is preferably electrically insulating from the viewpoint of the insulating properties of the permanent film.
  • the degree of electrical insulation and conductivity is appropriately selected depending on the design and purpose.
  • the lower limit of the volume resistivity of the filler is preferably 1.0 ⁇ 10 11 ⁇ cm or more, more preferably 3.0 ⁇ 10 11 ⁇ cm or more, and 1.0 ⁇ 10 12 ⁇ cm or more. cm or more is particularly preferred.
  • the upper limit of the volume resistivity is not particularly limited, it is preferably 1.0 ⁇ 10 19 ⁇ cm or less, for example.
  • the lower limit of the volume resistivity of the filler is not particularly limited, but it is preferably 1.0 ⁇ 10 ⁇ 7 ⁇ cm or more.
  • the upper limit of the volume resistivity is preferably less than 1.0 ⁇ 10 11 ⁇ cm.
  • the density of the filler is, for example, preferably 20.0 g/cm 3 or less, more preferably 10.0 g/cm 3 or less, and 5.0 g/cm 3 . More preferably: Although the lower limit of the density of the filler is not particularly limited, it is preferably 0.5 g/cm 3 or more, for example. In addition, when the filler has voids or cavities such as porous or hollow particles, the density of the filler in this specification means the density of the solid content among the components constituting the filler. do.
  • the thermal expansion coefficient of the filler is preferably 10 ⁇ 10 ⁇ 5 /K or less, more preferably 3 ⁇ 10 ⁇ 5 /K or less.
  • the lower limit of the thermal expansion coefficient of the filler is not particularly limited, it is preferably 0/K or more, for example.
  • the content of the filler relative to the total solid content including the filler in the second resin composition is preferably 0.2% by mass or more. , more preferably 2.0% by mass or more, and even more preferably 10% by mass or more.
  • the upper limit of the content is not particularly limited, it is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 55% by mass or less.
  • the content of the filler with respect to the total solid content including the filler of the first resin composition is preferably 0% by mass or more, more preferably 1.0% by mass or more, and 5% by mass or more. is more preferred.
  • the upper limit of the content is not particularly limited, it is preferably 50% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less.
  • the content of the filler with respect to the total solid content including the filler of the first resin composition, the content of the filler with respect to the total solid content including the filler of the second resin composition to a value smaller than can also be used.
  • the filler can be used singly or in combination of two or more, and when two or more fillers are included, the total amount thereof is preferably within the above range.
  • the resin composition according to the present invention contains a resin.
  • resins include cyclized resins and their precursors (specific resins) and other resins shown below.
  • the resin composition according to the present invention preferably contains at least one resin (specific resin) selected from the group consisting of cyclized resins and precursors thereof.
  • the cyclized resin is preferably a resin containing an imide ring structure or an oxazole ring structure in its main chain structure.
  • the main chain represents the relatively longest connecting chain in the resin molecule.
  • cyclized resins include polyimide, polybenzoxazole, and polyamideimide.
  • the precursor of the cyclized resin refers to a resin that undergoes a change in chemical structure by an external stimulus to become a cyclized resin, preferably a resin that undergoes a change in chemical structure by heat to become a cyclized resin.
  • a resin that becomes a cyclized resin by forming a ring structure is more preferable.
  • Precursors of the cyclized resin include polyimide precursors, polybenzoxazole precursors, polyamideimide precursors, and the like. That is, the resin composition according to the present invention includes, as the specific resin, at least one selected from the group consisting of polyimides, polyimide precursors, polybenzoxazoles, polybenzoxazole precursors, polyamideimides, and polyamideimide precursors. resin (specific resin).
  • the resin composition according to the present invention preferably contains polyimide or a polyimide precursor as the specific resin.
  • the specific resin preferably has a polymerizable group, and more preferably contains a radically polymerizable group.
  • the resin composition according to the present invention preferably contains a radical polymerization initiator described later, and includes a radical polymerization initiator described later and a radical cross-linking agent described later. is more preferable. Further, if necessary, a sensitizer described later can be included. For example, a negative photosensitive layer is formed from the resin composition according to the present invention.
  • the specific resin may have a polarity conversion group such as an acid-decomposable group.
  • the resin composition according to the present invention preferably contains a photoacid generator, which will be described later. From such a resin composition according to the present invention, for example, a chemically amplified positive photosensitive layer or negative photosensitive layer is formed.
  • polyimide precursor Although the type of the polyimide precursor used in the present invention is not particularly limited, it preferably contains a repeating unit represented by the following formula (2).
  • a 1 and A 2 each independently represent an oxygen atom or -NH-
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 in formula (2) each independently represent an oxygen atom or —NH—, preferably an oxygen atom.
  • R 111 in formula (2) represents a divalent organic group.
  • divalent organic groups include groups containing linear or branched aliphatic groups, cyclic aliphatic groups and aromatic groups, linear or branched aliphatic groups having 2 to 20 carbon atoms, A cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • the hydrocarbon group in the chain may be substituted with a group containing a hetero atom, and in the cyclic aliphatic group and the aromatic group, the ring member hydrocarbon group is a hetero atom.
  • may be substituted with a group containing Groups represented by -Ar- and -Ar-L-Ar- are exemplified as preferred embodiments of the present invention, and groups represented by -Ar-L-Ar- are particularly preferred.
  • Ar is each independently an aromatic group
  • L is a single bond, or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO -, -S-, -SO 2 - or -NHCO-, or a group consisting of a combination of two or more of the above. Preferred ranges for these are as described above.
  • R 111 is preferably derived from a diamine.
  • Diamines used in the production of polyimide precursors include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one type of diamine may be used, or two or more types may be used. Specifically, a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferably a diamine containing, more preferably a diamine containing an aromatic group having 6 to 20 carbon atoms. In the straight-chain or branched aliphatic group, the hydrocarbon group in the chain may be substituted with a group containing a heteroatom. may be substituted with a group containing Examples of groups containing aromatic groups include:
  • * represents a binding site with other structures.
  • diamines include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane; 3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis(aminomethyl)cyclohexane, bis-(4-amino cyclohexyl)methane, bis-(3-aminocyclohexyl)methane, 4,4′-diamino-3,3′-dimethylcyclohexylmethane and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4′- or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3, 3,3
  • diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of International Publication No. 2017/038598.
  • diamines having two or more alkylene glycol units in the main chain described in paragraphs 0032 to 0034 of International Publication No. 2017/038598 are preferably used.
  • R 111 is preferably represented by -Ar-L-Ar- from the viewpoint of the flexibility of the resulting organic film.
  • Ar is each independently an aromatic group
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- , —SO 2 — or —NHCO—, or a group consisting of a combination of two or more of the above.
  • Ar is preferably a phenylene group
  • L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- or -SO 2 - .
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or (61).
  • a divalent organic group represented by Formula (61) is more preferable.
  • Equation (51) In formula (51), R 50 to R 57 are each independently a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 50 to R 57 is a fluorine atom, a methyl group or a trifluoro It is a methyl group, and each * independently represents a binding site to the nitrogen atom in formula (2).
  • the monovalent organic groups represented by R 50 to R 57 include unsubstituted alkyl groups having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), A fluorinated alkyl group and the like can be mentioned.
  • R 58 and R 59 are each independently a fluorine atom, a methyl group, or a trifluoromethyl group, and * is each independently a bonding site to the nitrogen atom in formula (2) show.
  • Diamines that give the structure of formula (51) or (61) include 2,2′-dimethylbenzidine, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 2,2′-bis (Fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl and the like. These may be used alone or in combination of two or more.
  • R 111 contains a polycyclic aromatic ring structure.
  • R 111 also preferably contains a polycyclic aromatic ring structure. According to this aspect, the dielectric constant of the permanent film can be lowered, and in some cases it is possible to suppress the increase in the electrical resistance of the wiring, the suppression of the decrease in the electrical resistance of the permanent film, and the like.
  • Polycyclic aromatic ring structures include polyphenyl structures such as biphenyl structures and terphenyl structures, naphthalene ring structures, phenanthrene ring structures, anthracene ring structures, pyrene ring structures, fluorene ring structures, and acenaphthylene ring structures. , but not limited to.
  • R 111 preferably contains at least one of a polyphenyl structure and a fluorene ring structure.
  • R 115 in formula (2) represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or (6) is more preferable.
  • each * independently represents a binding site to another structure.
  • R 112 is a single bond or a divalent linking group, a single bond, or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, -CO-, -S-, -SO 2 -, and -NHCO-, and preferably a group selected from a combination thereof, having 1 to 1 carbon atoms optionally substituted by a single bond or a fluorine atom 3 alkylene group, -O-, -CO-, -S- and -SO 2 -, and -CH 2 -, -C(CF 3 ) 2 -, -C( It is more preferably a divalent group selected from the group consisting of CH 3 ) 2 -, -O-, -CO-, -S- and -SO 2 -.
  • R 115 contains a polycyclic aromatic ring structure.
  • the dielectric constant of the permanent film can be lowered, and in some cases it is possible to suppress the increase in the electrical resistance of the wiring, the suppression of the decrease in the electrical resistance of the permanent film, and the like.
  • Polycyclic aromatic ring structures include polyphenyl structures such as biphenyl structures and terphenyl structures, naphthalene ring structures, phenanthrene ring structures, anthracene ring structures, pyrene ring structures, fluorene ring structures, and acenaphthylene ring structures. , but not limited to.
  • R 115 preferably contains at least one of a polyphenyl structure and a fluorene ring structure.
  • R 115 specifically includes a tetracarboxylic acid residue remaining after removal of an anhydride group from a tetracarboxylic dianhydride.
  • the polyimide precursor may contain only one type of tetracarboxylic dianhydride residue, or may contain two or more types thereof, as the structure corresponding to R115 .
  • the tetracarboxylic dianhydride is preferably represented by the following formula (O).
  • R 115 represents a tetravalent organic group.
  • the preferred range of R 115 is synonymous with R 115 in formula (2), and the preferred range is also the same.
  • tetracarboxylic dianhydrides include pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′- Diphenyl sulfide tetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′ ,4,4′-diphenylmethanetetracarboxylic dianhydride, 2,2′,3,3′-diphenylmethanetetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride,
  • tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of WO 2017/038598 are also preferred examples.
  • R 111 and R 115 has an OH group. More specifically, R 111 includes residues of bisaminophenol derivatives.
  • R 113 and R 114 in formula (2) each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group preferably includes a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group.
  • At least one of R 113 and R 114 preferably contains a polymerizable group, more preferably both contain a polymerizable group. It is also preferred that at least one of R 113 and R 114 contains two or more polymerizable groups.
  • the polymerizable group is a group capable of undergoing a cross-linking reaction by the action of heat, radicals, or the like, and is preferably a radically polymerizable group.
  • the polymerizable group examples include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group. be done.
  • a group having an ethylenically unsaturated bond is preferred.
  • Groups having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group), and a (meth)acrylamide group.
  • a (meth)acryloyloxy group a group represented by the following formula (III), and the like, and a group represented by the following formula (III) is preferable.
  • R 200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, preferably a hydrogen atom or a methyl group.
  • * represents a binding site with another structure.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH(OH)CH 2 —, a cycloalkylene group or a polyalkyleneoxy group.
  • R 201 examples include ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, octamethylene, alkylene groups such as dodecamethylene, 1,2-butanediyl, 1, 3-butanediyl group, —CH 2 CH(OH)CH 2 —, polyalkyleneoxy group, ethylene group, alkylene group such as propylene group, —CH 2 CH(OH)CH 2 —, cyclohexyl group, polyalkylene An oxy group is more preferred, and an alkylene group such as an ethylene group, a propylene group, or a polyalkyleneoxy group is even more preferred.
  • alkylene groups such as dodecamethylene, 1,2-butanediyl, 1, 3-butanediyl group, —CH 2 CH(OH)CH 2 —, polyalkyleneoxy group, ethylene group, alkylene group such as propylene group, —CH 2 CH(OH)CH 2
  • a polyalkyleneoxy group refers to a group in which two or more alkyleneoxy groups are directly bonded.
  • the alkylene groups in the plurality of alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
  • the arrangement of the alkyleneoxy groups in the polyalkyleneoxy group may be a random arrangement or a block arrangement. Alternatively, it may be arranged in a pattern such as an alternating pattern.
  • the number of carbon atoms in the alkylene group (including the number of carbon atoms in the substituent when the alkylene group has a substituent) is preferably 2 or more, more preferably 2 to 10, and 2 to 6.
  • the said alkylene group may have a substituent.
  • Preferred substituents include alkyl groups, aryl groups, and halogen atoms.
  • the number of alkyleneoxy groups contained in the polyalkyleneoxy group is preferably 2 to 20, more preferably 2 to 10, and even more preferably 2 to 6.
  • a group to which an oxy group is bonded is preferable, a polyethyleneoxy group or a polypropyleneoxy group is more preferable, and a polyethyleneoxy group is still more preferable.
  • the ethyleneoxy groups and the propyleneoxy groups may be arranged randomly, or may be arranged to form blocks. , may be arranged in a pattern such as alternately. Preferred embodiments of the number of repetitions of ethyleneoxy groups and the like in these groups are as described above.
  • the polyimide precursor when R 113 is a hydrogen atom, or when R 114 is a hydrogen atom, the polyimide precursor may form a tertiary amine compound having an ethylenically unsaturated bond and a counter salt. good.
  • tertiary amine compounds having ethylenically unsaturated bonds include N,N-dimethylaminopropyl methacrylate.
  • R 113 and R 114 may be a polarity conversion group such as an acid-decomposable group.
  • the acid-decomposable group is not particularly limited as long as it is decomposed by the action of an acid to generate an alkali-soluble group such as a phenolic hydroxy group or a carboxyl group. , a tertiary alkyl ester group and the like are preferable, and from the viewpoint of exposure sensitivity, an acetal group or a ketal group is more preferable.
  • acid-decomposable groups include tert-butoxycarbonyl, isopropoxycarbonyl, tetrahydropyranyl, tetrahydrofuranyl, ethoxyethyl, methoxyethyl, ethoxymethyl, trimethylsilyl, and tert-butoxycarbonylmethyl. groups, trimethylsilyl ether groups, and the like. From the viewpoint of exposure sensitivity, an ethoxyethyl group or a tetrahydrofuranyl group is preferred.
  • the polyimide precursor preferably has a fluorine atom in its structure.
  • the content of fluorine atoms in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • an aliphatic group having a siloxane structure there is an embodiment using bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane, or the like as the diamine.
  • the repeating unit represented by formula (2) is preferably a repeating unit represented by formula (2-A). That is, at least one polyimide precursor used in the present invention is preferably a precursor having a repeating unit represented by formula (2-A). By including the repeating unit represented by the formula (2-A) in the polyimide precursor, it becomes possible to further widen the width of the exposure latitude.
  • a 1 and A 2 represent an oxygen atom
  • R 111 and R 112 each independently represent a divalent organic group
  • R 113 and R 114 each independently represents a hydrogen atom or a monovalent organic group
  • at least one of R 113 and R 114 is a group containing a polymerizable group, and both are preferably groups containing a polymerizable group.
  • a 1 , A 2 , R 111 , R 113 and R 114 are each independently synonymous with A 1 , A 2 , R 111 , R 113 and R 114 in formula (2), and preferred ranges are also the same.
  • R 112 has the same definition as R 112 in Formula (5), and the preferred range is also the same.
  • the polyimide precursor may contain one type of repeating unit represented by formula (2), but may contain two or more types. It may also contain structural isomers of the repeating unit represented by formula (2). It goes without saying that the polyimide precursor may also contain other types of repeating units in addition to the repeating units of formula (2) above.
  • the content of the repeating unit represented by formula (2) is 50 mol% or more of the total repeating units.
  • the total content is more preferably 70 mol % or more, still more preferably 90 mol % or more, and particularly preferably more than 90 mol %.
  • the upper limit of the total content is not particularly limited, and all repeating units in the polyimide precursor excluding terminals may be repeating units represented by formula (2).
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, still more preferably 15,000 to 40,000. Also, the number average molecular weight (Mn) is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, still more preferably 4,000 to 20,000.
  • the polyimide precursor preferably has a molecular weight distribution of 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more. Although the upper limit of the polyimide precursor's molecular weight dispersity is not particularly defined, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the molecular weight dispersity is a value calculated by weight average molecular weight/number average molecular weight.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one polyimide precursor are preferably within the above ranges. It is also preferable that the weight-average molecular weight, the number-average molecular weight, and the degree of dispersion calculated from the plurality of types of polyimide precursors as one resin are within the ranges described above.
  • the polyimide used in the present invention may be an alkali-soluble polyimide or a polyimide soluble in a developer containing an organic solvent as a main component.
  • the alkali-soluble polyimide refers to a polyimide that dissolves at 23° C. by 0.1 g or more in 100 g of a 2.38% by mass tetramethylammonium aqueous solution, and from the viewpoint of pattern formation, 0.5 g or more. It is preferably a polyimide that dissolves, and more preferably a polyimide that dissolves 1.0 g or more. Although the upper limit of the dissolved amount is not particularly limited, it is preferably 100 g or less.
  • the polyimide is preferably a polyimide having a plurality of imide structures in its main chain from the viewpoint of the film strength and insulating properties of the resulting organic film.
  • the term "main chain” refers to the relatively longest linking chain in the molecule of the polymer compound that constitutes the resin, and the term “side chain” refers to the other linking chain.
  • the polyimide preferably has a fluorine atom.
  • a fluorine atom is preferably included in, for example, R132 in a repeating unit represented by the formula (4) described later, or R131 in a repeating unit represented by the formula (4) described later, and the formula (4) described later or R131 in a repeating unit represented by formula (4) described later as a fluorinated alkyl group.
  • the amount of fluorine atoms relative to the total mass of polyimide is preferably 5% by mass or more and preferably 20% by mass or less.
  • the polyimide preferably has a silicon atom.
  • a silicon atom for example, is preferably contained in R131 in a repeating unit represented by formula (4) described later, and organically modified (poly)siloxane described later in R131 in a repeating unit represented by formula (4) described later More preferably included as a structure.
  • the silicon atom or the organically modified (poly)siloxane structure may be contained in the side chain of the polyimide, but is preferably contained in the main chain of the polyimide.
  • the amount of silicon atoms relative to the total mass of polyimide is preferably 1% by mass or more, and more preferably 20% by mass or less.
  • the polyimide preferably has an ethylenically unsaturated bond.
  • the polyimide may have an ethylenically unsaturated bond at the end of its main chain or in a side chain, preferably in a side chain.
  • the ethylenically unsaturated bond preferably has radical polymerizability.
  • the ethylenically unsaturated bond is preferably contained in R 132 in a repeating unit represented by the formula (4) described later, or R 131 in a repeating unit represented by the formula (4) described later.
  • the ethylenically unsaturated bond is preferably contained in R 131 in the repeating unit represented by formula (4) described later, and ethylene is contained in R 131 in the repeating unit represented by formula (4) described later It is more preferably included as a group having a polyunsaturated bond.
  • the group having an ethylenically unsaturated bond includes a group having an optionally substituted vinyl group directly bonded to an aromatic ring such as a vinyl group, an allyl group, a vinylphenyl group, a (meth)acrylamide group, a (meth) Examples include an acryloyloxy group and a group represented by the following formula (IV).
  • R 20 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, preferably a hydrogen atom or a methyl group.
  • R 21 is an alkylene group having 2 to 12 carbon atoms, —O—CH 2 CH(OH)CH 2 —, —C( ⁇ O)O—, —O(C ⁇ O)NH— , a (poly)alkyleneoxy group having 2 to 30 carbon atoms (the number of carbon atoms in the alkylene group is preferably 2 to 12, more preferably 2 to 6, and particularly preferably 2 or 3; the number of repetitions is preferably 1 to 12, 1 to 6 are more preferable, and 1 to 3 are particularly preferable), or a group in which two or more of these are combined.
  • the alkylene group having 2 to 12 carbon atoms may be a linear, branched, cyclic, or a combination of these alkylene groups.
  • an alkylene group having 2 to 8 carbon atoms is preferable, and an alkylene group having 2 to 4 carbon atoms is more preferable.
  • R 21 is preferably a group represented by any one of the following formulas (R1) to (R3), more preferably a group represented by formula (R1).
  • L represents a single bond, an alkylene group having 2 to 12 carbon atoms, a (poly)alkyleneoxy group having 2 to 30 carbon atoms, or a group in which two or more of these are combined
  • X represents an oxygen atom or a sulfur atom
  • * represents a bonding site with another structure
  • represents a bonding site with the oxygen atom to which R 21 in formula (IV) bonds.
  • a preferred embodiment of an alkylene group having 2 to 12 carbon atoms or a (poly)alkyleneoxy group having 2 to 30 carbon atoms in L is the above-mentioned R 21 having 2 to It is the same as the preferred embodiment of the 12 alkylene group or the (poly)alkyleneoxy group having 2 to 30 carbon atoms.
  • X is preferably an oxygen atom.
  • * has the same meaning as * in formula (IV), and preferred embodiments are also the same.
  • the structure represented by formula (R1) is, for example, a polyimide having a hydroxy group such as a phenolic hydroxy group, and a compound having an isocyanato group and an ethylenically unsaturated bond (e.g., 2-isocyanatoethyl methacrylate, etc.). Obtained by reaction.
  • the structure represented by formula (R2) can be obtained, for example, by reacting a polyimide having a carboxy group with a compound having a hydroxy group and an ethylenically unsaturated bond (eg, 2-hydroxyethyl methacrylate, etc.).
