WO2022264574A1 - Thermal flowrate sensor and fluid control device - Google Patents

Thermal flowrate sensor and fluid control device Download PDF

Info

Publication number
WO2022264574A1
WO2022264574A1 PCT/JP2022/011795 JP2022011795W WO2022264574A1 WO 2022264574 A1 WO2022264574 A1 WO 2022264574A1 JP 2022011795 W JP2022011795 W JP 2022011795W WO 2022264574 A1 WO2022264574 A1 WO 2022264574A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
thermal
flow sensor
conductive member
electric resistance
Prior art date
Application number
PCT/JP2022/011795
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 岡野
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to JP2023529558A priority Critical patent/JPWO2022264574A1/ja
Publication of WO2022264574A1 publication Critical patent/WO2022264574A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow

Definitions

  • the present invention relates to a thermal flow sensor and a fluid control device equipped with this thermal flow sensor.
  • a thermal flow sensor has a pair of electrical resistance wires wound around a thin tube, and measures the flow rate of the fluid by utilizing the difference in temperature between the upstream and downstream sides when the fluid flows through the thin tube. It is something to do.
  • Patent Document 1 As such a thermal flow sensor, in Patent Document 1, in order to increase the response speed, it is equipped with a radiator that dissipates the heat of the electric resistance wire to the outside, and is configured to quickly stabilize the temperature distribution of the fluid. There is something
  • the measured flow rate may be affected by the temperature.
  • the temperature decreases when the fluid expands. It may be transmitted to the electric resistance wire.
  • heat generated by a CPU or the like that controls flow rate calculation or the like is transmitted to the electric resistance wire via a radiator.
  • the present invention has been made to solve the above-mentioned problems, and it is intended to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate.
  • the main task is to reduce it.
  • the thermal flow sensor according to the present invention includes a pair of electric resistance wires wound around a pipe through which a fluid flows, a heat radiation part for radiating heat from the electric resistance wires to the outside, and a heat radiation part around the heat radiation part. and a low thermal conductive member having a thermal conductivity lower than that of the heat radiating portion.
  • the low heat conductive member having a lower thermal conductivity than the heat radiating portion is provided around the heat radiating portion, the heat transfer from the outside to the heat radiating portion is suppressed by the low heat conductive member. can do. As a result, it is possible to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate.
  • the heat radiating portions are provided on the upstream side and the downstream side of the pair of electric resistance wires, respectively, and the low thermal conductive member has a flat plate shape that supports these heat radiating portions.
  • the flat plate-shaped low thermal conductive member that supports the pair of heat radiating parts is used, it is preferable to use a large low thermal conductive member compared to, for example, a frame-shaped member described later. It is possible to more reliably suppress the transmission of heat from the outside to the radiator.
  • a flat plate-shaped member is used as the low thermal conductive member, the low thermal conductive member can be easily manufactured.
  • the heat radiating portions are provided upstream and downstream of the pair of electric resistance wires, respectively, and the low thermal conductive member has a frame shape surrounding these heat radiating portions.
  • the inside of the frame-shaped low thermal conductive member is made of a member with high thermal conductivity (for example, the same member as the outer side of the low thermal conductive member), so that the heat of the electric resistance wire is released to the outside. It is possible to suppress the transmission of heat from the outside to the electric resistance wire through the heat sink while sufficiently exhibiting the heat dissipation effect of the heat sink.
  • the heat dissipating portion is in contact with the outer peripheral surface of the pipe, and further includes buffer portions provided at respective positions that contact the heat dissipating portion and sandwich the pipe, wherein the buffer portion is in contact with the low heat conductive member.
  • They are preferably made of the same material.
  • a sensor cover is further provided with a cavity for accommodating the pair of electric resistance wires, and the cavity is counterbore so that the low thermal conductivity member can be fitted therein.
  • heat from the outside such as cold air generated near the fluid control valve may be transmitted to the radiator through the cover attached to the sensor cover described above, and this heat is transferred from the radiator to the electric resistance wire.
  • the transmission has a thermal effect on the flow rate measured by the thermal flow sensor. Therefore, in the structure provided with a cover attached to the sensor cover, a heat insulating part may be further provided between the cover and the heat radiating part to insulate them. With such a configuration, heat from the outside can be suppressed from being transmitted to the radiator via the lid, and the thermal effect on the flow rate measured by the thermal flow sensor can be more reliably reduced. can.
  • the heat radiating section may be provided in a non-contact manner with respect to the lid.
  • a fluid control device includes a thermal flow sensor, a block provided with the thermal flow sensor, and an internal flow path through which the fluid flows, and a fluid control valve provided in the block. and With such a fluid control device, it is possible to exhibit the same effect as the thermal flow sensor described above, quickly stabilize the temperature distribution of the fluid, improve the response speed, It is possible to reduce the thermal effect from the outside on the flow rate. Factors that cause thermal effects from the outside include cool air generated by the fluid passing through the fluid control valve and heat generated by a CPU or the like that controls the flow rate calculation.
  • a fluid control device includes a thermal flow sensor, a block provided with the thermal flow sensor and an internal flow path through which the fluid flows, and a fluid control valve provided in the block. and the thermal flow sensor includes a pair of electric resistance wires wound around a pipe through which a fluid flows, and provided around the electric resistance wires, and the electric resistance wires and the outside are thermally connected It is characterized by having a separate low thermal conductivity member. With such a fluid control device, it is possible to reduce the external thermal influence on the measured flow rate.
  • FIG. 1 is a schematic diagram showing the configuration of a fluid control device according to an embodiment of the present invention
  • FIG. The schematic diagram which shows the structure of the thermal type flow sensor of the same embodiment.
  • the schematic diagram which shows the low heat-conductive member of the same embodiment.
  • the perspective view which shows the low thermally-conductive member of the same embodiment.
  • FIG. 4 is an exploded perspective view of the same embodiment before incorporating a low heat conductive member into the hollow portion; Sectional drawing after incorporating a low heat-conduction member into the hollow part of the same embodiment.
  • the schematic diagram which shows the low heat-conductive member of other embodiment.
  • the schematic diagram which shows the low heat-conductive member of other embodiment.
  • Sectional drawing which shows the structure of the cover body of other embodiment. Sectional drawing which shows the structure of the radiator of other embodiment.
  • the thermal flow sensor S of this embodiment constitutes a fluid control device 100 that controls the flow rate of fluid used in, for example, a semiconductor manufacturing process.
  • the fluid control device 100 includes a block B made of metal (for example, made of stainless steel) in which an internal flow path X (hereinafter also referred to as a main flow path X) through which a fluid flows is formed, and this block B
  • a control that controls the opening of the fluid control valve V so that the flow rate measured by the thermal flow sensor S and the fluid control valve V provided in the thermal flow sensor S approaches the preset flow rate Part C is a mass flow controller.
  • a pressure sensor may be provided upstream of the thermal flow sensor S.
  • the fluid control device 100 is characterized by the thermal flow sensor S, the details will be described below.
  • the thermal flow sensor S is set in a part of the branch flow path L that branches off from the main flow path X and merges with the main flow path X at a confluence downstream of the branch point. and a flow rate detection mechanism 10 for detecting the flow rate of the fluid.
  • a laminar flow element as a resistor R having a constant flow rate characteristic is provided between the branch point and the confluence point in the main flow path X, and the split flow ratio of the main flow path X and the sensor flow path L1 is predetermined. is set to be the design value.
  • the sensor flow path L1 is formed by a pipe 20 having a small diameter (hereinafter also referred to as a thin tube 20).
  • a sensor cover 40 is attached to the above-described block B via a base 30, and the sensor cover 40 is accommodated so that the sensor flow path L1 passes through.
  • the thin tube 20 and the base 30 are made of metal such as stainless steel, and the sensor cover 40 is made of alumina having higher thermal conductivity than the thin tube 20 and the base 30, for example.
  • the flow rate detection mechanism 10 includes a sensor section 11 for detecting the flow rate split to the sensor flow path L1, and an output signal from the sensor section 11 to detect the gas flowing through the main flow path X. and a flow rate calculation unit 12 that calculates at least the mass flow rate of.
  • the sensor section 11 is housed in the sensor cover 40 and has a pair of electrical resistance wires 13A and 13B wound around the thin tube 20.
  • the electric resistance wires 13A and 13B are heating resistance wires whose electric resistance value increases and decreases according to changes in temperature, are wound around the outer peripheral surface of the thin tube 20, and serve as both a heater and a temperature sensor.
  • the flow rate calculation unit 12 is an electric circuit having a pair of electric resistance wires 13A and 13B as part of its configuration, and includes a bridge circuit, an amplifier circuit, a correction circuit, and the like.
  • This flow rate calculation unit 12 is a function exhibited by, for example, the control unit C described above, and detects the instantaneous gas flow rate as an electric signal (voltage value) from the pair of electric resistance lines 13A and 13B, and detects the sensor flow path L1.
  • the flow rate of the gas in the main flow path X is calculated based on the split flow ratio between the main flow path X and the sensor flow path L1, and the sensor output signal (flow measurement signal).
  • the circuit configuration of the flow rate calculation unit 12 is of a constant temperature control type in this embodiment, and since this is known, a detailed description thereof will be omitted.
  • the circuit configuration of the flow rate calculator 12 may be of a constant current control system, a constant voltage control system, or a low temperature difference control system.
  • the thermal flow sensor S of the present embodiment further includes radiators 50A and 50B that radiate heat from the electric resistance wires 13A and 13B to the outside, as shown in FIG.
  • the heat radiators 50A and 50B secure a path for the heat of the electric resistance wires 13A and 13B to escape to the outside and shorten the time until the temperature distribution of the fluid stabilizes. are provided upstream and downstream of the pair of electric resistance wires 13A and 13B. That is, the upstream radiator 50A, the upstream electrical resistance wire 13A, the downstream electrical resistance wire 13B, and the downstream radiator 50B are arranged in this order from the upstream side along the sensor flow path L1.
  • the radiators 50A and 50B as shown in FIG. It has a rib-shaped buffer portion 62 provided at each position where the thin tube 20 is sandwiched.
  • the heat radiation part 61 mainly exhibits the heat radiation function of the heat radiators 50A and 50B, and is specifically made of a putty material such as thermally conductive silicon having high thermal conductivity.
  • the buffer section 62 functions as a so-called heat sink that receives and absorbs heat from the electric resistance wires 13A and 13B transmitted through the heat dissipation section 50, and has a lower thermal conductivity than the heat dissipation section 61, for example.
  • the buffer portion 62 also has a holding function of holding the heat radiating portion 61, which is the putty material, wrapped around the outer peripheral surface of the thin tube 200. As shown in FIG.
  • the thermal flow sensor S of the present embodiment is provided around the heat radiating portion 61 described above, and includes a low thermal conductive member 70 having a lower thermal conductivity than the heat radiating portion 61. further comprising
  • the low heat conductive member 70 suppresses the transfer of heat from the outside to the heat radiating portion 61, thereby suppressing the transfer of external heat to the electric resistance wires 13A and 13B via the heat radiating portion 61.
  • the low heat conductive member 70 is made of, for example, stainless steel, resin, ceramics, zirconia, etc. Here, it is made of the same material as the buffer portion 62 described above. That is, in this embodiment, not only the low heat conductive member 70 but also the buffer portion 62 described above suppresses the transfer of heat from the outside to the heat radiating portion 61 .
  • the heat from the outside includes, for example, cold air generated in the vicinity of the fluid control valve V shown in FIG. More specifically, after the fluid has passed through the fluid control valve V, when the fluid expands, work is done to the outside, and the internal energy corresponding to the work is reduced. This lowers the temperature of the fluid and creates cold air. Then, this cool air tries to be transmitted from the block B supporting the fluid control valve V and the thermal flow sensor S to the heat radiating section 61 through the sensor base 30 and the sensor cover 40 described above.
  • the low heat conductive member 70 suppresses the cold air from being transmitted to the electrical resistance wires 13A and 13B via the heat radiating portion 61.
  • the block B is thermally isolated from the portion 61 and the electric resistance wires 13A and 13B.
  • FIG. 1 As another heat source, devices such as a CPU and a circuit board that constitute the control unit C shown in FIG. 1 can be cited. That is, when such a device generates heat, the heat may be transmitted to the electric resistance wires 13A and 13B via the heat radiation portion 61.
  • FIG. 1 As another heat source, devices such as a CPU and a circuit board that constitute the control unit C shown in FIG. 1 can be cited. That is, when such a device generates heat, the heat may be transmitted to the electric resistance wires 13A and 13B via the heat radiation portion 61.
  • the low thermal conductive member 70 suppresses the heat from the equipment constituting the control unit C from being transmitted to the electric resistance wires 13A and 13B via the heat dissipation unit 61. In other words, , the low heat conductive member 70 thermally isolates the heat radiating portion 61 and the electric resistance wires 13A and 13B from the components of the control portion C. As shown in FIG.
  • the low thermal conductive member 70 does not need to completely insulate the heat transmitted to the heat radiators 50A and 50B and the electric resistance wires 13A and 13B, and heat is applied from the outside as long as it does not affect the flow rate to be measured. may slightly transfer heat to the radiators 50A and 50B and the electric resistance wires 13A and 13B.
  • the low thermal conductivity member 70 is accommodated in a cavity H formed in the sensor cover 40, as shown in FIGS.
  • the cavity H is formed by penetrating the sensor cover 40, and in this embodiment, the cavity H is hollowed so that the low thermal conductivity member 70 can be fitted therein. That is, the space of the hollow portion H of the present embodiment narrows from the near side toward the far side in the penetrating direction D1 penetrating the sensor cover 40 .
  • the cavity H here has a stepped shape and is composed of a wide space H1 on the front side and a narrow space H2 on the back side.
  • the hollow portion H does not necessarily have a stepped shape, and may have, for example, a tapered shape that gradually narrows from the near side to the far side.
  • the low heat conductive member 70 has a shape that fits tightly into the hollow portion H, and has a flat plate shape in this embodiment.
  • the low thermal conductive member 70 has a first flat plate element 71 that supports the heat radiating portions 61 of the upstream radiator 50A and the downstream radiator 50B.
  • the first flat plate element 71 has a rectangular shape in plan view, for example, a substantially rectangular shape in plan view whose longitudinal direction is set in the tube axis direction D2 along the narrow tube 20 .
  • a heat radiation portion 61 and a pair of buffer portions 62 sandwiching the heat radiation portion 61 are provided in contact with each other.
  • a pair of buffer portions 62 are provided at positions sandwiching the thin tube 20 on the upstream side of the pair of electric resistance wires 13A and 13B, and another pair of buffer portions 62 are provided on the downstream side of the pair of electric resistance wires 13A and 13B. are provided at positions sandwiching the thin tube 20 .
  • the above-described heat dissipation portion 61 made of heat conductive silicon or the like is interposed. With such a configuration, the heat radiating portion 61 is held between the pair of buffer portions 62 while being in contact with the outer peripheral surface of the thin tube 20 .
  • the low heat conductive member 70 of this embodiment further has a second flat plate element 72 provided on the rear surface 71b of the first flat plate element 71, as shown in FIGS.
  • the second flat plate element 72 has a rectangular shape in plan view, for example, a substantially rectangular shape in plan view whose longitudinal direction is set in the tube axis direction D2 along the thin tube 20 .
  • the second flat plate element 72 of this embodiment has a smaller dimension along the width direction orthogonal to the longitudinal direction than the first flat plate element 71 .
  • the second flat plate element 72 may be integrated with the first flat plate element 71 or may be separate.
  • the low thermal conductive member 70 is fitted into the hollow portion H without looseness. 70 is fixed while being positioned with respect to the sensor cover 40 .
  • the thermal flow sensor S is assembled by attaching the lid body 80 to the sensor cover 40 as shown in FIG.
  • the low heat conductive member 70 having a lower thermal conductivity than the heat radiating portion 61 is provided around the heat radiating portion 61 .
  • Heat transfer to the heat radiating portion 61 can be suppressed.
  • the temperature distribution of the fluid can be quickly stabilized by the heat radiation effect of the heat radiation part 61, and the response speed can be improved. can.
  • the low heat conductive member 70 has a flat plate shape that supports the upstream heat radiator 50A and the downstream heat radiator 50B at once, a relatively large size can be used as the low heat conductive member 70. , the transmission of heat from the outside to the heat radiating portion 61 can be more reliably suppressed. Furthermore, since the low heat conductive member 70 is flat, it is easy to manufacture the low heat conductive member 70 .
  • the hollow portion H of the sensor cover 40 is hollowed, and by fitting the low heat conductive member 70 into the hollow portion H, the low heat conductive member 70 is fixed while being positioned, thereby improving the ease of assembly.
  • the buffer portion 62 is made of the same material as the low heat conductive member 70 , the effect of suppressing heat transfer to the heat dissipation portion 61 can be exhibited not only by the low heat conductive member 70 but also by the buffer portion 62 .
  • the low thermal conductive member 70 has a flat plate shape in the above embodiment, but may have a frame shape as shown in FIGS. 8 and 9 . Specifically, the low thermal conductive member 70 surrounds the pair of upstream heat radiators 50A, the pair of downstream heat radiators 50B, and the pair of electric resistance wires 13A and 13B all at once. It is provided in the hollow portion H of the sensor cover 40 . It should be noted that the term “frame-like” as used herein does not necessarily mean a shape without any gaps, and there may be slight gaps as long as the effect of suppressing heat transfer from the outside to the radiators 50A and 50B can be ensured. Also good.
  • the inner side of the low thermal conductive member 70 is made of, for example, the same alumina as the sensor cover 40, and has a higher thermal conductivity than the low thermal conductive member 70. More preferably, the thin tube 20 or the base It is preferable that an embedded material 90 having a higher thermal conductivity than 30 is provided. In this case, a plurality of radiators 50A and 50B are supported by the embedded object 90.
  • FIG. 1 the frame-shaped low thermal conductive member 70 described above is used, the inner side of the low thermal conductive member 70 is made of, for example, the same alumina as the sensor cover 40, and has a higher thermal conductivity than the low thermal conductive member 70. More preferably, the thin tube 20 or the base It is preferable that an embedded material 90 having a higher thermal conductivity than 30 is provided. In this case, a plurality of radiators 50A and 50B are supported by the embedded object 90.
  • the heat from the outside is suppressed from being transmitted to the electric resistance wires 13A and 13B through the radiators 50A and 50B by the frame-shaped low heat conductive member 70, and the inside of the low heat conductive member 70
  • the embedded object 90 provided in the can be done.
  • the low heat conductive member 70 may be provided so as to separately surround the heat radiating portion 61 of the radiator 50A on the upstream side and the heat radiating portion 61 of the radiator 50B on the downstream side. .
  • the low thermal conductivity member 70 in the above embodiment is made of the same material as the buffer portion 62, it may be made of a material with a lower thermal conductivity than the buffer portion 62.
  • the buffer portion 62 has, for example, a U-shape surrounding the heat radiating portion 61, and is made of stainless steel, zirconia, or the like having a lower thermal conductivity than the heat radiating portion 61. Also good.
  • the member 70 in the above embodiment may be made of the same material as the sensor cover 40 (for example, alumina) (in other words, the member 70 does not necessarily have to be a low heat conductive member), In this case, the buffer part 62 plays a role of the low thermal conductive member 70 .
  • the thermal flow sensor S may further include a heat insulating portion 73 interposed between the lid 80 and the heat radiating portion 61 to insulate them. 2, the heat radiating portion 61 may be provided in a non-contact manner with respect to the lid 80. As shown in FIG.
  • the heat insulating portion 73 may be made of, for example, stainless steel, resin, ceramics, zirconia, or the like. With such a configuration, heat from the outside can be suppressed from being transmitted to the heat radiating portion 61 via the lid 80, and the thermal effect on the flow rate measured by the thermal flow sensor S can be more reliably reduced. can be made
  • the radiators 50 are provided on the upstream side and the downstream side of the pair of electric resistance wires 13A and 13B, respectively, but the radiator 50 may be provided on either the upstream side or the downstream side. , a radiator 50 may be provided between the pair of electric resistance wires 13A and 13B.
  • the fluid control device does not necessarily have the radiator 50, and a low heat conductive member is provided around the electric resistance wire and thermally separates the electric resistance wire from the outside. It's good to be prepared. It should be noted that the heat from the outside includes cold air generated by the passage of the fluid through the fluid control valve, and heat generated by the CPU or the like that controls the flow rate calculation.
  • the present invention it is possible to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

To reduce the amount of external thermal influence on a measured flow rate while achieving quick stabilization of the temperature distribution of a fluid, and improving response speed, the present invention comprises: a pair of electrical resistive wires 13A, 13B wound on a pipe 20 through which a fluid flows; a heat dissipation part 61 which dissipates the heat from the electrical resistive wires 13A, 13B to the outside; and a low-heat-transfer member 70 which is provided around the heat dissipation part 61 and has a lower heat conductivity than the heat dissipation part 61.

Description

熱式流量センサ及び流体制御装置Thermal flow sensor and fluid controller
 本発明は、熱式流量センサ及びこの熱式流量センサを備える流体制御装置に関する。 The present invention relates to a thermal flow sensor and a fluid control device equipped with this thermal flow sensor.
 熱式流量センサは、細管に巻回された一対の電気抵抗線を備え、その細管に流体が流れることにより、上流側及び下流側で温度差が生じることを利用して、流体の流量を測定するものである。 A thermal flow sensor has a pair of electrical resistance wires wound around a thin tube, and measures the flow rate of the fluid by utilizing the difference in temperature between the upstream and downstream sides when the fluid flows through the thin tube. It is something to do.
 かかる熱式流量センサとして、特許文献1には、応答速度の高速化を図るべく、電気抵抗線の熱を外部に放熱する放熱器を備え、流体の温度分布を速やかに安定させるように構成されたものがある。 As such a thermal flow sensor, in Patent Document 1, in order to increase the response speed, it is equipped with a radiator that dissipates the heat of the electric resistance wire to the outside, and is configured to quickly stabilize the temperature distribution of the fluid. There is something
 しかしながら、このように放熱器を備える場合、外部からの熱が放熱器を介して電気抵抗線に伝わってしまうと、測定される流量が温度影響を受ける恐れがある。 However, when a radiator is provided in this way, if heat from the outside is transmitted to the electrical resistance wire via the radiator, the measured flow rate may be affected by the temperature.
 なお、こうした温度影響としては、例えば熱式流量センサの下流に配置された流体制御バルブを流体が通過した後、その流体が膨張すると温度が低下するので、これにより生じる冷気が放熱器を介して電気抵抗線に伝わってしまうことがある。また、別の温度影響としては、流量算出などを司るCPU等の発熱が、放熱器を介して電気抵抗線に伝わってしまうことも考えられる。 As for such a temperature effect, for example, after the fluid passes through the fluid control valve arranged downstream of the thermal flow sensor, the temperature decreases when the fluid expands. It may be transmitted to the electric resistance wire. As another temperature influence, it is conceivable that heat generated by a CPU or the like that controls flow rate calculation or the like is transmitted to the electric resistance wire via a radiator.
特開2015-052545号公報JP 2015-052545 A
 そこで本発明は、上記の問題点を解決すべくなされたものであり、流体の温度分布の速やかな安定化を図り、応答速度を向上させつつも、測定される流量に対する外部からの熱影響を低減させることをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and it is intended to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate. The main task is to reduce it.
 すなわち、本発明に係る熱式流量センサは、流体が流れる配管に巻回された一対の電気抵抗線と、前記電気抵抗線からの熱を外部に放熱する放熱部と、前記放熱部の周囲に設けられており、前記放熱部よりも熱伝導率の低い低熱伝導部材とを備えることを特徴とするものである。 That is, the thermal flow sensor according to the present invention includes a pair of electric resistance wires wound around a pipe through which a fluid flows, a heat radiation part for radiating heat from the electric resistance wires to the outside, and a heat radiation part around the heat radiation part. and a low thermal conductive member having a thermal conductivity lower than that of the heat radiating portion.
 このような熱式流量センサによれば、放熱部よりも熱伝導率の低い低熱伝導部材が放熱部の周囲に設けられているので、この低熱伝導部材により外部から放熱部への伝熱を抑制することができる。
 これにより、流体の温度分布の速やかな安定化を図り、応答速度を向上させつつも、測定される流量に対する外部からの熱影響を低減させることができる。
According to such a thermal flow sensor, since the low heat conductive member having a lower thermal conductivity than the heat radiating portion is provided around the heat radiating portion, the heat transfer from the outside to the heat radiating portion is suppressed by the low heat conductive member. can do.
As a result, it is possible to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate.
 具体的な実施態様としては、前記放熱部が、前記一対の電気抵抗線の上流側及び下流側それぞれに設けられており、前記低熱伝導部材が、これらの放熱部を支持する平板状をなすものを挙げることができる。
 このような構成であれば、低熱伝導部材として一対の放熱部を支持する平板状をなすものを用いているので、例えば後述する枠状のものに比べて、低熱伝導部材として大きいものを用いることができ、外部からの熱が放熱器に伝わることをより確実に抑制することができる。また、低熱伝導部材として平板状をなすものを用いているので、低熱伝導部材の製造が容易である。
In a specific embodiment, the heat radiating portions are provided on the upstream side and the downstream side of the pair of electric resistance wires, respectively, and the low thermal conductive member has a flat plate shape that supports these heat radiating portions. can be mentioned.
With such a configuration, since the flat plate-shaped low thermal conductive member that supports the pair of heat radiating parts is used, it is preferable to use a large low thermal conductive member compared to, for example, a frame-shaped member described later. It is possible to more reliably suppress the transmission of heat from the outside to the radiator. In addition, since a flat plate-shaped member is used as the low thermal conductive member, the low thermal conductive member can be easily manufactured.
 また、別の実施態様としては、前記放熱部が、前記一対の電気抵抗線の上流側及び下流側それぞれに設けられており、前記低熱伝導部材が、これらの放熱部を囲う枠状をなすものを挙げることができる。
 このような構成であれば、枠状の低熱伝導部材の内側を熱伝導率の高い部材(例えば低熱伝導部材の外側と同じ部材)にすることで、電気抵抗線の熱を外部に逃がすといった放熱器による放熱効果を十分に発揮させつつも、外部からの熱が放熱器を介して電気抵抗線に伝わることを抑制することができる。
In another embodiment, the heat radiating portions are provided upstream and downstream of the pair of electric resistance wires, respectively, and the low thermal conductive member has a frame shape surrounding these heat radiating portions. can be mentioned.
With such a configuration, the inside of the frame-shaped low thermal conductive member is made of a member with high thermal conductivity (for example, the same member as the outer side of the low thermal conductive member), so that the heat of the electric resistance wire is released to the outside. It is possible to suppress the transmission of heat from the outside to the electric resistance wire through the heat sink while sufficiently exhibiting the heat dissipation effect of the heat sink.
 前記放熱部が、前記配管の外周面に接触しており、前記放熱部に接触するとともに、前記配管を挟み込む位置それぞれに設けられたバッファ部をさらに備え、前記バッファ部が、前記低熱伝導部材と同じ材質からなることが好ましい。
 このような構成であれば、放熱部の両側に低熱伝導部材と同じ材質のバッファ部を設けてあるので、外部から放熱部に伝わる熱をより確実に抑えることができる。
The heat dissipating portion is in contact with the outer peripheral surface of the pipe, and further includes buffer portions provided at respective positions that contact the heat dissipating portion and sandwich the pipe, wherein the buffer portion is in contact with the low heat conductive member. They are preferably made of the same material.
With such a configuration, since the buffer portions made of the same material as the low thermal conductive member are provided on both sides of the heat dissipation portion, it is possible to more reliably suppress the heat transferred from the outside to the heat dissipation portion.
 前記一対の電気抵抗線を収容する空洞部が形成されたセンサカバーをさらに備え、前記空洞部が、前記低熱伝導部材を嵌め込み可能にざぐられていることが好ましい。
 このような構成であれば、低熱伝導部材を空洞部に嵌め込むことで、低熱伝導部材が位置決めされながら固定されるので、組み立て性の向上を図れる。
It is preferable that a sensor cover is further provided with a cavity for accommodating the pair of electric resistance wires, and the cavity is counterbore so that the low thermal conductivity member can be fitted therein.
With such a configuration, by fitting the low heat conductive member into the hollow portion, the low heat conductive member is fixed while being positioned, so that the ease of assembly can be improved.
 ここで、例えば流体制御バルブの近傍で生じる冷気など外部からの熱は、上述したセンサカバーに取り付けられる蓋体を介して放熱器に伝わる可能性があり、この熱が放熱器から電気抵抗線に伝わると、熱式流量センサにより測定される流量に熱影響が及ぶ。
 そこで、前記センサカバーに取り付けられる蓋体を備える構成において、前記蓋体と前記放熱部との間に介在して、これらを断熱する断熱部をさらに備えていても良い。
 このような構成であれば、外部からの熱が蓋体を介して放熱器に伝わることを抑制することができ、熱式流量センサにより測定される流量に対する熱影響をより確実に低減させることができる。
Here, for example, heat from the outside such as cold air generated near the fluid control valve may be transmitted to the radiator through the cover attached to the sensor cover described above, and this heat is transferred from the radiator to the electric resistance wire. The transmission has a thermal effect on the flow rate measured by the thermal flow sensor.
Therefore, in the structure provided with a cover attached to the sensor cover, a heat insulating part may be further provided between the cover and the heat radiating part to insulate them.
With such a configuration, heat from the outside can be suppressed from being transmitted to the radiator via the lid, and the thermal effect on the flow rate measured by the thermal flow sensor can be more reliably reduced. can.
 また、外部からの熱が蓋体を介して放熱器に伝わることを抑制する別の態様としては、前記蓋体に対して前記放熱部が非接触に設けられていても良い。 In addition, as another mode for suppressing the heat from the outside from being transferred to the radiator through the lid, the heat radiating section may be provided in a non-contact manner with respect to the lid.
 本発明に係る流体制御装置は、上述した熱式流量センサと、前記熱式流量センサが設けられるとともに、前記流体が流れる内部流路が形成されたブロックと、前記ブロックに設けられた流体制御バルブとを備えることを特徴とするものである。
 このような流体制御装置であれば、上述した熱式流量センサと同様の作用効果を発揮させることができ、流体の温度分布の速やかな安定化を図り、応答速度を向上させつつも、測定される流量に対する外部からの熱影響を低減させることができる。なお、外部からの熱影響の要因としては、流体が流体制御バルブを通過することにより生じる冷気や、流量算出などを司るCPU等の発熱などを挙げることができる。
A fluid control device according to the present invention includes a thermal flow sensor, a block provided with the thermal flow sensor, and an internal flow path through which the fluid flows, and a fluid control valve provided in the block. and
With such a fluid control device, it is possible to exhibit the same effect as the thermal flow sensor described above, quickly stabilize the temperature distribution of the fluid, improve the response speed, It is possible to reduce the thermal effect from the outside on the flow rate. Factors that cause thermal effects from the outside include cool air generated by the fluid passing through the fluid control valve and heat generated by a CPU or the like that controls the flow rate calculation.
 さらに、本発明に係る流体制御装置は、熱式流量センサと、前記熱式流量センサが設けられるとともに、前記流体が流れる内部流路が形成されたブロックと、前記ブロックに設けられた流体制御バルブとを備え、前記熱式流量センサが、流体が流れる配管に巻回された一対の電気抵抗線と、前記電気抵抗線の周囲に設けられており、前記電気抵抗線と外部とを熱的に切り離す低熱伝導部材とを有することを特徴とするものである。
 このような流体制御装置であれば、測定される流量に対する外部からの熱影響を低減させることができる。
Further, a fluid control device according to the present invention includes a thermal flow sensor, a block provided with the thermal flow sensor and an internal flow path through which the fluid flows, and a fluid control valve provided in the block. and the thermal flow sensor includes a pair of electric resistance wires wound around a pipe through which a fluid flows, and provided around the electric resistance wires, and the electric resistance wires and the outside are thermally connected It is characterized by having a separate low thermal conductivity member.
With such a fluid control device, it is possible to reduce the external thermal influence on the measured flow rate.
 以上に述べた本発明によれば、流体の温度分布の速やかな安定化を図り、応答速度を向上させつつも、測定される流量に対する外部からの熱影響を低減させることができる。 According to the present invention described above, it is possible to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate.
本発明の一実施形態に係る流体制御装置の構成を示す模式図。1 is a schematic diagram showing the configuration of a fluid control device according to an embodiment of the present invention; FIG. 同実施形態の熱式流量センサの構成を示す模式図。The schematic diagram which shows the structure of the thermal type flow sensor of the same embodiment. 同実施形態の低熱伝導部材を示す模式図。The schematic diagram which shows the low heat-conductive member of the same embodiment. 同実施形態の低熱伝導部材を示す斜視図。The perspective view which shows the low thermally-conductive member of the same embodiment. 同実施形態の空洞部に低熱伝導部材を組み込む前の分解斜視図。FIG. 4 is an exploded perspective view of the same embodiment before incorporating a low heat conductive member into the hollow portion; 同実施形態の空洞部に低熱伝導部材を組み込んだ後の断面図。Sectional drawing after incorporating a low heat-conduction member into the hollow part of the same embodiment. 同実施形態の熱式流量センサを組み立てた状態を示す模式図。The schematic diagram which shows the state which assembled the thermal type flow sensor of the same embodiment. その他の実施形態の低熱伝導部材を示す模式図。The schematic diagram which shows the low heat-conductive member of other embodiment. その他の実施形態の低熱伝導部材を示す模式図。The schematic diagram which shows the low heat-conductive member of other embodiment. その他の実施形態の低熱伝導部材を示す模式図。The schematic diagram which shows the low heat-conductive member of other embodiment. その他の実施形態の低熱伝導部材を示す模式図。The schematic diagram which shows the low heat-conductive member of other embodiment. その他の実施形態の蓋体の構成を示す断面図。Sectional drawing which shows the structure of the cover body of other embodiment. その他の実施形態の放熱器の構成を示す断面図。Sectional drawing which shows the structure of the radiator of other embodiment.
100・・・流体制御装置
S  ・・・熱式流量センサ
V  ・・・流体制御バルブ
C  ・・・制御部
20 ・・・細管
30 ・・・ベース
40 ・・・センサカバー
11 ・・・センサ部
12 ・・・流量算出部
13A・・・電気抵抗線
13B・・・電気抵抗線
50A・・・放熱器
50B・・・放熱器
61 ・・・放熱部
62 ・・・バッファ部
70 ・・・低熱伝導部材
71 ・・・第1平板要素
72 ・・・第2平板要素
DESCRIPTION OF SYMBOLS 100... Fluid control apparatus S... Thermal type flow sensor V... Fluid control valve C... Control part 20... Capillary tube 30... Base 40... Sensor cover 11... Sensor part REFERENCE SIGNS LIST 12: flow rate calculator 13A: electrical resistance wire 13B: electrical resistance wire 50A: radiator 50B: radiator 61: radiator 62: buffer 70: low heat Conductive member 71 ... first flat plate element 72 ... second flat plate element
 以下に、本発明の一実施形態に係る熱式流量センサについて、図面を参照して説明する。 A thermal flow sensor according to one embodiment of the present invention will be described below with reference to the drawings.
 本実施形態の熱式流量センサSは、例えば半導体製造プロセスに用いられる流体の流量を制御する流体制御装置100を構築するものである。 The thermal flow sensor S of this embodiment constitutes a fluid control device 100 that controls the flow rate of fluid used in, for example, a semiconductor manufacturing process.
 この流体制御装置100は、図1に示すように、流体が流れる内部流路X(以下、メイン流路Xともいう)が形成された金属製(例えばステンレス製)のブロックBと、このブロックBに設けられた熱式流量センサS及び流体制御バルブVと、熱式流量センサSにより測定される測定流量が予め設定された設定流量に近づくように、流体制御バルブVの開度を制御する制御部Cとを備えたマスフローコントローラである。なお、図示していないが、熱式流量センサSの上流側に圧力センサが設けられていても良い。 As shown in FIG. 1, the fluid control device 100 includes a block B made of metal (for example, made of stainless steel) in which an internal flow path X (hereinafter also referred to as a main flow path X) through which a fluid flows is formed, and this block B A control that controls the opening of the fluid control valve V so that the flow rate measured by the thermal flow sensor S and the fluid control valve V provided in the thermal flow sensor S approaches the preset flow rate Part C is a mass flow controller. Although not shown, a pressure sensor may be provided upstream of the thermal flow sensor S.
 そして、この流体制御装置100は、熱式流量センサSが特徴的であるので、以下に詳細を説明する。 Since the fluid control device 100 is characterized by the thermal flow sensor S, the details will be described below.
 熱式流量センサSは、図2に示すように、メイン流路Xから分岐して、その分岐点よりも下流側の合流点においてメイン流路Xに合流する分岐流路Lの一部に設定されたセンサ流路L1と、流体の流量を検出する流量検出機構10とを備えている。なお、メイン流路Xにおける分岐点と合流点との間には定流量特性を有する抵抗体Rとしての層流素子が設けられており、メイン流路X及びセンサ流路L1の分流比が所定の設計値となるようにしてある。 As shown in FIG. 2, the thermal flow sensor S is set in a part of the branch flow path L that branches off from the main flow path X and merges with the main flow path X at a confluence downstream of the branch point. and a flow rate detection mechanism 10 for detecting the flow rate of the fluid. A laminar flow element as a resistor R having a constant flow rate characteristic is provided between the branch point and the confluence point in the main flow path X, and the split flow ratio of the main flow path X and the sensor flow path L1 is predetermined. is set to be the design value.
 センサ流路L1は、図2及び図3に示すように、径寸法の小さい配管20(以下、細管20ともいう)により形成されたものである。ここでは、上述したブロックBにベース30を介してセンサカバー40が取り付けられており、このセンサカバー40内をセンサ流路L1が通過するように収容されている。なお、細管20やベース30は、例えばステンレス等の金属製のものであり、センサカバー40は、細管20やベース30よりも熱伝導率の高い例えばアルミナなどからなるものである。 As shown in FIGS. 2 and 3, the sensor flow path L1 is formed by a pipe 20 having a small diameter (hereinafter also referred to as a thin tube 20). Here, a sensor cover 40 is attached to the above-described block B via a base 30, and the sensor cover 40 is accommodated so that the sensor flow path L1 passes through. The thin tube 20 and the base 30 are made of metal such as stainless steel, and the sensor cover 40 is made of alumina having higher thermal conductivity than the thin tube 20 and the base 30, for example.
 流量検出機構10は、図2に示すように、センサ流路L1に分流した流量を検出するためのセンサ部11と、当該センサ部11からの出力信号を取得してメイン流路Xを流れるガスの少なくとも質量流量を算出する流量算出部12とを備えている。 As shown in FIG. 2, the flow rate detection mechanism 10 includes a sensor section 11 for detecting the flow rate split to the sensor flow path L1, and an output signal from the sensor section 11 to detect the gas flowing through the main flow path X. and a flow rate calculation unit 12 that calculates at least the mass flow rate of.
 センサ部11は、センサカバー40に収容されており、細管20に巻回された一対の電気抵抗線13A、13Bを備えている。この電気抵抗線13A、13Bは、温度の変化に伴って電気抵抗値が増減する発熱抵抗線であって、細管20の外周面に巻き付けられており、ヒータと温度センサとを兼ねるものである。 The sensor section 11 is housed in the sensor cover 40 and has a pair of electrical resistance wires 13A and 13B wound around the thin tube 20. The electric resistance wires 13A and 13B are heating resistance wires whose electric resistance value increases and decreases according to changes in temperature, are wound around the outer peripheral surface of the thin tube 20, and serve as both a heater and a temperature sensor.
 流量算出部12は、一対の電気抵抗線13A、13Bを構成の一部とする電気回路であり、ブリッジ回路、増幅回路、補正回路等を備えている。この流量算出部12は、例えば上述した制御部Cにより発揮される機能であり、ガスの瞬時流量を一対の電気抵抗線13A、13Bからの電気信号(電圧値)として検出してセンサ流路L1中の流量を算出するとともに、メイン流路Xとセンサ流路L1との分流比に基づいて、メイン流路X中のガスの流量を算出し、その算出流量に応じたセンサ出力信号(流量測定信号)を出力するものである。流量算出部12の回路構成は、この実施形態では定温度制御方式のものであり、これについては既知であるため、詳細な説明を省略する。ただし、流量算出部12の回路構成としては、定電流制御方式のものや定電圧制御方式のものや低温度差制御方式のものであっても構わない。 The flow rate calculation unit 12 is an electric circuit having a pair of electric resistance wires 13A and 13B as part of its configuration, and includes a bridge circuit, an amplifier circuit, a correction circuit, and the like. This flow rate calculation unit 12 is a function exhibited by, for example, the control unit C described above, and detects the instantaneous gas flow rate as an electric signal (voltage value) from the pair of electric resistance lines 13A and 13B, and detects the sensor flow path L1. In addition, the flow rate of the gas in the main flow path X is calculated based on the split flow ratio between the main flow path X and the sensor flow path L1, and the sensor output signal (flow measurement signal). The circuit configuration of the flow rate calculation unit 12 is of a constant temperature control type in this embodiment, and since this is known, a detailed description thereof will be omitted. However, the circuit configuration of the flow rate calculator 12 may be of a constant current control system, a constant voltage control system, or a low temperature difference control system.
 上述した構成において、本実施形態の熱式流量センサSは、図3に示すように、電気抵抗線13A、13Bからの熱を外部に放熱する放熱器50A、50Bをさらに備えている。 In the configuration described above, the thermal flow sensor S of the present embodiment further includes radiators 50A and 50B that radiate heat from the electric resistance wires 13A and 13B to the outside, as shown in FIG.
 この放熱器50A、50Bは、電気抵抗線13A、13Bの熱が外部に逃げる経路を確保し、流体の温度分布が安定するまでの時間を短くするためのものであり、センサ流路L1に沿って一対の電気抵抗線13A、13Bの上流側及び下流側それぞれに設けられている。すなわち、センサ流路L1に沿って上流側放熱器50A、上流側電気抵抗線13A、下流側電気抵抗線13B、及び下流側放熱器50Bが、この順で上流側から配置されている。 The heat radiators 50A and 50B secure a path for the heat of the electric resistance wires 13A and 13B to escape to the outside and shorten the time until the temperature distribution of the fluid stabilizes. are provided upstream and downstream of the pair of electric resistance wires 13A and 13B. That is, the upstream radiator 50A, the upstream electrical resistance wire 13A, the downstream electrical resistance wire 13B, and the downstream radiator 50B are arranged in this order from the upstream side along the sensor flow path L1.
 より具体的に説明すると、放熱器50A、50Bは、図4に示すように、細管20の外周面に接触して該細管20と熱的に接続された放熱部61と、この放熱部61とともに細管20を挟み込む位置それぞれに設けられたリブ状のバッファ部62とを有している。 More specifically, the radiators 50A and 50B, as shown in FIG. It has a rib-shaped buffer portion 62 provided at each position where the thin tube 20 is sandwiched.
 この放熱部61は、放熱器50A、50Bによる放熱機能を主として発揮するものであり、具体的には熱伝導性の高い例えば熱伝導シリコン等のパテ材である。 The heat radiation part 61 mainly exhibits the heat radiation function of the heat radiators 50A and 50B, and is specifically made of a putty material such as thermally conductive silicon having high thermal conductivity.
 バッファ部62は、放熱部50を介して伝わった電気抵抗線13A、13Bからの熱を受け取り吸熱する謂わばヒートシンクとしての機能を発揮するものであり、放熱部61よりも熱伝導性の低い例えばステンレス鋼、樹脂、セラミックス、ジルコニアなどからなる。また、このバッファ部62は、上述したパテ材たる放熱部61を細管200の外周面に纏わらせた状態で保持する保持機能をも兼ね備えている。 The buffer section 62 functions as a so-called heat sink that receives and absorbs heat from the electric resistance wires 13A and 13B transmitted through the heat dissipation section 50, and has a lower thermal conductivity than the heat dissipation section 61, for example. Made of stainless steel, resin, ceramics, zirconia, etc. The buffer portion 62 also has a holding function of holding the heat radiating portion 61, which is the putty material, wrapped around the outer peripheral surface of the thin tube 200. As shown in FIG.
 かかる構成により、電気抵抗線13A、13Bからの熱は、細管20から放熱部61を介して外部に放熱される。これにより、流体の温度分布が安定するまでの時間を短くすることができ、ひいてはセンサ部11の応答速度の高速化を図れる。 With this configuration, the heat from the electrical resistance wires 13A and 13B is radiated from the thin tube 20 to the outside through the heat radiating portion 61. As a result, the time required for the temperature distribution of the fluid to stabilize can be shortened, and the response speed of the sensor section 11 can be increased.
 然して、本実施形態の熱式流量センサSは、図3及び図4に示すように、上述した放熱部61の周囲に設けられており、放熱部61よりも熱伝導率の低い低熱伝導部材70をさらに備えてなる。 As shown in FIGS. 3 and 4, the thermal flow sensor S of the present embodiment is provided around the heat radiating portion 61 described above, and includes a low thermal conductive member 70 having a lower thermal conductivity than the heat radiating portion 61. further comprising
 この低熱伝導部材70は、外部からの熱が放熱部61に伝わることを抑制し、これにより外部の熱が放熱部61を介して電気抵抗線13A、13Bに伝わることを抑制するものである。具体的に低熱伝導部材70は、例えばステンレス鋼、樹脂、セラミックス、ジルコニアなどからなり、ここでは上述したバッファ部62と同じ材質からなる。すなわち、この実施形態では、低熱伝導部材70のみならず、上述したバッファ部62もが、外部からの熱が放熱部61に伝わることを抑制している。 The low heat conductive member 70 suppresses the transfer of heat from the outside to the heat radiating portion 61, thereby suppressing the transfer of external heat to the electric resistance wires 13A and 13B via the heat radiating portion 61. Specifically, the low heat conductive member 70 is made of, for example, stainless steel, resin, ceramics, zirconia, etc. Here, it is made of the same material as the buffer portion 62 described above. That is, in this embodiment, not only the low heat conductive member 70 but also the buffer portion 62 described above suppresses the transfer of heat from the outside to the heat radiating portion 61 .
 外部からの熱としては、例えば、図1に示す流体制御バルブVの近傍で生じる冷気を挙げることができる。
 より詳細に説明すると、流体制御バルブVを流体が通過した後、その流体が膨張すると外部に仕事をすることとなり、その仕事分の内部エネルギーが下がる。これにより、流体の温度が低下して、冷気が生じる。そして、この冷気は、流体制御バルブV及び熱式流量センサSを支持するブロックBから、上述したセンサベース30及びセンサカバー40を経て放熱部61に伝わろうとする。その結果、仮に低熱伝導部材70やバッファ部62がセンサカバー40と同じ材質である場合には、この冷気が放熱部61を介して電気抵抗線13A、13Bに伝わり、測定される流量に影響を及ぼす。
The heat from the outside includes, for example, cold air generated in the vicinity of the fluid control valve V shown in FIG.
More specifically, after the fluid has passed through the fluid control valve V, when the fluid expands, work is done to the outside, and the internal energy corresponding to the work is reduced. This lowers the temperature of the fluid and creates cold air. Then, this cool air tries to be transmitted from the block B supporting the fluid control valve V and the thermal flow sensor S to the heat radiating section 61 through the sensor base 30 and the sensor cover 40 described above. As a result, if the low thermal conductivity member 70 and the buffer portion 62 are made of the same material as the sensor cover 40, this cool air is transmitted to the electric resistance wires 13A and 13B through the heat radiation portion 61, and does not affect the flow rate to be measured. influence.
 これに対して、本実施形態では、低熱伝導部材70が、上述した冷気が放熱部61を介して電気抵抗線13A、13Bに伝わることを抑制しており、言い換えれば、低熱伝導部材70が放熱部61及び電気抵抗線13A、13BとブロックBとの間を熱的に切り離している。 On the other hand, in the present embodiment, the low heat conductive member 70 suppresses the cold air from being transmitted to the electrical resistance wires 13A and 13B via the heat radiating portion 61. The block B is thermally isolated from the portion 61 and the electric resistance wires 13A and 13B.
 また、別の熱源としては、図1に示す制御部Cを構成するCPUや回路基板等の機器を挙げることができる。すなわち、こうした機器が発熱することにより、その熱が放熱部61を介して電気抵抗線13A、13Bに伝わる可能性がある。 As another heat source, devices such as a CPU and a circuit board that constitute the control unit C shown in FIG. 1 can be cited. That is, when such a device generates heat, the heat may be transmitted to the electric resistance wires 13A and 13B via the heat radiation portion 61. FIG.
 これに対して、本実施形態では、低熱伝導部材70が、制御部Cを構成する機器からの熱が放熱部61を介して電気抵抗線13A、13Bに伝わることを抑制しており、言い換えれば、低熱伝導部材70が放熱部61及び電気抵抗線13A、13Bと制御部Cの構成機器との間を熱的に切り離している。 On the other hand, in the present embodiment, the low thermal conductive member 70 suppresses the heat from the equipment constituting the control unit C from being transmitted to the electric resistance wires 13A and 13B via the heat dissipation unit 61. In other words, , the low heat conductive member 70 thermally isolates the heat radiating portion 61 and the electric resistance wires 13A and 13B from the components of the control portion C. As shown in FIG.
 なお、低熱伝導部材70は、放熱器50A、50B及び電気抵抗線13A、13Bに伝わる熱を完全に断熱するものである必要はなく、測定される流量に影響を与えない程度であれば外部からの熱を僅かに放熱器50A、50B及び電気抵抗線13A、13Bに伝えるものであっても構わない。 It should be noted that the low thermal conductive member 70 does not need to completely insulate the heat transmitted to the heat radiators 50A and 50B and the electric resistance wires 13A and 13B, and heat is applied from the outside as long as it does not affect the flow rate to be measured. may slightly transfer heat to the radiators 50A and 50B and the electric resistance wires 13A and 13B.
 この低熱伝導部材70は、図5及び図6に示すように、センサカバー40に形成された空洞部Hに収容されている。 The low thermal conductivity member 70 is accommodated in a cavity H formed in the sensor cover 40, as shown in FIGS.
 空洞部Hは、図5及び図6に示すように、センサカバー40を貫通して形成されたものであり、この実施形態では、低熱伝導部材70が嵌め込み可能にざぐられている。すなわち、本実施形態の空洞部Hは、センサカバー40を貫通する貫通方向D1において、手前側から奥側に向かって空間が狭くなっている。ここでの空洞部Hは、段状をなし、手前側の幅広空間H1と、奥側の幅狭空間H2とからなる。ただし、空洞部Hとしては、必ずしも段状をなす必要はなく、例えば手前側から奥側に向かって徐々に狭くなるテーパ状をなしていても良い。 As shown in FIGS. 5 and 6, the cavity H is formed by penetrating the sensor cover 40, and in this embodiment, the cavity H is hollowed so that the low thermal conductivity member 70 can be fitted therein. That is, the space of the hollow portion H of the present embodiment narrows from the near side toward the far side in the penetrating direction D1 penetrating the sensor cover 40 . The cavity H here has a stepped shape and is composed of a wide space H1 on the front side and a narrow space H2 on the back side. However, the hollow portion H does not necessarily have a stepped shape, and may have, for example, a tapered shape that gradually narrows from the near side to the far side.
 上述した構成において、低熱伝導部材70は、空洞部Hにガタ無く嵌まり込む形状をなしており、この実施形態では平板状をなすものである。 In the configuration described above, the low heat conductive member 70 has a shape that fits tightly into the hollow portion H, and has a flat plate shape in this embodiment.
 具体的に低熱伝導部材70は、図4~図6に示すように、上流側の放熱器50A及び下流側の放熱器50Bそれぞれの放熱部61を支持する第1平板要素71を有している。この第1平板要素71は、平面視矩形状をなすものであり、例えば細管20に沿った管軸方向D2に長手方向が設定された平面視略長方形状をなすものである。 Specifically, as shown in FIGS. 4 to 6, the low thermal conductive member 70 has a first flat plate element 71 that supports the heat radiating portions 61 of the upstream radiator 50A and the downstream radiator 50B. . The first flat plate element 71 has a rectangular shape in plan view, for example, a substantially rectangular shape in plan view whose longitudinal direction is set in the tube axis direction D2 along the narrow tube 20 .
 この平板要素の表面71aには、放熱部61とともに、この放熱部61を挟み込む一対のバッファ部62が接触して設けられている。一対の電気抵抗線13A、13Bの上流側において、一対のバッファ部62が細管20を挟む位置に設けられており、一対の電気抵抗線13A、13Bの下流側において、別の一対のバッファ部62が細管20を挟む位置に設けられている。そして、これら一対のバッファ部62の間には、上述した熱伝導シリコン等の放熱部61が介在している。かかる構成により、放熱部61が、細管20の外周面に接触した状態で、一対のバッファ部62の間に保持される。 On the surface 71a of the flat plate element, a heat radiation portion 61 and a pair of buffer portions 62 sandwiching the heat radiation portion 61 are provided in contact with each other. A pair of buffer portions 62 are provided at positions sandwiching the thin tube 20 on the upstream side of the pair of electric resistance wires 13A and 13B, and another pair of buffer portions 62 are provided on the downstream side of the pair of electric resistance wires 13A and 13B. are provided at positions sandwiching the thin tube 20 . Between the pair of buffer portions 62, the above-described heat dissipation portion 61 made of heat conductive silicon or the like is interposed. With such a configuration, the heat radiating portion 61 is held between the pair of buffer portions 62 while being in contact with the outer peripheral surface of the thin tube 20 .
 また、本実施形態の低熱伝導部材70は、図4~図6に示すように、第1平板要素71の裏面71bに設けられた第2平板要素72をさらに有している。この第2平板要素72は、平面視矩形状をなすものであり、例えば細管20に沿った管軸方向D2に長手方向が設定された平面視略長方形状をなすものである。本実施形態の第2平板要素72は、第1平板要素71よりも長手方向に直交する幅方向に沿った寸法が小さいものである。なお、第2平板要素72は、第1平板要素71と一体であっても良いし、別体であっても良い。 In addition, the low heat conductive member 70 of this embodiment further has a second flat plate element 72 provided on the rear surface 71b of the first flat plate element 71, as shown in FIGS. The second flat plate element 72 has a rectangular shape in plan view, for example, a substantially rectangular shape in plan view whose longitudinal direction is set in the tube axis direction D2 along the thin tube 20 . The second flat plate element 72 of this embodiment has a smaller dimension along the width direction orthogonal to the longitudinal direction than the first flat plate element 71 . The second flat plate element 72 may be integrated with the first flat plate element 71 or may be separate.
 そして、第2平板要素72を幅狭空間H2に嵌め込むとともに、第1平板要素71を幅広空間H1に嵌め込むことで、低熱伝導部材70が空洞部Hにガタ無く嵌め込まれて、低熱伝導部材70がセンサカバー40に対して位置決めされながら固定される。 By fitting the second flat plate element 72 into the narrow space H2 and fitting the first flat plate element 71 into the wide space H1, the low thermal conductive member 70 is fitted into the hollow portion H without looseness. 70 is fixed while being positioned with respect to the sensor cover 40 .
 このように、低熱伝導部材70を空洞部Hに嵌め込んだ状態において、図7に示すように、センサカバー40に蓋体80を取り付けることで、熱式流量センサSが組み立てられる。 In this way, the thermal flow sensor S is assembled by attaching the lid body 80 to the sensor cover 40 as shown in FIG.
<本実施形態の効果>
 このように構成された熱式流量センサSによれば、放熱部61よりも熱伝導率の低い低熱伝導部材70が放熱部61の周囲に設けられているので、この低熱伝導部材70によって外部から放熱部61への伝熱を抑制することができる。
 その結果、放熱部61の放熱効果により流体の温度分布の速やかな安定化を図り、応答速度を向上させつつも、測定される流量に対する外部からの熱影響を低熱伝導部材70により低減させることができる。
<Effects of this embodiment>
According to the thermal flow sensor S configured in this manner, the low heat conductive member 70 having a lower thermal conductivity than the heat radiating portion 61 is provided around the heat radiating portion 61 . Heat transfer to the heat radiating portion 61 can be suppressed.
As a result, the temperature distribution of the fluid can be quickly stabilized by the heat radiation effect of the heat radiation part 61, and the response speed can be improved. can.
 また、低熱伝導部材70が、上流側放熱器50A及び下流側放熱器50Bそれぞれを一挙に支持する平板状をなすものであるので、低熱伝導部材70として比較的大きなサイズのものを用いることができ、外部からの熱が放熱部61に伝わることをより確実に抑制することができる。さらに、低熱伝導部材70として平板状をなすものを用いているので、低熱伝導部材70の製造が容易である。 In addition, since the low heat conductive member 70 has a flat plate shape that supports the upstream heat radiator 50A and the downstream heat radiator 50B at once, a relatively large size can be used as the low heat conductive member 70. , the transmission of heat from the outside to the heat radiating portion 61 can be more reliably suppressed. Furthermore, since the low heat conductive member 70 is flat, it is easy to manufacture the low heat conductive member 70 .
 そのうえ、センサカバー40の空洞部Hをざぐってあり、これにより低熱伝導部材70を空洞部Hに嵌め込むことで、低熱伝導部材70が位置決めされながら固定されるので、組み立て性の向上を図れる。 In addition, the hollow portion H of the sensor cover 40 is hollowed, and by fitting the low heat conductive member 70 into the hollow portion H, the low heat conductive member 70 is fixed while being positioned, thereby improving the ease of assembly.
 加えて、バッファ部62が、低熱伝導部材70と同じ材質であるので、放熱部61に対する伝熱抑制効果を、低熱伝導部材70のみならず、バッファ部62によっても発揮させることができる。 In addition, since the buffer portion 62 is made of the same material as the low heat conductive member 70 , the effect of suppressing heat transfer to the heat dissipation portion 61 can be exhibited not only by the low heat conductive member 70 but also by the buffer portion 62 .
<その他の実施形態>
 例えば、低熱伝導部材70は、前記実施形態では平板状をなすものであったが、図8及び図9に示すように、枠状をなすものであっても良い。具体的にこの低熱伝導部材70は、一対の上流側放熱器50A、一対の下流側放熱器50B、及び一対の電気抵抗線13A、13Bを一挙に囲うものであり、前記実施形態と同様に、センサカバー40の空洞部Hに設けられている。なお、ここでいう枠状とは、必ずしも隙間が一切ない形状である必要はなく、外部から放熱器50A、50Bへの伝熱の抑制効果を担保できる程度であれば、わずかな隙間があっても良い。
<Other embodiments>
For example, the low thermal conductive member 70 has a flat plate shape in the above embodiment, but may have a frame shape as shown in FIGS. 8 and 9 . Specifically, the low thermal conductive member 70 surrounds the pair of upstream heat radiators 50A, the pair of downstream heat radiators 50B, and the pair of electric resistance wires 13A and 13B all at once. It is provided in the hollow portion H of the sensor cover 40 . It should be noted that the term “frame-like” as used herein does not necessarily mean a shape without any gaps, and there may be slight gaps as long as the effect of suppressing heat transfer from the outside to the radiators 50A and 50B can be ensured. Also good.
 上述した枠状の低熱伝導部材70を用いる場合、この低熱伝導部材70の内側は、例えばセンサカバー40と同じアルミナなど、低熱伝導部材70よりも熱伝導率が高く、より好ましくは細管20やベース30よりも熱伝導率が高い埋設物90が設けられていることが好ましい。この場合、複数の放熱器50A、50Bが埋設物90に支持されている。 When the frame-shaped low thermal conductive member 70 described above is used, the inner side of the low thermal conductive member 70 is made of, for example, the same alumina as the sensor cover 40, and has a higher thermal conductivity than the low thermal conductive member 70. More preferably, the thin tube 20 or the base It is preferable that an embedded material 90 having a higher thermal conductivity than 30 is provided. In this case, a plurality of radiators 50A and 50B are supported by the embedded object 90. FIG.
 このような構成であれば、枠状の低熱伝導部材70により外部からの熱が放熱器50A、50Bを介して電気抵抗線13A、13Bに伝わることを抑制しつつ、この低熱伝導部材70の内側に設けた埋設物90により、電気抵抗線13A、13Bの熱を外部に逃がすといった放熱器50A、50Bの放熱効果を担保することができ、これによる応答性の高速化の恩恵を確実に得ることができる。 With such a configuration, the heat from the outside is suppressed from being transmitted to the electric resistance wires 13A and 13B through the radiators 50A and 50B by the frame-shaped low heat conductive member 70, and the inside of the low heat conductive member 70 To secure the heat radiation effect of the radiators 50A and 50B, such as releasing the heat of the electric resistance wires 13A and 13B to the outside, by the embedded object 90 provided in the can be done.
 また、低熱伝導部材70としては、図10に示すように、上流側の放熱器50Aの放熱部61と下流側の放熱器50Bの放熱部61とを別々に取り囲むように設けられていても良い。 Further, as shown in FIG. 10, the low heat conductive member 70 may be provided so as to separately surround the heat radiating portion 61 of the radiator 50A on the upstream side and the heat radiating portion 61 of the radiator 50B on the downstream side. .
 さらに、前記実施形態の低熱伝導部材70は、バッファ部62と同じ材質からなるものであったが、バッファ部62よりもさらに熱伝導性の低い材質からなるものであっても構わない。 Furthermore, although the low thermal conductivity member 70 in the above embodiment is made of the same material as the buffer portion 62, it may be made of a material with a lower thermal conductivity than the buffer portion 62.
 そのうえ、バッファ部62は、図11に示すように、放熱部61を取り囲む例えばコ字状をなし、且つ、放熱部61よりも熱伝導率の低い例えばステンレス鋼やジルコニア等からなるものであっても良い。この場合、前記実施形態における符号70の部材を、例えばセンサカバー40と同じ材質(例えば、アルミナ)のものとしても良く(言い換えれば、符号70の部材は必ずしも低熱伝導部材である必要はなく)、この場合は、バッファ部62が低熱伝導部材70としての役割を担う。 Moreover, as shown in FIG. 11, the buffer portion 62 has, for example, a U-shape surrounding the heat radiating portion 61, and is made of stainless steel, zirconia, or the like having a lower thermal conductivity than the heat radiating portion 61. Also good. In this case, the member 70 in the above embodiment may be made of the same material as the sensor cover 40 (for example, alumina) (in other words, the member 70 does not necessarily have to be a low heat conductive member), In this case, the buffer part 62 plays a role of the low thermal conductive member 70 .
 ここで、例えば流体制御バルブVの近傍で生じる冷気など外部からの熱は、センサカバー40に取り付けられて空洞部Hを塞ぐ蓋体80を介して放熱器50A、50Bに伝わる可能性があり、この熱が放熱部61から電気抵抗線13A、13Bに伝わると、熱式流量センサSにより測定される流量に熱影響が及ぶ。
 そこで、熱式流量センサSとしては、図12に示すように、蓋体80と放熱部61との間に介在して、これらを断熱する断熱部73をさらに備えていても良いし、図13に示すように、蓋体80に対して、放熱部61が非接触に設けられていても良い。なお、断熱部73としては、例えばステンレス鋼、樹脂、セラミックス、ジルコニアなどからなるものを挙げることができる。
 このような構成であれば、外部からの熱が蓋体80を介して放熱部61に伝わることを抑制することができ、熱式流量センサSにより測定される流量に対する熱影響をより確実に低減させることができる。
Here, for example, heat from the outside such as cold air generated near the fluid control valve V may be transmitted to the radiators 50A and 50B through the lid 80 that is attached to the sensor cover 40 and closes the cavity H. When this heat is transmitted from the heat radiating portion 61 to the electric resistance wires 13A and 13B, the flow rate measured by the thermal flow rate sensor S is thermally affected.
Therefore, as shown in FIG. 12, the thermal flow sensor S may further include a heat insulating portion 73 interposed between the lid 80 and the heat radiating portion 61 to insulate them. 2, the heat radiating portion 61 may be provided in a non-contact manner with respect to the lid 80. As shown in FIG. Note that the heat insulating portion 73 may be made of, for example, stainless steel, resin, ceramics, zirconia, or the like.
With such a configuration, heat from the outside can be suppressed from being transmitted to the heat radiating portion 61 via the lid 80, and the thermal effect on the flow rate measured by the thermal flow sensor S can be more reliably reduced. can be made
 また、前記実施形態では、一対の電気抵抗線13A、13Bの上流側及び下流側それぞれに放熱器50を設けていたが、上流側又は下流側の一方にのみ放熱器50を設けても良いし、一対の電気抵抗線13A、13Bの間に放熱器50を設けても良い。 Further, in the above-described embodiment, the radiators 50 are provided on the upstream side and the downstream side of the pair of electric resistance wires 13A and 13B, respectively, but the radiator 50 may be provided on either the upstream side or the downstream side. , a radiator 50 may be provided between the pair of electric resistance wires 13A and 13B.
 また、本発明に係る流体制御装置としては、必ずしも放熱器50を備えている必要はなく、電気抵抗線の周囲に設けられており、電気抵抗線と外部とを熱的に切り離す低熱伝導部材を備えていれば良い。なお、外部からの熱としては、流体が流体制御バルブを通過することにより生じる冷気や、流量算出などを司るCPU等の発熱などを挙げることができる。 In addition, the fluid control device according to the present invention does not necessarily have the radiator 50, and a low heat conductive member is provided around the electric resistance wire and thermally separates the electric resistance wire from the outside. It's good to be prepared. It should be noted that the heat from the outside includes cold air generated by the passage of the fluid through the fluid control valve, and heat generated by the CPU or the like that controls the flow rate calculation.
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や組み合わせを行っても構わない。 In addition, various modifications and combinations of the embodiments may be made as long as they do not contradict the spirit of the present invention.
 本発明であれば、流体の温度分布の速やかな安定化を図り、応答速度を向上させつつも、測定される流量に対する外部からの熱影響を低減させることができる。
 

 
According to the present invention, it is possible to quickly stabilize the temperature distribution of the fluid, improve the response speed, and reduce the external thermal influence on the measured flow rate.


Claims (9)

  1.  流体が流れる配管に巻回された一対の電気抵抗線と、
     前記電気抵抗線からの熱を外部に放熱する放熱部と、
     前記放熱部の周囲に設けられており、前記放熱部よりも熱伝導率の低い低熱伝導部材とを備える熱式流量センサ。
    a pair of electrical resistance wires wound around a pipe through which a fluid flows;
    a heat radiating part that radiates heat from the electric resistance wire to the outside;
    A thermal flow sensor provided around the heat radiating section and having a low thermal conductivity member having a lower thermal conductivity than the heat radiating section.
  2.  前記放熱部が、前記一対の電気抵抗線の上流側及び下流側それぞれに設けられており、
     前記低熱伝導部材が、これらの放熱部を支持する平板状をものである、請求項1記載の熱式流量センサ。
    The heat radiation part is provided on each of the upstream side and the downstream side of the pair of electric resistance wires,
    2. The thermal flow sensor according to claim 1, wherein said low thermal conductive member has a flat plate shape for supporting these heat radiating portions.
  3.  前記放熱部が、前記一対の電気抵抗線の上流側及び下流側それぞれに設けられており、
     前記低熱伝導部材が、これらの放熱部を囲う枠状をなすものである、請求項1記載の熱式流量センサ。
    The heat radiation part is provided on each of the upstream side and the downstream side of the pair of electric resistance wires,
    2. The thermal flow sensor according to claim 1, wherein said low thermal conductive member has a frame shape surrounding said heat radiating portion.
  4.  前記放熱部が、前記配管の外周面に接触しており、
     前記放熱部に接触するとともに、前記配管を挟み込む位置それぞれに設けられたバッファ部をさらに備えており、
     前記バッファ部が、前記低熱伝導部材と同じ材質からなる、請求項1乃至3のうち何れか一項に記載の熱式流量センサ。
    The heat radiation part is in contact with the outer peripheral surface of the pipe,
    further comprising a buffer unit provided at each position that contacts the heat radiation unit and sandwiches the pipe,
    4. The thermal flow sensor according to any one of claims 1 to 3, wherein said buffer section is made of the same material as said low thermal conductive member.
  5.  前記一対の電気抵抗線を収容する空洞部が形成されたセンサカバーをさらに備え、
     前記空洞部が、前記低熱伝導部材を嵌め込み可能にざぐられている、請求項1乃至4のうち何れか一項に記載の熱式流量センサ。
    further comprising a sensor cover formed with a cavity accommodating the pair of electric resistance wires;
    5. The thermal flow sensor according to any one of claims 1 to 4, wherein said cavity is counterbore so that said low heat conductive member can be fitted therein.
  6.  前記センサカバーに取り付けられる蓋体と、
     前記蓋体と前記放熱部との間に介在して、これらを断熱する断熱部とをさらに備える、請求項5記載の熱式流量センサ。
    a lid attached to the sensor cover;
    6. The thermal flow sensor according to claim 5, further comprising a heat insulating portion interposed between said cover and said heat radiating portion to insulate them.
  7.  前記センサカバーに取り付けられる蓋体をさらに備え、
     前記蓋体に対して前記放熱部が非接触に設けられている、請求項5記載の熱式流量センサ。
    Further comprising a lid attached to the sensor cover,
    6. The thermal flow sensor according to claim 5, wherein said heat radiating portion is provided in a non-contact manner with respect to said lid.
  8.  請求項1乃至7のうち何れか一項に記載の熱式流量センサと、
     前記熱式流量センサが設けられるとともに、前記流体が流れる内部流路が形成されたブロックと、
     前記ブロックに設けられた流体制御バルブとを備える、流体制御装置。
    a thermal flow sensor according to any one of claims 1 to 7;
    a block provided with the thermal flow sensor and formed with an internal flow path through which the fluid flows;
    and a fluid control valve provided in the block.
  9.  熱式流量センサと、
     前記熱式流量センサが設けられるとともに、前記流体が流れる内部流路が形成されたブロックと、
     前記ブロックに設けられた流体制御バルブとを備え、
     前記熱式流量センサが、
     流体が流れる配管に巻回された一対の電気抵抗線と、
     前記電気抵抗線の周囲に設けられており、前記電気抵抗線と外部とを熱的に切り離す低熱伝導部材とを有する、流体制御装置。
    a thermal flow sensor;
    a block provided with the thermal flow sensor and formed with an internal flow path through which the fluid flows;
    a fluid control valve provided in the block;
    The thermal flow sensor is
    a pair of electrical resistance wires wound around a pipe through which a fluid flows;
    A fluid control device, comprising: a low heat conductive member provided around the electric resistance wire and thermally isolating the electric resistance wire from the outside.
PCT/JP2022/011795 2021-06-17 2022-03-16 Thermal flowrate sensor and fluid control device WO2022264574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529558A JPWO2022264574A1 (en) 2021-06-17 2022-03-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101218 2021-06-17
JP2021-101218 2021-06-17

Publications (1)

Publication Number Publication Date
WO2022264574A1 true WO2022264574A1 (en) 2022-12-22

Family

ID=84527009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011795 WO2022264574A1 (en) 2021-06-17 2022-03-16 Thermal flowrate sensor and fluid control device

Country Status (3)

Country Link
JP (1) JPWO2022264574A1 (en)
TW (1) TW202300873A (en)
WO (1) WO2022264574A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105520A (en) * 1982-12-08 1984-06-18 Tokyo Keiso Kk Thermal type mass flowmeter
JPS63133020A (en) * 1986-11-25 1988-06-04 Nippon Tairan Kk Mass flow rate sensor
JPH06507713A (en) * 1991-04-26 1994-09-01 ユニット・インストゥルメンツ・インコーポレーテッド thermal mass flow sensor
WO2018180387A1 (en) * 2017-03-30 2018-10-04 株式会社フジキン Mass flow sensor, mass flow meter provided with mass flow sensor, and mass flow controller provided with mass flow sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105520A (en) * 1982-12-08 1984-06-18 Tokyo Keiso Kk Thermal type mass flowmeter
JPS63133020A (en) * 1986-11-25 1988-06-04 Nippon Tairan Kk Mass flow rate sensor
JPH06507713A (en) * 1991-04-26 1994-09-01 ユニット・インストゥルメンツ・インコーポレーテッド thermal mass flow sensor
WO2018180387A1 (en) * 2017-03-30 2018-10-04 株式会社フジキン Mass flow sensor, mass flow meter provided with mass flow sensor, and mass flow controller provided with mass flow sensor

Also Published As

Publication number Publication date
JPWO2022264574A1 (en) 2022-12-22
TW202300873A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
KR101393124B1 (en) Flowmeter
TWI408379B (en) Leadframe current sensor
JP2004015061A (en) Semiconductor integrated circuit, elements with cooling body and temperature sensor
JP4537067B2 (en) Apparatus and method for thermal management of mass flow controller
US9810586B2 (en) Temperature sensor and thermal, flow measuring device
WO2022264574A1 (en) Thermal flowrate sensor and fluid control device
KR20020019786A (en) Thermoelectric cooling module with temperature sensor
KR20040070178A (en) Apparatus and method for thermal dissipation in a thermal mass flow sensor
JP2010122165A (en) Temperature measuring unit and surface temperature measuring apparatus therewith
JP5760207B2 (en) Sensing unit and thermal flow sensor equipped with it
JP2001021512A (en) Thermal conductivity measuring device
CN110462348B (en) Mass flow sensor, mass flow meter provided with mass flow sensor, and mass flow controller provided with mass flow sensor
JP2002232065A (en) Optical element module utilizing integral heat transmission module
JP7024614B2 (en) Electronic device
JP2022142183A (en) X-ray diffraction measurement device
JP6980544B2 (en) Sample holder
JPWO2009044640A1 (en) Ultrasonic sensor
JP2017219434A (en) Thermal flow sensor
JP2574582Y2 (en) Thermal protection device for semiconductor devices
JP2004037225A (en) Gas sensor
JP5458935B2 (en) Air flow measurement device
JP3766290B2 (en) Flow sensor
JP2011209009A (en) Sensor
JP6234743B2 (en) Thermal flow sensor
JP2023536271A (en) A thermal flow sensor with a heat-conducting frame element in the form of a printed circuit board (PCB)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE