WO2022262788A1 - 一种窄间隙激光-tig电弧复合焊接装置及焊接方法 - Google Patents

一种窄间隙激光-tig电弧复合焊接装置及焊接方法 Download PDF

Info

Publication number
WO2022262788A1
WO2022262788A1 PCT/CN2022/099048 CN2022099048W WO2022262788A1 WO 2022262788 A1 WO2022262788 A1 WO 2022262788A1 CN 2022099048 W CN2022099048 W CN 2022099048W WO 2022262788 A1 WO2022262788 A1 WO 2022262788A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
laser
wire
welding torch
tube
Prior art date
Application number
PCT/CN2022/099048
Other languages
English (en)
French (fr)
Inventor
黄瑞生
滕彬
张焱
徐锴
费大奎
蒋宝
武鹏博
梁晓梅
邹吉鹏
Original Assignee
哈尔滨焊接研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨焊接研究院有限公司 filed Critical 哈尔滨焊接研究院有限公司
Publication of WO2022262788A1 publication Critical patent/WO2022262788A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention belongs to the technical field of welding manufacturing, and in particular relates to a narrow gap laser-TIG arc hybrid welding device and a welding method.
  • TIG welding As one of the traditional arc welding technologies, tungsten inert gas welding (TIG) has the advantages of good arc stability, high reliability, high-quality welding, and excellent weld seams. , marine engineering and many other fields have a wide range of applications.
  • TIG welding has the common shortcomings of arc welding: the welding speed of TIG and its filler wire welding process is low, generally 0.1m/min-0.2m/min, and the welding wire deposition efficiency Low, especially for the welding of medium-thick structural parts, more welding passes are required, resulting in low welding efficiency, and due to the low TIG welding speed, the heat input to the joint is large, which easily leads to large welding deformation.
  • laser welding After the 1990s, with the emergence and continuous development of high-power lasers, laser welding technology developed rapidly. Unlike traditional welding heat sources, laser welding has high energy density, fast processing speed, small post-weld deformation and residual stress, and welding heat. The area is narrow, which can realize single-sided welding and double-sided forming, without the need for subsequent processing procedures.
  • laser welding also has many disadvantages, such as: high requirements for workpiece groove assembly, easy generation of pores and cracks during welding, high hardness and reduced toughness of cooling and solidification quick joints, etc.
  • Laser-TIG arc hybrid welding technology is an emerging welding process in recent years. It combines two heat sources with completely different physical properties and energy transmission mechanisms, and acts on the same molten pool at the same time. It not only makes full use of the two heat sources. Their respective advantages make up for their respective deficiencies, thus forming a new and efficient heat source. Its main advantages are reflected in increasing the penetration depth of the weld, improving the adaptability of the welded joint, improving the stability of the welding process, improving the microstructure of the weld, reducing welding defects, and improving production efficiency.
  • the laser-TIG arc hybrid welding method has advantages in many aspects, with the continuous improvement of product quality and production efficiency requirements, especially in the welding of large-thickness materials, limited by the size of the welding torch, in order to ensure the accessibility of the welding torch 1.
  • the groove area is large, resulting in a large amount of metal filling, which greatly reduces the welding efficiency of the product, consumes a lot of welding consumables, and has a high production cost.
  • its welding deformation is serious.
  • the present invention aims to propose a narrow-gap laser-TIG arc hybrid welding device and welding method, which can improve product quality, improve welding efficiency, reduce welding cost, reduce welding deformation, and precisely control weld width.
  • a narrow-gap laser-TIG arc hybrid welding device including a welding torch body, a swing welding torch assembly, a welding wire feeding heating assembly and an air supply assembly.
  • the swing welding torch assembly includes a welding torch shaft, a stepping motor, a large gear, a pinion, an upper The insulating sleeve, the lower insulating sleeve, the tungsten pole clip and the tungsten pole, the stepper motor is installed on the motor connection seat, the pinion is installed on the output shaft of the stepper motor, and the large gear is installed on the welding torch On the rotating shaft, the pinion gear meshes with the large gear, the welding torch rotating shaft is installed and positioned on the welding torch body through the upper insulating sleeve and the lower insulating sleeve, and the tungsten electrode is installed at the end of the welding torch rotating shaft through a tungsten electrode clamp;
  • the welding wire feeding heating assembly includes a hot wire connecting seat, a conductive connecting rod, an upper insulating seat, a lower insulating seat, a wire guide tube, a conductive tip connecting seat and a conductive tip, and the upper end of the conductive connecting rod is connected to the hot wire connecting seat.
  • connection the lower end is connected to the contact tip connection seat, the contact tip is installed on the contact tip connection seat, the conductive connecting rod is installed on the left side of the welding torch body through the upper insulating seat and the lower insulating seat, and the guide wire tube is installed On the upper insulating seat, the end of the guide wire tube is connected to the contact tip, and the hot wire connection seat is connected to the hot wire power cable;
  • the TIG welding arc generated by the tungsten electrode intersects with the focal point of the laser beam and acts on the same welding pool together.
  • the gas supply component includes a left air guide tube and a right air guide tube. Installed on the welding torch body and arranged on the left and right sides of the welding torch shaft, the ends of the left and right air guide pipes correspond to the left and right air chambers at the lower end of the welding torch body respectively, and the air chamber is equipped with a gas screen, and the welding shielding gas passes through the left and right air chambers.
  • the air guide tube and the right air guide tube are transmitted to the left and right air chambers at the lower end of the welding torch body, and then evenly transported to the welding arc area through the air screen.
  • the rotating shaft of the torch is a double-layer tube structure, including an outer tube and an inner tube, the outer tube communicates with the lower part of the inner tube, the outer tube communicates with the water inlet, and the inner tube communicates with the inner tube.
  • the water outlet holes are connected, and the cooling water flows into the outer layer pipe through the water inlet hole, and then flows out from the inner layer pipe through the water outlet hole.
  • left air guide tube, welding torch shaft, right air guide tube, conductive connecting rod and wire guide tube are all arranged side by side.
  • the wire guide tube is clamped and positioned on the insulating seat by a fixing clip, and the fixing clip is used to adjust the feeding position of the welding wire.
  • the welding torch body is an ultra-thin structure with a thickness of 12mm.
  • a protective cover is provided around the stepping motor, the motor connecting seat and the heating wire connecting seat.
  • the device also includes a welding torch connecting seat, the welding torch connecting seat is connected with the welding torch body, and the welding torch is connected
  • the seat is connected with the installation connection plate; the installation connection plate is arranged on the outside of the protective cover, and the installation connection plate is connected with the external walking mechanism.
  • the heating wire connection base is connected to an external heating wire mechanism through a heating wire power cable.
  • the laser used for the laser beam is a YAG solid-state laser, a semiconductor laser or a fiber laser; the diameter of the welding wire is 0.8-2.4mm.
  • a welding method of a narrow gap laser-TIG arc hybrid welding device specifically comprising the following steps:
  • welding parameters include wire feeding speed, welding wire diameter, laser defocus, laser power, laser swing amplitude and frequency, TIG arc current, voltage and tungsten length, swing angle and frequency ;
  • the laser and arc act on the surface of the workpiece, the welding wire is synchronously and stably fed into the welding pool, and at the same time, the torch head moves along the welding direction at the set speed. Narrow gap welding.
  • a narrow gap laser-TIG arc hybrid welding device and welding method according to the present invention have the following advantages:
  • the narrow-gap laser-TIG arc hybrid welding device is a narrow-gap laser-TIG composite welding torch integrating water, electricity, gas and wire, which can realize continuous production and use for 24 hours. Use, reduce the filling amount of welding wire, and greatly improve the welding efficiency. Compared with traditional welding, the welding efficiency is increased by more than 3 times.
  • the TIG arc has a swing function, which is used for the optimization and adjustment of the weld width under narrow groove welding conditions.
  • the present application also proposes to use a hot wire device to heat the welding wire during the welding process, so as to improve the welding wire deposition efficiency during the welding process.
  • the welding wire is in the front, the swing laser is centered, and the TIG arc is behind.
  • the welding wire, laser and arc act together on a molten pool.
  • the laser swings vertically to the weld seam, and the laser melts the welding wire.
  • the addition of the laser swing effect increases the spreadability of the metal in the molten pool, and also improves the technical difficulties in the neutrality of the welding wire and the laser due to the concentration of laser energy; the TIG arc acts on the rear of the entire molten pool, due to the TIG The energy density of the arc is smaller than that of the laser.
  • the thermal effect of the arc on the base metal and the molten pool can greatly improve the spreadability of the molten pool metal, which is conducive to achieving a good weld forming effect.
  • the TIG tungsten electrode can Rotation can ensure the fusion of both sides of the weld and the side wall of the base metal, greatly improving the welding quality of the product.
  • Fig. 1 is a front sectional view of a narrow gap laser-TIG arc hybrid welding device described in an embodiment of the present invention
  • Fig. 2 is a side sectional view of a narrow gap laser-TIG arc hybrid welding device described in an embodiment of the present invention
  • Fig. 3 is the structural representation of welding torch rotating shaft
  • Fig. 4 is a schematic diagram of the welding method principle of a narrow gap laser-TIG arc hybrid welding device
  • Fig. 5 is a photograph of a finished product welded by a welding method of a narrow gap laser-TIG arc hybrid welding device.
  • a narrow gap laser-TIG arc hybrid welding device includes a welding torch body 14, a swing welding torch assembly A, a welding wire feeding heating assembly B and an air supply assembly, and the swing welding torch assembly includes a welding torch shaft 1.
  • the pinion 2 is mounted on the output shaft of the stepping motor 6, the large gear 3 is mounted on the welding torch shaft 1, the small gear 2 and the large gear 3 mesh, and the welding torch shaft 1 is insulated
  • the sleeve 5 and the lower insulating sleeve 22 are installed and positioned on the welding torch body 14, and the tungsten pole 25 is installed on the end of the welding torch rotating shaft 14 through the tungsten pole clamp 24;
  • the wire feeding heating assembly includes a hot wire connection seat 10, a conductive connecting rod 11, an upper insulating seat 13, a lower insulating seat 22, a wire guide tube 17, a contact tip connection seat 18 and a contact tip 19.
  • the conductive connection The upper end of the rod 11 is connected to the hot wire connecting seat 10, and the lower end is connected to the contact tip connecting seat 18.
  • the conductive tip 19 is installed on the contact tip connecting seat 18, and the conductive connecting rod 11 passes through the upper insulating seat 13 and the lower insulating seat 16.
  • Installed on the left side of the welding torch body 14 the wire guide tube 17 is installed on the upper insulating seat 5 through the fixing clip 12, the end of the guide wire tube 17 is connected with the conductive tip 19, and the hot wire connection seat 10 is connected with the contact tip 19.
  • the torch rotating shaft 1 is a double-layer pipe structure with water cooling function, including an outer pipe 26 and an inner pipe 27, the outer pipe 26 and the inner pipe 27 are connected, and the outer pipe 26 is connected with the water inlet hole 28,
  • the inner pipe 27 communicates with the outlet hole 29 , the cooling water flows into the outer pipe 26 through the inlet hole 28 , and then flows out from the inner pipe 27 through the outlet hole 29 .
  • the left air guide tube 15, welding torch rotating shaft 1, right air guide tube 21, conductive connecting rod 11 and wire guide tube 17 are arranged side by side in sequence. Arranged in this way, the structure is compact.
  • the wire guide tube 17 is clamped and positioned by the fixing clip 12, and the fixing clip 12 is used to adjust the wire feeding position of the welding wire, and when the fixing clip 12 is loosened, the conductive tip can be adjusted to move up and down and rotate left and right.
  • the torch body 14 is an ultra-thin structure with a thickness of 12 mm, which is designed here to adapt to narrow gap grooves. It can realize stable, high-quality and efficient welding of 200mm thick material and narrow groove. It can meet the use of groove width less than 18mm groove structure.
  • the distance and angle between welding wire and laser, laser and TIG tungsten electrode can be adjusted according to parameter changes.
  • the composite welding gun has water cooling and gas protection functions, and can be used continuously for 24 hours.
  • a protective cover 5 is provided on the outer cover of the stepping motor 6 , the motor connecting seat 7 and the hot wire connecting seat 10 .
  • the protective cover 5 is mainly used for anti-collision protection of various joints and motor components at the upper end of the welding torch body 14 .
  • the device also includes a welding torch connecting seat 8 , the welding torch connecting seat 8 is connected to the welding torch body 14 , and the welding torch connecting seat 8 is connected to the installation connecting plate 9 .
  • the installation connecting plate 9 is arranged on the outer side of the protective cover 5, and the installation connecting plate 9 is connected with the external traveling mechanism, so as to be convenient to be connected with the external structure.
  • the hot wire connecting seat 10 is connected to an external hot wire mechanism through a hot wire power supply cable to preheat the welding wire before welding, improve the filling efficiency of the welding wire, and realize the improvement of the welding wire deposition efficiency during the welding process.
  • the working process of the welding device of the present application is as follows: the welding wire is automatically sent to the welding arc area through the wire guide tube 17 and the conductive tip 19 to realize filling of metal materials; The hot wire current is conducted to the wire guide nozzle 19 to heat the welding wire to realize the hot wire TIG welding function; the stepper motor 6 drives the large gear 3 installed on the welding torch shaft 1 to rotate through the small gear 2 installed on the output shaft, thereby The big gear 3 drives the welding torch rotating shaft 1 to swing, realizing the left and right swing of the tungsten electrode 25 during the welding process; during welding, the welding shielding gas is transmitted to the left and right air chambers at the front end of the welding torch body 14 through the left air guide tube 15 and the right air guide tube 21, and then passes through the gas screen Evenly transported to the welding arc area to protect the welding arc in real time; the TIG welding arc generated by the tungsten electrode 25 and the focus point of the laser beam 20 meet at a K point to form a composite arc of laser and TIG welding to achieve narrow gap
  • a welding method of a narrow gap laser-TIG arc hybrid welding device specifically includes the following steps:
  • welding parameters include wire feeding speed, welding wire diameter, laser defocus, laser power, laser swing amplitude and frequency, TIG arc current, voltage and tungsten length, swing angle and frequency ;
  • the laser spot swings to act on the welding pool during the welding process.
  • it can solve the problem of laser energy concentration, large penetration depth at the center of the laser spot, and shallow penetration at the edge. This leads to poor fusion between layers; secondly, the welding process is still an unstable process. After the end of each layer of welding, there are differences in the surface state of the weld, which affects the quality of the next weld.
  • the welding wire acts on the front end of the molten pool, and the laser swing increases the width of the molten pool, which reduces the requirement for the position accuracy of the front end of the welding wire; in addition, the addition of the laser also
  • the melting amount of welding wire per unit time has been greatly increased, that is, the feeding speed of welding wire per unit time has been increased, thereby improving the metal deposition efficiency per unit time and achieving a substantial increase in welding efficiency;
  • the tungsten electrode 25 is installed on the welding torch shaft 1 through the tungsten pole clamp 24, and the stepper motor 6 drives the large gear 3 installed on the welding torch shaft 1 through the small gear 2 installed on the output shaft, so as to realize the tungsten in the welding process.
  • Pole 25 swings left and right;
  • the tungsten electrode can ensure the accessibility of the welding position of the tungsten electrode in the groove by setting the rotation angle of the tungsten electrode according to the size of the groove gap; at the same time, the rotation speed of the tungsten electrode and the dwell time of the extreme positions on both sides of the rotation can be adjusted.
  • These settings greatly reduce the phenomenon of side wall infusion during narrow-gap groove welding; during the welding process, the TIG arc voltage tracking function is used to adjust the position and height of the composite welding torch in real time to ensure the relative position consistency between the arc and the workpiece. Realize stable welding in the whole welding process;
  • the laser swing amplitude and frequency, arc rotation angle and frequency have a great influence on the welding side wall fusion under the condition of narrow gap groove. Adjust the seam width.
  • the laser and TIG arc act on a molten pool, the laser is in front, the arc is behind, the welding wire is sent into the molten pool in front of the laser along the direction of the welding seam, the welding wire is melted under the action of the laser and enters the molten pool, and the arc and the laser are combined to melt
  • the base metal achieves the metallurgical bonding effect between the welding consumable and the base metal.
  • the addition of dual heat sources improves the welding seam fusion quality, improves the welding seam forming effect, and increases the welding wire melting speed.
  • the laser beam adopts YAG solid-state laser, semiconductor laser or fiber laser; the laser output is continuous laser or pulsed laser, and the laser power is 10-10000W.
  • the laser beam is a scanning laser.
  • Several typical laser scanning paths include "one" shape, "8" shape, circle, polygon, zigzag and sine wave, etc. Each scanning path has two different patterns: clockwise and counterclockwise. direction of beam movement.
  • the welding device is equipped with an external hot wire interface, which increases the melting speed of the welding wire, and the feeding speed of the welding wire increases under the same parameters.
  • the wire diameter is 0.8-2.4mm.
  • the TIG arc is L-shaped and can rotate along the guide rod.
  • the weld width can be adjusted according to the extension length of the tungsten electrode, the rotation angle and the frequency.
  • the narrow gap laser-TIG arc hybrid welding device can meet the welding requirements of carbon steel, stainless steel, aluminum alloy, nickel-based alloy and other materials, and the applicable range of plate thickness is 0.5-200mm.
  • a high-quality/high-efficiency narrow-gap laser-TIG arc hybrid welding method proposed by the present invention aims to improve product welding quality, improve welding efficiency, reduce welding cost, and reduce welding deformation.
  • This method combines laser and arc heat sources in one molten pool, and the stability of the arc is enhanced.
  • the swing laser and rotating arc method are used to solve the technical problems of multi-layer and multi-channel interlayer and side wall fusion, and the welding quality of the product is greatly improved. promote.
  • a narrow-gap laser-TIG composite welding torch was designed and developed, which greatly reduces the volume of the groove.
  • the role of dual heat sources increases the melting speed of welding wire metal and the speed of welding wire feeding.
  • the efficiency of metal deposition per unit time is greatly improved.
  • the addition of the hot wire device again preheats the welding wire in advance, and the feeding speed of the welding wire increases under the same parameters.
  • the welding deformation and the quality of the weld seam formation have also been greatly improved.
  • Groove design a compound symmetrical groove design is adopted, the root is a U-shaped groove structure, the blunt edge of the groove is 4mm, and the groove angle is 2°;
  • the swing of the laser spot and the rotation of the tungsten pole are required.
  • the working process of the tungsten pole rotation and swing is as follows: during the welding process, the tungsten pole 25 is installed on the welding torch shaft 1 through the tungsten pole clamp 24, and the stepping motor 6 is installed on the output shaft through the The small gear 2 drives the large gear 3 installed on the welding torch shaft 1 to realize the left and right swing of the tungsten pole 25 during the welding process; during welding, the swing of the tungsten pole cooperates with the swing of the laser spot to achieve good quality of the welded joint;
  • the tungsten electrode can ensure the accessibility of the welding position of the tungsten electrode in the groove by setting the rotation angle of the tungsten electrode according to the size of the groove gap; at the same time, the rotation speed of the tungsten electrode and the dwell time of the extreme positions on both sides of the rotation can be adjusted. These settings greatly reduce the occurrence of sidewall infusion during narrow gap groove welding;
  • the TIG arc voltage tracking function is used to adjust the position and height of the composite welding torch in real time to ensure the relative position consistency between the arc and the workpiece, and to realize stable welding in the whole welding process; welding is performed according to the set trajectory, and the welding method adopts multi-layer single-pass
  • the welding method is to weld one layer for each layer, and the welded test piece shown in Figure 5 is welded.
  • the welding quality of the weld seam is good and the deformation of the weld seam is small.
  • the designed narrow-gap laser-TIG arc composite welding torch head can realize plate welding with thickness ⁇ 200mm and groove width ⁇ 18mm;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Abstract

一种窄间隙激光-TIG电弧复合焊接装置及焊接方法,焊接装置包括焊枪体(14)、摆动焊枪组件、焊丝送丝加热组件和送气组件,摆动焊枪组件包括焊枪转轴(1)、步进电机(6)、大齿轮(3)、小齿轮(2)、上绝缘套(4)、下绝缘套(22)、钨极夹(24)和钨极(25),步进电机(6)安装在电机连接座(7)上,小齿轮(2)安装在步进电机(6)的输出轴上,大齿轮(3)安装在焊枪转轴(1)上,小齿轮(2)和大齿轮(3)啮合,焊枪转轴(1)通过上绝缘套(4)和下绝缘套(22)安装定位在焊枪体(14)上,钨极(25)通过钨极夹(24)安装在焊枪转轴(1)的末端;焊丝送丝加热组件送丝并加热;焊接电弧与激光束的聚焦点共同作用于同一焊接熔池区域,送气组件将焊接保护气体输送到焊接电弧区域。

Description

一种窄间隙激光-TIG电弧复合焊接装置及焊接方法 技术领域
本发明属于焊接制造技术领域,尤其是涉及一种窄间隙激光-TIG电弧复合焊接装置及焊接方法。
背景技术
钨极惰性气体保护焊(TIG)作为一种传统的电弧焊接技术之一,具有电弧稳定性好、可靠性高、能够实现高品质焊接、得到优良的焊缝等优点,在航空航天、石油化工、海洋工程等多个领域有广泛的应用。但是,TIG焊作为电弧焊的一种,具有着电弧焊所共有的不足:TIG及其填丝焊工艺的焊接速度较低,一般为0.1m/min-0.2m/min,并且焊丝熔敷效率低,尤其是对中厚结构件的焊接,需要焊接的道数较多,导致焊接效率较低,并且由于TIG焊接速度较低,对接头的热输入较大,易导致较大的焊接变形,同时造成焊接接头组织粗大、热影响区宽、性能弱化等一系列的缺点。随着我国核电、航空航天等领域的快速发展,TIG焊方法逐渐难以完全满足我国各领域对其关键部件优质、高效焊接制造的需求,因此,希望开发出焊接热输入低、焊接效率高且可以达到TIG焊质量的新型焊接方法。
20世纪90年代以后,随着高功率激光器的出现及不断发展,激光焊接技术高速发展,与传统焊接热源不同,激光焊能量密度高、加工速度快、焊后变形和残余应力小、焊接热影响区窄,能实现单面焊双面成形,无需后续处理工序。但是,激光焊也有许多缺点,如:对工件坡口装配要求高、焊接过程中容易生成气孔和裂纹、冷却凝固快接头硬度高而韧性降低等。
激光-TIG电弧复合焊接技术是近几年来新兴的焊接工艺,它是将物理性质、能量传输机制截然不同的两种热源复合在一起,同时作用于同一个熔池,既充分发挥了两种热源各自的优势,又相互弥补了各自的不足,从而形成一种全新高效的热源。其主要优点表现在增加焊缝熔深、提高焊接接头的适应性、提高焊接过程稳定性、改善焊缝微观组织、减少焊接缺陷、提高生产效率等方面。尽管激光-TIG电弧复合焊接方法,在多方面体现了优势,但随着对产品质量及生产效率要求的不断提升,特别在大厚 度材料的焊接中,受焊枪尺寸限制,为了保证焊枪可达性、坡口面积大,导致金属填充量大,极大降低了产品的焊接效率,焊材耗量大,生产成本较大,同时其焊接变形严重。并且现在的焊接中存在多层多道的层间及侧壁熔合技术难题,产品焊接质量受到很大影响。
发明内容
有鉴于此,本发明旨在提出一种窄间隙激光-TIG电弧复合焊接装置及焊接方法,能够提高产品质量、提升焊接效率、降低焊接成本、减小焊接变形,精准控制焊缝熔宽。
为达到上述目的,本发明的技术方案是这样实现的:
一种窄间隙激光-TIG电弧复合焊接装置,包括焊枪体、摆动焊枪组件、焊丝送丝加热组件和送气组件,所述的摆动焊枪组件包括焊枪转轴、步进电机、大齿轮、小齿轮、上绝缘套、下绝缘套、钨极夹和钨极,所述的步进电机安装在电机连接座上,所述的小齿轮安装在步进电机的输出轴上,所述的大齿轮安装在焊枪转轴上,所述的小齿轮和大齿轮啮合,所述的焊枪转轴通过上绝缘套和下绝缘套安装定位在焊枪体上,所述钨极通过钨极夹安装在焊枪转轴的末端;
所述的焊丝送丝加热组件包括热丝连接座、导电连接杆、上绝缘座、下绝缘座、导丝管、导电嘴连接座和导电嘴,所述的导电连接杆上端与热丝连接座连接,下端与导电嘴连接座连接,所述导电嘴安装在导电嘴连接座上,所述导电连接杆通过上绝缘座和下绝缘座安装在焊枪体的左侧,所述的导丝管安装在上绝缘座上,所述的导丝管末端与导电嘴连接,所述热丝连接座与热丝电源电缆连接;
钨极产生的TIG焊接电弧与激光束的聚焦点交汇一处,共同作用于同一焊接熔池,所述的送气组件包括左导气管和右导气管,所述的左导气管和右导气管均安装在焊枪体上,且布置在焊枪转轴的左右两侧,左导气管和右导气管的末端分别对应焊枪体下端的左右气室布置,且气室内设有气筛网,焊接保护气体通过左导气管和右导气管传输到焊焊枪体下端的左右气室,再通过气筛网均匀的输送到焊接电弧区域。
进一步的,所述焊枪转轴为双层管结构,包括外层管和内层管,外层管和内层管的下部连通,所述外层管与进水孔连通,所述内层管与出水孔连通,冷却水通过进水孔流入外层管内,再由内层管经出水孔流出。
进一步的,所述左导气管、焊枪转轴、右导气管、导电连接杆和导丝管之间均并排布置。
进一步的,所述导丝管通过固定夹夹紧定位在绝缘座上,所述固定夹用于调整焊丝送丝位置。
进一步的,所述焊枪体为超薄结构,厚度为12mm。
进一步的,在步进电机、电机连接座及热丝连接座外围罩设有一保护罩。
进一步的,所述装置还包括焊枪连接座,所述焊枪连接座与焊枪体连接,焊枪连接
座与安装连接板连接;所述安装连接板设置在保护罩外侧,所述安装连接板与外部行走机构连接。
进一步的,所述热丝连接座通过热丝电源电缆与外部热丝机构连接。
进一步的,所述激光束采用激光器为YAG固体激光器、半导体激光器或光纤激光器;焊丝直径为0.8-2.4mm。
一种窄间隙激光-TIG电弧复合焊接装置的焊接方法,具体包括以下步骤:
一、焊前
1)依据复合焊枪尺寸,设计窄间隙坡口结构,保证焊枪在焊缝深度方向的可达性;
2)将待焊工件进行打磨或清理,并将打磨或清洗后的待焊工件组装及定位;
3)调节并确认焊丝、激光及钨极间空间位置关系;
4)检查水、电、气及焊接设备运行状态;
5)设置焊丝、激光及TIG电弧焊接参数,焊接参数包括送丝速度、焊丝直径、激光离焦量、激光功率、激光摆动幅度和频率、TIG电弧电流、电压及钨极长度、摆动角度和频率;
二、焊中
开启控制开关,激光及电弧作用于工件表面,焊丝同步稳定送入焊接熔池,同时枪头沿焊接方向按照设定速度移动,焊接过程中,激光光斑的摆动协同钨极左右摆动最终实现厚板窄间隙焊接。
相对于现有技术,本发明所述的一种窄间隙激光-TIG电弧复合焊接装置及焊接方法具有以下优势:
1、本申请在保证焊接质量的同时,提高产品焊接效率。该窄间隙激光-TIG电弧复合焊接装置是集水、电、气、丝一体化窄间隙激光-TIG复合焊枪,可实现连续24小时连续生产使用,同时设计的复合焊枪可在小角度坡口下使用,减小焊丝填充量,大幅度提升焊接效率,与传统焊接相比,焊接效率提高3倍以上。
2、TIG电弧具有摆动功能,用于窄坡口焊接条件下焊缝宽度优化调整。
3、本申请在焊接效率提升方面还提出了采用焊接过程中利用热丝装置对焊丝进行加热,实现在焊接过程中焊丝熔敷效率的提升。
4、本申请以焊丝在前、摆动激光居中、TIG电弧在后的焊接方式,将焊丝、激光与电弧共同作用于一个熔池,焊接过程中,激光垂直焊缝方面进行摆动,激光在熔化焊丝及母材的同时,激光摆动作用的加入增加了熔池金属的铺展性,同时也改善了由于激光能量集中导致焊丝与激光对中性性技术难点;TIG电弧作用在整个熔池后方,由于TIG电弧能量密度相比于激光的能量密度小,电弧对母材金属及熔池的热作用,可大幅度提升熔池金属的铺展性,有利于实现良好的焊缝成形效果,同时TIG钨极可进行旋转,可保证焊缝两侧与母材侧壁的熔合,大大改善产品焊接质量。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述的一种窄间隙激光-TIG电弧复合焊接装置的主视剖视图;
图2为本发明实施例所述的一种窄间隙激光-TIG电弧复合焊接装置的侧视剖视图;
图3为焊枪转轴的结构示意图;
图4为一种窄间隙激光-TIG电弧复合焊接装置的焊接方法原理示意图;
图5为通过一种窄间隙激光-TIG电弧复合焊接装置的焊接方法焊接的成品件照片。
附图标记说明:
A-摆动焊枪组件,B-焊丝送丝加热组件,C-焊缝,D-焊接电弧区域,1-焊枪转轴,2-小齿轮,3-大齿轮,4-上绝缘套,5-保护罩,6-步进电机,7-电机连接座,8-焊枪连接座,9-安装连接板,10-热丝连接座,11-导电连接杆,12-固定夹,13-上绝缘座,14-焊枪体,15-左导气管,16-下绝缘座,17-导丝管,18-导电嘴连接座,19-导电嘴,20-激光束,21-右导气管,22-下绝缘套,23-气筛网,24-钨极夹,25-钨极,26-外层管,27-内层管,28-进水孔,29-出水孔圈;501-滤芯套筒;502-叶片;503-外围圈;504-N型支撑;505-环状体。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
如图1-图3所示,一种窄间隙激光-TIG电弧复合焊接装置,包括焊枪体14、摆动焊枪组件A、焊丝送丝加热组件B和送气组件,所述的摆动焊枪组件包括焊枪转轴1、步进电机6、大齿轮3、小齿轮2、上绝缘套4、下绝缘套16、钨极夹24和钨极25,所述的步进电机6安装在电机 连接座7上,所述的小齿轮2安装在步进电机6的输出轴上,所述的大齿轮3安装在焊枪转轴1上,所述的小齿轮2和大齿轮3啮合,所述的焊枪转轴1通过上绝缘套5和下绝缘套22安装定位在焊枪体14上,所述钨极25通过钨极夹24安装在焊枪转轴14的末端;
所述的焊丝送丝加热组件包括热丝连接座10、导电连接杆11、上绝缘座13、下绝缘座22、导丝管17、导电嘴连接座18和导电嘴19,所述的导电连接杆11上端与热丝连接座10连接,下端与导电嘴连接座18连接,所述导电嘴19安装在导电嘴连接座18上,所述导电连接杆11通过上绝缘座13和下绝缘座16安装在焊枪体14的左侧,所述的导丝管17通过固定夹12安装在上绝缘座5上,所述的导丝管17末端与导电嘴19连接,所述热丝连接座10与热丝电源电缆连接;
钨极25产生的TIG焊接电弧与激光束20的聚焦点交汇一处,共同作用于同一焊接熔池;所述的送气组件包括左导气管15和右导气管21,所述的左导气管15和右导气管21均安装在焊枪体14上,且布置在焊枪转轴1的左右两侧,左导气管15和右导气管21的末端分别对应焊焊枪体14下端的左、右气室布置,且气室内设有气筛网23,焊接保护气体通过左导气管15和右导气管21传输到焊枪体14下端的左、右气室,再通过气筛网13均匀的输送到焊接电弧区域D。
所述焊枪转轴1为双层管结构,具有水冷功能,包括外层管26和内层管27,外层管26和内层管27连通,所述外层管26与进水孔28连通,所述内层管27与出水孔29连通,冷却水通过进水孔28流入外层管26内,再由内层管27经出水孔29流出。确保焊接过程中,对安装在焊枪转轴1前端的钨极25进行实时冷却。
所述左导气管15、焊枪转轴1、右导气管21、导电连接杆11和导丝管17依次并排布置。如此排布,结构紧凑。
所述导丝管17通过固定夹12夹紧定位,所述固定夹12用于调整焊丝送丝位置,松开固定夹12,可以调整导电嘴上下移动及左右转动。
所述焊枪体14为超薄结构,厚度为12mm,此处设计为了适应窄间隙坡口。可实现200mm大厚度材料、窄坡口下的稳定、优质、高效的焊接。可满足坡口宽度小于18mm坡口结构使用。焊丝与激光、激光与TIG 钨极之间距离及角度可根据参数变化进行调节,复合焊枪具有水冷及气体保护功能,可连续24小时长时间使用。
在步进电机6、电机连接座7及热丝连接座10外围罩设有一保护罩5。保护罩5主要用于对焊枪体14上端各类接头及电机部件的防撞保护。
所述装置还包括焊枪连接座8,所述焊枪连接座8与焊枪体14连接,焊枪连接座8与安装连接板9连接。
所述安装连接板9设置在保护罩5外侧,所述安装连接板9外部行走机构连接,便于与外部结构连接。
所述热丝连接座10通过热丝电源电缆与外部热丝机构连接,对焊丝进行焊前预热,提升焊丝填充效率,实现在焊接过程中焊丝熔敷效率的提升。
本申请的焊接装置的工作过程为:焊丝通过导丝管17和导电嘴19自动送到焊接电弧区域,实现金属材料填充;热丝连接座10用于连接热丝电源电缆,通过导电连接杆11将热丝电流传导至导丝嘴19对焊丝加热,实现热丝TIG焊功能;步进电机6通过安装在输出轴上的小齿轮2,驱动安装在焊枪转轴1上的大齿轮3转动,从而大齿轮3带动焊枪转轴1摆动,实现焊接过程中钨极25左右摆动;焊接时焊接保护气体通过左导气管15和右导气管21传输到焊枪体14前端的左右气室,再通过气筛网均匀的输送到焊接电弧区域,对焊接电弧进行实时保护;钨极25产生的TIG焊接电弧与激光束20的聚焦点交汇一处K点,形成激光与TIG焊接复合电弧,实现窄间隙坡口条件下,双扫描方式的优质高效焊接。
如图4所示,一种窄间隙激光-TIG电弧复合焊接装置的焊接方法,具体包括以下步骤:
一、焊前
1)依据复合焊枪尺寸,设计窄间隙坡口结构,保证焊枪在焊缝深度方向的可达性;
2)将待焊工件进行打磨或清理,并将打磨或清洗后的待焊工件组装及定位;
3)调节并确认焊丝、激光及钨极间空间位置关系;
4)检查水、电、气及焊接设备运行状态;
5)设置焊丝、激光及TIG电弧焊接参数,焊接参数包括送丝速度、焊丝直径、激光离焦量、激光功率、激光摆动幅度和频率、TIG电弧电流、电压及钨极长度、摆动角度和频率;
二、焊中
开启控制开关,激光及电弧作用于工件表面,焊丝同步稳定送入焊接熔池,同时枪头沿焊接方向按照设定速度移动,焊接过程中,激光光斑的摆动协同钨极25左右摆动最终实现厚板窄间隙焊接;
在窄间隙坡口条件下焊接,为了实现焊接质量的稳定性与可靠性,在焊接过程中通过采用了双重手段保证焊接接头质量;
激光光斑的摆动
为了保证焊接过程中层与层之间的良好熔合,焊接过程中通过激光光斑摆动的形式作用于焊接熔池,一方面可解决激光能量集中,激光光斑中心位置熔深大,边缘位置熔深浅现象,进而导致层与层之间熔合不良情况发生;其次,焊接过程仍是不稳定的过程,在每层焊道结束后,焊缝表面状态存在差异,影响下一道焊缝质量,通过激光的摆动作用,减小上一道焊道的影响;再次,焊接过程中焊丝作用于熔池前端,激光摆动增加了熔池宽度,对焊丝前端的位置精准度要求降低;除此之外,激光的加入,也大幅提升了单位时间焊丝的熔化量,即提升了焊丝单位时间的送进速度,从而提升单位时间金属熔敷效率,实现焊接效率的大幅提升;
钨极的旋转摆动
焊接过程中钨极25通过钨极夹24安装在焊枪转轴1上,步进电机6通过安装在输出轴上的小齿轮2,驱动安装在焊枪转轴1上的大齿轮3,实现焊接过程中钨极25左右摆动;
焊接过程中,钨极可根据坡口间隙大小,通过设定钨极旋转角度,保证钨极在坡口内焊接位置的可达性;同时可对钨极旋转速度和旋转两侧极限位置停留时间进行设置,这些极大程度降低了窄间隙坡口焊接过程中侧壁未熔合现象产生;焊接过程中通过TIG电弧弧压跟踪功能,实时调整复合焊枪位置高度,确保电弧与工件间相对位置一致性,实现焊接全过程的稳定焊接;
在厚板多层多道焊接过程中,为了保证焊接质量稳定性,激光摆动幅 度及频率、电弧旋转角度及频率对窄间隙坡口条件下的焊接侧壁熔合影响较大,应根据坡口焊缝宽度进行调节。
激光和TIG电弧作用于一个熔池,激光在前,电弧在后,焊丝在激光前方沿焊缝方向送入熔池,焊丝在激光作用下熔化并进入熔池,电弧与激光的共同作用下熔化母材金属实现焊材与母材的冶金结合效果。双热源的加入,提升了焊缝熔合质量、改善了焊缝成形效果、增加了焊丝熔化速度。
激光束采用激光器为YAG固体激光器、半导体激光器或光纤激光器;激光输出为连续激光或脉冲激光,激光功率为10-10000W。激光束为扫描激光,激光扫描路径的几种典型包括“一”字形、“8”字形、圆形、多边形、锯齿形和正弦波形等,每种扫描路径有顺时针和逆时针两种不同的光束运动方向。
焊接装置配有外接热丝接口,提升了焊丝熔化速度,在同样参数下焊丝送进速度提高。焊丝直径为0.8-2.4mm。
TIG电弧为L型设计,可沿导杆进行旋转,焊缝熔宽可根据钨极伸出长度、旋转角度及频率进行调节。
窄间隙激光-TIG电弧复合焊接装置可满足碳钢、不锈钢、铝合金、镍基合金等材料的焊接需求,板材厚度适用范围为0.5-200mm。
本发明提出的一种优质/高效窄间隙激光-TIG电弧复合焊接方法,目的是为了提高产品焊接质量、提升焊接效率、降低焊接成本、减少焊接变形。该方法将激光和电弧两种热源复合于一个熔池,电弧稳定性得到加强,同时利用摆动激光、旋转电弧方式,解决了多层多道的层间及侧壁熔合技术难题,产品焊接质量大幅提升。焊接效率方面,为了减小焊缝金属填充方面,设计开发了窄间隙激光-TIG复合焊枪,极大减小了坡口体积,其次双热源的作用,焊丝金属熔化速度提升,焊丝送进速度提升,单位时间内金属熔敷效率大幅提升。再次热丝装置的加入,提前对焊丝预热,同样参数下焊丝送进速度提升。除此之外,总体焊接热输入的减小以及双热源作用模式,焊接变形和焊缝成形质量同样得到大幅提升。
下面给出一种具体实施示例:大厚度高强钢窄间隙激光-TIG电弧复合焊接方法:
1)材料:10Ni5CrMoV高强钢;
2)板厚:120mm;
3)焊丝:JS80,Φ1.2mm;
4)坡口设计:采用复合型对称坡口设计,根部为U型坡口结构,坡口钝边为4mm,坡口角度2°;
6)将待焊工件进行打磨或清理,并将打磨或清洗后的待焊工件组装及定位,同时考虑焊接变形对坡口宽度的影响,需进行反变形处理;
7)调节、确认焊丝、激光及钨极间空间位置关系,其中激光和钨极间距3-4mm,激光前倾角度5°,钨极前倾角度35°,钨极直径2.4mm,钨极距工件距离2-2.5mm,焊丝送入激光前端处,焊丝直径1.2mm;
8)检查水、电、气及焊接设备运行状态;
9)设置焊丝、激光及TIG电弧焊接参数,其中送丝速度4-6m/min,激光打底焊功率5-6kW,激光填充及盖面焊功率2-3kW,激光离焦量+5mm,激光摆动幅度3-5mm,频率40-60Hz,焊接速度0.4-0.8m/min;焊接电流160-200A,焊接电压12-16V;钨极摆动幅度2-4mm,摆动频率3-5Hz;
10)开启控制开关,激光及电弧作用于工件表面,焊丝同步稳定送入焊接熔池,同时枪头沿焊接方向按照设定速度移动,在窄间隙坡口条件下焊接,为了实现焊接质量的稳定性与可靠性,在焊接过程中通过采用了双重手段保证焊接接头质量;
需要激光光斑的摆动和钨极的旋转摆动,钨极旋转摆动的工作过程为:焊接过程中钨极25通过钨极夹24安装在焊枪转轴1上,步进电机6通过安装在输出轴上的小齿轮2,驱动安装在焊枪转轴1上的大齿轮3,实现焊接过程中钨极25左右摆动;焊接时,钨极摆动配合激光光斑摆动,实现焊接接头质量好;
焊接过程中,钨极可根据坡口间隙大小,通过设定钨极旋转角度,保证钨极在坡口内焊接位置的可达性;同时可对钨极旋转速度和旋转两侧极限位置停留时间进行设置,这些极大程度降低了窄间隙坡口焊接过程中侧壁未熔合现象产生;
焊接过程中通过TIG电弧弧压跟踪功能,实时调整复合焊枪位置高 度,确保电弧与工件间相对位置一致性,实现焊接全过程的稳定焊接;按照设定轨迹进行焊接,焊接方式采用多层单道焊接方式,即每层焊接一道,焊接出如图5所示焊接试件,焊缝焊接质量好,焊缝变形小。
本申请具有以下有益效果:
(1)高速条件下优质焊接:与传统TIG焊接相比,焊接速度提升3倍以上;
(2)高熔敷效率:与传统TIG焊相比,本申请提出双热源模式、焊丝预热方法,金属熔敷效率提升3倍以上;
(3)焊缝熔宽的精准控制:提出的摆动钨极焊接方式和扫描激光结合方式,焊接中可通过旋转钨极幅度进行对焊缝宽度的精准控制;
(4)适用于大厚度材料高效焊接:设计的窄间隙激光-TIG电弧复合焊接枪头,可实现厚度<200mm、坡口宽度<18mm板材焊接;
(5)焊材消耗减小:窄间隙焊接-TIG电弧复合焊接所用坡口与常规坡口相比,由于坡口角度减小,坡口填充面积大幅缩减,焊材消耗量减小2倍以上;
(6)焊接变形显著减小:与传统TIG焊相比,金属熔敷量减小,焊接层数及焊接道数减少,焊接变形减小30%;
(7)生产成本不大幅降低:焊材消耗和焊接效率的提升,其生产成本显著降低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:包括焊枪体(14)、摆动焊枪组件、焊丝送丝加热组件和送气组件,所述的摆动焊枪组件包括焊枪转轴(1)、步进电机(6)、大齿轮(3)、小齿轮(2)、上绝缘套(4)、下绝缘套(22)、钨极夹(24)和钨极(25),所述的步进电机(6)安装在电机连接座(7)上,所述的小齿轮(2)安装在步进电机(6)的输出轴上,所述的大齿轮(3)安装在焊枪转轴(1)上,所述的小齿轮(2)和大齿轮(3)啮合,所述的焊枪转轴(1)通过上绝缘套(4)和下绝缘套(22)安装定位在焊枪体(14)上,所述钨极(25)通过钨极夹(24)安装在焊枪转轴(1)的末端;
    所述的焊丝送丝加热组件包括热丝连接座(10)、导电连接杆(11)、上绝缘座(13)、下绝缘座(22)、导丝管(17)、导电嘴连接座(18)和导电嘴(19),所述的导电连接杆(11)上端与热丝连接座(10)连接,下端与导电嘴连接座(18)连接,所述导电嘴(19)安装在导电嘴连接座(18)上,所述导电连接杆(11)通过上绝缘座(13)和下绝缘座(16)安装在焊枪体(14)的左侧,所述的导丝管(17)安装在上绝缘座(5)上,所述的导丝管(17)末端与导电嘴(19)连接,所述热丝连接座(10)与热丝电源电缆连接;
    钨极(25)产生的TIG焊接电弧与激光束(20)的聚焦点交汇一处,共同作用于同一区域;所述的送气组件包括左导气管(15)和右导气管(21),所述的左导气管(15)和右导气管(21)均安装在焊枪体(14)上,且布置在焊枪转轴(1)的左右两侧,左导气管(15)和右导气管(21)的末端分别对应焊焊枪体(14)下端的左、右气室布置,且气室内设有气筛网(23),焊接保护气体通过左导气管(15)和右导气管(21)传输到焊枪体(14)下端的左、右气室,再通 过气筛网(23)均匀的输送到焊接电弧区域。
  2. 根据权利要求1所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:所述焊枪转轴(1)为双层管结构,包括外层管(26)和内层管(27),外层管(26)和内层管(27)连通,所述外层管(26)与进水孔(28)连通,所述内层管(27)与出水孔(29)连通,冷却水通过进水孔(28)流入外层管(26)内,再由内层管(27)经出水孔(29)流出。
  3. 根据权利要求1所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:所述左导气管(15)、焊枪转轴(1)、右导气管(21)、导电连接杆(11)和导丝管(17)之间均并排布置。
  4. 根据权利要求3所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:所述导丝管(17)通过固定夹(12)夹紧定位在绝缘座(5)上,所述固定夹(12)用于调整焊丝送丝位置。
  5. 根据权利要求1所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:所述焊枪体(14)为超薄结构,厚度为12mm。
  6. 根据权利要求5所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:在步进电机(6)、电机连接座(7)及热丝连接座(10)外围罩设有一保护罩(5)。
  7. 根据权利要求6所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:所述装置还包括焊枪连接座(8),所述焊枪连接座(8)与焊枪体(14)连接,焊枪连接座(8)与安装连接板(9)连接;所述安装连接板(9)设置在保护罩(5)外侧,所述安装连接板(9)与外部行走机构连接。
  8. 根据权利要求1所述的一种窄间隙激光-TIG电弧复合焊接装置, 其特征在于:所述热丝连接座(10)通过热丝电源电缆与外部热丝机构连接。
  9. 根据权利要求1所述的一种窄间隙激光-TIG电弧复合焊接装置,其特征在于:所述激光束(20)采用激光器为YAG固体激光器、半导体激光器或光纤激光器;焊丝直径为0.8-2.4mm。
  10. 根据权利要求1-9中任一项所述的一种窄间隙激光-TIG电弧复合焊接装置的焊接方法,其特征在于:具体包括以下步骤:
    一、焊前
    1)依据复合焊枪尺寸,设计窄间隙坡口结构,保证焊枪在焊缝深度方向的可达性;
    2)将待焊工件进行打磨或清理,并将打磨或清洗后的待焊工件组装及定位;
    3)调节并确认焊丝、激光及钨极间空间位置关系;
    4)检查水、电、气及焊接设备运行状态;
    5)设置焊丝、激光及TIG电弧焊接参数,焊接参数包括送丝速度、焊丝直径、激光离焦量、激光功率、激光摆动幅度和频率、TIG电弧电流、电压及钨极长度、摆动角度和频率;
    二、焊中
    开启控制开关,激光及电弧作用于工件表面,焊丝同步稳定送入焊接熔池,同时枪头沿焊接方向按照设定速度移动,焊接过程中,激光光斑的摆动协同钨极(25)左右摆动最终实现厚板窄间隙焊接。
PCT/CN2022/099048 2021-06-16 2022-06-16 一种窄间隙激光-tig电弧复合焊接装置及焊接方法 WO2022262788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110664751.3 2021-06-16
CN202110664751.3A CN113385822B (zh) 2021-06-16 2021-06-16 一种窄间隙激光-tig电弧复合焊接装置及焊接方法

Publications (1)

Publication Number Publication Date
WO2022262788A1 true WO2022262788A1 (zh) 2022-12-22

Family

ID=77621362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099048 WO2022262788A1 (zh) 2021-06-16 2022-06-16 一种窄间隙激光-tig电弧复合焊接装置及焊接方法

Country Status (2)

Country Link
CN (1) CN113385822B (zh)
WO (1) WO2022262788A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117300361A (zh) * 2023-11-28 2023-12-29 无锡鼎邦换热设备股份有限公司 空冷器管板焊接方法及系统
CN117961399A (zh) * 2024-03-29 2024-05-03 常州市华瑞焊割机械有限公司 一种焊枪管调整机构及具有该机构的焊枪

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385822B (zh) * 2021-06-16 2024-06-28 哈尔滨焊接研究院有限公司 一种窄间隙激光-tig电弧复合焊接装置及焊接方法
CN114178701B (zh) * 2021-12-06 2024-05-14 中国兵器科学研究院宁波分院 7b52铝合金激光-电弧复合焊接定位装置及其使用方法
CN115555723A (zh) * 2022-10-13 2023-01-03 哈尔滨焊接研究院有限公司 一种激光-熔化极电弧复合焊接方法
CN115415648A (zh) * 2022-10-22 2022-12-02 寿光市鼎森机械制造有限公司 一种导电嘴及焊枪的控制方法
CN115709327B (zh) * 2022-11-30 2024-01-26 哈尔滨工业大学 一种适用于窄间隙焊接缺陷修复的灵巧型焊枪
CN116275524A (zh) * 2022-12-06 2023-06-23 哈尔滨焊接研究院有限公司 一种双丝窄间隙激光-tig复合焊接方法
CN116275413B (zh) * 2023-03-15 2023-12-05 哈尔滨工业大学 一种丝弧同步摆动的窄间隙gtaw焊枪
CN117564476B (zh) * 2024-01-17 2024-04-26 深圳市铭镭激光设备有限公司 一种激光电弧复合焊接设备及焊接方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245774A1 (en) * 2005-12-26 2008-10-09 Korea Institute Of Industrial Technology Laser-rotate arc hybrid welding system and thereof method
CN101890560A (zh) * 2010-07-22 2010-11-24 昆山华恒工程技术中心有限公司 窄间隙热丝tig焊枪
CN102528248A (zh) * 2011-11-08 2012-07-04 上海交通大学 窄间隙tig焊枪
CN108406118A (zh) * 2018-04-02 2018-08-17 西南交通大学 激光-旋转电弧复合焊接系统及其复合焊接方法
CN109332899A (zh) * 2018-10-29 2019-02-15 渤海造船厂集团有限公司 一种管道窄间隙扫描振镜激光-热丝tig复合焊接的方法
CN110052712A (zh) * 2019-05-31 2019-07-26 山东大学 一种非轴对称旋转钨极gtaw与脉冲激光复合焊接方法
CN110961789A (zh) * 2019-11-26 2020-04-07 哈尔滨工业大学(威海) 一种激光扫描-振动热丝tig复合焊接方法
CN113385822A (zh) * 2021-06-16 2021-09-14 哈尔滨焊接研究院有限公司 一种窄间隙激光-tig电弧复合焊接装置及焊接方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254791A (ja) * 1999-03-05 2000-09-19 Agency Of Ind Science & Technol 軸受用ホワイトメタル合金の肉盛り装置および肉盛り方法
FR2845023B1 (fr) * 2002-09-26 2004-10-29 Commissariat Energie Atomique Installation de soudage en chanfreins etroits
CN215432042U (zh) * 2021-06-16 2022-01-07 哈尔滨焊接研究院有限公司 一种窄间隙激光-tig电弧复合焊接装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245774A1 (en) * 2005-12-26 2008-10-09 Korea Institute Of Industrial Technology Laser-rotate arc hybrid welding system and thereof method
CN101890560A (zh) * 2010-07-22 2010-11-24 昆山华恒工程技术中心有限公司 窄间隙热丝tig焊枪
CN102528248A (zh) * 2011-11-08 2012-07-04 上海交通大学 窄间隙tig焊枪
CN108406118A (zh) * 2018-04-02 2018-08-17 西南交通大学 激光-旋转电弧复合焊接系统及其复合焊接方法
CN109332899A (zh) * 2018-10-29 2019-02-15 渤海造船厂集团有限公司 一种管道窄间隙扫描振镜激光-热丝tig复合焊接的方法
CN110052712A (zh) * 2019-05-31 2019-07-26 山东大学 一种非轴对称旋转钨极gtaw与脉冲激光复合焊接方法
CN110961789A (zh) * 2019-11-26 2020-04-07 哈尔滨工业大学(威海) 一种激光扫描-振动热丝tig复合焊接方法
CN113385822A (zh) * 2021-06-16 2021-09-14 哈尔滨焊接研究院有限公司 一种窄间隙激光-tig电弧复合焊接装置及焊接方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117300361A (zh) * 2023-11-28 2023-12-29 无锡鼎邦换热设备股份有限公司 空冷器管板焊接方法及系统
CN117300361B (zh) * 2023-11-28 2024-02-27 无锡鼎邦换热设备股份有限公司 空冷器管板焊接方法及系统
CN117961399A (zh) * 2024-03-29 2024-05-03 常州市华瑞焊割机械有限公司 一种焊枪管调整机构及具有该机构的焊枪
CN117961399B (zh) * 2024-03-29 2024-06-04 常州市华瑞焊割机械有限公司 一种焊枪管调整机构及具有该机构的焊枪

Also Published As

Publication number Publication date
CN113385822A (zh) 2021-09-14
CN113385822B (zh) 2024-06-28

Similar Documents

Publication Publication Date Title
WO2022262788A1 (zh) 一种窄间隙激光-tig电弧复合焊接装置及焊接方法
CN104625412B (zh) 一种铜合金激光‑冷金属过渡复合热源增材制造的方法
CN101811231B (zh) 一种激光-冷金属过渡电弧复合热源焊接方法
CN110000475B (zh) 复合焊连续焊接方法及装置、焊接成品、车体
CN111515541B (zh) 厚板窄间隙激光-tig复合填丝焊接装置及方法
CN106862771B (zh) 一种用于高温合金的激光辅助熔化极电弧增材连接方法
CN105215525B (zh) 旁路热丝等离子弧焊接装置及焊接方法
CN112676702B (zh) 复合双波长对于有色金属的精密微焊接的方法和装备
CN109604831B (zh) 用于改善钛及钛合金薄板激光焊咬边的激光tig复合焊焊接工艺
CN204997223U (zh) 旁路热丝等离子弧焊接装置
CN110238528B (zh) 一种法向送丝的激光-热丝tig复合焊接方法
JP2010201507A (ja) タングステン−不活性ガス溶接法によって2つの金属部分を結合するための方法ならびに該方法を実施するための装置
CN102161134A (zh) 变极性方波钨极氩弧和激光复合焊接方法
CN101992354A (zh) 微束等离子弧和激光复合焊接方法
WO2022012000A1 (zh) 一种全位置熔化极电弧-激光双面复合焊接工艺及其设备
CN111185666B (zh) 一种扫描激光-tig电弧复合深熔焊接方法
CN101733564A (zh) 超高强度钢的激光-电弧复合热源高速焊接方法
CN108406118B (zh) 激光-旋转电弧复合焊接系统及其复合焊接方法
CN111673283B (zh) 一种铝合金厚板多层激光-tig复合焊接装置及方法
CN107309563A (zh) 一种高级别管线钢的激光‑电弧复合焊接方法
CN105798462A (zh) 一种利用激光-mag复合热源的焊接方法
CN103831533A (zh) 钛合金激光-mig复合焊接方法
CN110695532A (zh) 一种小功率大光斑激光-mag电弧复合堆焊方法
CN102848086A (zh) 提高超高强度钢激光-电弧复合焊接头强度韧性的方法
CN215432042U (zh) 一种窄间隙激光-tig电弧复合焊接装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824263

Country of ref document: EP

Kind code of ref document: A1