  • the structure represented by formula (R3) can be obtained, for example, by reacting a polyimide having a hydroxy group such as a phenolic hydroxy group with a compound having a glycidyl group and an ethylenically unsaturated bond (e.g., glycidyl methacrylate, etc.) can get.
  • a polyimide having a hydroxy group such as a phenolic hydroxy group
  • a compound having a glycidyl group and an ethylenically unsaturated bond e.g., glycidyl methacrylate, etc.
  • * represents a binding site with another structure, preferably a binding site with the main chain of polyimide.
  • the amount of ethylenically unsaturated bonds relative to the total mass of the polyimide is preferably 0.0001-0.1 mol/g, more preferably 0.0005-0.05 mol/g.
  • Polyimide may have a polymerizable group other than the group having an ethylenically unsaturated bond.
  • Polymerizable groups other than groups having an ethylenically unsaturated bond include cyclic ether groups such as an epoxy group and an oxetanyl group, alkoxymethyl groups such as a methoxymethyl group, and methylol groups.
  • a polymerizable group other than a group having an ethylenically unsaturated bond is preferably included, for example, in R 131 in a repeating unit represented by formula (4) described below.
  • the amount of the polymerizable group other than the group having an ethylenically unsaturated bond with respect to the total mass of the polyimide is preferably 0.0001 to 0.1 mol / g, preferably 0.001 to 0.05 mol / g. more preferred.
  • the polyimide may have a polarity conversion group such as an acid-decomposable group.
  • the acid-decomposable group in the polyimide is the same as the acid-decomposable group described for R 113 and R 114 in formula (2) above, and preferred embodiments are also the same.
  • Polar conversion groups are included, for example, at R 131 and R 132 in the repeating unit represented by formula (4) described later, the terminal of polyimide, and the like.
  • the acid value of polyimide is preferably 30 mgKOH/g or more, more preferably 50 mgKOH/g or more, and more preferably 70 mgKOH/g or more, from the viewpoint of improving developability. is more preferable. Also, the acid value is preferably 500 mgKOH/g or less, more preferably 400 mgKOH/g or less, and even more preferably 200 mgKOH/g or less. Further, when the polyimide is subjected to development using a developer containing an organic solvent as a main component (for example, "solvent development” described later), the acid value of the polyimide is preferably 1 to 35 mgKOH/g, and 2 to 30 mgKOH.
  • the acid value is measured by a known method, for example, by the method described in JIS K 0070:1992.
  • the acid group contained in the polyimide preferably has a pKa of 0 to 10, more preferably 3 to 8, from the viewpoint of both storage stability and developability.
  • the pKa is expressed by the negative common logarithm pKa of the equilibrium constant Ka.
  • pKa is a value calculated by ACD/ChemSketch (registered trademark).
  • the values listed in the Chemical Society of Japan, Revised 5th Edition, Basics of Chemistry may be referred to.
  • the acid group is a polyvalent acid such as phosphoric acid
  • the pKa is the first dissociation constant.
  • the polyimide preferably contains at least one selected from the group consisting of a carboxy group and a phenolic hydroxy group, more preferably a phenolic hydroxy group.
  • the polyimide preferably has a phenolic hydroxy group from the viewpoint of making the development speed with an alkaline developer appropriate.
  • the polyimide may have a phenolic hydroxy group at the end of the main chain or in the side chain.
  • a phenolic hydroxy group is preferably contained in, for example, R 132 in a repeating unit represented by formula (4) described later or R 131 in a repeating unit represented by formula (4) described later.
  • the amount of phenolic hydroxy groups relative to the total weight of the polyimide is preferably 0.1-30 mol/g, more preferably 1-20 mol/g.
  • the polyimide used in the present invention is not particularly limited as long as it is a polymer compound having an imide structure, but it preferably contains a repeating unit represented by the following formula (4).
  • R 131 represents a divalent organic group and R 132 represents a tetravalent organic group.
  • the polymerizable group may be located on at least one of R 131 and R 132 , and the terminal of the polyimide as shown in the following formula (4-1) or (4-2) may be located in Formula (4-1)
  • R 133 is a polymerizable group, and other groups are the same as in formula (4).
  • Formula (4-2) At least one of R 134 and R 135 is a polymerizable group, and when it is not a polymerizable group, it is an organic group, and the other groups are as defined in formula (4).
  • R 131 represents a divalent organic group.
  • the divalent organic group are the same as those of R 111 in formula (2), and the preferred range is also the same.
  • R 131 also includes a diamine residue remaining after removal of the amino group of the diamine. Diamines include aliphatic, cycloaliphatic or aromatic diamines. A specific example is the example of R 111 in formula (2) of the polyimide precursor.
  • R 131 is preferably a diamine residue having at least two alkylene glycol units in its main chain from the viewpoint of more effectively suppressing warping during baking. More preferably, it is a diamine residue containing two or more ethylene glycol chains, propylene glycol chains, or both in one molecule, and more preferably the above diamine, which does not contain an aromatic ring. is.
  • Diamines containing two or more ethylene glycol chains, propylene glycol chains, or both in one molecule include Jeffamine (registered trademark) KH-511, ED-600, ED-900, ED-2003, and EDR. -148, EDR-176, D-200, D-400, D-2000, D-4000 (trade names, manufactured by HUNTSMAN Co., Ltd.), 1-(2-(2-(2-aminopropoxy)ethoxy) propoxy)propan-2-amine, 1-(1-(1-(2-aminopropoxy)propan-2-yl)oxy)propan-2-amine, and the like.
  • R 132 represents a tetravalent organic group.
  • examples of the tetravalent organic group are the same as those for R 115 in formula (2), and the preferred range is also the same.
  • four bonds of a tetravalent organic group exemplified as R 115 combine with four —C( ⁇ O)— moieties in the above formula (4) to form a condensed ring.
  • R 132 includes, for example, a tetracarboxylic acid residue remaining after removal of an anhydride group from a tetracarboxylic dianhydride.
  • a specific example is the example of R 115 in formula (2) of the polyimide precursor.
  • R 132 is preferably an aromatic diamine residue having 1 to 4 aromatic rings.
  • R 131 and R 132 has an OH group. More specifically, R 131 is 2,2-bis(3-hydroxy-4-aminophenyl)propane, 2,2-bis(3-hydroxy-4-aminophenyl)hexafluoropropane, 2,2- Bis(3-amino-4-hydroxyphenyl)propane, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane, and the above (DA-1) to (DA-18) are preferred examples. and more preferable examples of R 132 are the above (DAA-1) to (DAA-5).
  • the polyimide preferably has a fluorine atom in its structure.
  • the content of fluorine atoms in the polyimide is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component include bis(3-aminopropyl)tetramethyldisiloxane and bis(p-aminophenyl)octamethylpentasiloxane.
  • the main chain end of the polyimide is blocked with a terminal blocking agent such as monoamine, acid anhydride, monocarboxylic acid, monoacid chloride compound, monoactive ester compound. preferably.
  • monoamines examples include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7 -aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2 -hydroxy-5-aminonaphthalene, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6- Aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-aminobenzoic acid
  • the imidization rate (also referred to as "ring closure rate") of the polyimide is preferably 70% or more, more preferably 80% or more, from the viewpoint of the film strength, insulating properties, etc. of the resulting organic film. More preferably, it is 90% or more.
  • the upper limit of the imidization rate is not particularly limited, and may be 100% or less.
  • the imidization rate is measured, for example, by the method described below. The infrared absorption spectrum of the polyimide is measured, and the peak intensity P1 near 1377 cm ⁇ 1 , which is the absorption peak derived from the imide structure, is obtained. Next, after heat-treating the polyimide at 350° C.
  • the polyimide may contain repeating units represented by the above formula (4) that all contain one type of R 131 or R 132 , and the above formula ( 4) may contain a repeating unit. Moreover, the polyimide may contain other types of repeating units in addition to the repeating units represented by the above formula (4). Other types of repeating units include, for example, repeating units represented by formula (2) above.
  • polyimide for example, a method of reacting a tetracarboxylic dianhydride and a diamine (partially replaced with a monoamine terminal blocker) at a low temperature, a method of reacting a tetracarboxylic dianhydride (partially with an acid anhydride) at a low temperature a monoacid chloride compound or a monoactive ester compound) and a diamine, a diester is obtained by a tetracarboxylic dianhydride and an alcohol, and then a diamine (a part of which is a monoamine A method of reacting in the presence of a condensing agent) with a condensing agent, a diester is obtained by tetracarboxylic acid dianhydride and alcohol, then the remaining dicarboxylic acid is acid chloride, diamine (part of which is a monoamine Using a method such as a method of reacting with a terminal blocking agent) to obtain a polyimide precursor
  • the weight average molecular weight (Mw) of the polyimide is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, still more preferably 15,000 to 40,000. By setting the weight average molecular weight to 5,000 or more, the folding resistance of the cured film can be improved. A weight-average molecular weight of 15,000 or more is particularly preferable in order to obtain an organic film having excellent mechanical properties (e.g., elongation at break). Also, the number average molecular weight (Mn) of the polyimide is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, still more preferably 4,000 to 20,000. The polyimide has a molecular weight distribution of preferably 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more.
  • the upper limit of the polyimide molecular weight dispersion is not particularly defined, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the weight-average molecular weight, number-average molecular weight, and degree of dispersion of at least one type of polyimide are preferably within the above ranges. It is also preferable that the weight-average molecular weight, the number-average molecular weight, and the degree of dispersion calculated using the above plural kinds of polyimides as one resin are within the ranges described above.
  • polybenzoxazole precursor Although the structure of the polybenzoxazole precursor used in the present invention is not particularly defined, it preferably contains a repeating unit represented by the following formula (3).
  • R 121 represents a divalent organic group
  • R 122 represents a tetravalent organic group
  • R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group. show.
  • R 123 and R 124 each have the same meaning as R 113 in formula (2), and the preferred ranges are also the same. That is, at least one is preferably a polymerizable group.
  • R 121 represents a divalent organic group.
  • the divalent organic group a group containing at least one of an aliphatic group and an aromatic group is preferred.
  • the aliphatic group a linear aliphatic group is preferred.
  • R 121 is preferably a dicarboxylic acid residue. Only one type of dicarboxylic acid residue may be used, or two or more types may be used.
  • a dicarboxylic acid residue containing an aliphatic group and a dicarboxylic acid residue containing an aromatic group are preferable, and a dicarboxylic acid residue containing an aromatic group is more preferable.
  • the dicarboxylic acid containing an aliphatic group is preferably a dicarboxylic acid containing a linear or branched (preferably linear) aliphatic group, a linear or branched (preferably linear) aliphatic group and two -COOH A dicarboxylic acid consisting of is more preferred.
  • the number of carbon atoms in the linear or branched (preferably linear) aliphatic group is preferably 2 to 30, more preferably 2 to 25, even more preferably 3 to 20, and 4 to 15 is more preferred, and 5-10 is particularly preferred.
  • the linear aliphatic group is preferably an alkylene group.
  • Dicarboxylic acids containing linear aliphatic groups include malonic acid, dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2, 2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3,3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid, 3-methyladipic acid, pimelic acid, 2,2,6,6-tetramethylpimelic acid, suberin acid, dodecanedioic acid, azelaic acid, sebacic acid, hexadecanedi
  • Z is a hydrocarbon group having 1 to 6 carbon atoms, and n is an integer of 1 to 6.
  • the dicarboxylic acid containing an aromatic group the following dicarboxylic acid having an aromatic group is preferable, and the following dicarboxylic acid consisting of only a group having an aromatic group and two -COOH is more preferable.
  • A is -CH 2 -, -O-, -S-, -SO 2 -, -CO-, -NHCO-, -C(CF 3 ) 2 -, and -C(CH 3 ) 2 - represents a divalent group selected from the group consisting of * independently represents a binding site to another structure.
  • dicarboxylic acids containing aromatic groups include 4,4'-carbonyl dibenzoic acid, 4,4'-dicarboxydiphenyl ether, and terephthalic acid.
  • R 122 represents a tetravalent organic group.
  • the tetravalent organic group has the same meaning as R 115 in the above formula (2), and the preferred range is also the same.
  • R 122 is also preferably a group derived from a bisaminophenol derivative.
  • bisaminophenol derivatives having the following aromatic groups are preferred.
  • X 1 represents -O-, -S-, -C(CF 3 ) 2 -, -CH 2 -, -SO 2 -, -NHCO-, and * and # respectively represent other structures and represents the binding site of R represents a hydrogen atom or a monovalent substituent, preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrogen atom or an alkyl group.
  • R 122 is also preferably a structure represented by the above formula.
  • any two of the total four * and # are binding sites with the nitrogen atom to which R 122 in formula (3) binds, and Another two are preferably bonding sites with the oxygen atom to which R 122 in formula (3) is bonded, and two * are bonding sites with the oxygen atom to which R 122 in formula (3) is bonded. and two #s are binding sites to the nitrogen atom to which R 122 in formula (3) binds, or two * are binding sites to the nitrogen atom to which R 122 in formula (3) binds and two #s are more preferably a binding site to the oxygen atom to which R 122 in formula (3) binds, and two * are the oxygen to which R 122 in formula (3) binds. More preferably, it is a bonding site with an atom and two #s are bonding sites with a nitrogen atom to which R 122 in formula (3) is bonded.
  • the bisaminophenol derivative is also preferably a compound represented by Formula (As).
  • R 1 is a hydrogen atom, alkylene, substituted alkylene, -O-, -S-, -SO 2 -, -CO-, -NHCO-, a single bond, or the following formula (A- It is an organic group selected from the group of sc).
  • R2 is a hydrogen atom, an alkyl group, an alkoxy group, an acyloxy group, or a cyclic alkyl group, and may be the same or different.
  • R3 is a hydrogen atom , a linear or branched alkyl group, an alkoxy group, an acyloxy group, or a cyclic alkyl group, and may be the same or different.
  • R 1 is alkylene or substituted alkylene.
  • alkylene and substituted alkylene for R 1 include linear or branched alkyl groups having 1 to 8 carbon atoms, among which —CH 2 — and —CH(CH 3 ) -, -C(CH 3 ) 2 - have sufficient solubility in solvents while maintaining the effect of high i-line transparency and high cyclization rate when cured at low temperature. It is more preferable in that a polybenzoxazole precursor having excellent properties can be obtained.
  • the polybenzoxazole precursor may also contain other types of repeating units in addition to the repeating units of formula (3) above.
  • the polybenzoxazole precursor preferably contains a diamine residue represented by the following formula (SL) as another type of repeating unit in that warping due to ring closure can be suppressed.
  • Z has an a structure and a b structure
  • R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • R 2s is a hydrocarbon group having 1 to 10 carbon atoms.
  • At least one of R 3s , R 4s , R 5s and R 6s is an aromatic group, and the rest are hydrogen atoms or organic groups having 1 to 30 carbon atoms, which may be the same or different.
  • Polymerization of a structure and b structure may be block polymerization or random polymerization.
  • the mol % of the Z portion is 5 to 95 mol % for the a structure, 95 to 5 mol % for the b structure, and 100 mol % for a+b.
  • preferred Z include those in which R 5s and R 6s in the b structure are phenyl groups.
  • the molecular weight of the structure represented by formula (SL) is preferably 400 to 4,000, more preferably 500 to 3,000.
  • tetracarboxylic acid residues include those of R 115 in formula (2).
  • the weight average molecular weight (Mw) of the polybenzoxazole precursor is, for example, preferably 18,000 to 30,000, more preferably 20,000 to 29,000, still more preferably 22,000 to 28, 000. Also, the number average molecular weight (Mn) is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, still more preferably 9,200 to 11,200.
  • the molecular weight dispersity of the polybenzoxazole precursor is preferably 1.4 or more, more preferably 1.5 or more, and even more preferably 1.6 or more.
  • the upper limit of the molecular weight dispersity of the polybenzoxazole precursor is not particularly defined, for example, it is preferably 2.6 or less, more preferably 2.5 or less, further preferably 2.4 or less, and 2.3 or less. is more preferable, and 2.2 or less is even more preferable.
  • the resin composition contains multiple types of polybenzoxazole precursors as specific resins
  • the weight-average molecular weight, number-average molecular weight, and degree of dispersion of at least one type of polybenzoxazole precursor are within the above ranges. preferable. It is also preferable that the weight-average molecular weight, the number-average molecular weight, and the degree of dispersion calculated from the above plural kinds of polybenzoxazole precursors as one resin are within the ranges described above.
  • Polybenzoxazole is not particularly limited as long as it is a polymer compound having a benzoxazole ring, but it is preferably a compound represented by the following formula (X), and a compound represented by the following formula (X) and more preferably a compound having a polymerizable group.
  • a radically polymerizable group is preferred.
  • it may be a compound represented by the following formula (X) and having a polarity conversion group such as an acid-decomposable group.
  • R 133 represents a divalent organic group and R 134 represents a tetravalent organic group.
  • the polar conversion group such as a polymerizable group or an acid-decomposable group
  • the polar conversion group may be positioned at least one of R 133 and R 134 . It may be positioned at the end of the polybenzoxazole as shown in formula (X-1) or formula (X-2).
  • R 137 is a polar conversion group such as a polymerizable group or an acid-decomposable group, the others are substituents, and the other groups are the same as in formula (X).
  • the polarity conversion group such as a polymerizable group or an acid-decomposable group is synonymous with the polymerizable group described above for the polymerizable group possessed by the polyimide precursor.
  • R 133 represents a divalent organic group.
  • Divalent organic groups include aliphatic groups and aromatic groups.
  • a specific example is the example of R 121 in formula (3) of the polybenzoxazole precursor. Preferred examples thereof are the same as those of R121 .
  • R 134 represents a tetravalent organic group.
  • Tetravalent organic groups include examples of R 122 in the polybenzoxazole precursor formula (3). Moreover, the preferred examples thereof are the same as those of R122 .
  • four bonds of a tetravalent organic group exemplified as R 122 combine with the nitrogen atom and oxygen atom in the above formula (X) to form a condensed ring.
  • R 134 when R 134 is the following organic group, it forms the structure below. In the structures below, each * represents a bonding site with a nitrogen atom or an oxygen atom in formula (X).
  • Polybenzoxazole preferably has an oxazole conversion rate of 85% or more, more preferably 90% or more.
  • the upper limit is not particularly limited, and may be 100%.
  • the oxazolization rate is measured, for example, by the method described below.
  • the infrared absorption spectrum of polybenzoxazole is measured, and the peak intensity Q1 near 1650 cm ⁇ 1 , which is the absorption peak derived from the amide structure of the precursor, is determined.
  • the polybenzoxazole may contain repeating units of the above formula (X) that all contain one type of R 131 or R 132 , or may contain repeating units of the above formula (X) that contain two or more different types of R 131 or R 132 . ) repeating units.
  • the polybenzoxazole may also contain other types of repeating units in addition to the repeating units of formula (X) above.
  • Polybenzoxazole is obtained by, for example, reacting a bisaminophenol derivative with a dicarboxylic acid containing R 133 or a compound selected from dicarboxylic acid dichlorides and dicarboxylic acid derivatives of the above dicarboxylic acid to obtain a polybenzoxazole precursor. , which is obtained by oxazolating it using a known oxazolating reaction method.
  • a dicarboxylic acid an active ester type dicarboxylic acid derivative obtained by pre-reacting 1-hydroxy-1,2,3-benzotriazole or the like may be used in order to increase the reaction yield.
  • the weight average molecular weight (Mw) of polybenzoxazole is preferably from 5,000 to 70,000, more preferably from 8,000 to 50,000, even more preferably from 10,000 to 30,000.
  • the weight average molecular weight is particularly preferably 20,000 or more.
  • the weight average molecular weight of at least one kind of polybenzoxazole is within the above range.
  • the number average molecular weight (Mn) of polybenzoxazole is preferably 7,200 to 14,000, more preferably 8,000 to 12,000, still more preferably 9,200 to 11,200. be.
  • the polybenzoxazole has a molecular weight dispersity of preferably 1.4 or more, more preferably 1.5 or more, and even more preferably 1.6 or more.
  • the upper limit of the polybenzoxazole molecular weight dispersity is not particularly defined, for example, it is preferably 2.6 or less, more preferably 2.5 or less, further preferably 2.4 or less, and even more preferably 2.3 or less.
  • 2.2 or less is even more preferable.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one type of polybenzoxazole are preferably within the above ranges. It is also preferable that the weight-average molecular weight, the number-average molecular weight, and the degree of dispersion calculated from the plurality of types of polybenzoxazole as one resin are within the ranges described above.
  • the polyamideimide precursor preferably contains a repeating unit represented by the following formula (PAI-2).
  • R 117 represents a trivalent organic group
  • R 111 represents a divalent organic group
  • a 2 represents an oxygen atom or —NH—
  • R 113 represents a hydrogen atom or a monovalent represents an organic group.
  • R 117 is a linear or branched aliphatic group, a cyclic aliphatic group, an aromatic group, a heteroaromatic group, or two
  • the above-linked groups are exemplified, straight-chain aliphatic groups having 2 to 20 carbon atoms, branched aliphatic groups having 3 to 20 carbon atoms, cyclic aliphatic groups having 3 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, and even more preferably an alkylene group having 1 to 4 carbon atoms.
  • halogenated alkylene group a halogenated alkylene group having 1 to 20 carbon atoms is preferable, a halogenated alkylene group having 1 to 10 carbon atoms is more preferable, and a halogenated alkylene group having 1 to 4 carbon atoms is more preferable.
  • the halogen atom in the halogenated alkylene group includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • the above halogenated alkylene group may have hydrogen atoms, or all of the hydrogen atoms may be substituted with halogen atoms, but it is preferred that all of the hydrogen atoms be substituted with halogen atoms.
  • preferred halogenated alkylene groups include a (ditrifluoromethyl)methylene group and the like.
  • the arylene group is preferably a phenylene group or a naphthylene group, more preferably a phenylene group, and still more preferably a 1,3-phenylene group or a 1,4-phenylene group.
  • R 117 is preferably derived from a tricarboxylic acid compound in which at least one carboxy group may be halogenated. Chlorination is preferable as the halogenation.
  • a compound having three carboxy groups is called a tricarboxylic acid compound. Two of the three carboxy groups of the tricarboxylic acid compound may be anhydrided.
  • the optionally halogenated tricarboxylic acid compound used in the production of the polyamideimide precursor include branched aliphatic, cyclic aliphatic or aromatic tricarboxylic acid compounds. Only one of these tricarboxylic acid compounds may be used, or two or more thereof may be used.
  • the tricarboxylic acid compound includes a linear aliphatic group having 2 to 20 carbon atoms, a branched aliphatic group having 3 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, and a Tricarboxylic acid compounds containing 6 to 20 aromatic groups or groups in which two or more of these are combined via a single bond or a linking group are preferred, and aromatic groups having 6 to 20 carbon atoms or carbon atoms via a single bond or linking group are preferred. More preferred are tricarboxylic acid compounds containing groups in which two or more aromatic groups of numbers 6 to 20 are combined.
  • tricarboxylic acid compounds include 1,2,3-propanetricarboxylic acid, 1,3,5-pentanetricarboxylic acid, citric acid, trimellitic acid, 2,3,6-naphthalenetricarboxylic acid, and phthalic acid.
  • (or phthalic anhydride) and benzoic acid are a single bond, —O—, —CH 2 —, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, —SO 2 — or a phenylene group
  • Linked compounds and the like are included.
  • These compounds may be compounds in which two carboxy groups are anhydrided (e.g., trimellitic anhydride), or compounds in which at least one carboxy group is halogenated (e.g., trimellitic anhydride chloride). There may be.
  • R 111 , A 2 and R 113 have the same meanings as R 111 , A 2 and R 113 in formula (2) above, and preferred embodiments are also the same.
  • Polyamideimide precursors may further comprise other repeating units.
  • Other repeating units include repeating units represented by the above formula (2) and repeating units represented by the following formula (PAI-1).
  • R 116 represents a divalent organic group and R 111 represents a divalent organic group.
  • R 116 is a linear or branched aliphatic group, a cyclic aliphatic group, an aromatic group, a heteroaromatic group, or two
  • the above-linked groups are exemplified, straight-chain aliphatic groups having 2 to 20 carbon atoms, branched aliphatic groups having 3 to 20 carbon atoms, cyclic aliphatic groups having 3 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • alkylene group is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms, and even more preferably an alkylene group having 1 to 4 carbon atoms.
  • halogenated alkylene group a halogenated alkylene group having 1 to 20 carbon atoms is preferable, a halogenated alkylene group having 1 to 10 carbon atoms is more preferable, and a halogenated alkylene group having 1 to 4 carbon atoms is more preferable.
  • the halogen atom in the halogenated alkylene group includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • the above halogenated alkylene group may have hydrogen atoms, or all of the hydrogen atoms may be substituted with halogen atoms, but it is preferred that all of the hydrogen atoms be substituted with halogen atoms.
  • preferred halogenated alkylene groups include (ditrifluoromethyl)methylene groups and the like.
  • the arylene group is preferably a phenylene group or a naphthylene group, more preferably a phenylene group, and still more preferably a 1,3-phenylene group or a 1,4-phenylene group.
  • R 116 is preferably derived from a dicarboxylic acid compound or a dicarboxylic acid dihalide compound.
  • a compound having two carboxy groups is called a dicarboxylic acid compound
  • a compound having two halogenated carboxy groups is called a dicarboxylic acid dihalide compound.
  • the carboxy group in the dicarboxylic acid dihalide compound may be halogenated, but is preferably chlorinated, for example. That is, the dicarboxylic acid dihalide compound is preferably a dicarboxylic acid dichloride compound.
  • linear or branched aliphatic, cyclic aliphatic or aromatic dicarboxylic acid compounds or dicarboxylic acids examples include acid dihalide compounds.
  • One of these dicarboxylic acid compounds or dicarboxylic acid dihalide compounds may be used, or two or more thereof may be used.
  • the dicarboxylic acid compound or dicarboxylic acid dihalide compound includes a linear aliphatic group having 2 to 20 carbon atoms, a branched aliphatic group having 3 to 20 carbon atoms, and a cyclic aliphatic group having 3 to 20 carbon atoms.
  • a dicarboxylic acid compound or dicarboxylic acid dihalide compound containing a group, an aromatic group having 6 to 20 carbon atoms, or a group in which two or more of these are combined via a single bond or a linking group is preferable, and an aromatic group having 6 to 20 carbon atoms.
  • dicarboxylic acid compounds include malonic acid, dimethylmalonic acid, ethylmalonic acid, isopropylmalonic acid, di-n-butylmalonic acid, succinic acid, tetrafluorosuccinic acid, methylsuccinic acid, 2,2- dimethylsuccinic acid, 2,3-dimethylsuccinic acid, dimethylmethylsuccinic acid, glutaric acid, hexafluoroglutaric acid, 2-methylglutaric acid, 3-methylglutaric acid, 2,2-dimethylglutaric acid, 3, 3-dimethylglutaric acid, 3-ethyl-3-methylglutaric acid, adipic acid, octafluoroadipic acid, 3-methyladipic acid, pimelic acid, 2,2,6,6-tetramethylpimelic acid, suberic acid, dodecanedioic acid, azelaic acid, sebacic acid, hexadecanedioic acid, 1,9
  • R 111 has the same definition as R 111 in formula (2) above, and preferred embodiments are also the same.
  • the polyamideimide precursor preferably has a fluorine atom in its structure.
  • the content of fluorine atoms in the polyamideimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyamideimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • the diamine component bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane, etc. are used.
  • a repeating unit represented by the formula (PAI-2), a repeating unit represented by the formula (PAI-1), and a repeating unit represented by the formula (2) An aspect in which the total content of units is 50 mol % or more of all repeating units is exemplified.
  • the total content is more preferably 70 mol % or more, still more preferably 90 mol % or more, and particularly preferably more than 90 mol %.
  • the upper limit of the total content is not particularly limited, and all repeating units in the polyamideimide precursor excluding the terminal are repeating units represented by formula (PAI-2), represented by formula (PAI-1). It may be either a repeating unit or a repeating unit represented by formula (2).
  • the total content of repeating units represented by formula (PAI-2) and repeating units represented by formula (PAI-1) is An embodiment in which it is 50 mol % or more of all repeating units is mentioned.
  • the total content is more preferably 70 mol % or more, still more preferably 90 mol % or more, and particularly preferably more than 90 mol %.
  • the upper limit of the total content is not particularly limited, and all repeating units in the polyamideimide precursor excluding the terminal are repeating units represented by formula (PAI-2), or represented by formula (PAI-1) may be any of the repeating units provided.
  • the weight average molecular weight (Mw) of the polyamideimide precursor is preferably 2,000 to 500,000, more preferably 5,000 to 100,000, still more preferably 10,000 to 50,000. .
  • the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, still more preferably 4,000 to 25,000.
  • the polyamidoimide precursor preferably has a molecular weight distribution of 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more.
  • the upper limit of the molecular weight dispersity of the polyamideimide precursor is not particularly defined, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one type of polyamideimide precursor are preferably within the above ranges. It is also preferable that the weight-average molecular weight, number-average molecular weight, and degree of dispersion calculated from the plurality of types of polyamideimide precursors as one resin are within the ranges described above.
  • the polyamideimide used in the present invention may be an alkali-soluble polyamideimide or a polyamideimide soluble in a developer containing an organic solvent as a main component.
  • the alkali-soluble polyamideimide refers to a polyamideimide that dissolves at 23° C. in an amount of 0.1 g or more in 100 g of a 2.38 mass % tetramethylammonium aqueous solution.
  • a polyamideimide that dissolves 5 g or more is preferable, and a polyamideimide that dissolves 1.0 g or more is more preferable.
  • the upper limit of the dissolved amount is not particularly limited, it is preferably 100 g or less.
  • the polyamideimide is preferably a polyamideimide having a plurality of amide bonds and a plurality of imide structures in the main chain from the viewpoint of the film strength and insulating properties of the organic film to be obtained.
  • the polyamideimide preferably has a fluorine atom.
  • a fluorine atom is preferably contained in, for example, R 117 or R 111 in a repeating unit represented by formula (PAI-3) described later, and is preferably contained in a repeating unit represented by formula (PAI-3) described later It is more preferably contained in R 117 or R 111 as a fluorinated alkyl group.
  • the amount of fluorine atoms is preferably 5% by mass or more and preferably 20% by mass or less with respect to the total mass of polyamideimide.
  • the polyamideimide may have an ethylenically unsaturated bond.
  • Polyamideimide may have an ethylenically unsaturated bond at the end of the main chain or in a side chain, preferably in a side chain.
  • the ethylenically unsaturated bond preferably has radical polymerizability.
  • the ethylenically unsaturated bond is preferably contained in R 117 or R 111 in the repeating unit represented by the formula (PAI-3) described later, and the repeating unit represented by the formula (PAI-3) described later.
  • R 117 or R 111 It is more preferably contained as a group having an ethylenically unsaturated bond in R 117 or R 111 in .
  • Preferred embodiments of the group having an ethylenically unsaturated bond are the same as the preferred embodiments of the group having an ethylenically unsaturated bond in the polyimide described above.
  • the amount of ethylenically unsaturated bonds relative to the total mass of polyamideimide is preferably 0.0001 to 0.1 mol/g, more preferably 0.001 to 0.05 mol/g.
  • Polyamideimide may have a polymerizable group other than the ethylenically unsaturated bond.
  • the polymerizable groups other than the ethylenically unsaturated bond in the polyamideimide include the same groups as the polymerizable groups other than the ethylenically unsaturated bond in the polyimide described above.
  • a polymerizable group other than an ethylenically unsaturated bond is preferably included in R 111 in a repeating unit represented by formula (PAI-3) described later, for example.
  • the amount of polymerizable groups other than ethylenically unsaturated bonds relative to the total mass of polyamideimide is preferably 0.05 to 10 mol/g, more preferably 0.1 to 5 mol/g.
  • -Polarity conversion group- Polyamideimide may have a polarity converting group such as an acid-decomposable group.
  • the acid-decomposable group in polyamideimide is the same as the acid-decomposable group described for R 113 and R 114 in formula (2) above, and preferred embodiments are also the same.
  • the acid value of the polyamideimide is preferably 30 mgKOH/g or more, more preferably 50 mgKOH/g or more, more preferably 70 mgKOH/g, from the viewpoint of improving developability. g or more is more preferable. Moreover, the acid value is preferably 500 mgKOH/g or less, more preferably 400 mgKOH/g or less, and even more preferably 200 mgKOH/g or less.
  • the acid value of the polyamideimide is preferably 2 to 35 mgKOH/g, 3 ⁇ 30 mg KOH/g is more preferred, and 5 to 20 mg KOH/g is even more preferred.
  • the acid value is measured by a known method, for example, by the method described in JIS K 0070:1992.
  • the acid group contained in the polyamideimide the same groups as the acid group in the polyimide described above can be mentioned, and the preferred embodiments are also the same.
  • the polyamideimide preferably has a phenolic hydroxy group.
  • Polyamideimide may have a phenolic hydroxy group at the end of the main chain or in the side chain.
  • a phenolic hydroxy group is preferably included in, for example, R 117 or R 111 in a repeating unit represented by formula (PAI-3) described later.
  • the amount of phenolic hydroxy groups relative to the total mass of polyamideimide is preferably 0.1 to 30 mol/g, more preferably 1 to 20 mol/g.
  • the polyamideimide used in the present invention is not particularly limited as long as it is a polymer compound having an imide structure and an amide bond, but it preferably contains a repeating unit represented by the following formula (PAI-3).
  • R 111 and R 117 have the same meanings as R 111 and R 117 in formula (PAI-2), respectively, and preferred embodiments are also the same.
  • the polymerizable group may be located on at least one of R 111 and R 117 , or may be located on the end of the polyamideimide.
  • the main chain end of the polyamideimide is blocked with a terminal blocker such as a monoamine, an acid anhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • a terminal blocker such as a monoamine, an acid anhydride, a monocarboxylic acid, a monoacid chloride compound, or a monoactive ester compound.
  • Preferred aspects of the terminal blocker are the same as the preferred aspects of the terminal blocker in the polyimide described above.
  • the imidization rate (also referred to as "ring closure rate") of polyamideimide is preferably 70% or more, more preferably 80% or more, from the viewpoint of the film strength, insulating properties, etc. of the resulting organic film. , more preferably 90% or more.
  • the upper limit of the imidization rate is not particularly limited, and may be 100% or less.
  • the imidization rate is measured by the same method as the ring closure rate of the polyimide described above.
  • Polyamideimide may contain repeating units represented by the above formula (PAI-3), all of which contain one type of R111 or R117, and the above formula (PAI-3) containing two or more different types of R131 or R132. -3) may contain a repeating unit. Moreover, the polyamideimide may contain other types of repeating units in addition to the repeating units represented by the above formula (PAI-3). Other types of repeating units include repeating units represented by the above formula (PAI-1) or formula (PAI-2).
  • Polyamideimide is, for example, a method of obtaining a polyamideimide precursor by a known method and completely imidizing it using a known imidization reaction method, or stopping the imidization reaction in the middle and partially imidizing the imide structure and a method of partially introducing an imide structure by blending a completely imidized polymer with its polyamideimide precursor.
  • the weight average molecular weight (Mw) of the polyamideimide is preferably 5,000 to 70,000, more preferably 8,000 to 50,000, even more preferably 10,000 to 30,000. By setting the weight average molecular weight to 5,000 or more, the folding resistance of the cured film can be improved. In order to obtain an organic film having excellent mechanical properties, the weight average molecular weight is particularly preferably 20,000 or more. Further, the number average molecular weight (Mn) of the polyamideimide is preferably 800 to 250,000, more preferably 2,000 to 50,000, still more preferably 4,000 to 25,000. .
  • the polyamidoimide has a molecular weight distribution of preferably 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more.
  • the upper limit of the polyamidoimide molecular weight dispersity is not particularly defined, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one type of polyamideimide are preferably within the above ranges. It is also preferable that the weight-average molecular weight, number-average molecular weight, and degree of dispersion calculated from the plurality of types of polyamideimide as one resin are within the ranges described above.
  • Polyimide precursors and the like for example, a method of reacting a tetracarboxylic dianhydride and a diamine at a low temperature, a method of reacting a tetracarboxylic dianhydride and a diamine at a low temperature to obtain a polyamic acid, a condensing agent or an alkylating agent A method of esterification using a tetracarboxylic dianhydride and an alcohol to obtain a diester, followed by a reaction with a diamine in the presence of a condensing agent, a method of reacting a tetracarboxylic dianhydride and an alcohol to obtain a diester, After that, the remaining dicarboxylic acid can be acid-halogenated using a halogenating agent and reacted with a diamine.
  • the method of obtaining a diester from a tetracarboxylic dianhydride and an alcohol, then acid-halogenating the remaining dicarboxylic acid with a halogenating agent, and reacting it with a diamine is more preferred.
  • the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, N'-disuccinimidyl carbonate, trifluoroacetic anhydride and the like can be mentioned.
  • alkylating agent examples include N,N-dimethylformamide dimethyl acetal, N,N-dimethylformamide diethyl acetal, N,N-dialkylformamide dialkyl acetal, trimethyl orthoformate and triethyl orthoformate.
  • halogenating agent examples include thionyl chloride, oxalyl chloride, phosphorus oxychloride and the like.
  • organic solvent In the method for producing a polyimide precursor or the like, it is preferable to use an organic solvent in the reaction. One type of organic solvent may be used, or two or more types may be used.
  • the organic solvent can be appropriately determined depending on the raw material, but pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, ⁇ -butyrolactone, and the like. is exemplified.
  • a basic compound In the method for producing a polyimide precursor or the like, it is preferable to add a basic compound during the reaction.
  • One type of basic compound may be used, or two or more types may be used.
  • the basic compound can be appropriately determined depending on the raw material, but triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, N,N-dimethyl-4-amino Pyridine and the like are exemplified.
  • terminal blocking agents include monoalcohols, phenols, thiols, thiophenols, monoamines, and the like. It is more preferable to use monoalcohols, phenols and monoamines from the viewpoint of their properties.
  • Preferred monoalcohol compounds include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol and furfuryl alcohol, and isopropanol. , 2-butanol, cyclohexyl alcohol, cyclopentanol and 1-methoxy-2-propanol, and tertiary alcohols such as t-butyl alcohol and adamantane alcohol.
  • Preferable phenolic compounds include phenols such as phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol, and hydroxystyrene.
  • Preferred monoamine compounds include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6- aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1- Carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-amin
  • Preferred capping agents for amino groups are carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromide, sulfonic acid chlorides, sulfonic anhydrides, sulfonic acid carboxylic acid anhydrides, etc., more preferably carboxylic acid anhydrides and carboxylic acid chlorides. preferable.
  • Preferred carboxylic anhydride compounds include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, and the like. is mentioned.
  • Preferred compounds of carboxylic acid chlorides include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, and 1-adamantanecarbonyl chloride. , heptafluorobutyryl chloride, stearic acid chloride, benzoyl chloride, and the like.
  • a step of depositing a solid may be included in the production of the polyimide precursor or the like. Specifically, after filtering off the water absorption by-products of the dehydration condensation agent coexisting in the reaction solution as necessary, water, aliphatic lower alcohol, or a poor solvent such as a mixture thereof, the obtained A polyimide precursor or the like can be obtained by adding a polymer component and depositing the polymer component, depositing it as a solid, and drying it. In order to improve the degree of purification, operations such as redissolution, reprecipitation, drying, etc. of the polyimide precursor may be repeated. Furthermore, a step of removing ionic impurities using an ion exchange resin may be included.
  • the content of the specific resin in the resin composition according to the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more with respect to the total solid content of the resin composition. It is more preferable that the content is 50% by mass or more.
  • the content of the resin in the resin composition according to the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, based on the total solid content of the resin composition. It is more preferably 97% by mass or less, even more preferably 95% by mass or less.
  • the resin composition according to the present invention may contain only one type of specific resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition according to the present invention preferably contains at least two resins.
  • the resin composition according to the present invention may contain a total of two or more kinds of the specific resin and another resin described later, or may contain two or more kinds of the specific resin. It is preferable to include two or more kinds of.
  • the resin composition according to the present invention contains two or more specific resins, for example, two or more polyimide precursors having different dianhydride-derived structures (R 115 in the above formula (2)) It preferably contains a polyimide precursor.
  • the resin composition according to the present invention may contain, as a resin, a resin different from the specific resin (hereinafter also simply referred to as "another resin”). Moreover, it can also be set as the aspect containing specific resin and other resin.
  • Other resins include phenolic resins, polyamides, epoxy resins, polysiloxanes, resins containing siloxane structures, (meth)acrylic resins, (meth)acrylamide resins, urethane resins, butyral resins, styryl resins, polyether resins, and polyester resins. etc.
  • a resin composition having excellent applicability can be obtained, and a pattern (cured product) having excellent solvent resistance can be obtained.
  • a high polymerizable group value having a weight average molecular weight of 20,000 or less for example, the molar amount of the polymerizable group in 1 g of the resin is 1 ⁇ 10 ⁇ 3 mol/g or more
  • the coating properties of the resin composition, the solvent resistance of the pattern (cured product), etc. can be improved. can.
  • the content of the other resins is preferably 0.01% by mass or more, and 0.05% by mass, based on the total solid content of the resin composition. It is more preferably 1% by mass or more, still more preferably 2% by mass or more, even more preferably 5% by mass or more, and 10% by mass or more. Even more preferred.
  • the content of other resins is preferably 20% by mass or more, preferably 30% by mass or more, relative to the total solid content of the resin composition. More preferably, it is 40% by mass or more, and even more preferably 50% by mass or more.
  • the content of the resin in the resin composition according to the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, based on the total solid content of the resin composition. It is more preferably 97% by mass or less, even more preferably 95% by mass or less.
  • the content of the other resin is preferably 80% by mass or less with respect to the total solid content of the resin composition, and 75% by mass. It is more preferably 70% by mass or less, still more preferably 60% by mass or less, even more preferably 50% by mass or less, 40% by mass or less, and further can also be 30% by mass or less.
  • the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less relative to the total solid content of the resin composition. is more preferable, 5% by mass or less is even more preferable, and 1% by mass or less is even more preferable.
  • the lower limit of the content is not particularly limited as long as it is 0% by mass or more.
  • the resin composition according to the present invention may contain only one kind of other resin, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition according to the present invention preferably contains at least one resin selected from the group consisting of specific resins, phenolic resins, and epoxy resins.
  • the phenolic resin may be either resole type or novolak type, and specific examples include cresol novolac resin, catechol novolak resin, resorcinol novolak resin, hydroquinone novolak resin, catechol resorcinol novolac resin, resorcinol hydroquinone novolac resin, and the like.
  • epoxy resins include, but are not limited to, novolac type epoxy resins, bisphenol type epoxy resins, glycidylamine type epoxy resins, glycidyl ether type epoxy resins, triphenolmethane type epoxy resins, triphenolpropane type epoxy resins, and alkyl-modified triphenols.
  • methane-type epoxy resin triazine-nucleus-containing epoxy resin, dicyclopentadiene-modified phenol-type epoxy resin, naphthol-type epoxy resin, naphthalene-type epoxy resin, phenol-aralkyl-type epoxy resin having at least one of a phenylene skeleton and a biphenylene skeleton, a phenylene skeleton and Examples include aralkyl epoxy resins such as naphthol aralkyl epoxy resins having at least one biphenylene skeleton, and aliphatic epoxy resins.
  • the resin composition according to the present invention preferably contains a polymerizable compound.
  • Polymerizable compounds include radical cross-linking agents or other cross-linking agents.
  • the resin composition (especially the second resin composition) according to the present invention contains a compound containing an aromatic polycyclic structure. Since wiring (copper, etc.) is arranged on the second resin composition, the second resin composition itself, which is in direct contact with the wiring, preferably has properties that improve the electrical performance of the wiring. , the second resin composition having a low dielectric constant is preferred.
  • the compounds contained in the second resin composition include aromatic polycyclic structures such as fluorene skeletons and polyphenylene skeletons, 4,4′-diamino-2,2′-bis(trifluoromethyl)biphenyl, 4,4 '-(Hexafluoroisopropylidene) containing fluorine-containing monomers such as diphthalic anhydride, or siloxane groups derived from dimethylsiloxane, methylphenylsiloxane, diphenylsiloxane, etc., and having a dielectric constant when formed by itself It preferably has a dielectric constant lower than 3.0, more preferably 2.8 or less, even more preferably 2.6 or less.
  • the lower limit of the dielectric constant is not particularly limited, and may be 0 or more.
  • the dielectric loss tangent of the film formed from the compound is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.002 or less.
  • the lower limit of the dielectric loss tangent is not particularly limited as long as it is 0 or more.
  • the second resin composition preferably contains a compound containing a polymerizable group and an aromatic polycyclic structure, and more preferably contains a compound having a polymerizable group and a fluorene skeleton.
  • the dielectric constant of the compound is preferably smaller than the dielectric constant of the resin and/or its precursor contained in the second resin composition.
  • the difference between the dielectric constant when the film is formed from the resin and the relative dielectric constant when the film is formed from the compound is preferably 0.2 or more, and preferably 0.4 or more. is more preferred.
  • the aromatic group in the polymerizable compound having an aromatic group may be monocyclic or polycyclic, preferably polycyclic, more preferably condensed ring.
  • Polycyclic aromatic ring structures include polyphenyl structures such as biphenyl structures and terphenyl structures, naphthalene ring structures, phenanthrene ring structures, anthracene ring structures, pyrene ring structures, fluorene ring structures, and acenaphthylene ring structures. , but not limited to.
  • the resin composition according to the present invention preferably contains a radical cross-linking agent.
  • a radical cross-linking agent is a compound having a radically polymerizable group.
  • the radically polymerizable group a group containing an ethylenically unsaturated bond is preferred.
  • Examples of the group containing an ethylenically unsaturated bond include groups containing an ethylenically unsaturated bond such as a vinyl group, an allyl group, a vinylphenyl group, a (meth)acryloyl group, a maleimide group, and a (meth)acrylamide group.
  • the group containing an ethylenically unsaturated bond is preferably a (meth)acryloyl group, a (meth)acrylamide group, or a vinylphenyl group, and more preferably a (meth)acryloyl group from the viewpoint of reactivity.
  • the radical cross-linking agent is preferably a compound having one or more ethylenically unsaturated bonds, and more preferably a compound having two or more.
  • the radical cross-linking agent may have 3 or more ethylenically unsaturated bonds.
  • the compound having two or more ethylenically unsaturated bonds is preferably a compound having 2 to 15 ethylenically unsaturated bonds, more preferably a compound having 2 to 10 ethylenically unsaturated bonds, and 2 to 6.
  • the resin composition according to the present invention includes a compound having two ethylenically unsaturated bonds and a compound having three or more ethylenically unsaturated bonds. It is also preferred to include
  • the molecular weight of the radical cross-linking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical cross-linking agent is preferably 100 or more.
  • radical cross-linking agent examples include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), their esters, and amides. They are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyhydric amine compounds.
  • addition reaction products of unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as a hydroxy group, an amino group, or a sulfanyl group with monofunctional or polyfunctional isocyanates or epoxies, or monofunctional or polyfunctional is also preferably used.
  • addition reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines, and thiols, and halogeno groups
  • substitution reaction products of unsaturated carboxylic acid esters or amides having a leaving substituent such as a tosyloxy group and monofunctional or polyfunctional alcohols, amines, and thiols.
  • paragraphs 0113 to 0122 of JP-A-2016-027357 can be referred to, and the contents thereof are incorporated herein.
  • the radical cross-linking agent is preferably a compound having a boiling point of 100°C or higher under normal pressure.
  • examples include polyethylene glycol di(meth)acrylate, trimethylolethane tri(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, hexanediol di(meth)acrylate, trimethylolpropane tri(acryloyloxypropyl)ether, tri(acryloyloxyethyl)isocyanurate, glycerin, trimethylolethane, etc.
  • polyfunctional (meth)acrylate obtained by reacting polyfunctional carboxylic acid with a compound having a cyclic ether group such as glycidyl (meth)acrylate and an ethylenically unsaturated bond can also be used.
  • JP-A-2010-160418, JP-A-2010-129825, JP-A-4364216, etc. have a fluorene ring and an ethylenically unsaturated bond. It is also possible to use compounds having two or more groups and cardo resins.
  • JP-B-46-043946 JP-B-01-040337, JP-B-01-040336, and JP-A-02-025493.
  • vinyl phosphonic acid compounds and the like can also be mentioned.
  • Compounds containing perfluoroalkyl groups described in JP-A-61-022048 can also be used.
  • the journal of the Japan Adhesive Association vol. 20, No. 7, pp. 300-308 (1984) as photopolymerizable monomers and oligomers can also be used.
  • dipentaerythritol triacrylate (commercially available as KAYARAD D-330 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol tetraacrylate (commercially available as KAYARAD D-320 (Nippon Kayaku ( Ltd.), A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol penta(meth)acrylate (commercially available as KAYARAD D-310 (manufactured by Nippon Kayaku Co., Ltd.)), dipenta Erythritol hexa(meth)acrylate (commercially available products are KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.)), and their (meth)acryloyl groups are ethylene glycol,
  • radical cross-linking agents examples include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, SR-209, a bifunctional methacrylate having four ethyleneoxy chains, manufactured by Sartomer. 231, 239, Nippon Kayaku Co., Ltd.
  • DPCA-60 a hexafunctional acrylate having 6 pentyleneoxy chains, TPA-330, a trifunctional acrylate having 3 isobutyleneoxy chains, urethane oligomer UAS-10 , UAB-140 (manufactured by Nippon Paper Industries), NK Ester M-40G, NK Ester 4G, NK Ester M-9300, NK Ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Japan Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blenmer PME400 (manufactured by NOF Corporation) etc.
  • radical cross-linking agents examples include urethane acrylates such as those described in JP-B-48-041708, JP-A-51-037193, JP-B-02-032293, JP-B-02-016765, Urethane compounds having an ethylene oxide skeleton described in JP-B-58-049860, JP-B-56-017654, JP-B-62-039417 and JP-B-62-039418 are also suitable.
  • compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238 are used. can also
  • the radical cross-linking agent may be a radical cross-linking agent having an acid group such as a carboxy group or a phosphoric acid group.
  • a radical cross-linking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid. is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol is a compound.
  • Examples of commercially available products include polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd. such as M-510 and M-520.
  • the resin composition (particularly, the second resin composition) according to the present invention also preferably contains a polymerizable compound having an aromatic polycyclic structure as a polymerizable compound.
  • radical cross-linking agents having an aromatic polycyclic structure include 1,3-divinylnaphthalene, acenaphthylene, 9,9-bis[4-[2-(acryloyloxy)ethoxy]phenyl]-9H-fluorene, 9, 9-bis[4-[2-[2-(acryloyloxy)ethoxy]ethoxy]phenyl]-9H-fluorene, compounds having the following structures, and the like.
  • Examples of commercially available products include Oxol CG-500, EA-0200, EA-300, GA-2800, GA-5000, GA-5060P, EA-F5710, EA-HR033 manufactured by Osaka Gas Chemicals Co., Ltd. be done.
  • the acid value of the radical cross-linking agent having an acid group is preferably 0.1-300 mgKOH/g, particularly preferably 1-100 mgKOH/g. If the acid value of the radical cross-linking agent is within the above range, the handleability in production is excellent, and furthermore the developability is excellent. Moreover, the polymerizability is good. The acid value is measured according to JIS K 0070:1992.
  • the resin composition preferably uses a bifunctional methacrylate or acrylate.
  • Specific compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG200 dimethacrylate, PEG600 diacrylate, and PEG600 diacrylate.
  • PEG200 diacrylate is a polyethylene glycol diacrylate having a polyethylene glycol chain formula weight of about 200.
  • a monofunctional radical cross-linking agent can be preferably used as the radical cross-linking agent from the viewpoint of suppressing warpage associated with the elastic modulus control of the pattern (cured product).
  • Monofunctional radical cross-linking agents include n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, carbitol (meth)acrylate, cyclohexyl (meth)acrylate, ) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
  • N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam
  • allyl glycidyl ether are preferably used.
  • the monofunctional radical cross-linking agent a compound having a boiling point of 100° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
  • Other di- or higher functional radical cross-linking agents include allyl compounds such as diallyl phthalate and triallyl trimellitate.
  • a radical cross-linking agent When a radical cross-linking agent is contained, its content is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the resin composition according to the present invention. More preferably, the lower limit is 5% by mass or more. The upper limit is more preferably 50% by mass or less, and even more preferably 30% by mass or less.
  • a single radical cross-linking agent may be used alone, or two or more may be used in combination. When two or more are used in combination, the total amount is preferably within the above range.
  • the resin composition according to the present invention contains another cross-linking agent different from the radical cross-linking agent described above.
  • the other cross-linking agent refers to a cross-linking agent other than the above-described radical cross-linking agent, and the above-described photoacid generator or photobase generator reacts with other compounds in the composition or reacts with them.
  • the compound has a plurality of groups in the molecule that promote the reaction forming covalent bonds with the product, and covalent bonds are formed with other compounds or reaction products thereof in the composition. Compounds having a plurality of groups in the molecule, the reaction of which is promoted by the action of an acid or base, are preferred.
  • the acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
  • a compound having at least one group selected from the group consisting of acyloxymethyl group, methylol group and alkoxymethyl group is preferable, and selected from the group consisting of acyloxymethyl group, methylol group and alkoxymethyl group. More preferred is a compound having a structure in which at least one group is directly bonded to a nitrogen atom.
  • cross-linking agents include, for example, an amino group-containing compound such as melamine, glycoluril, urea, alkylene urea, and benzoguanamine, which is reacted with formaldehyde or formaldehyde and alcohol, and the hydrogen atom of the amino group is converted to an acyloxymethyl group, methylol group, or A compound having a structure substituted with an alkoxymethyl group can be mentioned.
  • the method for producing these compounds is not particularly limited as long as they have the same structure as the compounds produced by the above methods. Oligomers formed by self-condensation of methylol groups of these compounds may also be used.
  • a melamine-based crosslinking agent is a melamine-based crosslinking agent
  • a glycoluril, urea or alkyleneurea-based crosslinking agent is a urea-based crosslinking agent
  • an alkyleneurea-based crosslinking agent is an alkyleneurea-based crosslinking agent.
  • a cross-linking agent using benzoguanamine is called a benzoguanamine-based cross-linking agent.
  • the resin composition according to the present invention preferably contains at least one compound selected from the group consisting of urea-based cross-linking agents and melamine-based cross-linking agents. More preferably, it contains at least one compound selected from the group consisting of cross-linking agents.
  • an alkoxymethyl group or an acyloxymethyl group is directly substituted on the nitrogen atom of an aromatic group or the following urea structure, or on a triazine.
  • the alkoxymethyl group or acyloxymethyl group of the above compound preferably has 2 to 5 carbon atoms, preferably 2 or 3 carbon atoms, and more preferably 2 carbon atoms.
  • the total number of alkoxymethyl groups and acyloxymethyl groups in the above compound is preferably 1-10, more preferably 2-8, and particularly preferably 3-6.
  • the molecular weight of the compound is preferably 1500 or less, preferably 180-1200.
  • R 100 represents an alkyl group or an acyl group.
  • R 101 and R 102 each independently represent a monovalent organic group and may combine with each other to form a ring.
  • Examples of compounds in which an alkoxymethyl group or an acyloxymethyl group is directly substituted by an aromatic group include compounds represented by the following general formula.
  • X represents a single bond or a divalent organic group
  • each R 104 independently represents an alkyl group or an acyl group
  • R 103 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group , or a group that decomposes under the action of an acid to produce an alkali-soluble group (e.g., a group that leaves under the action of an acid, a group represented by —C(R 4 ) 2 COOR 5 (R 4 is independently It represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 5 represents a group that leaves under the action of an acid.)).
  • R 105 each independently represents an alkyl group or alkenyl group, a, b and c are each independently 1 to 3, d is 0 to 4, e is 0 to 3, f is 0 to 3 , a+d is 5 or less, b+e is 4 or less, and c+f is 4 or less.
  • R 5 in the group represented by —C(R 4 ) 2 COOR 5 a group that is decomposed by the action of an acid to produce an alkali-soluble group, a group that is eliminated by the action of an acid, and —C(R 36 )(R 37 )(R 38 ), —C(R 36 )(R 37 )(OR 39 ), —C(R 01 )(R 02 )(OR 39 ), and the like.
  • R 36 to R 39 each independently represent an alkyl group, cycloalkyl group, aryl group, aralkyl group or alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • the alkyl group may be linear or branched.
  • a cycloalkyl group having 3 to 12 carbon atoms is preferable, and a cycloalkyl group having 3 to 8 carbon atoms is more preferable.
  • the cycloalkyl group may have a monocyclic structure or a polycyclic structure such as a condensed ring.
  • the aryl group is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably a phenyl group.
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and an aralkyl group having 7 to 16 carbon atoms is more preferable.
  • the above aralkyl group is intended to be an aryl group substituted with an alkyl group, and preferred embodiments of these alkyl and aryl groups are the same as the preferred embodiments of the alkyl and aryl groups described above.
  • the alkenyl group is preferably an alkenyl group having 3 to 20 carbon atoms, more preferably an alkenyl group having 3 to 16 carbon atoms. Moreover, these groups may further have a known substituent within the range in which the effects of the present invention can be obtained.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the group that is decomposed by the action of an acid to form an alkali-soluble group or the group that is eliminated by the action of an acid is preferably a tertiary alkyl ester group, an acetal group, a cumyl ester group, an enol ester group, or the like. More preferred are tertiary alkyl ester groups and acetal groups.
  • compounds having an alkoxymethyl group include the following structures.
  • Examples of the compound having an acyloxymethyl group include compounds obtained by changing the alkoxymethyl group of the following compounds to an acyloxymethyl group.
  • Compounds having an alkoxymethyl group or acyloxymethyl in the molecule include, but are not limited to, the following compounds.
  • the compound containing at least one of an alkoxymethyl group and an acyloxymethyl group a commercially available one or a compound synthesized by a known method may be used. From the viewpoint of heat resistance, compounds in which an alkoxymethyl group or acyloxymethyl group is directly substituted on an aromatic ring or a triazine ring are preferred.
  • melamine-based cross-linking agents include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, and hexabutoxybutylmelamine.
  • urea-based cross-linking agents include monohydroxymethylated glycoluril, dihydroxymethylated glycoluril, trihydroxymethylated glycoluril, tetrahydroxymethylated glycoluril, monomethoxymethylated glycoluril, and dimethoxymethylated glycol.
  • Uril trimethoxymethylated glycoluril, tetramethoxymethylated glycoluril, monoethoxymethylated glycoluril, diethoxymethylated glycoluril, triethoxymethylated glycoluril, tetraethoxymethylated glycoluril, monopropoxymethylated glycoluril , dipropoxymethylated glycoluril, tripropoxymethylated glycoluril, tetrapropoxymethylated glycoluril, monobutoxymethylated glycoluril, dibutoxymethylated glycoluril, tributoxymethylated glycoluril, or tetrabutoxymethylated glycoluril glycoluril-based crosslinkers such as uril; urea-based cross-linking agents such as bismethoxymethylurea, bisethoxymethylurea, bispropoxymethylurea, and bisbutoxymethylurea; monohydroxymethylated ethyleneurea or dihydroxymethylated ethyleneurea, monomethoxymethylated ethyleneurea, dimethoxymethylated
  • benzoguanamine-based cross-linking agents include monohydroxymethylated benzoguanamine, dihydroxymethylated benzoguanamine, trihydroxymethylated benzoguanamine, tetrahydroxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, and trimethoxymethylated benzoguanamine.
  • tetramethoxymethylated benzoguanamine monoethoxymethylated benzoguanamine, diethoxymethylated benzoguanamine, triethoxymethylated benzoguanamine, tetraethoxymethylated benzoguanamine, monopropoxymethylated benzoguanamine, dipropoxymethylated benzoguanamine, tripropoxymethylated benzoguanamine, tetra propoxymethylated benzoguanamine, monobutoxymethylated benzoguanamine, dibutoxymethylated benzoguanamine, tributoxymethylated benzoguanamine, tetrabutoxymethylated benzoguanamine, and the like.
  • the compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group includes at least one group selected from the group consisting of a methylol group and an alkoxymethyl group on an aromatic ring (preferably a benzene ring).
  • Compounds to which a seed group is directly attached are also preferably used. Specific examples of such compounds include benzenedimethanol, bis(hydroxymethyl)cresol, bis(hydroxymethyl)dimethoxybenzene, bis(hydroxymethyl)diphenyl ether, bis(hydroxymethyl)benzophenone, hydroxymethylphenyl hydroxymethylbenzoate.
  • suitable commercial products include 46DMOC, 46DMOEP (manufactured by Asahi Organic Chemicals Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, and DML-OEP.
  • DML-34X DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP -Z, DML-BPC, DMLBisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML -BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (Honshu Chemical Industry Co., Ltd.), Nikalac (registered
  • the resin composition according to the present invention preferably contains at least one compound selected from the group consisting of epoxy compounds, oxetane compounds, and benzoxazine compounds as another cross-linking agent.
  • Epoxy compound (compound having an epoxy group) -
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200° C. or less and does not undergo a dehydration reaction resulting from the cross-linking, so film shrinkage does not easily occur. Therefore, containing an epoxy compound is effective for low-temperature curing and suppression of warping of the resin composition according to the present invention.
  • the epoxy compound preferably contains a polyethylene oxide group.
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2-15.
  • epoxy compounds include bisphenol A type epoxy resin; bisphenol F type epoxy resin; propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether.
  • alkylene glycol type epoxy resins such as trimethylolpropane triglycidyl ether or polyhydric alcohol hydrocarbon type epoxy resins
  • polyalkylene glycol type epoxy resins such as polypropylene glycol diglycidyl ether
  • epoxy groups such as polymethyl (glycidyloxypropyl) siloxane Examples include, but are not limited to, containing silicones and the like.
  • Epiclon (registered trademark) 850-S Epiclon (registered trademark) HP-4032, Epiclon (registered trademark) HP-7200, Epiclon (registered trademark) HP-820, Epiclon (registered trademark) HP-4700, Epiclon (registered trademark) HP-4770, Epiclon (registered trademark) EXA-830LVP, Epiclon (registered trademark) EXA-8183, Epiclon (registered trademark) EXA-8169, Epiclon (registered trademark) N-660, Epiclon (registered trademark) N-665-EXP-S, Epiclon (registered trademark) N-740 (trade name, manufactured by DIC Corporation), Ricaresin (registered trademark) BEO-20E, Jamaicaresin (registered trademark) BEO-60E, Ricaresin (registered trademark) ) HBE-100, Ricaresin (registered trademark) DME-100, Ricaresin (registered trademark)
  • n is an integer of 1-5 and m is an integer of 1-20.
  • n 1 to 2 and m is 3 to 7 from the viewpoint of achieving both heat resistance and elongation improvement.
  • the resin composition (particularly, the second resin composition) according to the present invention also preferably contains a polymerizable compound having an aromatic polycyclic structure as a polymerizable compound.
  • a polymerizable compound having an aromatic polycyclic structure examples include compounds having the following structures.
  • oxetane compounds include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl)methoxy]methyl ⁇ benzene, 3-ethyl-3-(2-ethylhexylmethyl)oxetane, 1,4-benzenedicarboxylic acid-bis[(3-ethyl-3-oxetanyl)methyl]ester and the like can be mentioned.
  • Aron oxetane series manufactured by Toagosei Co., Ltd. eg, OXT-121, OXT-221
  • OXT-121, OXT-221 can be suitably used, and these can be used alone or in combination of two or more. good.
  • a benzoxazine compound (compound having a benzoxazolyl group)-
  • a benzoxazine compound is preferable because it is a cross-linking reaction derived from a ring-opening addition reaction, so that degassing does not occur during curing, and thermal shrinkage is reduced to suppress the occurrence of warping.
  • benzoxazine compounds include Pd-type benzoxazine, Fa-type benzoxazine (these are trade names, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adducts of polyhydroxystyrene resins, phenol novolac-type dihydrobenzoxazines, oxazine compounds. These may be used alone or in combination of two or more.
  • the content of the other cross-linking agent is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition according to the present invention. It is more preferably 0.5 to 15% by mass, and particularly preferably 1.0 to 10% by mass.
  • Other cross-linking agents may be contained alone, or may be contained in two or more. When two or more other cross-linking agents are contained, the total is preferably within the above range.
  • the resin composition according to the present invention preferably contains a polymerization initiator capable of initiating polymerization by light and/or heat.
  • a photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the radical photopolymerization initiator is not particularly limited and can be appropriately selected from known radical photopolymerization initiators.
  • a photoradical polymerization initiator having photosensitivity to light in the ultraviolet region to the visible region is preferred. It may also be an activator that produces an active radical by producing some action with a photoexcited sensitizer.
  • the radical photopolymerization initiator contains at least one compound having a molar extinction coefficient of at least about 50 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 within the wavelength range of about 240 to 800 nm (preferably 330 to 500 nm). is preferred.
  • the molar extinction coefficient of a compound can be measured using known methods. For example, it is preferably measured at a concentration of 0.01 g/L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
  • any known compound can be used as the photoradical polymerization initiator.
  • halogenated hydrocarbon derivatives e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives, etc.
  • ketone compounds include compounds described in paragraph 0087 of JP-A-2015-087611, the content of which is incorporated herein.
  • Kayacure-DETX-S manufactured by Nippon Kayaku Co., Ltd. is also suitably used.
  • a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can be suitably used as the radical photopolymerization initiator. More specifically, for example, aminoacetophenone-based initiators described in JP-A-10-291969 and acylphosphine oxide-based initiators described in Japanese Patent No. 4225898 can be used. incorporated.
  • ⁇ -hydroxyketone initiators include Omnirad 184, Omnirad 1173, Omnirad 2959, Omnirad 127 (manufactured by IGM Resins B.V.), IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE -2959 and IRGACURE 127 (trade names: both manufactured by BASF) can be used.
  • ⁇ -aminoketone initiators examples include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names: all BASF company) can be used.
  • the compound described in JP-A-2009-191179 whose maximum absorption wavelength is matched to a wavelength light source such as 365 nm or 405 nm can also be used, the content of which is incorporated herein.
  • Acylphosphine oxide initiators include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • Omnirad 819, Omnirad TPO (manufactured by IGM Resins B.V.), IRGACURE-819 and IRGACURE-TPO (trade names: all manufactured by BASF) can also be used.
  • metallocene compounds examples include IRGACURE-784, IRGACURE-784EG (both manufactured by BASF) and Keycure VIS 813 (manufactured by King Brother Chem).
  • the photoradical polymerization initiator is more preferably an oxime compound.
  • an oxime compound By using an oxime compound, the exposure latitude can be improved more effectively.
  • Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as photocuring accelerators.
  • oxime compound examples include compounds described in JP-A-2001-233842, compounds described in JP-A-2000-080068, compounds described in JP-A-2006-342166, J. Am. C. S. Compounds described in Perkin II (1979, pp.1653-1660); C. S. Compounds described in Perkin II (1979, pp.156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp.202-232), compounds described in JP-A-2000-066385, Compounds described in JP-A-2004-534797, compounds described in JP-A-2017-019766, compounds described in Patent No.
  • Preferred oxime compounds include, for example, compounds having the following structures, 3-(benzoyloxy(imino))butan-2-one, 3-(acetoxy(imino))butan-2-one, 3-(propionyloxy( imino))butan-2-one, 2-(acetoxy(imino))pentan-3-one, 2-(acetoxy(imino))-1-phenylpropan-1-one, 2-(benzoyloxy(imino)) -1-phenylpropan-1-one, 3-((4-toluenesulfonyloxy)imino)butan-2-one, and 2-(ethoxycarbonyloxy(imino))-1-phenylpropan-1-one, etc.
  • an oxime compound (oxime-based radical photopolymerization initiator) as the radical photopolymerization initiator.
  • DFI-091 manufactured by Daito Chemix Co., Ltd.
  • SpeedCure PDO manufactured by SARTOMER ARKEMA
  • an oxime compound having the following structure can be used.
  • An oxime compound having a fluorene ring can also be used as the photoradical polymerization initiator.
  • Specific examples of the oxime compound having a fluorene ring include compounds described in JP-A-2014-137466 and compounds described in Japanese Patent No. 06636081, the contents of which are incorporated herein.
  • an oxime compound having a skeleton in which at least one benzene ring of the carbazole ring is a naphthalene ring can also be used.
  • Specific examples of such oxime compounds include compounds described in WO2013/083505, the contents of which are incorporated herein.
  • oxime compound having a fluorine atom examples include compounds described in JP-A-2010-262028, compounds 24, 36-40 described in paragraph 0345 of JP-A-2014-500852, and JP-A-2013. and compound (C-3) described in paragraph 0101 of JP-A-164471, the contents of which are incorporated herein.
  • An oxime compound having a nitro group can be used as the photopolymerization initiator.
  • the oxime compound having a nitro group is also preferably a dimer.
  • Specific examples of the oxime compound having a nitro group include the compounds described in paragraph numbers 0031 to 0047 of JP-A-2013-114249 and paragraph numbers 0008-0012 and 0070-0079 of JP-A-2014-137466; Included are compounds described in paragraphs 0007-0025 of Japanese Patent No. 4223071, the contents of which are incorporated herein.
  • the oxime compound having a nitro group also includes ADEKA Arkles NCI-831 (manufactured by ADEKA Co., Ltd.).
  • An oxime compound having a benzofuran skeleton can also be used as the photoradical polymerization initiator.
  • Specific examples include OE-01 to OE-75 described in WO 2015/036910.
  • an oxime compound in which a substituent having a hydroxy group is bonded to the carbazole skeleton can also be used.
  • photoinitiators include compounds such as those described in WO2019/088055, the contents of which are incorporated herein.
  • an oxime compound having an aromatic ring group Ar 2 OX1 in which an electron-withdrawing group is introduced into the aromatic ring (hereinafter also referred to as oxime compound OX) can be used.
  • the electron-withdrawing group possessed by the aromatic ring group Ar OX1 include an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a cyano group.
  • a benzoyl group may have a substituent.
  • substituents include halogen atoms, cyano groups, nitro groups, hydroxy groups, alkyl groups, alkoxy groups, aryl groups, aryloxy groups, heterocyclic groups, heterocyclic oxy groups, alkenyl groups, alkylsulfanyl groups, arylsulfanyl groups, It is preferably an acyl group or an amino group, more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group or an amino group.
  • a sulfanyl group or an amino group is more preferred.
  • the oxime compound OX is preferably at least one selected from the compounds represented by the formula (OX1) and the compounds represented by the formula (OX2), more preferably the compound represented by the formula (OX2). preferable.
  • R X1 is an alkyl group, alkenyl group, alkoxy group, aryl group, aryloxy group, heterocyclic group, heterocyclicoxy group, alkylsulfanyl group, arylsulfanyl group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl a group, an arylsulfonyl group, an acyl group, an acyloxy group, an amino group, a phosphinoyl group, a carbamoyl group or a sulfamoyl group
  • R X2 is an alkyl group, alkenyl group, alkoxy group, aryl group, aryloxy group, heterocyclic group,
  • R X12 is an electron-withdrawing group
  • R X10 , R X11 , R X13 and R X14 are preferably hydrogen atoms.
  • oxime compound OX examples include compounds described in paragraphs 0083 to 0105 of Japanese Patent No. 4600600, the contents of which are incorporated herein.
  • oxime compounds having specific substituents shown in JP-A-2007-269779 and oxime compounds having a thioaryl group shown in JP-A-2009-191061. incorporated herein.
  • photoradical polymerization initiators include trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryl selected from the group consisting of imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl-substituted coumarin compounds; are preferred.
  • More preferred radical photopolymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds, and acetophenone compounds.
  • At least one compound selected from the group consisting of trihalomethyltriazine compounds, ⁇ -aminoketone compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferred, and metallocene compounds or oxime compounds are even more preferred. .
  • the photoradical polymerization initiator includes benzophenone, N,N'-tetraalkyl-4,4'-diaminobenzophenone such as N,N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), 2-benzyl -aromatic ketones such as 2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propanone-1, alkylanthraquinones, etc.
  • benzophenone N,N'-tetraalkyl-4,4'-diaminobenzophenone
  • 2-benzyl -aromatic ketones such as 2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propanone-1, alkylanthr
  • benzoin ether compounds such as benzoin alkyl ether
  • benzoin compounds such as benzoin and alkylbenzoin
  • benzyl derivatives such as benzyl dimethyl ketal
  • a compound represented by the following formula (I) can also be used.
  • R 100 is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, Alternatively, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a halogen atom, a cyclopentyl group, a cyclohexyl group, an alkenyl group having 2 to 12 carbon atoms, a carbon number interrupted by one or more oxygen atoms a phenyl group or a biphenyl group substituted with at least one of an alkyl group having 2 to 18 carbon atoms and an alkyl group having 1 to 4 carbon atoms, and R I01 is a group represented by formula (II); R 102 to R 104 are each independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an
  • R 105 to R 107 are the same as R 102 to R 104 in formula (I) above.
  • radical photopolymerization initiator a difunctional or trifunctional or higher radical photopolymerization initiator may be used.
  • a radical photopolymerization initiator two or more radicals are generated from one molecule of the radical photopolymerization initiator, so good sensitivity can be obtained.
  • the crystallinity is lowered, the solubility in a solvent or the like is improved, and precipitation becomes difficult over time, and the stability over time of the resin composition can be improved.
  • Specific examples of bifunctional or trifunctional or higher photoradical polymerization initiators include Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
  • a photopolymerization initiator When a photopolymerization initiator is included, its content is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition according to the present invention. Yes, more preferably 0.5 to 15% by mass, still more preferably 1.0 to 10% by mass. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more photopolymerization initiators are contained, the total amount is preferably within the above range. In addition, since the photopolymerization initiator may also function as a thermal polymerization initiator, the crosslinking by the photopolymerization initiator may be further advanced by heating with an oven, a hot plate, or the like.
  • the resin composition may contain a sensitizer.
  • a sensitizer absorbs specific actinic radiation and enters an electronically excited state.
  • the sensitizer in an electronically excited state comes into contact with a thermal radical polymerization initiator, a photoradical polymerization initiator, or the like, and causes electron transfer, energy transfer, heat generation, or the like.
  • the thermal radical polymerization initiator and the photoradical polymerization initiator undergo chemical changes and are decomposed to generate radicals, acids or bases.
  • Usable sensitizers include benzophenones, Michler's ketones, coumarins, pyrazole azos, anilinoazos, triphenylmethanes, anthraquinones, anthracenes, anthrapyridones, benzylidenes, oxonols, and pyrazolotriazole azos. , pyridone azo, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, benzopyran, and indigo compounds.
  • Sensitizers include, for example, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal) Cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamyl denindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylbiphenylene)-benzothiazole, 2-(p-dimethylaminophenylvinylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)iso naphthothiazole,
  • the content of the sensitizer is preferably 0.01 to 20% by mass, preferably 0.1 to 15% by mass, based on the total solid content of the resin composition. more preferably 0.5 to 10% by mass.
  • the sensitizers may be used singly or in combination of two or more.
  • the resin composition according to the present invention may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in Kobunshi Dictionary, 3rd edition (edited by Kobunshi Gakkai, 2005), pp. 683-684.
  • Chain transfer agents include, for example, a group of compounds having —S—S—, —SO 2 —S—, —NO—, SH, PH, SiH, and GeH in the molecule, RAFT (Reversible Addition Fragmentation Chain Transfer )
  • Dithiobenzoate, trithiocarbonate, dithiocarbamate, xanthate compounds and the like having a thiocarbonylthio group used for polymerization are used. They can either donate hydrogen to less active radicals to generate radicals, or they can be oxidized and then deprotonated to generate radicals.
  • thiol compounds can be preferably used.
  • chain transfer agent can also use the compounds described in paragraphs 0152 to 0153 of International Publication No. 2015/199219, the contents of which are incorporated herein.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the resin composition according to the present invention. 0.1 to 10 parts by mass is more preferable, and 0.5 to 5 parts by mass is even more preferable.
  • One type of chain transfer agent may be used, or two or more types may be used. When two or more chain transfer agents are used, the total is preferably within the above range.
  • the resin composition according to the present invention preferably also contains a thermal polymerization initiator.
  • a thermal polymerization initiator in the second resin composition, for example, in the above second preheating step or the above second postheating step, the polymerization of the polymerizable compound can be promoted. can be done.
  • the thermal polymerization initiator can be selected depending on the type of polymerizable compound, but a thermal radical polymerization initiator is preferred.
  • a thermal radical polymerization initiator is a compound that generates radicals by thermal energy and initiates or promotes a polymerization reaction of a polymerizable compound.
  • the photopolymerization initiator described above may also have a function of initiating polymerization by heat, and may be added as a thermal polymerization initiator.
  • thermal polymerization initiators include known azo compounds and known peroxide compounds.
  • azo-based compounds include azobis-based compounds.
  • the azo compound may be a compound having a cyano group or a compound having no cyano group.
  • Peroxide compounds include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, and the like.
  • thermal polymerization initiator commercially available products can also be used, such as V-40, V-601 and VF-096 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., Perhexyl O manufactured by NOF Corporation, Per Hexyl D, Perhexyl I, Perhexa 25O, Perhexa 25Z, Percmyl D, Percmyl D-40, Percmyl D-40MB, Percmyl H, Percmyl P, Percmyl ND and the like.
  • specific examples of thermal radical polymerization initiators include compounds described in paragraphs 0074 to 0118 of JP-A-2008-063554, the contents of which are incorporated herein.
  • the content of the thermal polymerization initiator in the resin composition is preferably 0.05% by mass or more and 10% by mass or less with respect to the total solid content of the second resin composition. , more preferably 0.1% by mass or more and 10% by mass or less, still more preferably 0.1% by mass or more and 5% by mass or less, and particularly preferably 0.5% by mass or more and 3% by mass or less.
  • the resin composition (particularly, the second resin composition) may contain one type of thermal polymerization initiator alone, or two or more types thereof. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition according to the present invention preferably contains a photoacid generator.
  • a photoacid generator is a compound that generates at least one of Bronsted acid and Lewis acid upon irradiation with light of 200 nm to 900 nm.
  • the light to be irradiated is preferably light with a wavelength of 300 nm to 450 nm, more preferably light with a wavelength of 330 nm to 420 nm.
  • the photoacid generator is preferably a photoacid generator capable of generating an acid upon exposure.
  • generated acids include hydrogen halides, carboxylic acids, sulfonic acids, sulfinic acids, thiosulfinic acids, phosphoric acid, phosphoric monoesters, phosphoric diesters, boron derivatives, phosphorus derivatives, antimony derivatives, halogen peroxides, Sulfonamide and the like are preferred.
  • Examples of the photoacid generator used in the resin composition according to the present invention include quinone diazide compounds, oxime sulfonate compounds, organic halogenated compounds, organic borate compounds, disulfone compounds, onium salt compounds and the like.
  • Organic halogen compounds, oxime sulfonate compounds, and onium salt compounds are preferred from the viewpoint of sensitivity and storage stability, and oxime esters are preferred from the viewpoint of the mechanical properties of the film to be formed.
  • quinonediazide compounds include monovalent or polyvalent hydroxy compounds in which quinonediazide sulfonic acids are ester-bonded, monovalent or polyvalent amino compounds in which quinonediazide sulfonic acids are sulfonamide-bonded, and polyhydroxypolyamino compounds with quinonediazide. and/or sulfonic acid having an ester bond and/or a sulfonamide bond.
  • hydroxy compounds include phenol, trihydroxybenzophenone, 4-methoxyphenol, isopropanol, octanol, t-Bu alcohol, cyclohexanol, naphthol, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP- PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylene tris-FR -CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DML -PFP, DML-PSBP, DML-MTrisPC, TriML
  • amino compounds include aniline, methylaniline, diethylamine, butylamine, 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4 '-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, and the like, but are not limited thereto.
  • polyhydroxypolyamino compounds include 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and 3,3′-dihydroxybenzidine, but are not limited to these. .
  • the quinonediazide compound preferably contains a phenol compound and an ester with a 4-naphthoquinonediazide sulfonyl group. This makes it possible to obtain higher sensitivity to i-line exposure and higher resolution.
  • the content of the quinonediazide compound used in the resin composition according to the present invention is preferably 1 to 50 parts by mass, more preferably 10 to 40 parts by mass, based on 100 parts by mass of the resin.
  • the content of the quinonediazide compound is preferably 1 to 50 parts by mass, more preferably 10 to 40 parts by mass, based on 100 parts by mass of the resin.
  • the photoacid generator is preferably a compound containing an oximesulfonate group (hereinafter also simply referred to as "oximesulfonate compound").
  • the oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group. 105) is preferably an oxime sulfonate compound.
  • X3 represents an alkyl group, an alkoxy group, or a halogen atom. When there are multiple X3's, they may be the same or different.
  • the alkyl group and alkoxy group in X3 above may have a substituent.
  • the alkyl group for X 3 above is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the alkoxy group for X 3 is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • halogen atom for X3 a chlorine atom or a fluorine atom is preferable.
  • m3 represents an integer of 0 to 3, preferably 0 or 1.
  • R 34 represents an alkyl group or an aryl group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, a carbon It is preferably a halogenated alkoxy group of number 1 to 5, a phenyl group optionally substituted with W, a naphthyl group optionally substituted with W or an anthranyl group optionally substituted with W.
  • W is a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxy group having 1 to 5 carbon atoms; group, an aryl group having 6 to 20 carbon atoms, and an aryl halide group having 6 to 20 carbon atoms.
  • m3 is 3
  • X 3 is a methyl group
  • the substitution position of X 3 is the ortho position
  • R 34 is a linear alkyl group having 1 to 10 carbon atoms
  • Compounds with a 7-dimethyl-2-oxonorbornylmethyl group or a p-tolyl group are particularly preferred.
  • oxime sulfonate compound represented by formula (OS-1) are described in paragraph numbers 0064 to 0068 of JP-A-2011-209692 and paragraph numbers 0158-0167 of JP-A-2015-194674.
  • the following compounds are exemplified, the contents of which are incorporated herein.
  • R s1 represents an alkyl group, an aryl group or a heteroaryl group
  • each R s2 which may be present in plurality, is independently a hydrogen atom, an alkyl group, or an aryl represents a group or a halogen atom
  • each R s6 which may be present in plurality independently represents a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group
  • Xs represents O or S.
  • ns represents 1 or 2
  • ms represents an integer of 0-6.
  • an alkyl group preferably having 1 to 30 carbon atoms
  • an aryl group preferably having 6 to 30 carbon atoms
  • a heteroaryl group preferably having 6 to 30 carbon atoms represented by R s1 Numbers 4 to 30 are preferable
  • R s1 Numbers 4 to 30 may have a known substituent as long as the effects of the present invention can be obtained.
  • R s2 is preferably a hydrogen atom, an alkyl group (preferably having 1 to 12 carbon atoms) or an aryl group (preferably having 6 to 30 carbon atoms). , a hydrogen atom or an alkyl group.
  • One or two of Rs2 which may be present in the compound at least two, are preferably an alkyl group, an aryl group, or a halogen atom, and more preferably one is an alkyl group, an aryl group, or a halogen atom.
  • one is an alkyl group and the rest are hydrogen atoms.
  • the alkyl group or aryl group represented by R s2 may have a known substituent as long as the effects of the present invention can be obtained.
  • Xs represents O or S, preferably O.
  • the ring containing Xs as a ring member is a 5- or 6-membered ring.
  • ns represents 1 or 2, and when Xs is O, ns is preferably 1, and when Xs is S, ns is 2 is preferred.
  • the alkyl group (preferably having 1 to 30 carbon atoms) and alkyloxy group (preferably having 1 to 30 carbon atoms) represented by R s6 are substituents. may have.
  • ms represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and 0 is particularly preferred.
  • the compound represented by the above formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), formula (OS-110) or formula (OS-111).
  • the compound represented by the formula (OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the above formula (OS-105) is a compound represented by the following formula (OS -108) or a compound represented by the formula (OS-109).
  • R t1 represents an alkyl group, an aryl group or a heteroaryl group
  • R t7 represents a hydrogen atom or a bromine atom
  • R t8 represents a hydrogen atom, the number of carbon atoms 1 to 8 alkyl group, halogen atom, chloromethyl group, bromomethyl group, bromoethyl group, methoxymethyl group, phenyl group or chlorophenyl group
  • R t9 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group
  • t2 represents a hydrogen atom or a methyl group.
  • R t7 represents a hydrogen atom or a bromine atom, preferably a hydrogen atom.
  • R t8 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group. or represents a chlorophenyl group, preferably an alkyl group having 1 to 8 carbon atoms, a halogen atom or a phenyl group, more preferably an alkyl group having 1 to 8 carbon atoms, and an alkyl group having 1 to 6 carbon atoms is more preferred, and a methyl group is particularly preferred.
  • R t9 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, preferably a hydrogen atom.
  • R t2 represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • the oximes may have either one of the three-dimensional structures (E, Z) or may be a mixture.
  • Specific examples of the oxime sulfonate compounds represented by the formulas (OS-103) to (OS-105) include paragraphs 0088 to 0095 of JP-A-2011-209692 and paragraphs of JP-A-2015-194674. Compounds described in numbers 0168-0194 are exemplified, the contents of which are incorporated herein.
  • oximesulfonate compound containing at least one oximesulfonate group include compounds represented by the following formulas (OS-101) and (OS-102).
  • R u9 is a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, It represents an aryl group or a heteroaryl group.
  • An aspect in which Ru9 is a cyano group or an aryl group is more preferred, and an aspect in which Ru9 is a cyano group, a phenyl group or a naphthyl group is even more preferred.
  • R u2a represents an alkyl group or an aryl group.
  • Xu is -O-, -S-, -NH-, -NR u5 -, -CH 2 -, -CR u6 H- or CR u6 R u7 —, and R u5 to R u7 each independently represent an alkyl group or an aryl group.
  • R u1 to R u4 are each independently a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, an amino group, an alkoxycarbonyl group, an alkylcarbonyl group. , an arylcarbonyl group, an amido group, a sulfo group, a cyano group or an aryl group.
  • Two of R u1 to R u4 may each combine to form a ring. At this time, the ring may be condensed to form a condensed ring together with the benzene ring.
  • R u1 to R u4 are preferably hydrogen atoms, halogen atoms or alkyl groups, and an aspect in which at least two of R u1 to R u4 are bonded to each other to form an aryl group is also preferable. Among them, an aspect in which all of R u1 to R u4 are hydrogen atoms is preferable. Any of the substituents described above may further have a substituent.
  • the compound represented by formula (OS-101) is more preferably a compound represented by formula (OS-102).
  • the stereostructures (E, Z, etc.) of the oxime and benzothiazole rings may be either one or a mixture.
  • Specific examples of the compound represented by formula (OS-101) include compounds described in paragraph numbers 0102 to 0106 of JP-A-2011-209692 and paragraph numbers 0195-0207 of JP-A-2015-194674. and the contents of which are incorporated herein.
  • the following b-9, b-16, b-31 and b-33 are preferred.
  • Examples of commercially available products include WPAG-336 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), WPAG-443 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), MBZ-101 (manufactured by Midori Chemical Co., Ltd.), and the like. can be done.
  • organic halogenated compounds include those described by Wakabayashi et al., "Bull Chem. Soc Japan” 42, 2924 (1969), US Pat. 48-36281, JP-A-55-32070, JP-A-60-239736, JP-A-61-169835, JP-A-61-169837, JP-A-62-58241 , JP-A-62-212401, JP-A-63-70243, JP-A-63-298339, M.P. P. Hutt "Journal of Heterocyclic Chemistry” 1 (No 3), (1970), the contents of which are incorporated herein.
  • Particularly preferred examples include an oxazole compound substituted with a trihalomethyl group: an S-triazine compound. More preferably, s-triazine derivatives having at least one mono-, di-, or trihalogen-substituted methyl group attached to the s-triazine ring, specifically, for example, 2,4,6-tris(monochloromethyl)- s-triazine, 2,4,6-tris(dichloromethyl)-s-triazine, 2,4,6-tris(trichloromethyl)-s-triazine, 2-methyl-4,6-bis(trichloromethyl)- s-triazine, 2-n-propyl-4,6-bis(trichloromethyl)-s-triazine, 2-( ⁇ , ⁇ , ⁇ -trichloroethyl)-4,6-bis(trichloromethyl)-s-triazine , 2-phenyl-4,6-bis(trichloromethyl)-
  • organic borate compounds include JP-A-62-143044, JP-A-62-150242, JP-A-9-188685, JP-A-9-188686, and JP-A-9-188710. Publications, JP-A-2000-131837, JP-A-2002-107916, JP-A-2764769, JP-A-2002-116539, etc., and Kunz, Martin "Rad Tech'98. Proceeding April 19-22 , 1998, Chicago", etc., organic boron sulfonium complexes or organic boron oxosulfonium described in JP-A-6-157623, JP-A-6-175564, and JP-A-6-175561.
  • JP-A-6-175554 organic boron-iodonium complexes described in JP-A-6-175553, organic boron-phosphonium complexes described in JP-A-9-188710, JP-A-6-348011, JP-A-H9 No. 7-128785, JP-A-7-140589, JP-A-7-306527, JP-A-7-292014 and the like organoboron transition metal coordination complexes are mentioned as specific examples. incorporated herein.
  • disulfone compound examples include compounds described in JP-A-61-166544, Japanese Patent Application No. 2001-132318, and diazodisulfone compounds.
  • onium salt compound for example, S.I. I. Schlesinger, Photograph. Sci. Eng. , 18, 387 (1974); S. Bal et al, Polymer, 21,423 (1980), diazonium salts, US Pat. , 055, 4,069,056, EP 104,143, US Pat. 2-150848, iodonium salts described in JP-A-2-296514, European Patent Nos. 370,693, 390,214, 233,567, 297,443, 297,442, U.S. Pat. Nos. 4,933,377, 161,811, 410,201, 339,049, 4,760,013, 4,734,444, 2,833,827 German Patent Nos.
  • Onium salts include onium salts represented by the following general formulas (RI-I) to (RI-III).
  • Ar 11 represents an aryl group having 20 or less carbon atoms which may have 1 to 6 substituents. ⁇ 12 alkenyl groups, alkynyl groups having 2 to 12 carbon atoms, aryl groups having 6 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, aryloxy groups having 1 to 12 carbon atoms, halogen atoms, and 1 to 12 carbon atoms.
  • an alkylamino group having 2 to 12 carbon atoms a dialkylamino group having 2 to 12 carbon atoms, an alkylamide group having 1 to 12 carbon atoms in the alkyl group or an arylamide group having 6 to 20 carbon atoms in the aryl group, a carbonyl group, a carboxy group, cyano groups, sulfonyl groups, thioalkyl groups having 1 to 12 carbon atoms, and thioaryl groups having 1 to 12 carbon atoms.
  • Z 11 - represents a monovalent anion such as a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion, a sulfinate ion, a thiosulfonate ion, a sulfate ion, and a stable Perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, and sulfinate ion are preferred from the aspect.
  • Ar 21 and Ar 22 each independently represent an aryl group having 1 to 20 carbon atoms which may have 1 to 6 substituents, and preferred substituents are 1 to 12 carbon atoms.
  • an alkyl group having 2 to 12 carbon atoms an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryloxy group having 1 to 12 carbon atoms, a halogen an atom, a monoalkylamino group having 1 to 12 carbon atoms, a dialkylamino group having an alkyl group having 1 to 12 carbon atoms, an alkylamido group or an arylamide group having an alkyl group having 1 to 12 carbon atoms, carbonyl group, carboxy group, cyano group, sulfonyl group, thioalkyl group having 1 to 12 carbon atoms.
  • Z21 ⁇ represents a monovalent anion, and is a halogen ion, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, sulfinate ion, thiosulfonate ion, sulfate ion, stability, reaction Perchlorate ions, hexafluorophosphate ions, tetrafluoroborate ions, sulfonate ions, sulfinate ions, and carboxylate ions are preferred from the viewpoint of their properties.
  • R 31 , R 32 and R 33 each independently represents an aryl group, an alkyl group, an alkenyl group or an alkynyl group having 6 to 20 carbon atoms which may have 1 to 6 substituents. In view of reactivity and stability, it is preferably an aryl group.
  • Preferred substituents include an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an alkynyl group having 2 to 12 carbon atoms, an aryl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an aryloxy group having 1 to 12 carbon atoms, a halogen atom, a monoalkylamino group having 1 to 12 carbon atoms, a dialkylamino group having 1 to 12 carbon atoms in each alkyl group, and an alkyl group having 1 to 12 carbon atoms; 1 to 12 alkylamide or arylamido groups, carbonyl groups, carboxy groups, cyano groups, sulfonyl groups, C1 to C12 thioalkyl groups, and C1 to C12 thioaryl groups.
  • Z 31 ⁇ represents a monovalent anion and is a halogen ion, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, sulfinate ion, thiosulfonate ion, sulfate ion, stability, From the viewpoint of reactivity, perchlorate ion, hexafluorophosphate ion, tetrafluoroborate ion, sulfonate ion, sulfinate ion, and carboxylate ion are preferred.
  • Rf represents a perfluoroalkyl group.
  • the photoacid generator is preferably used in an amount of 0.1 to 20% by mass, more preferably 0.5 to 18% by mass, and 0.5 to 10% by mass, based on the total solid content of the resin composition. It is more preferably used, more preferably 0.5 to 3% by mass, and even more preferably 0.5 to 1.2% by mass.
  • a photo-acid generator may be used individually by 1 type, or may be used in combination of multiple types. In the case of a combination of multiple types, the total amount thereof is preferably within the above range.
  • the resin composition according to the present invention may contain a base generator.
  • the base generator is a compound capable of generating a base by physical or chemical action.
  • Preferred base generators for the resin composition according to the present invention include thermal base generators and photobase generators.
  • the resin composition when the resin composition contains a cyclized resin precursor, the resin composition preferably contains a base generator.
  • the base generator may be an ionic base generator or a non-ionic base generator.
  • Examples of the base generated from the base generator include secondary amines and tertiary amines. There are no particular restrictions on the base generator used in the present invention, and known base generators can be used. Examples of known base generators include carbamoyloxime compounds, carbamoylhydroxylamine compounds, carbamic acid compounds, formamide compounds, acetamide compounds, carbamate compounds, benzylcarbamate compounds, nitrobenzylcarbamate compounds, sulfonamide compounds, imidazole derivative compounds, and amine imides.
  • Nonionic base generator examples include compounds represented by Formula (B1), Formula (B2), or Formula (B3).
  • Rb 1 , Rb 2 and Rb 3 are each independently an organic group having no tertiary amine structure, a halogen atom or a hydrogen atom. However, Rb 1 and Rb 2 are not hydrogen atoms at the same time. Also, none of Rb 1 , Rb 2 and Rb 3 has a carboxy group.
  • the tertiary amine structure refers to a structure in which all three bonds of a trivalent nitrogen atom are covalently bonded to a hydrocarbon-based carbon atom. Therefore, when the bonded carbon atom is a carbon atom forming a carbonyl group, that is, when forming an amide group together with the nitrogen atom, this is not the case.
  • Rb 1 , Rb 2 and Rb 3 preferably contains a cyclic structure, and more preferably at least two of them contain a cyclic structure.
  • the cyclic structure may be either a single ring or a condensed ring, preferably a single ring or a condensed ring in which two single rings are condensed.
  • the monocyclic ring is preferably a 5- or 6-membered ring, more preferably a 6-membered ring.
  • the monocyclic ring is preferably a cyclohexane ring and a benzene ring, more preferably a cyclohexane ring.
  • Rb 1 and Rb 2 are a hydrogen atom, an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, even more preferably 3 to 12 carbon atoms), an alkenyl group (preferably 2 to 24 carbon atoms). , more preferably 2 to 18, more preferably 3 to 12), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, even more preferably 6 to 10), or an arylalkyl group (7 carbon atoms to 25 are preferred, 7 to 19 are more preferred, and 7 to 12 are even more preferred). These groups may have substituents to the extent that the effects of the present invention are exhibited. Rb 1 and Rb 2 may combine with each other to form a ring.
  • the ring to be formed is preferably a 4- to 7-membered nitrogen-containing heterocyclic ring.
  • Rb 1 and Rb 2 are particularly linear, branched or cyclic alkyl groups (having preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, and still more preferably 3 to 12 carbon atoms) which may have a substituent.
  • Rb 3 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, 6 to 10 are more preferred), alkenyl groups (preferably 2 to 24 carbon atoms, more preferably 2 to 12, more preferably 2 to 6), arylalkyl groups (preferably 7 to 23 carbon atoms, more preferably 7 to 19 preferably 7 to 12), arylalkenyl groups (preferably 8 to 24 carbon atoms, more preferably 8 to 20, more preferably 8 to 16), alkoxyl groups (preferably 1 to 24 carbon atoms, 2 to 18 is more preferred, and 3 to 12 are even more preferred), an aryloxy group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, and even more preferably 6 to 12), or an arylalkyloxy group (preferably 7 to 12 carbon atoms).
  • an aryl group preferably
  • Rb 3 may further have a substituent as long as the effects of the present invention are exhibited.
  • the compound represented by formula (B1) is preferably a compound represented by formula (B1-1) or formula (B1-2) below.
  • Rb 11 and Rb 12 and Rb 31 and Rb 32 are respectively the same as Rb 1 and Rb 2 in formula (B1).
  • Rb 13 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an alkenyl group (preferably 2 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, 3 to 12 is more preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 12), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19, 7 to 12 are more preferable), and may have a substituent within the range in which the effects of the present invention are exhibited.
  • Rb 13 is preferably an arylalkyl group.
  • Rb 33 and Rb 34 each independently represents a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms , more preferably 2 to 8, more preferably 2 to 3), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 10), an arylalkyl group (7 to 23 is preferred, 7 to 19 are more preferred, and 7 to 11 are even more preferred), and a hydrogen atom is preferred.
  • an alkyl group preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms
  • an alkenyl group preferably 2 to 12 carbon atoms , more preferably 2 to 8, more preferably 2 to 3
  • an aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 10
  • Rb 35 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 is more preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, even more preferably 6 to 12), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 , 7 to 12 are more preferred), and aryl groups are preferred.
  • the compound represented by formula (B1-1) is also preferably the compound represented by formula (B1-1a).
  • Rb 11 and Rb 12 have the same definitions as Rb 11 and Rb 12 in formula (B1-1).
  • Rb 15 and Rb 16 are hydrogen atoms, alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6, even more preferably 1 to 3), alkenyl groups (preferably 2 to 12 carbon atoms, 2 to 6 more preferably 2 to 3), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, even more preferably 6 to 10), an arylalkyl group (preferably 7 to 23 carbon atoms, 7 to 19 are more preferred, and 7 to 11 are even more preferred), and a hydrogen atom or a methyl group is preferred.
  • Rb 17 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 is more preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 12), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19, 7 to 12 are more preferable), and aryl groups are particularly preferable.
  • an alkyl group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms
  • an alkenyl group preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 is more preferred
  • an aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 12
  • L is a divalent hydrocarbon group having a saturated hydrocarbon group on a connecting chain route connecting adjacent oxygen atoms and carbon atoms, wherein the number of atoms on the connecting chain route is represents a hydrocarbon group of 3 or more.
  • R N1 and R N2 each independently represent a monovalent organic group.
  • the term “connected chain” refers to the shortest (minimum number of atoms) of atomic chains on a path connecting two atoms or groups of atoms to be connected.
  • L is composed of a phenylene ethylene group, has an ethylene group as a saturated hydrocarbon group
  • the linking chain is composed of four carbon atoms, and on the route of the linking chain
  • the number of atoms of (that is, the number of atoms constituting the linked chain, hereinafter also referred to as "linked chain length" or "linked chain length”) is 4.
  • the number of carbon atoms in L (including carbon atoms other than carbon atoms in the connecting chain) in formula (B3) is preferably 3-24.
  • the upper limit is more preferably 12 or less, still more preferably 10 or less, and particularly preferably 8 or less. More preferably, the lower limit is 4 or more.
  • the upper limit of the linking chain length of L is preferably 12 or less, more preferably 8 or less, further preferably 6 or less, and 5 The following are particularly preferred.
  • the linking chain length of L is preferably 4 or 5, most preferably 4.
  • Specific preferred compounds of the base generator include, for example, compounds described in paragraph numbers 0102 to 0168 of WO2020/066416, and compounds described in paragraph numbers 0143 to 0177 of WO2018/038002. mentioned.
  • the base generator preferably contains a compound represented by the following formula (N1).
  • R N1 and R N2 each independently represent a monovalent organic group
  • R C1 represents a hydrogen atom or a protecting group
  • L represents a divalent linking group
  • L is a divalent linking group, preferably a divalent organic group.
  • the linking chain length of the linking group is preferably 1 or more, more preferably 2 or more.
  • the upper limit is preferably 12 or less, more preferably 8 or less, and even more preferably 5 or less.
  • the linking chain length is the number of atoms present in the atomic arrangement that provides the shortest path between two carbonyl groups in the formula.
  • R 1 N1 and R 2 N2 each independently represent a monovalent organic group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, more preferably 3 to 12 carbon atoms), and a hydrocarbon group ( preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms), specifically, an aliphatic hydrocarbon group (preferably 1 to 24 carbon atoms, 1 to 12 is more preferable, 1 to 10 is more preferable) or an aromatic hydrocarbon group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 10), and an aliphatic hydrocarbon groups are preferred.
  • a monovalent organic group preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, more preferably 3 to 12 carbon atoms
  • a hydrocarbon group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms
  • an aliphatic hydrocarbon group
  • an aliphatic hydrocarbon group as R N1 and R N2 because the generated base is highly basic.
  • the aliphatic hydrocarbon group and the aromatic hydrocarbon group may have a substituent, and the aliphatic hydrocarbon group and the aromatic hydrocarbon group are in the aliphatic hydrocarbon chain or in the aromatic ring, You may have an oxygen atom in the substituent.
  • an aspect in which the aliphatic hydrocarbon group has an oxygen atom in the hydrocarbon chain is exemplified.
  • Aliphatic hydrocarbon groups constituting R N1 and R N2 include linear or branched chain alkyl groups, cyclic alkyl groups, groups related to combinations of chain alkyl groups and cyclic alkyl groups, and oxygen atoms in the chains.
  • Alkyl groups having The linear or branched chain alkyl group preferably has 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, and still more preferably 3 to 12 carbon atoms.
  • Linear or branched chain alkyl groups are, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, isopropyl group, isobutyl group, secondary butyl group, tertiary butyl group, isopentyl group, neopentyl group, tertiary pentyl group, isohexyl group and the like.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms.
  • Cyclic alkyl groups include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • Groups associated with a combination of a chain alkyl group and a cyclic alkyl group preferably have 4 to 24 carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 4 to 12 carbon atoms.
  • Groups related to combinations of chain alkyl groups and cyclic alkyl groups include, for example, a cyclohexylmethyl group, a cyclohexylethyl group, a cyclohexylpropyl group, a methylcyclohexylmethyl group, and an ethylcyclohexylethyl group.
  • the alkyl group having an oxygen atom in the chain preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • An alkyl group having an oxygen atom in the chain may be chain or cyclic, and may be linear or branched.
  • R 1 N1 and R 2 N2 are preferably alkyl groups having 5 to 12 carbon atoms.
  • a group having a cyclic alkyl group or an alkyl group having 1 to 8 carbon atoms is preferable.
  • RN1 and RN2 may be linked to each other to form a ring structure.
  • the chain may have an oxygen atom or the like.
  • the cyclic structure formed by R N1 and R N2 may be a monocyclic ring or a condensed ring, but is preferably a monocyclic ring.
  • the cyclic structure to be formed is preferably a 5- or 6-membered ring containing a nitrogen atom in formula (N1), such as pyrrole ring, imidazole ring, pyrazole ring, pyrroline ring, pyrrolidine ring, imidazolidine ring, A pyrazolidine ring, a piperidine ring, a piperazine ring, a morpholine ring and the like can be mentioned, and a pyrroline ring, a pyrrolidine ring, a piperidine ring, a piperazine ring and a morpholine ring are preferably mentioned.
  • N1 nitrogen atom in formula (N1)
  • R C1 represents a hydrogen atom or a protecting group, preferably a hydrogen atom.
  • the protective group is preferably a protective group that is decomposed by the action of an acid or a base, and preferably includes a protective group that is decomposed by an acid.
  • protecting groups include chain or cyclic alkyl groups or chain or cyclic alkyl groups having an oxygen atom in the chain.
  • Chain or cyclic alkyl groups include methyl group, ethyl group, isopropyl group, tert-butyl group, cyclohexyl group and the like.
  • the chain alkyl group having an oxygen atom in the chain specifically includes an alkyloxyalkyl group, more specifically a methyloxymethyl (MOM) group, an ethyloxyethyl (EE) group, and the like. mentioned.
  • Cyclic alkyl groups having an oxygen atom in the chain include epoxy group, glycidyl group, oxetanyl group, tetrahydrofuranyl group, tetrahydropyranyl (THP) group and the like.
  • the divalent linking group constituting L is not particularly defined, but is preferably a hydrocarbon group, more preferably an aliphatic hydrocarbon group.
  • the hydrocarbon group may have substituents and may have atoms of types other than carbon atoms in the hydrocarbon chain. More specifically, it is preferably a divalent hydrocarbon linking group which may have an oxygen atom in the chain, and a divalent aliphatic hydrocarbon which may have an oxygen atom in the chain group, a divalent aromatic hydrocarbon group, or a group related to a combination of a divalent aliphatic hydrocarbon group which may have an oxygen atom in the chain and a divalent aromatic hydrocarbon group, A divalent aliphatic hydrocarbon group which may have an oxygen atom in the chain is more preferred.
  • the divalent hydrocarbon linking group preferably has 1 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, and even more preferably 2 to 6 carbon atoms.
  • the divalent aliphatic hydrocarbon group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the divalent aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • a group related to a combination of a divalent aliphatic hydrocarbon group and a divalent aromatic hydrocarbon group preferably has 7 to 22 carbon atoms, more preferably 7 to 18, and 7 to 10 is more preferred.
  • linking group L examples include a linear or branched chain alkylene group, a cyclic alkylene group, a group related to a combination of a chain alkylene group and a cyclic alkylene group, and an alkylene group having an oxygen atom in the chain.
  • a linear or branched alkenylene group, a cyclic alkenylene group, an arylene group and an arylenealkylene group are preferred.
  • the linear or branched chain alkylene group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the cyclic alkylene group preferably has 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms.
  • the group associated with the combination of a chain alkylene group and a cyclic alkylene group preferably has 4 to 24 carbon atoms, more preferably 4 to 12 carbon atoms, and even more preferably 4 to 6 carbon atoms.
  • An alkylene group having an oxygen atom in the chain may be chain or cyclic, and may be linear or branched.
  • the alkylene group having an oxygen atom in the chain preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the linear or branched chain alkenylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 3 carbon atoms.
  • the linear or branched chain alkenylene group preferably has 1 to 10 C ⁇ C bonds, more preferably 1 to 6, even more preferably 1 to 3.
  • the cyclic alkenylene group preferably has 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms.
  • the number of C ⁇ C bonds in the cyclic alkenylene group is preferably 1-6, more preferably 1-4, even more preferably 1-2.
  • the arylene group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the arylene alkylene group preferably has 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, and even more preferably 7 to 11 carbon atoms.
  • a chain alkylene group, a cyclic alkylene group, an alkylene group having an oxygen atom in the chain, a chain alkenylene group, an arylene group, and an arylene alkylene group are preferable, and a 1,2-ethylene group and a propanediyl group (especially 1, 3-propanediyl group), cyclohexanediyl group (especially 1,2-cyclohexanediyl group), vinylene group (especially cis-vinylene group), phenylene group (1,2-phenylene group), phenylenemethylene group (especially 1,2-phenylene methylene group) and ethyleneoxyethylene group (especially 1,2-ethyleneoxy-1,2-ethylene group) are more preferred.
  • base generators include the following, but the present invention should not be construed as being limited thereto.
  • the molecular weight of the nonionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
  • Specific preferred compounds of the ionic base generator include, for example, compounds described in paragraphs 0148 to 0163 of International Publication No. 2018/038002.
  • ammonium salts include the following compounds, but the present invention is not limited thereto.
  • iminium salts include the following compounds, but the present invention is not limited thereto.
  • the content of the base generator is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the resin in the resin composition according to the present invention.
  • the lower limit is more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, and may be 5 parts by mass or less, or may be 4 parts by mass or less.
  • One or two or more base generators can be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition according to the present invention preferably contains a solvent. Any known solvent can be used as the solvent.
  • the solvent is preferably an organic solvent.
  • Organic solvents include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas and alcohols.
  • Esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone , ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkyloxyacetates (e.g. methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (e.g.
  • 3-alkyloxypropionic acid alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • 2-alkyloxypropionate alkyl esters e.g., methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, 2-alkyl propyl oxypropionate (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)
  • 2-alkyloxy- Methyl 2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate e.g., methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.
  • ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol Preferred examples include monobutyl ether acetate
  • Suitable ketones include, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone and the like.
  • Suitable examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene and anisole, and cyclic terpenes such as limonene.
  • Suitable sulfoxides include, for example, dimethyl sulfoxide.
  • Suitable ureas include N,N,N',N'-tetramethylurea, 1,3-dimethyl-2-imidazolidinone, and the like.
  • Alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, diacetone alcohol and the like.
  • a combination of dimethyl sulfoxide and ⁇ -butyrolactone or a combination of N-methyl-2-pyrrolidone and ethyl lactate is particularly
  • the content of the solvent is preferably an amount such that the total solid content concentration of the resin composition according to the present invention is 5 to 80% by mass, and the amount is 5 to 75% by mass. is more preferable, the amount of 10 to 70% by mass is more preferable, and the amount of 20 to 70% by mass is even more preferable.
  • the solvent content may be adjusted according to the desired thickness of the coating and the method of application.
  • the resin composition according to the present invention may contain only one type of solvent, or may contain two or more types. When two or more solvents are contained, the total is preferably within the above range.
  • the resin composition according to the present invention preferably contains a metal adhesion improver for improving adhesion to metal materials used for electrodes, wiring, and the like.
  • metal adhesion improvers include alkoxysilyl group-containing silane coupling agents, aluminum-based adhesion aids, titanium-based adhesion aids, compounds having a sulfonamide structure and compounds having a thiourea structure, phosphoric acid derivative compounds, and ⁇ -ketoesters. compounds, amino compounds, and the like.
  • silane coupling agent examples include compounds described in paragraph 0167 of WO 2015/199219, compounds described in paragraphs 0062 to 0073 of JP 2014-191002, and paragraphs of WO 2011/080992.
  • Compounds described in 0063-0071, compounds described in paragraphs 0060-0061 of JP-A-2014-191252, compounds described in paragraphs 0045-0052 of JP-A-2014-041264, International Publication No. 2014/097594 Compounds described in paragraph 0055, compounds described in paragraphs 0067 to 0078 of JP-A-2018-173573, the contents of which are incorporated herein.
  • silane coupling agents include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycid.
  • xypropyltrimethoxysilane 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane Silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2 -(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimeth
  • Aluminum-based adhesion promoters include aluminum tris(ethylacetoacetate), aluminum tris(acetylacetonate), ethylacetoacetate aluminum diisopropylate, and the like.
  • the content of the metal adhesion improver is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of the specific resin. It is in the range of 5 to 5 parts by mass. When it is at least the above lower limit value, the adhesiveness between the pattern and the metal layer is improved, and when it is at most the above upper limit value, the heat resistance and mechanical properties of the pattern are improved.
  • One type of metal adhesion improver may be used, or two or more types may be used. When two or more types are used, the total is preferably within the above range.
  • the resin composition according to the present invention preferably further contains a migration inhibitor.
  • a migration inhibitor By including the migration inhibitor, it becomes possible to effectively suppress the migration of metal ions derived from the metal layer (metal wiring) into the film.
  • Migration inhibitors are not particularly limited, but heterocyclic rings (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and sulfanyl groups, hindered phenolic compounds , salicylic acid derivative-based compounds, and hydrazide derivative-based compounds.
  • heterocyclic rings pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring,
  • triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 1H-tetrazole, 5- Tetrazole compounds such as phenyltetrazole and 5-amino-1H-tetrazole can be preferably used.
  • an ion trapping agent that traps anions such as halogen ions can be used.
  • Other migration inhibitors include rust inhibitors described in paragraph 0094 of JP-A-2013-015701, compounds described in paragraphs 0073 to 0076 of JP-A-2009-283711, and JP-A-2011-059656.
  • the compound described in paragraph 0052, the compound described in paragraphs 0114, 0116 and 0118 of JP-A-2012-194520, the compound described in paragraph 0166 of WO 2015/199219, etc. can be used, and these The contents are incorporated herein.
  • migration inhibitors include the following compounds.
  • the content of the migration inhibitor is 0.01 to 5.0% by mass with respect to the total solid content of the resin composition according to the present invention. is preferred, 0.05 to 2.0 mass % is more preferred, and 0.1 to 1.0 mass % is even more preferred.
  • migration inhibitor Only one type of migration inhibitor may be used, or two or more types may be used. When two or more migration inhibitors are used, the total is preferably within the above range.
  • the resin composition according to the present invention preferably contains a polymerization inhibitor.
  • Polymerization inhibitors include phenol compounds, quinone compounds, amino compounds, N-oxyl free radical compounds, nitro compounds, nitroso compounds, heteroaromatic compounds, metal compounds and the like.
  • Specific compounds of polymerization inhibitors include p-hydroquinone, o-hydroquinone, methoxyhydroquinone, o-methoxyphenol, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, and p-tert-butylcatechol.
  • the content of the polymerization inhibitor is preferably 0.01 to 20% by mass with respect to the total solid content of the resin composition according to the present invention. , more preferably 0.02 to 15% by mass, and even more preferably 0.05 to 10% by mass.
  • polymerization inhibitor Only one type of polymerization inhibitor may be used, or two or more types may be used. When two or more polymerization inhibitors are used, the total is preferably within the above range.
  • the resin composition according to the present invention preferably contains an acid scavenger in order to reduce performance changes over time from exposure to heating.
  • the acid scavenger refers to a compound that can scavenge the generated acid when present in the system, and is preferably a compound with low acidity and high pKa.
  • the acid scavenger is preferably a compound having an amino group, preferably a primary amine, secondary amine, tertiary amine, ammonium salt, tertiary amide, etc. Primary amine, secondary amine, tertiary amine, ammonium salt. are preferred, and secondary amines, tertiary amines and ammonium salts are more preferred.
  • acid scavengers include compounds having an imidazole structure, diazabicyclo structure, onium structure, trialkylamine structure, aniline structure or pyridine structure, alkylamine derivatives having hydroxyl groups and/or ether bonds, and anilines having hydroxyl groups and/or ether bonds. Derivatives and the like can be mentioned preferably.
  • the acid scavenger is a salt having a cation selected from ammonium, diazonium, iodonium, sulfonium, phosphonium, pyridinium, etc., and an anion of an acid less acidic than the acid generated by the acid generator. is preferred.
  • acid scavengers having an imidazole structure include imidazole, 2,4,5-triphenylimidazole, benzimidazole, 2-phenylbenzimidazole and the like.
  • Acid scavengers having a diazabicyclo structure include 1,4-diazabicyclo[2,2,2]octane, 1,5-diazabicyclo[4,3,0]non-5-ene, 1,8-diazabicyclo[5,4 ,0]undecar-7-ene and the like.
  • Acid scavengers having an onium structure include tetrabutylammonium hydroxide, triarylsulfonium hydroxide, phenacylsulfonium hydroxide, sulfonium hydroxides having a 2-oxoalkyl group, specifically triphenylsulfonium hydroxide, tris ( t-butylphenyl)sulfonium hydroxide, bis(t-butylphenyl)iodonium hydroxide, phenacylthiophenium hydroxide, 2-oxopropylthiophenium hydroxide and the like.
  • acid scavengers having a trialkylamine structure include tri(n-butyl)amine and tri(n-octyl)amine.
  • Acid scavengers having an aniline structure include 2,6-diisopropylaniline, N,N-dimethylaniline, N,N-dibutylaniline and N,N-dihexylaniline.
  • acid scavengers having a pyridine structure include pyridine and 4-methylpyridine.
  • alkylamine derivatives having hydroxyl groups and/or ether bonds include ethanolamine, diethanolamine, triethanolamine, N-phenyldiethanolamine, tris(methoxyethoxyethyl)amine and the like.
  • aniline derivatives having hydroxyl groups and/or ether bonds include N,N-bis(hydroxyethyl)aniline.
  • preferred acid scavengers include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N , N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N,N-diisopropylethylamine, tetramethylammonium hydroxide, ethylenediamine, 1,5-diaminopentane, N-methylhexylamine, N-methyldicyclohexyl
  • compositions according to the present invention may or may not contain an acid scavenger, but when it does, the content of the acid scavenger is usually from 0.001 to 0.001 based on the total solid content of the composition. 10% by mass, preferably 0.01 to 5% by mass.
  • the acid generator/acid scavenger (molar ratio) is more preferably 5.0-200, still more preferably 7.0-150.
  • the resin composition of the present invention may contain various additives, such as surfactants, higher fatty acid derivatives, ultraviolet absorbers, organic titanium compounds, antioxidants, as long as the effects of the present invention can be obtained.
  • Aggregation inhibitors, phenolic compounds, other polymer compounds, plasticizers and other auxiliaries (for example, antifoaming agents, flame retardants, etc.), etc. can be blended. Properties such as film physical properties can be adjusted by appropriately containing these components.
  • These components are, for example, described in JP 2012-003225, paragraph number 0183 and later (corresponding US Patent Application Publication No. 2013/0034812, paragraph number 0237), JP 2008-250074 paragraph
  • the total blending amount is preferably 3% by mass or less of the solid content of the resin composition of the present invention.
  • surfactant various surfactants such as fluorine-based surfactants, silicone-based surfactants, and hydrocarbon-based surfactants can be used.
  • the surfactant may be a nonionic surfactant, a cationic surfactant, or an anionic surfactant.
  • the liquid properties (particularly fluidity) when prepared as a coating liquid are further improved, and the uniformity of coating thickness and liquid saving are further improved.
  • a surfactant in the resin composition of the present invention, the liquid properties (particularly fluidity) when prepared as a coating liquid are further improved, and the uniformity of coating thickness and liquid saving are further improved.
  • the interfacial tension between the surface to be coated and the coating liquid is reduced, and the wettability to the surface to be coated is improved.
  • the coatability to the surface to be coated is improved. Therefore, it is possible to more preferably form a film having a uniform thickness with little unevenness in thickness.
  • fluorosurfactants include Megafac F171, F172, F173, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, RS-72-K (manufactured by DIC Corporation), Florado FC430, FC431, FC171, Novec FC4430, FC4432 (manufactured by 3M Japan Ltd.), Surflon S-382, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, KH-40 (Asahi Glass Co., Ltd.
  • Fluorinated surfactants compounds described in paragraphs 0015 to 0158 of JP-A-2015-117327, compounds described in paragraphs 0117-0132 of JP-A-2011-132503 can also be used, the contents of which are incorporated herein.
  • a block polymer can also be used as the fluorosurfactant, and specific examples thereof include compounds described in JP-A-2011-89090, the contents of which are incorporated herein.
  • the fluorosurfactant has a repeating unit derived from a (meth)acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups) (meta)
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as fluorine-based surfactants used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, more preferably 5,000 to 30,000.
  • a fluorine-containing polymer having an ethylenically unsaturated group in a side chain can also be used as a fluorine-based surfactant. Specific examples include compounds described in paragraphs 0050 to 0090 and paragraphs 0289 to 0295 of JP-A-2010-164965, the contents of which are incorporated herein.
  • Commercially available products include Megafac RS-101, RS-102 and RS-718K manufactured by DIC Corporation.
  • the fluorine content in the fluorine-based surfactant is preferably 3-40% by mass, more preferably 5-30% by mass, and particularly preferably 7-25% by mass.
  • a fluorosurfactant having a fluorine content within this range is effective in terms of uniformity of the thickness of the coating film and saving liquid, and has good solubility in the composition.
  • silicone-based surfactants examples include Toray Silicone DC3PA, Toray Silicone SH7PA, Toray Silicone DC11PA, Toray Silicone SH21PA, Toray Silicone SH28PA, Toray Silicone SH29PA, Toray Silicone SH30PA, and Toray Silicone SH8400 (the above, Toray Dow Corning Co., Ltd.
  • TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF-4452 manufactured by Momentive Performance Materials
  • KP341, KF6001, KF6002 manufactured by Shin-Etsu Silicone Co., Ltd.
  • BYK307, BYK323, and BYK330 manufactured by BYK-Chemie Co., Ltd.
  • Hydrocarbon surfactants include, for example, Pionin A-76, Nucalgen FS-3PG, Pionin B-709, Pionin B-811-N, Pionin D-1004, Pionin D-3104, Pionin D-3605, Pionin D-6112, Pionin D-2104-D, Pionin D-212, Pionin D-931, Pionin D-941, Pionin D-951, Pionin E-5310, Pionin P-1050-B, Pionin P-1028-P, Pionin P-4050-T and the like (manufactured by Takemoto Oil & Fat Co., Ltd.), and the like.
  • Nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane and their ethoxylates and propoxylates (e.g., glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Examples include polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, and sorbitan fatty acid ester.
  • cationic surfactants include organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth)acrylic acid-based (co)polymer Polyflow No. 75, No. 77, No. 90, No. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.), and the like.
  • anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.), and Sandet BL (manufactured by Sanyo Kasei Co., Ltd.).
  • the surfactant content is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass, based on the total solid content of the composition.
  • a higher fatty acid derivative such as behenic acid or behenic acid amide is added in order to prevent polymerization inhibition caused by oxygen. It may be unevenly distributed on the surface of the composition.
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass with respect to the total solid content of the resin composition according to the present invention. . Only one type of higher fatty acid derivative may be used, or two or more types thereof may be used. When two or more higher fatty acid derivatives are used, the total is preferably within the above range.
  • the composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber As the ultraviolet absorber, salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, and triazine-based ultraviolet absorbers can be used.
  • salicylate-based UV absorbers include phenyl salicylate, p-octylphenyl salicylate, pt-butylphenyl salicylate, and the like.
  • benzophenone-based UV absorbers examples include 2,2'-dihydroxy-4- Methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2- and hydroxy-4-octoxybenzophenone.
  • benzotriazole-based UV absorbers examples include 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-3 '-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-3'-tert-amyl-5'-isobutylphenyl)-5-chlorobenzotriazole, 2-( 2'-hydroxy-3'-isobutyl-5'-methylphenyl)-5-chlorobenzotriazole, 2-(2'-hydroxy-3'-isobutyl-5'-propylphenyl)-5-chlorobenzotriazole, 2 -(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-[2'-hydroxy-5' -(1,
  • Examples of substituted acrylonitrile UV absorbers include ethyl 2-cyano-3,3-diphenylacrylate and 2-ethylhexyl 2-cyano-3,3-diphenylacrylate.
  • examples of triazine-based UV absorbers include 2-[4-[(2-hydroxy-3-dodecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl )-1,3,5-triazine, 2-[4-[(2-hydroxy-3-tridecyloxypropyl)oxy]-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl) -mono(hydroxyphenyl)triazine compounds such as 1,3,5-triazine, 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine 2,4-bis(2-hydroxy-4-propyloxyphenyl)-6-(
  • the above various ultraviolet absorbers may be used singly or in combination of two or more.
  • the composition of the present invention may or may not contain an ultraviolet absorber, but when it does, the content of the ultraviolet absorber is 0.001% by mass with respect to the total solid mass of the composition of the present invention. It is preferably at least 1% by mass, more preferably at least 0.01% by mass and not more than 0.1% by mass.
  • the resin composition of this embodiment may contain an organic titanium compound.
  • an organic titanium compound By containing the organic titanium compound in the resin composition, it is possible to form a resin layer having excellent chemical resistance even when cured at a low temperature.
  • Organotitanium compounds that can be used include those in which organic groups are attached to titanium atoms through covalent or ionic bonds. Specific examples of organotitanium compounds are shown below in I) to VII): I) Titanium chelate compound: Among them, a titanium chelate compound having two or more alkoxy groups is more preferable because the storage stability of the resin composition is good and a good curing pattern can be obtained.
  • titanium bis(triethanolamine) diisopropoxide titanium di(n-butoxide) bis(2,4-pentanedionate), titanium diisopropoxide bis(2,4-pentanedionate ), titanium diisopropoxide bis(tetramethylheptanedionate), titanium diisopropoxide bis(ethylacetoacetate), and the like.
  • Tetraalkoxytitanium compounds for example titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetra(2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide , titanium tetramethoxypropoxide, titanium tetramethylphenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearyloxide, titanium tetrakis[bis ⁇ 2,2-(allyloxymethyl) butoxide ⁇ ] and the like.
  • Titanocene compounds for example, pentamethylcyclopentadienyltitanium trimethoxide, bis( ⁇ 5-2,4-cyclopentadien-1-yl)bis(2,6-difluorophenyl)titanium, bis( ⁇ 5-2, 4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium and the like.
  • Monoalkoxy titanium compounds for example, titanium tris(dioctylphosphate) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide, and the like.
  • Titanium oxide compounds for example, titanium oxide bis(pentanedionate), titanium oxide bis(tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
  • the organotitanium compound at least one compound selected from the group consisting of I) titanium chelate compounds, II) tetraalkoxytitanium compounds, and III) titanocene compounds provides better chemical resistance. It is preferable from the viewpoint of performance.
  • titanium diisopropoxide bis(ethylacetoacetate), titanium tetra(n-butoxide) and bis( ⁇ 5-2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H) -pyrrol-1-yl)phenyl)titanium is preferred.
  • the blending amount is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 2 parts by mass, per 100 parts by mass of the specific resin.
  • the amount is 0.05 parts by mass or more, the resulting cured pattern exhibits good heat resistance and chemical resistance more effectively. Excellent.
  • compositions of the present invention may contain antioxidants.
  • an antioxidant By containing an antioxidant as an additive, it is possible to improve the elongation properties of the cured film and the adhesion to metal materials.
  • Antioxidants include phenol compounds, phosphite ester compounds, thioether compounds and the like. Any phenolic compound known as a phenolic antioxidant can be used as the phenolic compound.
  • Preferred phenolic compounds include hindered phenolic compounds.
  • a compound having a substituent at a site adjacent to the phenolic hydroxy group (ortho position) is preferred.
  • a substituted or unsubstituted alkyl group having 1 to 22 carbon atoms is preferable as the above substituent.
  • the antioxidant is also preferably a compound having a phenol group and a phosphite ester group in the same molecule.
  • Phosphorus-based antioxidants can also be suitably used as antioxidants.
  • a phosphorus antioxidant tris[2-[[2,4,8,10-tetrakis(1,1-dimethylethyl)dibenzo[d,f][1,3,2]dioxaphosphepin-6 -yl]oxy]ethyl]amine, tris[2-[(4,6,9,11-tetra-tert-butyldibenzo[d,f][1,3,2]dioxaphosphepin-2-yl ) oxy]ethyl]amine, ethyl bis(2,4-di-tert-butyl-6-methylphenyl) phosphite, and the like.
  • antioxidants examples include Adekastab AO-20, Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab AO-60G, Adekastab AO-80. , ADEKA STAB AO-330 (manufactured by ADEKA Corporation) and the like.
  • compounds described in paragraphs 0023 to 0048 of Japanese Patent No. 6268967 can also be used, the contents of which are incorporated herein.
  • the composition of the present invention may also contain latent antioxidants, if desired.
  • the latent antioxidant is a compound in which the site functioning as an antioxidant is protected with a protective group, and is heated at 100 to 250°C, or heated at 80 to 200°C in the presence of an acid/base catalyst.
  • a compound that functions as an antioxidant by removing the protective group by the reaction is exemplified.
  • latent antioxidants include compounds described in WO 2014/021023, WO 2017/030005, and JP 2017-008219, the contents of which are incorporated herein.
  • Commercially available latent antioxidants include ADEKA Arkles GPA-5001 (manufactured by ADEKA Co., Ltd.).
  • Examples of preferred antioxidants include 2,2-thiobis(4-methyl-6-t-butylphenol), 2,6-di-t-butylphenol and compounds of formula (3).
  • R 5 represents a hydrogen atom or an alkyl group having 2 or more carbon atoms (preferably 2 to 10 carbon atoms), and R 6 represents alkylene having 2 or more carbon atoms (preferably 2 to 10 carbon atoms). represents a group.
  • R 7 represents a monovalent to tetravalent organic group containing at least one of an alkylene group having 2 or more carbon atoms (preferably 2 to 10 carbon atoms), an oxygen atom and a nitrogen atom.
  • k represents an integer of 1 to 4;
  • the compound represented by formula (3) suppresses oxidative deterioration of the aliphatic groups and phenolic hydroxyl groups of the resin. In addition, metal oxidation can be suppressed by the antirust action on the metal material.
  • R7 includes an alkyl group, a cycloalkyl group, an alkoxy group, an alkyl ether group, an alkylsilyl group, an alkoxysilyl group, an aryl group, an aryl ether group, a carboxyl group, a carbonyl group, an allyl group, a vinyl group, a heterocyclic group, - O--, --NH--, --NHNH--, combinations thereof, and the like, which may further have a substituent.
  • Examples of compounds represented by general formula (3) include the following, but are not limited to the structures below.
  • the amount of antioxidant to be added is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, per 100 parts by mass of the specific resin.
  • the addition amount 0.1 parts by mass or more By making the addition amount 0.1 parts by mass or more, the effect of improving elongation characteristics and adhesion to metal materials can be easily obtained even in a high-temperature and high-humidity environment.
  • the interaction with the agent improves the sensitivity of the resin composition.
  • Only one kind of antioxidant may be used, or two or more kinds thereof may be used. When two or more kinds are used, it is preferable that the total amount thereof is within the above range.
  • the resin composition of the present embodiment may contain an anti-aggregation agent as necessary.
  • Anti-aggregation agents include sodium polyacrylate and the like.
  • the aggregation inhibitor may be used alone or in combination of two or more.
  • the composition of the present invention may or may not contain an anti-aggregating agent, but when it is included, the content of the anti-aggregating agent is 0.01% by mass with respect to the total solid mass of the composition of the present invention. It is preferably at least 10% by mass, more preferably at least 0.02% by mass and not more than 5% by mass.
  • the resin composition of the present embodiment may contain a phenolic compound as necessary.
  • phenolic compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylene tris-FR-CR, BisRS-26X (these are trade names, manufactured by Honshu Chemical Industry Co., Ltd.), BIP-PC, BIR-PC, BIR-PTBP, BIR -BIPC-F (these are trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.) and the like.
  • one type of phenolic compound may be used alone, or two or more types may be used in combination.
  • the composition of the present invention may or may not contain a phenolic compound, but if it does, the content of the phenolic compound is 0.01% by mass relative to the total solid mass of the composition of the present invention. It is preferably at least 30% by mass, more preferably at least 0.02% by mass and not more than 20% by mass.
  • Other polymer compounds include siloxane resins, (meth)acrylic polymers obtained by copolymerizing (meth)acrylic acid, novolac resins, resole resins, polyhydroxystyrene resins, and copolymers thereof.
  • Other polymer compounds may be modified products into which cross-linking groups such as methylol groups, alkoxymethyl groups and epoxy groups have been introduced.
  • composition of the present invention may or may not contain other polymer compounds, but if it does, the content of the other polymer compound is 0 relative to the total solid mass of the composition of the present invention. It is preferably 0.01% by mass or more and 30% by mass or less, and more preferably 0.02% by mass or more and 20% by mass or less.
  • the viscosity of the resin composition according to the present invention can be adjusted by the solid content concentration of the resin composition. From the viewpoint of coating film thickness, it is preferably 1,000 mm 2 /s to 12,000 mm 2 /s, more preferably 2,000 mm 2 /s to 10,000 mm 2 /s, and 2,500 mm 2 /s to 8,000 mm. 2 /s is more preferred. If it is the said range, it will become easy to obtain a coating film with high uniformity. If it is 1,000 mm 2 /s or more , it is easy to apply the film with a film thickness required, for example, as an insulating film for rewiring. A coating is obtained.
  • the water content of the resin composition according to the present invention is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If it is less than 2.0%, the storage stability of the resin composition is improved. Methods for maintaining the moisture content include adjusting the humidity in the storage conditions and reducing the porosity of the storage container during storage.
  • the metal content of the resin composition according to the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
  • metals include sodium, potassium, magnesium, calcium, iron, copper, chromium, and nickel, but metals contained as complexes of organic compounds and metals are excluded. When multiple metals are included, the total of these metals is preferably within the above range.
  • a raw material having a low metal content is selected as a raw material constituting the resin composition according to the present invention.
  • Examples include a method such as performing filter filtration on the raw material constituting the resin composition, or performing distillation under conditions in which contamination is suppressed as much as possible by lining the inside of the apparatus with polytetrafluoroethylene or the like. .
  • the resin composition according to the present invention preferably has a halogen atom content of less than 500 ppm by mass, more preferably less than 300 ppm by mass, more preferably less than 300 ppm by mass, and 200 ppm by mass from the viewpoint of wiring corrosion resistance. Less than is more preferred. Among them, those present in the form of halogen ions are preferably less than 5 ppm by mass, more preferably less than 1 ppm by mass, and even more preferably less than 0.5 ppm by mass.
  • Halogen atoms include chlorine and bromine atoms. It is preferable that the total amount of chlorine atoms and bromine atoms or chlorine ions and bromine ions is within the above ranges.
  • ion exchange treatment and the like are preferably mentioned.
  • a conventionally known container can be used as the container for the resin composition of the present invention.
  • the inner wall of the container is a multi-layer bottle composed of 6 types and 6 layers of resin, and 6 types of resin are used. It is also preferred to use bottles with a seven-layer structure. Examples of such a container include the container described in JP-A-2015-123351.
  • the permanent film of the present invention is a permanent film obtained by the method for producing a permanent film of the present invention.
  • the form of the permanent film is not particularly limited, and can be selected from film-like, rod-like, spherical, pellet-like, etc. according to the application.
  • the permanent film is preferably film-like.
  • pattern processing of the resin composition can be used to form a protective film on the wall surface, form via holes for conduction, adjust impedance, capacitance or internal stress, add heat dissipation function, etc. You can also choose the shape.
  • the film thickness of this permanent film is preferably 0.5 ⁇ m or more and 150 ⁇ m or less.
  • the shrinkage ratio when the resin composition according to the present invention is cured is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less.
  • the imidization reaction rate of the cured product of the resin composition according to the present invention is preferably 70% or more, more preferably 80% or more, and further 90% or more. preferable. If it is 70% or more, a cured product having excellent mechanical properties may be obtained.
  • a cured product of the resin composition according to the present invention is a cured product obtained by curing the resin composition according to the present invention.
  • the resin composition according to the present invention is preferably cured by, for example, the second preheating step described above.
  • the elongation at break of the cured product of the resin composition according to the present invention is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the glass transition temperature (Tg) of the cured product of the resin composition according to the present invention is preferably 180°C or higher, more preferably 210°C or higher, and even more preferably 230°C or higher.
  • a precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid.
  • the resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of crude polymer.
  • the resulting crude polymer was collected by filtration and dissolved in 200 ml of tetrahydrofuran to obtain a crude polymer solution.
  • the resulting crude polymer solution was dropped into 3 liters of water to precipitate the polymer, and the resulting precipitate was collected by filtration and vacuum dried to obtain a powdery polymer P-2.
  • the weight average molecular weight (Mw) of this polymer was measured and found to be 23,000.
  • Polymer P-2 is a resin having the following structure. Subscripts in parentheses represent the molar ratio of each repeating unit.
  • first resin composition (first composition A or first composition B). Specifically, the contents of the components described in the table were the amounts (parts by mass) described in the table. In the table, the description of "-" indicates that the composition does not contain the corresponding component.
  • B-1 Tetraethylene glycol dimethacrylate
  • B-2 A compound having the following structure
  • B-3 A compound having the following structure
  • B-4 1,3-divinylnaphthalene
  • B-5 A compound having the following structure
  • ⁇ K-1 Silica nanoparticles IX-3 series (manufactured by Nippon Shokubai Co., Ltd.), particle size: 50 nm ⁇ K-2: Hollow silica nanoparticles Silinax (manufactured by Nittetsu Mining Co., Ltd.), particle size: 100 nm ⁇ K-3: PTFE (polytetrafluoroethylene) nanoparticles Microdispers-200 (manufactured by Techno Chemical Co., Ltd.) particle size: 200 to 300 nm ⁇ K-4: Nano hollow polymer particles (manufactured by Sansui Co., Ltd.) particle size: 82 nm ⁇ K-5: Porous silica Sunsphere H-31 (AGC Si Tech Co., Ltd.) particle size: 3 ⁇ m ⁇ K-6: IXTPLAS-A2 (manufacture
  • the particle diameter of the filler was calculated as the arithmetic mean value of the primary particle diameters of 200 particles measured by microscopic observation.
  • the porosity of the filler was calculated by photographing cross-sectional images of the particles with an electron microscope, calculating the ratio of the area of the void portions to the sum of the area of the void portions and the area of the particles for 200 particles, and calculating the arithmetic mean value.
  • the first resin composition layer was developed using cyclopentanone as a developer for 40 seconds and rinsed with PGMEA to obtain a pattern.
  • the pattern after the rinse was heated at 120°C for 3 minutes to obtain the pattern of the first resin composition.
  • the pattern after the rinse was heated at 180°C for 3 minutes to obtain the pattern of the first resin composition.
  • the pattern width of the top of the pattern of the first resin composition was measured using a cross-sectional SEM (cross-sectional observation with a scanning electron microscope). The pattern width was set to D1.
  • a second resin composition was applied by spin coating onto the silicon wafer having the first pattern, dried on a hot plate at 130° C. for 5 minutes, and coated on the pattern of the first resin composition, Then, a second resin composition layer was formed in the region between the patterns of the first resin composition.
  • the number of revolutions during spin coating was 1,000 rpm for the examples marked with "A” in the "spin coating conditions” column of the table, and 2,000 rpm for the examples marked with "B".
  • the second resin composition layer was developed with cyclopentanone for 40 seconds, rinsed with PGMEA, and placed in a nitrogen oven. and 230° C.
  • the layer of the second resin composition was subjected to overall exposure using a high-pressure mercury lamp.
  • the irradiation amount was 100 mJ/cm 2 .
  • After the exposure it is developed with cyclopentanone for 40 seconds, rinsed with PGMEA, and heated at 230° C. for 180 minutes using a nitrogen oven (second post-heating step) to form the first pattern and the second pattern.
  • a composite pattern consisting of patterns was obtained.
  • the pattern width of the top in the composite pattern was set to D2.
  • FIG. 2 is a schematic cross-sectional view of the test vehicle used in the bias HAST test.
  • the test vehicle 100 consists of a Si wafer (silicon wafer) 102, a SiO 2 layer 104, a patterned Ti layer 106, and a patterned 10 ⁇ m L/S (line and space) comb-shaped Cu wiring 108. are laminated in this order, and the Cu wiring 108 is covered by applying the second resin composition 110 and soft baking (130° C., 5 minutes).
  • the spacing d1 of the Cu wiring was set to 10 ⁇ m
  • the height h1 of the Cu wiring was set to 4 ⁇ m
  • the width d2 of the Cu wiring was set to 10 ⁇ m.
  • the thickness of the SiO 2 layer 104 was set to 1 ⁇ m
  • the thickness of the Ti layer 106 was set to 0.1 ⁇ m.
  • Bias HAST was performed at 130° C./85% RH (relative humidity)/96 h using a Hirayama oven. The voltage applied during the HAST test was 50V. The evaluation was performed according to the following evaluation criteria, and the evaluation results are shown in the "Biased HAST test" column of the table. In addition, the biased HAST test was not performed in the examples with "-" in the evaluation result column. It can be said that the longer the time until the resistance value becomes 1.0 ⁇ 10 6 ⁇ or less, the more the increase in the electrical resistance of the permanent film is suppressed. ⁇ Evaluation criteria ⁇ A: It took more than 96 hours until the resistance value became 1.0 ⁇ 10 6 ⁇ or less.
  • B The time required for the resistance value to reach 1.0 ⁇ 10 6 ⁇ or less was 40 hours or more and less than 96 hours.
  • C The time required for the resistance value to reach 1.0 ⁇ 10 6 ⁇ or less was 10 hours or more and less than 40 hours.
  • D It took less than 10 hours until the resistance value became 1.0 ⁇ 10 6 ⁇ or less.
  • the coefficient of thermal expansion (CTE-C) was measured in the range of ⁇ 200°C.
  • the relative CTE value (%) of each composition was calculated by the following formula and evaluated in the following three stages. In the example described as "A" in the "first resin composition” column of the table, the value of CTE-C measured using the first composition A is used the CTE-C value measured using the first composition B, respectively. The evaluation results are shown in the "CTE” column of the table.
  • Relative CTE value (%) CTE value of each second resin composition/CTE-C ⁇ 100 -Evaluation criteria- A: The relative CTE value was 60% or less. B: The relative CTE value exceeded 60% and was 80% or less. C: The relative CTE value exceeded 80%.
  • the second resin composition was applied onto the Cu substrate by spin coating, and dried on a hot plate at 100° C. for 5 minutes. After the second resin composition layer was heated at 230° C. for 180 minutes, it was etched to form a second pattern of 100 ⁇ m square, 10 ⁇ m height and 4.0 ⁇ m film thickness. In the second pattern, the die shear strength was measured before and after the HTS test (200° C., 48 hours). The shear strength was measured using a universal bond tester (DAGE4000 manufactured by DAGE). From the obtained results, the shear strength ratio was calculated according to the following formula.
  • Shear strength ratio (%) Shear strength after HTS test/Shear strength before HTS test x 100 HTS means High Temperature Storage Test, and it can be said that the higher the shear strength ratio, the better the adhesion after the reliability test.
  • the evaluation was performed according to the following evaluation criteria, and the evaluation results are shown in the column of "Shear strength after HTS test" in the table. -Evaluation criteria- A: The shear strength ratio was 1.0 or more. B: The shear strength ratio was 0.5 or more and less than 1.0. C: The shear strength ratio was less than 0.5.
  • Second resin composition 112 First resin composition

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

La présente invention concerne : un procédé de fabrication de film permanent, le procédé comprenant une étape consistant à utiliser une première composition de résine pour obtenir un matériau de base ayant des premiers motifs, une étape consistant à former une seconde couche de composition de résine sur les premiers motifs et/ou sur une région entre les premiers motifs, et une étape consistant à former un second motif, la seconde composition de résine contenant une charge ; un procédé de fabrication de stratifié, le procédé comprenant ledit procédé de fabrication de film permanent ; un procédé de fabrication de dispositif, le procédé comprenant ledit procédé de fabrication de film permanent ou ledit procédé de fabrication de stratifié ; et un film permanent obtenu en employant ledit procédé de fabrication de film permanent.
PCT/JP2022/023875 2021-06-18 2022-06-15 Procédé de fabrication de film permanent, procédé de fabrication de stratifié, procédé de fabrication de dispositif et film permanent WO2022265030A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023530365A JPWO2022265030A1 (fr) 2021-06-18 2022-06-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101336 2021-06-18
JP2021-101336 2021-06-18

Publications (1)

Publication Number Publication Date
WO2022265030A1 true WO2022265030A1 (fr) 2022-12-22

Family

ID=84527565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023875 WO2022265030A1 (fr) 2021-06-18 2022-06-15 Procédé de fabrication de film permanent, procédé de fabrication de stratifié, procédé de fabrication de dispositif et film permanent

Country Status (3)

Country Link
JP (1) JPWO2022265030A1 (fr)
TW (1) TW202311304A (fr)
WO (1) WO2022265030A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115170A (ja) * 2011-11-28 2013-06-10 Hitachi Chemical Co Ltd プリント配線板及びその製造方法並びに感光性樹脂組成物
JP2014204023A (ja) * 2013-04-08 2014-10-27 日立化成株式会社 導体配線を有する構造体の製造方法、その方法により製造された導体配線を有する構造体、熱硬化性樹脂組成物、樹脂フィルム、感光性樹脂組成物及びドライフィルムレジスト
WO2017146152A1 (fr) * 2016-02-26 2017-08-31 富士フイルム株式会社 Stratifié ainsi que procédé de fabrication de celui-ci, et dispositif à semi-conducteurs ainsi que procédé de fabrication de celui-ci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115170A (ja) * 2011-11-28 2013-06-10 Hitachi Chemical Co Ltd プリント配線板及びその製造方法並びに感光性樹脂組成物
JP2014204023A (ja) * 2013-04-08 2014-10-27 日立化成株式会社 導体配線を有する構造体の製造方法、その方法により製造された導体配線を有する構造体、熱硬化性樹脂組成物、樹脂フィルム、感光性樹脂組成物及びドライフィルムレジスト
WO2017146152A1 (fr) * 2016-02-26 2017-08-31 富士フイルム株式会社 Stratifié ainsi que procédé de fabrication de celui-ci, et dispositif à semi-conducteurs ainsi que procédé de fabrication de celui-ci

Also Published As

Publication number Publication date
TW202311304A (zh) 2023-03-16
JPWO2022265030A1 (fr) 2022-12-22

Similar Documents

Publication Publication Date Title
JP7259141B1 (ja) 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液
WO2022070730A1 (fr) Procédé de production de produit durci, procédé de production de corps multicouche, et procédé de production de dispositif à semiconducteur
WO2022138606A1 (fr) Composition de résine, produit durci, stratifié, méthode de production d'un produit durci, et dispositif semi-conducteur
KR20230110590A (ko) 수지 조성물, 경화물, 적층체, 경화물의 제조 방법, 및, 반도체 디바이스
JP7483908B2 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス
WO2022045124A1 (fr) Composition de résine durcissable, produit durci, stratifié, procédé de fabrication d'un produit durci, et dispositif à semi-conducteur
JP7300511B2 (ja) 硬化膜の製造方法、光硬化性樹脂組成物、積層体の製造方法、及び、半導体デバイスの製造方法
WO2022045060A1 (fr) Composition de résine durcissable, produit durci, stratifié, procédé de production de produit durci, ainsi que dispositif à semi-conducteurs
WO2022045120A1 (fr) Composition de résine photosensible, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2023032820A1 (fr) Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur, dispositif à semi-conducteur et composé
WO2022210226A1 (fr) Composition de résine, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, dispositif à semi-conducteurs, et composé
WO2022210225A1 (fr) Composition de résine, article durci, stratifié, procédé de production d'un article durci, et dispositif semi-conducteur
WO2022172996A1 (fr) Composition de résine, produit durci, corps stratifié, procédé de production d'un produit durci, dispositif à semi-conducteur et générateur de base
WO2022071226A1 (fr) Composition de résine, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs
WO2022064917A1 (fr) Procédé de production de produit durci, procédé de production de stratifié et procédé de production de dispositif semi-conducteur
WO2022145136A1 (fr) Composition de résine, produit durci, stratifié, procédé de production de produit durci, dispositif semi-conducteur, et composé
WO2022050278A1 (fr) Composition de résine durcissable, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, dispositif à semi-conducteurs, et générateur de photobase
WO2022050135A1 (fr) Procédé de fabrication d'objet durci, procédé de fabrication de stratifié, et procédé de fabrication de dispositif à semi-conducteurs
WO2022265030A1 (fr) Procédé de fabrication de film permanent, procédé de fabrication de stratifié, procédé de fabrication de dispositif et film permanent
WO2022176869A1 (fr) Procédé de production de film permanent, procédé de production de corps multicouche, et procédé de production de dispositif à semi-conducteur
JP7481462B2 (ja) 硬化性樹脂組成物、硬化物、積層体、硬化物の製造方法、半導体デバイス、ポリイミド前駆体及びその製造方法
WO2023032475A1 (fr) Procédé de production de produit durci, procédé de production de corps multicouche, procédé de production de dispositif à semi-conducteur, et solution de traitement et composition de résine
WO2022230899A1 (fr) Procédé de fabrication de corps assemblé, procédé de fabrication de dispositif semi-conducteur et composition de résine
WO2022244717A1 (fr) Composition permettant de former une partie contenant un polyimide, procédé de fabrication de corps assemblé, corps assemblé, procédé et dispositif de fabrication de dispositif
WO2022210233A1 (fr) Composition de résine, objet durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22825018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023530365

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE