WO2022264654A1 - Transducteur et son procédé de fabrication - Google Patents

Transducteur et son procédé de fabrication Download PDF

Info

Publication number
WO2022264654A1
WO2022264654A1 PCT/JP2022/016705 JP2022016705W WO2022264654A1 WO 2022264654 A1 WO2022264654 A1 WO 2022264654A1 JP 2022016705 W JP2022016705 W JP 2022016705W WO 2022264654 A1 WO2022264654 A1 WO 2022264654A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
cavity
vibrating
cantilever
slit
Prior art date
Application number
PCT/JP2022/016705
Other languages
English (en)
Japanese (ja)
Inventor
達也 鈴木
敬和 藤森
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023529628A priority Critical patent/JPWO2022264654A1/ja
Publication of WO2022264654A1 publication Critical patent/WO2022264654A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/071Mounting of piezoelectric or electrostrictive parts together with semiconductor elements, or other circuit elements, on a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Definitions

  • the piezoelectric element includes a lower electrode at least partially disposed on the vibrating film, a piezoelectric film formed on the lower electrode, and a piezoelectric film formed on the piezoelectric film. and an upper electrode.
  • the length from the surface of the support substrate to the lower end of the slit is set to 1/3 or more of the thickness of the support substrate.
  • the -X direction is the direction opposite to the +X direction.
  • the -Y direction is the opposite direction to the +Y direction.
  • the -Z direction is the direction opposite to the +Z direction.
  • the +X direction and the -X direction are collectively referred to simply as the "X direction”. When collectively referring to the +Y direction and the -Y direction, it is simply referred to as the "Y direction”.
  • the +Z direction and the -Z direction are collectively referred to simply as the "Z direction”.
  • the cavity 5 has a rectangular shape in a plan view, and has two sides 5a and 5c that face each other with a gap in the X direction and are parallel to the Y direction, and two sides 5a and 5c that face each other with a gap in the Y direction and are parallel to the X direction. It has two sides 5b and 5d. Of the sides 5a and 5c, the side on the -X side is called the first side 5a, and the side on the +X side is called the third side 5c. Of the sides 5b and 5d, the side on the -Y side is called the second side 5b, and the side on the +Y side is called the fourth side 5d.
  • the vibrating membrane 7 has a rectangular shape that is substantially similar to the cavity 5 in plan view.
  • the vibrating membrane 7 has a first side (connecting portion) 7 a along the first side 5 a of the cavity 5 , a second side 7 b along the second side 5 b of the cavity 5 , and a third side 7 b along the third side 5 c of the cavity 5 . It has a side 7 c and a fourth side 7 d along the fourth side 5 d of the cavity 5 .
  • the frame portion 8 has a rectangular annular shape in plan view.
  • the connecting portion 7a matches (matches) the intermediate portion of the first side 5a of the cavity 5 in plan view.
  • a hydrogen barrier film 14 is formed on the vibrating film forming layer 6 so as to cover the piezoelectric element 10 .
  • the hydrogen barrier film 14 is made of Al 2 O 3 (alumina), for example.
  • the thickness of the hydrogen barrier film 14 is approximately 20 nm to 100 nm.
  • the hydrogen barrier film 14 is provided to prevent deterioration of the characteristics of the piezoelectric film 12 due to hydrogen reduction.
  • the vibration film 7 (vibration film forming layer 6) is made of a laminated film in which a silicon oxide film 35 is laminated on a silicon layer 34.
  • the silicon oxide film 35 is formed by heating the silicon layer 34 in an oxygen atmosphere. Therefore, when the temperature of the silicon layer 34 drops to room temperature, a film stress (internal stress) is generated in the silicon oxide film 35 in the direction of contraction in the plane direction, and the vibrating film 7 is stressed in the ⁇ Z direction when viewed from the Y direction. There is a warp that is convex (concave on the +Z direction side). However, depending on the stress of the film forming the device, the vibrating film 7 may warp in the opposite direction.
  • the free end 40b of the cantilever moves to a position higher than the frame portion 8 or to a position lower than the frame portion 8.
  • the gap between the cantilever 40 and the surrounding wall surface becomes wider than the gap at the neutral position, resulting in increased air leakage and energy loss.
  • the SIO substrate includes a silicon substrate 32, an oxide film layer 33 formed on its surface, and a silicon layer 34 formed on its surface.
  • a silicon oxide film 35 is formed on the surface of the silicon layer 34 opposite to the oxide film layer 33 (+Z side surface), and the surface of the silicon substrate 32 opposite to the oxide film layer 33 ( ⁇ Z side surface) is formed.
  • a silicon oxide film 31 is formed on the side surface).
  • the support substrate 4 is composed of the silicon substrate 32 and the oxide film layer 33
  • the vibration film forming layer 6 is composed of the silicon layer 34 and the silicon oxide film 35 .
  • a lower electrode film that is the material film of the lower electrode 11, a piezoelectric material film that is the material film of the piezoelectric film 12, and the upper electrode 13 are formed on the silicon oxide film 35.
  • An upper electrode film, which is a material film of is formed in that order.
  • the upper electrode film, the piezoelectric material film and the lower electrode film are patterned, for example, in that order by photolithography and etching to form the upper electrode 13, the piezoelectric film 12 and the lower electrode 11.
  • the piezoelectric element 10 is formed on the silicon oxide film 35 .
  • an opening 23 is formed in the interlayer insulating film 15 and the passivation film 20 by photolithography and etching.
  • the hydrogen barrier film 14, vibration film forming layer 6 (silicon oxide film 35 and silicon layer 34) and oxide film layer 33 are continuously penetrated.
  • a slit 9 reaching halfway through the thickness of the silicon substrate 32 is formed.
  • the slit 9 is composed of a penetrating portion 91 that continuously penetrates the hydrogen barrier film 14 and the vibrating film forming layer 6, and an extension portion 92 formed in the support substrate 4 (the oxide film layer 33 and the silicon substrate 32).
  • the frame portion 8 formed by the peripheral portion of the vibrating film forming layer 6 and the vibrating film formed by the central portion of the vibrating film forming layer 6 and having a part of the outer peripheral edge connected to the frame portion 8 are formed. 7 is obtained. Also, a substrate assembly work-in-progress 2A in which the cavity 5 is not formed is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Un transducteur comprend : un support ayant une cavité ; un film vibrant disposé à l'opposé de la cavité et apte à vibrer dans la direction opposée ; un élément piézoélectrique dont au moins une partie est formée sur le film vibrant ; et un film isolant disposé sur le film de vibration. Le film vibrant comprend une partie de connexion dans une partie de la périphérie externe du film de vibration, la partie de liaison étant reliée au support. Un porte-à-faux est formé et comprend le film vibrant, une partie de l'élément piézoélectrique qui est disposée sur le film vibrant, et le film isolant, le porte-à-faux ayant une extrémité fixe et une extrémité libre. Dans la position neutre, le porte-à-faux est maintenu dans une position déformée avec l'extrémité libre du porte-à-faux vers la cavité par rapport à l'extrémité fixe.
PCT/JP2022/016705 2021-06-14 2022-03-31 Transducteur et son procédé de fabrication WO2022264654A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529628A JPWO2022264654A1 (fr) 2021-06-14 2022-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-098687 2021-06-14
JP2021098687 2021-06-14

Publications (1)

Publication Number Publication Date
WO2022264654A1 true WO2022264654A1 (fr) 2022-12-22

Family

ID=84527085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016705 WO2022264654A1 (fr) 2021-06-14 2022-03-31 Transducteur et son procédé de fabrication

Country Status (2)

Country Link
JP (1) JPWO2022264654A1 (fr)
WO (1) WO2022264654A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237792A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 圧電型音響変換装置
US20120267899A1 (en) * 2011-04-19 2012-10-25 Huffman James D Energy harvesting using mems composite transducer
WO2021049292A1 (fr) * 2019-09-13 2021-03-18 ローム株式会社 Transducteur
WO2021106265A1 (fr) * 2019-11-25 2021-06-03 株式会社村田製作所 Dispositif piézoélectrique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237792A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 圧電型音響変換装置
US20120267899A1 (en) * 2011-04-19 2012-10-25 Huffman James D Energy harvesting using mems composite transducer
WO2021049292A1 (fr) * 2019-09-13 2021-03-18 ローム株式会社 Transducteur
WO2021106265A1 (fr) * 2019-11-25 2021-06-03 株式会社村田製作所 Dispositif piézoélectrique

Also Published As

Publication number Publication date
JPWO2022264654A1 (fr) 2022-12-22

Similar Documents

Publication Publication Date Title
KR101545271B1 (ko) 압전형 음향 변환기 및 이의 제조방법
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
US11418888B2 (en) Microelectromechanical electroacoustic transducer with piezoelectric actuation and corresponding manufacturing process
US20190245133A1 (en) Piezoelectric device
JP4947168B2 (ja) 音響センサ
US20090185700A1 (en) Vibration transducer and manufacturing method therefor
CN110099344B (zh) 一种mems结构
KR20080034407A (ko) 정전 압력 변환기 및 그 제조 방법
JP2009517940A (ja) 音響的な信号を受信および/または発生させるためのマイクロマシニング構造体、マイクロマシニング構造体を製造するための方法、およびマイクロマシニング構造体の使用法
JP2008099212A (ja) コンデンサマイクロホン及びその製造方法
JP2008098524A (ja) 振動センサ及びその製造方法
JP2019517750A (ja) Memsマイクロホンおよびその準備方法
US20090190782A1 (en) Vibration transducer
TWI727164B (zh) 包括微機電系統裝置的組件及包括組件的電子裝置
US10469958B2 (en) MEMS sound transducer, MEMS microphone and method for providing a MEMS sound transducer
JP2012006092A (ja) Memsデバイス及びその製造方法並びにmemsデバイスを有するパッケージ
WO2022264654A1 (fr) Transducteur et son procédé de fabrication
WO2021049292A1 (fr) Transducteur
JP4640249B2 (ja) 超音波センサ
JP2010147285A (ja) Mems、振動ジャイロスコープおよびmemsの製造方法
WO2022259745A1 (fr) Transducteur et son procédé de fabrication
CN214409044U (zh) 一种压电式mems加速度传感器
US20220078540A1 (en) Miniature high performance mems piezoelectric transducer for in-ear applications
JP7449661B2 (ja) トランスデューサ
WO2023176271A1 (fr) Transducteur et son procédé de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529628

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824649

Country of ref document: EP

Kind code of ref document: A1